Apress™

Books for Professionals by Professionals™

Sample Chapter: "Recordset Recursion and Data Shaping”
(pre-production "galley" stage)

Serious ADO: Universal Data Access
with Visual Basic

by Rob Macdonald
ISBN # 1-893115-19-4

Copyright ©2000 Apress, L.P., 901 Grayson St., Suite 204, Berkeley, CA 94710. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic or other record, without the prior agreement and written permission of the publisher.

CHAPTER 8

Recordset Recursion
and Data Shaping

The Idea of Data Shaping

Creating the Connection String

Relation-based Hierarchies

Extending and Fabricating Recordsets Using Data Shaping
Parameterized Data Shaping

Group-based Hierarchies

Summary

As ADO HAS MATURED, it has expanded its range to include models of data that
it originally could not represent. Early versions of ADO presented all data in
the form of tabular Recordsets. While it was possible for Providers to stretch
the tabular model by placing compound data structures such as arrays in a
single Recordset cell, ADO Recordsets were pretty much two-dimensional.

The first extension of ADO beyond this model was the introduction of
Data Shaping. Its ability to embed Recordsets within Recordsets, popularly
known as hierarchical Recordsets, is the subject of this chapter. All Data
Shaping takes place using the MSDataShape Provider that is a standard
part of an ADO installation.

A degree of mystique has developed around Data Shaping, mostly
generated by authors who find any syntax that involves more than placing
a dot between an object and a property or method name confusing or
counterintuitive. We have come to realize that OLE DB Providers can
expose command languages of their own making, and the MSDataShape
Provider is just one of a growing number of Providers to do so. You'll see
that the syntax of the SHAPE language is far, far simpler than the syntax
of SQL, and that while the combinations it supports can result in rather
convoluted statements, its very small number of keywords and syntax
forms make it easy to learn.

Chapter 8

In Chapter 13 you'll also see that VB comes with a built-in wizard for
creating MSDataShape commands, so there is little excuse for not embracing
this technology, especially as a number of user interface components,
including the VB6 Report Designer and the Hierarchical FlexGrid control,
have been created to exploit it.

The major challenge presented by Data Shaping is to learn when it’s
applicable and what it gives us that is new. The answer to both of these
questions arises from the main purpose of Data Shaping, which is to take
two or more logically tabular structures and combine them into a single
Recordset that maintains the structural relationship between the original
sets of data.

If this sounds a little too abstract, think about what happens when you
use SQL to execute a standard join. An SQL join takes two or more logically
tabular structures (for example, records from two tables), and as a result of
combining them, flattens them into a single tabular structure. This is what
joins are meant to do, and often it’s exactly what we want. In contrast, Data
Shaping doesn't flatten the data sets it combines. Instead, it maintains their
hierarchical relationship (assuming they have one). When this is what we
want, it's time to use Data Shaping.

The Idea of Data Shaping

Data Shaping allows you to create two types of Recordset hierarchies:

* Relation-based hierarchy: Two Recordsets that share a common key
are formed into a parent-child hierarchy indexed on that key.

* Group-based hierarchy: One Recordset becomes a child of its own aggre-
gated data. In other words, you can view its totals, averages, and other
statistics at one level, and drill down to see the base data when required.

These two basic types of hierarchies can be combined with each other
or with themselves to create sophisticated drill-down structures. Relation-
based hierarchies can be parameterized, which causes data lower down in
the hierarchy to be retrieved on an “as needed” basis. This is particularly
useful when creating deeply nested hierarchies of the type that might be
used in a management information system.

All Recordsets created using the MSDataShape Provider have client-side
cursors. Hierarchical Recordsets can be updateable, with updates supported
at any level in the hierarchy. While this sounds a bit magical, once you have
seen how a hierarchical Recordset is constructed, you'll see exactly how
updating works.

Recordset Recursion and Data Shaping
One easy way to visualize how Data Shaping works is to simulate a hier-

archical Recordset using regular ADO techniques. Consider the following
two Recordsets:

SELECT * FROM Parts

part description SELECT part, word,
wordLength FROM Words

WHERE wordlLength > 11

part word wordLength

rsl

rs2

Figure 8- 1. Simulating Data Shaping using regular Recordsets

Now consider using the rs1_MoveComplete event to set a filter on rs2 so that
the only records visible in rs2 are those that have the same “part” field as the
currently selected record in rs1. Here’s the code that would achieve this:

Dim cn As New Connection
Dim WithEvents rs1 As Recordset
Dim rs2 As Recordset

Private Sub cmdFilter Click()

cn.Cursorlocation = adUseClient =~ 4————— use client-side cursors
cn.Open "File Name=c:\MuchADO.udl"
Set rs1 = cn.Execute("SELECT * from Parts")
Set rs2 = cn.Execute("SELECT part, word, wordlLength " & _
"FROM Words WHERE wordLength > 11")

rs2("part").Properties("OPTIMIZE") = True
build an index on the

End Sub part field of rs2

Chapter 8

Private Sub rsi MoveComplete(_
ByVal adReason As ADODB.EventReasonEnum,
ByVal pError As ADODB.Error, _
adStatus As ADODB.EventStatusEnum,
ByVal pRecordset As ADODB.Recordset)

rs2.Filter = "part = '" & rsilpart & "' filter rs2 according to
End Sub the current record in rsi

This is a pretty good simulation of a simple relation-based hierarchy. You
could bind these two Recordsets to two Data Grid Controls using two ADO
Data Controls, and create a display such as this:!

& Simple Relation-based Hierarchy =101 x|
part description [«
BEMEDICK a young lord of Padua
LEONATO governor of Messina

L ANTOMIO Leonato's brother
BALTHASAR attendant on Don Pedro |
part | word wordLength
P [ANTONIO fashion-monging 15
ANTONID thick-pleached 14

Figure 8-2: Form displaying simulated Data Shaping

Clicking a row in the upper grid (rs1) causes the lower grid (rs2) to display
the big words of the selected part. For the sake of completeness, here’s the
binding code for four appropriately named controls:

Set dgRSi.DataSource = adcRS1 4 bind the Data Grids to
Set dgRS2.DataSource = adcRS2 < the Data Controls

Set adcRS1.Recordset = rsi 4—— bind the Recordsets to
Set adcRS2.Recordset = rs2 ¢ the Data Controls

Now that you have seen how to simulate Data Shaping, it’s time to look at

the real thing, and make use of the MSDataShape Provider. When you use
Data Shaping to create a hierarchical Recordset based on the two previous
queries, the resulting structure looks like this:

1. Which shows that Antonio can only construct long words by applying some blatantly
thick-pleached fashion-monging.

Recordset Recursion and Data Shaping

SELECT * FROM Parts

part description 152

SELECT part, word,
wordLength FROM Words
WHERE wordLength > 11

part word wordLength

Figure 8-3. Structures created by a Data Shaping command linking
two simple Recordsets

What is happening here is that MSDataShape creates the two Recordsets
based on a single command that contains both SQL statements, along with
arelationship statement that links the part fields in the two Recordsets.
MSDataShape automatically indexes the part field in the child Recordset
(rs2), and then appends a new field onto the parent Recordset (rs1) with
a name of your choice (which in this case is “rs2”).

This appended rs2 field has a data type of adChapter. A chapter is a
subset of records from the child Recordset that relate to a single record in the
parent Recordset. If you printed the chapters for each record in the parent
Recordset, you would print the entire child Recordset, or at least all those
records in the child for which a related record exists in the parent.

However, the child Recordset always has a filter applied to it, based on
the value of the part column in the parent Recordset. This filter makes it look
as though there is a different child Recordset associated with each record in
the parent Recordset, when in reality, there is only one child Recordset.
Regardless of the record you are positioned on in the parent, the Chapter-
type Field always exposes the corresponding records in the child according
to the defined relationship. The filter is internal to the hierarchical Record-
set, and so it can’t be modified using rs.Filter (which leaves rs.Filter free to be
used to create subsets of the currently visible child records).

