

Si ProPac
a Mathematica package for dynamics and control

Quick Start

 by Techno–Sciences, Inc.

T

TSi ProPac
Software and documentation by

Techno-Sciences, Inc.

Techno–Sciences Incorporated

10001 Derekwood Lane, Suite 204

Lanham, MD 20706

(301) 577–6000

info@technosci.com

www.technosci.com

Copyright  1994, 1996 & 1997, 1999 Techno–Sciences, Incorporated

All Rights Reserved

Table of Contents

1. INTRODUCTION ..1

INSTALLATION .. 2

2. PACKAGE CONTENT ...3

OVERVIEW .. 3

MODELING.. 4

CONTROL.. 5

INTERFACING WITH MATLAB... 5

3. FOR USERS OF EARLIER VERSIONS..10

4. REFERENCES...12

1. Introduction

 ProPac is a Mathematica package that integrates and expands the

capabilities of Techno-Sciences’ TSi Dynamics and TSi Controls. It provides

a comprehensive set of symbolic computing tools for modeling multibody mechanical

systems as well as for linear and nonlinear control system design and analysis. New

features include:

• the capability to model systems with nondifferentiable nonlinearities, such as static

friction and backlash,

• the capability to compute equilibrium surfaces, to generate parameter-dependent linear

families, and to construct parameter-dependent zero dynamics,

• tools for constructing nonlinear observers.

• tools for variable structure control system design.

 In addition, ProPac includes a number of algorithm modifications designed to improve

performance, particularly for large problems. Users of earlier versions should be aware

that many functions can now be called with a simplified syntax that makes them easier to

use.

 TSi ProPac includes a revised and expanded set of tutorial and application notebooks.

These include Dynamics and Controls which introduce the basic modeling and control

tools available in ProPac. For more information, notebooks and other documents visit our

web site: www.technosci.com.

 Using ProPac requires version 2, 3 or 4 of Mathematica. That is all that is required to

develop the equations of motion, for conducting numerical simulations within

Mathematica, and building the C source code required for simulations in SIMULINK. Use

TSi

of the latter requires MATLAB/SIMULINK and a C compiler as recommended by the

MathWorks for compiling MEX–files on the user’s platform.

Installation

To install ProPac, follow the two step procedure:

Step 1:

Put the entire ProPac directory in the Mathematica’s AddOns/Applications

directory. For the PC the full path is

C:\Program Files\Wolfram Research\Mathematica\4.0\AddOns\Applications\

Step 2:

Start Mathematica 4.0 and rebuild the Help index: From the main menu choose:

Help ⇒ Rebuild Help Index …

Once this is done, on line help is available. In the Help Browser select Add-ons and

then TSi ProPac.

 The Mex folder contains 3 C-source files that are need to be included when compiling

MATLAB/SIMULINK MEX files. These may stored in any convenient location, but must

be available at the time of compilation.

2. Package Content

Overview

 ProPac consists of seven packages: Dynamics, ControlL, ControlN,

GeoTools, MEXTools, NDTools, and VSCTools. Once ProPac is loaded all

of the functions in these packages are available for use and the appropriate packages will

be automatically loaded as required. In general, a user does not have to be concerned

about loading any particular package. To load ProPac in Mathematica 3.0 or 4.0 simply

enter <<ProPac`, and in Mathematica 2.2 enter <<ProPac`Master`.

 Dynamics contains the model building functions and ControlL and ControlN the linear

and nonlinear control analysis functions, respectively. GeoTools includes basic functions

used in differential geometry calculations. NDTools contains supporting functions for

working with nondifferentiable nonlinearities and VSCTools contains functions for

variable structure control. MEXTools includes functions for creating C-code files for both

models and controllers that compile as S-functions for use with MATLAB/SIMULINK.

 The following paragraphs contain a brief summary of the available functions. More

details and numerous examples can be found in the help browser and in the notebooks.

The notebooks Dynamics.nb and Controls.nb are tutorials that illustrate the basic data

structures and tools.

TSi

Modeling

ProPac contains a comprehensive set of tools for assembling models of multibody

mechanical systems. A few of these are listed in Table 1. The model building process has

two distinctive features. First, the joints are defined in terms of their primitive action

parameters from which all the required kinematic relations are derived. Thus, a user can

contrive unusual joint configurations and is not restricted to a predefined set of standard

joints. Second, the equations are formulated in Poincaré’s form of Lagrange’s equations1

that admits the standard Lagrange equations as a special case [1, 3, 7]. However,

Poincaré’s form allows the exploitation of quasi–velocities which can greatly simplify the

equations of motion.

 The explicit models generated are of the form:

Kinematics: � ()q V q p=

Dynamics: M q p C q p p F q p u() � (,) (, ,)+ + = 0
where q is a vector of configuration coordinates, p is a vector of quasi–velocities and u is

a vector of exogenous inputs. They may be subjected to further symbolic processing for

purposes such as nonlinear model reduction, nonlinear control system design or

linearization. They may also be used for simulation or other numerical analysis procedures.

