Taming Java Threads

ALLEN HOLUB

ApPress”

Taming Java Threads
Copyright ©2000 by Allen I. Holub

All rights reserved. No part of this work maybe reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-893115-10-0
Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Copy Editor: Tom Robinson, TSI Graphics

Artist: Warren Fischbach, TSI Graphics

Compositor and Pretty Good Vorpal Player: Susan Glinert
Indexer: Nancy Guenther

Project Manager: Grace Wong

Cover and Interior Design: Derek Yee Design

Distributed to the book trade worldwide by Springer-Verlag New York, Inc. 175 Fifth Avenue, New
York, NY 10010

In the United States, phone 1-800-SPRINGER; orders@springer-ny.com
www . springer-ny.com

For information on translations, please contact Apress directly: Apress, 901 Grayson Street,
Suite 204, Berkeley, CA 94710

Phone: 510-549-5930, Fax: 510-549-5939, info@apress.com, www.apress.com

The information in this book is distributed on an “As Is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

CHAPTER 10

If I Were King:
Fixing Java’s
Threading Problems

IN A WAY, THE PREVIOUS CHAPTERS are a litany of everything wrong with the Java thread-
ing model and a set of Band-Aid solutions to those problems. I call the classes
Band-Aids because the problems addressed by the classes should really be part of
the syntax of the Java language. Using syntactic methods rather than libraries can
give you better code in the long run since the compiler and JVM working together can
perform optimizations that would be difficult or impossible with a library approach.

In this chapter, I want to approach the threading problem in a more positive
light by suggesting a few changes to Java that would provide solutions to those
problems. These proposals are very tentative—they are just one person’s thoughts
on the matter, and they would need a lot of work and peer review before being via-
ble. But they’re a start. The proposals are also rather bold. Several people have
suggested subtle, and minimal, changes to the Java-Language Specification (JLS)
to fix currently ambiguous JVM behavior, but I want more sweeping improvement.

On a practical note, many of my proposals involve the introduction of new key-
words to the language. Though the usual requirement that you don’'t want to break
existing code is certainly valid, if the language is not to stagnate and thus become
obsolete, it must be possible to introduce keywords. In order to introduce keywords
that won't conflict with existing identifiers, I've deliberately used a character ($)
which is illegal in an identifier. (For example, $task rather than task). A compiler
command-line switch could perhaps enable variants on these keywords that
would omit the dollar sign.

The Task

The fundamental problem with Java’s threading model is the fact thatitisnot in the
least bit object oriented. A thread is effectively nothing but a procedure [run()]
which calls other procedures. Notions of objects, asynchronous versus synchronous
messages, and the like, are simply not addressed.

275

Chapter 10

276

One solution to this problem is the Active_object class presented in Chapter 9,
but a better solution would be to modify the language itself to support asynchro-
nous messaging directly. The asynchronous messages running on an Active Object
are effectively synchronous with respect to each other. Consequently, you can elimi-
nate much of the synchronization hassles required to program in a more procedural
model by using an Active Object.

My first proposal, then, is to incorporate Active Objects into the language itself
by incorporating the notion of a fask into Java. A task has a built-in Active-Object
dispatcher, and takes care of all the mechanics of handling asynchronous messages
automatically. You would define a task exactly as you would a class, except that the
asynchronous modifier could be applied to methods of the task to indicate that
those methods should execute in the background on the Active-Object dispatcher.
To see the parallels with the class-based approach discussed in Chapter 9, consider
the following file I/0 class, which uses my Active object to implement an asyn-
chronous write operation:

interface Exception handler
{ void handle_exception(Throwable e);

}

class File io task
{ Active object dispatcher = new Active object();

final OutputStream file;
final Exception_handler handler;

File io task(String file name, Exception handler handler)
throws IOException
{ file = new FileOutputStream(file name);
this.handler = handler;
}

public void write(final byte[] bytes)
{
dispatcher.dispatch
(' new Runnable()
{ public void run()

{
try
{ byte[] copy new byte[bytes.length];
System.arrayCopy(bytes, o,
copy, O,
bytes.length);
file.write(copy);
}
catch(Throwable problem)
{ handler.handle exception(problem);
}
}

IfI Were King: Fixing Java’s Threading Problems

)s
}

All write requests are queued up on the Active-Object’s input queue with
a dispatch() call. Any exceptions that occur while processing the asynchronous
message in the background are handled by the Exception_handler object that’s
passed into the File io task’s constructor. You would write to the file like this:

