
Taming Java Threads

ALLEN HOLUB

�����������	
�����
���	�������������������������



Taming Java Threads
Copyright ©2000 by Allen I. Holub

All rights reserved. No part of this work maybe reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, recording, or by any information storage 
or retrieval system, without the prior written permission of the copyright owner and the publisher. 

ISBN (pbk): 1-893115-10-0 

Printed and bound in the United States of America 12345678910 

Trademarked names may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, we use the names only in an editorial fashion and to the 
benefit of the trademark owner, with no intention of infringement of the trademark. 

Copy Editor: Tom Robinson, TSI Graphics

Artist: Warren Fischbach, TSI Graphics

Compositor and Pretty Good Vorpal Player: Susan Glinert

Indexer: Nancy Guenther

Project Manager: Grace Wong

Cover and Interior Design: Derek Yee Design 

Distributed to the book trade worldwide by Springer-Verlag New York, Inc. 175 Fifth Avenue, New 
York, NY 10010 

In the United States, phone 1-800-SPRINGER; orders@springer-ny.com

www.springer-ny.com 

For information on translations, please contact Apress directly: Apress, 901 Grayson Street, 
Suite 204, Berkeley, CA  94710

Phone: 510-549-5930, Fax: 510-549-5939, info@apress.com, www.apress.com 

The information in this book is distributed on an “As Is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author nor Apress shall 
have any liability to any person or entity with respect to any loss or damage caused or alleged to 
be caused directly or indirectly by the information contained in this work. 

�����������	
������
���	�������������������������



275

CHAPTER 10

If I Were King: 
Fixing Java’s 

Threading Problems

IN A WAY, THE PREVIOUS CHAPTERS are a litany of everything wrong with the Java thread-
ing model and a set of Band-Aid solutions to those problems. I call the classes 
Band-Aids because the problems addressed by the classes should really be part of 
the syntax of the Java language. Using syntactic methods rather than libraries can 
give you better code in the long run since the compiler and JVM working together can 
perform optimizations that would be difficult or impossible with a library approach. 

In this chapter, I want to approach the threading problem in a more positive 
light by suggesting a few changes to Java that would provide solutions to those 
problems. These proposals are very tentative—they are just one person’s thoughts 
on the matter, and they would need a lot of work and peer review before being via-
ble. But they’re a start. The proposals are also rather bold. Several people have 
suggested subtle, and minimal, changes to the Java-Language Specification (JLS) 
to fix currently ambiguous JVM behavior, but I want more sweeping improvement. 

On a practical note, many of my proposals involve the introduction of new key-
words to the language. Though the usual requirement that you don’t want to break 
existing code is certainly valid, if the language is not to stagnate and thus become 
obsolete, it must be possible to introduce keywords. In order to introduce keywords 
that won’t conflict with existing identifiers, I’ve deliberately used a character ($) 
which is illegal in an identifier. (For example, $task rather than task). A compiler 
command-line switch could perhaps enable variants on these keywords that 
would omit the dollar sign. 

The Task

The fundamental problem with Java’s threading model is the fact that it is not in the 
least bit object oriented. A thread is effectively nothing but a procedure [run()] 
which calls other procedures. Notions of objects, asynchronous versus synchronous 
messages, and the like, are simply not addressed. 

�����������	
���
�������	�������������������������



Chapter 10

276

One solution to this problem is the Active_object class presented in Chapter 9, 
but a better solution would be to modify the language itself to support asynchro-
nous messaging directly. The asynchronous messages running on an Active Object 
are effectively synchronous with respect to each other. Consequently, you can elimi-
nate much of the synchronization hassles required to program in a more procedural 
model by using an Active Object. 

