
FEMAP BASIC Scripting Language

API Reference

Copyright 1996-1999 by Enterprise Software Products, Inc.

Overview
The FEMAP BASIC Script Language provides direct access to the
FEMAP Database Engine through the BASIC Intepreter built in to
FEMAP.

The Mechanism
The FEMAP BASIC Script Language is based on Cypress Enable BASIC
Scripting for Applications. Cypress Enable provides a the complete array
BASIC programming functionality. Wherever possible, Cypress Enable’s
implementation of BASIC follows the Microsoft Visual Basic syntax and
semantics. The Cypress Enable portion of the BASIC Scripting Language
handles all flow of control, subroutines, and functions created in your
script. We have added a FEMAP specific interface (the Application
Programming Interface, or API) that allows your BASIC program to
customize FEMAP. The FEMAP menu has also been extended to include
the capability to launch and run BASIC scripts from your own user-defined
menus.

Details regarding the general elements of the Cypress Enable BASIC
Scripting Language are included in the Language Reference Manual. This
document covers variables, constants, control structures, subroutines and
functions, file input/output, arrays, dialog support, etc. that will help you
craft your BASIC Scripts.

Creating and Executing BASIC Scripts
The BASIC Script files themselves are simple ASCII Text files. Every
program that you write must contain a main subroutine that acts as your
entire program, or calls other functions and subroutines.

Sub Main ()
….
‘Your Program
….
End Sub

Dialog boxes can be created using the dlgdsn.exe program. To launch this
program from the script editor use the Edit-Dialog Editor command. The
dlgdsn.exe program must be run once by itself so it can register itself in the
registry.

BASIC Script files can be executed in five different ways.

1. From the FEMAP Main Menu, select File Program Run Script. You
will then be presented with the File Open Common Dialog box from

which you can select the script file to execute

2. From the FEMAP Main Menu, select File Program Edit Script. The
Script Editor is a standard Microsoft Windows Single Document
Interface ASCII Text Editor. Here you can open up text files, copy
and paste between them, or copy and paste between other Windows
applications, to create or edit your BASIC Script.

3. Custom menus can be created and linked to FEMAP scripts or program
files. A .esp file should be created and selected in the preferences,
libraries, menu. The format of the file is similar to a window’ s menu
resource. An example is below.

POPUP "&CustomCommands"
BEGIN

MENUITEM "&Cut Element", "c:\Femap60\cut.bas"
MENUITEM "&Radius", "c:\ Femap60\radius.bas"
MENUITEM SEPARATOR
MENUITEM "&Group by Elem", "c:\ Femap60\group.bas"
MENUITEM "Group &Elem 3", "c:\ Femap60\group3.bas"
MENUITEM "Group &Node", "c:\ Femap60\grpnd.bas"
MENUITEM SEPARATOR
MENUITEM "E&xtrude Plates", "c:\ Femap60\plex.bas"

END
4. Finally, FEMAP Program Files can themselves launch BASIC Scripts.

A new Program File command, #RUN has been added that will run the
BASIC Script File specified.

5. As a command line argument when launching FEMAP, use –P and the
name of the script. The script must end with the .bas extension,
otherwise FEMAP will think it is a Program File.

Variables
A short note on variables. Although the BASIC engine included with
FEMAP can handle many variable types, to avoid problems in passing data
into and out of FEMAP you must declare all variables as the same type
specified in the arguments for the functions.

Overview of Functionality
The FEMAP specific functions that have been added to the BASIC
Scripting Language are described in this section, broken down by their
general area of application.

Output Data Manipulation
The functions concerned with the manipulation of FEMAP output data all
begin with the esp_Outp prefix. Using these functions, you can query
output that has been loaded into the FEMAP database by any of the
supported FEA programs and use that output in your own calculations.
You can also put output data into the FEMAP database for further
manipulation with your own program, for graphical post-processing within
FEMAP, or for text based reporting using the FEMAP listing commands
and formatted output.

Manipulation of output data is broken down into three categories, getting,
putting, and manipulating.

FEMAP Output Data

Before you begin crafting your own program to manipulate FEMAP output
data, it is important that you understand some of the underlying
organizational issues.

Output Sets

Every piece of output data in a FEMAP model is linked to an Output Sets.
Output Sets are analogous to distinct FEA loads and/or boundary condition
sets. For example, a FEA model that is subjected to three distinct loading
conditions will have three distinct output sets. You can manipulate the
output data of existing output sets, create new data in existing output sets,
or create your own new output set to store and partition your calculated
from the actual data that was returned from your finite element analysis.

Output Set Creation

Every Output Set in FEMAP contains the following information that you
must provide in order to create a new output set.

Item Description Possible Values Function Used to
Set

Set ID ID Number of the Set.
Must be unique with
regard to other existing
output sets.

1 to 99,999,999 esp_OutpCreateSet

Title Descriptive Title of the
Output Set

Maximum of 25
characters

esp_OutpCreateSet

Program Analysis Program where
output came from.

0 - Unknown
1 - FEMAP
2 - PAL
3 - PAL2
4 - MSC/NASTRAN
5 - ANSYS

esp_OutpCreateSet

6 - STARDYNE
7 - COSMOS
8 - PATRAN
9 - FEMAP Neutral
10 - ALGOR
11 - SSS/NASTRAN
12 - Comma Separated
13 - UAI/NASTRAN
14 –
COSMIC/NASTRAN
15 - STAAD
16 - ABAQUS
17 - WECAN
18 - MTAB
19 - CDA/Sprint
20 - CAEFEM

Analysis
Type

Type of Analysis 0 - Unknown
1 - Static
2 - Modes
3 - Transient
4 - Frequency Response
5 - Response Spectrum
6 - Random
7 - Linear Buckling
10 - Nonlinear Static
11 - Nonlinear Buckling
20 - Steady State Heat
21 - Transient Heat

esp_OutpCreateSet

value Numerical Value
associated with this
Output Set. Typical
users are the time value
for a transient analysis,
or the frequency value
for a modal run.

Real esp_OutpCreateSet

Example:

This example creates Output Set 1, makes the title “BASIC Script Set”,
sets the from_program flag to “FEMAP”, the analysis type to Nonlinear
Static, and sets the Set Value to 1.455. Notice the variable ‘j’, this scripts
uses j to determine whether or not a new output set has been created. If
Output Set 1 already existed, esp_OutpCreateSet would have returned
FALSE (-1).

Example outp_1.bas:
Sub Main
Dim ExistFlag as Long
Dim j as Long
Dim setID as Long
Dim Title as String * 25
Dim from_program as Long
Dim anal_type as Long
Dim setValue as Double
Dim Msg

setID = 1
Title = "BASIC Script Set"
from_program = FEMAP
anal_type = NONLINSTATIC
setValue = 1.455

j = esp_OutpCreateSet(setID, from_program, anal_type,
setValue, Title)

If j = TRUE THEN
Msg = "Created Output Set " + Str(setID)

Else
Msg = "Could Not Create Output Set " + Str(setID)

End If

Print Msg

End Sub

Output Data Vector Numbering

FEMAP uses output vector numbers between 1 and 99,999 for standard
output data that is read in from the supported FEA programs. User
defined output data, such as that created using the output calculation menu
commands in FEMAP, is stored in vector numbers 300,000 and greater.
Output created with your own programs should be placed in this region. If
you are creating or calculating output that matches similar output that is
normally read in directly by FEMAP, it is strongly recommended that you
follow the standard FEMAP numbering convention for consistency.
Appendix A of this manual contains a list of some of the standard vector
ID numbers used by FEMAP for your reference.

Nodal and Elemental Data

All output data contained in the FEMAP database is either nodal or
elemental. Nodal output data is just that, output data attached to nodes in
the FEMAP model. Elemental data is attached to individual elements. In
addition to basic data, where there is one value for each node for a nodal
data vector or one value for each element in an elemental data vector, there
are special cases that you should be aware of.

Output Vector Description

In order for FEMAP to know how to handle your output data, there is

some information that must be provided for every output vector that you
create.

Item Description Possible
Values

Function Used to Set

Set ID
Number

The ID of the Output Set to
which this vector belongs.

Any
Existing
Output Set

esp_OutpCreateVector

Vector ID
Number

The ID number of this
output vector.

1 to
99,999,999

esp_OutpCreateVector

Title Description of this Output
Vector

Any Text esp_OutpCreateVector

Out_Type Type of Output Data 0 - Any
1 - Disp.
2 - Accel.
3 - Force
4 - Stress
5 - Strain
6 - Temp.
7 - Other

esp_OutpCreateVector

Data_type Nodal or Elemental Output
Data

7 - Nodal
8 - Elem.

esp_OutpCreateVector

Comp_dir Component Direction Flag

0 - Default value. Set
during vector creation,
indicates that this data
stands alone and does not
have connected component
information.

1 - vector data, comp[0..2]
of this vector contain the
vector ID’s of the X, Y, Z
components of this vector.

2 - comp[0..1] contain the
vector ID’s of the EndA
and EndB for the beam data
corresponding to this
vector’s centroidal data.

3 - comp[0..1] contain the
vector ID’s of the EndA
and EndB for the beam data

0 - No
1 - Yes
2 - Beam
3 - Beam
Reversed

esp_OutpSetVectorCompone
ntFlag

corresponding to this
vector’s centroidal data,
where EndB is reversed in
sign convention from
standard beam data.

min_val Minimum value in vector Real esp_OutpVectorSetMaxMin
max_val Maximum value in vector Real esp_OutpVectorSetMaxMin
abs_max Maximum absolute value in

vector
Real esp_OutpVectorSetMaxMin

id_min ID of entity where minimum
value occurs.

Long esp_OutpVectorSetMaxMin

id_max ID of entity where
maximum value occurs.

Long esp_OutpVectorSetMaxMin

calc_flag Flag to whether or not this
output data can be linearly
combined.

0 - Yes
1 - No

Set to a default value of 1 -
No when the vector is
created with
esp_OutpCreateVector, can
be overridden with
esp_OutpSetVectorCalcFlag

centroidal
flag

Flag indicating that this data
vector contains elemental or
nodal centroidal data.
Usually 1 for standard nodal
and elemental data, only set
to 0 if this vector contains
element corner data.

0 - Corner
1 - Yes

Set to a default value of 1 -
Yes when the vector is
created with
esp_OutpCreateVector, can
be overridden with
esp_OutpSetVectorCentroida
lFlag

Plain Nodal or Elemental Data

The simplest and most common type of data that will need to be loaded
into and out of FEMAP is plain nodal or elemental data. By plain, we
mean a single output value for each node or element of your model. The
following example demonstrates opening a file on disk and reading in nodal
values into a new FEMAP output vector.

Example - outp_2.bas, requires outp_2.dat and a 10 x 10 plate model with
nodes numbered 1 through 100.

Sub Main

' Output Set Variables
Dim setID as Long
Dim Title as String * 25
Dim from_program as Long
Dim anal_type as Long
Dim setValue as Double

' Output Vector Variables
Dim vectorID as Long

Dim vectorTitle as String * 25

' "Global" Variables
Dim Msg
Dim j as Long
Dim k as Long
Dim l as Long
Dim nodecount as Long
Dim nodevalue as Double
Dim nodeID as Long
Dim st as String

' Initialize Output Set Values
setID = 1
Title = "BASIC Script Set"
from_program = FEMAP
anal_type = NONLINSTATIC
setValue = 1.455

' Initialize Output Vector Values
vectorID = 300000
vectorTitle = "Nodal Temperature Data"

' First Create an Empty Output Set

j = esp_OutpCreateSet(setID, from_program, anal_type,
setValue, Title)

If j = TRUE Then
Msg = "Created Output Set " + Str(setID)

Else
Msg = "Could Not Create Output Set " + Str(setID)

End If

Print Msg

' Now Create an Empty Output Vector

j = esp_OutpCreateVector(setID, vectorID, Temp, Node,
VectorTitle)

If j = TRUE Then
Msg = "Created Output Vector " + Str(vectorID)

Else
Msg = "Could Not Create Output Vector " + Str(vectorID)

End If

Print Msg

If j = TRUE Then
' Open the data file
Open "outp_2.dat" for Input as #1
Line Input #1, st
ret_val = esp_MiscParseInit(st)
ret_val = esp_MiscParseInt(1, nodecount)
If ret_val = TRUE Then

For k = 1 to nodecount
Line Input #1, st
ret_val = esp_MiscParseInit(st)
ret_val = esp_MiscParseInt(1, nodeID)
ret_val = esp_MiscParseDouble(2, nodevalue)
l = esp_OutpPutData(setID, vectorID, nodeID, nodevalue)
Next k

End If
ret_val = esp_OutpVectorFinish(setID, vectorID)

End If

Close #1

End Sub

Nodal Vector Data

FEMAP can store and post-process vector data that is made up of three
global components. With vector data, there are typically four output
vectors total, the first, the vector sum of the other three components.
FEMAP stores the vector containing the vector sum with pointers to the
constituent individual component vectors. By doing this, it is possible in
graphical post-processing to select a single vector, and be able to display
on screen the direction of this vector data since FEMAP knows where the
component values come from. In your programmatic access to FEMAP,
you are responsible for setting up only to components vectors, and then
calling a built in routine that creates the vector sum vector, and connects
everything up for later graphical post-processing.

The following example creates three nodal vectors, and then calls the
esp_OutpCreateVectorVectorSum function to create the vector total
vector.

Example - outp_3.bas - requires a two node model connected by one
element.

Sub Main

' Output Set Variables
Dim setID as Long
Dim Title as String * 25
Dim from_program as Long
Dim anal_type as Long
Dim setValue as Double

' "Global" Variables
Dim Msg
Dim j as Long
Dim k as Long
Dim l as Long
Dim nodecount as Long
Dim nodevalue as Double
Dim nodeID as Long
Dim st as String

' Initialize Output Set Values
setID = 1
Title = "BASIC Script Set"
from_program = FEMAP
anal_type = STAT
setValue = 0.0

' First Create an Empty Output Set

j = esp_OutpCreateSet(setID, from_program, anal_type,
setValue, Title)

If j = TRUE Then
Msg = "Created Output Set " + Str(setID)

Else
Msg = "Could Not Create Output Set " + Str(setID)

End If

Print Msg

' Now Create the Component Vectors
' Bad programming practice, but we will assume that the
creation

' will happen and not fail.
j = esp_OutpCreateVector(setID, 300001, Disp, Node, "X-Value"
)

j = esp_OutpCreateVector(setID, 300002, Disp, Node, "Y-Value"
)

j = esp_OutpCreateVector(setID, 300003, Disp, Node, "Z-Value"
)

l = esp_OutpPutData(setID, 300001, 1, .125)
l = esp_OutpPutData(setID, 300002, 1, .25)
l = esp_OutpPutData(setID, 300003, 1, .375)
l = esp_OutpPutData(setID, 300001, 2, .5)
l = esp_OutpPutData(setID, 300002, 2, .25)
l = esp_OutpPutData(setID, 300003, 2, .375)

' Start FEMAP Internal Cleanup of Vectors

ret_val = esp_OutpVectorFinish(setID, 300001)
ret_val = esp_OutpVectorFinish(setID, 300002)
ret_val = esp_OutpVectorFinish(setID, 300003)
ret_val = esp_OutpCreateVectorVectorSum(setID, 300000,
300001, 300002, 300003, Disp, Node, "Vector Sum")

End Sub

Elemental Output Data

Elemental output data can be broken down into two distinct categories.
Straight elemental data contains a single output value for each element in
your model. The most important thing to remember about elemental
output data in FEMAP, is how it used when drawing color contour plots.
FEMAP must, in order to draw a color contour plot, resolve the output
data to the nodes. With pure elemental data, FEMAP averages the output
value reported for all elements connected to a node to determine what
contour level will be drawn at that node. This process is repeated for each
node of every element.

Elemental Output Data with Corner Data

In line with the actual output data from several of the supported FEA
programs, FEMAP can also store elemental output data that contains
references to the actual corner data for each element. In this case, there is
an centroidal value for each element, as well as references to other data
vectors that contain actual corner values for each of the nodes connected
to that elements. For example, 4-node plate output data with corners is
actually made up of five output data vectors in FEMAP. The first,

represents the value at the centroid of the element, and the other four
represent values for that elements, for each of the four nodes. With corner
data, FEMAP can create a color contour plot that is more accurate, since
instead of averaging adjacent element centroidal data to determine the
contour color at a node, we can use the actual corner values.

