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Abstract

This thesis is written for the Swedish degree Licentiate of Science, teknisk licentiat.
It is a university degree, intermediate between that of master and that of doctor.

We study the approximability of different generalizations of the Max Cut prob-
lem. First, we show that Max Set Splitting and Max Not-All-Equal Sat are both
approximable within 1.380 in probabilistic polynomial time. The algorithm uses
standard semidefinite relaxations, combined with a probabilistic post-processing
step. Then, we focus on systems of linear equations modulo p with exactly & un-
knowns in each equations. The naive randomized algorithm, which guesses a so-
lution uniformly at random from the solution space, has performance ratio p for
this problem. For k > 3, it has been shown by Hastad that it is, for all € > 0,
NP-hard to approximate the optimum within p —e. In contrast to this remarkable
result, we show that, for the case when k = 2, it is possible to use a semidefinite re-
laxation combined with randomized rounding to obtain a probabilistic polynomial
time algorithm with performance ratio p — k(p), where k(p) > 0 for all p. Finally,
we show that it is possible to construct a randomized polynomial time approxima-
tion scheme for instances where the number of equations is ©(n*), where n is the
number of variables in the instance.
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Chapter 1

Introduction

This thesis deals with optimization problems, and their tractability. It is not dif-
ficult to realize that the size of the problem affects the tractability. The following
example illustrates that it is indeed important to know how fast the time needed
to solve a certain problem grows as the size of the problem increases.

1.1 A real life problem

Suppose that you are a Senior Engineer at a company producing circuit boards for
computers. Naturally, you want to produce as many boards as possible each day.
One phase of the production is to drill holes in the circuit board. There are n holes
to be drilled and each hole takes ¢ seconds to drill. The drill can be moved from
one hole to another with velocity v. We can use these parameters to compute the
total time needed to drill all holes in a board; it is

T=cxn+vxd, (1.1)

where £ is the total length the drill must be moved from the first hole to the second,
from the second to the third, and so on. To drill as many boards as possible each
day, we want to minimize the time 7" required to drill one board. Since we must
drill all n holes, it is impossible to lower the term ¢ x n, unless we acquire a new
drilling machine. It is not possible to lower v since that is also a parameter that
comes with the machine we use. What do we know about ¢, the total distance the
drill must move between the holes? Not much, it seems. Obviously, it depends on
the order in which we drill the holes. If we have only ten holes on the board, there
is a total of

10! = 3628800 (1.2)

possible orders to choose. It does not take long for a computer to test all possible
orders, and find the one with the shortest £. But what if there are 1 000 holes on
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the board? Then there are
1000! ~ 4 x 102557 (1.3)

possible orders, a tremendously huge number. In this case it is infeasible to try all
possible orders. Is there a better way? If we cannot come up with a better way of
finding the shortest possible /¢, is it possible to find, in reasonable time, some order,
which gives a length £ close to the optimal one?

1.2 Classification of problems

To write down a precise definition of “solvable in reasonable time”, the notion
of NP-completeness was introduced [7, 22]. Informally, a problem which is NP-
complete is believed not to be solvable in reasonable time. Unfortunately, several
optimization problems with wide use in applications were early shown to be NP-
complete [14].

In applications it is often enough to know that a solution is roughly the best
possible. For a problem known to be NP-complete, the question studied then
becomes: Is it possible to find, in reasonable time, a solution close to the optimum?
It turns out that the NP-complete problems have very different behavior with
respect to approximability. The quality of an approximation algorithm can be
measured with the worst possible relative error of the solution produced by the
algorithm. For some problems, it is possible to find, in reasonable time, a solution
with arbitrary small, but of course always positive, relative error. For some other
problems, it is possible to find a solution with some constant relative error. And for
some problems, it is NP-complete to approximate the solution within any constant
relative error.

Crescenzi and Kann have constructed a list of NP-complete approximation
problems and their approximability [8]. The list is updated continuously, and the
current version (April 1997) contains more than 200 problems. For each problem,
Crescenzi and Kann list upper bounds on the approximability, i.e., how good the
best known approximation algorithm is. But they also list lower bounds on the
approximability, i.e., bounds saying that it is impossible to approximate, in reason-
able time, the solution better than some certain quantity. This reflects the research
in the area: Given some optimization problem, we do not only want to know the
performance of the best known approximation algorithm. We also want to know:
What is the best thing we can possibly hope for? Is it worthwhile to search for
better algorithms, or have we already found the best possible?

What about the problem described above? It is actually one of the most well-
studied optimization problems, the Traveling Salesman Problem, or T'SP for short.
The traveling salesman, in our case the drill, has to visit n cities, in our case the
holes in the circuit board. He wants to find, given the distances between the cities,
the shortest possible tour visiting each city and starting and ending in the same
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city. TSP is NP-complete. It is, however, possible to construct a tour of length
1+ ¢ times the length of the optimum tour in reasonable time for any € > 0 [5].

1.3 The Max Cut problem and its relatives

Assume that we have a large computer network, were each computer is connected
to at least one of the other computers in the network. Unfortunately, the commu-
nications protocol used in the network is very badly constructed. It requires the
computers to either be in A-mode or B-mode. The problem is, that A-mode com-
puters can only communicate with B-mode computers, and vice versa. How should
we find a way to assign modes to the computers, such that as many computers as
possible can communicate with each other? Let us model the network with a graph.

3 4

2

Each dot, or vertex, represents a computer. The lines, or edges, between the dots
represent connections between computers. Our objective now, is to assign to each
vertex the label A or B, in such a way that as many edges as possible connect an
A-vertex and a B-vertex. This is exactly the Max Cut problem: Given a graph
G = (V, E), where V is the set of vertices and F is the set of edges, the objective in
the Max Cut problem is to find the partition of V' into two parts, V7 and Vs, which
maximizes the number of edges having one endpoint in V; and one endpoint in V5.
In our case, we have

V =1{1,2,3,4,5}, (1.4)
E={{1,2},{1,3},{1,5},{2,3},{2,4},{2,5}, {3,4},{4,5} }. (1.5)

In this simple case it is not difficult to see that the optimal solution is to put
computers 2 and 4 in A-mode, and the other computers in B-mode. Then, six of
the eight communication lines will work. In general, however, Max Cut is NP-
complete.

1.3.1 Set splitting

By studying the Max Cut problem from two different perspectives, we obtain two
natural generalizations of it. The first possibility concerns the edges in the graph.
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They connect two vertices, but one could imagine edges connecting an arbitrary
number of vertices. This leads to the Max Set Splitting problem: The set E above
can contain not only pairs, but sets of arbitrary size. The objective is then to
partition V' into two parts, in such a way that as many of the sets in E as possible
contain at least one member from each part in the partition. We study this problem
in Chapter 2, and show that we can find, in reasonable time, a partition such that
the number of sets split by this partition is at least 72% of the number of sets split
in the optimal solution.

1.3.2 Linear equations mod p

We can also look at the Max Cut problem in a different way if we introduce a
variable x; for each vertex i in the graph. The variables can only assume the values
0 and 1. If we use the convention that 1 + 1 = 0, i.e., we do our computations
modulo 2, we can reformulate the Max Cut problem as a system of linear equations.
The objective is then to produce an assignment to the variables x;, such that as
many equations as possible are satisfied. Our example above translates to the
following system of linear equations:

1 +x2 =1 (mod 2)

T1+ T3 = (mod 2)

1 +a5 =1 (mod 2)

r2+x3=1 (mod 2) (1.6)
zo+x4=1 (mod 2) '
zo+ax5 =1 (mod 2)

T3+ Ty = (mod 2)

Ty + T5 = (mod 2)

A natural way to generalize this problem, is to study systems of linear equations
modulo p, for arbitrary p. The system above has two variables in each equation.
It has been shown by Hastad [19], that systems with exactly k variables in each
equation are hard to approximate when k& > 3. Specifically, it is for all ¢ > 0
impossible to satisfy more than a fraction 1/p+e¢ of the optimal number of satisfied
equations, in reasonable time. On the other hand, if we guess a solution at random,
we will satisfy a fraction 1/p. We show in Chapter 3 that it is possible to satisfy
more than a fraction 1/p of the optimum for systems with two variables in each
equation. In Chapter 4, we study systems of linear equations where each variable
appears many times. It turns out, that for such systems, it is possible to construct
in reasonable time a solution approximating the optimum within a relative error
of g, for any € > 0.
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1.4 Organization of the thesis

The material in Chapter 2 follows the article by Andersson and Engebretsen [3].
My contribution to the article is approximately 50%. The material in Chapter 3
follows parts of the manuscript by Andersson, Engebretsen and Hastad [4]. My
contribution to the material covered in Chapter 3 is approximately 50%. Finally,
the material in Chapter 4 is based on the previously unpublished note by Andersson
and Engebretsen [2]. Also in this case is my contribution approximately 50%.
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Chapter 2

Set Splitting and
Not-All-Equal Sat

We construct new approximation algorithms for Max Set Splitting and Max Not-
All-Equal Sat, which when combined with existing algorithms give the best approx-
imation results so far for these problems. Furthermore, we solve a linear program
to find an upper bound on the performance ratio. This linear program can also be
used to see which of the contributing algorithms it is possible to exclude from the
combined algorithm without affecting its performance ratio.

2.1 Introduction

Recently, Goemans and Williamson, building on earlier work, introduced a new
paradigm for solving combinatorial optimization problems using mathematical pro-
gramming [15, 17]. This significantly improved the approximability of Max Cut,
and initiated a suite of yet better approximation algorithms for Max Sat and Max
Cut [10, 15, 16, 17].

We introduce new approximation algorithms for Max Set Splitting and Max
Not-All-Equal Sat. In the Max Set Splitting problem, a problem instance consists
of subsets of some finite set. The problem is to partition the elements into two parts,
such that as many subsets as possible will be split, i.e., contain elements from both
parts. A restriction of this problem, Max k-Set Splitting, where all subsets have
cardinality k, was shown to be NP-complete for any fixed k by Lovéasz [23]. It has
also been shown to be Apx-complete [26]. Obviously, Max 2-Set Splitting is exactly
the Max Cut problem. The best known approximation algorithm for this problem
has performance ratio 1.14 [15, 17]. Furthermore, Max 3-Set Splitting has been
shown to be approximable within the same performance ratio [21], and for k > 4,
Max k-Set Splitting is approximable within 1/(1 — 2!7%) [1, 21]. However, the

7
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previously best known algorithm for the general Max Set Splitting problem has a
performance ratio of 2.

The Max Not-All-Equal Sat problem, from now on abbreviated Max NAE Sat,
is a variant of Max Sat, where the goal is to maximize the total weight of the
clauses that contain both true and false literals. It has been shown to be Apx-
complete with performance ratio 2 [25]. We can actually view Max NAE Sat as a
generalization of Max Set Splitting, since every instance of the Max Set Splitting
problem is also an instance of Max NAE Sat, namely an instance where no clause
contains any negated literal.

Our approximation algorithm for Max Set Splitting is built upon ideas of Cresc-
enzi and Trevisan [9]. We start by solving a semidefinite program obtained from
Goemans and Williamson [17], and then add a probabilistic postprocessing step,
where the solution to the semidefinite program is perturbed. A small modification
of this algorithm also gives an algorithm for Max NAE Sat. We then construct a
combined algorithm by taking the maximum of the results obtained from previously
known algorithms and the result from our algorithm. By formulating the inverse of
the performance ratio of this combined algorithm as a linear program, we are able
to bound the performance ratio simply by solving a linear program. This shows
that the combined algorithm has a performance ratio of at most 1.380, both for
Max Set Splitting and Max NAE Sat.

