4. REFERENCES
de Boor, C. (1978).
A practical Guide to Splines
. New York: Springer-Verlag.
Chen, H.(1988).
Convergence rates for parametric components in a partly linear model.
Annals of Statistics
,
16
, 136-146.
Engle, R. F., Granger, C. W. J., Rice, J. & Weiss, A. (1986).
Semiparametric estimates of the relation between weather and electricity sales.
Journal of the American Statistical Association
,
81
, 310-320.
Green, P., Jennison, C. & Seheult, A. (1985)
.
Analysis of field experiments by least squares smoothing.
Journal of the Royal Statistical Society, Series B
,
47
, 299-315.
Gao, J. T., Hong, S.Y. & Liang, H. (1995).
Convergence rates of a class of estimates in partly linear models.
Acta Mathematica Sinica
,
38
, 658-669.
Hastie, T. J. & Tibshirani, R. J. (1990).
Generalized Additive Models
, Vol. 43 of
Monographs on Statistics and Applied Probability
, Chapman and Hall, London.
Heckman, N.E. (1986).
Spline smoothing in partly linear models.
Journal of the Royal Statistical Society, Series B
,
48
, 244-248.
Rice, J.(1986).
Convergence rates for partially splined models.
Statistics & Probability Letters
,
4
, 203-208.
Robinson, P.M.(1988).
Root-n-consistent semiparametric regression.
Econometrica
,
56
, 931-954.
Speckman, P. (1988).
Kernel smoothing in partial linear models.
Journal of the Royal Statistical Society, Series B
,
50
, 413-436.
Stone, J. C. (1985).
Additive regression and other nonparametric models.
Annals of Statistics
,
13
, 689-705.
MD*TECH
Method and Data Technologies
http://www.mdtech.de
mdtech@mdtech.de