Assuming the resulting hierarchical Recordset has been assigned to rs1,
the following code would access the (filtered) child Recordset for the current
parent record:

Dim rs2 as Recordset
Set rs2 = rs1("rs2").Value

Chapter 8

Now rs2 can be used like a regular Recordset (because it is one). Note that
it's important to use .Value explicitly, because otherwise, VB would attempt
to assign a Field object to a Recordset variable, which would result in a type
mismatch error.

To manipulate all the data in this hierarchical Recordset, you need to
know about its hierarchy so that you can use the Chapter-type Field to drill
down to the detail. The hierarchical Recordset maintains the natural rela-
tionship between the two Recordsets, whereas a standard SQL join flattens
the resulting data, destroying the natural relationship. In cases where it
makes sense to maintain this relationship, the Data Shaping approach is
often a better way to manage the data than using an SQL join. The scenario
just discussed provides a good example. It's a master-detail relationship, and
making the relationship explicit is a positive advantage.?

You could retrieve the same data using a standard SQL join, as follows:

SELECT P.part, P.description, W.word, W.wordLength
FROM Parts P,Words W

WHERE W.wordlLength > 11

AND P.part = W.part

The natural structure of the resulting Recordset is the standard, flat, tabular
form. It isn’t very easy to present this representation of the data in a master-
detail style of user interface.

However, consider which approach is the most convenient if the user
wants to list all the big words from the play and the parts that are responsible
for speaking them. Given this requirement, the flat structure represented by
the join is more appropriate. The user may want to be able to sort all the big
words alphabetically, for example. This won't be possible using the hierarchical
Recordset because the child Recordset (which contains all the Words) is
always filtered by the parent (which is based on Parts). Of course, you could
always reverse the relationship and make the Parts query into a child of the
Words query. This means that you would have to drill down just to see the
single part description for the current word, which is an unnecessary
complexity. For this type of usage, the hierarchy just gets in the way.

Data Shaping is not a replacement for joins. It’s an alternative to be used
when it makes sense to preserve and exploit the natural relationship between
two sets of data. It so happens that this is often exactly what you want to do.
You'll also see that it can do things that are very awkward to do using stan-
dard SQL.3

2. In Chapter 13 you'll see how both the VB6 Data Environment and the Microsoft Hierarchical
FlexGrid make the task of creating user interfaces that reflect this hierarchical relationship
almost trivial.

3. At the same time, there are things you can do in SQL that can’t be done by Data Shaping.
One example is an outer join.

Recordset Recursion and Data Shaping

One final point worth noting from the previous comparison of a joined
and a hierarchical Recordset is that in the joined Recordset, the description
column appears in every record, whereas in the hierarchical Recordset, it
appears only once for each part rather than once for each word. In some
cases, the hierarchical approach can be more efficient because it involves
less duplication of data, although this fact is balanced by the need to issue
two SQL statements to the database instead of one.

The beauty of the hierarchical approach becomes clear when you start
creating more complex structures of Recordsets. For example, a single
command (and therefore a single Recordset variable) can provide access to
the following type of structure:

Figure 8-4. A single hierarchical Recordset can represent a complex
data structure.

By passing an appropriate command to MSDataShape, it will execute
the seven embedded commands required to construct this structure, build
and index seven client-side Recordsets, and append six Chapter-type Fields
to four Recordsets. The entire data structure can be held in memory for

Chapter 8

highly responsive drill-down and disconnected or persisted efficiently as a
single structure.

Alternatively, a parameterized approach can be taken, in which case
MSDataShape only builds the parent Recordset and the children are
constructed as needed on a chapter-by-chapter basis. This type of hierarchy
can't be disconnected (for obvious reasons), but it requires less memory and
takes less time to create initially.

Either way, changes made by users at any level in the hierarchy are automat-
ically saved back to the data source, using standard client-side modification
techniques on the appropriate Recordset.

You have seen how you can almost simulate relation-based hierarchies
by using filters. However, the standard model provided by Data Shaping is
more convenient, more amenable to standard processing and data binding
techniques, and provides the added power of being able to parameterize
child Recordsets to provide “just-in-time” data retrieval, which is highly
appropriate for larger, connected hierarchical Recordsets. We'll look at
group-based hierarchies later in the chapter.

In This Section

We examined how hierarchical Recordsets are constructed, and we com-
pared the hierarchical approach to a more traditional type of query such as
an SQL join.

Creating the Connection String

We discussed the idea of hierarchical Recordsets in the last section. Let’s
now go about creating them.

The first challenge is to create the required Connection object. The
Provider name for Data Shaping is always MSDataShape. The issue here is
that MSDataShape doesn't have any data of its own—it merely provides a
service based on Recordsets retrieved from somewhere else. Therefore, as
part of the connection process, we have to tell MSDataShape about the
Provider that will be used to source the data.

There are several ways of doing this, and fortunately, all of them are
simple. Here’s some code for one such option:

use the Data Provider
Dim cn As New Connection property to set the
cn.Provider = "MSDataShape” £ underlying Provider name
cn.Properties('Data Provider") = "SQLOLEDB"
cn.Properties("Data Source") = "POLECAT"
cn.Properties("Initial Catalog") = "MuchADO"

cn.Open , "sa",

Recordset Recursion and Data Shaping

Any reasonable combination of dynamic properties, connection string
key-value pairs, and cn.Open arguments can be used. The key points are to
make the Provider MSDataShape, use the Data Provider dynamic property
to set the underlying data source, and set all other required Data Provider
properties as though they were properties of MSDataShape. MSDataShape
will then forward these on to the Data Provider.

You can also use the Data Link Properties window to create a .udl file.
The following steps explain how:

1. Select MSDataShape in the Provider tab.

2. Select the All tab. Double-click the Data Provider property and set
the appropriate Data Provider name (or leave MSDASQL as the
default, if appropriate).

3. Either fill in the remaining properties as you normally would if the
Data Provider were the Provider, or fill in the remaining properties
via the All tab.

B} Data Link Properties x|

Provider | Connection | Advanced Al I

These are the initialization properties for this type of data. To edit a
value, select a property, then choose Edit Value below.

Narne | Value |
Bind Flags
Connect Timeout
Data Provider SOLOLEDB
Data Source POLECAT

Encrypt Password

Extended Properties

Impersonation Level

Initial Catalog MuchaD0
Intearated Security SSPI o
Locale |dentifier

Location
Lock Owner

Mask Password J
v

hdada

0k | Cancel | Hep

Figure 8-5. Configuring a .udl file for the MSDataShape

Chapter 8

As soon as you open a Connection to MSDataShape, a connection to the
DataProvider is created, and it’s kept open until the MSDataShape connection is
closed or released. You can therefore apply the same connection manage-
ment and pooling rules to an MSDataShape connection as you would to the
underlying Data Provider.

In This Section

We saw how to create a connection to MSDataShape and configure the
Data Provider.

Relation-based Hierarchies

Now that we have a connection, we can start looking at the SHAPE language.
The basic form of a SHAPE command for creating a relation-based hier-
archy is this:

SHAPE {<parent-command>}
APPEND ({<child-command>}
RELATE field TO field

)

MSDataShape doesn't care about the command substrings within the
curly brackets. It simply lifts them out of the command and fires them separately
at the Data Provider. The APPEND statement has two parts, both contained
within parentheses. The first is the child command. The second is a RELATE
statement, which identifies the fields in the parent Recordset and the child
Recordset that are linked. The field names don’t need to be the same, but the
data types must correspond. There can be multiple pairs of related fields for
a “compound key.”

As you have seen, MSDataShape will use the child field to index the child
Recordset, and it will use the parent field to build the internal filter on the
child Recordset, based on comparing the parent field to the child field. It will
also append a Chapter-type column to the parent Recordset with the default
name “Chapterl”.