2.2 Basic definitions

Solving an NP maximization problem F', given an instance x, means finding a feasi-
ble solution y such that the objective value mp(z,y) is maximized. Here mp(x,y) is
polynomially computable and the size of y is polynomial in |z|. Denote the optimal
value max, mr(z,y) by optp(z).

Definition 2.1. Let x be an instance of an NP maximization problem F and let
optz(z) be its optimum value. For any solution y to z, the performance ratio is
defined as Rp(z,y) = optp(x)/mp(z,y).

We say that an approximation algorithm A for an NP maximization prob-
lem F has performance ratio r > 1 and performance guarantee 1/r if, for all input
instances z, Rp(z, A(z)) < r. We say that an approximation algorithm for an
NP maximization problem is an a-approximation algorithm if it has performance
guarantee «.

Definition 2.2. Let S be any finite set, {5 }?:1 be a collection of subsets of S,
and {w; }?:1 be a collection of positive weights corresponding to each subset re-
spectively. The Max Set Splitting problem is defined as the problem of finding a
partition of S into two sets that maximizes the total weight of the subsets .S; that
are split by the partition.
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Definition 2.3. Let {z;}]; be a collection of boolean variables, {C;}7_; be a
collection of CNF clauses over those variables, and {w;}_; be a collection of posi-
tive weights corresponding to each clause respectively. The Max NAE Sat problem
is defined as the problem of finding a truth assignment to the boolean variables
that maximizes the total weight of the clauses C; that contain both true and false
literals.

2.3 The algorithms for Max Set Splitting

2.3.1 The algorithm of Goemans and Williamson

The basis of our work is the algorithm of Goemans and Williamson [17] for the Max
Cut problem. Let u(S;) be a function which is 0 if S; is not split, and at least 1 if
S; is split. Then we can formulate the Max Set Splitting problem as
n
maximize Z Wjz;
j=1
u(S;) > z; forall j

subject to ]
0<%z <1 forallj

Now we aim to find a suitable formulation of u(S;).
Definition 2.4. For each subset S, we let P; = {{z’l,ig} tip Fda N, ig € Sj}.

We observe that none of the pairs {i1,i2} € P; aresplit if S; is not split, and that
at least |S;| — 1 of the pairs are split if S; is split. Furthermore, we let y; € {—1,1}
correspond to the element x; € S, where z;, € S and z;, € S belong to the same
part in the partition of S if and only if y;, = y;,. This enables us to define u(S;) as

1 1_yi1yi2
() = o7 > — (2.2)

{’il ,iz}EPJ

We now introduce m-dimensional unit vectors v; instead of y; to relax the inte-
ger program to a semidefinite one. Each product y;,y;, in the definition of u(S;)
is replaced by the inner product v;, - v;,. This yields the following semidefinite
program:
n
maximize Z Wjz;
j=1

mﬁ D (iriatep, 1—1)#1@2 > z; forall j €[1,n] (2.3)

subject toq 0 < z; <1 forall j € [1,n]
vi-v; =1 forallie[l,m]

Each vector v; in the solution to the semidefinite program is used to assign a value
in {—1,1} to the corresponding y; by the following randomized rounding scheme:
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A random hyperplane through the origin is chosen. Denote its normal by p. Then
we set

yi = sgn(p - v;). (2.4)

To analyze the performance of this algorithm we introduce the following indicator
random variables:

Definition 2.5. For each pair {y;,,y:,} of variables, the indicator random vari-
able X;, ;, is defined by

1 if Yiy 7é Yiss
Xii, = 2.5
ne {0 otherwise. (2:5)
Definition 2.6. For each subset S, the indicator random variable Z; is defined
by
)1 if Sj is split by the algorithm, (2.6)
7710 otherwise. ’
Our goal now is to show a lower bound on
E|Y wizi| => wE[Z] (2.7)
j=1 j=1

To do this, we will use a bound on Pr[X; ;, = 1] and a relation between Z; and
Z{il,m}er Xi1i2 :

We will only have Xj;,;, = 1 if the vectors v;; and v;, end up on opposite sides
of the random hyperplane. The probability of that event is proportional to the
angle between the vectors, and if the vectors are anti-parallel, they will always be
on opposite sides of the hyperplane. Thus

Pr[Xiliz = ].] = 91‘11‘2/7'(, (28)

where 6;,;, is the angle between v;, and v;,. Goemans and Williamson show that
this probability can be bounded by

].—’Ui1 'Uiz

PY[Xmg = 1] Z Q 2 s

(2.9)
where a > 0.87856 [17, Sec. 3]. This result alone takes care of any subset S;

of cardinality 2. For larger subsets we use an idea exploited by Goemans and
Williamson [17, Sec. 7.2.2]:
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Lemma 2.7. Define Oy as

4/(k+1)(k—1) ifk is odd. (2.10)

4/k? if k is even,
Br =
Then, for any subset S;, we have that Zj > g E{il,iz}EPj Xirig-

Proof. For any subset S, at most 1/8s;| of the pairs in P; are split if S; is split.
Also, none of the pairs in P; are split when S; is not split. O

Putting the pieces together, we obtain the following bound on E[Z;]:

Theorem 2.8. For a subset S;, we have that E[Z;] > avs;|2;, where

4(1S;| = 1)/1S;1?  if |S;] is even,
N (R VT K o
4/(15;1 +1) if |S;] is odd.
Proof. By Lemma 2.7 and the linearity of expectation,
E[Z;] > Bys;| Z E[Xi,i,]- (2.12)
{i1,i2}eP;
Now, by the bound of Goemans and Williamson from Eq. 2.9,
E[Xiliz] > a(l — Uiy viz)/Qv (213)
since Xj,;, is an indicator random variable. Thus,
1 1—v;, v
B(Z] > aBis, (1] - 1) g Y, ———2. (2.14)
1Sl =1 “ 2
{ir,in}eP;

By the definition of fjs,| and 7|s,| together with the constraints in the semidefinite
program (2.3), this latter quantity is at least ay|g;z;. O

To sum up, we have established that the algorithm produces a solution with an
expected weight of at least E?Zl aY|s,|WjZj-
2.3.2 Our improvements

We will in the next section analyze the combined algorithm which runs the following
algorithms and takes the maximum weight obtained as the result.

Algorithm 2.9. A variant of Johnson’s algorithm [20], which assigns to each z; €
S a part in the partition according to the outcome of independent tosses with a fair
coin. A simple analysis shows that a set S; is split with probability 1 — o1=1851,
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Algorithm 2.10. The algorithm from Sec. 2.3.1.

Algorithm 2.10 has severe problems with large subsets. On the other hand, a
large set is split with high probability if the partition is chosen at random. We
thus aim to combine the benefits from those two approaches without suffering from
their drawbacks. Inspired by techniques introduced by Crescenzi and Trevisan [9]
we construct the following algorithm:

Algorithm 2.11. For a given instance, we start by running the algorithm from
Sec. 2.3.1. Then, we perturb the obtained answer by letting each z; switch part
in the partition with probability p. The value of this probability is to be specified
later.

Note that if we set p = 0 in this algorithm we get Algorithm 2.10 above.

2.4 Analyzing the combined algorithm

As we take the maximum result obtained by any of the above algorithms, we want
to bound the maximum of the contributing algorithms. Previously, such an analysis
has been accomplished by constructing a new combined algorithm, which chooses
as its answer the outcome of the ¢th contributing algorithm with probability g;.
Then the expected value of this new algorithm is calculated. By the linearity of
expectation, the calculation can be performed separately for subsets of cardinality k,
for each k, thus ensuring that the weakness of one algorithm is compensated by
the strength of the other algorithms. Since the expected value of this combined
algorithm can never be greater than the maximum of the contributing algorithms,
a bound on the performance of the algorithm is obtained. We will in Sec. 2.4.2
show how to use a linear program to find the ¢; giving the best resulting algorithm.

2.4.1 Separate analyses of the contributing algorithms

Let A; denote the weight of the solution obtained by Algorithm ¢ above. We now
aim to construct lower bounds for A;.

We first focus on finding a lower bound on Az 11(p), Algorithm 2.11 run with
switching probability p. In the analysis we will use the constant N to denote the
cut-off point between “small” and “large” subsets; these two cases will be handled
separately. The value of N will be specified later. The reason why we make this
separation is that we want to be able to solve a linear program with one constraint
for each possible subset size; to keep the number of constraints finite we have
one constraint for all subset sizes that are at least V. This is reasonable as the
probability that a subset S; is split by the perturbation is high when |5;] is large.

Definition 2.12. Let wo, = Zj 1S,1>N Wi be the total weight of all large subsets.

The bounds obtained will be expressions containing z;. The z; are obtained
from the solution to the semidefinite program in Eq. 2.3.
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Definition 2.13. Let B; and F} denote the events “S; was split before the per-
turbation” and “S; was split after the perturbation” respectively.

Lemma 2.14. Pr[F} | Bj] > 1 — p(1 — p)!%il=1 — pl%il=1(1 — p).

Proof. Assume that S; before the perturbation was split into two sets of sizes ¢ and
|Sj| — ¢ respectively, where 0 < £ < |S;|. Now,

PrFy | Bj] = 1= p'(1—p)'%1=¢ = pl%1=(1 — p)* (2.15)

and using elementary calculus and the fact that p < 1/2 it can be shown that this
expression is minimized when ¢ =1 and ¢ = |S;| — 1. O

To simplify the notation we make the following definition:
Definition 2.15. For k < N, let
re(p) = aye (1= p(1 = p)*~t =p" (1 —p)) +
+(1—am)(1-p"— (1 -p)").

Furthermore, let

(2.16)

rn(p) =1-p" — (1 -p". (2.17)
Lemma 2.16. Pr[F}] > zjr|s,|(p) when |S;| < N.

Proof. Denote by Ej the complement of the event B;. Using Lemma 2.14 and
Pr[F; | B;] =1 —p!il — (1 — p)1%l we obtain
Pr[F}] = Pr[F}; | B;] Pr[B;] + Pr[F; | B;] Pr[B]]
> Pr[Bj] (1 - p(1 - )&=t = pl¥IH (1 — p))
+ (1= Pr[B;])(1 - p!% — (1 - p)I5) (2.18)
— 1_p\51| -1 _p)\SI
+Pr[B;)(1 = 2p) (1 — p)!S 1=t — pl%il=h),

But Pr[B;] > av|s,2; (by Theorem 2.8) and p < 1/2; hence

+ s, (1 = 2p) (1 —p)! &7 = pl%17T)

= as,17 (1 = p(1 = p)/F171 = plSi1=1 (1 — p)) (2.19)
+ (1= ays,12) (1= p1%1 = (1 = p)li1)
> zj1|5;1(P),

as z; < 1 implies that 1 —ayg,12z; > (1 — ays;))z;- O
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Lemma 2.17. Pr[F};] > ry(p) when |S;| > N.
Proof. We first show that Pr[F; | B;] > Pr[F; | Bj].

