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1.  Introduction 
 
    

 

 

 ProPac is a Mathematica package that integrates and expands the 

capabilities of Techno-Sciences’ TSi Dynamics and TSi Controls. It provides 

a comprehensive set of symbolic computing tools for modeling multibody mechanical 

systems as well as for linear and nonlinear control system design and analysis. New 

features include: 

• the capability to model systems with nondifferentiable nonlinearities, such as static 

friction and backlash, 

• the capability to compute equilibrium surfaces, to generate parameter-dependent linear 

families, and to construct parameter-dependent zero dynamics, 

• tools for constructing nonlinear observers. 

• tools for variable structure control system design. 

 In addition, ProPac includes a number of algorithm modifications designed to improve 

performance, particularly for large problems. Users of earlier versions should be aware 

that many functions can now be called with a simplified syntax that makes them easier to 

use. 

 TSi ProPac includes a revised and expanded set of tutorial and application notebooks. 

These include Dynamics and Controls which introduce the basic modeling and control 

tools available in ProPac. For more information, notebooks and other documents visit our 

web site: www.technosci.com.  

 Using ProPac requires version 2, 3 or 4 of Mathematica. That is all that is required to 

develop the equations of motion, for conducting numerical simulations within 

Mathematica, and building the C source code required for simulations in SIMULINK. Use 
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of the latter requires MATLAB/SIMULINK and a C compiler as recommended by the 

MathWorks for compiling MEX–files on the user’s platform. 

Installation 

To install ProPac, follow the two step procedure: 

Step 1: 

Put the entire ProPac directory in the Mathematica’s AddOns/Applications 

directory. For the PC the full path is 

C:\Program Files\Wolfram Research\Mathematica\4.0\AddOns\Applications\ 

Step 2: 

Start Mathematica 4.0 and rebuild the Help index: From the main menu choose: 

Help ⇒ Rebuild Help Index …  

Once this is done, on line help is available. In the Help Browser select Add-ons and 

then TSi ProPac. 

 

 The Mex folder contains 3 C-source files that are need to be included when compiling 

MATLAB/SIMULINK MEX files. These may stored in any convenient location, but must 

be available at the time of compilation. 



 

2.  Package Content 
 
    

 
 

Overview 

 ProPac consists of seven packages: Dynamics, ControlL, ControlN, 

GeoTools, MEXTools, NDTools, and VSCTools. Once ProPac is loaded all 

of the functions in these packages are available for use and the appropriate packages will 

be automatically loaded as required. In general, a user does not have to be concerned 

about loading any particular package. To load ProPac in Mathematica 3.0 or 4.0 simply 

enter <<ProPac`, and in Mathematica 2.2 enter <<ProPac`Master`. 

 Dynamics contains the model building functions and ControlL and ControlN the linear 

and nonlinear control analysis functions, respectively. GeoTools includes basic functions 

used in differential geometry calculations. NDTools contains supporting functions for 

working with nondifferentiable nonlinearities and VSCTools contains functions for 

variable structure control. MEXTools includes functions for creating C-code files for both 

models and controllers that compile as S-functions for use with MATLAB/SIMULINK. 

 The following paragraphs contain a brief summary of the available functions. More 

details and numerous examples can be found in the help browser and in the notebooks. 

The notebooks Dynamics.nb and Controls.nb are tutorials that illustrate the basic data 

structures and tools. 
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Modeling  

ProPac contains a comprehensive set of tools for assembling models of multibody 

mechanical systems. A few of these are listed in Table 1. The model building process has 

two distinctive features. First, the joints are defined in terms of their primitive action 

parameters from which all the required kinematic relations are derived. Thus, a user can 

contrive unusual joint configurations and is not restricted to a predefined set of standard 

joints. Second, the equations are formulated in Poincaré’s form of Lagrange’s equations1 

that admits the standard Lagrange equations as a special case [1, 3, 7]. However, 

Poincaré’s form allows the exploitation of quasi–velocities which can greatly simplify the 

equations of motion. 

 The explicit models generated are of the form: 

Kinematics: � ( )q V q p=   

Dynamics: M q p C q p p F q p u( ) � ( , ) ( , , )+ + = 0 
where q is a vector of configuration coordinates, p is a vector of quasi–velocities and u is 

a vector of exogenous inputs. They may be subjected to further symbolic processing for 

purposes such as nonlinear model reduction, nonlinear control system design or 

linearization. They may also be used for simulation or other numerical analysis procedures. 