This is a very simple syntax, wrapped around some command strings
embedded in curly brackets. It's common to give names or aliases to each
Recordset, which makes the overall command string clearer to follow, if more
verbose. Here's the general form with aliases:

SHAPE {<parent-command>} as ParentName
APPEND ({<child-command>} as ChildName
RELATE field TO field
) As ChapterFieldName

Recordset Recursion and Data Shaping

With this form, it becomes possible to identify the individual Recordsets by
name, and you'll see how these names can be used shortly. By placing a
ChapterFieldName after the APPEND statement, you can override the default
name allocated to the Chapter-type Field with your own name. If you don't
provide a ChapterFieldName, but do provide a ChildName , this ChildName will be
used as the ChapterFieldName.

Here then, is some code using an actual SHAPE command, using the
same SQL queries that were used in the Data Shaping simulation presented
earlier in the chapter:

Dim sCommand As String
Dim rs As New Recordset
Dim cn As New Connection

cn.Open "File Name=c:\shape.udl"
sCommand = "SHAPE {SELECT * FROM Parts}" & _
"APPEND ({SELECT part, word, wordlLength " & _
"FROM Words WHERE wordLength > 11 }" & _
"RELATE part TO part) As Words"

1s.0pen sCommand, cn

This code creates a hierarchical Recordset, but it doesn’t do anything
with it. We could assign it to the Recordset property of a Microsoft Hierarchi-
cal FlexGrid (HFlexGrid) control (covered in Chapter 12), in which case we
might end up with a display that looks like Figure 8-6.

There you can see the two Fields from the parent Recordset, and the
three Fields from the child Recordset. The key to understanding this screen is
to look at the left-most grid column, containing the + and — boxes. A + box is
used to expand the parent record to show the child records (and therefore
indicates that the child records are not currently being shown). A - box can
be used to collapse a currently expanded parent to remove the child records
from the display. A parent record that doesn't have a box has no child records.

We'll look at two ways of processing this Recordset in code. The first
technique will be specific to this particular Recordset. The second technique
is a generic version of the first technique, and can be used to navigate the
structure of any hierarchical Recordset.

Chapter 8

1ol x]
part description part | word | wordLength| iI
DON PEDRO | prince of Arragon
= DON JOHM | misgovernment 13
DON JOHN | marriage--surely 16
RO DON JOHN | circumstances 13
DOM JOHN Don Pedro's illegtimate brother DON JOHN | chamber-window 12
DO JOHN | plain-dealing 13
DOMN JOHN | enfranchised 12
CLALUDIO a young lord of Florence
BENEDICK a young lord of Padua
3] LEONATO governor of Messina
=] —— I ANTONIO fashion-monging 15
ANTONIO thick-pleached 14
BALTHASAR |attendant on Don Pedro
CONRADE follower of Don John
= BORACHIO | five-and-thirty 15
BORACHIO | church-window 13
BORACHIO |chamber-window 14
BORACHIO |congregation 12
BORACHIO | follower of Don John et Sl L L
BORACHIO | Claudio--whose 14
BORACHIO |contaminated 12
BORACHIO |chamber-window 14
BORACHIO | wedding--for 12
BORACHIO |inteligence 12
= FRIAR FRAM|moving-delicate 15 ;l

Figure 8-6. Relation-based hierarchy in an HFlexGrid

Hierarchical Recordset Navigation

Here’s the code for the first technique, which relies on the knowledge that
the “Words” column in rs is a Chapter-type Field providing filtered access to
the child Recordset:

Public Sub printHRS(rs As Recordset)
If Not 1s.EOF Then Set rsChild = rs("Words").Value 8et hold of the child
While Not rs.EOF T Recordset from.the
Print rs("part"), rs("Description") Chapter-type Field
while Not rsChild.EOF called Words
Print vbTab, rsChild("word"), rsChild("wordLength")
rsChild.MoveNext
Wend
1s.MoveNext
Wend
End Sub

1s.StayInSync

Recordset Recursion and Data Shaping

Here are selected highlights from its output:

DON PEDRO Tarragon
Transgression 13
pleasant-spirited 17
unhopefullest 13
chamber-window 14

DON JOHN Don Pedro's bastard brother
Marriage--surely 16
circumstances 13
chamber -window 14
misgovernment 13
plain-dealing 13
enfranchised 12

ANTONIO Leonato's brother
thick-pleached 14
fashion-monging 15

BALTHASAR attendant on Don Pedro

CONRADE follower of Don John

BORACHIO follower of Don Corleone
Unseasonable 12

. etc

Note that the rsChild variable was assigned only once. It would have
been possible to set it inside the loop for each record, but it was done outside
the loop to emphasize the way that chapters work. There is only one child
Recordset, and its internal filter is updated automatically whenever the
parent Recordset’s current record changes. This process makes sure that the
correct chapter for the current parent record is always exposed.

While the process of updating the internal filter is automatic, it isn’t
forced upon you. You can switch this process off by setting the rs. StayInSync
property to False. If rs.StayInSync is True, then any references you obtain to
children of rs will be kept synchronized as rs is navigated. If rs. StayInSync is
False, then any references to child Recordsets will keep the internal filter that
applied when the reference was obtained.*

This means that if the rs.StayInSync setting is important to you, you
should set it before obtaining any child references. By default, rs. StayInSync

4. It may help to think of the child reference you obtain as being a clone of the child
Recordset maintained by the Chapter-type Field. If rs.StayInSync is True, rs keeps the
Filter property on your child Recordset updated as rs is navigated. If rs.StayInSync is
False, it leaves the clone alone (isn't that the name of a movie?).

Chapter 8

is True, and this is almost always how you'll want it. However, there are occa-
sions when you'll want the child records you are looking at to stay constant,
regardless of what is happening to the parent.

As an example of using rs.StayInSync, if I introduce

1s.StayInSync = False

as the first line in printHRS (before the rsChild reference is obtained), it prints
the following:

DON PEDRO Prince of Arragon
Transgression 13
pleasant-spirited 17
unhopefullest 13
chamber-window 14

DON JOHN Don Pedro's bastard brother

ANTONIO Leonato's brother

BALTHASAR attendant on Don Pedro

. etc

At first sight, this doesn’t make sense, as it looks like all the child records
have disappeared, except for DON PEDRO’s. You were probably expecting to
see DON PEDRO’s big words appear after each parent record. If you were,
your thinking was correct, but referring back to the code will pay dividends.
With rs. StayInSync set to False, moving on to DON JOHN has no effect on
rsChild—and that is exactly the point. The cursor is still at the end of the
Recordset, and so no further child record printing will occur before a Move*
operation on rsChild resets the Recordset cursor.

Generic Hierarchical Recordset Navigation

In about as many lines as it took to write printHRS, it’s possible to write a
completely generic procedure that will print any hierarchical Recordset,
regardless of the number and arrangement of children. This code relies on
identifying the adChapter data type and calling itself recursively when it
finds a chapter. Here it is:

Recordset Recursion and Data Shaping

Public Sub printHRS1(1s As Recordset, _

Optional ilevel As Integer)
Dim fd As Field print an indent based on

the depth (level) of rs
While Not rs.EOF l in the hierarchy

If ilevel > 0 Then Print String(ilevel, vbTab),
For Each fd In rs.Fields
If fd.Type = adChapter Then

Print
printHRS1 fd.Value, ilevel + 1 -« |
Else' printHRS1 calls itself
Print fd.Value, recursively when a Chapter-
End If type Field is identified,
Next passing in the child Recordset
Print and incrementing the level
1s.MoveNext
Wend
End Sub

Recursion was made for traversing generalized tree structures, and
it's completely at home with hierarchical Recordsets. Note that setting
rs.StayInSync won't affect this procedure, as a new child reference is
acquired with a new filter setting each time it's needed.

Updating Hierarchical Recordsets

Aslong as you remember that MSDataShape creates separate Recordsets for
each SQL statement embedded within the SHAPE command, and that all
Recordsets built using MSDataShape have client-side cursors, then it’s fairly
easy to understand the mechanics of inserts, deletes, and updates performed
through hierarchical Recordsets.