The following example - outp_4.bas, creates element centroidal output data
and corresponding corner data for a two element plate model.

Example - outp_4.bas - requires a two element plate model, elements
number 1 and 2, with nodes numbered 1 through 6.

Sub Main

' Output Set Variables
Dim setID as Long
Dim Title as String * 25
Dim from_program as Long
Dim anal_type as Long
Dim setValue as Double

' Output Vector Variables
Dim vectorID as Long
Dim vectorTitle as String * 25

' "Global" Variables
Dim Msg
Dim j as Long
Dim k as Long
Dim l as Long
Dim m as Long
Dim nodecount as Long
Dim nodevalue as Double
Dim nodeID as Long
Dim st as String

' Initialize Output Set Values
setID = 1
Title = "BASIC Script Set"
from_program = FEMAP
anal_type = STAT
setValue = 0.0

' First Create an Empty Output Set

j = esp_OutpCreateSet(setID, from_program, anal_type,
setValue, Title)

If j = TRUE Then
Msg = "Created Output Set " + Str(setID)
Print Msg

Else
Msg = "Could Not Create Output Set " + Str(setID)
Print Msg
GoTo Failed

End If

' First, we will create the element centroidal vector

j = esp_OutpCreateVector(setID, 7033, Stress, Elem, "Plt. Top
VonMises Stress")

If j = TRUE Then
Msg = "Created Centroidal Vector"
Print Msg

Else
Msg = "Error Creating Centroidal Vector"
Print Msg
GoTo Failed

End If

' now create the corner vectors

j = esp_OutpCreateVector(setID, 20133, Stress, Elem, "Plt.
Top VonMises Str C1")

k = esp_OutpCreateVector(setID, 30133, Stress, Elem, "Plt.
Top VonMises Str C2")

l = esp_OutpCreateVector(setID, 40133, Stress, Elem, "Plt.
Top VonMises Str C3")

m = esp_OutpCreateVector(setID, 50133, Stress, Elem, "Plt.
Top VonMises Str C4")

If j = TRUE Then
Msg = "Created Corner 1 Vector"
Print Msg

Else
Msg = "Error Creating Corner 1 Vector"
Print Msg
GoTo Failed

End If

If k = TRUE Then
Msg = "Created Corner 2 Vector"
Print Msg

Else
Msg = "Error Creating Corner 2 Vector"
Print Msg
GoTo Failed

End If

If l = TRUE Then
Msg = "Created Corner 3 Vector"
Print Msg

Else
Msg = "Error Creating Corner 3 Vector"
Print Msg
GoTo Failed

End If

If m = TRUE Then
Msg = "Created Corner 4 Vector"
Print Msg

Else
Msg = "Error Creating Corner 4 Vector"
Print Msg
GoTo Failed

End If

' Set up Corner Pointers on Centroidal Vector

j = esp_OutpSetVectorComponent(setID, 7033, 0, 20133)
If j = FALSE Then
Msg = "Error Setting Corner Reference"
Print Msg
GoTo Failed

End If

j = esp_OutpSetVectorComponent(setID, 7033, 1, 30133)
If j = FALSE Then

Msg = "Error Setting Corner Reference"
Print Msg
GoTo Failed

End If

j = esp_OutpSetVectorComponent(setID, 7033, 2, 40133)
If j = FALSE Then
Msg = "Error Setting Corner Reference"
Print Msg
GoTo Failed

End If

j = esp_OutpSetVectorComponent(setID, 7033, 3, 50133)
If j = FALSE Then
Msg = "Error Setting Corner Reference"
Print Msg
GoTo Failed

End If

' Also need to set the Centroidal Flag to indicate that the
corner

' vectors contain corner data.

j = esp_OutpSetVectorCentroidalFlag(setID, 20133, 0)
If j = FALSE Then
Msg = "Error Setting Centroidal Flag"
Print Msg
GoTo Failed

End If

j = esp_OutpSetVectorCentroidalFlag(setID, 30133, 0)
If j = FALSE Then
Msg = "Error Setting Centroidal Flag"
Print Msg
GoTo Failed

End If

j = esp_OutpSetVectorCentroidalFlag(setID, 40133, 0)
If j = FALSE Then
Msg = "Error Setting Centroidal Flag"
Print Msg
GoTo Failed

End If

j = esp_OutpSetVectorCentroidalFlag(setID, 50133, 0)
If j = FALSE Then
Msg = "Error Setting Centroidal Flag"
Print Msg
GoTo Failed

End If

' Now pump in the data,
' this script assumes there are two elements, 1 and 2
' and 6 nodes, 1 through 6

l = esp_OutpPutData(setID, 7033, 1, 600) ' Center, Elem 1
l = esp_OutpPutData(setID, 7033, 2, 800) ' Center, Elem 2

l = esp_OutpPutData(setID, 20133, 1, 100) ' C1 E1
l = esp_OutpPutData(setID, 30133, 1, 200) ' C2 E1
l = esp_OutpPutData(setID, 40133, 1, 500) ' C3 E1
l = esp_OutpPutData(setID, 50133, 1, 400) ' C4 E1

l = esp_OutpPutData(setID, 20133, 2, 200) ' C1 E2
l = esp_OutpPutData(setID, 30133, 2, 300) ' C2 E2
l = esp_OutpPutData(setID, 40133, 2, 600) ' C3 E2
l = esp_OutpPutData(setID, 50133, 2, 500) ' C4 E2

ret_val = esp_OutpVectorFinish(setID, 20133)
ret_val = esp_OutpVectorFinish(setID, 30133)
ret_val = esp_OutpVectorFinish(setID, 40133)
ret_val = esp_OutpVectorFinish(setID, 50133)
ret_val = esp_OutpVectorFinish(setID, 7033)
GoTo Success:

Failed:

Msg = "Error Executing Script File"
Print Msg

Success:

End Sub

Getting Output Data

Getting output data out of FEMAP is much easier to describe since it does
not have the setup requirement that creating data does. The following
example demonstrates getting output set data, in this case natural
frequency values. It also demonstrates the OLE Automation capabilities of
the FEMAP BASIC Scripting Language. In this example, the freqency
values associated with the output sets of a natural frequency analysis are
transferred to Microsoft Word.

Example - outp_5.bas - assumes you have a model containing the results
from a modal analysis.

Sub Main ()

' Word Variables
Dim MSWord As object
Dim Doc As object

' Output Set Variables
Dim setID as Long
Dim Title as String * 25
Dim from_program as Long
Dim anal_type as Long
Dim setValue as Double

' Global Variables
Dim j as Long
Dim k as Long
Dim Msg

j = esp_DBNextEntity(Existing, Out_Case, After, 0)

If j > MAX_LABEL Then
Msg = "No Output Sets Exist"
Print Msg
GoTo Failed

End If

' Connect to Word
Set MSWord = CreateObject("Word.Application")
MSWord.Application.Visible = True

MSWord.Documents.Add

' Insert into the Document
Set Doc = MSWord.ActiveDocument
Doc.Content.InsertAfter "Natural Frequencies"
Doc.Content.InsertParagraphAfter
Doc.Content.InsertParagraphAfter

While j < MAX_LABEL
' Walk through all the Output Sets

k = esp_OutpGetSet(j, from_program, anal_type, setValue,
Title)
If k = TRUE Then

If anal_type = MODES Then
Msg = " Output Set " + Str(j) + ": Frequency

= " + Str(setValue) + " Hz."
Doc.Content.InsertAfter Msg
Doc.Content.InsertParagraphAfter

End If
End If

j = esp_DBNextEntity(Existing, Out_Case, After, j)

Wend

Doc.Content.InsertParagraphAfter
Doc.Content.InsertParagraphAfter

' Format the Title
Doc.Paragraphs(1).Range.Bold = True
Doc.Paragraphs(1).Range.Font.Name = "Arial"
Doc.Paragraphs(1).Range.Font.Size = 24

GoTo Success

Failed:

Success:

End Sub

Function Definitions

All functions return TRUE if successful, FALSE is the action requested is not possible,
unless otherwise noted.
Declare Function esp_OutpGetSet App (ByVal setID as Long, ByRef program as

Long, ByRef anal_type as Long, ByRef value as Double, ByVal Title as
String) as Long

Gets information about the Output Set defined by setID. Fills program, anal_type, value,
and Title with the corresponding information from inside of FEMAP.

Declare Function esp_OutpGetVector App (ByVal setID as Long, ByVal vectorID
as Long, ByRef out_type as Long, ByRef data_type as Long, ByVal Title as
String) as Long

Gets information about the Output Vector defined by vectorID in setID. Fills out_type,
data_type, and Title with the corresponding information from inside of FEMAP.

Declare Function esp_OutpGetVectorComponentFlag App (ByVal setID as Long,
ByVal vectorID as Long, ByRef flag as Long) as Long

Gets the Vector Component Flag from Output Vector vectorID in Output Set setID, and
fills flag with its value, TRUE or FALSE.

Declare Function esp_OutpGetVectorCalcFlag App (ByVal setID as Long, ByVal
vectorID as Long, ByRef flag as Long) as Long

Gets the Calculation Flag information for Output Vector vectorID in Output Set setID,
and returns this flag in flag, TRUE or FALSE.

Declare Function esp_OutpGetVectorCentroidalFlag App (ByVal setID as Long,
ByVal vectorID as Long, ByRef flag as Long) as Long

Gets the Centroidal Flag information for Output Vector vectorID in Output Set setID, and
returns this flag in flag, TRUE or FALSE.

Declare Function esp_OutpGetVectorMaxMinData App (ByVal setID as Long,
ByVal vectorID as Long, ByRef absmax as Double, ByRef max as Double,
ByRef min as Double, ByRef maxID as Long, ByRef minID as Long) as
Long

Retrieves the max/min data for Output Vector vectorID in Output Set setID, and fills in
the appropriate absmax, max, min, maxID, and minID values.

Declare Function esp_OutpGetVectorComponent App (ByVal setID as Long,
ByVal vectorID as Long, ByVal index as Long, ByRef comp as Long) as
Long

Retrieves the component ID number for the Output Vector vectorID in Output Set setID,
at the Index value index, and fills this value into comp.

Declare Function esp_OutpGetData App (ByVal setID as Long, ByVal vectorID as
Long, ByVal ID as Long, ByRef value as Double) as Long

Retrieves the output data value for entity ID from the Output Vector vectorID in the

Output Set setID, places this value in value.

Declare Function esp_OutpCreateSet App (ByVal setID as Long, ByRef program as
Long, ByRef anal_type as Long, ByRef value as Double, ByVal title as String
) as Long

Creates a new empty Output Set. Values passed in make it possible to control the ID
number, program, anal_type, value, and title for the Output Set. Returns FALSE if this
Output Set already exists.

Declare Function esp_OutpCreateVector App (ByVal setID as Long, ByVal
vectorID as Long, ByVal out_type as Long, ByVal data_type as Long, ByVal
title as String) as Long

Creates a new empty Output Vector, vectorID, in Output Set setID. Values passed in
make it possible to control the out_type, data_type, and title associated with the new
Output Vector.

Declare Function esp_OutpSetVectorComponentFlag App (ByVal setID as Long,
ByVal vectorID as Long, ByVal flag as Long) as Long

Sets the component flag to the value (TRUE or FALSE) specified by flag, for Output
Vector vectorID in Output Set setID.

Declare Function esp_OutpSetVectorCalcFlag App (ByVal setID as Long, ByVal
vectorID as Long, ByVal flag as Long) as Long

Sets the Calc flag to the value (TRUE or FALSE) specified by flag, for Output Vector
vectorID in Output Set setID.

Declare Function esp_OutpSetVectorCentroidalFlag App (ByVal setID as Long,
ByVal vectorID as Long, ByVal flag as Long) as Long

Sets the Centroidal flag to the value (TRUE or FALSE) specified by flag, for Output
Vector vectorID in Output Set setID.

Declare Function esp_OutpSetVectorComponent App (ByVal setID as Long, ByVal
vectorID as Long, ByVal index as Long, ByVal comp as Long) as Long

Sets the component ID value specified in comp at Index index, for the Output Vector
vectorID in Output Set setID.

Declare Function esp_OutpSetVectorMaxMinData App(ByVal setID as Long,
ByVal vectorID as Long, ByVal max_val as Double, ByVal max_id as Long,

ByVal min_val as Double, ByVal min_id as Long, ByVal absmax_val as
Double) as Long

Sets the max/min information for the Output Vector vectorID in Output Set setID.

Declare Function esp_OutpPutData App (ByVal setID as Long, ByVal vectorID as
Long, ByVal ID as Long, ByVal value as Double) as Long

Puts the output data value specified in value, for entity ID ID, into Output Vector
vectorID in Output Set setID.

Declare Function esp_OutpConvElemToNodal App (ByVal setID as Long, ByVal
vectorID as Long, ByVal groupID as Long, ByVal calc_mode as Long, ByRef
newVectorID as Long) as Long

Converts an elemental output data vector to an equivalent nodal output data vector.
Requires the following:
setID - ID of the Output Set containing both the old and the new vectors.
VectorID - ID of the Elemental Output Data Vector to be converted.
groupID - ID of the FEMAP Group containing the element IDs where equivalent nodal
data will be calculated.
calc_mode - Controls how the nodal values are computed. Options are:

0. If corner data is available, all corner data for each node is averaged to come up with a
nodal value.

1. If corner data is available, the maximum value reported for each node is used.
2. Uses the average of the centroidal elemental values for elements connected to each

node.
3. Uses the maximum of the centroidal elemental values for elements connected to this

node.
newVectorID - Is the ID number of the new Output Vector where the nodal results will be
stored.

Declare Function esp_OutpConvNodalToElem App (ByVal setID as Long, ByVal
vectorID as Long, ByVal groupID as Long, ByVal calc_mode as Long, ByRef
newVectorID as Long) as Long

Same as esp_OutpConvElemToNodal, with the following exception:

calc_mode - Controls how the elemental data values are computed, options are:
0, and 2 - Averages all nodes connected to an element to determine the elemental value.
1, and 3 - Uses the maximum value for any node

Declare Function esp_OutpVectorFinish App (ByVal setID as Long, ByVal

vectorID as Long) as Long

Used after you have filled an output vector with data. This function performs all the
appropriate book keeping operations inside of FEMAP, most importantly, finding and
filling in for you the max/min information for the entire vector.

Declare Function esp_OutpCreateVectorVectorSum App (ByVal setID as Long,
ByVal vectorID as Long, ByVal vec1 as Long, ByVal vec2 as Long, ByVal
vec3 as Long, ByVal out_type as Long, ByVal data_type as Long, ByVal title
as String) as Long

Once you have created three component vectors of vector data in the Global X, Global Y,
and Global Z directions, this function will create a new output vector vectorID in setID
that for every node in your model is the vector sum of the data in vec1, vec2, and vec3.
This function also requires that you pass in the out_type, and data_type, and title for the
new vector being created.

View Manipulation
The functions beginning with esp_View… . have been designed to allow
you to manipulate the display of FEMAP model through your own BASIC
Scripts. Commands are included that make it possible to set all of the
View Options to your liking.

The View Manipulation functions are broken down into three categories,
Low-Level, High-Level, and Utility. Low level functions provide access to
every View Option in FEMAP. Anyone experienced in using FEMAP
knows that there is a large number of options available for controlling how
your model is displayed on screen. The FEMAP View Options Dialog Box
is itself broken down into three categories.

Labels, Entities and Color:

Tools and View Style:

and PostProcessing:

Almost all of the view options in FEMAP share three characteristics:

• Draw Entity Toggle

• Label Mode

• Color Mode

As you can see when you move up and down through the View Options
Dialog Box, these three characteristics sometimes change to provide view
control over features more appropriate for the option in question, but they
exist for almost every option. Internally, FEMAP stores these three items
in the same place for each view option. Using this fact, and by looking at
the View Options Dialog Box, you can control almost every aspect of how
your model is displayed. For example, the Contour/Criteria Levels option
in the PostProcessing Category uses the three standard view option
features to control three items related more directly to displaying color
stress contours on screen. In this case, the draw entity toggle controls
whether or not the color stress contour levels animate during a
displacement animation, the Label Mode has been mapped to Level Mode

to control how the stress legend is calculated, and the Color Mode is used
to control whether the Standard Palette or a User Defined Palette is used
for the colors themselves.