File io task io = new File io task
("foo.txt"
new Exception handler
{ public void handle(Throwable e)
{ e.printStackTrace();
}
}
)5
/...
io.write(some bytes);

Introducing the $task and $asynchronous keywords to the language lets you
rewrite the previous code as follows:

$task File io $error{ $.printStackTrace(); }

{
OutputStream file;
File io(String file name) throws IOException
{ file = new FileOutputStream(file name);
}
asynchronous public write(byte[] bytes)
{ file.write(copy);
}
}

Note that asynchronous methods don't specify return values because the handler
returns immediately, long before the requested operation completes. Consequently,
there is no reasonable value that could be returned. The $task keyword should
work exactly like class with respect to the derivation model: A $task could imple-
ment interfaces and extend classes and other tasks. Methods marked with the
asynchronous keyword are handled by the $task in the background. Other methods
would work synchronously, just as they do in classes.

The $task keyword can be modified with an optional $error clause (as shown),
which specifies a default handler for any exceptions that are not caught by the
asynchronous methods themselves. I've used $ to represent the thrown exception
object. If no $error clause is specified, then a reasonable error message (and prob-
ably stack trace) is printed.

277

Chapter 10

Note that the arguments to the asynchronous method must be immutable to be
thread safe. The run-time system should take care of any semantics required to
guarantee this immutability. (A simple copy is often not sufficient.) All task objects
would have to support a few pseudo-messages as well:

some_task.close() Any asynchronous messages sent after this call
is issued would throw a TaskClosedException.
Messages waiting on the Active-Object queue
will be serviced, however.

some_task.join() The caller blocks until the task is closed and all
pending requests are processed.

In addition to the usual modifiers (such as public), the task keyword would
accept the $pooled(n) modifier, which would cause the task to use a thread pool
rather than a single thread to run the asynchronous requests. The n specifies the
desired pool size; the pool can grow if necessary, but should deflate to the original
size when the additional threads aren’t required. The server-side socket handler
that I used as an example of thread-pool usage in Chapter 8 could be rewritten in
the proposed syntax as follows:

abstract $pooled(10) $task Socket server

{
public asynchronous listen(ServerSocket server, Client handler client)
{ while(true)
{ client.handle(server.accept());
}
}
interface Client handler
{ asynchronous void handle(Socket s);
}
}
/...

Socket server listener = new Socket server();

listener.listen (new ServerSocket(some port),
new Socket server.Client handler()
{ public asynchronous void handle(Socket s)
{ // client-handling code goes here.
}
}
)

The arguments to 1isten() can just as easily be constructor arguments, of course.

278

IfI Were King: Fixing Java’s Threading Problems

Improvements to synchronized

Though a $task eliminates the need for synchronization in many situations, all
multithreaded systems cannot be implemented solely in terms of tasks. Consequently,
the existing threading model needs to be updated as well. The synchronized keyword
has several flaws:

1. You cannot specify a timeout value.
2. You cannot interrupt a thread that is waiting to acquire a lock.

3. You cannot safely acquire multiple locks. (Multiple locks should always be
acquired in the same order.)

You can solve these problems by extending the syntax of synchronized both to
support a list of multiple arguments and to accept a timeout specification (speci-
fied in brackets, next): Here's the syntax that I'd like:

synchronized(x &3 y &3 z) Acquire the locks on the x, y,
and z objects.

synchronized(x || y || z) Acquire the locks on the x, y,
or z objects.

synchronized((x && y) || 2) Obvious extension of the
previous code.

synchronized (. . .) [1000] Acquire designated locks
with a one-second timeout.

synchronized [1000] () {. . .} Acquire thelockfor this, but
with a one-second timeout.

A timeout is necessary, but not sufficient, for making the code robust. You
also need to be able to terminate the wait to acquire the lock externally. Conse-
quently, the interrupt() method, when sent to a thread that is waiting to acquire
a lock, should break the waiting thread out of the acquisition block by tossing a
SynchronizationException object. This exception should be a RuntimeException
derivative so that the it would not have to be handled explicitly.

The main problem with these proposed modifications to the synchronized
syntax is that they would require changes at the byte-code level, which currently
implements synchronized using enter-monitor and exit-monitor instructions.
These instructions take no arguments, so the byte-code definition would have to
be extended to support the acquisition of multiple locks. This change is no more
serious than the changes added to the JVM in Java 2, however, and would be back-
ward compatible with existing Java code.