=1-p(1—p)S=t —pl%IL(1 — p)

— (1= 2p)((1 — p)%il=1 — plSil=1y (2.20)
<1 —p(1—p)!SI=t —plSil=t(1 — p)
< Pr[F; | Bjl.

This immediately implies that

Pr[F;] = Pr[F; | B;] Pr[B;] + Pr[F; | B;] Pr[Bj]
> Pr[F} | Bj]

(2.21)
=1 —pl¥il — (1 = p)l&il
> rn(p),
since |S;| > N. O
We are now able to formulate a bound on A5 11(p):
Theorem 2.18. As11(p) > ZkN:_Ql 2185 1=k WiZiTk(P) + WosrN (p)-
Proof. Follows immediately from Lemmas 2.16 and 2.17. O
The bounds for As g and Ay 10 follow from previous work [1, 17, 20, 21]:
N—1
Az g > wi(1=2""%) 4w (1 —2'7N), (2.22)
k=2 j:|S;|=k
N—-1
Az.10 > WiV Zj - (2.23)
k=2 j:|S;|=k

2.4.2 The worst case for the best algorithm

To obtain a suitable expression for the expected value of the combination of the
above algorithms, we notice that, since 0 < z; <1, A g is at least

N-1
w;z;(1—217F) F s (1 — 27N, (2.24)
k=2 j:|S;|=k
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When this is combined with Theorem 2.18 it follows that the expected weight of
the solution from the combined algorithm described in Sec. 2.3.2 is at least

N—-1
Z Z W20k + Woo ON , (2.25)

k=2 j:|S;|=k
where
M
ar =q 1(1—2""F)+ ) " qire(i/2M) (2.26)
=0

Here ¢_; is the probability that Algorithm 2.9 is used while ¢, 0 < k < M, is
the probability that Algorithm 2.11 with p = k/2M is used. (Notice that p = 0
corresponds to Algorithm 2.10.) The parameter M, which is used to discretize the
probabilities p used in Algorithm 2.11, will be specified below.

To obtain a bound on the performance guarantee, we solve the following linear
program:

maximize | min ayg (2.27)
q-1,905---,qM \ k€[2,N]

> g =1

subject to
g; >0 for all g;

The true contribution from the subsets S; of cardinality at least N will always be
larger than what is specified by the constraints. Thus, the minimum obtained from
the linear program is a lower bound on the performance guarantee of the algorithm.

To compute the optimum of the linear program, we must select values for M
and N. When M = N = 50, the optimal value of the linear program is 0.724058.
This means that the algorithm will always deliver a result which is at least

N—-1
0.724058 | Y > wjz +wee | > 0.724058 - opt, (2.28)
k=2 j:|S;|=k

which shows that the performance ratio of our algorithm is at most 1.380. This
can be compared with the best lower bound of 17/16 ~ 1.062 [19] for the Max Cut
problem. It turns out that the only non-zero g; are ¢q11 and ¢12; both these are
approximately 0.5. Also, the term ay in Eq. 2.26 is much greater than 0.9, given
the solution to the linear program. This means that the answer obtained from the
linear program is unaffected by the fact that we underestimate the contribution
from sets of cardinality at least N. If we decrease N below 50 we obtain a slightly
lower optimum, while the optimum does not increase if we increase N. Finally,
we varied M, and observed that there was no substantial improvement when we
increased M above 50.
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We used the publicly available package LP_SOLVE by Michel Berkelaar to solve
the linear programs. The running time for M = N = 50 on a Sun Ultra 1 worksta-
tion was less than one second.

A small modification of the algorithms described above gives a performance ratio
of at most 1.380 also for Max NAE Sat: If a variable x; occurs negated in a clause,
the corresponding vector v; in the corresponding constraint in the semidefinite
relaxation is replaced with —wv;.

2.5 Discussion

The ideas of our approximation algorithm are applicable whenever there exists an
algorithm that performs well on some class of input instances, and the naive prob-
abilistic algorithm, which simply chooses a feasible solution at random, performs
well on some other class of instances. For some problems, it may also be possi-
ble to use some information from the solution obtained by the first algorithm to
choose the probabilities in the postprocessing step. The potential drawback is, as
is indeed the case for Max Set Splitting and Max NAE Sat, that the probabilistic
postprocessing destroys the good performance of the first algorithm.

The approach of expressing the performance of a combination of approximation
algorithms as a linear program is quite general. Whenever there exist different
approximation algorithms, where some algorithms deliver good approximations for
one class of instances, and other algorithms deliver good approximations for some
other class of instances, our technique may be applicable. A prerequisite of our
analysis is, though, that it is possible to somehow express the performance of the
algorithms in such a way that it can be related to the optimum. For instance, it
seems hard to combine two different algorithms that are based on semidefinite pro-
gramming. Our framework is, of course, not restricted to maximization problems;
it works on minimization problems as well.



Chapter 3

Linear equations mod p

We introduce a new method to construct approximation algorithms for combinato-
rial optimization problems using semidefinite programming. The method consists
of expressing each combinatorial object in the original problem as a constellation of
vectors in the semidefinite program. By applying this method to systems of linear
equations mod p with at most two variables in each equation, we can show that the
problem is approximable within p — x(p), where k(p) > 0 for all p.

3.1 Introduction

Several combinatorial maximization problems have the following property: The
naive algorithm which simply chooses a solution at random from the solution space
is guaranteed to give a solution of expected weight at least some constant times
the weight of the optimal solution. For instance, applying the above randomized
algorithm to Max Cut yields a solution with expected weight at least half the
optimal weight. For a long time, better polynomial time approximation algorithms
than the randomized ones were not known to exist for many of the problems with
the above property. This situation changed when Goemans and Williamson [17]
showed that it is possible to use semidefinite programming to approximate Max Cut
and Max 2-Sat within 1.14. Extending the techniques of Goemans and Williamson,
Frieze and Jerrum [12] showed that it is possible to construct a polynomial time
approximation algorithm, which is better than the simple randomized one, also for
Max k-Cut.

Systems of linear equations mod p is a basic and very general combinatorial
problem, which exhibits the property described above: The naive randomized al-
gorithm which chooses a solution at random approximates the problem within p.
Recently, Hastad [19] studied systems of linear equations mod p with exactly k un-
knowns in each equation, and showed that it is actually NP-hard to approximate
the problem within p — € for all € > 0, all primes p, and all £ > 3.

17
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We study another problem of this type, systems of linear equations mod p
with at most two unknowns in each equation. When p = 2, this problem has
been extensively studied, but for p > 2 not much is known. We use semidefinite
programming combined with randomized rounding to show, that for systems of
linear equations mod p with at most two variables per equation it is possible to
do better than the naive randomized heuristic. Specifically, we show that there
exists, for all primes p, a randomized polynomial time algorithm approximating the
problem within p — k(p), where x(p) > 0 for all p.

The usual way to use semidefinite programming in approximation algorithms
was, at first, to formulate the problem as an integer program and then relax this
program to a semidefinite one. In order to approximate Max k-Cut, Frieze and
Jerrum [12] instead associated a vector with each vertex, and added constraints
enforcing the vectors to have certain properties. To refine their technique, we let
each variable in the system of linear equations be represented by a constellation of
several vectors. By adding suitably chosen constraints to the semidefinite program,
we make sure that the solution to the semidefinite program has the same type of
symmetries as the solution to the original problem.

3.2 Preliminaries

Definition 3.1. We denote by Max Ek-Lin mod p the problem of, given a system
of linear equations mod p with exactly k£ variables in each equation, maximizing
the number of satisfied equations.

Definition 3.2. We denote by Max k-Lin mod p the problem of, given a system
of linear equations mod p with at most k variables in each equation, maximizing
the number of satisfied equations.

From now on, p always denotes a prime, although all our results generalize to
composite p.

3.2.1 Some probability theory

We will now formulate and prove some lemmas, which are needed later in the paper.
The proofs use only basic probability theory; they are included here for the sake of
completeness. Let

2
e * /2

(3.1)

and
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If we integrate ®(z) by parts, we obtain

V2r(l — ®(z)) = /oo Ny

x

o0 2
:/ te V21 gt

x

2 o (3.3)
_eh —/ e 22 gy
z x
= <l - ig) e 2 4 3/00 el .
T x -
The above equalities immediately imply, that
1 1 o(x)
B 1—® - 3.4
o) (-5 ) <1- 0 < 2 (3.4

when « > 0. This bound will be used to prove the following lemmas.

Lemma 3.3. Let Xo,...,X,—1 bei.i.d. N(0,1) random variables. Denote the maz-
imum of the X; by X, and the second mazimum by X ,_1y. Then, for any é > 0,

PfX@)Z(L+®v2mp(]X@7U§(1+5my/mn4

- 2p20+0%(1 4 §)y/mInp ( - 2lnp 2pd Wlnp) '
Proof. Since the X; are i.i.d. N(0, 1),
Pr{X () > 21 X(p 1) < 3] = p(1 — B(x))B(y)P". (3.6)

when x > y. We now apply the bound on ®(z) from Eq. 3.4. This bound, together
with the fact that § > 0, implies that

1—@((1+5)\/m)

1 1
>
V2rp(1+6)? ((1 +0)v2Inp

_ 1 ) (3.7)
(1+0)3(2Inp)3/2

1 1
> 1— ,
2p1+20+6%(1 + §)y/mInp < 21np)

and that
1
® ((1406/2)y/2Ip) >1-
((1+3/2)v/2mp) (/22 (1 1 6/2) 2T (35)
1 .
>l e
2pt+oy/mInp

When this is inserted in Eq. 3.6, the lemma follows. O
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Lemma 3.4. Let X and Z be i.i.d. N(0,1) and € €]0,1[. Then, for any 6 >0,
Pr [ (1 —VI- e)X - \/EZ‘ > g 2(1 — 5)1np]

4p762(176)/326 2¢
< .
- 4] (1—¢e)mlnp

(3.9)

Proof. LetY = (1—v/1 —¢)X —+/eZ. Since X and Z are independent, Y € N(0,0),
where

a—\/(1—m)2+e<\/%. (3.10)

Since Pr[|Y| > y] = 2(1 — ®(y/0)), we can use use Eq. 3.4.

Pr{|Y|>g 2(1—8)1114—2(1—@(% 2(1—€)lnp>)

—6%(1—¢) /1602

<2 X 1o X b

- 04y/2(1 —€)lnp Ver (3.11)
4p762(176)/326 %

= 5 (1—e)rlnp’

O

Lemma 3.5. Let Xo,...,Xp_1 bei.i.d. N(0,1) random variables. Denote the maz-
imum of the X; by X(,), and the second mazimum by X,_1y. Then

S
(p—1)Ver’

Proof. Since the X; are independent,

PI‘[X(;,,) > X(p_l) + (5} >1-— (3.12)

p—1
Pr[ Xy > Xpo1) +0] =p x Prlm Xo > X, +5|. (3.13)

i=1

To compute the latter probability we condition on Xj.

p—1
ﬂXQ>Xi+6

i=1

Pr = /OO Pz — 8)p(z) da. (3.14)

— 00

To bound P~ (z—§), we use the mean value theorem. (In the following equations,

Eex—4,z].)
&7z — 6) = (®(x) — 0p(€))""
> O (z) — pdip(£) PP (x) (3.15)

> oPL(z) — %@p—Q(x).
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From this bound, we obtain

h P (g — x)dx o »
| e aewar = s (3.16)

Equations 3.13, 3.14 and 3.16 are then combined, which completes the proof. [

Lemma 3.6. Let X and Z be i.i.d. N(0,1) and € € [0,1]. Then, for any § > 0,

2

(1—@))(—\/52‘ >5/2} 5%\/% (3.17)

Proof. Let Y = (1—v/1 — )X —+/eZ. Since X and Z are independent, Y € N(0, o),
where

a—\/(1—m)2+e<\/%. (3.18)

Thus,

Pr|Y] > 6/2] < 2(1 - @(5/20)) < (3.19)

3.3 Positive results

In this section we construct an algorithm which approximates Max 2-Lin mod p
within p — k(p), where k(p) > 0, for all p. We do this by representing a variable
in Z, by a constellation of vectors. The algorithm is constructed in several steps.
First, we describe an algorithm which works for instances of Max E2-Lin mod p
where all equations are of the form x; — z;; = ¢. This algorithm is then generalized
to handle instances where also equations of the form xz; = ¢ are allowed. Finally,
the resulting algorithm is generalized once more to handle general Max 2-Lin mod p
instances.