To facilitate the latter applications, the package provides a direct interface to 

MATLAB/SIMULINK. In view of the complexity of models incorporating fully nonlinear 

kinematics, the C–code generated for this purpose, is organized to minimize the required 

numerical calculations. 

 To build a model, a user supplies defining data for individual joints and bodies, and the 

system structure. With this data, functions are available that can compute the kinetic 

energy function and inertia matrix as well as the gravitational potential energy function. It 

can also compute the strain potential energy and dissipation functions associated with 

deformations of flexible bodies. Various kinematic quantities can be obtained as well, e.g., 

end–effector configuration as a function of joint and deformation parameters. To complete 

a dynamic analysis, the user must supply the remaining parts of the potential energy 

                                                
1 Poincaré’s equations [1-3] are also referred to as Lagrange’s equations in quasi-coordinates [4, 5] or 

pseudo-coordinates [6]. 



function and definitions for any generalized forces. Functions are available to assist in 

developing these quantities.  

Control 

The control software can be grouped into three general categories: linear control, 

nonlinear control and geometric tools. Software tools are provided for the manipulation of 

linear controls systems in state space or frequency domain forms. Functions for the 

conversion of one form of model to the other are also included. Examples of the functions 

provided are listed in Table 2 and Table 3.  

 ProPac includes tools required to apply modern geometric methods of control system 

design to nonlinear affine systems [8, 9]. These methods play an important role in adaptive 

control system design [9-12] and variable structure control as well [13, 14]. Typical 

functions are given in Table 4. Table 5 illustrates functions for adaptive control system 

design and Table 6 shows the basic tools for variable structure control systems. Examples 

of geometric functions that support the control analysis constructions are given in Table 7.  

Interfacing with MATLAB 

MATLAB/SIMULINK are widely used tools for dynamic system simulation and control 

system analysis and design. Consequently, it is often convenient to implement the results 

of symbolic analysis in that environment. ProPac provides convenient interface tools. The 

function MatlabForm allows exporting numerical matrices constructed in Mathematica in 

a form readable by MATLAB. In addition, functions are included that construct 

‘optimized’ C-source code files that compile as ‘MEX files’ defining S-functions for use as 

modules in the SIMULINK block diagram environment. 

 Separate functions are used to define models and controllers as illustrated in Figure 1. 

Models are defined in terms of Poincaré’s equations (see above) and controllers are 

defined in terms of state descriptions: 

� ( , )

( , )

x f x u
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=
=

 



Controller modules do not require any MATLAB resources so they can be used for real 

time implementation via MATLAB’s Real Time Workshop. 
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Figure 1. Interfacing with MATLAB/SIMULINK. 



Table 1. Multibody Dynamics 

Function Name Operation 

Joints returns all of the kinematic quantities 
corresponding to a list of joint definitions 

TreeInertia computes the inertia matrix of a multibody 
system in a tree structure containing flexible 
and rigid bodies 

EndEffector returns the Euclidean Configuration Matrix 
of a body fixed frame at a specified node 

NodeVelocity returns the (6 dim) spatial velocity vector of 
a body fixed frame at a specified node 

GeneralizedForce computes the generalized force at specified 
node in terms of generalized coordinates 

KinematicReplacements sets up temporary replacement rules for 
repeated groups of expressions to simplify 
kinematic quantities  

CreateModel builds the kinematic and dynamic equations 
for tree structures 

DifferentialConstraints adds differential constraints to a tree 
configuration 

AlgebraicConstraints adds algebraic constraints to a tree 
configuration 

 
Table 2. Linear Systems: State Space 

Function Name Operation 

ControllablePair/ Ob servablePair tests for controllability and observability 

ControllabilityMatrix 

Observa bilityMatrix 

returns the controllability or observability matrices, 
respectively 

PolePlace state feedback pole placement based on Ackermann’s 
formula with options 

DecouplingConrol state feedback and coordinate transformation that 
decouples input-output map 

RelativeDegree computes the vector relative degree 

LQR, LQE compute optimal quadratic regulator and estimator 
parameters 

 