279

Chapter 10

Improvements to wait() and notify()

The wait()/notify() system also has problems:

1. There is no way to detect whether wait() has returned normally or
because of a timeout.

2. There is no way to implement a traditional condition variable that
remains in a “signaled” state.

3. Nested-monitor lockout can happen too easily

The timeout-detection problem is easily solved by redefiningwait() to return
aboolean (rather than void). A true return value would indicate a normal return, false
would indicate a timeout.

The notion of a state-based condition variable is an important one: The vari-
able can be set to a false state in which waiting threads will block until the variable
entered a true state, and any thread that waits on a true condition variable is released
immediately. [Thewait() call won't block in this case.] You can support this func-
tionality by extending the syntax of notify() as follows:

notify(); Waiting threads without changing the state of the
underlying condition variable.

notify(true); Set the condition variable’s state to true and release
any waiting threads. Subsequent calls to wait()
won't block.

notify(false); Set the condition variable’s state to false (subsequent

calls towait() orwait(true) will block.

The nested-monitor-lockout problem is thornier, and I don't have an easy
solution. One possible solution is for wait () to release all the locks that the current
thread has acquired in the opposite order of acquisition and then reacquire them
in the original acquisition order when when the wait is satisfied. I can imagine that
code that leveraged this behavior would be almost impossible for a human being
to figure out, however, so I don’t think that this is really a viable solution. If any-
body has any ideas, send me email (aih@holub.com).

I'd also like to be able to wait for complex conditions to become true. For example:

[a 8% [b || c]].wait();

where a, b, and c are any Object. I've used brackets rather than parentheses to make
it easier for the compiler to distinguish this sort of expression from an arithmetic
expression, but I can think of alternative syntaxes that would serve the same purpose.

280

IfI Were King: Fixing Java’s Threading Problems

Fixing the Thread Class

The ability to support both preemptive and cooperative threads is essential in
some server applications, especially if you intend to squeeze maximum perfor-
mance out of the system. I suggest that Java has gone too far in simplifying the
threading model, and that the Posix/Solaris notion of a “green thread” and a “light-
weight process” that I discussed in Chapter 1 should be supported by Java. This means,
of course, that some JVM implementations (such as NT implementations) would
have to simulate cooperative threads internally, and other JVMs would have to sim-
ulate preemptive threading, but adding these extensions to the JVM is reasonably
easy to do.

AJava thread, then, should always be preemptive. That is, a Java thread should
work much like a Solaris lightweight process. The Runnable interface can be used to
define a a Solaris-like green thread that must explicitly yield control to other green
threads running on the same lightweight process. For example, the current syntax of:

class My thread implements Runnable
{ public void run(){ /*...*/ }
}

new Thread(new My thread);

would effectively create a green thread for the Runnable object and bind that green
thread to the lightweight process represented by the Thread object. This change in
implementation is transparent to existing code since the effective behavior is the
same as at present.

By thinking of Runnable objects as green threads, you can expand Java’s existing
syntax to support multiple green threads bound to a single lightweight processes
simply by passing several Runnable objects to the Thread constructor. (The green
threads would be cooperative with respect to each other, but could be preempted
by other green threads [Runnable objects] running on other lightweight processes
[Thread objects]). For example, the following code would create a green thread for
each of the Runnable objects, and these green threads would share the lightweight
process represented by the Thread object.

new Thread(new My runnable object(), new My other runnable object());

The existing idiom of overriding Thread and implementing run() should still
work, but it should map to a single green thread bound to a lightweight process.
(The default run() method in the Thread class would effectively create a second
Runnable object internally.)

281

Chapter 10

Inter-Thread Coordination

More facilities should be added to the language to support inter-thread communi-
cation. Right now, the PipedInputStream and PipedOutputStream classes can be used
for this purpose, but they are much too inefficient for most applications. I propose
the following additions to the Thread class:

1. Addawait_for start() method that blocks until a thread’s run() method
starts up. (It would be okay if the waiting thread was released just before
run() was called.) This way one thread could create one or more auxiliary
threads, and then be assured that the auxiliary threads were running
before the creating thread continued with some operation.

2. Add (to the Object class) $send(Object o) and Object=$receive() methods
that would use an internal blocking queue to pass objects between threads.
The blocking queue would be created automatically as a side effect of the
first $send() call. The $send() call would enqueue the object; the $receive()
call would block until an object was enqueued, and then return that
object. Variants on these methods would support timeouts on both the
enqueue and dequeue operations: $send(Object o, long timeout) and
$receive(long timeout).