My first proposal, then, is to incorporate Active Objects into the language itself 
by incorporating the notion of a task into Java. A task has a built-in Active-Object 
dispatcher, and takes care of all the mechanics of handling asynchronous messages 
automatically. You would define a task exactly as you would a class, except that the 
asynchronous modifier could be applied to methods of the task to indicate that 
those methods should execute in the background on the Active-Object dispatcher. 
To see the parallels with the class-based approach discussed in Chapter 9, consider 
the following file I/O class, which uses my Active_object to implement an asyn-
chronous write operation: 

    interface Exception_handler
    {   void handle_exception( Throwable e );
    }

    class File_io_task
    {   Active_object dispatcher = new Active_object();

        final OutputStream      file;
        final Exception_handler handler;

        File_io_task( String file_name, Exception_handler handler )
                                                throws IOException
        {   file = new FileOutputStream( file_name );
            this.handler = handler;
        }

        public void write( final byte[] bytes )
        {
            dispatcher.dispatch
            (   new Runnable()
                {   public void run()
                    {
                        try
                        {   byte[] copy new byte[ bytes.length ];
                            System.arrayCopy(   bytes,  0,
                                                copy,   0,
                                                bytes.length );
                            file.write( copy );
                        }
                        catch( Throwable problem )
                        {   handler.handle_exception( problem );
                        }
                    }

�����������	
���
�������	�������������������������



If I Were King: Fixing Java’s Threading Problems

277277

                }
            );
        }
    }

All write requests are queued up on the Active-Object’s input queue with 
a dispatch() call. Any exceptions that occur while processing the asynchronous 
message in the background are handled by the Exception_handler object that’s 
passed into the File_io_task’s constructor. You would write to the file like this: 

    File_io_task io =   new File_io_task
                        ( "foo.txt"
                            new Exception_handler
                            {   public void handle( Throwable e )
                                {   e.printStackTrace();
                                }
                            }
                        );
    //...
    io.write( some_bytes );

Introducing the $task and $asynchronous keywords to the language lets you 
rewrite the previous code as follows: 

    $task File_io $error{ $.printStackTrace(); }
    {
        OutputStream file;

        File_io( String file_name ) throws IOException
        {   file = new FileOutputStream( file_name );
        }

        asynchronous public write( byte[] bytes )
        {   file.write( copy );
        }
    }

Note that asynchronous methods don’t specify return values because the handler 
returns immediately, long before the requested operation completes. Consequently, 
there is no reasonable value that could be returned. The $task keyword should 
work exactly like class with respect to the derivation model: A $task could imple-
ment interfaces and extend classes and other tasks. Methods marked with the 
asynchronous keyword are handled by the $task in the background. Other methods 
would work synchronously, just as they do in classes. 

The $task keyword can be modified with an optional $error clause (as shown), 
which specifies a default handler for any exceptions that are not caught by the 
asynchronous methods themselves. I’ve used $ to represent the thrown exception 
object. If no $error clause is specified, then a reasonable error message (and prob-
ably stack trace) is printed. 

�����������	
���

������	�������������������������



Chapter 10

278

Note that the arguments to the asynchronous method must be immutable to be 
thread safe. The run-time system should take care of any semantics required to 
guarantee this immutability. (A simple copy is often not sufficient.) All task objects 
would have to support a few pseudo-messages as well:     

In addition to the usual modifiers (such as public), the task keyword would 
accept the $pooled(n) modifier, which would cause the task to use a thread pool 
rather than a single thread to run the asynchronous requests. The n specifies the 
desired pool size; the pool can grow if necessary, but should deflate to the original 
size when the additional threads aren’t required. The server-side socket handler 
that I used as an example of thread-pool usage in Chapter 8 could be rewritten in 
the proposed syntax as follows: 

    abstract $pooled(10) $task Socket_server
    {   
        public asynchronous listen(ServerSocket server, Client_handler client)
        {   while(true)
            {   client.handle( server.accept() );
            }
        }

        interface Client_handler
        {   asynchronous void handle( Socket s );
        }
    }

    //...

    Socket_server listener = new Socket_server();

    listener.listen (   new ServerSocket(some_port),
                        new Socket_server.Client_handler()
                        { public asynchronous void handle( Socket s )
                          { // client-handling code goes here.
                          }
                        }
                      );

The arguments to listen() can just as easily be constructor arguments, of course. 

some_task.close() Any asynchronous messages sent after this call 
is issued would throw a TaskClosedException. 
Messages waiting on the Active-Object queue 
will be serviced, however.

some_task.join() The caller blocks until the task is closed and all 
pending requests are processed.