3.3.1 An algorithm for equations of the form x; — x;; = ¢

We first construct a semidefinite program which we can use to approximate the
restriction of Max E2-Lin mod p where all equations are of the form x; — x; = c,
where ¢ € Z,. For each variable z; we construct an object henceforth called a
porcupine in the following way:
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We take p vectors {v; }?;3 and add the following constraints to the semidefinite
program:

1 when j =k,
vl , U 3.20a
< k> { 0 otherwise, ( )

for all ¢+ and all 5,k € Z,. We then add, for all pairs (¢,4), constraints ensuring
that (vé, v;‘-:rk) is independent of j for all k:

(vl v;-:rk> (vh, +k> for all 4,i" and all 4,5, k € Z,,. (3.20b)
Finally, we introduce the constraints
(v’ V5, ) >0 foralli,i and all j, k € Z,,. (3.20¢)

We construct the objective function in the semidefinite program by including, for
each equation x; — x; = ¢, the following terms:

p—1

> (il ). (3.21)

Jj=0

The idea behind this is that two porcupines, corresponding to some equation, should
be aligned in such a way that the corresponding terms in the objective function
evaluate to one when the equation is satisfied.

Lemma 3.7. Given an instance of Max E2-Lin mod p with all equations of the
form x; — xy = c and the corresponding semidefinite program, constructed as de-
scribed above, the optimum of the former can never be larger than the optimum of
the latter.

Proof. Suppose that we have an assignment 7 to the variables z;, such that z; is
assigned the value m(x;). Let {éj}ﬁ;é be orthonormal unit vectors in R? and set

v;_w(xi) =¢; foralliandall je Z,. (3.22)

The sum (3.21) corresponding to an equation x; — z; = ¢ then takes the value

p—1 1 p—1
Z‘,Z< Vi) = =5 D (8jn(es Eietniz))- (3.23)
=0 =0

If the equation x; — x; = c is satisfied, then n(x;) = 7(zs) + ¢, and

p—1

Z<ej+7r(z )s ej+c+7r(x /)> =1 (3.24)

1
P
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If the equation is not satisfied, then m(x;) # m(xy) + ¢, and

127t

- Z<éj+7r(xi)v éj+c+7r(x,‘,r)> =0. (3-25)
p =0

Thus, the optimum of the semidefinite program can never be less than the optimum
of the Max E2-Lin mod p instance. O

We can now formulate the algorithm to approximate Max E2-Lin mod p restricted
to instances where every equation is of the form xz; —z; = c. Below, k is a constant,
which is to be determined during the analysis of the algorithm. Given a set of linear
equations, we do the following:

1. Construct and solve the above semidefinite program.

2. If the optimum obtained from the semidefinite program is less than 1 — &
times the total weight of all equations, we select as our solution to the system
of linear equations a random assignment to the variables x;.

3. Otherwise, we use the vectors obtained from the optimal solution to the semi-
definite program to obtain an assignment to the variables x; in the following
way: A vector r is selected by independently choosing each component as
an N(0, 1) random variable. Then, for each porcupine {v; }?;3 we find the j

maximizing (v}, r), and set z; = —j.

We now analyze this algorithm. Our aim is to show that it is possible to find, in
probabilistic polynomial time, a solution approximating the optimum within (1 —
k)p. By Lemma 3.7 and step 2 in the algorithm, we will always approximate the
optimum within (1 — k)p if the optimum of the semidefinite program is less than
1 — k times the weight of all equations. Thus, we can assume in our analysis of
the semidefinite algorithm that the optimum is at least 1 — x times the weight of
all equations. Intuitively, this means that for most equations, the two porcupines
involved will be almost perfectly aligned.

Lemma 3.8. If the optimum of the semidefinite program constructed above is at
least 1—k times the weight of the instance, equations of total weight at least 1—2k/e
times the weight of the instance have the property that the corresponding terms in
the objective function evaluate to at least /1 — €.

Proof. Let p be the fraction of the equations where the corresponding terms in the
objective functions are less than y/1 — e. Then, the inequality

wl—e+(1—-—p)>1-k (3.26)
must always hold. When we solve for y we obtain

K 2K
< —

< — . 3.27
PETT TS (3.27)
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Let us now study a fixed equation z; — x;; = ¢, where the sum of the corresponding
terms in the objective function of the semidefinite program satisfies

=
» Z@;‘v Vjpe) = V1—¢, (3.28)
=0

where ¢ is small. By the constraints in Eq. 3.20b, Eq. 3.28 implies that
vy = V1= vl + Ve, (3.29)

where e; is perpendicular to vj- and (ej, e;) = 1. Thus, the probability that the two
variables involved in the equation are assigned the wrong values should be small.

Definition 3.9. To simplify the notation, we introduce, for a fixed equation z; —
xy = ¢, the random variables

X; = (vl,r), (3.30)
Yj = (v oo, (3.31)
Zj = (ej,7). (3.32)
By the construction of the porcupines and the choice of r, the X; are i.i.d. N(0, 1)

and the Z; are, possibly dependent, N(0, 1). However, for each fixed i, X; and Z; are
independent. To show that our algorithm has a performance ratio of at least (1—x)p,
it is, by Lemma 3.8, sufficient to prove the following theorem:

Theorem 3.10. [t is possible to choose universal constants k < 1 and € > 2k such
that, for all primes p,

1
p(1 = r)(1—2k/e)

for all equations with the property that the corresponding terms in the objective

function are at least /1 — €.

Proof. The randomized rounding succeeds if the same j maximizes X; and Yj.
Thus, we want to estimate the probability that some j maximizes Y}, given that
the very same j maximizes X;.

We will first show that the theorem holds for large p: Let A(4) be the event that
the largest X is at least (1+0)y/21Inp and all other X; are at most (1+6/2)v/2Inp.
By Lemma 3.3,

1 1 1
Pr[A(d 1-— — . 3.34
tAE)] > 2p20+0%(1 4 §)y/mInp ( 2lnp 290 ﬂlnp) ( )

Next, let us study the Z;. Let

B(s,e) = ﬁ {|Xj —Y;| < %/(1 —E)anp}. (3.35)

Prlequation satisfied] > (3.33)
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Since Y; = /1 —eX, + /€Z;, we can use Lemma 3.4 to obtain

1-6%(1—¢)/32¢ 2

0 (1—e)rlnp’

4p

Pr[B(5,0)] < (3.36)

The equation is satisfied if both A(J) and B(d,e) occur. The probability that this
happens can be bounded by

Pr[A(5) N B(5,¢)] > Pr[A(5)] — Pr[B(3,¢)]. (3.37)

It is now clear that we can choose constants d, € and k which give the probability
we want for sufficiently large p. For instance, § = 1072, ¢ = 1077 and x = 1078
work when p > 13.

Now it remains to be shown that the theorem is valid also for p < 23. Let C(9)
be the event that the difference between the largest and the second-largest X is at
least 0, and let D(6) be the event that, for all j, | X; —Y;| < 6/2. By Lemmas 3.5
and 3.6,

p°0
Pr[C(0)] = 1 - eV

Pr[D(5)] < %\/; (3.39)

The equation is satisfied if both C'(§) and D(J) occur. The probability that this
happens can be bounded by

(3.38)

Pr[C(5) N D(5)] > Pr[C(6)] — Pr[D(3))], (3.40)

and a simple calculation shows that § = 1072, ¢ = 10~7 and k = 10~ work when
p < 23. o

Putting the pieces together, we obtain:

Theorem 3.11. There exists a universal constant k such that there exists, for all
primes p, a randomized polynomial time algorithm approximating systems of linear
equations mod p of the form x; — xy = ¢ within (1 — K)p.

Proof. The algorithm is as described above. If case 2 applies, then the naive ran-
domized heuristic will approximate the solution within (1 — )p.

Otherwise, denote by w the total weight of the instance. By Lemma 3.8, equa-
tions with total weight at least (1 — 2x/e)w have the property that the corre-
sponding terms in the objective function in the semidefinite program evaluate to at
least v/1 — ¢ in the optimal solution. By Theorem 3.10, if we choose ¢ = 10~7 and
k = 1078, these equations are satisfied with probability at least 1/p(1—k)(1—2k/¢),
over the choice of the random vector r. Thus, the expected weight of the solution
obtained by the rounding is at least w/p(1 — k). O
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It is straightforward to adapt the algorithm to handle equations with one unknown.
Simply introduce a new variable g, representing the value zero. Each equation of
the form z; = c¢ is replaced by z; — 9 = ¢. If 2o # 0 in the optimal solution,
we transform the solution according to x; < x; — x¢. This new assignment to the
variables satisfies exactly the same equations as the original one.

Finally, since nothing in Sec 3.3.1 actually uses that p is prime, the results hold
also for composite p.

3.3.2 General equations

In this section we extend the algorithm from Sec. 3.3.1 to handle general Max 2-
Lin mod p instances. We do this by associating p — 1 porcupines, {v;’z}g;é for
¢ e {1,2,...,p — 1}, with each variable z;. These porcupines are supposed to
represent x;, 22;, up to (p — 1)x;, respectively. The porcupines are constructed as
described in Sec. 3.3.1 with Eq. 3.20 generalized to

; ; 1 whenj=%k
il il J )
v0)) = 3.41a
(i o) {O otherwise, ( )

for all 4, all j,k € Z), and all £ € Z;

e P e i
(W5 vy k) = (W57 03 ) (3.41b)

for all 4,7, all j,j',k € Z),, and all £,4 € Z; and

(Wit oty > 0 (3.41c)
for all 4,7, all j,k € Z),, and all £, 0’ € Z;.

We would want the porcupines to be dependent in such a way that x; = ¢ is
equivalent to kx; = kc, but since the resulting condition is not linear, this seems
hard to achieve. Instead, we allow the porcupines corresponding to the same vari-
able to vary freely. Somewhat surprisingly, it turns out that this enables us to
construct an algorithm which approximates Max 2-Lin mod p within p — x(p),
where k(p) > 0 for all p, but goes towards zero as p grows to infinity.