Table 3. Linear Systems: Frequency Domain 

Function Name Operation 

LeastCommonDenominator finds the least common denominator of 
the elements of a proper, rational G(s) 

Poles finds the roots of the least common 
denominator 

LaurentSeries computes the Laurent series up to 
specified order 

AssociatedHankelMatrix computes the Hankel matrix associated 
with Laurent expansion of G(s) 

McMillanDegree computes the degree of the minimal 
realization of G(s) 

Controllabl eRealization 

ObservableRealization 

compute, respectively, the controllable 
and observable realizations of a transfer 
function 

 

Table 4. Nonlinear systems: Geometric Control 

Function Name Operation 

VectorRelativeOrder computes the relative degree vector 

DecouplingMatrix computes the decoupling matrix 

IOLin earize computes the linearizing control  

NormalCoor dinates computes the partial state transformation,  

LocalZeroDynamics computes the local form of the zero dynamics 

StructureAlgorithm computes the parameters of an inverse system 

DynamicExtension applies dynamic extension as a remedy for 
singular decoupling matrix 

 

Table 5. Nonlinear systems: Adaptive Control 

Function Name Operation 

AdaptiveRe gulator generates an adaptive regulator for a class of linearizable 
systems 

AdaptiveBackstepRe gulator computes an adaptive regulator by backstepping for SISO 
systems in PSFF form 

AdaptiveTracking computes an adaptive tracking controller 

PSFFCond tests a system to determine if it is reducible to PSFF form 

PSFFSolve transforms a system to PSFF form if possible 



 

Table 6 Nonlinear systems: Variable Structure Control 

Function Name Operation 

SlidingSurface generates the sliding (switching) surface for 
feedback linearizable nonlinear systems 

SwitchingControl computes the switching functions – allows the 
inclusion of smoothing and moderating functions 

 

Table 7. Nonlinear systems: Geometric Tools 

Function Name Operation 

LieBracket computes the Lie bracket of a given pair of 
vector fields 

Ad computes the iterated Lie bracket of specified 
order of a pair of vector fields 

Involutive tests a set of vector fields to determine if it is 
involutive 

Span generates a set of basis vector fields for a given 
set of vector fields 

FlowComposition generates a composite function from a given set 
of flows 

ParametricManifold computes a parametric representation for an 
imbedded manifold 

StateTransformation transforms nonlinear dynamic models in various 
forms 

 

 



3. For Users of 
Earlier Versions 

 
    

 

Users of earlier versions of TSi Dynamics and TSi Controls should be aware that some 

function names have been changed. This has been done in order to conform to WRI 

naming conventions and/or to enhance clarity. Table 8 and Table 9 summarize the function 

name changes. 

 
Table 8 Control Functions 

Old New 
AdaptBackstepReg AdaptiveBackstepRegulator 

AlgRiccatiEq AlgebraicRiccatiEquation 

BodePlot Bode 

Controllable ControllablePair 

H2H1andH2 HToH1AndH2 

H2NandM HToNAndM 

HankelMat/HankelMatrix AssociatedHankelMatrix 

IverseTrans InverseTransformation 

LocalInverseTrans LocalInverseTransformation 

MatRank MatrixRank 

NyquistPlot Nyquist 

Observable ObservablePair 

PartialTransSystem PartialTransformSystem 

RootLocusPlot RootLocus 

TransSystem TransformSystem 

 



Table 9 Dynamics Functions 

Old New 
AlgConstrainedSys AlgebraicConstraints 

Atil2a ATildaToA 

Atilda AToATilda 

Cmat CMatrix 

DiffConstrainedSys DifferentialConstraints 

EndEffectorVelocity NodeVelocity 

GamaKin SimpleJointKinematics 

GamCmpnd CompoundJointKinematics 

HCmpnd CompoundJointMap 

Leuler RotationMatrixEuler 

Lrot JointRotation 

PoincareFunc PoincareFunctionCombined 

PoincareFuncSim PoincareFunction 

PoinCoef PoincareCoefficient 

RotMat2Euler RotationMatrixToEuler 

Rtran JointTranslation 

Xeuler ConfigurationMatrixEuler 

XXCmpd CompoundJointConfiguration 

XXeuc SimpleJointConfiguration 
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