�����������	
���
�������	�������������������������



If I Were King: Fixing Java’s Threading Problems

279279

Improvements to synchronized

Though a $task eliminates the need for synchronization in many situations, all 
multithreaded systems cannot be implemented solely in terms of tasks. Consequently, 
the existing threading model needs to be updated as well. The synchronized keyword 
has several flaws: 

1. You cannot specify a timeout value. 

2. You cannot interrupt a thread that is waiting to acquire a lock. 

3. You cannot safely acquire multiple locks. (Multiple locks should always be 
acquired in the same order.) 

You can solve these problems by extending the syntax of synchronized both to 
support a list of multiple arguments and to accept a timeout specification (speci-
fied in brackets, next): Here’s the syntax that I’d like:  

A timeout is necessary, but not sufficient, for making the code robust. You 
also need to be able to terminate the wait to acquire the lock externally. Conse-
quently, the interrupt() method, when sent to a thread that is waiting to acquire 
a lock, should break the waiting thread out of the acquisition block by tossing a 
SynchronizationException object. This exception should be a RuntimeException 
derivative so that the it would not have to be handled explicitly. 

The main problem with these proposed modifications to the synchronized 
syntax is that they would require changes at the byte-code level, which currently 
implements synchronized using enter-monitor and exit-monitor instructions. 
These instructions take no arguments, so the byte-code definition would have to 
be extended to support the acquisition of multiple locks. This change is no more 
serious than the changes added to the JVM in Java 2, however, and would be back-
ward compatible with existing Java code. 

synchronized(x && y && z) Acquire the locks on the x, y, 
and z objects.

synchronized(x || y || z) Acquire the locks on the x, y, 
or z objects.

synchronized( (x && y ) || z) Obvious extension of the 
previous code.

synchronized (. . .) [1000] Acquire designated locks 
with a one-second timeout.

synchronized [1000] f() {. . .} Acquire the lock for this, but 
with a one-second timeout.

�����������	
���
�������	�������������������������



Chapter 10

280

Improvements to wait() and notify()

The wait()/notify() system also has problems: 

1. There is no way to detect whether wait() has returned normally or 
because of a timeout. 

2. There is no way to implement a traditional condition variable that 
remains in a “signaled” state. 

3. Nested-monitor lockout can happen too easily 

The timeout-detection problem is easily solved by redefining wait() to return 
a boolean (rather than void). A true return value would indicate a normal return, false 
would indicate a timeout. 

The notion of a state-based condition variable is an important one: The vari-
able can be set to a false state in which waiting threads will block until the variable 
entered a true state, and any thread that waits on a true condition variable is released 
immediately. [The wait() call won’t block in this case.] You can support this func-
tionality by extending the syntax of notify() as follows:  

The nested-monitor-lockout problem is thornier, and I don’t have an easy 
solution. One possible solution is for wait() to release all the locks that the current 
thread has acquired in the opposite order of acquisition and then reacquire them 
in the original acquisition order when when the wait is satisfied. I can imagine that 
code that leveraged this behavior would be almost impossible for a human being 
to figure out, however, so I don’t think that this is really a viable solution. If any-
body has any ideas, send me email (aih@holub.com). 

I’d also like to be able to wait for complex conditions to become true. For example: 

    [a && [b || c]].wait();

where a, b, and c are any Object. I’ve used brackets rather than parentheses to make 
it easier for the compiler to distinguish this sort of expression from an arithmetic 
expression, but I can think of alternative syntaxes that would serve the same purpose. 

notify(); Waiting threads without changing the state of the 
underlying condition variable.

notify(true); Set the condition variable’s state to true and release 
any waiting threads. Subsequent calls to wait() 
won’t block.

notify(false); Set the condition variable’s state to false (subsequent 
calls to wait() or wait(true) will block.

�����������	
�����������	�������������������������



If I Were King: Fixing Java’s Threading Problems

281281

Fixing the Thread Class

The ability to support both preemptive and cooperative threads is essential in 
some server applications, especially if you intend to squeeze maximum perfor-
mance out of the system. I suggest that Java has gone too far in simplifying the 
threading model, and that the Posix/Solaris notion of a “green thread” and a “light-
weight process” that I discussed in Chapter 1 should be supported by Java. This means, 
of course, that some JVM implementations (such as NT implementations) would 
have to simulate cooperative threads internally, and other JVMs would have to sim-
ulate preemptive threading, but adding these extensions to the JVM is reasonably 
easy to do. 