Internal Support for Reader/Writer Locks

The notion of a reader/writer lock should be built into Java. To remind you, a reader-
writer lock enforces the rule that multiple threads can simultaneously access an
object, but only one thread at a time can modify the object, and modifications can-
not go on while accesses are in progress. The syntax for a reader/writer lock can be
borrowed from that of the synchronized keyword:

static Object global resource;
/...

public void f()
{
$reading(global resource)
{ // While in this block, other threads requesting read
// access to global resource will get it, but threads
// requesting write access will block.

282

IfI Were King: Fixing Java’s Threading Problems

public void g()

{
$writing(global resource)
// Blocks until all ongoing read or write operations on
// global resource are complete. No read or write
// operation or global resource can be initiated while
// within this block.
}
}

public $reading void f()
{ 7/ just like $reading(this)...
}

public $writing void g()
{ /7 just like $writing(this)...
}

Access to Partially Constructed Objects
Should Be Illegal

The JLS currently permits access to a partially created object. For example, a thread
created within a constructor can access the object being constructed, even though that
object might not be fully constructed. The behavior of the following code is undefined:

class Broken
{ private long x;

Broken()
{ new Thread()
{ public void run()

{ x=-1
}
}.start();
X = 0;

The thread that sets x to —1 can run in parallel to the thread that sets x to 0.
Consequently, the value of x is unpredictable.

One possible solution to this problem is to require that the run() methods of
threads started from within a constructor not execute until that constructor returns,
even if the thread created by the constructor is of higher priority than the one that
called new. That is, the start() request must be deferred until the constructor returns.

Alternatively, Java could permit the synchronization of constructors. In other
words, the following code (which is currently illegal) would work as expected:

283

Chapter 10

284

class Illegal
{ private long x;

synchronized Broken()
{ new Thread()
{ public void run()
{ synchronized(Illegal.this)

I think that the first approach is cleaner than the second one, but it is admit-
tedly harder to implement.

Volatile Should Always Work as Expected

The compiler and JVM are both permitted to shuffle around your code, provided
that the semantics of the code doesn’'t change. For example, in the following source
code the assignment to first might be made after the assignment to second, in
which case the g() method, which uses a test on first to decide what to pass to
some_method() won't work correctly. The value false might be passed to some_method().

class Broken

{
volatile boolean first
volatile boolean second

false;;
false;;

public void f()

{ first = true;
second = true;

}

public void g()
{ if(second)

Some_class.some_method(first);
}

}

This code movement is desirable because some optimizations (such as loop-
invariant code motion) require it. Nonetheless, it makes the non-synchronized use of
volatile rather risky. One possible solution is to require that if a method accesses sev-
eral volatile fields in sequence, that the fields always be accessed in declaration order.
This is a really tough one to implement, but would probably be worth the trouble.

IfI Were King: Fixing Java’s Threading Problems

Access Issues

The lack of good access control makes threading more difficult than necessary.
Often, methods don't have to be thread safe if you can guarantee that they be called
only from synchronized subsystems. I'd tighten up Java’s notion of access privilege
as follows:

1. Require explicit use of the package keyword to specify package access.
I think that the very existence of a default behavior is a flaw in any com-
puter language, and I am mystified that a default access privilege even
exists (and am even more mystified that the default is “package” rather
than “private”). Java doesn’t use defaults anywhere else. Even though the
requirement for an explicit package specifier would break existing code, it
would make that code a lot easier to read and could eliminate whole
classes of potential bugs (if the the access privilege had been omitted in
error rather than deliberately, for example).

2. Reintroduce private protected, which works just like protected does now,
but does not permit package access.

3. Permit the syntax private private to specify “implementation access:”
private to all outside objects, even objects of the same class as the current
object. The only reference permitted to the left of the (implicit or explicit)
dot is this.

4. Extend the syntax of public to grant access to specific classes. For example,
the following code would permit objects of class Fred to call some _method(),
but the method would be private with respect to all other classes of objects.

public(Fred) void some method()

{
}

This proposal is different from the C++ “friend” mechanism, which grants
a class full access to all private parts of another class. Here, I'm suggesting
a tightly controlled access to a limited set of methods. This way one class
could define an interface to another class that would be invisible to the
rest of the system.

5. Require all field definitions to be private unless they reference truly immu-
table objects or define static final primitive types. Directly accessing the
fields of a class violates two basic principles of OO design: abstraction and
encapsulation. From the threading perspective, allowing direct access to

285

Chapter 10

fields just makes it easier to inadvertently have non-synchronized access to
afield.