However deep you are in a Recordset hierarchy, you are always operating
on a straightforward Recordset. Your main responsibility is to make sure you
create the Recordset using an optimistic or batch optimistic lock type. However,
the following observations apply:

1. Calling transactional methods on the MSDataShape Provider
results in the method calls being passed on to the Data Provider—

so it’s business as usual with transactions.

2. rs.Update statements apply individually to each internal Recordset.

Chapter 8

3. rs.UpdateBatch statements also apply individually to each internal
Recordset. To cause all internal Recordsets to be batch updated
together, it’s necessary to visit each Recordset in turn and call
rs.UpdateBatch. This is readily achieved using a recursive function
called within a transaction. We've already seen how recursive code
can traverse through a hierarchical Recordset. The AffectRecords
argument of rs.UpdateBatch can take a value of adAffectAllChapters,
and it's important to use this value when batch updating child
Recordsets. If you don't, then only records in the current chapter
(that is, those identified by the internal filter) will be updated.

4. Ifthe hierarchical Recordset has been disconnected (for example, if
it has been marshalled between a client and server process), each
internal Recordset should be separately reconnected to MSDataShape
with the required Data Provider settings, before attempting any
updates.® When disconnecting a hierarchical Recordset, you need
to disconnect each Recordset individually.

Let’s look at an example. You may have noticed from the results shown
previously that DON JOHN’s longest word (“marriage--surely”) is a bit of a
cheat—it’s really two words joined together by a pair of dashes. You may also
have noticed that his relationship with DON PEDRO is defined in rather stark
terms. The following code addresses both these points by making changes at
two levels in the hierarchy using batch updating:

Dim sCommand As String
Dim rs As New Recordset
Dim rsChild As Recordset
Dim cn As New Connection
Same command as before.

cn.Open "File Name=c:\shape.udl"
sCommand = "SHAPE {SELECT * FROM Parts} " & _

"APPEND ({SELECT part, word, wordLength " & _

"FROM Words WHERE wordLength > 11 } " & _
"RELATE part TO part) As Words "

n sCommand, cn, , adlLockBatchOptimistic ——— Set the LockType.

Child = rs("Words").Value Locate DON JOHN in the
d "part = "DON JOHN A parent. Doing so sets the
rsChild.Find "word like ‘marr*'" Chapter in the child so

that the offending word
can be identified.

5.1t’s currently possible to perform updates with only the parent Recordset connected, but
this is acknowledged as a bug by Microsoft, and you should not rely on it.

Recordset Recursion and Data Shaping

cn.BeginTrans

rs!Description = "Don Pedro's illegitimate brother"
rsChild!word = "surely"
rsChild!wordLength = 6
rs.UpdateBatch <
rsChild.UpdateBatch adAffectAllChapters
cn.CommitTrans

Perform the batch updates
and commit.

This example also shows how to use batch updating on a connected
Recordset. Even if disconnected Recordsets aren’t appropriate, batch updat-
ing provides a convenient way to ensure that all changes made by a user are
handled as part of the same transaction, without needing to keep a transac-
tion open for a long period of time.

Iused an ODBC-based connection and traced the activity. Here’s the
SQL generated by the two batch statements:

UPDATE "Parts" SET "description"=?
WHERE "part"=? AND "description"=?
UPDATE "Words" SET "word"=?,"wordlLength"=?
WHERE "word"=? AND "wordLength"=? AND "id"=?

This is business as usual for client-side cursor updates. Note that for the
child Recordset, SQLServer has silently included the primary key as a hidden
column so that it can be used to generate updates correctly. As we have
previously discussed, if your Provider doesn’t support hidden columns,
you'll need to make sure the primary key is part of the Recordset for updates
to work effectively.

Creating Complex Shapes Using Reshaping

MSDataShape remembers that each parent and child Recordset that is created
on alive Connection object. This means that if you give a name or alias to the
Recordset inside the SHAPE command string, you can reuse that Recordset by
referring to it by name in a later SHAPE command. This has benefits for both
performance and complexity management. This process of reusing a previ-
ously shaped Recordset in a new SHAPE command is called Reshaping.

You can also programmatically identify a shaped Recordset by examin-
ing its Reshape Name dynamic property. You can’t write to this property
directly because it is under the control of MSDataShape, but it can be used as
you traverse a hierarchical Recordset to identify a particular child by name.

To explore these ideas with a more complex hierarchy, consider a hierar-
chical Recordset with the following overall structure:

Chapter 8

All scenes

/
/ \
/ [

All parts in all scenes . “ \ All words > 11 chars

All words > 11 chars

Figure 8-7: A hierarchical Recordset before Reshaping

This hierarchy will allow you to start looking at scenes. You can either
drill down and see all the parts in each scene and then drill down again to see
all the big words for each part (by part, rather than scene), or look at all the
big words organized by scene.

This stretches the SHAPE language a good bit further than we have done
so far, as it involves appending two children to a parent, and appending a
grandchild to one of those children. The resulting SHAPE command does
look complex, but it follows a regular syntax pattern. Also, we'll see how
using Naming and Reshaping allows us to manage the complexity.

Here’s the SHAPE command:

SHAPE {SELECT * FROM Scenes}
APPEND
——» ((SHAPE{SELECT DISTINCT P.part, W.act, W.Scene
FROM Parts P, Words W WHERE P.part = W.part}
APPEND ({SELECT * FROM Words WHERE worLdLength > 11}

RELATE part to part)) grandchild
RELATE act to act, scene to scene), to append
——— > ({SELECT * FROM Words WHERE wordLength > 11}

RELATE act to act, scene to scene)

children to append

And here’s the single SQL statement that results from executing the
preceding code:

SELECT * FROM Scenes;SELECT DISTINCT P.part, W.act, W.Scene FROM Parts P,
Words W WHERE P.part = W.part;SELECT * FROM Words WHERE wordLength >
11;SELECT * FROM Words WHERE wordLength > 11

Recordset Recursion and Data Shaping

This compound string is passed as a single request to the Provider. There are
two things to note about it. The first is that it contains a join. Joins and shap-
ing can be mixed. The second thing to note is that exactly the same query
was executed twice. This is wasteful, and we’ll see shortly how to prevent it
from happening.

This command becomes much less scary if we build it up in sections. We
can start with the query that gets all the big words:

SHAPE {SELECT * FROM Words WHERE wordlLength > 11} as Words

We can create this query as a standalone shaped Recordset. Because we
have named the record that this command will generate (we called it Words),
we can use its name in place of an embedded command when creating the
child Recordset for the “parts in scenes” query:

Words Recordset used to create

child of Parts Recordset
SHAPE {SELECT DISTINCT P.part, W.act, W.Scene

FROM Parts P, Words W WHERE P.part = W.part} as Parts
APPEND (Words RELATE part to part)

We've also named this hierarchical Recordset, calling it Parts. We can use
both of these names to create the complete four-Recordset command:

SHAPE {SELECT * FROM Scenes}
APPEND
(Parts RELATE act to act, scene to scene),
(Words RELATE act to act, scene to scene)

All of this is very unscary indeed. Let’s take a look at the complete
program that creates this hierarchy:

Dim cn As New Connection

Dim rsWords As New Recordset
Dim rsParts As New Recordset
Dim rs As New Recordset

Dim sCommand As String

cn.Open "File Name=c:\Shape.udl"
rshords.Open "SHAPE {SELECT * FROM Words " & _
"WHERE wordLength > 11} as Words", cn
rsParts.Open "SHAPE {SELECT DISTINCT P.part, W.act, W.Scene " & _
"FROM Parts P, Words W " & _
"WHERE P.part = W.part}as Parts " & _
"APPEND (Words RELATE part to part) ", cn

Chapter 8

sCommand = "SHAPE {SELECT * FROM Scenes} " & _
"APPEND (Parts RELATE act to act, scene to scene)," &
"(Words RELATE act to act, scene to scene)"