The three low level functions that control setting these three options in the
active view are:

esp_ViewActiveToggleDraw(INT4 opt, INT4 val)

esp_ViewActiveSetLabelMode(INT4 opt, INT4 val)

esp_ViewActiveSetColorMode(INT4 opt, INT4 val)

If you wish to manipulate views other than the active view, the following
three commands provide the same functionality, plus the capability to
specify a view number to update.

esp_ViewToggleDraw(INT4 vu_number, INT4 opt, INT4 val)

esp_ViewSetLabelMode(INT4 vu_number, INT4 opt, INT4 val)

esp_ViewSetColorMode(INT4 vu_number, INT4 opt, INT4 val)

Each of these function takes as an argument the option that you wish to
manipulate. These options are defined in the BASICHDR.ESP file that
gets automatically loaded with your BASIC Script File and are as follows:

Labels, Entities and Color

Option Constant

Label Parameters PL_LABEL

Coordinate System PL_CSYS

Point PL_POINT

Curve PL_CURVE

Curve - Mesh Size PL_CURVE_MESH

Surface PL_SURFACE

Volume PL_VOLUME

Text PL_TEXT

Boundary PL_BOUNDARY

Node PL_NODE

Node - Perm Constraint PL_PERM_BC

Element PL_ELEMENT

Element Directions PL_ELEM_DIR

Element Offsets/Releases PL_OFFSETS

Element Orientation/Shape PL_BEAM_ORIENT

Element Beam Y-Axis PL_BEAM_Y_AXIS

Load Vectors PL_LOAD_VECTORS

Load Force PL_LD_FORCE

Load Moment PL_LD_MOMENT

Load Thermal PL_LD_THERMAL

Load Distributed PL_LD_LINELOAD

Load Pressure PL_LD_PRESSURE

Load Acceleration PL_LD_ACCEL

Load Velocity PL_LD_VELOCITY

Load Enforced Displacement PL_LD_DISP

Load Nonlinear Force PL_LD_TRANSIENT

Load Heat Generation PL_LD_HEATGEN

Load Heat Flux PL_LD_HEATFLUX

Load Convection PL_LD_CONVECTION

Load Radiation PL_LD_RADIATION

Load Fluid Tracking PL_LD_TRACKING

Load Unknown Condition PL_LD_UNKNOWN

Load Slip Wall Condition PL_LD_SLIP

Load Fan Curve PL_LD_FANCURVE

Load Periodic Condition PL_LD_PERIODIC

Constraint PL_BC

Constraint Equation PL_BC_EQUATION

Contact Segment PL_CONTACT

Tools and View Style

Free Edge and Face PL_FREE_EDGE

Shrink Elements PL_ELEM_SHRINK

Fill, Backfaces and Hidden PL_ELEM_FILL

Filled Edges PL_FILLED_EDGES

Render Options PL_RENDER

Shading PL_ELEM_SHADE

Perspective PL_PERSPECTIVE

Stereo PL_STEREO

View Legend PL_LEGEND

View Axes PL_AXES

Origin PL_ORIGIN

Workplane and Rulers PL_WORKPLANE

Workplane Grid PL_GRID

Clipping Planes PL_CUTPLANE

Symbols PL_SYMBOL

View Aspect Ratio PL_ASPECT_RATIO

Curve and Surface Accuracy PL_CURVE_ERR

PostProcessing

Post Titles PL_POST_TITLES

Deformed Style PL_DEFORM_STYLE

Vector Style PL_ARROW_STYLE

Animated Style PL_ANIMATE_STYLE

Deformed Model PL_DEFORMED

Undeformed Model PL_UNDEFORMED

Trace Style PL_TRACE

Contour/Criteria Style PL_CONTOUR_STYLE

Contour/Criteria Levels PL_CONTOUR_LEVEL

Contour/Criteria Legend PL_CONTOUR_LEGEND

Criteria Limits/Beam Diagrams PL_CRITERIA_LIMITS

Criteria - Elements that Pass PL_PASS_CRITERIA

Criteria - Elements that Fail PL_FAIL_CRITERIA

Isosurface PL_ISOSURFACE

Contour Vector Style PL_CONTOUR_VECTORS

XY Titles PL_XY_TITLES

XY Legend PL_XY_LEGEND

XY Axes Style PL_XY_AXIS_STYLE

XY X Range/Grid PL_XY_XAXIS

XY Y Range/Grid PL_XY_YAXIS

XY Curve 1 PL_XY_CURVE1

XY Curve 2 PL_XY_CURVE2

XY Curve 3 PL_XY_CURVE3

XY Curve 4 PL_XY_CURVE4

XY Curve 5 PL_XY_CURVE5

XY Curve 6 PL_XY_CURVE6

XY Curve 7 PL_XY_CURVE7

XY Curve 8 PL_XY_CURVE8

XY Curve 9 PL_XY_CURVE9

Examples:

To turn off the display of nodes:

esp_ViewActiveToggleDraw(PL_NODE, FALSE)

To change the color mode of elements to their material color:

esp_ViewActiveSetColorMode(PL_ELEMENT, 4)

Function Definitions

All functions return TRUE if successful, FALSE is the action requested is
not possible, unless otherwise noted.

Declare Function esp_ViewGetCurrent App () as Long

Returns the current active view as a Long Integer.

Declare Function esp_ViewLabelsAllOff App (ByVal vuID as Long) as Long

Turns all labels off in the View defined by vuID.

Declare Function esp_ViewLabelsAllOn App (ByVal vuID as Long) as Long

Turns all labels off in the View defined by vuID.

Declare Function esp_ViewRotateByAngle App (ByVal vuID as Long, ByVal dx as
Double, ByVal dy as Double, ByVal dz as Double) as Long

Rotates the View defined by vuID by the angle specified in dx, dy, dz, about the view
center.

Declare Function esp_ViewActiveLabelsAllOff App () as Long

Turns all labels off in the current active view.

Declare Function esp_ViewActiveLabelsAllOn App () as Long

Turns all labels on in the current active new.

Declare Function esp_ViewActiveToggleDraw App (ByVal vu_option as Long,
ByVal draw_option as Long) as Long

Toggles the Draw Entity Box in the FEMAP View Options Dialog Box for the current
active View.

vu_option is any of the constants defined in the table above that correspond to options in
the FEMAP View Options Dialog box.

draw_option is TRUE to toggle the draw entity box on, FALSE to toggle the draw entity
box off.

Declare Function esp_ViewDrawNow App (ByVal vu_number as Long) as Long

Force FEMAP to actually draw the View specifie by vu_number. While making changes
to views in FEMAP with the esp_View commands, the view is not updated on screen until
your BASIC Script has completed. With esp_ViewDrawNow, you can force the view to
redraw. This can be used to create a slide show of your model, making the view rotate,
redraw, change display options, redraw, etc.

Declare Function esp_ViewActiveSetLabelMode App (ByVal opt as Long, ByVal
opt_value as Long) as Long

For each of the display options in the FEMAP View Options Dialog Box, this function
controls the label mode. This function acts on the current active view.

Declare Function esp_ViewActiveSetColorMode App (ByVal opt as Long, ByVal
opt_value as Long) as Long

For each of the display options in the FEMAP View Options Dialog Box, this function
controls the color mode. This function acts on the current active view.

Declare Function esp_ViewToggleDraw App (ByVal vu_number as Long, ByVal
vu_option as Long, ByVal draw_option as Long) as Long

Toggles the Draw Entity option for any FEMAP view option in the View specified by
vu_number.

Declare Function esp_ViewSetLabelMode App (ByVal vu_number as Long, ByVal
opt as Long, ByVal opt_value as Long) as Long

Sets the label mode for any FEMAP view option in the View specified by vu_number.

Declare Function esp_ViewSetColorMode App (ByVal vu_number as Long, ByVal
opt as Long, ByVal opt_value as Long) as Long

Sets the color mode for any FEMAP view options in the View specified by vu_number.

Declare Function esp_ViewSetDisplayMode App (ByVal vu_number as Long,

ByVal opt_value as Long) as Long

Sets the display mode for the View specified by vu_number. Possible option values are:

Constant Meaning
PLT_DRAW Normal Wireframe Display
PLT_FEATURE Feature Plot
PLT_SORT Quick Hidden Line
PLT_HIDE Full Hidden Line
PLT_FREE Free Edge Plot
PLT_FREE_FACE Free Face Plot
PLT_XY_VS_ID XY vs. ID
PLT_XY_VS_CASE XY vs. Output Set
PLT_XY_VS_VALUE XY vs. Set Value
PLT_XY_VS_POSITION XY vs. Position
PLT_XY_OF_FUNCTION XY of a FEMAP Function

The Display Mode options correspond direction with the Model Style and XY Style
options of the FEMAP View Select Dialog Box.

Declare Function esp_ViewSetDeformMode App (ByVal vu_number as Long,
ByVal opt_value as Long) as Long

Sets the Deformed Style for the View specified by vu_number. Valid opt_value’s are:

Constant Meaning
Model_Undef Normal NonDeformed Display
Deformed Deformed

Animate Animate
Animate_MultiCase Animate MultiSet
Arrow Vector
Trace Trace

These options correspond directly with the Deform Options in the FEMAP View Select
Dialog Box.

Declare Function esp_ViewSetContourMode App (ByVal vu_number as Long,
ByVal opt_value as Long) as Long

Sets the contour mode in the View specified by vu_number. Again, these mimic the
contour options found in the FEMAP View Select Dialog Box. Valid options are:

Constant Meaning
Model_Color Normal
Contour Contour
Criteria Criteria
Beam_Diagram Beam Diagram
IsoSurface IsoSurface
Section_Cut Section Cut
Contour_Vector Vector

Declare Function esp_ViewSetRenderMode App (ByVal vu_number as Long,
ByVal opt_value as Long) as Long

Set render mode on (1) or off (0)
Declare Function esp_ViewSetShrinkFactor App (ByVal vu_number as Long,

ByVal shrink as Double) as Long

Sets the shrink factor for the view defined by vu_number.

Declare Function esp_ViewSetAmbientLight App (ByVal vu_number as Long,
ByVal light as Double) as Long

Sets the Ambient Light factor for the view defined by vu_number.

Declare Function esp_ViewSetPerspectiveDistance App (ByVal vu_number as
Long, ByVal distance as Double) as Long

Sets the Perspective Distance for the view defined by vu_number.

Declare Function esp_ViewSetLoadVectorLength App (ByVal vu_number as Long,

ByVal value as Double) as Long

Sets the Load Vector Length factor for the view defined by vu_number.

Declare Function esp_ViewSetOtherVectorLength App (ByVal vu_number as
Long, ByVal value as Double) as Long

Sets the Other Vector Length factor for the view defined by vu_number.

Declare Function esp_ViewSetAspectRatio App (ByVal vu_number as Long, ByVal
value as Double) as Long

Sets the Aspect Ratio factor for the view defined by vu_number.

Declare Function esp_ViewSetCurveError App (ByVal vu_number as Long, ByVal
value as Double) as Long

Sets the Curve Error factor for the view defined by vu_number.

Declare Function esp_ViewSetSurfaceDivisions App (ByVal vu_number as Long,
ByVal value as Long) as Long

Sets the Surface Divisions number for the view defined by vu_number.

Declare Function esp_ViewSetDeformedRelativeScale App (ByVal vu_number as
Long, ByVal value as Double) as Long

Sets the Deformed Relative Scale factor for the view defined by vu_number. Controls the
exaggeration of the deformation of your model based on a percentage of overall model
size. Used in any of the deformed or animated plots created by FEMAP.

Declare Function esp_ViewSetDeformedAbsoluteScale App (ByVal vu_number as
Long, ByVal value as Double) as Long

Sets the Absolute Scale factor for the view defined by vu_number.

Declare Function esp_ViewSetVectorLabelTopPercent App (ByVal vu_number as
Long, ByVal value as Double) as Long

Sets the Top Percentage Factor for labeling of vector plots.

Declare Function esp_ViewSetAnimationFrames App (ByVal vu_number as Long,
ByVal value as Long) as Long

Sets the number of frames for an animation in the View defined by vu_number.

Declare Function esp_ViewSetAnimationDelay App (ByVal vu_number as Long,
ByVal value as Long) as Long

Sets the animation delay for the view defined by vu_number.

Declare Function esp_ViewSetContourLabelFreq App (ByVal vu_number as Long,
ByVal value as Long) as Long

Sets the contour label frequency parameter for the View defined by vu_number.

Declare Function esp_ViewSetFunctionDisplay App (ByVal vu_number as Long,
ByVal value as Long) as Long

Sets the ID of the function to be displayed using the XY vs. Function view mode for the
view defined by vu_number. This is equivalent to the FEMAP View Select, Model Data,
Function parameter.

Declare Function esp_ViewSetOutputSetID App (ByVal vu_number as Long,
ByVal value as Long) as Long

Sets the current output set for the view defined in vu_number. Used as the Output Set in
all post-processing features.

Declare Function esp_ViewSetDeformVectorID App (ByVal vu_number as Long,
ByVal value as Long) as Long

Sets the deformation output vector ID used for all post-processing options for the view
defined in vu_number.

Declare Function esp_ViewSetContourVectorID App (ByVal vu_number as Long,
ByVal value as Long) as Long

Sets the contour output vector ID used for all post-processing options for the view
defined in vu_number.
Declare Function esp_ViewSetXYSetID App (ByVal vu_number as Long, ByVal

curve_number as Long, ByVal value as Long) as Long

Sets the xy plot output set ID used for all post-processing options for the view defined in

vu_number.
Declare Function esp_ViewSetXYSetRange App (ByVal vu_number as Long,

ByVal curve_number as Long, ByVal start_set as Long, ByVal end_set as
Long) as Long

Sets the xy plot output set range IDs used for all post-processing options for the view
defined in vu_number.
Declare Function esp_ViewSetXYVectorID App (ByVal vu_number as Long, ByVal

curve_number as Long, ByVal value as Long) as Long

Sets the xy plot output vector ID used for all post-processing options for the view defined
in vu_number.
Declare Function esp_ViewSetXYEntityID App (ByVal vu_number as Long, ByVal

curve_number as Long, ByVal value as Long) as Long

Sets the xy plot entity ID (node or element depending on type of output used) used for all
post-processing options for the view defined in vu_number.

Declare Function esp_ViewAutoScale App (ByVal vu_number as Long)

AutoScales the view specified by vu_number.

Declare Function esp_ViewSave App () as Long

Save active view into library.

Declare Function esp_ViewLoad App (ByVal vu_number as Long) as Long

Load view vu_number from library.

Declare Function esp_ViewSetXYSetID App (ByVal vu_number as Long, ByVal
curve_number as Long, ByVal value as Long) as Long

Sets the xy plot output set ID to value for view of vu_number and curve 1-9 in
curve_number.

Declare Function esp_ViewSetXYVectorID App (ByVal vu_number as Long, ByVal
curve_number as Long, ByVal value as Long) as Long

Sets the xy plot output vector ID to value for view of vu_number and curve 1-9 in

curve_number.

Declare Function esp_ViewSetXYEntityID App (ByVal vu_number as Long, ByVal
curve_number as Long, ByVal value as Long) as Long

Sets the xy plot entity (node/element) ID to value for view of vu_number and curve 1-9 in
curve_number.

Declare Function esp_ViewSetXYSetRange App (ByVal vu_number as Long,
ByVal curve_number as Long, ByVal start_set as Long, ByVal end_set as
Long) as Long

Sets the xy plot output set ID range from start_set to end_set for view of vu_number and
curve 1-9 in curve_number.

Declare Function esp_ViewNew App (ByVal copy as Long, ByVal vu_number as
Long, ByVal vu_title as String) as Long

Creates a new view with title as vu_title. If copy is 1 it copies the view in vu_number.

Declare Function esp_ViewRegenerate App (ByVal vu_number as Long) as Long

Forces a regeneration of view in vu_number.

Declare Function esp_ViewActivate App (ByVal vu_number as Long) as Long

Activates view in vu_number.

Declare Function esp_ViewGroup App (ByVal vu_number as Long,ByVal
active_group as Long,ByVal group_number as Long) as Long

Sets the view in view number to show group in group_number or if active_group is 1 sets
the view to show the active group. If both active_group and group_number are zero it
sets the view to no groups(show all).

Declare Function esp_ViewCloseAll App () as Long

Closes all views

Declare Function esp_ViewTile App () as Long

Tiles the view windows.