A Java thread, then, should always be preemptive. That is, a Java thread should 
work much like a Solaris lightweight process. The Runnable interface can be used to 
define a a Solaris-like green thread that must explicitly yield control to other green 
threads running on the same lightweight process. For example, the current syntax of: 

    class My_thread implements Runnable
    {   public void run(){ /*...*/ }
    }

    new Thread( new My_thread );

would effectively create a green thread for the Runnable object and bind that green 
thread to the lightweight process represented by the Thread object. This change in 
implementation is transparent to existing code since the effective behavior is the 
same as at present. 

By thinking of Runnable objects as green threads, you can expand Java’s existing 
syntax to support multiple green threads bound to a single lightweight processes 
simply by passing several Runnable objects to the Thread constructor. (The green 
threads would be cooperative with respect to each other, but could be preempted 
by other green threads [Runnable objects] running on other lightweight processes 
[Thread objects]). For example, the following code would create a green thread for 
each of the Runnable objects, and these green threads would share the lightweight 
process represented by the Thread object. 

new Thread( new My_runnable_object(), new My_other_runnable_object() );

The existing idiom of overriding Thread and implementing run() should still 
work, but it should map to a single green thread bound to a lightweight process. 
(The default run() method in the Thread class would effectively create a second 
Runnable object internally.) 

�����������	
�����������	�������������������������



Chapter 10

282

Inter-Thread Coordination

More facilities should be added to the language to support inter-thread communi-
cation. Right now, the PipedInputStream and PipedOutputStream classes can be used 
for this purpose, but they are much too inefficient for most applications. I propose 
the following additions to the Thread class: 

1. Add a wait_for_start() method that blocks until a thread’s run() method 
starts up. (It would be okay if the waiting thread was released just before 
run() was called.) This way one thread could create one or more auxiliary 
threads, and then be assured that the auxiliary threads were running 
before the creating thread continued with some operation. 

2. Add (to the Object class) $send(Object o) and Object=$receive() methods 
that would use an internal blocking queue to pass objects between threads. 
The blocking queue would be created automatically as a side effect of the 
first $send() call. The $send() call would enqueue the object; the $receive() 
call would block until an object was enqueued, and then return that 
object. Variants on these methods would support timeouts on both the 
enqueue and dequeue operations: $send(Object o, long timeout) and 
$receive(long timeout).

Internal Support for Reader/Writer Locks

The notion of a reader/writer lock should be built into Java. To remind you, a reader-
writer lock enforces the rule that multiple threads can simultaneously access an 
object, but only one thread at a time can modify the object, and modifications can-
not go on while accesses are in progress. The syntax for a reader/writer lock can be 
borrowed from that of the synchronized keyword: 

    static Object global_resource;

    //...

    public void f()
    {
        $reading( global_resource )
        {   // While in this block, other threads requesting read
            // access to global_resource will get it, but threads
            // requesting write access will block.
        }
    }

�����������	
�����������	�������������������������



If I Were King: Fixing Java’s Threading Problems

283283

    public void g()
    {
        $writing( global_resource )
        {   // Blocks until all ongoing read or write operations on
            // global_resource are complete. No read or write
            // operation or global_resource can be initiated while
            // within this block.
        }
    }

    public $reading void f()
    {   // just like $reading(this)...
    }

    public $writing void g()
    {   // just like $writing(this)...
    }

Access to Partially Constructed Objects 
Should Be Illegal

The JLS currently permits access to a partially created object. For example, a thread 
created within a constructor can access the object being constructed, even though that 
object might not be fully constructed. The behavior of the following code is undefined: 

    class Broken
    {   private long x;

        Broken()
        {   new Thread()
            {   public void run()
                {   x = -1;
                }
            }.start();

            x = 0;
        }
    }

The thread that sets x to –1 can run in parallel to the thread that sets x to 0. 
Consequently, the value of x is unpredictable. 

One possible solution to this problem is to require that the run() methods of 
threads started from within a constructor not execute until that constructor returns, 
even if the thread created by the constructor is of higher priority than the one that 
called new. That is, the start() request must be deferred until the constructor returns. 