To handle equations of the form ax; = ¢ we introduce a new variable zo. Our
algorithm will be designed in such a way that xy always gets the value 0. Each
equation ax; = c can thus be changed to ax; —xg = c. For each equation ax; —bx; =
¢ we include the terms

p—1p—1
1

i,k i’ kb
p(p — ]_) Z Z<’U; a’ ’U;+kc> (342)
j=0

in the objective function.
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Lemma 3.12. Given an instance of Maz 2-Lin mod p and the corresponding semi-
definite program, constructed as described above, the optimum of the former can
never be larger than the optimum of the latter.

Proof. Suppose that we have an assignment 7 to the variables ;. Let {é; }?;3 be
orthonormal unit vectors in R? and set
L =, (3.43)
Vi () = €5 .
for all 4, all j € Z), and all £ € Z;. The terms (3.42) corresponding to an equation
ax; — bry = ¢ are then

i (3.44)

=— €jtkan(zs)s Cj+ketkbm(w,
p(p_l)];jz:%< Jtkan(wi)) Cj+ket (:EL)>

If the equation is satisfied by the assignment 7, then kan(z;) = kbw(z;) + ke, and

p—1p—1
1

AR €; ar(x; aé’ c 7 (x,, =1. 3.45
plp—1) ;;f Jtkam(z;)) Cjtketkbm(z; )> ( )

If the equation is not satisfied, then karm(x;) # kbn(z;) + ke, and

p—1p—1
1

) Z Z<éj+ka7r(xi) ) éj+kc+kb7r(xi/)> =0. (346)

plp—1) = =

Thus, the optimum of the semidefinite program can never be less than the optimum
of the Max 2-Lin mod p instance. o

Below, k(p) is some function, which is to be determined during the analysis of
the algorithm. We construct an approximation algorithm for Max 2-Lin mod p by
generalizing the algorithm from Sec 3.3.1 as follows:

1. Construct and solve the above semidefinite program.

2. If the optimum obtained from the semidefinite program is less than 1 — x(p)
times the total weight of all equations, we select as our solution to the system
of linear equations a random assignment to the variables x;.

3. Otherwise, we use the vectors obtained from the optimal solution to the semi-
definite program to obtain an assignment to the variables x; in the following
way: A vector r is selected by independently choosing each component as
an N(0, 1) random variable. Then, we do the following:
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Find the j € Z, maximizing (v?’l, ).
Set t «— j.
For each i € Z,,
For all j € Z,,, set ¢;; « 0.
For all k € Z,
Find the j € Z, maximizing (v;’k, ).
Set Qi,k_l(j—t) — 1.
Set Qi < >4 Gi,k-
For all j € Z,, set qi,j < qi,;/Qi-

Finally, given the resulting ¢; j, each variable x;, but xo, is given the value —j
with probability ¢; ;. The variable zq is given the value 0.

Remark 3.15. By the choice of ¢ in step 3 above, go,0 will always be non-zero. This
turns out to be essential in the analysis.

By step 2 we approximate the solution within (1 — k)p if the semidefinite optimum
is less than 1 — k times the weight of all equations. We will now analyze the
performance of step 3. We can assume that the semidefinite optimum is greater than
1 — Kk times the total weight of the instance. By this assumption and Lemma 3.8,
equations of total weight at least 1 — 2k /e times the weight of the instance have the
property that the sum of the corresponding terms (3.42) in the objective functions
is at least /1 — €. Let us now study an arbitrary equation ax; — bz = ¢ with that
property. Le.,

1 N ke i
oo 2 e = Ve (3.47)
k=1 j=0

We want to show that this equation is satisfied with large enough probability. Let
us study the details of the selection procedure in step 3 above. Informally, our
argument is:

e By the condition in Eq. 3.47 we expect the vectors vk and vl kb

i ke tO be
almost perfectly aligned, for all j and k.

e For each k, this should imply, that if some j maximizes <v;f’m, r) then, with
high probability over the choice of r, we will have that j' = j + kc maximizes

(v;-/,’kb, ).

e In terms of g;; this means that the equivalence
Gia=1; 70 < Qi p-1(j4e) 70 (3.48)
should hold for all j with high probability.

e If the above equivalence holds for all j, the randomized assignment at the end
of step 3 above will find a satisfying assignment with a probability greater
than 1/p.
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We now formalize this intuition.

Definition 3.14. For an arbitrary equation ax; — bzy = ¢, let

t,ak i’ bk
Xjk = <Uj ,’I“>, }/jk = <Uj+kc7 T>' (349)
By the construction of the porcupines and the choice of r, the X arei.i.d. N(0, 1).

Definition 3.15. Let 5 be defined by the relation
183, ke ik
52@? “ oy = VT (3.50)
i=0

By the constraints in Eq. 3.41, the above definitions imply that
ij = MXJI“ + \/aij, (3.51)
where ZF € N(0,1).

Lemma 3.16. Let ax; — bxy = ¢ be an arbitrary equation with the property that
the corresponding terms in the objective function satisfy Eq. 3.47, and let Ay be the
event that the same j maximizes X]’? and ij. Then, for all § > 0,

Pr[] < % + %\/% (3.52)

Proof. Denote the maximum of the X Jk by X (’“p), and the second maximum by X (kp—l)'
Define the events By () and Cx(0) as follows:

Bi(6) = {X(’“p) > XE )+ 5} : (3.53)
p—1 5

Cr(6) =) {\Xf —-YF < 5}. (3.54)
=0

If both Bg(d) and Ck(d) occur, then Ag must occur. Furthermore, if there exists
some & such that By(d) and Ci(d) both occur with high probability, Ay will also
occur with high probability. For,

Bi(6) N Cr() C Ay = Pr [A_k} < Pr [Bk(é)} +Pr [ck(é)] (3.55)
By Lemma 3.5, we obtain the bound
Pr {m} < %, (3.56)

and by Eqg. 3.51 and Lemma 3.6, we obtain

Pr {m} < %\/% . (3.57)

When Egs. 3.55, 3.56, and 3.57 are combined, the proof follows. O



30 Chapter 3. Linear equations mod p

Lemma 3.17. For an arbitrary equation ax; — bry = ¢, let Ay be the event that
the same j mazximizes Xj’-C and ij. Then, if Ay occur for all k, we are ensured that

(Ii,j = qi’,b_l(ajJrC) fO']" CLH] S Zp.

Proof. Initially in the algorithm, all ¢; ; are zero. By the construction of g; ; in the
algorithm, the fact that Ay occur for all k& implies that

Qi,a—lk—l(j'—t) # 0 <= qi',b_l(k_l(j'ft)JrC) # 0. (358)

If we substitute j < k~'(j/ — t), we obtain that g; ,-1, is non-zero if and only
i’ b-1(j+c) 18 non-zero. But since

p—1 p—1
Z Qia—1j = ZQi,j =1 (3.59)
j=0 §=0

and
p—1 p—1
Z Qi b= (j4c) = qu’ =1, (3.60)
=0 i=o

this implies that i j = gir p-1(aj1c) for all j € Z,,. O

Lemma 3.18. Let ax; — bxy = ¢ be an arbitrary equation with the property that
the corresponding terms in the objective function satisfy Eq. 3.47. Then,

2

po 2p(p—1) e

Pr ﬂ 9i,5 = i’ b= (aj+c) >1- - J) (361)
ez, 2T 1) s

where § > 0 is arbitrary.

Proof. By Lemma 3.17,

p—1 p—1
Pr ﬂ Qi,a—15 = Qi’,b_l(j+c)‘| > Pr m Ag | (3.62)
Jj=0 k=1

and by Lemma 3.16,
p—1
[ 4
k=1

We can trivially bound ¢j, from above by pe, which gives us a bound on ) /g% in
terms of p and €. We can, however, easily show a tighter bound. Since the function

2

p—1
Pr 21—;&{14_421—%—2—1)2\/5. (3.63)
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x — /1 — x is concave when = € [0,1], we can apply Jensen’s inequality to show
that

, (3.64)

where the first inequality follows from Eqs. 3.47 and 3.50, and the second from
Jensen’s inequality. Thus,

<e. (3.65)

p—1
> Ve < (3.66)
k=1

When this is combined with Egs. 3.62 and 3.63, the proof follows. O

Lemma 3.19. Suppose that go,0 > 0. If, for some arbitrary equation azx;—bxy = c,
Qij = Qit b= (ajtc) Jor all j € Zy, then this equation is satisfied with probability at
least 1/(p —1).

Proof. By the construction of the system of linear equations there are no equations
ax; — bry = c where ¢ = 0. If ¢/ # 0 the ¢;; and gy j, computed using the
probabilistic construction described above, are used to independently assign values
to x; and x;/. Thus,

Pr[equation satisfied] = Z Qi % b1 (ajte) = Z qzj, (3.67)
J J

where the second equality follows from the initial requirement in the formulation
of the lemma. By step 3 in the algorithm, all ¢; ; can, for each fixed ¢, assume
only two values, one of which is zero. The other value ¢; ; can assume is 1/m, for
some m € [1,p — 1]. This implies that

1 1

2 _

2ty = M 2 T (3.65)
J

since exactly m of the ¢; ; assume the value 1/m.
If i = 0 we know that b = 1 and z;y = 0. Then
Prlequation satisfied] = ¢; _4-1. = qo,0- (3.69)

Since go.0 # 0 we know, by step 3 in the algorithm, that go0 > 1/(p — 1), and the
proof follows. U
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Theorem 3.20. It is possible to choose k(p) > 0 and £(p) > 0 such that, for all
primes p,

1
(L= R)(1 — 25/2)

for all equations with the property that the corresponding terms in the objective

function are at least /1 — €.

Proof. To prove the theorem, it suffices to show that

Prlequation satisfied] > (3.70)

p(1 — k)(1 — 2k/e) x Prlequation satisfied] > 1. (3.71)

It follows from step 3 in the algorithm, together with Lemmas 3.16, 3.17, 3.18
and 3.19, that

Nor: 5 - (3.72)

for all equations where the sum of the corresponding terms in the objective function
is at least /1 — . As an ansatz, we choose

Cc1V 2

1 25 2p(p—1
Prlequation satisfied] > 1 (1 _p9 -l E)
p—

5(p) = . (3.73)
2.2, 2
cicsm
= 0" * 4
6(p) 2p10(p . 1)2) (3 7 )
2.2 2
cicseam
== 3.75
0) = o (375)

for some positive constants c1, co and ¢s. When we use this ansatz in Eq. 3.72 we
obtain

1 1
Prlequation satisfied] > =1+ -] (1 — ate
p p p

1 l—c—c c1+c
Y 1—C . 2|
D p p
p(1 — k)(1 — 2k/e) x Prlequation satisfied]
S 1_(:_3_ 01%105037722(1_0_3> 1+1—c1—cQ_cl—|;CQ
p dptl(p—1) p p p

< 1+1—61—CQ—C3_61+C§+C3_(1+1) (31%10%(:371'22 .
P P p) 4p't(p—1)

(3.76)

Thus,

(3.77)
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From this, it is clear that it is possible to obtain
1

p(1 —k)(1 —2k/e)

for all primes p by choosing ¢; = ¢o = ¢3 =1/5. O

Prlequation satisfied] > (3.78)

As an immediate corollary, the main theorem follows. It is proved in exactly the
same way as Theorem 3.11.

Theorem 3.21. For all primes p, there exists a randomized polynomial time al-
gorithm approximating Max 2-Lin mod p within (1 — k(p))p, where k(p) > 0 for
all p.

