|
In this section we consider the linear model
z=read("westwood.dat") ; reads the data
z ; shows the data
x=z[,2] ; puts the x-data into x
y=z[,3] ; puts the y-data into y
gives as output
Contents of z [ 1,] 1 30 73 [ 2,] 2 20 50 [ 3,] 3 60 128 [ 4,] 4 80 170 [ 5,] 5 40 87 [ 6,] 6 50 108 [ 7,] 7 60 135 [ 8,] 8 30 69 [ 9,] 9 70 148 [10,] 10 60 132We use the quantlet
{beta,bse,bstan,bpval}=linreg(x,y)
; computes the linear regression and returns the
variables of beta, bse, bstan and bpval
beta ; shows the value of beta
gives the output
A N O V A SS df MSS F-test P-value
______________________________________________________________
Regression 13600.000 1 13600.000 1813.333 0.0000
Residuals 60.000 8 7.500
Total Variation 13660.000 9 1517.778
Multiple R = 0.99780
R^2 = 0.99561
Adjusted R^2 = 0.99506
Standard Error = 2.73861
PARAMETERS Beta SE StandB t-test P-value
______________________________________________________________
b[ 0,]= 10.0000 2.5029 0.0000 3.995 0.0040
b[ 1,]= 2.0000 0.0470 0.9978 42.583 0.0000
and
Contents of beta [1,] 10 [2,] 2As a result, we have the ANOVA (ANalysis Of VAriance) table and the parameters. The estimates
Let us now describe how to visualize these results.
In the left window we show
the regression result computed by
linreg.
In the right window we use the
quantlet
grlinreg
to get the graphical
object directly from the data set.
yq=(beta[1]+beta[2]*x[1:10]) ; creates a vector with the
; estimated values of y
data=sort(x~y) ; creates object with the data set
setmaskp(data,1,11,4) ; creates a graphical object for
; the data points
rdata=sort(x~yq) ; creates an object with yq
rdata=setmask(rdata,"reset","line","red","thin")
; sets the options for the
; regression function by linreg
regrdata=grlinreg(data,4) ; creates the same graphical
; object directly from the data
regrdata=setmask(regrdata,"reset","line","red","thin")
; sets options for the regression
; function by grlinreg
linregplot=createdisplay(1,2); creates display with 2 windows
show(linregplot,1,1,data,rdata)
; shows rdata in the 1st window
show(linregplot,1,2,data,regrdata)
; shows regrdata in the 2nd window
setgopt(linregplot,1,1,"title","linreg")
; sets the title of the 1st window
setgopt(linregplot,1,2,"title","grlinreg")
; sets the title of the 2nd window
|
This will produce the results visible in Figure 1.
We create a plot of the regression function by
grlinreg
if we are only interested in a graphical exploration
of the regression line.
A second tool for our simple linear regression problem is the generalized
least squares (GLS) method given by the quantlet
gls.
Here we only consider a model
We take the Westwood data again and assume that it has already been stored in
x and y using the unit matrix as weight matrix. This example is
stored in
regr2.xpl.
b=gls(x,y) ; computes the GLS fit and stores the
; coefficients in the variable b
b ; shows b
shows
Contents of b [1,] 2.1761As a result, we get the parameter b. In our case we find that
Note that we have got different results depending on the choice of the
method. This is not surprising, as
gls
ignores the absolute value
.
Now we also want to visualize this result.
yq=b*x[1:10] ; creates a vector with the
; estimated values
data=sort(x~y) ; creates object with the data set
setmaskp(data,1,11,8) ; creates graphical object
; for the data
rdata=sort(x~yq) ; creates object with yq
rdata=setmask(rdata,"reset","line","red","medium")
; creates graphical object for yq
glsplot=createdisplay(1,1) ; creates display
show(glsplot,1,1,data,rdata) ; shows the graphical objects
setgopt(glsplot,1,1,"title","gls")
; sets the window title
![]() |
MD*TECH Method and Data Technologies |
| http://www.mdtech.de mdtech@mdtech.de |