
Apress™
Books for Professionals by Professionals™

Sample Chapter: "Recordset Recursion and Data Shaping"
(pre-production "galley" stage)

Serious ADO: Universal Data Access
with Visual Basic

by Rob Macdonald
ISBN # 1-893115-19-4

Copyright ©2000 Apress, L.P., 901 Grayson St., Suite 204, Berkeley, CA 94710. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic or other record, without the prior agreement and written permission of the publisher.

287287

CHAPTER 8

Recordset Recursion
and Data Shaping

The Idea of Data Shaping

Creating the Connection String

Relation-based Hierarchies

Extending and Fabricating Recordsets Using Data Shaping

Parameterized Data Shaping

Group-based Hierarchies

Summary

AS ADO HAS MATURED, it has expanded its range to include models of data that
it originally could not represent. Early versions of ADO presented all data in
the form of tabular Recordsets. While it was possible for Providers to stretch
the tabular model by placing compound data structures such as arrays in a
single Recordset cell, ADO Recordsets were pretty much two-dimensional.

The first extension of ADO beyond this model was the introduction of
Data Shaping. Its ability to embed Recordsets within Recordsets, popularly
known as hierarchical Recordsets, is the subject of this chapter. All Data
Shaping takes place using the MSDataShape Provider that is a standard
part of an ADO installation.

A degree of mystique has developed around Data Shaping, mostly
generated by authors who find any syntax that involves more than placing
a dot between an object and a property or method name confusing or
counterintuitive. We have come to realize that OLE DB Providers can
expose command languages of their own making, and the MSDataShape
Provider is just one of a growing number of Providers to do so. You’ll see
that the syntax of the SHAPE language is far, far simpler than the syntax
of SQL, and that while the combinations it supports can result in rather
convoluted statements, its very small number of keywords and syntax
forms make it easy to learn.

����������	
���
��������
��������
���
��������
���

Chapter 8

288

In Chapter 13 you’ll also see that VB comes with a built-in wizard for
creating MSDataShape commands, so there is little excuse for not embracing
this technology, especially as a number of user interface components,
including the VB6 Report Designer and the Hierarchical FlexGrid control,
have been created to exploit it.

The major challenge presented by Data Shaping is to learn when it’s
applicable and what it gives us that is new. The answer to both of these
questions arises from the main purpose of Data Shaping, which is to take
two or more logically tabular structures and combine them into a single
Recordset that maintains the structural relationship between the original
sets of data.

If this sounds a little too abstract, think about what happens when you
use SQL to execute a standard join. An SQL join takes two or more logically
tabular structures (for example, records from two tables), and as a result of
combining them, flattens them into a single tabular structure. This is what
joins are meant to do, and often it’s exactly what we want. In contrast, Data
Shaping doesn’t flatten the data sets it combines. Instead, it maintains their
hierarchical relationship (assuming they have one). When this is what we
want, it’s time to use Data Shaping.

The Idea of Data Shaping

Data Shaping allows you to create two types of Recordset hierarchies:

• Relation-based hierarchy: Two Recordsets that share a common key
are formed into a parent-child hierarchy indexed on that key.

• Group-based hierarchy: One Recordset becomes a child of its own aggre-
gated data. In other words, you can view its totals, averages, and other
statistics at one level, and drill down to see the base data when required.

These two basic types of hierarchies can be combined with each other
or with themselves to create sophisticated drill-down structures. Relation-
based hierarchies can be parameterized, which causes data lower down in
the hierarchy to be retrieved on an “as needed” basis. This is particularly
useful when creating deeply nested hierarchies of the type that might be
used in a management information system.

All Recordsets created using the MSDataShape Provider have client-side
cursors. Hierarchical Recordsets can be updateable, with updates supported
at any level in the hierarchy. While this sounds a bit magical, once you have
seen how a hierarchical Recordset is constructed, you’ll see exactly how
updating works.

����������	
���
��������
��������
���
��������
���

289

Recordset Recursion and Data Shaping

One easy way to visualize how Data Shaping works is to simulate a hier-
archical Recordset using regular ADO techniques. Consider the following
two Recordsets:

Now consider using the rs1_MoveComplete event to set a filter on rs2 so that
the only records visible in rs2 are those that have the same “part” field as the
currently selected record in rs1. Here’s the code that would achieve this:

Dim cn As New Connection

Dim WithEvents rs1 As Recordset

Dim rs2 As Recordset

Private Sub cmdFilter_Click()

cn.CursorLocation = adUseClient

cn.Open "File Name=c:\MuchADO.udl"

Set rs1 = cn.Execute("SELECT * from Parts")

Set rs2 = cn.Execute("SELECT part, word, wordLength " & _

 "FROM Words WHERE wordLength > 11")

rs2("part").Properties("OPTIMIZE") = True

End Sub

Figure 8-1. Simulating Data Shaping using regular Recordsets

use client-side cursors

build an index on the
part field of rs2

����������	
���
��������
��������
���
��������
���

Chapter 8

290

Private Sub rs1_MoveComplete(_

 ByVal adReason As ADODB.EventReasonEnum, _

 ByVal pError As ADODB.Error, _

 adStatus As ADODB.EventStatusEnum, _

 ByVal pRecordset As ADODB.Recordset)

rs2.Filter = "part = '" & rs1!part & "'"

End Sub

This is a pretty good simulation of a simple relation-based hierarchy. You
could bind these two Recordsets to two Data Grid Controls using two ADO
Data Controls, and create a display such as this:1

Clicking a row in the upper grid (rs1) causes the lower grid (rs2) to display
the big words of the selected part. For the sake of completeness, here’s the
binding code for four appropriately named controls:

Set dgRS1.DataSource = adcRS1

Set dgRS2.DataSource = adcRS2

Set adcRS1.Recordset = rs1

Set adcRS2.Recordset = rs2

Now that you have seen how to simulate Data Shaping, it’s time to look at

the real thing, and make use of the MSDataShape Provider. When you use

Data Shaping to create a hierarchical Recordset based on the two previous

queries, the resulting structure looks like this:

1. Which shows that Antonio can only construct long words by applying some blatantly
thick-pleached fashion-monging.

filter rs2 according to
the current record in rs1

Figure 8-2: Form displaying simulated Data Shaping

bind the Data Grids to
the Data Controls

bind the Recordsets to
the Data Controls

����������	
���
��������
��������
���
��������
���

291

Recordset Recursion and Data Shaping

What is happening here is that MSDataShape creates the two Recordsets
based on a single command that contains both SQL statements, along with
a relationship statement that links the part fields in the two Recordsets.
MSDataShape automatically indexes the part field in the child Recordset
(rs2), and then appends a new field onto the parent Recordset (rs1) with
a name of your choice (which in this case is “rs2”).

This appended rs2 field has a data type of adChapter. A chapter is a
subset of records from the child Recordset that relate to a single record in the
parent Recordset. If you printed the chapters for each record in the parent
Recordset, you would print the entire child Recordset, or at least all those
records in the child for which a related record exists in the parent.

However, the child Recordset always has a filter applied to it, based on
the value of the part column in the parent Recordset. This filter makes it look
as though there is a different child Recordset associated with each record in
the parent Recordset, when in reality, there is only one child Recordset.
Regardless of the record you are positioned on in the parent, the Chapter-
type Field always exposes the corresponding records in the child according
to the defined relationship. The filter is internal to the hierarchical Record-
set, and so it can’t be modified using rs.Filter (which leaves rs.Filter free to be
used to create subsets of the currently visible child records).