Proof. The algorithm is as described above. If case 2 applies, then the naive ran-
domized heuristic will approximate the solution within (1 — x(p))p.

Otherwise, denote by w the total weight of the instance. By Lemma 3.8, equa-
tions with total weight at least (1 — 2k(p)/e(p))w have the property that the cor-
responding terms in the objective function of the semidefinite program evaluate
to at least /1 —e&(p) in the optimal solution. By Theorem 3.20, there exists
k(p) > 0 and e(p) > 0 such that these equations are satisfied with probability
at least 1/p(1 — k(p))(1 — 2k(p)/e(p)), over the choice of the random vector r.
Thus, the expected weight of the solution obtained by the rounding is at least

w/p(1 — K(p)). O

If we use the explicit value of k(p) from the proof of Theorem 3.20, we see that
Max 2-Lin mod p is approximable within p — ©(p~12).

It is possible to generalize the algorithm to Max 2-Lin mod m for composite m.
Let us first show that it is possible to approximate the optimum within m. Suppose

that m = p{"* --- pp* and that the equations are of the form

ax; —bxy = c. (3.79)

Since equations where ged(a, b, m) does not divide ¢ can never be satisfied, we can
remove them from the instance. It suffices to show that we can always satisfy
a fraction 1/m of the remaining equations. To achieve this, we iterate over all
primes ps in the decomposition of m. The goal is to construct in each iteration
the value of z; mod p%* in such a way that a fraction 1/p%s of the equations are
satisfied mod p%¢, and then remove the unsatisfied equations from the instance.
When this has been done for all p; we will have an assignment to the x; such that a
fraction 1/m of the equations are satisfied mod m. We now show that it is enough
to guess, in each iteration, the value of x; mod pZs uniformly at random.

Lemma 3.22. If we guess an assignment to the x; mod p$s uniformly at random,
Prlequation satisfied] > 1/p%* (3.80)
for an equation of the form

az; — bz, = ¢ mod pS. (3.81)
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Proof. If either a or b is a unit mod p%=, the proof is trivial. Otherwise, ged(a,b) =
pt for some ¢ > 1, and in this case we can divide a, b and ¢ by p' to produce an
equivalent equation

a b c
—x; — —Ty = — mod pf“'*t 3.82
This equation will be satisfied with probability greater than 1/p$s. O

To show that it is always possible to approximate the optimum within (1—&(m))m,
only a slight modification of the above procedure is necessary: If the optimum is
close to a fraction 1/m of all equations, there must be some prime factor p in m
with the property that when we study the system mod p in the iterative procedure
above, the semidefinite optimum is large, in the sense of Lemma 3.8. For this p,
we use the rounded semidefinite solution to solve the system mod p. For all other
factors in m we use the naive randomized heuristic described above. This will give
a solution which approximates the optimum within (1 — &(p))m < (1 — k(m))m.

3.4 Negative results

In this section we show that there exists a universal constant, such that it is NP-
hard to approximate Max E2-Lin mod p within that constant. To do this, we
construct a gadget which reduces Max E3-Lin mod p to Max E2-Lin mod p. This
gadget is valid for all primes p > 3. However, we cannot use it to show that it is
NP-hard to approximate Max E2-Lin mod p within a constant factor. To deal with
this, we combine the gadget with results by Andersson, Engebretsen and Hastad [4].

For the case p = 2, it is possible to use the methods of Trevisan et al. [28] to
construct a gadget reducing Max E3-Lin mod 2 to Max E2-Lin mod 2 [27]. When
this gadget is combined with the hardness results by Hastad [19], it follows that it
is NP-hard to approximate Max E2-Lin mod 2 within 12/11 — e. We now show
how to construct a gadget which can be used to show hardness results for Max E2-
Lin mod p when p > 3. Note, that although Trevisan et al. [28] have constructed
an algorithm which computes optimal gadgets, we cannot use this algorithm to
construct the gadgets for p > 3; the running time of the algorithm is simply too
large.

We take an instance of Max E3-Lin mod p, where the coefficients in the equa-
tions are always one. For each equation in the instance we construct a number of
equations with two variables per equation. We assume that the original equation
is of the form

Tiy + Tiy + Tiy = cC. (3.83)

We now study assignments to the variables x; with the property that z;; = 0.
There are p? such assignments, and p of those are satisfying. For each of the p —p
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unsatisfying assignments (x;, , iy, Ti5) = (0, a; 5, bi ;) we introduce a new auxiliary
variable y; ; and construct the following group of equations:

Ti, T Yij =¢ (384&)
Tiy + Yij = Qijs (3.84b)
Tiy + (P — 2)yi,; = bij. (3.84c¢)

Lemma 3.23. When p > 3 is prime, the above construction is a ((p— 1)(p+3), 1)-
gadget.

Proof. Let m be an assignment to the z; and the y; ;. We will study some arbitrary
equation (3.83) from the Max E3-Lin mod p instance, and the corresponding p* —p
groups (3.84) from the Max E2-Lin mod p instance.

Assume that the assignment 7 satisfies Eq. 3.83. Then, there is no assignment
to y; 5, such that all equations in the groups (3.84) are satisfied. For each j we
can, however, always satisfy one of the three equations containing ¥, ; by choosing
7(y;,;) = —c. In fact, it may be possible to satisfy two of the three equations.
Specifically, this is possible if (¢ — 7(y; ), ai; — T(yi;),bi; — (0 — 2)7(ys,5)) and
(m(zi, ), m(24,), m(2xi,)) differ in only one position for some assignment to y; ;.

Exactly 3(p — 1) of the groups (3.84) have this property. For, suppose that the
satisfying assignment is (s1, s, s3). Then, there are exactly 3(p — 1) ways to con-
struct unsatisfying assignments (w1 ;, u2 j,us,;) with the property that (si,s2,s3)
and (u1,j,us ;,us ;) differ in exactly one position. Each such assignment corre-
sponds to the group (0, a; j,b; ;) where a; j = ug j—u1 ; and b; ; = uz ; — (p—2)ua ;.
With the choice 7(y; ;) = ¢ — u1,5, two of the three equations in the group will
be satisfied. Finally, two different unsatisfying assignments (w1 ;,us2 j,us ;) and
(u1,k, U2k, U3 k), both with the property that they differ from the satisfying assign-
ment in exactly one position, can never correspond to the same group. For, if that
were the case, the equations

Uzj — ULy = U2k — ULk (3.85)
uzj — (p—2)ur; = usk — (p— 2)urk (3.86)
ug,j = ugy for some £ € {1,2,3} (3.87)

would have to be simultaneously satisfied. This, however, implies that we; = ws
for all £.
Summing up, the contribution to the objective function is

2x3(p—1)+ @ —p)—3(p—1)=(p-1)(p+3). (3.88)

Let us now assume that the assignment 7 does not satisfy Eq. 3.83. Then for
some j, all three equations containing ¥; ; can be satisfied. By a similar argument
as above, there exists 3(p — 2) groups (3.84) where two equations can be satisfied
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and in the remaining groups one equation can be satisfied. The contribution to the
objective function is

3+2x3(p-2)+ (@ —p)-B-2)+)=@p-DpE+3)-1. (3.89)
Thus, the construction is a ((p —1)(p+3), 1)—gadget. O

We can now combine this gadget with a suitable hardness result for Max E3-Lin
mod p to show a hardness result for Max E2-Lin mod p.

Theorem 3.24. For all e > 0 and all p > 3, it is NP-hard to approximate Max
E2-Lin mod p within (p?> + 3p)/(p* +3p—1) —e.

Proof. By the result of Hastad [19], it is, for any € > 0, NP-hard to approximate
Max E3-Lin mod p within p — ¢ also in the special case when all coefficients in the
equations are equal to one. When this result is combined with Lemma 3.23, the
theorem follows. O

It has been shown by Andersson, Engebretsen and Hastad [4] that for p > 11 it is
NP-hard to approximate Max E2-Lin mod p within 18/17 — ¢ for all € > 0. When
this result is combined with Theorem 3.24 we obtain the following general result:

Theorem 3.25. For every prime p, it is NP-hard to approximate Max E2-Lin
mod p within 70/69 — ¢.

Proof. For p = 2 we use Sorkin’s gadget [27] combined with Hastad’s hardness
result [19]. For p € {3,5, 7} we use Theorem 3.24, and for p > 11 we use the result
of Andersson, Engebretsen and Hastad [4]. O

It is easy to see, that if p is a prime factor in m, Max Ek-Lin mod p is actually a
special case of Max Ek-Lin mod m. For, if we have a Max Ek-Lin mod p instance,
we can convert it into an Max Ek-Lin mod m instance by multiplying each equation
with m/p.

3.5 Conclusions

We have shown that it is NP-hard to approximate Max E2-Lin mod p within
70/69 — £, independently of p, and that there exists a randomized polynomial time
algorithm approximating Max 2-Lin mod p within p — ©(p~'2). For the special
case of Max 2-Lin mod p, where the equations are either of the form x; — x;; = c or
x; = ¢, we have shown that there exists a randomized polynomial time algorithm
approximating the problem within (1 — 10~%)p. Of major interest at this point is,
in our opinion, to determine if the lower bound is in fact increasing with p, or if
there exists a polynomial time algorithm approximating Max 2-Lin mod p within
some constant ratio.
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The algorithm proposed in Sec. 3.3.2 can never approximate the solution within
a factor better than p — 1, by the construction of the randomized rounding. In
fact, even for a satisfiable system of linear equations, the expected weight of the
equations satisfied by the algorithm is a fraction 1/(p — 1) of the total weight of
the instance. This behavior is not desired, and indicates that it should be possible
to construct a better algorithm.
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Chapter 4

Denseness improves
approximability

In this chapter, we study dense instances of systems of linear equations modulo some
prime p. Specifically, we study systems with exactly & unknowns in each equation
and ©(n*) equations, where n is the number of variables. We show that there exists
a randomized polynomial time approximation scheme for such instances.

4.1 Preliminaries

Definition 4.1. We denote by Max Ek-Lin mod p the problem in which the input
consists of a system of linear equations mod p in n variables. Each equation contains
exactly k variables. The objective is to find the assignment maximizing the number
of satisfied equations.

Definition 4.2. We denote by Max k-Function Sat the problem in which the input
consists of a number of boolean functions in n boolean variables. Each function
depends on k variables. The objective is to find the assignment maximizing the
number of satisfied functions.

Definition 4.3. The class Max-SNP is the class of optimization problems which
can be written in the form

mgmxHx s O(1, S,x)}‘, (4.1)

where ® is a quantifier-free formula, I an instance and S a solution.

Arora, Karger and Karpinski [6] have constructed a randomized polynomial time
approximation scheme for dense instances of a number of Max-SNP problems,
including Max Cut. They formulate the problems as integer programs with certain

39
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properties, and then construct an algorithm finding, in probabilistic polynomial
time, a solution accurate enough to give a relative error of ¢, for any € > 0. The
methods do not seem to generalize to linear equations mod p since the integer
programs needed to express such an instance do not have the required properties.

Fernandez de la Vega [11] has also constructed a randomized polynomial time
approximation scheme for dense instances of Max Cut, independently of Arora,
Karger and Karpinski. However, it seems difficult to generalize his construction to
other problems.