Alternatively, Java could permit the synchronization of constructors. In other 
words, the following code (which is currently illegal) would work as expected: 

�����������	
�����������	�������������������������



Chapter 10

284

    class Illegal
    {   private long x;

        synchronized Broken()
        {   new Thread()
            {   public void run()
                {   synchronized( Illegal.this )
                    {
                        x = -1;
                    }
                }
            }.start();

            x = 0;
        }
    }

I think that the first approach is cleaner than the second one, but it is admit-
tedly harder to implement. 

Volatile Should Always Work as Expected

The compiler and JVM are both permitted to shuffle around your code, provided 
that the semantics of the code doesn’t change. For example, in the following source 
code the assignment to first might be made after the assignment to second, in 
which case the g() method, which uses a test on first to decide what to pass to 
some_method() won’t work correctly. The value false might be passed to some_method(). 

    class Broken
    {
        volatile boolean first  = false;;
        volatile boolean second = false;;

        public void f()
        {   first  = true;
            second = true;
        }

        public void g()
        {   if( second )
                Some_class.some_method( first );
        }
    }

This code movement is desirable because some optimizations (such as loop-
invariant code motion) require it. Nonetheless, it makes the non-synchronized use of 
volatile rather risky. One possible solution is to require that if a method accesses sev-
eral volatile fields in sequence, that the fields always be accessed in declaration order. 
This is a really tough one to implement, but would probably be worth the trouble. 

�����������	
�����������	�������������������������



If I Were King: Fixing Java’s Threading Problems

285285

Access Issues

The lack of good access control makes threading more difficult than necessary. 
Often, methods don’t have to be thread safe if you can guarantee that they be called 
only from synchronized subsystems. I’d tighten up Java’s notion of access privilege 
as follows: 

1. Require explicit use of the package keyword to specify package access. 
I think that the very existence of a default behavior is a flaw in any com-
puter language, and I am mystified that a default access privilege even 
exists (and am even more mystified that the default is “package” rather 
than “private”). Java doesn’t use defaults anywhere else. Even though the 
requirement for an explicit package specifier would break existing code, it 
would make that code a lot easier to read and could eliminate whole 
classes of potential bugs (if the the access privilege had been omitted in 
error rather than deliberately, for example). 

2. Reintroduce private protected, which works just like protected does now, 
but does not permit package access. 

3. Permit the syntax private private to specify “implementation access:” 
private to all outside objects, even objects of the same class as the current 
object. The only reference permitted to the left of the (implicit or explicit) 
dot is this. 

4. Extend the syntax of public to grant access to specific classes. For example, 
the following code would permit objects of class Fred to call some_method(), 
but the method would be private with respect to all other classes of objects. 

    public(Fred) void some_method()
    {
    }

This proposal is different from the C++ “friend” mechanism, which grants 
a class full access to all private parts of another class. Here, I’m suggesting 
a tightly controlled access to a limited set of methods. This way one class 
could define an interface to another class that would be invisible to the 
rest of the system. 

5. Require all field definitions to be private unless they reference truly immu-
table objects or define static final primitive types. Directly accessing the 
fields of a class violates two basic principles of OO design: abstraction and 
encapsulation. From the threading perspective, allowing direct access to 

�����������	
�����������	�������������������������



Chapter 10

286

fields just makes it easier to inadvertently have non-synchronized access to 
a field. 

6. Add the $property keyword: Objects tagged in this way are accessible to a 
“bean box” application that is using the introspection APIs defined in the 
Class class, but otherwise works identically to private private. The $property 
attribute should be applicable to both fields and methods so that existing 
JavaBean getter/setter methods could be easily defined as properties. 

Immutability

The notion of immutability (an object whose value cannot change once it’s created) 
is invaluable in multithreaded situations since read-only access to immutable 
objects doesn’t have to be synchronized. Java’s implementation of immutability 
isn’t tight enough for two reasons: 

1. It is possible for an immutable object be accessed before its fully created, 
and this access might yield an incorrect value for some field. 

2. The definition of immutable (a class, all of whose fields are final) is too 
loose: Objects addressed by final references can indeed change state, 
even though the reference itself cannot change state. 

The first problem is related to the access-to-partially-constructed-objects 
problem discussed above. 