Assuming the resulting hierarchical Recordset has been assigned to rs1,
the following code would access the (filtered) child Recordset for the current
parent record:

Dim rs2 as Recordset

Set rs2 = rs1("rs2").Value

Figure 8-3. Structures created by a Data Shaping command linking
two simple Recordsets

����������	
���
��������
��������
���
��������
���

Chapter 8

292

Now rs2 can be used like a regular Recordset (because it is one). Note that
it’s important to use .Value explicitly, because otherwise, VB would attempt
to assign a Field object to a Recordset variable, which would result in a type
mismatch error.

To manipulate all the data in this hierarchical Recordset, you need to
know about its hierarchy so that you can use the Chapter-type Field to drill
down to the detail. The hierarchical Recordset maintains the natural rela-
tionship between the two Recordsets, whereas a standard SQL join flattens
the resulting data, destroying the natural relationship. In cases where it
makes sense to maintain this relationship, the Data Shaping approach is
often a better way to manage the data than using an SQL join. The scenario
just discussed provides a good example. It’s a master-detail relationship, and
making the relationship explicit is a positive advantage.2

You could retrieve the same data using a standard SQL join, as follows:

 SELECT P.part, P.description, W.word, W.wordLength

 FROM Parts P,Words W

 WHERE W.wordLength > 11

 AND P.part = W.part

The natural structure of the resulting Recordset is the standard, flat, tabular
form. It isn’t very easy to present this representation of the data in a master-
detail style of user interface.

However, consider which approach is the most convenient if the user
wants to list all the big words from the play and the parts that are responsible
for speaking them. Given this requirement, the flat structure represented by
the join is more appropriate. The user may want to be able to sort all the big
words alphabetically, for example. This won’t be possible using the hierarchical
Recordset because the child Recordset (which contains all the Words) is
always filtered by the parent (which is based on Parts). Of course, you could
always reverse the relationship and make the Parts query into a child of the
Words query. This means that you would have to drill down just to see the
single part description for the current word, which is an unnecessary
complexity. For this type of usage, the hierarchy just gets in the way.

Data Shaping is not a replacement for joins. It’s an alternative to be used
when it makes sense to preserve and exploit the natural relationship between
two sets of data. It so happens that this is often exactly what you want to do.
You’ll also see that it can do things that are very awkward to do using stan-
dard SQL.3

2. In Chapter 13 you’ll see how both the VB6 Data Environment and the Microsoft Hierarchical
FlexGrid make the task of creating user interfaces that reflect this hierarchical relationship
almost trivial.

3. At the same time, there are things you can do in SQL that can’t be done by Data Shaping.
One example is an outer join.

����������	
���
�
������
��������
���
��������
���

293

Recordset Recursion and Data Shaping

One final point worth noting from the previous comparison of a joined
and a hierarchical Recordset is that in the joined Recordset, the description
column appears in every record, whereas in the hierarchical Recordset, it
appears only once for each part rather than once for each word. In some
cases, the hierarchical approach can be more efficient because it involves
less duplication of data, although this fact is balanced by the need to issue
two SQL statements to the database instead of one.

The beauty of the hierarchical approach becomes clear when you start
creating more complex structures of Recordsets. For example, a single
command (and therefore a single Recordset variable) can provide access to
the following type of structure:

By passing an appropriate command to MSDataShape, it will execute
the seven embedded commands required to construct this structure, build
and index seven client-side Recordsets, and append six Chapter-type Fields
to four Recordsets. The entire data structure can be held in memory for

Figure 8-4. A single hierarchical Recordset can represent a complex
data structure.

����������	
���
��������
��������
���
��������
���

Chapter 8

294

highly responsive drill-down and disconnected or persisted efficiently as a
single structure.

Alternatively, a parameterized approach can be taken, in which case
MSDataShape only builds the parent Recordset and the children are
constructed as needed on a chapter-by-chapter basis. This type of hierarchy
can’t be disconnected (for obvious reasons), but it requires less memory and
takes less time to create initially.

Either way, changes made by users at any level in the hierarchy are automat-
ically saved back to the data source, using standard client-side modification
techniques on the appropriate Recordset.

You have seen how you can almost simulate relation-based hierarchies
by using filters. However, the standard model provided by Data Shaping is
more convenient, more amenable to standard processing and data binding
techniques, and provides the added power of being able to parameterize
child Recordsets to provide “just-in-time” data retrieval, which is highly
appropriate for larger, connected hierarchical Recordsets. We’ll look at
group-based hierarchies later in the chapter.

In This Section

We examined how hierarchical Recordsets are constructed, and we com-
pared the hierarchical approach to a more traditional type of query such as
an SQL join.

Creating the Connection String

We discussed the idea of hierarchical Recordsets in the last section. Let’s
now go about creating them.

The first challenge is to create the required Connection object. The
Provider name for Data Shaping is always MSDataShape. The issue here is
that MSDataShape doesn’t have any data of its own—it merely provides a
service based on Recordsets retrieved from somewhere else. Therefore, as
part of the connection process, we have to tell MSDataShape about the
Provider that will be used to source the data.

There are several ways of doing this, and fortunately, all of them are
simple. Here’s some code for one such option:

Dim cn As New Connection

cn.Provider = "MSDataShape"

cn.Properties("Data Provider") = "SQLOLEDB"

cn.Properties("Data Source") = "POLECAT"

cn.Properties("Initial Catalog") = "MuchADO"

cn.Open , "sa", ""

use the Data Provider
property to set the
underlying Provider name

����������	
���
��������
��������
���
��������
���

295

Recordset Recursion and Data Shaping

Any reasonable combination of dynamic properties, connection string
key-value pairs, and cn.Open arguments can be used. The key points are to
make the Provider MSDataShape, use the Data Provider dynamic property
to set the underlying data source, and set all other required Data Provider
properties as though they were properties of MSDataShape. MSDataShape
will then forward these on to the Data Provider.

You can also use the Data Link Properties window to create a .udl file.
The following steps explain how:

1. Select MSDataShape in the Provider tab.

2. Select the All tab. Double-click the Data Provider property and set
the appropriate Data Provider name (or leave MSDASQL as the
default, if appropriate).

3. Either fill in the remaining properties as you normally would if the
Data Provider were the Provider, or fill in the remaining properties
via the All tab.

Figure 8-5. Configuring a .udl file for the MSDataShape

����������	
���
��������
��������
���
��������
���

Chapter 8

296

As soon as you open a Connection to MSDataShape, a connection to the
Data Provider is created, and it’s kept open until the MSDataShape connection is
closed or released. You can therefore apply the same connection manage-
ment and pooling rules to an MSDataShape connection as you would to the
underlying Data Provider.

In This Section

We saw how to create a connection to MSDataShape and configure the
Data Provider.

Relation-based Hierarchies

Now that we have a connection, we can start looking at the SHAPE language.
The basic form of a SHAPE command for creating a relation-based hier-

archy is this:

SHAPE {<parent-command>}

 APPEND ({<child-command>}

 RELATE field TO field

)

MSDataShape doesn’t care about the command substrings within the
curly brackets. It simply lifts them out of the command and fires them separately
at the Data Provider. The APPEND statement has two parts, both contained
within parentheses. The first is the child command. The second is a RELATE
statement, which identifies the fields in the parent Recordset and the child
Recordset that are linked. The field names don’t need to be the same, but the
data types must correspond. There can be multiple pairs of related fields for
a “compound key.”

As you have seen, MSDataShape will use the child field to index the child
Recordset, and it will use the parent field to build the internal filter on the
child Recordset, based on comparing the parent field to the child field. It will
also append a Chapter-type column to the parent Recordset with the default
name “Chapter1”.