1s.0pen sCommand, cn

Now that we've created this complex hierarchy, it's time to do some things
with it. For example, we can traverse through all its individual Recordsets and
print out their names and record counts using the following recursive program:

Public Sub traverse(rs As Recordset, Optional ilevel As Integer)
Dim fd As Field
If ilevel > 0 Then Print String(ilevel, vbTab),
Print rs.Properties("Reshape Name"), rs.RecordCount
For Each fd In rs.Fields

If fd.Type = adChapter Then

traverse rs(fd.Name).Value, ilevel + 1

End If
Next
End Sub

With the exception of the parent Recordset, the output of this routine
will vary depending on the current record, because the current record deter-
mines the size of each chapter in a chapter field. Here’s the output of passing
1s to traverse, with each internal Recordset pointing at its first record:

DSRowset1 16
Parts 8
Words 7
Words 7

It’s pure coincidence that both uses of the Words Recordset report the
same record count. As proof, here’s the printout after moving to the third row:

DSRowset1 16
Parts 12
Words 19
Words 18

What's interesting is that there are only three physical Recordset structures
created for this command. The following listing shows the SQL generated

Recordset Recursion and Data Shaping

when executing the preceding code. Each statement was executed sepa-
rately by MSDataShape.

SELECT * FROM Words WHERE wordlLength > 11
SELECT DISTINCT P.part, W.act, W.Scene

FROM Parts P, Words W WHERE P.part = W.part
SELECT * FROM Scenes

The SQL shows us that there is only one physical Recordset providing the
Word data. But the hierarchy contains Words Recordsets that have different
record counts. How do we make sense of this? Once again, what we've previ-
ously learned about Clones may help here. We know that it’s possible to
maintain two different views of the same physical data using Clones, which
is exactly what is happening in this hierarchical Recordset, where we have
two separate representations of the same Words data.

Reshaping is a great way of simplifying the construction of complex
hierarchies. However, the following limitations should be borne in mind:

* You have to keep the Recordsets and the Connection open if
MSDataShape is to remember existing Recordset names.

* You can't use one Connection to reshape Recordsets created with
another.

* You can’t Append children onto an existing shaped Recordset, so you
can't reuse any Recordset as a parent.

* You can’t Reshape parameterized Recordsets.

Chapterless Child Recordsets

There are times when you might want to perform an operation on all chap-
ters within a child Recordset. This can easily be achieved by Reshaping a
named Recordset. For example, this code:

Dim rsChild As New Recordset
rsChild.Open "SHAPE Words", cn

will extract a child Recordset named Words from a hierarchical Recordset,
and provide access to all its records.

Chapter 8

Avoiding Command Objects

Unless instructed otherwise, MSDataShape uses Command objects to execute
the commands within curly brackets. If you are working with a Provider that
doesn't support Command objects, you can avoid them by using the SHAPE
language’s TABLE keyword. For example, you can replace this statement:

SHAPE {SELECT * FROM Scenes}
with this one:
SHAPE TABLE Scenes

This approach can be useful with Simple Providers (see Chapter 11),
which don’t use Command objects.

In This Section

We looked at relation-based hierarchies in depth. We saw how to use the
SHAPE language to create hierarchical Recordsets, and various approaches
for navigating them, including the use of recursion. We also explored how to
modify hierarchical Recordsets, which can be done at any level in the hierar-
chy. Finally, we looked at Reshaping and Naming and how these can make
our code less complex and more efficient.

Extending and Fabricating Recordsets
Using Data Shaping

Once you start becoming comfortable with the basic idea of Data Shaping,
some interesting possibilities become apparent. For example, we've seen
that the APPEND statement appends new Fields to an existing Recordset.
All the Fields we have appended so far have been of type adChapter.
However, if we can append one type of Field, then why not another?

There are many times when I want to add Fields to existing Recordsets so
that I can add data that may not be in the database and continue to exploit
the convenience of working with a single Recordset. While you can do a
hatchet job on SQL to simulate additional Fields, they rarely work out the
way you want them to, and you know in the back of your mind that what you
have done is a bit of a hack.®

6. It's been fortunate for my career that the back of my mind is not especially smart.

Recordset Recursion and Data Shaping

The SHAPE language provides an elegant way to extend existing Record-
sets. For example, consider the following syntax:

SHAPE {SELECT * FROM Parts}
APPEND NEW adChar(1) AS sex

If this were legal, you would think that this command would create a Recordset
based on the Parts table, and extend it by adding a Field called sex. It’s legal.
You can do it.

The following function returns a disconnected Recordset with a sex Field
added to Parts and populated with “F”s or “M”s.

Public Function getExtendedParts() As Recordset
Dim rs As New Recordset

Dim cn As New Connection

Dim sCommand As String

cn.Open "File Name=c:\Shape.udl"
sCommand = "SHAPE {SELECT * FROM Parts} " & _
"APPEND NEW adChar(1) AS sex"

1s.0pen sCommand, cn, , adlLockOptimistic
While Not rs.EOF
Select Case Trim(rs!part)
Case "BEATRICE", "HERO", "MARGARET", "URSULA"
rslsex = "F"
Case Else
rslsex = "M"
End Select
rs.MoveNext
Wend
rs.Sort = "sex" <
Set rs.ActiveConnection = Nothing
Set getExtendedParts = rs
End Function

sort the Recordset using
the new Field

Note that I had to make the Recordset updateable in order to be able to pop-
ulate the new column. To return a read-only Recordset, I would need to
make a read-only Clone.

Chapter 8

The following code iterates through this Recordset:

Dim rs As Recordset
Set rs = getExtendedParts

While Not rs.EOF
Print rslpart, rs!sex, rs!Description
1s.MoveNext

Wend

and it prints this:
HERO F daughter to Leonato
BEATRICE F niece to Leonato
MARCARET F gentlewoman attending on Hero
URSULA F gentlewoman attending on Hero
DON PEDRO M prince of Arragon
DON JOHN M Don Pedro's illegitimate brother

This approach isn't without its limitations. Ideally you would have
control over Field attributes and could append populated columns of stan-
dard data types to read-only Recordsets, just as you can with chapters. This
isn't a replacement to writing your own Providers. However, it’s an easy and
elegant way to extend an existing Recordset.

Fabricated Hierarchical Recordsets

You don't have to use a Data Provider with MSDataShape. Instead you can cre-
ate wholly fabricated Recordsets using the same syntax you have just seen for
appending new Fields to existing Recordsets, and set the Data Provider to NONE.
In the following example, I decided to enhance my reputation as a stage
director and try a Shakespearean tragedy. Not having a handy database,
I chose to fabricate a hierarchical Recordset with a parent containing Scene
information and a child containing Parts in Scene. Here's the code for creat-
ing and populating this Recordset:

Dim cn As New Connection
Dim rs As New Recordset
Dim rsChild As Recordset

Dim sCommand As String set the Data Provider

Dim vScene As Variant ¢— to NONE

Dim vPart As Variant
cn.Open "Provider=MSDataShape;Data Provider=NONE;"

Recordset Recursion and Data Shaping

sCommand = _
"SHAPE APPEND NEW adTinyInt AS act," & _ create the
" NEW adTinyInt AS scene," & _ parent
" NEW adVarChar(50) AS description," & _ Recordset
append a child Recordset " ((SHAPE APPEND NEW adChar(20) AS part,” & _

" NEW adVarChar(50) AS description,” & _
" NEW adTinyInt AS act," & _
" NEW adTinyInt AS scene) " & _

" RELATE act TO act, scene TO scene) as Parts"

1s.0pen sCommand, cn, , adlLockBatchOptimistic

vScene = Array("act", "scene", "description™)
vPart = Array("part", "description", "act", "scene"

rs.AddNew vScene, Array(1, 1, "An Open Place") parent requires a
Set rsChild = rs("Parts").Value record before you can
With rsChild access a Field

.AddNew vPart, Array("Witch 1", "First Witch", 1, 1)
.AddNew vPart, Array("Witch 2", "Second Witch", 1, 1)
.AddNew vPart, Array("Witch 3", "Third Witch", 1, 1)
End With

rs.AddNew vScene, Array(1, 2, "A Camp")
With rsChild
.AddNew vPart, Array("Duncan", "King of Scotland", 1, 2)
.AddNew vPart, Array("Malcolm", "Duncan's son", 1, 2)
End With
Set HFlex.Recordset = rs

which will display

w, Grid Display of Hierarchical Recordset =101 x|

act| scene | description part description act| scene

=] witch 1 First \Witch 1 1

1 114n Open Place |wWitch 2 Second Witch 1 1

witch 3 Third Witch 1 1

=]] alac Duncan |King of Scotland 1 2

i Malcolm |Duncan's son 1 2

Figure 8-8. Fabricated hierarchy in an HFlexGrid

Once you have fabricated a hierarchical Recordset, you can do the usual
kinds of things with it.