In this chapter, we use methods and ideas introduced by Goldreich, Goldwasser
and Ron [18]. In their randomized polynomial time approximation scheme for Max
Cut, they partition the vertices of the graph into a constant number of disjoint
sets V. For each i they find a cut in V' by selecting a small subset U? of the
vertices in V' \ V¢, Then, they try all possible partitions m of U® into two parts.
Each partition 7 induces a cut in V?. Finally, when 7 is exactly the partition from
the maximum cut restricted to the subset in question, the weight of the induced
cut should, with high probability, be close to the weight of the maximum cut.

Frieze and Kannan [13] claim that they have constructed an algorithm giving a
polynomial time approximation scheme for all dense Max-SNP problems. Their
algorithm is a polynomial time approximation scheme for every problem that can
be described as an instance of Max k-Function Sat with ©(n*) functions. It is not
immediately clear that a dense instance of linear equations mod p can be described
in this manner, and on top of that, the algorithm proposed in this chapter has a
simpler structure and shorter running time than their algorithm.

4.2 Systems with two unknowns per equation

We consider an unweighted system of linear equations modulo some prime p. There
are in total n different variables in the system. The equations are of the form

az; +bry =c (4.2)

where i # i/, a,b € Z;, and ¢ € Z,. We assume that there are no equivalent
equations in the system. Le., if the two equations

ar; +bxry =c (4.3)

az; +bxy =¢ (4.4)

are both in the system, we assume that there is no d € Z,, such that a = dd/,
b=db' and ¢ = d¢’. We think of variable assignments as functions from the set of
unknowns to Z,,.

Definition 4.4. Denote by S(X, 7,z < r) the number of satisfied equations with
one unknown from the set X and = as the other unknown, given that the variables
in X are assigned values according to the function 7 and x is assigned the value 7.
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Definition 4.5. If m: Vi — Z, and my: V3 — Z, are two assignments, and V; N
V3 = 0, we denote by m; ® 7 the assignment 7 such that

_mv) ifveln,
m(v) = {71’2(1}) ifve Vs (4.5)

The algorithm we use is based on the Max Cut algorithm by Goldreich, Gold-
wasser and Ron [18], and we use their terminology and notation.

Algorithm 4.6. Approximation algorithm for dense instances of Max E2-Lin mod p:
1. Divide the variable set V into £ disjoint sets {V*}_,, each of size n/(.

2. Choose £ sets {U*}¢_, in the following way: U’ is a set of cardinality ¢ chosen
uniformly at random from V \ V. Let U = Ule Ut.

3. For each of the (at most) p* assignments m: U Z,, form an assignment
II;: V +— Z, in the following way:

(a) Fori e {1,...,(}, an assignment IT. : V* = Z,, is constructed as follows:
For each v € V", let J*(v) be the j € Z, which maximizes S(U’, 7, v «
7). Then define II% (v) = j*(v).

(b) Merge the above assignments in the obvious way:
Z .
I, = Q) II.. (4.6)
i=1

4. Let II be the variable assignment II; which maximizes the number of satisfied
equations.

5. Return II.

The running time of the algorithm is O(n?). The parameters £ and ¢ are independent
of n. They will be determined during the analysis of the algorithm.

Our overall goal is to show that the algorithm produces, with probability at
least 1 — 0, an assignment with weight at least 1 — ¢/c times the weight of the
optimal assignment for instances with en? equations. In the analysis we will use
the constants €1, €2 and €3. They are all linear in €, and determined later.

The intuition behind the algorithm is as follows: Since the graph is dense, the
sets U? should in some sense represent the structure of V \ V. If we pick some
variable v from V% and some assignment H® to the variables in V \ V¢ we will,
for each assignment v « j, satisfy some fraction ¢; of the equations containing v
and one variable from V \ V?. We then expect U’ to have the property that the
fraction of the satisfied equations containing v and one variable from U’ should be
close to ¢;. Let us formalize this.
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Definition 4.7. Let H' be an assignment to the variables in V'\ Vi, We say that
the set U” is good With respect to V' '\ V* if for all except a fraction of at most &1
of the variables v € V" we have that

S, H

571){_])_3(‘/\:_,“/;(“_]) <ey forall j € Z,. (4.7)

Lemma 4.8. For a fized i, it is possible to choose the constant t in such a way
that the probability of a set U being good is at least 1 — 6/4.

Proof. Fix a variable v € V' and some j € Z,. Note that the assignment H® is
fixed; the underlying probability space is the possible choices of U?. In other words,

Q={wCV\Vi:|w =t} (4.8)

and U® is chosen uniformly from Q. We now introduce, for each w € V \ Vi a
Bernoulli random variable &; ; , . with the property that

1 ifweU?
1,7,0,W — ’ 4.9
i, {0 otherwise. (4.9)

We can use these random variables to express the number of satisfied equations
containing v and one variable from U*.

vove— i)=Y SHw} Hwyv — )& jvw (4.10)

weV\V?

SUt, H

Since U is chosen uniformly at random from V \ V',

t
Prléijow =1 = T (4.11)

Now we construct the random variable

i Hi ;
Xijw = S U v=d) (4.12)

From Eqs. 4.10 and 4.11 it follows that

. = . 4.1
n |V o 1)

S({w},Hﬂ w 7U<—j) S(V\Vi,H,’U<—j)
BXijul= ) ]
weV\V?

which means that we are in good shape if we can bound the probability that X; ; .
deviates more than €, from its mean. At a first glance, this seems hard to do. For
Xi j,v is a linear combination of dependent random variables, and the coeflicients
in the linear combination depend on the assignment H’ and the instance. Since
there is, for each w € V \ Vi, at most p(p — 1) equations containing v and w,
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S({w},Hi|{w},v «— j) can be anywhere between 0 and p — 1, which complicates
things even worse. Fortunately, we can use martingale tail bounds to reach our
goal in spite of our limited knowledge of the probability distribution of Xj ;..
Let Fo = {0,Q}. For m > 0 we partition Q into disjoint subsets, such that all
t-tuples in a subset have their first m coordinates in common. Then, we let F,,, be
the o-field generated by that partition. We stop this process with F; = 2. The

sequence {Fy,}t,_o is a filtration, and thus the sequence { X"}, _,, where

xXm

2,7,V

= E[Xijo | Fml, (4.14)
is a martingale [24]. We note that this definition implies that
[ Xigo = BXijol| = [Xi50 — X0j.0|- (4.15)

,],v ,],v

Furthermore we observe that

|X[7”j7v - X-m_l‘ <(p-1)/t forallme{l,..., t}. (4.16)

VR

For, when we expose the mth variable, the expected number of satisfied equations,
conditioned on the exposed variables, can change by at most p — 1. This enables
us to apply Azuma’s inequality [24]:

Pr[‘Xi,j,v — E[Xiyjﬂ)H > 82] < 26_Egt/2(p_1)2. (417)

The above inequality is valid for fixed i, j and v. A set U’ is good if the above
inequality holds for all j and for all but £; of the vertices in V?. Thus we keep i
and j fixed and construct a new family of Bernoulli random variables

1 if | Xi 0 — E[Xi 0] > €2,
- J> > 4.18
g {O otherwise, ( )
and set
1
Yii = > i (4.19)
veV?
By Eq 4.17,
Prini o = 1] < 2e~34/20- D7 (4.20)
and thus
E[Y;,] < 9p—5t/2(p=1)* (4.21)
We can now use Markov’s inequality to bound
EIY; . 9e—e5t/2(p—1)?
PrY;, > o] < Dl 272 . (4.22)

€1 €1
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The above inequality is valid for a fixed j, and it can be used to obtain the proba-
bility that U* is good:

p _ .2 _1)2
. 2pe—¢2t/2(p—1)
Pr[U" is good] = Pr m Yij<el|>1- R ——

j=1

- (4.23)

Finally, we are to determine a suitable value for ¢, in order to make this probability
large enough. If we choose

t> 2(197—21)2 n 22 (4.24)
€35 oe1
the probability that U’ is good will be at least 1 — §/¢. O
Corollary 4.9. The probability that all U are good is at least 1 — 6.
Proof. There are ¢ different U*. O

For any assignment H to the variables, we can use the assignment H* = H lv\vi
and step 3a in the algorithm to construct an assignment II* to the variables in V".
If U? is good, we expect the number of equations satisfied by H* ® II* to be close
to the number of equations satisfied by H. To formalize this intuition, we need the
following definitions.

Definition 4.10.

w(7)

_ #f equations satisfied by the assignment 7

- (4.25)

n

Definition 4.11. We say that a variable v € V* is unbalanced with respect to V\V*
if there exists a j* € Z, such that for all j' € Z, \ {j*} we have that

S(V\ViH j* S(V\V, H i

( \ ) ’p(_j)Z ( \ ’ 7‘1)‘_.7)_’_53. (426)

n— |V n— |V

Lemma 4.12. Let H: V — Z, be a given assignment and 6 and € be fized, positive

constants. Let m = H|U and II' be the assignment produced as in step 3a in the

algorithm. Then, if U" is good, it is possible to choose the constant £ in such a way
that

p(Hly\vi @ ') > u(H) —e/pt. (4.27)

Proof. We want to compare the number of equations satisfied by the assignment H
to the number satisfied by H|y\y: ® II*. In particular, we want to bound the de-
crease in the number of satisfied equations. As only the values assigned to variables
in V? can differ between the two assignments, the possible sources of aberrations
are the equations where variables in V? are involved. We have four different cases:
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1. Equations of the type av; + bvs = ¢, where vq,vy € V. There are less than
p(p — 1)n? /22 such equations, and at most (p — 1)n?/2¢? can be satisfied by
any given assignment. The decrease is thus less than pn?/2¢2.

2. Equations of the form av + bw = ¢ where v € V? is unbalanced and satisfies
Eq. 4.7, and w ¢ V'. If we combine Eq. 4.7 and Eq. 4.26 we obtain the
inequality

S m = §7) S~ )
t - t

+e3—2ey forall j. (4.28)

By the construction of the algorithm, the value chosen for v will thus be the
correct value, provided that 3 > 2e5. It follows that the number of satisfied
equations of this type cannot decrease.

3. Equations of the form av + bw = ¢ where v € V? is not unbalanced, but
still satisfies Eq. 4.7, and w € V?. In this case, the algorithm may select
the wrong assignment to v. However, that cannot decrease the optimum
value by much. For, suppose that v = j in the optimal solution, but the
algorithm happens to set v = j'. The reason for that can only be that
St mv—j)>SU' m,v« j). By Eq. 4.7, this implies that

S(V\Vivva‘_j/) S(V\VlaHaWU(_j)
. — - <2 . 4.2
e |V’| — |Vz| < 2eg < €3 ( 9)

Since there are at most |V?| different v that are not unbalanced, we can bound
the decrease in the number of satisfied equations by

VA(SV\V  Huv—j)=S(V\V', Huvj)) <2en?/t.  (4.30)

4. Equations of the form av 4+ bw = ¢ where v € V* does not satisfy Eq. 4.7,
and w ¢ V?. By construction there are at most £;|V¢| such variables in V.
The number of equations of this type is thus less than e;p?|Vi|n/2. Only
e1p|V?|n/2 of these can be satisfied at the same time, and hence a bound on
the decrease is e1p|Vi|n/2 = e1pn?/2¢.