Declare Function esp_ViewLoadSet App (ByVal vu_number as Long,ByVal

active_set as Long,ByVal set_number as Long) as Long

Sets the view in view number to show load set in set_number or if active_set is 1 sets the
view to show the active load set. If both active_set and set_number are zero it sets the
view to no sets(show all).

Declare Function esp_ViewBCSet App (ByVal vu_number as Long,ByVal
active_set as Long,ByVal set_number as Long) as Long

Sets the view in view number to show constraint set in set_number or if active_set is 1
sets the view to show the active constraint set. If both active_set and set_number are zero
it sets the view to no sets(show all).

Declare Function esp_ViewLayerShow App (ByVal vu_number as Long, ByVal
showall as Long, ByVal layerID as Long) as Long

Shows layer of layerID in view of vu_number. If show all is 1 it shows all, if zero it shows
only the visible layers.
Declare Function esp_ViewLayerHide App (ByVal vu_number as Long, ByVal

layerID as Long) as Long

Hides layer of layer ID in view of vu_number.

List Processing
The esp_List… . functions make it possible to query the user for a selection
in FEMAP. The selection can be any of the supported entity types, nodes,
elements, etc. Once selected, additional esp_List… . functions make it
possible for your basic script to work with list of entities. In the following
example, the user is asked to select a set of nodes. Once selected, the
BASIC Script goes through this list and using BASIC Script functions that
query nodal output, finds the maximum total translation associated with
any of the nodes originally selected.

Sub main ()

Dim listID as Long
Dim ret_val as Long
Dim nodeID as Long
Dim max_node as Long
Dim Msg as String
Dim j as Long
Dim max_tran as Double
Dim test_val as Double

max_tran = 0.0

listID = esp_ListNextAvailableID

j = esp_ListSelectAll(listID, Node)

nodeID = 0

nodeID = esp_ListGetNextItem(listID, nodeID)

While nodeID < MAX_LABEL

ret_val = esp_OutpGetData(1, 1, nodeID, test_val)

If test_val > max_tran Then
max_tran = test_val
max_node = nodeID

End If

nodeID = esp_ListGetNextItem(listID, nodeID)

Wend

Msg = "Maximum Value is: " + Str(max_tran)
Print Msg
Msg = "at Node: " + Str(max_node)
Print Msg

esp_ListClear(listID)

End Sub

Functions:

Declare Function esp_ListNextAvailableID App () as Long

Returns the next available List ID. Call this when creating a new list to find an empty one.
This ID number is then used in all subsequent calls that involve this list.

Declare Sub esp_ListClearAll App ()

Clears and deletes all lists.

Declare Sub esp_ListClear App (ByVal listID as Long)

Clears all the entries in the List specified by listID.

Declare Sub esp_ListAdd App (ByVal listID as Long, ByVal ID as Long)

Adds ID to the List defined by listID.

Declare Sub esp_ListDelete App (ByVal listID as Long, ByVal ID as Long)

Deletes ID from the List defined by listID.

Declare Function esp_ListItemExist App (ByVal listID as Long, ByVal ID as Long)

as Long

Returns TRUE if ID exists in the List defined by listID, FALSE if it does not.

Declare Function esp_ListGetNextItem App(ByVal listID as Long, ByVal ID as
Long) as Long

Returns the next ID in the list defined by listID after ID.
Declare Function esp_ListNumber App(ByVal listID as Long) as Long

Returns the number of entities in the list defined by listID.

Declare Function esp_ListSelect App(ByVal listID as Long, ByVal ent_type as
Long) as Long

Select entities of ent_type into a list of listID using the standard FEMAP entity selection
dialog box.
Declare Function esp_ListSelectAll App(ByVal listID as Long, ByVal ent_type as

Long) as Long

Select all entities of ent_type into the list at listID.
Declare Function esp_ListSelectGroup App(ByVal listID as Long, ByVal ent_type

as Long, ByVal groupID as Long) as Long

Select all the entities of ent_type in the group of groupID into a list at listID.
Declare Function esp_ListFillByEntity App (ByVal listID as Long, ByVal

entity_type as Long, ByVal ID2 as Long, ByVal entity_type2 as Long) as
Long

Put entities of entity_type into listID based on their association to entity_type2. E.g.
select all points(entity_type) on curve(entity_type2) of ID2 into a list of listID.
Declare Function esp_ListFillEntByEntList App (ByVal listID as Long, ByVal

entity_type as Long, ByVal listID2 as Long, ByVal entity_type2 as Long) as
Long

Put entities of entity_type into listID based on their association to entity_type2. E.g.
select all points(entity_type) on curves(entity_type2) in listID2 into a list of listID.
Declare Function esp_ListPointbyNode App (ByVal nodeID as Long, ByRef pointID

as Long) as Long

If the node of nodeID is attached to a point the return value will beTRUE, and the point’s
ID will be in pointID. If the return value is FALSE the node is not attached.
Declare Function esp_ListCurvebyNode App (ByVal nodeID as Long, ByRef

curveID as Long) as Long

If the node of nodeID is attached to a curve the return value will beTRUE, and the curve’s
ID will be in curveID. If the return value is FALSE the node is not attached.

Declare Function esp_ListSurfbyNode App (ByVal nodeID as Long, ByRef surfID
as Long) as Long

If the node of nodeID is attached to a surface the return value will beTRUE, and the
surface’s ID will be in surfID. If the return value is FALSE the node is not attached.

Parsing Text
The Line Input command in the FEMAP BASIC Scripting Language brings
in a complete line of text from the file being read. In order to parse the
individual data entries on the line of text, the following esp_Misc functions
are provided.

Every time that you read a line of text, and then want to extract individual
pieces of data from that line, the esp_MiscParseInit must be called first to
initialize the parsing on the FEMAP side. Once a string has been initialized
in the FEMAP parser, you can retrieve Integer and Real values from that
string by calling esp_MiscParseInt and esp_MiscParseDouble.

Example:

This example opens the following data file:

1 2 3 4 5 6
12, 1.88834, 14, 1.93939, -12.2E5

The codes is as follows:
Sub Main ()

Dim st as String
Dim ret_val as Long
Dim value as Long
Dim int_value as Long
Dim real_value as Double

Open "parse.dat" for Input as #1

Line Input #1, st

ret_val = esp_miscParseInit(st)

Print ret_val

ret_val = esp_miscParseInt(1, value)
Msg = "Read Value " + Str(ret_value) + " ," + Str(value)
Print Msg

ret_val = esp_miscParseInt(2, value)
Msg = "Read Value " + Str(ret_val) + " ," + Str(value)
Print Msg

ret_val = esp_miscParseInt(3, value)
Msg = "Read Value " + Str(ret_val) + " ," + Str(value)
Print Msg

ret_val = esp_miscParseInt(4, value)
Msg = "Read Value " + Str(ret_val) + " ," + Str(value)
Print Msg

'Read in second line
Line Input #1, st

ret_val = esp_miscParseInit(st)

ret_val = esp_MiscParseInt(1, int_value)
Msg = "Line 2, Value 1 is " + Str(int_value)
Print Msg

ret_val = esp_MiscParseDouble(2, real_value)
Msg = "Line 2, Value 2 is " + Str(real_value)
Print Msg

ret_val = esp_MiscParseInt(3, int_value)
Msg = "Line 2, Value 3 is " + Str(int_value)
Print Msg

ret_val = esp_MiscParseDouble(4, real_value)
Msg = "Line 2, Value 4 is " + Str(real_value)
Print Msg

ret_val = esp_MiscParseDouble(5, real_value)
Msg = "Line 2, Value 5 is " + Str(real_value)
Print Msg

Close #1

End Sub

As you can see the parser makes it easy to read data separated by spaces or
commas.

Functions:

Declare Function esp_MiscParseInit App(ByVal st as String) as Long

Initializes the parsing of a string specified by st.

Declare Function esp_MiscParseInt App(ByVal Index as Long, ByRef value as
Long) as Long

Extracts the integer number located in the field specified by Index and stores it in value.
Index starts at 1.

Declare Function esp_MiscParseDouble App(ByVal Index as Long, ByRef value as
Double) as Long

Extracts the real number located in the field specified by Index and stores is in value.
Index starts at 1.
Declare Function esp_MiscSerialNumber App (ByRef sn as String) as Long

Retrieves the serial number of the license and puts it in sn.
Declare Function esp_MiscOEMCode App () as Long

Returns the value of the OEM code of the program.

Declare Function esp_MiscSaveNotes App (ByVal notes as String, ByVal newline as
Long) as Long

Puts notes into FEMAP translation text notes and turns on include during write. If newline
is TRUE a newline of text is created in the existing notes. If FALSE any previous notes
are deleted.
Declare Function esp_MiscGetNotes App (ByRef notes as String) as Long

Gets FEMAP translation text notes. String must then be parsed for newlines.

Printing
Once the view and output manipulation functions were complete, we
realized that users would probably want to automate the printing of
FEMAP graphics. The following function makes it possible to invoke a
print of the current graphics window. It is up to you to make sure that the
Page Setup and Printer Setup are to your liking before using the BASIC
scripting engine to invoke a series or prints.

The command to print the current view is:

Declare Function esp_PrinCurrentView App () as Long

No input parameters, just call this function and the active view is printed using the current
printer and page setup parameters.

Database
Database functions that are often used in the actual coding of FEMAP that
will certainly come in useful for your own BASIC scripts are as follows:

Declare Function esp_DBNextEntity App(ByVal exist_flag as Long, ByVal

entity_type as Long, ByVal location as Long, ByVal startID as Long) as
Long

Used to query the FEMAP database and determined the next entity. The next entity ID
value is returned based on your input to this function. Options are:

exist_flag - Existing - causes this function to return the ID of an existing entity.
NonExisting - causes this function to return the next available ID that is not
used.

entity_type - Any valid FEMAP entity type as defined in basichdr.esp. Common
entity types are as follows:

Point
Curve
Surface
Volume
Node
Elem
CSys
Matl
Prop
Load_Dir
Surf_Load
nTherm_Load
eTherm_Load
BC_Dir
BCo
BEq
esp_Text
View
Group
Var
Out_Case
Out_Dir
Out_Data
Report
Boundary
Layer
Matl_Table
Function_Dir

location - Determines in which direction the search for the next entity will happen,
options are:

Equal Really the same as the upcoming function DBExist, causes this

function to only check the existence or nonexistence of the ID
specified in startID.

After Looks at ID numbers greater than startID.
Before Looks at ID numbers less than startID.
After_Equal Looks at ID numbers greater than or equal to startID
Before_Equal Looks at ID numbers less than or equal to startID

startID - ID of the ID to start lo for the next entity.

Declare Function esp_DBExist App(ByVal entity_type as Long, ByVal ID as Long)
as Long

Returns TRUE if the entity specified by entity_type and ID exists, returns FALSE if it
does not.

The database gets and puts use FEMAP defined types to hold the
appropriate data for the entity. Refer to the list of FEMAP defined types to
determine the structure of the data for these functions.

Declare Function esp_DBGetPoint App(ByVal ID as Long, ByRef ent as esp_Point)
as Long

Retrieves the data of the point at ID and puts it in ent
Declare Function esp_DBGetCurve App(ByVal ID as Long, ByRef ent as

esp_Curve) as Long

Retrieves the data of the curve at ID and puts it in ent
Declare Function esp_DBGetSurface App(ByVal ID as Long, ByRef ent as

esp_Surface) as Long

Retrieves the data of the surface at ID and puts it in ent
Declare Function esp_DBGetNode App(ByVal ID as Long, ByRef ent as esp_Node)

as Long

Retrieves the data of the node at ID and puts it in ent
Declare Function esp_DBGetElement App(ByVal ID as Long, ByRef ent as

esp_Element) as Long

Retrieves the data of the element at ID and puts it in ent

Declare Function esp_DBGetBC App(ByVal ent_type as Long, ByVal ID as Long,
ByVal setID as Long, ByRef ent as esp_BC) as Long

Retrieves the data of the constraint at ID and puts it in ent
Declare Function esp_DBGetBoundary App(ByVal ID as Long, ByRef ent as

esp_Boundary) as Long

Retrieves the data of the boundary at ID and puts it in ent
Declare Function esp_DBGetLoad App(ByVal ent_type as Long, ByVal load_type

as Long, ByVal ID as Long, ByVal setID as Long, ByRef L as
esp_Load_Value, ByVal l_dir as Long, ByRef d as esp_Load_Dir) as Long

Gets a load based on ent_type and load_type, with ID refering to the entity the load is on.
SetID is the load set ID. L, l_dir and d are filled in appropriately.
Declare Function esp_DBGetTitle App(ByVal ID as Long, ByVal ent_type as Long,

ByRef title as String) as Long

Gets the title of the entity of ent_type at ID. Use for entity sets only, not individual
entities.

DBPut should only be used on entities that have been filled in by DBGet. Otherwise
information may not be valid and FEMAP could crash.

Declare Function esp_DBPutPoint App(ByVal ID as Long, ByRef ent as esp_Point)
as Long

Puts the data in ent into an existing point record at ID.
Declare Function esp_DBPutCurve App(ByVal ID as Long, ByRef ent as

esp_Curve) as Long

Puts the data in ent into an existing curve record at ID.
Declare Function esp_DBPutSurface App(ByVal ID as Long, ByRef ent as

esp_Surface) as Long

Puts the data in ent into an existing surface record at ID.
Declare Function esp_DBPutNode App(ByVal ID as Long, ByRef ent as esp_Node)

as Long

Puts the data in ent into an existing node record at ID.
Declare Function esp_DBPutElement App(ByVal ID as Long, ByRef ent as

esp_Element) as Long

Puts the data in ent into an existing element record at ID.

File Functions
The FEMAP BASIC Scripting Language contains three functions for
processing standard FEMAP files.

Declare Function esp_FileSave App () as Long

Calling this function saves the current FEMAP model to the current model file name. If
his model has not been saved before, FEMAP will prompt you for a file name and location
with the standard file dialog box. This function returns TRUE if the save was successful,
otherwise FALSE.
Declare Function esp_FileSaveAs App (ByVal fn as String) as Long

Calling this function saves the current FEMAP model to the file name in fn a path may be
included in the filename. This function returns TRUE if the save was successful, otherwise
FALSE.

Declare Function esp_FileNeutralRead App (ByVal fn as String) as Long

Read the FEMAP Neutral File specified by fn. Command will search the current directory
and your path for the file. This function returns FALSE if the file referenced by fn cannot
be found, otherwise it returns TRUE.

Declare Function esp_FileNeutralWrite App (ByVal fn as String) as Long

Writes out a FEMAP Neutral File of your current model to the file specified by fn. If file
name contains the complete directory information for a file, it will be stored there. If
instead in contains just a filename and extension, it will be stored in the current directory.
This function always returns TRUE.
Declare Function esp_FileNastranRead App (ByVal fn as String, ByVal type as

Long) as Long

Read a NASTRAN input deck of filename fn. Type is one of the following:
MSC_NASTRAN, CSA_NASTRAN, UAI_NASTRAN, ME_NASTRAN,
SSS_NASTRAN, or COSMIC_NASTRAN. This function returns FALSE if the file
referenced by fn cannot be found, otherwise it returns TRUE.

Declare Function esp_FileNastranPost App (ByVal fn as String, ByVal type as Long
) as Long

Read a NASTRAN post file (.f06 or .op2) of filename fn. Type is one of the following:
MSC_NASTRAN, CSA_NASTRAN, UAI_NASTRAN, ME_NASTRAN,
SSS_NASTRAN, or COSMIC_NASTRAN. This function returns FALSE if the file
referenced by fn cannot be found, otherwise it returns TRUE.