To facilitate the latter applications, the package provides a direct interface to

MATLAB/SIMULINK. In view of the complexity of models incorporating fully nonlinear

kinematics, the C–code generated for this purpose, is organized to minimize the required

numerical calculations.

 To build a model, a user supplies defining data for individual joints and bodies, and the

system structure. With this data, functions are available that can compute the kinetic

energy function and inertia matrix as well as the gravitational potential energy function. It

can also compute the strain potential energy and dissipation functions associated with

deformations of flexible bodies. Various kinematic quantities can be obtained as well, e.g.,

end–effector configuration as a function of joint and deformation parameters. To complete

a dynamic analysis, the user must supply the remaining parts of the potential energy

1 Poincaré’s equations [1-3] are also referred to as Lagrange’s equations in quasi-coordinates [4, 5] or

pseudo-coordinates [6].

function and definitions for any generalized forces. Functions are available to assist in

developing these quantities.

Control

The control software can be grouped into three general categories: linear control,

nonlinear control and geometric tools. Software tools are provided for the manipulation of

linear controls systems in state space or frequency domain forms. Functions for the

conversion of one form of model to the other are also included. Examples of the functions

provided are listed in Table 2 and Table 3.

 ProPac includes tools required to apply modern geometric methods of control system

design to nonlinear affine systems [8, 9]. These methods play an important role in adaptive

control system design [9-12] and variable structure control as well [13, 14]. Typical

functions are given in Table 4. Table 5 illustrates functions for adaptive control system

design and Table 6 shows the basic tools for variable structure control systems. Examples

of geometric functions that support the control analysis constructions are given in Table 7.

Interfacing with MATLAB

MATLAB/SIMULINK are widely used tools for dynamic system simulation and control

system analysis and design. Consequently, it is often convenient to implement the results

of symbolic analysis in that environment. ProPac provides convenient interface tools. The

function MatlabForm allows exporting numerical matrices constructed in Mathematica in

a form readable by MATLAB. In addition, functions are included that construct

‘optimized’ C-source code files that compile as ‘MEX files’ defining S-functions for use as

modules in the SIMULINK block diagram environment.

 Separate functions are used to define models and controllers as illustrated in Figure 1.

Models are defined in terms of Poincaré’s equations (see above) and controllers are

defined in terms of state descriptions:

� (,)

(,)

x f x u

y h x u

=
=

Controller modules do not require any MATLAB resources so they can be used for real

time implementation via MATLAB’s Real Time Workshop.

Model Bui ld ing
Contro l Analys is

& Des ign

Model S-Function
Source Code (C)

Control S-Function
Source Code (C)

System Model Control ler

M a t h e m a t i c a

MATLAB/
SIMULINK

Figure 1. Interfacing with MATLAB/SIMULINK.

Table 1. Multibody Dynamics

Function Name Operation

Joints returns all of the kinematic quantities
corresponding to a list of joint definitions

TreeInertia computes the inertia matrix of a multibody
system in a tree structure containing flexible
and rigid bodies

EndEffector returns the Euclidean Configuration Matrix
of a body fixed frame at a specified node

NodeVelocity returns the (6 dim) spatial velocity vector of
a body fixed frame at a specified node

GeneralizedForce computes the generalized force at specified
node in terms of generalized coordinates

KinematicReplacements sets up temporary replacement rules for
repeated groups of expressions to simplify
kinematic quantities

CreateModel builds the kinematic and dynamic equations
for tree structures

DifferentialConstraints adds differential constraints to a tree
configuration

AlgebraicConstraints adds algebraic constraints to a tree
configuration

Table 2. Linear Systems: State Space

Function Name Operation

ControllablePair/ Ob servablePair tests for controllability and observability

ControllabilityMatrix

Observa bilityMatrix

returns the controllability or observability matrices,
respectively

PolePlace state feedback pole placement based on Ackermann’s
formula with options

DecouplingConrol state feedback and coordinate transformation that
decouples input-output map

RelativeDegree computes the vector relative degree

LQR, LQE compute optimal quadratic regulator and estimator
parameters

Table 3. Linear Systems: Frequency Domain

Function Name Operation

LeastCommonDenominator finds the least common denominator of
the elements of a proper, rational G(s)

Poles finds the roots of the least common
denominator

LaurentSeries computes the Laurent series up to
specified order

AssociatedHankelMatrix computes the Hankel matrix associated
with Laurent expansion of G(s)

McMillanDegree computes the degree of the minimal
realization of G(s)

Controllabl eRealization

ObservableRealization

compute, respectively, the controllable
and observable realizations of a transfer
function

Table 4. Nonlinear systems: Geometric Control

Function Name Operation

VectorRelativeOrder computes the relative degree vector

DecouplingMatrix computes the decoupling matrix

IOLin earize computes the linearizing control

NormalCoor dinates computes the partial state transformation,

LocalZeroDynamics computes the local form of the zero dynamics

StructureAlgorithm computes the parameters of an inverse system

DynamicExtension applies dynamic extension as a remedy for
singular decoupling matrix

Table 5. Nonlinear systems: Adaptive Control

Function Name Operation

AdaptiveRe gulator generates an adaptive regulator for a class of linearizable
systems