Summing up, the total decrease is at most
2 192 2 2
pn” /207 + 2e9n® /L + e1pn® [24. (4.31)

If we select £ = p?/e, 61 = €/2p, €2 = £/8, and e3 = ¢/3, the total decrease is at
most

en?)2pl + en? /4pl + en? JApl = en?/pt, (4.32)

which concludes the proof. O
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Corollary 4.13. If we construct from an assignment # = Hl|y, a new assign-
ment 11, as in step 3 of Algorithm 4.6, this new assignment has the property that

p(llz) = p(H) —e/p.
Proof. Apply Lemma 4.12 ¢ times, one for each i € {1,...,(}. O

The only observation needed now is, that since Corollary 4.13 is valid for any
assignment H, we can obtain a randomized polynomial time approximation scheme
by considering the case when H is the optimal assignment.

Theorem 4.14. For instances of Max E2-Lin mod p where the number of equations
is ©(n?), Algorithm 4.6 is a randomized polynomial time approzimation scheme.

Proof. Since all possible assignments 7 to the variables in the set U are tried by
the algorithm, the optimal assignment H restricted to U will eventually be tried.
Corollaries 4.9 and 4.13 show that the algorithm produces, with probability at least
1 — 4, an assignment IT such that p(II) > pu(H) —e/p. An additive error of £/p in
u(7) translates into an additive error of en?/p for the equation problem. Since the
optimum of an Max E2-Lin mod p instance with en? equations is at least cn?/p,
this gives a relative error which is at most ¢/c. (|

4.3 Systems with kK unknowns per equation

It turns out that the methods used in Sec. 4.2 generalize to the case with & unknowns
per equation, if we make suitable changes to the definitions used. For the sake of
completeness, we repeat the argument once again, with the details worked out. We
consider systems of linear equations modulo some prime p of the form

a-x=c (4.33)

where ¢ € V¥, a € (Z;)k, and ¢ € Z,. We assume that there are no equivalent
equations in the system. We can use exactly the same algorithm as above if we
change the definition of S(X, 7,z « r) as follows:

Definition 4.15. We extend the notation
S(X, 1,z 1) (4.34)

to mean the number of satisfied equations with k£ — 1 unknowns from the set X and
one unknown x ¢ X, given that the variables in X are assigned values according
to the function 7 and x is assigned the value r.

Definition 4.16. Let H' be an assignment to the variables in V'\ Vi We say that
the set U* is good with respect to V' \ V" if for all except a fraction of at most &;
of the variables v € V? we have that

i ; iH ;
SWhmv—j) SVAVIHO=))| ) graije 2, (4.35)

(') (.
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Lemma 4.17. For a fized i, it is possible to choose the constant t in such a way
that the probability of a set U* being good is at least 1 — § /.

Proof. Fix a variable v € V'’ and some j € Z,. It turns out that the analysis is

easier if the sample space € is represented somewhat differently. Specifically,
UV={y CV\V': [y =t}, (4.36)
Q={w:(WeV:scw = (sCyYAls|=k—1))}. (4.37)

To choose U? we choose an w uniformly at random from €2 and set

U'= J um. (4.38)

Um EW

This in fact chooses U? uniformly at random from V \ V¢. We now introduce, for
each w C V' \ V* such that |w| = k — 1, a Bernoulli random variable &; ; , » with
the property that

1 ifwCU!
) ) c : 4.39
&i jo,w {0 otherwise. | |

We can use these random variables to express the number of satisfied equations
containing v and k — 1 variables from U".

Ui, j) = Z S(w, H'|w, v+ )& j,0,w- (4.40)
wCV\V*
lw|=k—1

St H

Since U? is chosen uniformly at random from V '\ V¢,

n—|Vi—k+1 t
Prlti jvw = 1] = ( (f;’?}‘) ) _ (,E’; %?|) : (4.41)

Now we construct the random variable

(e21)

From Eqs. 4.40 and 4.41 it follows that

Xijw =

S(V\Vivva ‘_])
e
k—1

As in the proof of Lemma 4.8, we want to bound

. (4.43)

E[Xi jv] =

Pr[|Xijo — E[Xi ]| > 2] (4.44)
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using martingale tail bounds. To reach this goal we construct, for fixed ¢, j and v,
a (k — 1)-tuple exposure martingale. To simplify the notation, we put

T = <k ! 1), (4.45)

Note that each w € Q consists of exactly T tuples. Let Fo = {0,Q}. For m > 0
we partition €2 into disjoint subsets, such that all members of a particular subset
have their first m tuples in common. Then, we let F,, be the o-field generated by
that partition. We stop this process with Fr = 2. The sequence {Fu}l o isa

filtration, and thus the sequence {X;% 1T _,, where

xXm

1,7,V

=E[Xijo | Fml, (4.46)
is a martingale [24]. The Lipschitz condition in Eq. 4.16 changes to
X, = X< (p-1)"YT forallme{1,...,T} (4.47)

2,0,V

since, for an u € U® and a (k — 1)-tuple w C V \ V¥, at most (p — 1)¥~1 of the
equations containing u and w can be satisfied at the same time. This enables us
to apply Azuma’s inequality [24]:

Pr[|X; 0 — ElXijol| > e2] < 27 53T/2-D"0, (4.48)

The above inequality is valid for fixed {i,j,v}. A set U’ is good if the above
inequality holds for all j and for all but €; of the vertices in V*. Thus we keep i
and j fixed and construct a new family of Bernoulli random variables

1 if | X550 — E[XG50]| > €2,
g = 7 7 4.49

g {0 otherwise, (4.49)

and set
1
Yij= Vi Z Mi,g,0- (4.50)
veV?

By Eq 4.48,

Prn o = 1] < Qe—egT/Q(;o—l)z(kfl)7 (4.51)
and thus

B[Y; ;] < 2e75T/2= 0", (4.52)
We can now use Markov’s inequality to bound

ElY: | 2e—e3T/2(p—1)>*""Y
PrY,; > &1 < Yig) _ 2¢ (4.53)

€1 €1
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The above inequality is valid for a fixed j, and it can be used to obtain the proba-
bility that U* is good:

2p6_5§T/2(p_1)2(k71)

P
Pr[U? is good] = Pr ﬂ Yii<e|>1-
j=1

. (4.54)

Finally, we are to determine a suitable value ¢, in order to make this probability
large enough. If we choose

2(p — 1)2k=1)  9¢
(r—1) 1 24P

T> 2 5o, (4.55)
the probability that U’ is good will be at least 1 — §/¢. Since

T>(t—k+2)"1/(k—1), (4.56)
we are safe if we choose

1
t>k—2+(p—1)>° (z(kgi;)!ln%’)k_l. (4.57)
O

Corollary 4.18. The probability that all U are good is at least 1 — 4.
Proof. There are ¢ different U®. O
Next, we extend the definitions of y and unbalancedness:
Definition 4.19.

() = # equations satisfied by the assignment 7 . (4.58)

nk

Definition 4.20. We say that a variable v € V* is unbalanced with respect to V\V*
if there exists a j* € Z, such that for all 5/ € Z, \ {j*} we have that

S(V\Vi Hv« j*) < S(V\Vi{ H v« j)
(" N ("
k—1 k—1

Lemma 4.21. Let H: V — Z, be a given assignment and § and € be fized, positive
constants. Let m = H|y and II' be the assignment produced as in step 3a in the
algorithm. Then, if U? is good, it is possible to choose the constant £ in such a way
that

+ e3. (4.59)

p(Hy\vi @ ') > p(H) — e /pt. (4.60)
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Proof. To bound the decrease in the number of satisfied equations, we perform a
case analysis similar to that in the proof of Lemma 4.12:

Equations with more than one variable from V?. There are at most
p(p — 1)1 (n/0)20* 2 /R (4.61)
such equations, and less than

p(n/f)an_Q _ pnk

k! T (4.62)

can be satisfied by any given assignment, which bounds the decrease in the number
of satisfied equations.

Equations of the form av + b - w = ¢ where v € V? is unbalanced and satisfies
Eq. 4.35, and w NV’ = (. If we combine Eq. 4.35 and Eq. 4.59 we obtain the
inequality

S(U m,v37) _ SU, v j)
>
7 = 7
(:°1) (20)
By the construction of the algorithm, the value chosen for v will thus be the correct

value, provided that €3 > 2e5. It follows that the number of satisfied equations of
this type cannot decrease.

+ e3 — 2¢e9. (463)

Equations of the form av + b - w = ¢ where v € V? is not unbalanced, but still
satisfies Eq. 4.35, and wNV? = (). In this case, the algorithm may select the wrong
assignment to v. However, that cannot decrease the optimum value by much.
For, suppose that v = j in the optimal solution, but the algorithm happens to
set v = j'. The reason for that can only be that S(U?,7,v « j') > S(U*, m,v « j).
By Eq. 4.35, this implies that

SWAVLHo =) SWVAVLHv <)) _, o)

(. ("

Since there are at most |V?| different v that are not unbalanced, we can bound the
decrease in the number of satisfied equations by

25271’“

VA(SOVAV, oo =) = SVAVE H = 5)) < =3

(4.65)

Equations of the form av 4+ b - w = ¢ where v € V' does not satisfy Eq. 4.35,
and w N V* = (). By construction there are at most £1|V*| such variables in V*.
The number of equations of this type is thus less than e;p*|V¢[n¥=1/kl. Only
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e1p|Vi|nF~1/k! of these can be satisfied at the same time, and hence a bound on
the decrease is

ep|Vin*~t  eipn®

k! okl (4.66)
Summing up, the total decrease is

pnF /B 4 2e9n® /(K — 1) + e1pn® kL. (4.67)

By choosing
0= 2p?/kle, (4.68)
g1 =ek!/4, (4.69)
eg =¢e(k —1)!/8, (4.70)
ez =¢e(k —1)!1/3, (4.71)
the total decrease becomes at most en”* /pf. O

Corollary 4.22. If we construct from an assignment m = Hl|y, a new assign-
ment I as in step 3 of Algorithm 4.6, this new assignment has the property that

p(lz) = p(H) —e/p.
Proof. Apply Lemma 4.12 ¢ times, one for each i € {1,...,¢}. O

The main theorem follows by the same argument as Theorem 4.14

Theorem 4.23. For instances of Max Ek-Lin mod p where the number of equations
is ©(n¥), Algorithm 4.6 is a randomized polynomial time approzimation scheme.

Proof. Since all possible assignments 7 to the variables in the set U are tried by
the algorithm, the optimal assignment H restricted to U will eventually be tried.
Corollaries 4.18 and 4.22 show that the algorithm produces, with probability at
least 1 — 4, an assignment IT such that p(IT) > p(H)—¢e/p. An additive error of /p
in u(7) translates into an additive error of en”/p for the equation problem. Since
the optimum of an Max E2-Lin mod p instance with en” equations is at least en® /p,
this gives a relative error which is at most ¢/c. (|

4.4 Conclusions

We have shown how to construct a randomized polynomial time approximation
scheme for dense instances of Max Ek-Lin mod p. The algorithm is intuitive, and
shows the power of exhaustive sampling. The running time of the algorithm is
quadratic in the number of variables, albeit with large constants.

It would be interesting to generalize the Max k-Function Sat problem to func-
tions mod p, and see if dense instances of that problem admit a polynomial time
approximation scheme. This should require only minor modifications of the algo-
rithm and its analysis.
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