This is a very simple syntax, wrapped around some command strings
embedded in curly brackets. It’s common to give names or aliases to each
Recordset, which makes the overall command string clearer to follow, if more
verbose. Here’s the general form with aliases:

SHAPE {<parent-command>} as ParentName

 APPEND ({<child-command>} as ChildName

 RELATE field TO field

) As ChapterFieldName

����������	
���
��������
��������
���
��������
���

297

Recordset Recursion and Data Shaping

With this form, it becomes possible to identify the individual Recordsets by
name, and you’ll see how these names can be used shortly. By placing a
ChapterFieldName after the APPEND statement, you can override the default
name allocated to the Chapter-type Field with your own name. If you don’t
provide a ChapterFieldName, but do provide a ChildName , this ChildName will be
used as the ChapterFieldName.

Here then, is some code using an actual SHAPE command, using the
same SQL queries that were used in the Data Shaping simulation presented
earlier in the chapter:

Dim sCommand As String

Dim rs As New Recordset

Dim cn As New Connection

cn.Open "File Name=c:\shape.udl"

sCommand = "SHAPE {SELECT * FROM Parts}" & _

 "APPEND ({SELECT part, word, wordLength " & _

 "FROM Words WHERE wordLength > 11 }" & _

 "RELATE part TO part) As Words"

rs.Open sCommand, cn

This code creates a hierarchical Recordset, but it doesn’t do anything
with it. We could assign it to the Recordset property of a Microsoft Hierarchi-
cal FlexGrid (HFlexGrid) control (covered in Chapter 12), in which case we
might end up with a display that looks like Figure 8-6.

There you can see the two Fields from the parent Recordset, and the
three Fields from the child Recordset. The key to understanding this screen is
to look at the left-most grid column, containing the + and – boxes. A + box is
used to expand the parent record to show the child records (and therefore
indicates that the child records are not currently being shown). A – box can
be used to collapse a currently expanded parent to remove the child records
from the display. A parent record that doesn’t have a box has no child records.

We’ll look at two ways of processing this Recordset in code. The first
technique will be specific to this particular Recordset. The second technique
is a generic version of the first technique, and can be used to navigate the
structure of any hierarchical Recordset.

����������	
���
��������
��������
���
��������
���

Chapter 8

298

Hierarchical Recordset Navigation

Here’s the code for the first technique, which relies on the knowledge that
the “Words” column in rs is a Chapter-type Field providing filtered access to
the child Recordset:

Public Sub printHRS(rs As Recordset)

If Not rs.EOF Then Set rsChild = rs("Words").Value

While Not rs.EOF

 Print rs("part"), rs("Description")

 While Not rsChild.EOF

 Print vbTab, rsChild("word"), rsChild("wordLength")

 rsChild.MoveNext

 Wend

 rs.MoveNext

Wend

End Sub

Figure 8-6. Relation-based hierarchy in an HFlexGrid

get hold of the child
Recordset from the
Chapter-type Field
called Words

����������	
���
��������
��������
���
��������
���

299

Recordset Recursion and Data Shaping

Here are selected highlights from its output:

DON PEDRO Tarragon

 Transgression 13

 pleasant-spirited 17

 unhopefullest 13

 . . .

 chamber-window 14

DON JOHN Don Pedro's bastard brother

 Marriage--surely 16

 circumstances 13

 chamber-window 14

 misgovernment 13

 plain-dealing 13

 enfranchised 12

. . .

ANTONIO Leonato's brother

 thick-pleached 14

 fashion-monging 15

BALTHASAR attendant on Don Pedro

CONRADE follower of Don John

BORACHIO follower of Don Corleone

 Unseasonable 12

. . . etc

Note that the rsChild variable was assigned only once. It would have
been possible to set it inside the loop for each record, but it was done outside
the loop to emphasize the way that chapters work. There is only one child
Recordset, and its internal filter is updated automatically whenever the
parent Recordset’s current record changes. This process makes sure that the
correct chapter for the current parent record is always exposed.

rs.StayInSync While the process of updating the internal filter is automatic, it isn’t
forced upon you. You can switch this process off by setting the rs.StayInSync
property to False. If rs.StayInSync is True, then any references you obtain to
children of rs will be kept synchronized as rs is navigated. If rs.StayInSync is
False, then any references to child Recordsets will keep the internal filter that
applied when the reference was obtained.4

This means that if the rs.StayInSync setting is important to you, you
should set it before obtaining any child references. By default, rs.StayInSync

4. It may help to think of the child reference you obtain as being a clone of the child
Recordset maintained by the Chapter-type Field. If rs.StayInSync is True, rs keeps the
Filter property on your child Recordset updated as rs is navigated. If rs.StayInSync is
False, it leaves the clone alone (isn’t that the name of a movie?).

����������	
���
��������
��������
���
��������
���

Chapter 8

300

is True, and this is almost always how you’ll want it. However, there are occa-
sions when you’ll want the child records you are looking at to stay constant,
regardless of what is happening to the parent.

As an example of using rs.StayInSync, if I introduce

rs.StayInSync = False

as the first line in printHRS (before the rsChild reference is obtained), it prints
the following:

DON PEDRO Prince of Arragon

 Transgression 13

 pleasant-spirited 17

 unhopefullest 13

 . . .

 chamber-window 14

DON JOHN Don Pedro's bastard brother

. . .

ANTONIO Leonato's brother

BALTHASAR attendant on Don Pedro

. . . etc

At first sight, this doesn’t make sense, as it looks like all the child records
have disappeared, except for DON PEDRO’s. You were probably expecting to
see DON PEDRO’s big words appear after each parent record. If you were,
your thinking was correct, but referring back to the code will pay dividends.
With rs.StayInSync set to False, moving on to DON JOHN has no effect on
rsChild—and that is exactly the point. The cursor is still at the end of the
Recordset, and so no further child record printing will occur before a Move*
operation on rsChild resets the Recordset cursor.

Generic Hierarchical Recordset Navigation

In about as many lines as it took to write printHRS, it’s possible to write a
completely generic procedure that will print any hierarchical Recordset,
regardless of the number and arrangement of children. This code relies on
identifying the adChapter data type and calling itself recursively when it
finds a chapter. Here it is:

����������	
������������
��������
���
��������
���

301

Recordset Recursion and Data Shaping

Public Sub printHRS1(rs As Recordset, _

 Optional iLevel As Integer)

Dim fd As Field

While Not rs.EOF

 If iLevel > 0 Then Print String(iLevel, vbTab),

 For Each fd In rs.Fields

 If fd.Type = adChapter Then

 Print

 printHRS1 fd.Value, iLevel + 1

 Else

 Print fd.Value,

 End If

 Next

 Print

 rs.MoveNext

Wend

End Sub

Recursion was made for traversing generalized tree structures, and
it’s completely at home with hierarchical Recordsets. Note that setting
rs.StayInSync won’t affect this procedure, as a new child reference is
acquired with a new filter setting each time it’s needed.

Updating Hierarchical Recordsets

As long as you remember that MSDataShape creates separate Recordsets for
each SQL statement embedded within the SHAPE command, and that all
Recordsets built using MSDataShape have client-side cursors, then it’s fairly
easy to understand the mechanics of inserts, deletes, and updates performed
through hierarchical Recordsets.

However deep you are in a Recordset hierarchy, you are always operating
on a straightforward Recordset. Your main responsibility is to make sure you
create the Recordset using an optimistic or batch optimistic lock type. However,
the following observations apply:

1. Calling transactional methods on the MSDataShape Provider
results in the method calls being passed on to the Data Provider—
so it’s business as usual with transactions.