AdaptiveBackstepRe gulator computes an adaptive regulator by backstepping for SISO
systems in PSFF form

AdaptiveTracking computes an adaptive tracking controller

PSFFCond tests a system to determine if it is reducible to PSFF form

PSFFSolve transforms a system to PSFF form if possible

Table 6 Nonlinear systems: Variable Structure Control

Function Name Operation

SlidingSurface generates the sliding (switching) surface for
feedback linearizable nonlinear systems

SwitchingControl computes the switching functions – allows the
inclusion of smoothing and moderating functions

Table 7. Nonlinear systems: Geometric Tools

Function Name Operation

LieBracket computes the Lie bracket of a given pair of
vector fields

Ad computes the iterated Lie bracket of specified
order of a pair of vector fields

Involutive tests a set of vector fields to determine if it is
involutive

Span generates a set of basis vector fields for a given
set of vector fields

FlowComposition generates a composite function from a given set
of flows

ParametricManifold computes a parametric representation for an
imbedded manifold

StateTransformation transforms nonlinear dynamic models in various
forms

3. For Users of
Earlier Versions

Users of earlier versions of TSi Dynamics and TSi Controls should be aware that some

function names have been changed. This has been done in order to conform to WRI

naming conventions and/or to enhance clarity. Table 8 and Table 9 summarize the function

name changes.

Table 8 Control Functions

Old New
AdaptBackstepReg AdaptiveBackstepRegulator

AlgRiccatiEq AlgebraicRiccatiEquation

BodePlot Bode

Controllable ControllablePair

H2H1andH2 HToH1AndH2

H2NandM HToNAndM

HankelMat/HankelMatrix AssociatedHankelMatrix

IverseTrans InverseTransformation

LocalInverseTrans LocalInverseTransformation

MatRank MatrixRank

NyquistPlot Nyquist

Observable ObservablePair

PartialTransSystem PartialTransformSystem

RootLocusPlot RootLocus

TransSystem TransformSystem

Table 9 Dynamics Functions

Old New
AlgConstrainedSys AlgebraicConstraints

Atil2a ATildaToA

Atilda AToATilda

Cmat CMatrix

DiffConstrainedSys DifferentialConstraints

EndEffectorVelocity NodeVelocity

GamaKin SimpleJointKinematics

GamCmpnd CompoundJointKinematics

HCmpnd CompoundJointMap

Leuler RotationMatrixEuler

Lrot JointRotation

PoincareFunc PoincareFunctionCombined

PoincareFuncSim PoincareFunction

PoinCoef PoincareCoefficient

RotMat2Euler RotationMatrixToEuler

Rtran JointTranslation

Xeuler ConfigurationMatrixEuler

XXCmpd CompoundJointConfiguration

XXeuc SimpleJointConfiguration

4. References

[1] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial
Mechanics, vol. 3. Heidelberg: Springer–Verlag, 1988.

[2] N. G. Chetaev, “On the Equations of Poincaré,” PMM (Applied Mathematics and Mechanics), pp.
253–262, 1941.

[3] N. G. Chetaev, Theoretical Mechanics. New York: Springer–Verlag, 1989.

[4] L. Meirovitch, Methods of Analytical Dynamics. New York: McGraw–Hill, Inc., 1970.

[5] J. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, vol. 33. Providence: American
Mathematical Society, 1972.

[6] F. Gantmacher, Lectures in Analytical Mechanics, English Translation ed. Moscow: Mir, 1975.

[7] H. G. Kwatny and G. L. Blankenship, “Symbolic Construction of Models for Multibody Dynamics,”
IEEE Transactions on Robotics and Automation, vol. 11, pp. 271-281, 1995.

[8] A. Isidori, Nonlinear Control Systems, 3 ed. London: Springer-Verlag, 1995.

[9] H. Nijmeijer and H. J. van der Schaft, Nonlinear Dynamical Control Systems. New York: Springer–
Verlag, 1990.

[10] G. L. Blankenship, R. Ghanadan, H. G. Kwatny, C. LaVigna, and V. Polyakov, “Integrated tools for
Modeling and Design of Controlled Nonlinear Systems,” IEEE Control Systems, vol. 15, pp. 65-79,
1995.

[11] I. Kanellakapoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of Adaptive Controllers for
Feedback Linearizable Systems,” IEEE Transactions on Automatic Control, vol. AC–36, pp. 1241–
1253, 1991.

[12] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, “Adaptive Nonlinear Control Without
Overparameterization,” Systems and Control Letters, vol. 19, pp. 177-185, 1992.

[13] H. G. Kwatny and H. Kim, “Variable Structure Regulation of Partially Linearizable Dynamics,”
Systems & Control Letters, vol. 15, pp. 67–80, 1990.

[14] H. G. Kwatny and G. L. Blankenship, “Symbolic Tools for Variable Structure Control System
Design: The Zero Dynamics,” presented at IFAC Symposium on Robust Control via Variable
Structure and Lyapunov Techniques, Benevento, Italy, 1994.