Declare Function esp_FileAbaqusRead App (ByVal fn as String) as Long

Reads nodes and elements from an Abaqus .fil or .fin file. This function returns FALSE if
the file referenced by fn cannot be found, otherwise it returns TRUE.
Declare Function esp_FileAbaqusPost App (ByVal fn as String) as Long

Reads output data from an Abaqus .fil or .fin file. This function returns FALSE if the file
referenced by fn cannot be found, otherwise it returns TRUE.
Declare Function esp_FileDynaRead App (ByVal fn as String) as Long

Reads nodes and elements from an LS Dyna d3* file. This function returns FALSE if the
file referenced by fn cannot be found, otherwise it returns TRUE.
Declare Function esp_FileDynaPost App (ByVal fn as String) as Long

Reads output data from an LS Dyna d3* file. This function returns FALSE if the file
referenced by fn cannot be found, otherwise it returns TRUE.
Declare Function esp_FileAnsysRead App (ByVal fn as String) as Long

Reads an Ansys .ans or .cdb file This function returns FALSE if the file referenced by fn
cannot be found, otherwise it returns TRUE.
Declare Function esp_FileAnsysPost App (ByVal fn as String) as Long

Reads an Ansys .rst or .rth file. This function returns FALSE if the file referenced by fn
cannot be found, otherwise it returns TRUE.
Declare Function esp_FileNastranWrite App (ByVal anal_prog as Long, ByVal

sol_type as Long) as Long

Runs the file export analysis model command with MSC_NASTRAN, CSA_NASTRAN,
UAI_NASTRAN, ME_NASTRAN, SSS_NASTRAN, or COSMIC_NASTRAN as the
anal_prog and the sol_type. This function always returns TRUE.
Declare Function esp_FileAnsysWrite App (ByVal sol_type as Long) as Long

Runs the file export analysis model command with Ansys as the solver and sol_type. This
function always returns TRUE.
Declare Function esp_FileDynaWrite App (ByVal sol_type as Long) as Long

Runs the file export analysis model command with LS Dyna as the solver and sol_type.
This function always returns TRUE.
Declare Function esp_FileProgramRun App (ByVal fn as String) as Long

Run the program file specified by fn. This function returns TRUE if the program runs,
otherwise FALSE.

Declare Function esp_FileScriptRun App (ByVal fn as String) as Long

Run the script file specified by fn. This function returns TRUE if the script runs,
otherwise FALSE.
Declare Function esp_FilePictSave App (ByVal fn as String, ByVal type as Long)

as Long

Save the current view in fn as type 1 for bitmap, 2 for metafile, 3 for placeable metafile or
4 for jpeg. This function returns TRUE if the picture file was created, otherwise FALSE.
Declare Function esp_FileExecWait App (ByVal fn as String, ByVal cl as String) as

Long

Launch an executable(.exe) file of filename fn with command line arguments of cl.
Function will return when program has finished running.

Declare Function esp_FileFindFile App (ByRef fn as String) as Long

Uses the standard windows file location dialog box and returns the path and filename
chosen in fn.

Declare Function esp_FileNew App () as Long

Starts a new file. Will not save the existing model.

Declare Function esp_FileExit App () as Long

Exits FEMAP. Will not save the existing model
Declare Function esp_FilePrefMenu App (ByVal fn as String) as Long

Puts the filename and path in fn into the library preferences for the menu
Declare Function esp_FilePrefMatlDef App (ByVal fn as String) as Long

Puts the filename and path in fn into the library preferences for the material type definition.

Coordinate Functions
These functions mimic the methods in the standard FEMAP coordinate
definition dialog box.

Declare Function esp_CoordInWorkplane App (ByVal x as Double, ByVal y as
Double, ByRef coord as esp_Coord) as Long

Get the x,y,z coordinates of the location at x,y in the workplane.
Declare Function esp_CoordIntersectCurves App (ByVal cuID1 as Long, ByVal

cuID2 as Long, ByRef coord as esp_Coord) as Long

Get the x,y,z coordinates of the intersection of two curves, cuID1 and cuID2. If the
curves do not intersect the return value is FALSE.
Declare Function esp_CoordOntoCurve App (ByVal cuID as Long, ByRef loc as

esp_Coord, ByRef coord as esp_Coord) as Long

Get the x,y,z coordinates of loc projected onto curve cuID.
Declare Function esp_CoordAlongCurve App (ByVal cuID as Long, ByVal dist as

Single, ByRef coord as esp_Coord) as Long

Get the x,y,z coordinates of a percentage distance along the curve cuID
Declare Function esp_CoordCenter App (ByVal cuID as Long, ByRef coord as

esp_Coord) as Long

Get the x,y,z coordinates of the center of the arc/circle of cuID.
Declare Function esp_CoordMidpoint App (ByVal cuID as Long, ByRef coord as

esp_Coord) as Long

Get the x,y,z coordinates fo the midpoint of the curve cuID.
Declare Function esp_CoordOntoSurface App (ByVal suID as Long, ByRef loc as

esp_Coord, ByRef coord as esp_Coord) as Long

Get the x,y,z coordinates of the loc projected onto the surface suID.
Declare Function esp_CoordInSurface App (ByVal suID as Long, ByVal u as

Double, ByVal v as Double, ByRef coord as esp_Coord) as Long

Get the x,y,z coordinates of the u,v parametric coordinates of the surface suID.
Declare Function esp_CoordSurfaceIntersect App (ByVal cuID as Long, ByVal suID

as Long, ByRef coord as esp_Coord) as Long

Get the x,y,z coordinates of the intersection between the curve cuID and the surface suID.
Return is FALSE if they do not intersect.
Declare Function esp_CoordOnPoint App (ByVal pID as Long, ByRef coord as

esp_Coord) as Long

Get the x,y,z coordinates of the point pID.
Declare Function esp_CoordOnNode App (ByVal nID as Long, ByRef coord as

esp_Coord) as Long

Get the x,y,z coordinates of the node nID.
Declare Function esp_CoordPick App (ByRef coord as esp_Coord) as Long

Get the x,y,z coordinates using the standard FEMAP coordinate location dialog box.

Vector Functions
These functions mimic the methods in the standard FEMAP vector
definition dialog box.

Declare Function esp_VecLocate App (ByRef vec as esp_Vector) as Long

Creates a vector between locations input in Base and Comp.
Declare Function esp_VecLocateLength App (ByRef vec as esp_Vector) as Long

Creates a vector between locations input in Base and Comp of Length.
Declare Function esp_VecDirection App (ByRef vec as esp_Vector) as Long

Creates a vector using base, directional components and length.
Declare Function esp_VecComponents App (ByRef vec as esp_Vector) as Long

Creates a vector using Base and Comp to get length.
Declare Function esp_VecNormal App (ByRef base as esp_Coord, ByRef p1 as

esp_Coord, ByRef p2 as esp_Coord, ByVal length as Double, ByRef vec as
esp_Vector) as Long

Gets vector using cross product of base, p1,p2 and of length.
Declare Function esp_VecBisect App (ByRef base as esp_Coord, ByRef p1 as

esp_Coord, ByRef p2 as esp_Coord, ByVal length as Double, ByRef vec as
esp_Vector) as Long

Gets vector of length using bisector of lines between base and p1 and base and p2
Declare Function esp_VecAxis App (ByRef base as esp_Coord, ByVal csys as Long,

ByVal axis as Long, ByVal pos as Long, ByVal length as Double, ByRef vec
as esp_Vector) as Long

Gets vector using axis of coodinate system csys in direction pos with length.
Declare Function esp_VecTangent App (ByVal cuID as Long, ByRef base as

esp_Coord, ByVal pos as Long, ByVal length as Double, ByRef vec as
esp_Vector) as Long

Declare Function esp_VecNormSurf App (ByVal pID as Long, ByVal suID as Long,
ByVal pos as Long, ByVal length as Double, ByRef vec as esp_Vector) as
Long

Get a vector normal to surface suID at point pID using pos for direction and length.
Declare Function esp_VecNormView App (ByRef base as esp_Coord, ByVal pos as

Long, ByVal length as Double, ByRef vec as esp_Vector) as Long

Get vector normal to the view at base location using pos for direction and using length
Declare Function esp_VecPick App (ByRef vec as esp_Vector) as Long

Allows you to pick a vector using the standard FEMAP vector definition dialog box.

Duplication Functions
These functions are used to duplicate standard FEMAP entities.

Declare Function esp_DupCopy App (ByVal listID as Long, ByVal ent_type as
Long, ByRef vec as esp_Vector, ByVal length as Double) as Long

Copies all entities of ent_type in list along the vector specified by vec and at length.
Works for nodes, elements and geometry only.
Declare Function esp_DupRadialCopy App (ByVal listID as Long, ByVal ent_type

as Long,ByRef loc as esp_Coord, ByVal length as Double) as Long

Copies all entities of ent_type in list radially along the vector from loc to the entity and at
length. Works for nodes, elements and geometry only.

Declare Function esp_DupRotate App (ByVal listID as Long, ByVal ent_type as
Long, ByRef vec as esp_Vector, ByVal angle as Double, ByVal dist as
Double) as Long

Rotates all entities of ent_type in list around the vector specified by vec and at angle using
dist as an offset. Works for nodes, elements and geometry only.

Declare Function esp_DupScale App (ByVal listID as Long, ByVal ent_type as
Long,ByVal coord_sys as Long, ByRef loc as esp_Coord, ByVal sx as
Double,ByVal sy as Double,ByVal sz as Double) as Long

Scales all entities of ent_type in list about the point loc with scale factors sx,sy,sz.
Coord_sys can be used to specify a local coordinate system to scale about. Works for
nodes, elements and geometry only.

Declare Function esp_DupReflect App (ByVal listID as Long, ByVal ent_type as

Long, ByVal x as Double,ByVal y as Double,ByVal z as Double,ByVal dx as
Double,ByVal dy as Double,ByVal dz as Double) as Long

Reflects all entities of ent_type in list across the plane specified by a normal vector from
x,y,z and dx,dy,dz. Works for nodes, elements and geometry only.

Geometry Functions
These functions are used to create FEMAP goemetry. They mimic the
commands on the FEMAP Geometry menu.

Declare Function esp_LineEndpoints App (ByVal color as Long, ByVal layer as
Long, ByRef loc1 as esp_Coord, ByRef loc2 as esp_Coord) as Long

Creates a line of color, on layer between endpoints loc1 and loc2. Returns the ID of the
created curve.
Declare Function esp_LinePoints App (ByVal color as Long, ByVal layer as Long,

ByVal p1ID as Long, ByVal p2ID as Long) as Long

Creates a line of color, on layer btween points of ID p1DI, p2ID. Returns the ID of the
created curve.
Declare Function esp_LinePerp App (ByVal color as Long, ByVal layer as Long,

ByRef loc as esp_Coord, ByVal cuID as Long) as Long

Creates a line of color, on layer through loc, perpendicular to curve cuID. Returns the ID
of the created curve.
Declare Function esp_LineParallel App (ByVal color as Long, ByVal layer as Long,

ByVal offset as Double, ByVal cuID as Long) as Long

Creates a line of color, on layer parallel to curve cuID at offset. Returns the ID of the
created curve.
Declare Function esp_LineAngletoCurve App (ByVal color as Long, ByVal layer as

Long, ByVal angle as Double, ByRef loc as esp_Coord, ByVal cuID as Long)
as Long

Creates a line of color, on layer through loc at angle to curve cuID. Returns the ID of the
created curve.
Declare Function esp_LineOffset App (ByVal color as Long, ByVal layer as Long,

ByRef vec as esp_Vector, ByVal length as Double, ByVal cuID as Long) as
Long

Creates a line of color, on layer offset from curve cuID along vec at length. Returns the
ID of the created curve.

Declare Function esp_LinePointTangent App (ByVal color as Long, ByVal layer as
Long, ByRef loc as esp_Coord, ByVal cuID as Long, ByVal first_half as
Integer) as Long

Creates a line of color, on layer through loc tangent to arc/circle cuID. Set first half
TRUE to use first segment of arc/circle, false for end segment. Returns the ID of the
created curve.
Declare Function esp_LineTangentTangent App (ByVal color as Long, ByVal layer

as Long, ByVal cuID1 as Long, ByVal cuID2 as Long, ByRef loc as
esp_Coord) as Long

Creates a line of color, on layer tangent to both arcs/circles cuID1, cuID2 near loc.
Returns the ID of the created curve.
Declare Function esp_LineAtAngle App (ByVal color as Long, ByVal layer as Long,

ByVal angle as Double, ByRef loc as esp_Coord) as Long

Creates a line of color, on layer through loc at angle to x-axis of the workplane. Returns
the ID of the created curve.
Declare Function esp_CurveFSIntersect App (ByVal color as Long, ByVal layer as

Long, ByVal suID1 as Long, ByVal suID2 as Long, ByVal update as Long) as
Long

Creates a curve of color, on layer along the intersection of surfaces suID1 and suID2. If
update is true the surfaces are split at the curve. Returns TRUE if the intersection was
successful, FALSE otherwise.
Declare Function esp_CurveFSProject App (ByVal color as Long, ByVal layer as

Long, ByVal cuID as Long, ByVal suID as Long, ByVal update as Long) as
Long

Creates a curve of color, on layer using the normal projection of curve cuID onto solid
suID. If update is true the surfaces are split at the curve. Returns TRUE if the projection
was successful, FALSE otherwise.
Declare Function esp_CurveFSProjectVector App (ByVal color as Long, ByVal

layer as Long, ByVal cuID as Long, ByVal suID as Long, ByRef vec as
esp_Vector, ByVal update as Long) as Long

Creates a curve of color, on layer using the vector (vec) projection of curve cuID onto
surface suID. If update is true the surfaces are split at the curve. Returns the ID of the
created curve.
Declare Function esp_CurveFSParametric App (ByVal color as Long, ByVal layer

as Long, ByVal suID as Long, ByRef loc as esp_Coord, ByVal u_dir as Long,
ByVal update as Long) as Long

Creates a curve of color, on layer through loc along a constant parametric line. If u_dir is

true the u direction of the surface is used, otherwise the v direction is used. If update is
true the surfaces are split at the curve. Returns TRUE if the parametric curve call was
successful, FALSE otherwise.
Declare Function esp_CurveLength App (ByVal curveID as Long) as Double

Returns the length of the curve specified by curveID.
Declare Function esp_CircleRadius App (ByVal color as Long, ByVal layer as

Long, ByRef center as esp_Coord, ByRef loc as esp_Coord) as Long

Creates a circle of color, on layer with center and through loc.
Declare Function esp_CircleCenter App (ByVal color as Long, ByVal layer as Long,

ByVal radius as Double, ByRef center as esp_Coord) as Long

Creates a circle of color, on layer with center and radius. Returns the ID of the created
curve.
Declare Function esp_CircleTwoPoints App (ByVal color as Long, ByVal layer as

Long, ByVal radius as Double, ByRef loc1 as esp_Coord, ByRef loc2 as
esp_Coord) as Long

Creates a circle of color, on layer with radius and through loc1 and loc2. Returns the ID
of the created curve.
Declare Function esp_CirclePointsOnArc App (ByVal color as Long, ByVal layer as

Long, ByRef loc1 as esp_Coord,ByRef loc2 as esp_Coord,ByRef loc3 as
esp_Coord) as Long

Creates a circle of color, on layer through the three locations. Returns the ID of the
created curve.
Declare Function esp_CirclePointTangent App (ByVal color as Long, ByVal layer

as Long, ByVal cuID as Long, ByRef center as esp_Coord) as Long

Creates a circle of color, on layer tangent to curve cuID with center. Returns the ID of the
created curve.
Declare Function esp_CircleTangentTangent App (ByVal color as Long, ByVal

layer as Long, ByVal cuID1 as Long,ByVal cuID2 as Long, ByVal radius as
Double, ByRef loc as esp_Coord) as Long

Creates a circle of color, on layer tangent to both curve cuID1 and cuID2 with radius and
a center near loc. Returns the ID of the created curve.
Declare Function esp_CircleConcentric App (ByVal color as Long, ByVal layer as

Long, ByVal cuID as Long, ByVal radius as Double) as Long

Creates a circle of color, on layer concentric to circle cuID with radius. Returns the ID of
the created curve.
Declare Function esp_ArcRadiusSE App (ByVal color as Long, ByVal layer as

Long, ByVal radius as Double, ByRef start as esp_Coord, ByRef end as
esp_Coord) as Long

Create an arc of color, on layer, with radius and start and end coordinates. Returns the ID
of the arc.
Declare Function esp_ArcCenterSE App (ByVal color as Long, ByVal layer as

Long, ByRef center as esp_Coord, ByRef start as esp_Coord, ByRef end as
esp_Coord) as Long

Create an arc of color, on layer, with center, start and end coordinates. Returns the ID of
the arc.
Declare Function esp_ArcAngleSE App (ByVal color as Long, ByVal layer as Long,

ByVal angle as Double, ByRef start as esp_Coord, ByRef end as esp_Coord)
as Long

Create an arc of color, on layer, of angle and start and end coordinates. Returns the ID of
the arc.
Declare Function esp_ArcAngleCS App (ByVal color as Long, ByVal layer as Long,

ByVal angle as Double, ByRef center as esp_Coord, ByRef start as
esp_Coord) as Long

Create an arc of color, on layer, of angle and center and start coordinates. Returns the ID
of the arc.
Declare Function esp_ArcChordCS App (ByVal color as Long, ByVal layer as

Long, ByVal length as Double, ByRef center as esp_Coord, ByRef start as
esp_Coord) as Long

Create an arc of color, on layer, with radius and start and end coordinates. Returns the ID
of the arc.
Declare Function esp_ArcPoints App (ByVal color as Long, ByVal layer as Long,

ByRef start as esp_Coord, ByRef mid as esp_Coord, ByRef end as esp_Coord
) as Long

Create an arc of color, on layer, with radius and start and end coordinates. Returns the ID
of the arc.
Declare Function esp_ArcSEDirection App (ByVal color as Long, ByVal layer as

Long, ByRef start as esp_Coord, ByRef end as esp_Coord, ByRef vec as
esp_Vector) as Long

Create an arc of color, on layer, with radius and start and end coordinates. Returns the ID
of the arc.