2. rs.Update statements apply individually to each internal Recordset.

print an indent based on
the depth (level) of rs
in the hierarchy

printHRS1 calls itself
recursively when a Chapter-
type Field is identified,
passing in the child Recordset
and incrementing the level

����������	
������������
��������
���
��������
���

Chapter 8

302

3. rs.UpdateBatch statements also apply individually to each internal
Recordset. To cause all internal Recordsets to be batch updated
together, it’s necessary to visit each Recordset in turn and call
rs.UpdateBatch. This is readily achieved using a recursive function
called within a transaction. We’ve already seen how recursive code
can traverse through a hierarchical Recordset. The AffectRecords
argument of rs.UpdateBatch can take a value of adAffectAllChapters,
and it’s important to use this value when batch updating child
Recordsets. If you don’t, then only records in the current chapter
(that is, those identified by the internal filter) will be updated.

4. If the hierarchical Recordset has been disconnected (for example, if
it has been marshalled between a client and server process), each
internal Recordset should be separately reconnected to MSDataShape
with the required Data Provider settings, before attempting any
updates.5 When disconnecting a hierarchical Recordset, you need
to disconnect each Recordset individually.

Let’s look at an example. You may have noticed from the results shown
previously that DON JOHN’s longest word (“marriage--surely”) is a bit of a
cheat—it’s really two words joined together by a pair of dashes. You may also
have noticed that his relationship with DON PEDRO is defined in rather stark
terms. The following code addresses both these points by making changes at
two levels in the hierarchy using batch updating:

Dim sCommand As String

Dim rs As New Recordset

Dim rsChild As Recordset

Dim cn As New Connection

cn.Open "File Name=c:\shape.udl"

sCommand = "SHAPE {SELECT * FROM Parts} " & _

 "APPEND ({SELECT part, word, wordLength " & _

 "FROM Words WHERE wordLength > 11 } " & _

 "RELATE part TO part) As Words "

rs.Open sCommand, cn, , adLockBatchOptimistic

Set rsChild = rs("Words").Value

rs.Find "part = 'DON JOHN'"

rsChild.Find "word like 'marr*'"

5. It’s currently possible to perform updates with only the parent Recordset connected, but
this is acknowledged as a bug by Microsoft, and you should not rely on it.

Same command as before.

Set the LockType.

Locate DON JOHN in the
parent. Doing so sets the
Chapter in the child so
that the offending word
can be identified.

����������	
�����
������
��������
���
��������
���

303

Recordset Recursion and Data Shaping

cn.BeginTrans

rs!Description = "Don Pedro's illegitimate brother"

rsChild!word = "surely"

rsChild!wordLength = 6

rs.UpdateBatch

rsChild.UpdateBatch adAffectAllChapters

cn.CommitTrans

This example also shows how to use batch updating on a connected
Recordset. Even if disconnected Recordsets aren’t appropriate, batch updat-
ing provides a convenient way to ensure that all changes made by a user are
handled as part of the same transaction, without needing to keep a transac-
tion open for a long period of time.

I used an ODBC-based connection and traced the activity. Here’s the
SQL generated by the two batch statements:

UPDATE "Parts" SET "description"=?

 WHERE "part"=? AND "description"=?

UPDATE "Words" SET "word"=?,"wordLength"=?

 WHERE "word"=? AND "wordLength"=? AND "id"=?

This is business as usual for client-side cursor updates. Note that for the
child Recordset, SQLServer has silently included the primary key as a hidden
column so that it can be used to generate updates correctly. As we have
previously discussed, if your Provider doesn’t support hidden columns,
you’ll need to make sure the primary key is part of the Recordset for updates
to work effectively.

Creating Complex Shapes Using Reshaping

MSDataShape remembers that each parent and child Recordset that is created
on a live Connection object. This means that if you give a name or alias to the
Recordset inside the SHAPE command string, you can reuse that Recordset by
referring to it by name in a later SHAPE command. This has benefits for both
performance and complexity management. This process of reusing a previ-
ously shaped Recordset in a new SHAPE command is called Reshaping.

You can also programmatically identify a shaped Recordset by examin-
ing its Reshape Name dynamic property. You can’t write to this property
directly because it is under the control of MSDataShape, but it can be used as
you traverse a hierarchical Recordset to identify a particular child by name.

To explore these ideas with a more complex hierarchy, consider a hierar-
chical Recordset with the following overall structure:

Perform the batch updates
and commit.

����������	
������������
��������
���
��������
���

Chapter 8

304

This hierarchy will allow you to start looking at scenes. You can either
drill down and see all the parts in each scene and then drill down again to see
all the big words for each part (by part, rather than scene), or look at all the
big words organized by scene.

This stretches the SHAPE language a good bit further than we have done
so far, as it involves appending two children to a parent, and appending a
grandchild to one of those children. The resulting SHAPE command does
look complex, but it follows a regular syntax pattern. Also, we’ll see how
using Naming and Reshaping allows us to manage the complexity.

Here’s the SHAPE command:

SHAPE {SELECT * FROM Scenes}

 APPEND

 ((SHAPE{SELECT DISTINCT P.part, W.act, W.Scene

 FROM Parts P, Words W WHERE P.part = W.part}

 APPEND ({SELECT * FROM Words WHERE worLdLength > 11}

 RELATE part to part))

 RELATE act to act, scene to scene),

 ({SELECT * FROM Words WHERE wordLength > 11}

 RELATE act to act, scene to scene)

And here’s the single SQL statement that results from executing the
preceding code:

SELECT * FROM Scenes;SELECT DISTINCT P.part, W.act, W.Scene FROM Parts P,

Words W WHERE P.part = W.part;SELECT * FROM Words WHERE wordLength >

11;SELECT * FROM Words WHERE wordLength > 11

Figure 8-7: A hierarchical Recordset before Reshaping

children to append
grandchild
to append

����������	
������������
��������
���
��������
���

305

Recordset Recursion and Data Shaping

This compound string is passed as a single request to the Provider. There are
two things to note about it. The first is that it contains a join. Joins and shap-
ing can be mixed. The second thing to note is that exactly the same query
was executed twice. This is wasteful, and we’ll see shortly how to prevent it
from happening.

This command becomes much less scary if we build it up in sections. We
can start with the query that gets all the big words:

SHAPE {SELECT * FROM Words WHERE wordLength > 11} as Words

We can create this query as a standalone shaped Recordset. Because we
have named the record that this command will generate (we called it Words),
we can use its name in place of an embedded command when creating the
child Recordset for the “parts in scenes” query:

SHAPE {SELECT DISTINCT P.part, W.act, W.Scene

 FROM Parts P, Words W WHERE P.part = W.part} as Parts

 APPEND (Words RELATE part to part)

We’ve also named this hierarchical Recordset, calling it Parts. We can use
both of these names to create the complete four-Recordset command:

SHAPE {SELECT * FROM Scenes}

 APPEND

 (Parts RELATE act to act, scene to scene),

 (Words RELATE act to act, scene to scene)

All of this is very unscary indeed. Let’s take a look at the complete
program that creates this hierarchy:

Dim cn As New Connection

Dim rsWords As New Recordset

Dim rsParts As New Recordset

Dim rs As New Recordset

Dim sCommand As String

cn.Open "File Name=c:\Shape.udl"

rsWords.Open "SHAPE {SELECT * FROM Words " & _

 "WHERE wordLength > 11} as Words", cn

rsParts.Open "SHAPE {SELECT DISTINCT P.part, W.act, W.Scene " & _

 "FROM Parts P, Words W " & _

 "WHERE P.part = W.part}as Parts " & _

 "APPEND (Words RELATE part to part) ", cn

Words Recordset used to create
child of Parts Recordset

����������	
������������
��������
���
��������
���

Chapter 8

306

sCommand = "SHAPE {SELECT * FROM Scenes} " & _

 "APPEND (Parts RELATE act to act, scene to scene)," & _

 "(Words RELATE act to act, scene to scene)"

rs.Open sCommand, cn

Now that we’ve created this complex hierarchy, it’s time to do some things
with it. For example, we can traverse through all its individual Recordsets and
print out their names and record counts using the following recursive program:

Public Sub traverse(rs As Recordset, Optional iLevel As Integer)

Dim fd As Field

If iLevel > 0 Then Print String(iLevel, vbTab),

Print rs.Properties("Reshape Name"), rs.RecordCount

For Each fd In rs.Fields

 If fd.Type = adChapter Then

 traverse rs(fd.Name).Value, iLevel + 1

 End If

Next

End Sub

With the exception of the parent Recordset, the output of this routine
will vary depending on the current record, because the current record deter-
mines the size of each chapter in a chapter field. Here’s the output of passing
rs to traverse, with each internal Recordset pointing at its first record:

DSRowset1 16

 Parts 8

 Words 7

 Words 7

It’s pure coincidence that both uses of the Words Recordset report the
same record count. As proof, here’s the printout after moving to the third row:

DSRowset1 16

 Parts 12

 Words 19

 Words 18

What’s interesting is that there are only three physical Recordset structures
created for this command. The following listing shows the SQL generated

����������	
������������
��������
���
��������
���

307

Recordset Recursion and Data Shaping

when executing the preceding code. Each statement was executed sepa-
rately by MSDataShape.

SELECT * FROM Words WHERE wordLength > 11

SELECT DISTINCT P.part, W.act, W.Scene

 FROM Parts P, Words W WHERE P.part = W.part

SELECT * FROM Scenes

The SQL shows us that there is only one physical Recordset providing the
Word data. But the hierarchy contains Words Recordsets that have different
record counts. How do we make sense of this? Once again, what we’ve previ-
ously learned about Clones may help here. We know that it’s possible to
maintain two different views of the same physical data using Clones, which
is exactly what is happening in this hierarchical Recordset, where we have
two separate representations of the same Words data.

Reshaping is a great way of simplifying the construction of complex
hierarchies. However, the following limitations should be borne in mind:

• You have to keep the Recordsets and the Connection open if
MSDataShape is to remember existing Recordset names.

• You can’t use one Connection to reshape Recordsets created with
another.

• You can’t Append children onto an existing shaped Recordset, so you
can’t reuse any Recordset as a parent.

• You can’t Reshape parameterized Recordsets.

Chapterless Child Recordsets

There are times when you might want to perform an operation on all chap-
ters within a child Recordset. This can easily be achieved by Reshaping a
named Recordset. For example, this code:

Dim rsChild As New Recordset

rsChild.Open "SHAPE Words", cn

will extract a child Recordset named Words from a hierarchical Recordset,
and provide access to all its records.

����������	
������������
��������
���
��������
���

Chapter 8

308

Avoiding Command Objects

Unless instructed otherwise, MSDataShape uses Command objects to execute
the commands within curly brackets. If you are working with a Provider that
doesn’t support Command objects, you can avoid them by using the SHAPE
language’s TABLE keyword. For example, you can replace this statement:

SHAPE {SELECT * FROM Scenes}

with this one:

SHAPE TABLE Scenes

This approach can be useful with Simple Providers (see Chapter 11),
which don’t use Command objects.

In This Section

We looked at relation-based hierarchies in depth. We saw how to use the
SHAPE language to create hierarchical Recordsets, and various approaches
for navigating them, including the use of recursion. We also explored how to
modify hierarchical Recordsets, which can be done at any level in the hierar-
chy. Finally, we looked at Reshaping and Naming and how these can make
our code less complex and more efficient.

Extending and Fabricating Recordsets
Using Data Shaping

Once you start becoming comfortable with the basic idea of Data Shaping,
some interesting possibilities become apparent. For example, we’ve seen
that the APPEND statement appends new Fields to an existing Recordset.
All the Fields we have appended so far have been of type adChapter.
However, if we can append one type of Field, then why not another?

There are many times when I want to add Fields to existing Recordsets so
that I can add data that may not be in the database and continue to exploit
the convenience of working with a single Recordset. While you can do a
hatchet job on SQL to simulate additional Fields, they rarely work out the
way you want them to, and you know in the back of your mind that what you
have done is a bit of a hack.6

6. It’s been fortunate for my career that the back of my mind is not especially smart.

����������	
������������
��������
���
��������
���

309

Recordset Recursion and Data Shaping

The SHAPE language provides an elegant way to extend existing Record-
sets. For example, consider the following syntax:

SHAPE {SELECT * FROM Parts}

 APPEND NEW adChar(1) AS sex

If this were legal, you would think that this command would create a Recordset
based on the Parts table, and extend it by adding a Field called sex. It’s legal.
You can do it.

The following function returns a disconnected Recordset with a sex Field
added to Parts and populated with “F”s or “M”s.

Public Function getExtendedParts() As Recordset

Dim rs As New Recordset

Dim cn As New Connection

Dim sCommand As String

cn.Open "File Name=c:\Shape.udl"

sCommand = "SHAPE {SELECT * FROM Parts} " & _

 "APPEND NEW adChar(1) AS sex"

rs.Open sCommand, cn, , adLockOptimistic

While Not rs.EOF

 Select Case Trim(rs!part)

 Case "BEATRICE", "HERO", "MARGARET", "URSULA"

 rs!sex = "F"

 Case Else

 rs!sex = "M"

 End Select

 rs.MoveNext

 Wend

rs.Sort = "sex"

Set rs.ActiveConnection = Nothing

Set getExtendedParts = rs

End Function

Note that I had to make the Recordset updateable in order to be able to pop-
ulate the new column. To return a read-only Recordset, I would need to
make a read-only Clone.

sort the Recordset using
the new Field

����������	
������������
��������
���
��������
���

Chapter 8

310

The following code iterates through this Recordset:

Dim rs As Recordset

Set rs = getExtendedParts

While Not rs.EOF

 Print rs!part, rs!sex, rs!Description

 rs.MoveNext

Wend

and it prints this:

HERO F daughter to Leonato

BEATRICE F niece to Leonato

MARGARET F gentlewoman attending on Hero

URSULA F gentlewoman attending on Hero

DON PEDRO M prince of Arragon

DON JOHN M Don Pedro's illegitimate brother

. . .

This approach isn’t without its limitations. Ideally you would have
control over Field attributes and could append populated columns of stan-
dard data types to read-only Recordsets, just as you can with chapters. This
isn’t a replacement to writing your own Providers. However, it’s an easy and
elegant way to extend an existing Recordset.

Fabricated Hierarchical Recordsets

You don’t have to use a Data Provider with MSDataShape. Instead you can cre-
ate wholly fabricated Recordsets using the same syntax you have just seen for
appending new Fields to existing Recordsets, and set the Data Provider to NONE.