6. Add the $property keyword: Objects tagged in this way are accessible to a
“bean box” application that is using the introspection APIs defined in the
Class class, but otherwise works identically to private private. The $property
attribute should be applicable to both fields and methods so that existing
JavaBean getter/setter methods could be easily defined as properties.

Immutability

The notion of immutability (an object whose value cannot change once it’s created)
is invaluable in multithreaded situations since read-only access to immutable
objects doesn't have to be synchronized. Java’s implementation of immutability
isn't tight enough for two reasons:

1. Itis possible for an immutable object be accessed before its fully created,
and this access might yield an incorrect value for some field.

2. The definition of immutable (a class, all of whose fields are final) is too
loose: Objects addressed by final references can indeed change state,
even though the reference itself cannot change state.

The first problem is related to the access-to-partially-constructed-objects
problem discussed above.

The second problem can be solved by requiring that final references point to
immutable objects. That is, an object is really immutable only if all of its fields are
final and all of the fields of any referenced objects are final as well. In order not to
break existing code, this definition could be enforced by the compiler only when
a class is explicitly tagged as immutable as follows:

$immutable public class Fred

{
// all fields in this class must be final, and if the
// field is a reference, all fields in the referenced
// class must be final as well (recursively).
static int x constant = 0; // use of "final® is optional when $immutable
// 1is present.
}

Given the $immutable tag, the use of final in the field definitions could be optional.
Finally, a bug in the Java compiler makes it impossible to reliably create immuta-
ble objects when inner classes are on the scene. When a class has nontrivial inner

286

IfI Were King: Fixing Java’s Threading Problems

classes (as most of mine do), the compiler often incorrectly prints the error message:
“Blank final variable ‘name may not have been initialized. It must be assigned a
value in an initializer, or in every constructor,” even though the blank final is
indeed initialized in every constructor. This bug has been in the compiler since
inner classes were first introduced in version 1.1, and at this writing (three years
later—May 2000) the bug is still there. It's about time that this bug was fixed.

Instance-Level Access of Class-lLevel Fields

In addition to access privileges, there is also the problem that both class-level
(static) methods and instance (non-static) methods can directly access class-
level (static) fields. This access is dangerous because synchronizing the instance
method doesn't grab the class-level lock, so a synchronized static method can
access the class field at the same time as a synchronized instance method. The obvi-
ous solution to this problem is to require that non-immutable static fields be
accessed from instance methods via static accessor methods. This requirement
would mandate both compile and run-time checks, of course. Under these guide-
lines, the following code would be illegal:

class Broken

{
static long x;
synchronized static void f()
{ x=o0;
}
synchronized void g()
{ x=-1
}
1

because f() and g() can run in parallel and modify x simultaneously (with unde-
fined results). Remember, there are two locks here: the static method acquires the
lock associated with the Class object and the non-static method acquires the lock
associated with the instance. The compiler should either require the following
structure when accessing non-immutable static fields from instance methods:

class Broken

{

static long x;

synchronized private static accessor(long value)
{ x = value;

}

287

Chapter 10

288

synchronized static void f()
{ x=0;

}

synchronized void g()
{ accessor(-1);

}
}

or the compiler should require the use of a reader/writer lock:

class Broken

{

static long x;

synchronized static void f()
{ S$writing(x){ x =0 };
}

synchronized void g()
{ $writing(x){ x = -1 };
}

}

Alternatively—and this is the ideal solution—the compiler should automati-
cally synchronize access to non-immutable static fields with a reader/writer lock
so that the programmer wouldn’t have to worry about it.

Singleton Destruction

The singleton-destruction problem discussed in Chapter 7 is a serious one. The
best solution is to introduce the $singleton tag to the class definition. The Singleton
creation would then be handled automatically by the system. For example, if you
defined a class as follows:

$singleton class Fred
{ 7/7...
}

then all calls to new Fred() would return a reference to the same object, and that
object would not be created until the first call to new Fred(). Moreover, the language
should guarantee that the finalizer method of a $singleton object will always be
called as part of the JVM shut-down process.

IfI Were King: Fixing Java’s Threading Problems

Abrupt Shut Down of Daemon Threads

Daemon threads are shut down abruptly when all the non-daemon threads termi-
nate. This is a problem when the daemon has created some sort of global resource
(such as a database connection or a temporary file), but hasn't closed or destroyed
that resource when it is terminated.