Declare Function esp_SplineAddPoint App (ByRef point as esp_Coord, ByVal
project as Long) as Long

Add point to an internal list that is used by the esp_SplineCreate fuction to make a spline
of up to 110 points. If project is 1 points are projected onto workplane, if 0 they are not.
Declare Function esp_SplineCreate App (ByVal color as Long, ByVal layer as

Long, ByVal control_points as Long) as Long

Creates a spline of color, on layer using the internal list of points generated by
esp_SplineAddPoint. The function returns the ID of the spline and clears the internal list.
If control_points is true the points are used as control points.
Declare Function esp_SplineParabola App (ByVal color as Long, ByVal layer as

Long, ByRef vertex as esp_Coord, ByRef focus as esp_Coord, ByRef end as
esp_Coord) as Long

Creates a spline of color, on layer in the shape of a parabola with vertex, focus and
stopping near end. Returns the ID of the created spline.
Declare Function esp_SplineEllipse App (ByVal color as Long, ByVal layer as

Long, ByRef center as esp_Coord, ByRef vec as esp_Vector, ByVal maj_rad
as Double, ByVal min_rad as Double) as Long

Creates a spline of color, on layer in the shape of an ellipse with center, vector of the
major radius, the maj_rad and min_rad lengths. Returns the ID of the created spline.
Declare Function esp_SplineHyperbola App (ByVal color as Long, ByVal layer as

Long, ByRef vertex as esp_Coord, ByRef vec as esp_Vector, ByRef end as
esp_Coord, ByVal height as Double, ByVal angle as Double) as Long

Creates a spline of color, on layer in the shape of a hyperbola with vertex, vec towards
focus, asymptote angle and height, and stopping near end. Returns the ID of the created
spline.
Declare Function esp_SplineBlend App (ByVal color as Long, ByVal layer as Long,

ByVal cuID1 as Long, ByVal end1 as Long, ByVal cuID2 as Long, ByVal
end2 as Long, ByVal factor as Double) as Long

Creates a spline of color, on layer by blending between two curves. End1 and end2
control whether the starting point or endpoint of the respective curves is used, 0 for start 1
for end. Returns the ID of the created spline.
Declare Function esp_SplineMidspline App (ByVal color as Long, ByVal layer as

Long, ByVal cuID1 as Long, ByVal cuID2 as Long) as Long

Creates a spline of color, on layer between two curves, cuID1 and cuID2. Returns the ID
of the created spline.
Declare Function esp_SplineOffset App (ByVal color as Long, ByVal layer as Long,

ByVal cuID as Long, ByVal offset as Double, ByVal positive_side as Long)

as Long

Creates a spline of color, on layer offset from spline cuID. If positive_side is 1 spline is
offset in global positive direction, if 0 it uses global negative direction . Returns the ID of
the created spline.
Declare Function esp_SplineTangents App (ByVal color as Long, ByVal layer as

Long, ByRef vec1 as esp_Vector, ByRef vec2 as esp_Vector) as Long

Creates a spline of color, on layer between start and end tangents vec1 and vec2. Returns
the ID of the created spline.
Declare Function esp_SplineEquation App (ByVal color as Long, ByVal layer as

Long, ByRef c3 as esp_Coord, ByRef c2 as esp_Coord, ByRef c1 as
esp_Coord, ByRef c as esp_Coord) as Long

Creates a spline of color, on using parametric equations defined by constants c3,c2,c1,c.
Returns the ID of the created spline.
Declare Function esp_SurfBoundary App (ByVal list as Long) as Long

Create a boundary surface from curves in list. Returns the id of the surface.
Declare Function esp_SurfExtrude App (ByVal list as Long, ByRef ex_vec as

esp_Vector) as Long

Create a surface by extruding curves in list along ex_vec. Returns the id of the surface.
Declare Function esp_SurfRevolve App (ByVal list as Long, ByRef rot_vec as

esp_Vector, ByVal angle as Double) as Long

Create a surface by rotating curves in list an angle around rot_vec. Returns the id of the
surface.
Declare Function esp_SurfRuled App (ByVal cuID1 as Long, ByVal cuID2 as Long

) as Long

Create a ruled surface between curves cuID1 and cuID2. Returns the id of the surface.
Declare Function esp_SurfSweep App (ByVal culist as Long, ByVal pathlist as

Long) as Long

Create a boundary surface from curves in list. Returns the id of the surface.
Declare Function esp_SurfLoft App (ByVal culist as Long) as Long

Create a boundary surface from curves in list. Returns the id of the surface.
Declare Function esp_SurfEdges App (ByVal culist as Long) as Long

Create a surface from 3 or 4 curves in list. Returns the id of the surface.
Declare Function esp_SurfCorners App (ByVal four_corners as Long, ByRef c1 as

esp_Coord, ByRef c2 as esp_Coord, ByRef c3 as esp_Coord, ByRef c4 as
esp_Coord) as Long

Create a surface from 3 or 4 corners, c1,c2,c3,c4. Returns the id of the surface.
Declare Function esp_SurfOffset App (ByVal suID as Long, ByVal offset as Double

Create a surface by offseting suID. Returns the id of the surface.
Declare Function esp_SurfArea App (ByVal surfID as Long) as Double

Returns the area of the surface specified by surfID.
Declare Function esp_SolidExtrude App (ByVal suID as Long, ByVal mode as Long,

ByRef dir_vec as esp_Vector) as Long

Extrude surface suID into a solid along dir_vec. If mode is 0 it is a new solid, if 1 it is
added to the active solid, if 2 it is subtracted from the active solid.
Declare Function esp_SolidRevolve App (ByVal suID as Long, ByVal angle as

Double, ByVal mode as Long, ByRef axis as esp_Vector) as Long

Revolve surface suID into a solid using angle around axis. If mode is 0 it is a new solid, if
1 it is added to the active solid, if 2 it is subtracted from the active solid.
Declare Function esp_SolidAdd App (ByVal baseID as Long, ByVal IDlist as Long)

as Long

Add solids in Idlist to baseID.
Declare Function esp_SolidSubtract App (ByVal baseID as Long, ByVal IDlist as

Long) as Long

Sbutract solids in Idlist from baseID.
Declare Function esp_SolidIntersect App (ByVal baseID as Long, ByVal IDlist as

Long) as Long

Intersect solids in Idlist with baseID.
Declare Function esp_SolidFillet App (ByVal IDlist as Long, ByVal radius as

Double) as Long

Fillet solid edge curves in Idlist with radius.
Declare Function esp_SolidChamfer App (ByVal IDlist as Long, ByVal length as

Double) as Long

Chamfer solid edge curves in Idlist with length.
Declare Function esp_SolidStitch App (ByVal IDlist as Long) as Long

Stitch surfaces in Idlist into a solid.

Declare Function esp_SolidExplode App (ByVal ID as Long) as Long

Runs the explode command on the solid of ID.
Declare Function esp_SolidCleanup App (ByVal ID as Long,ByVal redundant as

Long,ByVal sliver as Long,ByVal check as Long) as Long

Runs the cleanup command on the solid of ID. Options are true/false to remove
redundant geometry, cleanup slivers, and check geometry.

Meshing Functions
These functions are used to set mesh sizes on geometry, mesh attributes on
geometry and to mesh the geometry.

Declare Function esp_MSizeDefault App (ByVal size as Double, ByVal number as
Long) as Long

Set default mesh size and minimum number of elements on curves
Declare Function esp_MSizePoint App (ByVal ID as Long, ByVal size as Double) as

Long

Set mesh size on point of ID
Declare Function esp_MSizeCurve App (ByVal ID as Long, ByVal size as Long,

ByVal value as Double, ByVal bias as Single, ByVal bias_end as Long, ByVal
replace as Long) as Long

Set mesh size on curve of ID. If size is true then value contains the size of elements. If it
is false value contains the number of elements. Bias and bias_end contain mesh biasing
info. If replace if true the command will replace any existing mesh size info.
Declare Function esp_MSizeSurf App (ByVal ID as Long, ByVal size as Double,

ByVal replace as Short) as Long

Set mesh size on a surface. If replace if true the command will replace any existing mesh
size info.
Declare Function esp_MSizeSolid App (ByVal ID as Long, ByVal size as Double,

ByVal replace as Long) as Long

Set mesh size on a solid. If replace if true the command will replace any existing mesh size
info.
Declare Function esp_MAttrPoint App (ByVal ID as Long, ByVal propID as Long)

as Long

Sets property ID on point.
Declare Function esp_MAttrSurf App (ByVal ID as Long, ByVal propID as Long)

as Long

Sets property ID on surface
Declare Function esp_MAttrSolid App (ByVal ID as Long, ByVal propID as Long)

as Long

Sets property ID on solid
Declare Function esp_MAttrCurveProp App (ByVal ID as Long, ByVal propID as

Long, ByVal orient as Long, ByRef vec as esp_Vector) as Long

Sets property ID on curve. Use orient to set the orientation type(0 for vector, 1 for
location) and fill vec with orientation data.
Declare Function esp_MAttrCurveOffset App (ByVal ID as Long, ByVal type as

Long, ByRef End_A as esp_Vector, ByRef End_B as esp_Vector) as Long

Set offsets on curve ID. Use type(0 is vector, 2 is point) use vectors at End_A and
End_B for data.
Declare Function esp_MAttrCurveRelease App (ByVal ID as Long, ByRef End_A as

esp_BC, ByRef End_B as esp_BC) as Long

Set releases on curve at End_A and End_B.
Declare Function esp_MeshSolid App (ByVal IDlist as Long, ByVal prop as Long)

as Long

Mesh solid using property. If meshing attributes are set they will be used
Declare Function esp_MeshSolidFromSurf App (ByVal IDlist as Long, ByVal prop

as Long) as Long

Mesh solid from surfaces using property.
Declare Function esp_MeshSolidFromEl App (ByVal IDlist as Long, ByVal prop as

Long) as Long

Mesh solid from elements using property.
Declare Function esp_MeshCurve App (ByVal IDlist as Long) as Long

Mesh curves using meshing attributes. Will not work if meshing attributes are not set.
Declare Function esp_MeshSurface App (ByVal IDlist as Long, ByVal use_quads as

Long) as Long

Mesh surfaces using meshing attributes. Will not work if meshing attributes are not set.

Declare Function esp_MeshEdgeMembers App (ByVal el_list as Long,ByVal
node_list as Long, ByVal propID as Long,ByRef orient_vec as esp_Vector)
as Long

Runs the edge members command using el_list, node_list, the property in propID and the
orient_vec if the property needs one. Refer to the documentation on the edge members
command for more information.

Model Functions
These functions used to create nodes and elements.

Declare Function esp_NodeCreate App (ByVal ID as Long, ByVal color as Long,
ByVal layer as Long, ByVal defcs as Long, ByVal outcs as Long, ByVal x as
Double, ByVal y as Double, ByVal z as Double) as Long

Create a node. If ID is –1 the node will get the next ID, if ID is positive the node will be
created at that ID. If a node already exists at that ID the function will fail.
Declare Function esp_NodeAttach App (ByVal ID as Long, ByVal geom_type as

Long, ByVal geom_ID as Long) as Long

Attaches node of nodeID to geomtry of geom_type and geomID
Declare Function esp_NodeRemove App (ByVal ID as Long, ByVal geom_type as

Long, ByVal geom_ID as Long) as Long

Removes node of nodeID from geomtry of geom_type and geomID
Declare Function esp_ElemCreate App (ByVal ID as Long, ByRef elem as

esp_Element) as Long

Create an element. If ID is –1 the element will get the next ID, if ID is positive the element
will be created at that ID. If a element already exists at that ID the function will fail.
Declare Function esp_ElemOrient App (ByVal ID as Long, ByRef vec as

esp_Vector) as Long

Orients an element along a vector in vec. The normal direction for plate elements and the
Y-axis direction for line elements
Declare Function esp_ElemGetArea App (ByVal ID as Long) as Double

Returns the area of the planar element specified by ID. Returns 0 if not a planar element.
Declare Function esp_ElemGetVolume App (ByVal ID as Long) as Double

Returns the volume of the solid element specified by ID. Returns 0 if not a solid element.

Declare Function esp_LayerCreate App (ByVal ID as Long, ByVal title as String,
ByVal color as Long) as Long

Creates a layer of ID with title and color. If a layer at that ID already exists the function
returns false.

Property Functions
These functions are used to create FEMAP properties

Declare Function esp_PropCreate App (ByVal ID as Long, ByVal Title as String,
ByVal prop_type as Long, ByVal matID as Long, ByVal color as Long,
ByVal layer as Long, ByRef flags as esp_Flags, ByRef property as
esp_Property) as Long

Creates a property at ID with title, matID, color and layer. Property values are contained
in property and are placed based on the prop_type. The table below give the
cooresponding values for the various property types.

Property Values
ROD BAR TUBE LINK BEAM SPRING

Type 1 2 3 4 5 6
Flags
0 tapered
1 axial(1)/torsion(0)
Values
0 Area Area Dout Ku_A Area_A Stiffness
1 I1 Din Kv_A I1_A Damping
2 I2 Kw_A I2_A
3 I12 Kthu_A I12_A
4 J J Kthv_A J_A
5 Ctors K1,eff Kthw_A K1_A,eff
6 K2,eff Ku_B K2_A,eff
7 NSM NSM NSM Kv_B NSM_A
8 Initial Tension Yf_A1 Kw_B Yf_A1
9 Zf_A1 Kthu_B Zf_A1
10 Yf_A2 Kthv_B Yf_A2
11 Zf_A2 Kthw_B Zf_A2
12 Yf_A3 Yf_A3
13 Zf_A3 Zf_A3
14 Yf_A4 Yf_A4
15 Zf_A4 Zf_A4
16 Yoff_A
17 Zoff_A
18
19
20 Area_B
21 I1_B
22 I2_B
23 I12_B
24 J_B
25 K1_B,eff
26 K2_B,eff
27 NSM_B

28 Yf_B1
29 Zf_B1
30 Yf_B2
31 Zf_B2
32 Yf_B3
33 Zf_B3
34 Yf_B4
35 Zf_B4
36 Yoff_B
37 Z_offB
38 thru 41

Property Values (continued)
DOF

SPRING
CURVE
BEAM

GAP SHEAR MEM-BRANE BEND-ING

Type 7 8 9 11/12 13/14 15/16
Flags
0
1
2 DOF_A
3 DOF_B
Values
0 Stiffness Area Gap,initial T T T
1 Damping I1 Stiff,tens
2 I2 Stiff,comp
3 I12 Stiff,trans
4 J Mu,y
5 K1,eff Mu,z
6 K2,eff PreloadT
7 NSM Plane X NSM NSM NSM
8 Yf_A1 Plane Y F1,eff.fact. Top Fiber
9 Zf_A1 Plane Z F2,eff.fact. Bot Fiber
10 Yf_A2 Width/Area 12I/T3
11 Zf_A2 MaxPenRat
12 Yf_A3 MaxAdjRat
13 Zf_A3 MinPenRat
14 Yf_A4
15 Zf_A4
16
17 R, bend rad
18 thru 41

Property Values (continued)
PLATE PLANE

STRAIN
LAMINATE MASS MASS

MAT
STIFF
MAT

Type 17/18 19/20 21/22 27 28 30
Flags
0 failure
1 symmetry
Values
0 Tavg,T1 T Bottom Fiber M11 K11
1 T2 NSM Ixx M12 K12
2 T3 (4.1+)Bond Shear Ixy M13 K13
3 T4 Iyy M14 K14
4 Izx M15 K15

5 Iyz M16 K16
6 Izz
7 NSM NSM M or Mx M22 K22
8 Top Fiber Top Fiber Xoff,refCS M23 K23
9 Bot Fiber Bot Fiber Yoff,refCS M24 K24
10 12I/T3 Zoff,refCS M25 K25
11 Ts/T My M26 K26
12 Mz
13
14 M33 K33
15 M34 K34
16 M35 K35
17 M36 K36
18
19
20
21 M44 K44
22 M45 K45
23 M46 K46
24
25
26
27
28 M55 K55
29 M56 K56
30
31
32
33
34
35 M66 K66
36

Declare Function esp_PropAddLamina App (ByVal ID as Long, ByVal ply_num as
Long, ByVal matID as Long, ByVal thickness as Double, ByVal angle as
Double) as Long

Adds a ply to a laminate property ID at ply_num with material matID, thickness and
angle. Ply_num must be 1-90
Declare Function esp_PropGetLamina App (ByVal ID as Long, ByVal ply_num as

Long, ByRef matID as Long, ByRef thickness as Double, ByRef angle as
Double) as Long

Gets the ply material ID, thickness and angle for a laminate property of ID at ply number.