In the following example, I decided to enhance my reputation as a stage
director and try a Shakespearean tragedy. Not having a handy database,
I chose to fabricate a hierarchical Recordset with a parent containing Scene
information and a child containing Parts in Scene. Here’s the code for creat-
ing and populating this Recordset:

Dim cn As New Connection

Dim rs As New Recordset

Dim rsChild As Recordset

Dim sCommand As String

Dim vScene As Variant

Dim vPart As Variant

cn.Open "Provider=MSDataShape;Data Provider=NONE;"

set the Data Provider
to NONE

����������	
������������
��������
���
��������
���

311

Recordset Recursion and Data Shaping

sCommand = _

 "SHAPE APPEND NEW adTinyInt AS act," & _

 " NEW adTinyInt AS scene," & _

 " NEW adVarChar(50) AS description," & _

 " ((SHAPE APPEND NEW adChar(20) AS part," & _

 " NEW adVarChar(50) AS description," & _

 " NEW adTinyInt AS act," & _

 " NEW adTinyInt AS scene) " & _

 " RELATE act TO act, scene TO scene) as Parts"

rs.Open sCommand, cn, , adLockBatchOptimistic

vScene = Array("act", "scene", "description")

vPart = Array("part", "description", "act", "scene")

rs.AddNew vScene, Array(1, 1, "An Open Place")

Set rsChild = rs("Parts").Value

With rsChild

 .AddNew vPart, Array("Witch 1", "First Witch", 1, 1)

 .AddNew vPart, Array("Witch 2", "Second Witch", 1, 1)

 .AddNew vPart, Array("Witch 3", "Third Witch", 1, 1)

End With

rs.AddNew vScene, Array(1, 2, "A Camp")

With rsChild

 .AddNew vPart, Array("Duncan", "King of Scotland", 1, 2)

 .AddNew vPart, Array("Malcolm", "Duncan's son", 1, 2)

End With

Set HFlex.Recordset = rs

which will display

Once you have fabricated a hierarchical Recordset, you can do the usual
kinds of things with it.

create the
parent
Recordset

append a child Recordset

parent requires a
record before you can
access a Field

Figure 8-8. Fabricated hierarchy in an HFlexGrid

����������	
������������
��������
���
��������
���

Chapter 8

312

Combining Provider and Fabricated Recordsets

Finally, you can mix Provider-generated and fabricated Recordsets in the
same hierarchical Recordset. We’ll see this technique in the following code.
I need to start casting for Much ADO about Nothing, and I have an external
source of information about actors who may be suitable for certain parts. I
can insert this data as a fabricated Recordset, created as a child of a Record-
set based on the Parts table. Here’s some code to do this:

Dim rs As New Recordset

Dim rsChild As Recordset

Dim cn As New Connection

Dim sCommand As String

Dim vActors As Variant

cn.Open "File Name=c:\Shape.udl"

sCommand = "SHAPE {SELECT * FROM Parts} " & _

 "APPEND ((SHAPE APPEND NEW adChar(20) AS part," & _

 " NEW adVarChar(50) AS actor," & _

 " NEW adBoolean AS available," & _

 " NEW adChar(6) AS price)" & _

 " RELATE part To part) as actors"

vActors = Array("part", "actor", "available", "price")

rs.Open sCommand, cn, , adLockOptimistic

Set rs.ActiveConnection = Nothing

Set rsChild = rs("actors").Value

With rsChild

 .AddNew vActors, Array("DON PEDRO", "Tom Hanks", False, "high")

 .AddNew vActors, Array("DON PEDRO", "Gary Cornell", True, "low")

 .AddNew vActors, Array("DON JOHN", "Russ Lewis", True, "free")

End With

Here’s what it looks like in an HFlexGrid:

append a fabricated
Recordset to one
retrieved from the
MuchADO database

Figure 8-9: A fabricated child of a Provider-generated parent

����������	
�����
������
��������
���
��������
���

313

Recordset Recursion and Data Shaping

In This Section

The SHAPE language can add Fields of any data type (not just adChapter) to an
existing Recordset, which has some useful data management opportunities.
We can take this idea to its logical conclusion and fabricate entire Record-
sets, which can be mixed with Provider-generated Recordsets if required.

Parameterized Data Shaping

There are two ways of using parameters with Data Shaping:

• External parameters: These make use of ADO Command and Param-
eter objects and work in exactly the same way as parameters do when
working directly with a Data Provider. As long as you don’t mix exter-
nal and internal parameters, you can include external parameters at
any level in a SHAPE command hierarchy.

• Internal parameters: These are used by the SHAPE language inter-
nally and don’t require or use ADO Parameter objects. They are what
most developers are referring to when discussing parameterized Data
Shaping. Their purpose is to allow child Recordsets to be constructed,
one chapter at a time, on an as-needed basis. This can have major
performance implications. For example, if a parent Recordset has one
hundred records and the typical user only wants to drill down to half a
dozen at any one time, the total amount of data retrieved will be far
less when data is fetched one chapter at a time. You cannot discon-
nect or marshall internally parameterized hierarchical Recordsets.

The two types can be mixed, although as we shall see, certain rules apply
if you want to mix external and internal parameters and stay sane.

External Parameters

Because we previously discussed parameterized ADO commands at some
length, there is little that needs to be added about using external parameters
with Data Shaping. A simple example will show you all you need to know:

Dim sCommand As String

Dim rs As New Recordset

Dim cd As New Command

����������	
������������
��������
���
��������
���

Chapter 8

314

sCommand = "SHAPE {SELECT * FROM Parts WHERE part > ? } " & _

 "APPEND ({SELECT part, word, wordLength " & _

 "FROM Words WHERE wordLength > ? } " & _

 "RELATE part to part)"

cd.CommandText = sCommand

cd.ActiveConnection = "File Name=c:\shape.udl"

Set rs = cd.Execute(, Array("L", 12))

printHRS1 rs

Here, we are using parameter place markers to control which parts we
retrieve in the parent, and the size of words required for the child. Note that
the construction of the child Recordset is independent of how many parts
are retrieved by the parent. This is potentially wasteful. You’ll see that there
are ways to address this shortcoming—the simplest is to add another
subclause (based on part) to the child’s WHERE clause and to use another
parameter for its value.

The preceding code uses our generic print routine to print the results,
which look like this:

LEONATO governor of Messina

 LEONATO candle-wasters 14

 LEONATO advertisement 13

LORD Null

MARGARET gentlewoman attending on Hero

 MARGARET ill-qualities 13

MESSENGER Null

. . .

Internal Parameters

Internal parameters cause the MSDataShape to behave very differently from
external parameters. Internal parameters are defined by using the PARAMETER
keyword in the RELATE clause of a SHAPE command. Here’s an example,
based on the simple SHAPE command we’ve been using all along:

Dim sCommand As String

Dim rs As New Recordset

pass two parameters to
the command, using
standard ADO techniques

����������	
������������
��������
���
��������
���

315

Recordset Recursion and Data Shaping

sCommand = "SHAPE {SELECT * FROM Parts}" & _

 "APPEND ({SELECT part, word, wordLength " & _

 "FROM Words WHERE wordLength > 11 " & _

 " and part = ? }" & _

 "RELATE part TO PARAMETER 0) as Words"

rs.Open sCommand, "File Name=c:\shape.udl"

The only SQL that is executed when rs is opened is this:

SELECT * FROM Parts

However, MSDataShape also prepares7 the following statement:

SELECT part, word, wordLength FROM Words

WHERE wordLength > 11 and part = ?

As you might expect, opening rs with an internally parameterized command
will be much faster than opening it with a standard relation-based command,
because no Words data needs to be retrieved.

The first time any Chapter-type Field’s data is accessed8, MSDataShape
executes the child command, substituting the parameter marker with the value
of the related field in the current record of the parent. For example, this line:

Print rs("part"), rs("Words").Value.RecordCount

will fetch the nine child records associated with DON PEDRO, and then print

DON PEDRO 9

These records are added into the child Recordset. When a new parent
record is visited and the Words field accessed, the prepared statement will be
executed again, and the retrieved records will be added into the same child
Recordset.