Chapter 8

Combining Provider and Fabricated Recordsets

Finally, you can mix Provider-generated and fabricated Recordsets in the
same hierarchical Recordset. We'll see this technique in the following code.
I need to start casting for Much ADO about Nothing, and I have an external
source of information about actors who may be suitable for certain parts. I
can insert this data as a fabricated Recordset, created as a child of a Record-
set based on the Parts table. Here’s some code to do this:

Dim rs As New Recordset
Dim rsChild As Recordset
Dim cn As New Connection

Dim sCommand As String append a fabricated

Dim vActors As Variant Recordset to one
retrieved from the

cn.Open "File Name=c:\Shape.udl" MuchADO database

sCommand = "SHAPE {SELECT * FROM Parts} " & _
"APPEND ((SHAPE APPEND NEW adChar(20) AS pari

" NEW adVarChar(50) AS actor," & _
" NEW adBoolean AS available," & _
" NEW adChar(6) AS price)" & _
" RELATE part To part) as actors"
vActors = Array("part", "actor", "available", "price")

1s.0pen sCommand, cn, , adlLockOptimistic

Set rs.ActiveConnection = Nothing

Set rsChild = rs("actors").Value

With rsChild
.AddNew vActors, Array("DON PEDRO", "Tom Hanks", False, "high")
.AddNew vActors, Array("DON PEDRO", "Gary Cornell", True, "low")
.AddNew vActors, Array("DON JOHN", "Russ Lewis", True, "free")

End With

Here’s what it looks like in an HFlexGrid:

o]
part description part actor available |price ﬂ
=] . DON PEDRO |Tom Hanks |False high
DON FEDRO {pdnce of.Amagon DON PEDRO | Gary Cornell | True | low
=] DON JOHN | Don Pedro's illegtimate brother | DON JOHN |Russ Lewis |True free
CLAUDIO & young lord of Florence
BEMEDICK |a young lord of Padus :J

Figure 8-9: A fabricated child of a Provider-generated parent

Recordset Recursion and Data Shaping

In This Section

The SHAPE language can add Fields of any data type (not just adChapter) to an
existing Recordset, which has some useful data management opportunities.
We can take this idea to its logical conclusion and fabricate entire Record-
sets, which can be mixed with Provider-generated Recordsets if required.

Parameterized Data Shaping

There are two ways of using parameters with Data Shaping:

 External parameters: These make use of ADO Command and Param-
eter objects and work in exactly the same way as parameters do when
working directly with a Data Provider. As long as you don't mix exter-
nal and internal parameters, you can include external parameters at
any level in a SHAPE command hierarchy.

¢ Internal parameters: These are used by the SHAPE language inter-
nally and don't require or use ADO Parameter objects. They are what
most developers are referring to when discussing parameterized Data
Shaping. Their purpose is to allow child Recordsets to be constructed,
one chapter at a time, on an as-needed basis. This can have major
performance implications. For example, if a parent Recordset has one
hundred records and the typical user only wants to drill down to halfa
dozen at any one time, the total amount of data retrieved will be far
less when data is fetched one chapter at a time. You cannot discon-
nect or marshall internally parameterized hierarchical Recordsets.

The two types can be mixed, although as we shall see, certain rules apply
if you want to mix external and internal parameters and stay sane.

External Parameters

Because we previously discussed parameterized ADO commands at some
length, there is little that needs to be added about using external parameters
with Data Shaping. A simple example will show you all you need to know:

Dim sCommand As String
Dim rs As New Recordset
Dim cd As New Command

Chapter 8

sCommand = "SHAPE {SELECT * FROM Parts WHERE part > ? } " & _
"APPEND ({SELECT part, word, wordLength " & _
"FROM Words WHERE wordLength > ? } " &
"RELATE part to part)"
cd.CommandText = sCommand
cd.ActiveConnection = "File Name=c:\shape.udl" pass two parameters to
Set rs = cd.Execute(, Array("L", 12)) <4—— the command, using
standard ADO techniques

printHRS1 rs

Here, we are using parameter place markers to control which parts we
retrieve in the parent, and the size of words required for the child. Note that
the construction of the child Recordset is independent of how many parts
are retrieved by the parent. This is potentially wasteful. You'll see that there
are ways to address this shortcoming—the simplest is to add another
subclause (based on part) to the child’s WHERE clause and to use another
parameter for its value.

The preceding code uses our generic print routine to print the results,
which look like this:

LEONATO governor of Messina
LEONATO candle-wasters 14
LEONATO advertisement 13
LORD Null
MARCARET gentlewoman attending on Hero
MARGARET ill-qualities 13
MESSENGER Null

Internal Parameters

Internal parameters cause the MSDataShape to behave very differently from
external parameters. Internal parameters are defined by using the PARAMETER
keyword in the RELATE clause of a SHAPE command. Here’s an example,
based on the simple SHAPE command we've been using all along:

Dim sCommand As String
Dim rs As New Recordset

Recordset Recursion and Data Shaping

sCommand = "SHAPE {SELECT * FROM Parts}" & _
"APPEND ({SELECT part, word, wordlLength " & _
"FROM Words WHERE wordlLength > 11 " & _
"and part = ? }" &
"RELATE part TO PARAMETER 0) as Words" 4—‘

create an
rs.0pen sCommand, "File Name=c:\shape.udl" internal parameter

The only SQL that is executed when 1s is opened is this:
SELECT * FROM Parts
However, MSDataShape also prepares’ the following statement:

SELECT part, word, wordLength FROM Words
WHERE wordLength > 11 and part = ?

As you might expect, opening rs with an internally parameterized command
will be much faster than opening it with a standard relation-based command,
because no Words data needs to be retrieved.

The first time any Chapter-type Field’s data is accessed®, MSDataShape
executes the child command, substituting the parameter marker with the value
of the related field in the current record of the parent. For example, this line:

Print rs("part"), rs("Words").value.RecordCount

will fetch the nine child records associated with DON PEDRO, and then print

DON PEDRO 9

These records are added into the child Recordset. When a new parent
record is visited and the Words field accessed, the prepared statement will be
executed again, and the retrieved records will be added into the same child
Recordset.

7. The difference between executing and preparing a statement was discussed in Chapter 5.
Preparing a statement asks the data source to get ready to execute, but returns no data.

8. Simply visiting the Field won't trigger the retrieval of the chapter’s data. That will only
happen when chapter data is read.

Chapter 8

This is a very neat way of limiting the amount of data retrieved, and it’s
almost essential when creating a very large hierarchy with many drill-down
options and many records at each level. However, note that although it’s
faster at opening the Recordset, it will be less responsive once opened than
a nonparameterized query, because of the need to retrieve data each time a
new parent record is visited.

