4. REFERENCES

  1. de Boor, C. (1978).
    1. A practical Guide to Splines. New York: Springer-Verlag.
  2. Chen, H.(1988).
  3. Convergence rates for parametric components in a partly linear model. Annals of Statistics, 16, 136-146.
  4. Engle, R. F., Granger, C. W. J., Rice, J. & Weiss, A. (1986).
  5. Semiparametric estimates of the relation between weather and electricity sales. Journal of the American Statistical Association, 81, 310-320.
  6. Green, P., Jennison, C. & Seheult, A. (1985) .
  7. Analysis of field experiments by least squares smoothing. Journal of the Royal Statistical Society, Series B, 47, 299-315.
  8. Gao, J. T., Hong, S.Y. & Liang, H. (1995).
  9. Convergence rates of a class of estimates in partly linear models. Acta Mathematica Sinica, 38, 658-669.
  10. Hastie, T. J. & Tibshirani, R. J. (1990).
  11. Generalized Additive Models, Vol. 43 of Monographs on Statistics and Applied Probability, Chapman and Hall, London.
  12. Heckman, N.E. (1986).
  13. Spline smoothing in partly linear models. Journal of the Royal Statistical Society, Series B, 48, 244-248.
  14. Rice, J.(1986).
  15. Convergence rates for partially splined models. Statistics & Probability Letters, 4, 203-208.
  16. Robinson, P.M.(1988).
  17. Root-n-consistent semiparametric regression. Econometrica, 56, 931-954.
  18. Speckman, P. (1988).
  19. Kernel smoothing in partial linear models. Journal of the Royal Statistical Society, Series B, 50, 413-436.
  20. Stone, J. C. (1985).
  21. Additive regression and other nonparametric models. Annals of Statistics, 13, 689-705.


Method and Data Technologies   MD*TECH Method and Data Technologies
  http://www.mdtech.de  mdtech@mdtech.de