7. The difference between executing and preparing a statement was discussed in Chapter 5.
Preparing a statement asks the data source to get ready to execute, but returns no data.

8. Simply visiting the Field won’t trigger the retrieval of the chapter’s data. That will only
happen when chapter data is read.

create an
internal parameter

����������	
������������
��������
���
��������
���

Chapter 8

316

This is a very neat way of limiting the amount of data retrieved, and it’s
almost essential when creating a very large hierarchy with many drill-down
options and many records at each level. However, note that although it’s
faster at opening the Recordset, it will be less responsive once opened than
a nonparameterized query, because of the need to retrieve data each time a
new parent record is visited.

By default, ADO caches each chapter as it’s being retrieved. This is a
good default because it has performance benefits, but there may be times
when you want the prepared statement to be reexecuted when you return to
a previously visited record and access a Chapter-type Field. You can make
this happen by setting the Cache Child Rows dynamic property to False. You
have to do this before opening the Recordset, and because this dynamic
property is added by the Client Cursor Engine, you have to make the Record-
set use a client-side cursor explicitly, rather than rely on MSDataShape to do
it for you; for example:

rs.CursorLocation = adUseClient

rs.Properties("Cache Child Rows") = False

rs.Open sCommand, "File Name=c:\shape.udl"

It’s pointless using internally parameterized commands if you intend to
iterate through each parent record and inspect its Chapter-type Fields as
soon as the Recordset is opened. It’s far, far more efficient to retrieve all the
child Recordset’s data in one query, than to fetch it a chapter at time. It’s only
when chapters are retrieved on an as-needed basis that the internally parame-
terized approach can be more efficient than retrieving all the data at once.

Unfortunately, the Microsoft HFlexGrid control attempts to populate
the entire Recordset in order to display it, and therefore, should not be used
with internally parameterized commands.

Combining Internal and External Parameters

There is significant scope for confusion between ADO and MSDataShape
when you try to mix internal and external parameters. However, good
results can be achieved by following these two rules:

1. Never attempt to mix both types of parameter in the same
internal Recordset.

2. Use external parameters in parents and internal parameters
in children.

����������	
������������
��������
���
��������
���

317

Recordset Recursion and Data Shaping

In the following code, an external parameter controls which parts are
created, while an internal parameter in the child Recordset ensures that
Word chapters are created only when needed:

Dim sCommand As String

Dim rs As New Recordset

Dim cd As New Command

sCommand = "SHAPE {SELECT * FROM Parts where part > ? } " & _

 "APPEND ({SELECT part, word, wordLength " & _

 "FROM Words WHERE wordLength > 11 " & _

 "and part = ? } " & _

 "RELATE part to PARAMETER 0)"

cd.CommandText = sCommand

cd.ActiveConnection = "File Name=c:\shape.udl"

Set rs = cd.Execute(, 13)

ADO sees only the external parameter.
Some interesting results can be quickly achieved by combining parame-

terized queries and extended Recordsets. For example, consider the user
interface here:

Users can use the Next and Previous buttons to move around an externally
parameterized Parts Recordset. Each time they navigate, the form shows all
words larger than wordLength for the current part. wordLength can be
adjusted as the user scrolls. The form uses a standard ADO Data Grid (not an
HFlexGrid) and an ADO Data Control that is hidden. Apart from that, there are
two command buttons, a textbox, and a label. Here’s the complete code:

external parameter

internal parameter

Figure 8-10: A simple word browser using a parameterized
SHAPE command

����������	
������������
��������
���
��������
���

Chapter 8

318

Private rs As New Recordset

Private Sub Form_Activate()

Dim sCommand As String

Dim cd As New Command

sCommand = _

 "SHAPE {SELECT * FROM Parts where part > ? } " & _

 "APPEND " & _

 "NEW adInteger as wordLength," & _

 "({SELECT part, word, wordLength " & _

 "FROM Words WHERE wordLength > ? and part = ? } " & _

 "RELATE wordLength TO PARAMETER 0, part TO PARAMETER 1) As Words"

cd.CommandText = sCommand

cd.ActiveConnection = "File Name=c:\shape.udl"

cd.Parameters(0).Value = "L"

rs.Open cd, , , adLockBatchOptimistic

rs("wordLength") = CInt(txtWordLength.Text)

Set rsChild = rs("Words").Value

Set DataGrid1.DataSource = Adodc1

Set Adodc1.Recordset = rsChild

End Sub

Private Sub cmdNext_Click()

rs.MoveNext

rs("wordLength") = CInt(txtWordLength.Text)

Set Adodc1.Recordset = rs("Words").Value

End Sub

Private Sub cmdPrevious_Click()

rs.MovePrevious

rs("wordLength") = CInt(txtWordLength.Text)

Set Adodc1.Recordset = rs("Words").Value

End Sub

The key to this example is the use of an appended Integer Field to the
parent Recordset, which controls how much data the child retrieves. Rebind-
ing the grid forces the child data to be requeried each time. Note that it was
necessary to use an external parameter and to create an updateable Record-
set. Calling cd.Execute doesn’t return an updateable Recordset. Therefore,
we applied the ADO 2.5 technique of using a Command object as the source
of an rs.Open.

append a standard Integer
Field and a Chapter-type
Field to Parts

create a parameterized
Command and use it as the
source to rs.Open

set the value of the
newly appended wordLength
Field on the parent's
first record, then assign
the child to the grid

move to the next
record, set the
parent’s wordLength
Field from the
TextBox, and rebind

����������	
������������
��������
���
��������
���

319

Recordset Recursion and Data Shaping

In This Section

Parameters can be either external to MSDataShape (in which case they are
used like standard ADO Parameter objects) or internal to MSDataShape.
Internal parameterized commands retrieve a child Recordset’s data, chapter-
by-chapter and on an as-needed basis, instead of retrieving all the child’s
data when the hierarchical Recordset is first created.

Group-based Hierarchies

The basic form of a SHAPE command for creating a group-based hierarchy is

SHAPE {<child-command> } as Alias

 COMPUTE <parent-fields>

 BY <child-fields>

This is a very different structure from relation-based commands. The
key point to keep in mind is that the command that appears after the SHAPE
keyword becomes the child Recordset in a group-based hierarchy, rather
than the parent. The parent is defined by the COMPUTE statement. This makes
perfect sense, because the COMPUTE statement defines aggregated data based
on the child Recordset, and the aggregated data appears at the top of the
hierarchy, with the detail (chapters of the child Recordset) appearing below.
MSDataShape builds an internal filter to create chapters in the child Record-
set, and the filter is based on the Fields named in the BY statement.