By default, ADO caches each chapter as it’s being retrieved. This is a
good default because it has performance benefits, but there may be times
when you want the prepared statement to be reexecuted when you return to
a previously visited record and access a Chapter-type Field. You can make
this happen by setting the Cache Child Rows dynamic property to False. You
have to do this before opening the Recordset, and because this dynamic
property is added by the Client Cursor Engine, you have to make the Record-
set use a client-side cursor explicitly, rather than rely on MSDataShape to do
it for you; for example:

rs.Cursorlocation = adUseClient
rs.Properties("Cache Child Rows") = False
rs.0pen sCommand, "File Name=c:\shape.udl"

It's pointless using internally parameterized commands if you intend to
iterate through each parent record and inspect its Chapter-type Fields as
soon as the Recordset is opened. It’s far, far more efficient to retrieve all the
child Recordset’s data in one query, than to fetch it a chapter at time. It's only
when chapters are retrieved on an as-needed basis that the internally parame-
terized approach can be more efficient than retrieving all the data at once.

Unfortunately, the Microsoft HFlexGrid control attempts to populate
the entire Recordset in order to display it, and therefore, should not be used
with internally parameterized commands.

Combining Internal and External Parameters

There is significant scope for confusion between ADO and MSDataShape
when you try to mix internal and external parameters. However, good
results can be achieved by following these two rules:

1. Never attempt to mix both types of parameter in the same
internal Recordset.

2. Use external parameters in parents and internal parameters
in children.

Recordset Recursion and Data Shaping

In the following code, an external parameter controls which parts are
created, while an internal parameter in the child Recordset ensures that
Word chapters are created only when needed:

Dim sCommand As String

Dim rs As New Recordset
Dim cd As New Command external parameter

sCommand = "SHAPE {SELECT * FROM Parts where part > ? } " & _

"APPEND ({SELECT part, word, wordLength " & _

"FROM Words WHERE wordLength > 11 " & _
"and part = 2 } " & _

"RELATE part to PARAMETER 0)" L
cd.CommandText = sCommand internal parameter
cd.ActiveConnection = "File Name=c:\shape.udl"
Set rs = cd.Execute(, 13)

ADO sees only the external parameter.

Some interesting results can be quickly achieved by combining parame-
terized queries and extended Recordsets. For example, consider the user
interface here:

~ioix]
pait word | wordLenath | |
p |LEONATO gentlemen 9 p—
LEONATO Florentine 10 |
LEONATO happiness 9
LEONATO reconciled 10
LEONATO seven-night 1
LEONATO watchings 9
LEONATO gentle-women 12 |
LEONATO yourselves (10 [=

Word Length IE= Next Previous

Figure 8-10: A simple word browser using a parameterized
SHAPE command

Users can use the Next and Previous buttons to move around an externally
parameterized Parts Recordset. Each time they navigate, the form shows all
words larger than wordLength for the current part. wordLength can be
adjusted as the user scrolls. The form uses a standard ADO Data Grid (not an
HFlexGrid) and an ADO Data Control that is hidden. Apart from that, there are
two command buttons, a textbox, and a label. Here's the complete code:

Chapter 8

Private rs As New Recordset

Private Sub Form Activate()
Dim sCommand As String
Dim cd As New Command

append a standard Integer
Field and a Chapter-type

sCommand = _ Field to Parts
"SHAPE {SELECT * FROM Parts where part > ? } " & _
"APPEND " & _

"NEW adInteger as wordLength," & _
"({SELECT part, word, wordLength " & _
"FROM Words WHERE wordlength > ? and part = ? } " & _
"RELATE wordlLength TO PARAMETER 0, part TO PARAMETER 1) As Words"
cd.CommandText = sCommand
cd.ActiveConnection = "File Name=c:\shape.udl"
cd.Parameters(0).Value = "L"
1s.0pen cd, , , adlockBatchOptimistic <€——

create a parameterized
Command and use it as the
source to rs.Open

set the value of the
newly appended wordLength
Field on the parent's
first record, then assign
the child to the grid

rs("wordLength") = CInt(txtWordLength.Text)

Set rsChild = rs("Words").Value
Set DataGridi.DataSource = Adodcl
Set Adodci.Recordset = rsChild
End Sub

Private Sub cmdNext Click()
rs.MoveNext record, set the
rs("wordLength") = CInt(txtWordLength.Text) parent’s wordLength
Set Adodci.Recordset = rs("Words").Value Field from the
End Sub TextBox, and rebind

move to the next

Private Sub cmdPrevious Click()
1s.MovePrevious

rs("wordLength") = CInt(txtWordLength.Text)
Set Adodci.Recordset = rs("Words").Value
End Sub

The key to this example is the use of an appended Integer Field to the
parent Recordset, which controls how much data the child retrieves. Rebind-
ing the grid forces the child data to be requeried each time. Note that it was
necessary to use an external parameter and to create an updateable Record-
set. Calling cd.Execute doesn't return an updateable Recordset. Therefore,
we applied the ADO 2.5 technique of using a Command object as the source
of an rs.Open.

Recordset Recursion and Data Shaping

In This Section

Parameters can be either external to MSDataShape (in which case they are
used like standard ADO Parameter objects) or internal to MSDataShape.
Internal parameterized commands retrieve a child Recordset’s data, chapter-
by-chapter and on an as-needed basis, instead of retrieving all the child’s
data when the hierarchical Recordset is first created.

Group-based Hierarchies
The basic form of a SHAPE command for creating a group-based hierarchy is

SHAPE {<child-command> } as Alias
COMPUTE <parent-fields>
BY <child-fields>

This is a very different structure from relation-based commands. The
key point to keep in mind is that the command that appears after the SHAPE
keyword becomes the child Recordset in a group-based hierarchy, rather
than the parent. The parent is defined by the COMPUTE statement. This makes
perfect sense, because the COMPUTE statement defines aggregated data based
on the child Recordset, and the aggregated data appears at the top of the
hierarchy, with the detail (chapters of the child Recordset) appearing below.
MSDataShape builds an internal filter to create chapters in the child Record-
set, and the filter is based on the Fields named in the BY statement.

The parent Recordset needs a Chapter-type Field in order to provide
access to the child, therefore, the COMPUTE statement must contain the child
Recordset referenced by its name or alias. This will then be split up into
chapters according to the BY statement. The remainder of the COMPUTE state-
ment contains whichever aggregates are required in the parent. Let’s look at
an example:

Dim rs As New Recordset
Dim sCommand As String
sCommand = "SHAPE " & _
"{SELECT * FROM Words } as Words " & _
"COMPUTE Words , SUM (Words.wordCount) As WordCount, " & _
" AVG (Words.wordLength) As Avelength " & _
"BY act, scene"

Chapter 8

rs.0pen sCommand, "File Name=c:\shape.udl"

Print "Act", "Scene","Count","Ave
While Not rs.EOF
Print rslact, rs!scene, rs!WordCount, _
FormatNumber (rs!AvelLength, 2)
rs.MoveNext

Wend

There are three Fields defined in the COMPUTE statement (one is a Chap-
ter-type Field), and these combined with the two in the BY statement means
that the parent will have five Fields. Here’s the printout as the code iterates
through the parent:

Act Scene Count Ave
1 1 2464 4.90
1 2 215 4.32
1 3 560 4.83
2 1 2931 4.82
2 3 2092 4.78
3 1 1327 5.02
3 2 918 4.70

And here’s what it looks like in an HFlexGrid with some rows collapsed:

w. Grid Display of Hierarchical Recordset] =] |

WordCount svelength| act| scene|word [wordCount |wordLength| i’
B 2464| 4.9017571884984026 1 1
=] 215| 4,3269473684210522 1 2
408| 5.2552301255230125 1 3
= 2931] 4.8186109238031021 2 1
560 4.8303030303030301 2 2
= mischief 1 g
as 5 2
liet 1 4
heard 1 S
2092| 4.7823193916348807 2 3| night-raven 1 11
plague 1 6
could 1 5
Yea 1 3
marr 1 5
e 4 A=l

Figure 8-11. Group-based hierarchy in an HFlexGrid

Recordset Recursion and Data Shaping
It’s possible to create complex group-based hierarchies, and once again,

Reshaping and Naming can come to your rescue. For example, consider the
following highly useful way of looking at the Words table:

Words grouped by act using a COMPUTE statement

Words grouped by act and scene using

a COMPUTE statement

Words grouped by part,

act, and scene using SQL

Figure 8-12. A complex group-based hierarchy

Create an aggregate

parent (called Scenes)

based on the SQL.