Declare Function esp_PropBeamXSection App (ByVal ID as Long, ByVal Title as
String, ByVal matID as Long, ByVal color as Long, ByVal layer as Long,
ByVal suID as Long, ByRef y_axis as esp_Vector, ByRef str1 as esp_Coord,
ByRef str2 as esp_Coord, ByRef str3 as esp_Coord, ByRef str4 as esp_Coord
) as Long

Used to create a general beam cross section property. SuID is ID of a surface in FEMAP
that is to be used as cross section. Y_axis is a vector that denotes the y direction of the
beam cross section. Str1,str2,str3,str4 are the x,y locations of the stress recovery
locations on the cross section.

Declare Function esp_PropGet App (ByVal ID as Long, ByRef flags As
esp_Flags,ByRef property as esp_Property) as Long

Fill flags and property with the data from property ID
Declare Function esp_PropGetType App (ByVal ID as Long, ByRef type as Long,

ByRef matID as Long) as Long

Get the type and material ID of property at ID
Declare Function esp_PropPut App (ByVal ID as Long, ByRef flags As

esp_Flags,ByRef property as esp_Property) as Long

Put the flags and property data into property ID. This command will overwrite all
exitsting property data at that ID.
Declare Function esp_PropPlateMatls App (ByVal ID as Long, ByVal Bending_ID

as Long, ByVal Shear_ID as Long, ByVal Coupling_ID as Long) as Long

Sets material ID’s for Bending, Shear and Coupling on plate property. Supported in
NASTRAN only.

Refer to the section above for property type numbers and value locations.

Material Functions
The FEMAP BASIC Scripting Language contains eleven functions for
creating FEMAP materials.

Declare Function esp_MatlCreateIsotropic App (ByVal ID as Long, ByVal Title as
String, ByVal color as Long, ByVal layer as Long, ByRef mat as
esp_Matl_Iso) as Long

Creates an Isotropic material at ID, using the specified title, color, layer and values
contaned in mat as follows.

Type esp_Matl_Iso
E as Double
G as Double
Nu as Double
a as Double
k as Double
Cp as Double
L_Tension as Double
L_Comp as Double
L_Shear as Double
Density as Double
Damping as Double
Mat_Temp as Double

End Type
Declare Function esp_MatlCreateOrtho2D App (ByVal ID as Long, ByVal Title as

String, ByVal color as Long, ByVal layer as Long, ByRef mat as
esp_Matl_Ortho_2D) as Long

Creates a 2D Orthotropic material at ID, using the specified title, color, layer and values
contaned in mat as follows.

Type esp_Matl_Ortho_2D
E1 as Double
E2 as Double
G12 as Double
G1z as Double
G2z as Double
Nu as Double
a1 as Double
a2 as Double
k11 as Double
k12 as Double
k13 as Double
k22 as Double
k23 as Double

k33 as Double
Cp as Double
Stress_Limits as Long
L_Tension1 as Double
L_Tension2 as Double
L_Comp1 as Double
L_Comp2 as Double
L_Shear as Double
Density as Double
Damping as Double
Mat_Temp as Double
Tsia_Wu as Double

End Type
Declare Function esp_MatlCreateOrtho3D App (ByVal ID as Long, ByVal Title as

String, ByVal color as Long, ByVal layer as Long, ByRef mat as
esp_Matl_Ortho_3D) as Long

Creates a 3D Orthotropic material at ID, using the specified title, color, layer and values
contaned in mat as follows.
Type esp_Matl_Ortho_3D

E1 as Double E2 as Double

E3 as Double
G12 as Double
G23 as Double
G13 as Double
Nu12 as Double
Nu23 as Double
Nu13 as Double
a1 as Double
a2 as Double
a3 as Double
k11 as Double
k12 as Double

k13 as Double
k22 as Double
k23 as Double
k33 as Double
Cp as Double
L_Tension as Double
L_Comp as Double
L_Shear as Double
Density as Double
Damping as Double
Mat_Temp as Double

End Type
Declare Function esp_MatlCreateAnIso2D App (ByVal ID as Long, ByVal Title as

String, ByVal color as Long, ByVal layer as Long, ByRef mat as
esp_Matl_AnIso_2D) as Long

Creates a 2D Anisotropic material at ID, using the specified title, color, layer and values
contaned in mat as follows.
Type esp_Matl_AnIso_2D

G11 as Double
G12 as Double
G13 as Double
G22 as Double
G23 as Double
G33 as Double
a1 as Double
a2 as Double
a12 as Double
k11 as Double
k12 as Double

k13 as Double
k22 as Double
k23 as Double
k33 as Double
Cp as Double
L_Tension as Double
L_Comp as Double
L_Shear as Double
Density as Double
Damping as Double
Mat_Temp as Double

End Type
Declare Function esp_MatlCreateAnIso3D App (ByVal ID as Long, ByVal Title as

String, ByVal color as Long, ByVal layer as Long, ByRef mat as
esp_Matl_AnIso_3D) as Long

Creates a 3D Anisotropic material at ID, using the specified title, color, layer and values
contaned in mat as follows.
Type esp_Matl_AnIso_3D

G11 as Double
G12 as Double
G13 as Double
G14 as Double
G15 as Double

G16 as Double
G22 as Double
G23 as Double
G24 as Double
G25 as Double

G26 as Double
G33 as Double
G34 as Double
G35 as Double
G36 as Double
G44 as Double
G45 as Double
G46 as Double
G55 as Double
G56 as Double
G66 as Double
a1 as Double
a2 as Double
a3 as Double

a4 as Double
a5 as Double
a6 as Double
k1 as Double
k2 as Double
k3 as Double
k4 as Double
k5 as Double
k6 as Double
Cp as Double
Density as Double
Damping as Double
Mat_Temp as Double

End Type
Declare Function esp_MatlCreateHyper App (ByVal ID as Long, ByVal Title as

String, ByVal color as Long, ByVal layer as Long, ByRef matl as
esp_Matl_HyperElastic) as Long

Creates a Hyperelastic material at ID, using the specified title, color, layer and values
contaned in mat as follows.
Type esp_Matl_HyperElastic

A01 as Double
A02 as Double
A03 as Double
A04 as Double
A05 as Double
A10 as Double
A11 as Double
A12 as Double
A13 as Double
A14 as Double
A20 as Double
A21 as Double
A22 as Double
A23 as Double
A30 as Double
A31 as Double
A32 as Double
A40 as Double
A41 as Double
A50 as Double
D1 as Double
D2 as Double

D3 as Double
D4 as Double
D5 as Double
D6 as Double
Dist_Order as Double
Vol_Order as Double
a as Double
Cp as Double
Density as Double
Damping as Double
Mat_Temp as Double

68

End Type
Declare Function esp_MatlCreateGeneral App (ByVal ID as Long, ByVal Title as

String, ByVal color as Long, ByVal layer as Long, ByVal subtype as Long)
as Long

Creates a general material at ID, using the specified title, color, layer and of the specified
subtype. Subtype must be the number of a material contained in the Material Type
Definition file. The material values are added using the following four functions.
Declare Function esp_MatlAddRValue App (ByVal ID as Long, ByVal index as

Long, ByVal value as Double) as Long

Add a real value at the index of a general material of ID.
Declare Function esp_MatlAddIValue App (ByVal ID as Long, ByVal index as

Long, ByVal value as Long) as Long

Add an integer value at the index of a general material of ID.
Declare Function esp_MatlAddBValue App (ByVal ID as Long, ByVal index as

Long, ByVal value as Long) as Long

Add a boolean value at the index of a general material of ID.
Declare Function esp_MatlAddFunction App (ByVal ID as Long, ByVal index as

Long, ByVal funcID as Long) as Long

Add a function of funcID at the index of a general material of ID.

Declare Function esp_MatlGetRValue App (ByVal ID as Long, ByVal index as
Long, ByRef value as Double) as Long

Get the real value of material ID at index.
Declare Function esp_MatlGetIValue App (ByVal ID as Long, ByVal index as Long,

ByRef value as Long) as Long

Get the integer value of material ID at index.

Declare Function esp_MatlGetBValue App (ByVal ID as Long, ByVal index as
Long, ByRef value as Long) as Long

Get the boolean value of material ID at index.

Declare Function esp_MatlGetFunction App (ByVal ID as Long, ByVal index as
Long, ByRef funcID as Long) as Long

Get the function ID of material ID at index.

69

Declare Function esp_MatlGetType App (ByVal ID as Long, ByRef type as Long)
as Long

Get the type of material ID. The types are numbers 0-6 and coorespond to isotropic,
orthotropic 2D and 3D, anisotropic 2D and 3D, hyperelastic and general.
Declare Function esp_MatlGetSubType App (ByVal ID as Long, ByRef subtype as

Long) as Long

Get the subtype of material ID. Subtypes are returned for general materials only. They
are returned as numbers, not the string names.

Refer to the neutral file documetation for what values are at what indices for regular
FEMAP materials

Load Functions
These functions are used to create FEMAP loads

Declare Function esp_LoadCreateSet App (ByVal ID as Long, ByVal Title as String
) as Long

Creates a load set at ID with title.
Declare Function esp_LoadNodal App (ByVal type as Long, ByVal ID_List as

Long,ByVal c_sys as Long, ByRef L as esp_Load_Value, ByVal l_dir as
Long, ByRef d as esp_Load_Dir) as Long

Create a nodal load of type on nodes in ID_list. C_sys is the coordinate system for the
loads, values are in L, l_dir is the direction method with d containing the direction values.
Declare Function esp_LoadElemental App (ByVal type as Long, ByVal ID_List as

Long,ByVal c_sys as Long, ByRef L as esp_Load_Value) as Long

Create an elemental load of type on elements in ID_List. C_sys is for local load
coordinate system. The direction is always perpendicular to the element face normal
specified by L.face_num.
Declare Function esp_LoadPoint App (ByVal type as Long, ByVal ID_List as

Long,ByVal c_sys as Long, ByRef L as esp_Load_Value, ByVal l_dir as
Long, ByRef d as esp_Load_Dir) as Long

Create a point load of type on points in ID_list. C_sys is the coordinate system for the
loads, values are in L, l_dir is the direction method with d containing the direction values.
Declare Function esp_LoadCurve App (ByVal type as Long, ByVal ID_List as

Long,ByVal c_sys as Long, ByRef L as esp_Load_Value, ByVal l_dir as

70

Long, ByRef d as esp_Load_Dir) as Long

Create a curve load of type on curves in ID_list. C_sys is the coordinate system for the
loads, values are in L, l_dir is the direction method with d containing the direction values.
Declare Function esp_LoadSurface App (ByVal type as Long, ByVal ID_List as

Long,ByVal c_sys as Long, ByRef L as esp_Load_Value, ByVal l_dir as
Long, ByRef d as esp_Load_Dir) as Long

Create a surface load of type on surfaces in ID_list. C_sys is the coordinate system for the
loads, values are in L, l_dir is the direction method with d containing the direction values.

Constraint Functions

Declare Function esp_BCCreateSet App (ByVal ID as Long, ByVal Title as String)
as Long

Creates a constraint set at ID with title.

Declare Function esp_BCNode App (ByVal ID_List as Long,ByVal c_sys as Long,
ByRef bcc as esp_BC) as Long

Create a nodal constraint on nodes in ID_list. C_sys is the coordinate system for the
constraints, dof are in bcc.

Declare Function esp_BCPoint App (ByVal ID_List as Long,ByVal opt as Long)
as Long

Create nodal constraint on points in ID_list. Option is 1 for fixed, 2 for translations, 3 for
rotations.

Declare Function esp_BCCurve App (ByVal ID_List as Long,ByVal opt as Long)
as Long

Create nodal constraint on curves in ID_list. Option is 1 for fixed, 2 for translations, 3 for
rotations.

Declare Function esp_BCSurface App (ByVal ID_List as Long,ByVal opt as Long)
as Long

Create nodal constraint on surfaces in ID_list. Option is 1 for fixed, 2 for translations, 3
for rotations.

Group Functions
These functions are used to create and manipulate FEMAP groups.

71

Declare Function esp_GrpNewGroup App (ByVal ID as Long, ByVal title as String
) as Long

Create a new group at ID with title.
Declare Function esp_GrpActivateGroup App (ByVal ID as Long) as Long

Make group at ID the active group.
Declare Function esp_GrpEvaluate App (ByVal ID as Long, ByVal always as Long

) as Long

Evaluate group at ID. If always is true evaluate always will be turned on.
Declare Function esp_GrpAutomaticAdd App (ByVal ID as Long) as Long

Turn on auto add for group at ID.
Declare Function esp_GrpRenumber App (ByVal ID as Long, ByVal yesno as Long

) as Long

Renumber group at ID. If yesno is true automatic renumbering takes place if entities in
group are renumbered
Declare Function esp_GrpSelectModel App () as Long

Creates rules in active group to select all entities in the model
Declare Function esp_GrpResetRules App () as Long

Resets all rules in active group
Declare Function esp_GrpCopy App (ByVal ID as Long, ByVal newID as Long,

ByVal title as String) as Long

Copies group of ID into group of newID with title
Declare Function esp_GrpCondense App (ByVal ID as Long, ByVal newID as

Long, ByVal title as String) as Long

Copies group of ID into group of newID and title using only ID rules
Declare Function esp_GrpAnd App (ByVal ID1 as Long, ByVal ID2 as Long, ByVal

newID as Long, ByVal title as String) as Long

Use logical AND between groups ID1 and ID2 to make group newID.
Declare Function esp_GrpOr App (ByVal ID1 as Long, ByVal ID2 as Long, ByVal

newID as Long, ByVal title as String) as Long

Use logical OR between groups ID1 and ID2 to make group newID.
Declare Function esp_GrpExclusiveOr App (ByVal ID1 as Long, ByVal ID2 as

72

Long, ByVal newID as Long, ByVal title as String) as Long

Use logical EXCLUSIVE OR between groups ID1 and ID2 to make group newID.
Declare Function esp_GrpNot App (ByVal ID as Long, ByVal newID as Long,

ByVal title as String) as Long

Use logical NOT on groups ID to make group newID.
Declare Function esp_GrpGenerateProperty App (ByVal IDlist as Long) as Long

Generate groups using properties in IDlist.
Declare Function esp_GrpGenerateMaterial App (ByVal IDlist as Long) as Long

Generate groups using materials in IDlist.
Declare Function esp_GrpGenerateElemType App (ByVal IDlist as Long) as Long

Generate groups using types of elements in IDlist.
Declare Function esp_GrpPeel App (ByVal IDlist as Long, ByVal no_layers as

Long, ByVal from_outer as Long, ByVal from_remain as Long) as Long

Declare Function esp_GrpEntID App (ByVal ent_type as Long, ByVal IDlist as
Long, ByVal Grp_ID as Long) as Long

Add entities of ent_type contained in IDlist into group of Grp_ID.
Declare Function esp_GrpEntMethod App (ByVal ent_type as Long, ByVal method

as Long, ByVal IDlist as Long, ByVal Grp_ID as Long) as Long

Add entities of ent_type based on method, using entities in IDlist.