The parent Recordset needs a Chapter-type Field in order to provide
access to the child, therefore, the COMPUTE statement must contain the child
Recordset referenced by its name or alias. This will then be split up into
chapters according to the BY statement. The remainder of the COMPUTE state-
ment contains whichever aggregates are required in the parent. Let’s look at
an example:

Dim rs As New Recordset

Dim sCommand As String

sCommand = "SHAPE " & _

 "{SELECT * FROM Words } as Words " & _

 "COMPUTE Words , SUM (Words.wordCount) As WordCount, " & _

 " AVG (Words.wordLength) As AveLength " & _

 "BY act, scene"

����������	
������������
��������
���
��������
���

Chapter 8

320

rs.Open sCommand, "File Name=c:\shape.udl"

Print "Act", "Scene","Count","Ave"

While Not rs.EOF

 Print rs!act, rs!scene, rs!WordCount, _

 FormatNumber(rs!AveLength, 2)

 rs.MoveNext

Wend

There are three Fields defined in the COMPUTE statement (one is a Chap-
ter-type Field), and these combined with the two in the BY statement means
that the parent will have five Fields. Here’s the printout as the code iterates
through the parent:

Act Scene Count Ave

 1 1 2464 4.90

 1 2 215 4.32

 1 3 560 4.83

 2 1 2931 4.82

 2 3 2092 4.78

 3 1 1327 5.02

 3 2 918 4.70

And here’s what it looks like in an HFlexGrid with some rows collapsed:

Figure 8-11. Group-based hierarchy in an HFlexGrid

����������	
����
�������
��������
���
��������
���

321

Recordset Recursion and Data Shaping

It’s possible to create complex group-based hierarchies, and once again,
Reshaping and Naming can come to your rescue. For example, consider the
following highly useful way of looking at the Words table:

The following code builds up this group-based hierarchical Recordset using
Reshaping to keep the complexity under control. Because the SQL for the grand-
child is nontrivial, it’s created first as a separate SQL statement and then
concatenated into the SHAPE command for the child. The child is named, and
its name is used in the parent Recordset to assemble the complete structure.

Dim rsChild As New Recordset

Dim rs As New Recordset

Dim cn As New Connection

Dim sCommand As String

cn.Open "File Name=c:\shape.udl"

sCommand = "SELECT act, scene, part, " & _

 "Sum(wordCount) as PWordCount, " & _

 "Avg(CONVERT(float,wordLength)) as PAveLength " & _

 "FROM Words group by part, act, scene"

sCommand = "SHAPE(SHAPE {" & sCommand & " } as rs " & _

 "COMPUTE rs, " & _

 "SUM (rs.PWordCount) as SWordCount, " & _

 "AVG (rs.PAveLength) as SAveLength BY act, scene)" & _

 "as Scenes"

Figure 8-12. A complex group-based hierarchy

Pure SQL creates the Parts (within a
scene)-level data. wordLength is
converted to a Float to get an average
with decimal places.

Create an aggregate
parent (called Scenes)
based on the SQL.

����������	
����
�������
��������
���
��������
���

Chapter 8

322

rsChild.Open sCommand, cn

sCommand = "SHAPE Scenes " & _

 "COMPUTE Scenes, " & _

 "SUM (Scenes.SWordCount) as AWordCount, " & _

 "AVG (Scenes.SAveLength) as AAveLength BY act"

rs.Open sCommand, cn

That code creates rather a nice HFlexGrid display:

Functions Supported by the COMPUTE Statement

We’ve seen that in addition to referencing the child Recordset, the COMPUTE
statement can include SUM and AVG aggregations. Here are all the aggrega-
tion functions supported by the SHAPE language:

SUM

AVG

MIN

MAX

COUNT

STDEV

ANY

CALC

Create an aggregate parent
containing act-level data
using Scenes as a child.

Figure 8-13. Complex group-based hierarchy in an HFlexGrid

����������	
����

������
��������
���
��������
���

323

Recordset Recursion and Data Shaping

All but ANY and CALC are self-explanatory. ANY allows you to include a
noncalculated Field from the child as part of the Recordset. CALC allows you
to apply VBA functions and calculations to any Field appearing on the
COMPUTE line. For example, changing the parent Recordset’s definition to

SHAPE Scenes

 COMPUTE Scenes,

 AVG (Scenes.SAveLength) as AAveLength,

 SUM (Scenes.SWordCount) as AWordCount,

 CALC (Format(AAveLength, '0.00')) as AveLength,

 CALC (CLng(AWordCount * AAveLength)) as Chars BY act

allows the number of characters in an act to be calculated, and it adds a for-
matted average length field. By hiding AAveLength, the following HFlexGrid
display can be created:

Combining Group-based and
Parameterized Relation–based Hierarchies

And for our last trick … we’ll extend the preceding three-layer hierarchy with
a fourth layer containing all the Words for each act/scene/part. Ideally, you
would want this final layer to be parameterized, to avoid shipping the entire
Words table across the network and building a client-side cursor on it.

Although a group-based parent Recordset can’t have parameterized
child Recordsets, it can have parameterized grandchild Recordsets (see
Figure 8-15).

In our current example, the third layer is an SQL command, which is
itself aggregated. We’ll add a simple parameterized child to this command
that draws records directly from the Words table.

Figure 8-14. A group-based hierarchy showing CALC Fields

����������	
����
�������
��������
���
��������
���

Chapter 8

324

Here’s the code that creates the Scenes Recordset and assigns it to rsChild.
The rest of the code from the preceding example is unchanged:

cn.Open "File Name=c:\shape.udl"

sCommand = _

 "(SHAPE " & _

 "{SELECT act, scene,part, " & _

 " sum(wordCount) as PWordCount, " & _

 " Avg(CONVERT(float,wordLength)) as PAveLength " & _

 " FROM Words group by part, act, scene} as rs " & _

 "APPEND ({SELECT * FROM Words WHERE " & _

 "part = ? and act = ? and scene = ?} " & _

 " RELATE part TO PARAMETER 0, act TO PARAMETER 1, " & _

 "scene TO PARAMETER 2)as Words)"

sCommand = _

 "SHAPE (SHAPE " & sCommand & " as rs " & _

 "COMPUTE rs, " & _

 "SUM (rs.PWordCount) as SWordCount, " & _

 "AVG (rs.PAveLength) as SAveLength BY act, scene)" & _

 "as Scenes"

rsChild.Open sCommand, cn

Figure 8-15: Adding a parameterized child to the existing hierarchy

the same SQL
as before …

… now with child

����������	
����
�������
��������
���
��������
���

325

Recordset Recursion and Data Shaping

The end result here is complex, but each individual step is straightfor-
ward. What makes it complex is the nature of the relationships we are
modeling. You could spend a week building an application that provided
users with this amount of power. Data Shaping will make your life a great
deal easier.

In This Section

We looked at group-based hierarchies. You learned how to use the COMPUTE
statement to create powerful structures and displays and saw how group-
based and relation-based hierarchies can be combined.

Summary

Data Shaping is often automatically associated with the Microsoft Hierar-
chical FlexGrid. It’s generally claimed that Data Shaping is obscure and
complicated, but both of these viewpoints are mistaken.

• Data Shaping can do a great deal more than create hierarchical
displays. It can extend and fabricate Recordsets and weave them
into relationships that are natural for certain types of uses.

• How this data is presented is a completely separate issue, and the
HFlexGrid is not always the most appropriate vehicle.

• The SHAPE language is simple, although the representations of data
that it allows can be very sophisticated, resulting in complex-looking
command structures. These can nearly always be broken down into
more manageable chunks.

• What makes Data Shaping ultimately very accessible is that it intro-
duces surprisingly little that is new.

Data Shaping creates standard tabular Recordsets and exploits filters
and cloning to combine them in a powerful, flexible fashion, based on the
concept of chapters. It provides viable alternatives, but not replacements, for
certain types of more powerful SQL statements.

The key difference between Data Shaping and SQL joins and aggregation
is that SQL always flattens data back into a tabular structure, whereas Data
Shaping maintains or even extends the natural hierarchical relationship in
the data it uses. Neither approach is best—each has its place. Deciding which
to use is the primary challenge that Data Shaping introduces.

����������	
����
�������
��������
���
��������
���

Chapter 8

326

Data Shaping provides powerful new data representations, but they are
still based on an essentially tabular form. In the next chapter, you’ll see how
ADO 2.5 allows you to leave behind the tabular model of data representation,
should you so wish.

����������	
����
�������
��������
���
��������
���

	apress.com
	194.book(194c08.fm)