The second problem can be solved by requiring that final references point to 
immutable objects. That is, an object is really immutable only if all of its fields are 
final and all of the fields of any referenced objects are final as well. In order not to 
break existing code, this definition could be enforced by the compiler only when 
a class is explicitly tagged as immutable as follows: 

    $immutable public class Fred
    {   
        // all fields in this class must be final, and if the
        // field is a reference, all fields in the referenced
        // class must be final as well (recursively).

        static int x constant = 0;  // use of `final` is optional when $immutable
                                    // is present.
    }

Given the $immutable tag, the use of final in the field definitions could be optional. 
Finally, a bug in the Java compiler makes it impossible to reliably create immuta-

ble objects when inner classes are on the scene. When a class has nontrivial inner 

�����������	
�����������	�������������������������



If I Were King: Fixing Java’s Threading Problems

287287

classes (as most of mine do), the compiler often incorrectly prints the error message: 
“Blank final variable ‘name’ may not have been initialized. It must be assigned a 
value in an initializer, or in every constructor,” even though the blank final is 
indeed initialized in every constructor. This bug has been in the compiler since 
inner classes were first introduced in version 1.1, and at this writing (three years 
later—May 2000) the bug is still there. It’s about time that this bug was fixed. 

Instance-Level Access of Class-Level Fields

In addition to access privileges, there is also the problem that both class-level 
(static) methods and instance (non-static) methods can directly access class-
level (static) fields. This access is dangerous because synchronizing the instance 
method doesn’t grab the class-level lock, so a synchronized static method can 
access the class field at the same time as a synchronized instance method. The obvi-
ous solution to this problem is to require that non-immutable static fields be 
accessed from instance methods via static accessor methods. This requirement 
would mandate both compile and run-time checks, of course. Under these guide-
lines, the following code would be illegal: 

    class Broken
    {
        static long x;

        synchronized static void f()
        {   x = 0;
        }

        synchronized void g()
        {   x = -1;
        }
    };

because f() and g() can run in parallel and modify x simultaneously (with unde-
fined results). Remember, there are two locks here: the static method acquires the 
lock associated with the Class object and the non-static method acquires the lock 
associated with the instance. The compiler should either require the following 
structure when accessing non-immutable static fields from instance methods: 

    class Broken
    {
        static long x;

        synchronized private static accessor( long value )
        {   x = value;
        }

�����������	
����
������	�������������������������



Chapter 10

288

        synchronized static void f()
        {   x = 0;
        }

        synchronized void g()
        {   accessor( -1 );
        }
    }

or the compiler should require the use of a reader/writer lock: 

    class Broken
    {
        static long x;

        synchronized static void f()
        {   $writing(x){ x = 0 };
        }

        synchronized void g()
        {   $writing(x){ x = -1 };
        }
    }

Alternatively—and this is the ideal solution—the compiler should automati-
cally synchronize access to non-immutable static fields with a reader/writer lock 
so that the programmer wouldn’t have to worry about it. 

Singleton Destruction

The singleton-destruction problem discussed in Chapter 7 is a serious one. The 
best solution is to introduce the $singleton tag to the class definition. The Singleton 
creation would then be handled automatically by the system. For example, if you 
defined a class as follows: 

    $singleton class Fred
    {   //...
    }

then all calls to new Fred() would return a reference to the same object, and that 
object would not be created until the first call to new Fred(). Moreover, the language 
should guarantee that the finalizer method of a $singleton object will always be 
called as part of the JVM shut-down process. 

�����������	
�����������	�������������������������



If I Were King: Fixing Java’s Threading Problems

289289

Abrupt Shut Down of Daemon Threads

Daemon threads are shut down abruptly when all the non-daemon threads termi-
nate. This is a problem when the daemon has created some sort of global resource 
(such as a database connection or a temporary file), but hasn’t closed or destroyed 
that resource when it is terminated. 

I’d solve that problem by making the rule that the JVM will not shut down the 
application if any:

1. non-daemon threads are running, or 

2. daemon threads are executing a synchronized method or synchronized 
block of code. 

The daemon thread would be subject to abrupt termination as soon as it left 
the synchronized block or synchronized method. 