I'd solve that problem by making the rule that the JVM will not shut down the
application if any:

1. non-daemon threads are running, or

2. daemon threads are executing a synchronized method or synchronized
block of code.

The daemon thread would be subject to abrupt termination as soon as it left
the synchronized block or synchronized method.

Bring Back the stop(), suspend(), and resume() Methods

This one may not be possible for practical reasons, but I'd like stop() not to be dep-
recated [in both Thread and ThreadGroup]. I would change the semantics so that
calling stop() wouldn't break your code, however: The problem with stop(), you'll
remember, is that stop() gives up any locks when the thread terminates, thereby
potentially leaving the objects that the thread is working on in an unstable (partially
modified) state. These objects can nonetheless be accessed since the stopped
thread has released its lock on the object. This problem can be solved by redefining
the behavior of stop() such that the thread would terminate immediately only if it is
holding no locks. If it is holding locks, I'd like the thread to be terminated immediately
after releasing the last one. You could implement this behavior with a mechanism
similar to an exception toss. The stopped thread would set a flag that would be tested
immediately after exiting all synchronized blocks. If the flag was set, an implicit
exception would be thrown, but the exception would not be catchable and would
not cause any output to be generated when the thread terminated. Note that
Microsoft's NT operating system doesn’'t handle an abrupt externally implied stop
very well. (It doesn’t notify dynamic-link libraries of the stop, so systemwide
resource leaks can develop.) That’s why I'm recommending an exception-like
approach that simply causes run() to return.

The practical problem with this exception-style approach is that you'd have
insert code to test the “stopped” flag at the end of every synchronized block, and
this extra code would both slow down the program and make it larger. Another
approach that comes to mind is to make stop() implement a “lazy” stop in which
the thread terminates the next time it calls wait() oryield().I'd also add isStopped()
and stopped() methods to Thread [which would work much like isInterrupted()

289

Chapter 10

290

and interrupted(), but would detect the “stop-requested” state.] This solution isn’t
as universal as the first, but is probably workable and wouldn't have the overhead.

The suspend() and resume () methods should just be put back into Java. They're
useful, and I don't like being treated like a kindergartener: Removing them simply
because they are potentially dangerous—a thread can be holding a lock when sus-
pended—is insulting. Let me decide whether or not I want to use them. Sun could
always make it a run-time exception for suspend() to be called if the receiving thread is
holding any locks, or better yet, defer the actual suspension until the thread gives
up its locks.

Blocking I/0 Should Work Correctly

You should be able to interrupt any blocking operation, not just just wait() and
sleep().Idiscussed this issue in the context of sockets in Chapter 2, but right now,
the only way to interrupt a blocking I/O operation on a socket is to close the socket,
and there’s no way to interrupt a blocking I/O operation on a file. Once you initiate
aread request, for example, the thread is blocked until it actually reads something.
Even closing the file handle does not break you out of the read operation.

Moreover, your program must be able to time out of a blocking I/0 operation.
All objects on which blocking operations can occur (such as InputStream objects)
should support a method like this:

InputStream s = ...;
s.set_timeout(1000);

(this is the equivalent to the Socket class’s setSoTimeout (time) method. Similarly,
you should be able to pass a timeout into the blocking call as an argument.

The ThreadGroup Class

ThreadGroup should implement all the methods of Thread that can change a thread’s
state. I particularly want it to implement join() so that I can wait for all threads in
the group to terminate.

Wrapping Up

So that’s mylist. As I said in the title of this chapter: if I were king... (sigh). I'm hoping
that some of these changes (or their equivalent) will eventually migrate into the
language. I really think that Java is a great programming language; but I also think
that Java’s threading model simply wasn't thought out well enough, and that’s a pity.
Java is evolving, however, so there is a path to follow to improve the situation.

IfI Were King: Fixing Java’s Threading Problems

This section also wraps up the book. Programming threads properly is difficult
but rewarding, simultaneously frustrating and fun. I hope that the code I've offered
here will take some of the frustration out of the process. As I said in the Preface, the
code is not in the public domain, but I'm happy to grant permission to anyone to
use it in exchange for a mention (of both my name and URL) in your “about box,”
your “startup” screen, or if you don't have either in your program, your documen-
tation. 'm also really interested in any bugs you find (please send me email at
bugs@holub.com). The most recent version of the code is available on my Web site
http:/lwww.holub.com.

Have fun.

291