The following code builds up this group-based hierarchical Recordset using
Reshaping to keep the complexity under control. Because the SQL for the grand-
child is nontrivial, it’s created first as a separate SQL statement and then
concatenated into the SHAPE command for the child. The child is named, and
its name is used in the parent Recordset to assemble the complete structure.

Dim rsChild As New Recordset

Dim rs As New Recordset Pure SOL creates the Parts (within a
Dim cn As New Connection scene)-level data. wordLength is
Dim sCommand As String converted to a Float to get an average

with decimal places.
cn.Open "File Name=c:\shape.udl"
sCommand = "SELECT act, scene, part, " & _
"Sum(wordCount) as PWordCount, " & _
"Avg (CONVERT (float,wordLength)) as PAvelength " & _
"FROM Words group by part, act, scene"

sCommand = "SHAPE(SHAPE {" & sCommand & " } as rs " & _
"COMPUTE rs, " & _
"SUM (rs.PWordCount) as SWordCount, " & _
"AVG (rs.PAvelength) as SAvelength BY act, scene)" &
"as Scenes"

Chapter 8

rsChild.Open sCommand, cn
sCommand = "SHAPE Scenes " & _
"COMPUTE Scenes, " & _
"SUM (Scenes.SWordCount) as AWordCount, " & _
"AVG (Scenes.SAvelength) as AAvelength BY act"
Create an aggregate parent
1s.0pen sCommand, cn < containing act-level data
using Scenes as a child.

That code creates rather a nice HFlexGrid display:

w. Grid Display of Hierarchical Recordset _ I =] S
act| Count | AveLength| Scene| Count| AveLength|Part | count| AveLength| iI
B 1| 2454 4 6634
5] ANTONIO 115 46835
1| 3087 47103 G L 4344 EonaTO 100 3.9452
=] BORACHIO 292 54156
o 5531 DoN JoHN 116 4.8904
5] 2| s583] 45439
=] =] HERO 616 5042
il 4 7154 |BEATRICE 82 44558
URSULA 213 48636
MARGARET 8 45
3| 4335| 44688 5[a18 43951
3] 1330 4 4968
=] HERO 102 42133
4| 688 4.4808 | JRSULA, 28 4375
QaEanTRIrE ERalnl 4 289 j

Figure 8-13. Complex group-based hierarchy in an HFlexGrid

Functions Supported by the COMPUTE Statement

We've seen that in addition to referencing the child Recordset, the COMPUTE
statement can include SUM and AVG aggregations. Here are all the aggrega-
tion functions supported by the SHAPE language:

SUM

AVG

MIN

MAX

COUNT

STDEV

ANY

CALC

Recordset Recursion and Data Shaping

All but ANY and CALC are self-explanatory. ANY allows you to include a
noncalculated Field from the child as part of the Recordset. CALC allows you
to apply VBA functions and calculations to any Field appearing on the
COMPUTE line. For example, changing the parent Recordset’s definition to

SHAPE Scenes
COMPUTE Scenes,
AVG (Scenes.SAvelength) as AAvelength,
SUM (Scenes.SWordCount) as AWordCount,
CALC (Format(AAvelength, '0.00')) as Avelength,
CALC (CLng(AWordCount * AAvelength)) as Chars BY act

allows the number of characters in an act to be calculated, and it adds a for-
matted average length field. By hiding AAveLength, the following HFlexGrid
display can be created:

. Grid Display of Hierarchical Recordse - II:IIﬁ]
Act AwordCount | Avelength Chars
1 3087 |14.71 14541
2 5583|454 25369
3 4335|447 19372
4 3148(4 .45 14003
5 4613(4.40 20285
o | =

Figure 8-14. A group-based hierarchy showing CALC Fields

Combining Group-based and
Parameterized Relation-based Hierarchies

And for our last trick ... we'll extend the preceding three-layer hierarchy with
a fourth layer containing all the Words for each act/scene/part. Ideally, you
would want this final layer to be parameterized, to avoid shipping the entire
Words table across the network and building a client-side cursor on it.

Although a group-based parent Recordset can't have parameterized
child Recordsets, it can have parameterized grandchild Recordsets (see
Figure 8-15).

In our current example, the third layer is an SQL command, which is
itself aggregated. We'll add a simple parameterized child to this command
that draws records directly from the Words table.

Chapter 8

Words grouped by act

Words grouped by act and scene

Words grouped by part, act,
and scene using SOL

A1l WORDS
(parameterized)

Figure 8-15: Adding a parameterized child to the existing hierarchy

Here's the code that creates the Scenes Recordset and assigns it to rsChild.
The rest of the code from the preceding example is unchanged:

cn.Open "File Name=c:\shape.udl"

sCommand = _
"(SHAPE " &
"{SELECT act, scene,part, " & _ ::] the same SQL
" sum(wordCount) as PWordCount, " & _ as before ..

" Avg(CONVERT(float,wordLength)) as PAvelength " & _
" FROM Words group by part, act, scene} as rs " & _
 now with child [:: "APPEND ({SELECT * FROM Words WHERE " & _
"part = ? and act = ? and scene = ?} " & _
" RELATE part TO PARAMETER 0, act TO PARAMETER 1, " & _
"scene TO PARAMETER 2)as Words)"

sCommand = _
"SHAPE (SHAPE " & sCommand & " as rs " & _
"COMPUTE rs, " & _
"SUM (rs.PWordCount) as SWordCount, " & _
"AVG (rs.PAvelength) as SAvelength BY act, scene)" & _
"as Scenes"

rsChild.Open sCommand, cn

Recordset Recursion and Data Shaping

The end result here is complex, but each individual step is straightfor-
ward. What makes it complex is the nature of the relationships we are
modeling. You could spend a week building an application that provided
users with this amount of power. Data Shaping will make your life a great
deal easier.

In This Section

We looked at group-based hierarchies. You learned how to use the COMPUTE
statement to create powerful structures and displays and saw how group-
based and relation-based hierarchies can be combined.

Summary

Data Shaping is often automatically associated with the Microsoft Hierar-
chical FlexGrid. It’s generally claimed that Data Shaping is obscure and
complicated, but both of these viewpoints are mistaken.

* Data Shaping can do a great deal more than create hierarchical
displays. It can extend and fabricate Recordsets and weave them
into relationships that are natural for certain types of uses.

» How this data is presented is a completely separate issue, and the
HFlexGrid is not always the most appropriate vehicle.

» The SHAPE language is simple, although the representations of data
that it allows can be very sophisticated, resulting in complex-looking
command structures. These can nearly always be broken down into
more manageable chunks.

* What makes Data Shaping ultimately very accessible is that it intro-
duces surprisingly little that is new.

Data Shaping creates standard tabular Recordsets and exploits filters
and cloning to combine them in a powerful, flexible fashion, based on the
concept of chapters. It provides viable alternatives, but not replacements, for
certain types of more powerful SQL statements.

The key difference between Data Shaping and SQL joins and aggregation
is that SQL always flattens data back into a tabular structure, whereas Data
Shaping maintains or even extends the natural hierarchical relationship in
the data it uses. Neither approach is best—each has its place. Deciding which
to use is the primary challenge that Data Shaping introduces.

Chapter 8

Data Shaping provides powerful new data representations, but they are
still based on an essentially tabular form. In the next chapter, you'll see how
ADO 2.5 allows you to leave behind the tabular model of data representation,
should you so wish.

	apress.com
	194.book(194c08.fm)