Modify Functions
These functions are similar to those found under the FEMAP modify menu.

Declare Function esp_ModScaleLoad App (ByVal IDlist as Long, ByVal ent_type as
Long, ByVal load_type as Long, ByVal scale_factor as Double, ByVal
add_factor as Double) as Long

Scales loads of load_type that exist on entities of ent_type that are in Idlist. Loads are
multiplied by scale_factor and then add_factor is added.
Declare Function esp_ModLoadFunc App (ByVal IDlist as Long, ByVal ent_type as

Long, ByVal load_type as Long, ByVal funcID as Long) as Long

Change function on loads of load_type that exist on entities of ent_type that are in Idlist.
Declare Function esp_ModLoadPhase App (ByVal IDlist as Long, ByVal ent_type

73

as Long, ByVal phase as Double) as Long

Change phase of loads of load_type that exist on entities of ent_type that are in Idlist.
Declare Function esp_ModPermBC App (ByVal IDlist as Long, ByRef bc as

esp_BC) as Long

Change permanent constraints of nodes in Idlist.
Declare Function esp_ModPropID App (ByVal IDlist as Long, ByVal new_prop as

Long) as Long

Change the property ID of elements in Idlist. New property must be the same as type as
the old one.
Declare Function esp_ModMatlID App (ByVal IDlist as Long, ByVal new_matl as

Long) as Long

Change the Material ID of elements in Idlist.
Declare Function esp_ModElOffset App (ByVal IDlist as Long, ByVal type as Long,

ByRef EndA as esp_Vector, ByRef EndB as esp_Vector) as Long

Change element offsets of elements in Idlist. Only line elements will be used. Type is the
offset type(0 is vector, 2 is node).
Declare Function esp_ModElOrient App (ByVal IDlist as Long, ByVal

orient_method as Long,ByVal node_ID as Long, ByRef Vec as esp_Vector) as
Long

Change orientation of elements in Idlist. If orient_method is 0 use node_ID, if 1 use vec if
2 it converts nodal orientation to equivalent vector orientation, if 3 it makes them
perpendicular to the elemental x-axis.
Declare Function esp_ModElType App (ByVal IDlist as Long, ByVal prop_ID as

Long, ByRef orient_vec as esp_Vector) as Long

Change type of elements in Idlist using a new property ID. If an orientation vector is
required for the new type use the orient_vec. Element geometries must match.
Declare Function esp_ModSurfDiv App (ByVal IDlist as Long, ByVal s_div as Long,

ByVal t_div as Long, ByVal tolerance as Double) as Long

Change number of s,t divisions on surfaces in Idlist. Tolerance should be between 0 and 1,
a lower tolerance will increase the number of facets used to draw the surface.
Declare Function esp_ModMatlAngle App (ByVal IDlist as Long, ByVal method as

Long, ByVal CSys as Long, ByVal Axis as Long, ByVal Angle as Single,
ByRef Vec as esp_Vector) as Long

Change the material angle of the elements in Idlist.
Declare Function esp_ModElReverse App (ByVal IDlist as Long, ByVal rev_opt as

74

Long, ByRef Vec as esp_Vector) as Long

Change the normal direction of the elements in Idlist. If rev_opt is 0 the normals are
reversed, if it’s 1 they are pointed outward, if it’s 2 they are pointed inward, if it’s 3 use
the vec to specifiy the normal direction
Declare Function esp_ModElOrder App (ByVal IDlist as Long, ByVal to_para as

Long, ByVal mid_nodes as Long) as Long

Change the order of elements in Idlist. If to_param is true they are made parabolic and if
mid_nodes is true midside nodes are created. If false they are made linear.
Declare Function esp_ModElSplitQuads App (ByVal IDlist as Long) as Long

Splits quad elements in Idlist into trianle elements.
Declare Function esp_ModSplineOrder App (ByVal IDlist as Long, ByVal order as

Long) as Long

Change the order of the splines in IDlist
Declare Function esp_ModSplineKnots App (ByVal IDlist as Long, ByRef loc as

esp_Coord) as Long

Insert a spline knot at loc into the spline in IDlist
Declare Function esp_ModColor App (ByVal IDlist as Long, ByVal ent_type as

Long, ByVal colorID as Long) as Long

Change the color of enitities of ent_type in Idlist.
Declare Function esp_ModLayer App (ByVal IDlist as Long, ByVal ent_type as

Long, ByVal layerID as Long) as Long

Change the layer of enitities of ent_type in Idlist.
Declare Function esp_ModBoundSurf App (ByVal BoundID as Long, ByVal map as

Long, ByVal surfID as Long) as Long

Change the underlying surface of a boundary. If map is true the boundary is mapped onto
the surface, if false it is unmapped.
Declare Function esp_ModMoveBy App (ByVal IDlist as Long, ByVal ent_type as

Long, ByRef Vec as esp_Vector) as Long

Move enitities of ent_type in Idlist along vec.
Declare Function esp_ModRotateBy App (ByVal IDlist as Long, ByVal ent_type as

Long, ByRef Axis as esp_Vector, ByVal angle as Double, ByVal dist as
Double) as Long

Rotate entities of ent_type in Idlist an angle about axis. If dist is non-zero they will be
translated as well

75

Declare Function esp_ModRotateTo App (ByVal IDlist as Long, ByVal ent_type as
Long, ByRef Axis as esp_Vector, ByRef loc1 as esp_Coord, ByRef loc2 as
esp_Coord) as Long

Rotate entities of ent_type in Idlist from loc1 to loc2 about axis. If dist is non-zero they
will be translated as well
Declare Function esp_ModProjOnCurve App (ByVal IDlist as Long, ByVal

ent_type as Long, ByVal cu_ID as Long) as Long

Project entities of ent_type(point or node) in Idlist onto curve cu_ID.
Declare Function esp_ModProjOnSurf App (ByVal IDlist as Long, ByVal ent_type

as Long, ByVal su_ID as Long) as Long

Project entities of ent_type(point or node) in Idlist onto surface su_ID.
Declare Function esp_ModScale App (ByVal IDlist as Long, ByVal ent_type as

Long, ByRef scale_factors as esp_Coord, ByRef s_loc as esp_Coord, ByVal
csysID as Long) as Long

Scale entities of ent_type using scale_factors about s_loc in the coordinate system csysID.
Declare Function esp_ModRenumber App (ByVal IDlist as Long, ByVal ent_type as

Long, ByVal startID as Long) as Long

Renumber enitities of ent_type in Idlist using startID as the beginning.

Delete Function
This functions is used to delete FEMAP entities.

Declare Function esp_DeleteEnt App (ByVal IDlist as Long, ByVal ent_type as
Long) as Long

Delete entities of ent_type in Idlist. Hierarchical delete rules still apply.
Declare Function esp_DeleteEntSingle App (ByVal ID as Long, ByVal ent_type as

Long) as Long

Delete entities of ent_type at Id. Hierarchical delete rules still apply.

Coordinate System Functions
These functions are used to create and manipulate coordinate systems.

Declare Function esp_CSysCreateVec App (ByRef base as esp_Coord, ByRef xdir as

76

esp_Vector, ByRef ydir as esp_Vector) as Long

Create a coordinate system using base and x and y axis vectors. Returns the ID of the
new coordinate system.
Declare Function esp_CSysCreatePoints App (ByRef base as esp_Coord,ByRef

x_point as esp_Coord,ByRef y_point as esp_Coord) as Long

Create a coordinate system using base and points on x and y axis. Returns the ID of the
new coordinate system.
Declare Function esp_XformUp App (ByVal csysID as Long, ByRef loc as

esp_Coord) as Long

Transform the loc into coordinates of coordinate system csysID.
Declare Function esp_XformDown App (ByVal csysID as Long, ByRef loc as

esp_Coord) as Long

Transform the loc into global coordinates from coordinate system csysID.
Declare Function esp_XformAcross App (ByVal in_ID as Long,ByVal out_ID as

Long, ByRef loc as esp_Coord) as Long

Transform the loc into from coordinates of coordinate system in_ID to coordinates of
coordinate system out_ID.
Declare Function esp_XformWorkplane App (ByRef loc as esp_Coord, ByRef work

as esp_Coord) as Long

Transform the loc into from global coordinates to workplane coordinates.

Tools Functions
These functions are similar to those found under the FEMAP tools menu.

Declare Function esp_ChkCoincNodes App (ByVal IDlist1 as Long, ByVal IDlist2 as
Long, ByVal tol as Double) as Long

Check for coincident nodes between Idlist1 and Idlist2 using tolerance. If Idlist2 is 0
Idlist1 is checked among itself.
Declare Function esp_VarCreate App (ByVal name as String, ByVal value as

Double, ByVal eq as String) as Long

Create a variable of name and assigns it either value or equation.
Declare Function esp_VarGet App (ByVal name as String, ByRef value as Double,

ByRef eq as String) as Long

Gets the variable of name and fills in value or equation.

77

Info Functions
These functions used to obtain information about the current FEMAP
model.

Declare Function esp_InfoMin App (ByVal entity as Long) as Long

Returns the minimum ID of entity in the current model.
Declare Function esp_InfoMax App (ByVal entity as Long) as Long

Returns the maximum ID of entity in the current model.
Declare Function esp_InfoNext App (ByVal entity as Long) as Long

Returns the ID of the next entity to be created in the current model.
Declare Function esp_InfoNumber App (ByVal entity as Long) as Long

Returns the number of entities in the current model.
Declare Function esp_InfoActive App (ByVal entity as Long, ByVal set_to as Long)

as Long

Sets the active entitiy to set_to. E.g. set the active group to 3.

Function Functions
These functions are used to create FEMAP functions.

Declare Function esp_FuncCreate App (ByVal ID as Long, ByVal st as String,
ByVal func_type as Long) as Long

Create a function at ID with title st of func_type.
Declare Function esp_FuncAdd App (ByVal ID as Long, ByVal x as Double, ByVal

y as Double) as Long

Add an x,y value to function of ID.

Global Constants
Please refer to the basichdr.esp file to see a list of the global constants that
can be used to pass values by name into FEMAP.

78

User Defined Types
The following types are used by the FEMAP api functions to pass data back and

forth between the script and FEMAP. Declare variables of the type and reference the data
as shown

e.g.

Dim property as esp_Property

property.val1 = 1.0

Type esp_Property
val1 as Single
val2 as Single
val3 as Single
val4 as Single
val5 as Single
val6 as Single
val7 as Single
val8 as Single
val9 as Single
val10 as Single
val11 as Single
val12 as Single
val13 as Single
val14 as Single
val15 as Single
val16 as Single
val17 as Single
val18 as Single
val19 as Single
val20 as Single
val21 as Single
val22 as Single
val23 as Single
val24 as Single
val25 as Single
val26 as Single
val27 as Single
val28 as Single
val29 as Single
val30 as Single
val31 as Single
val32 as Single
val33 as Single

79

val34 as Single
val35 as Single
val36 as Single
val37 as Single
val38 as Single
val39 as Single

End Type

Type esp_Flags
val1 as Single
val2 as Single
val3 as Single
val4 as Single

End Type

Type esp_Node
x as Single
y as Single
z as Single
tx_bc as Single
ty_bc as Single
tz_bc as Single
rx_bc as Single
ry_bc as Single
rz_bc as Single

End Type

Type esp_Point
x as Single
y as Single
z as Single

End Type

Type esp_Curve
type as Single
point_1 as Single
point_2 as Single
point_3 as Single
point_4 as Single
point_5 as Single
mesh_elem as Single
address as Single
engine as Single

End Type

80

Type esp_Surface
type as Single
curve_1 as Single
curve_2 as Single
curve_3 as Single
curve_4 as Single
curve_5 as Single
curve_6 as Single
address as Single
engine as Single

End Type

Type esp_Boundary
Surf_ID as Single
Curve_ListID as Single

End Type

Type esp_Element
type as Single
Prop_ID as Single
Topology as Single
Node_1 as Single
Node_2 as Single
Node_3 as Single
Node_4 as Single
Node_5 as Single
Node_6 as Single
Node_7 as Single
Node_8 as Single
Node_9 as Single
Node_10 as Single
Node_11 as Single
Node_12 as Single
Node_13 as Single
Node_14 as Single
Node_15 as Single
Node_16 as Single
Node_17 as Single
Node_18 as Single
Node_19 as Single
Node_20 as Single
Orient_ID as Single
Orient_x as Single
Orient_y as Single

81

Orient_z as Single
End Type

Type esp_BC
tx as Single
ty as Single
tz as Single
rx as Single
ry as Single
rz as Single

End Type

Type esp_Coord
x as Double
y as Double
z as Double

End Type

Type esp_Vector
Base_x as Double
Base_y as Double
Base_z as Double
Comp_x as Double
Comp_y as Double
Comp_z as Double
Length as Double

End Type

Type esp_Matl_Iso
E as Double
G as Double
Nu as Double
a as Double
k as Double
Cp as Double
L_Tension as Double
L_Comp as Double
L_Shear as Double
Density as Double
Damping as Double
Mat_Temp as Double

End Type

Type esp_Matl_Ortho_2D
E1 as Double

82

E2 as Double
G12 as Double
G1z as Double
G2z as Double
Nu as Double
a1 as Double
a2 as Double
k11 as Double
k12 as Double
k13 as Double
k22 as Double
k23 as Double
k33 as Double
Cp as Double
Stress_Limits as Long
L_Tension1 as Double
L_Tension2 as Double
L_Comp1 as Double
L_Comp2 as Double
L_Shear as Double
Density as Double
Damping as Double
Mat_Temp as Double
Tsia_Wu as Double

End Type

Type esp_Matl_Ortho_3D
E1 as Double
E2 as Double
E3 as Double
G12 as Double
G23 as Double
G13 as Double
Nu12 as Double
Nu23 as Double
Nu13 as Double
a1 as Double
a2 as Double
a3 as Double
k11 as Double
k12 as Double
k13 as Double
k22 as Double
k23 as Double
k33 as Double

83

Cp as Double
L_Tension as Double
L_Comp as Double
L_Shear as Double
Density as Double
Damping as Double
Mat_Temp as Double

End Type

Type esp_Matl_AnIso_2D
G11 as Double
G12 as Double
G13 as Double
G22 as Double
G23 as Double
G33 as Double
a1 as Double
a2 as Double
a12 as Double
k11 as Double
k12 as Double
k13 as Double
k22 as Double
k23 as Double
k33 as Double
Cp as Double
L_Tension as Double
L_Comp as Double
L_Shear as Double
Density as Double
Damping as Double
Mat_Temp as Double

End Type

Type esp_Matl_AnIso_3D
G11 as Double
G12 as Double
G13 as Double
G14 as Double
G15 as Double
G16 as Double
G22 as Double
G23 as Double
G24 as Double
G25 as Double

84

G26 as Double
G33 as Double
G34 as Double
G35 as Double
G36 as Double
G44 as Double
G45 as Double
G46 as Double
G55 as Double
G56 as Double
G66 as Double
a1 as Double
a2 as Double
a3 as Double
a4 as Double
a5 as Double
a6 as Double
k1 as Double
k2 as Double
k3 as Double
k4 as Double
k5 as Double
k6 as Double
Cp as Double
Density as Double
Damping as Double
Mat_Temp as Double

End Type

Type esp_Matl_HyperElastic
A01 as Double
A02 as Double
A03 as Double
A04 as Double
A05 as Double
A10 as Double
A11 as Double
A12 as Double
A13 as Double
A14 as Double
A20 as Double
A21 as Double
A22 as Double
A23 as Double
A30 as Double

85

A31 as Double
A32 as Double
A40 as Double
A41 as Double
A50 as Double
D1 as Double
D2 as Double
D3 as Double
D4 as Double
D5 as Double
D6 as Double
Dist_Order as Double
Vol_Order as Double
a as Double
Cp as Double
Density as Double
Damping as Double
Mat_Temp as Double

End Type

Type esp_Load_Value
x as Single
y as Single
z as Single
magnitude as Single
func_ID as Long
phase as Single
Pfunc_ID as Long
face_num as Long

End Type

Type esp_Load_Dir
vec as esp_Vector
curve_ID as Long
surf_ID as Long

End Type