Bring Back the stop(), suspend(), and resume() Methods

This one may not be possible for practical reasons, but I’d like stop() not to be dep-
recated [in both Thread and ThreadGroup]. I would change the semantics so that 
calling stop() wouldn’t break your code, however: The problem with stop(), you’ll 
remember, is that stop() gives up any locks when the thread terminates, thereby 
potentially leaving the objects that the thread is working on in an unstable (partially 
modified) state. These objects can nonetheless be accessed since the stopped 
thread has released its lock on the object. This problem can be solved by redefining 
the behavior of stop() such that the thread would terminate immediately only if it is 
holding no locks. If it is holding locks, I’d like the thread to be terminated immediately 
after releasing the last one. You could implement this behavior with a mechanism 
similar to an exception toss. The stopped thread would set a flag that would be tested 
immediately after exiting all synchronized blocks. If the flag was set, an implicit 
exception would be thrown, but the exception would not be catchable and would 
not cause any output to be generated when the thread terminated. Note that 
Microsoft’s NT operating system doesn’t handle an abrupt externally implied stop 
very well. (It doesn’t notify dynamic-link libraries of the stop, so systemwide 
resource leaks can develop.) That’s why I’m recommending an exception-like 
approach that simply causes run() to return. 

The practical problem with this exception-style approach is that you’d have 
insert code to test the “stopped” flag at the end of every synchronized block, and 
this extra code would both slow down the program and make it larger. Another 
approach that comes to mind is to make stop() implement a “lazy” stop in which 
the thread terminates the next time it calls wait() or yield(). I’d also add isStopped() 
and stopped() methods to Thread [which would work much like isInterrupted() 

�����������	
�����������	�������������������������



Chapter 10

290

and interrupted(), but would detect the “stop-requested” state.] This solution isn’t 
as universal as the first, but is probably workable and wouldn’t have the overhead. 

The suspend() and resume() methods should just be put back into Java. They’re 
useful, and I don’t like being treated like a kindergartener: Removing them simply 
because they are potentially dangerous—a thread can be holding a lock when sus-
pended—is insulting. Let me decide whether or not I want to use them. Sun could 
always make it a run-time exception for suspend() to be called if the receiving thread is 
holding any locks, or better yet, defer the actual suspension until the thread gives 
up its locks. 

Blocking I/O Should Work Correctly

You should be able to interrupt any blocking operation, not just just wait() and 
sleep(). I discussed this issue in the context of sockets in Chapter 2, but right now, 
the only way to interrupt a blocking I/O operation on a socket is to close the socket, 
and there’s no way to interrupt a blocking I/O operation on a file. Once you initiate 
a read request, for example, the thread is blocked until it actually reads something. 
Even closing the file handle does not break you out of the read operation. 

Moreover, your program must be able to time out of a blocking I/O operation. 
All objects on which blocking operations can occur (such as InputStream objects) 
should support a method like this: 

    InputStream s = ...;
    s.set_timeout( 1000 );

(this is the equivalent to the Socket class’s setSoTimeout(time) method. Similarly, 
you should be able to pass a timeout into the blocking call as an argument. 

The ThreadGroup Class

ThreadGroup should implement all the methods of Thread that can change a thread’s 
state. I particularly want it to implement join() so that I can wait for all threads in 
the group to terminate. 

Wrapping Up

So that’s my list. As I said in the title of this chapter: if I were king... (sigh). I’m hoping 
that some of these changes (or their equivalent) will eventually migrate into the 
language. I really think that Java is a great programming language; but I also think 
that Java’s threading model simply wasn’t thought out well enough, and that’s a pity. 
Java is evolving, however, so there is a path to follow to improve the situation. 

�����������	
�����������	�������������������������



If I Were King: Fixing Java’s Threading Problems

291291

This section also wraps up the book. Programming threads properly is difficult 
but rewarding, simultaneously frustrating and fun. I hope that the code I’ve offered 
here will take some of the frustration out of the process. As I said in the Preface, the 
code is not in the public domain, but I’m happy to grant permission to anyone to 
use it in exchange for a mention (of both my name and URL) in your “about box,” 
your “startup” screen, or if you don’t have either in your program, your documen-
tation. I’m also really interested in any bugs you find (please send me email at 
bugs@holub.com). The most recent version of the code is available on my Web site 
http://www.holub.com. 

Have fun. 

�����������	
�����������	�������������������������




