
TECHNICAL WHITE PAPER

Tamino Mobile

XML Database

3

Introduction 4

Tamino Mobile in a Nutshell 4

Tamino Mobile - A Customizable Database 6

Components 7

Data Structures 8

Accessing Data 10

Indexing 11

Queries 12

Multi-Threading 12

Secondary Storage 12

Transaction Mechanism 12

Transaction Log 13

Implementation And Portability Issues 14

MobileLogic – The Mobile Service Platform 14

Areas of Application 16

Software AG
September 12, 2001

Contents

4

Tamino Mobile 3.0 is a portable, small-footprint database engine tailored for and targeted

at the rapidly growing market of handheld devices and embedded systems. Location-

independent work environments and pervasive computing require solutions where both

structured and unstructured information is recorded, stored and transferred across a mul-

titude of computing equipment and devices, and across a variety of communication lines.

Introduction

With a footprint ranging from 400k-

700kB of required memory, Tamino

Mobile is designed for the particular

requirements of devices with limited

processing power, memory and bat-

tery capacity. It is also designed for

wireless communication with limited

bandwidth. Although technological

advances allow these limitations to

be continuously reduced, resource

use will always be an issue. With

Tamino Mobile, centrally maintained

data can easily be synchronized for

offline access in environments

where direct wireless connection is

not possible or economical.

Tamino Mobile allows storage,

search and navigation within a data

collection. It provides an abstract

model of the data, as well as pro-

grammable operations and meas-

ures that ensure data integrity when

several tasks or users operate on the

same data. Tamino Mobile combines

powerful mechanisms to meet pro-

grammers’ expectations, with a sim-

ple architecture adapted to the limi-

tations of handheld devices and

embedded systems.

The database may run either as a

pure in-memory database or as a

database with secondary storage,

such as flash and micro-disk.

Because of its modular architecture,

it can be optimized for specific appli-

cation areas, balancing small foot-

print, performance, robustness and

programming features.

Tamino Mobile in a
Nutshell

Today's solutions for mobile end

user devices are designed mostly for

offline use. PDAs and handheld PCs

are the devices of choice. However,

with the introduction of new mobile

transmission technologies, such as

WAP, UMTS, GPRS, Bluetooth and

the like, a rapidly growing number

of users will opt for online systems.

While offline systems tend to be

based on applications installed on

stationary systems such as desktop

PCs, the new online systems gener-

ally rely on a browser-based archi-

tecture. By virtue of specifically for-

matted pages (WML, HTML, cHTML)

the browser provides quick and easy

access to server-based applications.

This stands in contrast to offline sys-

tems, whereby synchronization with

a central server system – usually

desktop systems only – is provided

through hard- and software solu-

tions.

Developers creating new applica-

tions will first have to decide which

kind of system they will go for:

online or offline? The fulfillment of

user requirements often suffers due

to technical limitations, which is the

reason why many mobile solutions

have not been enthusiastically

received by users.

Ideally, any new type of mobile sys-

tem must combine the criteria for

online and offline solutions.

That's exactly what MobileLogic

does.

MobileLogic is Software AG's pro-

fessional services framework,

enabling developers to quickly gen-

erate custom and browser-based

applications. Tamino Mobile can be

used in combination with Software

AG’s powerful Tamino XML Server.

While data will typically be main-

tained on a centrally located server,

desired information must be syn-

chronized regularly for instant

offline access through handheld

devices, etc.

MobileLogic provides pre-developed

components necessary to synchro-

nize Tamino Mobile's database con-

tent with centrally maintained infor-

mation, as well as querying and dis-

playing this data offline on the PDA

screen.

A data loader module is included for

down- and uploading content from a

remote Tamino XML Server into

Tamino Mobile's database reposi-

tory. Synchronization is either exe-

cuted on request or carried out auto-

matically after being triggered by

server-based monitoring functions.

Through a server-side portal you can

define which server data is available

for download onto the mobile data-

base. This significantly reduces the

transfer time due to the lower vol-

ume of transmitted data, shrinking

transmission cost dramatically. For

synchronization with the central

XML server, the PDA can be con-

nected via the corporate LAN, wire-

less LAN, GPRS or UMTS.

The complete framework is depicted

in the following diagram.

Tamino Mobile is built to enable

easy customization in order to sat-

isfy a specific set of requirements.

Software AG knows that demands

placed on a database differ depend-

ing on the platform, the hardware

resources, the characteristics of the

application, the available develop-

ment tools, etc. We are also aware

of conflicting requirements, often

pulling the user in different direc-

tions.

5

The following table provides an overview of the main selection criteria:

Criteria for an online solution

• Currentness of the data

• Simplified administration of the application

• No installation necessary on the end user device

• Interactivity – e.g. with other users

Criteria for an offline solution

• Independence and availability of mobile networks

• Low communication cost

• Independence of user load on servers

• Individuality

Pocket IE

Tamino Mobile
XML DB

Web Server

HTML, JPG,
GIF, etc.

MobileLogic: Client Framework

Web Server

Tamino: Server Framework

Tamino
XML Server

Mobile Database
Synchronization

PDA with Mobile Database Central Server

Tamino Mobile with Tamino XML Server

DataLoader

UMTS
GPRS

LAN
WLAN

Ethernet

Adabas

Oracle

DB2

Other
external
DBMSs

Browser

Fig. 1: Synchronization of Tamino Mobile by virtue of the MobileLogic framework

The primary aspects that need to be

balanced for an optimal mobile

database implementation are:

• Footprint

• Performance

• Robustness

• Programmer value

Figure 2 illustrates typical require-

ments in these four areas.

For optimal database performance,

customization capabilities are pro-

vided on two levels:

1. Installation parameter setting

When installing a Tamino Mobile

database it is possible to set param-

eters and tune the database, e.g., to

balance performance vs. data foot-

print.

2. Programmable mechanisms

You specify your requirements and

Software AG's Professional Services

team develops your custom Tamino

Mobile application. Tamino Mobile is

flexible in that it allows program-

mers to choose data structures and

define indexes for speeding up data

access, navigation and searches.

6

Tamino Mobile - A Customizable Database

Tamino Mobile 3.0

Performance
• Search and queries
• Insert and delete
• Data navigation
• I/O handling

Robustness
• Transaction
• Logging
• Multitasking
• Backup/recovery
• Security

Footprint
• Code
• Data overhead
• Compression

Programmer value
• Supports required
 data representation
• Easy-to-use API
• Conformance to standards
• High-level APIs
• SDKs

Fig. 2:
Typical requirements for mobile
databases

The Tamino Mobile database engine

consists of the components shown

in figure 3.

Let us go through them in more

detail:

Tamino Mobile API

The Tamino Mobile API (the "native"

API) is a set of methods encapsu-

lated in classes. These methods con-

stitute the programmable interface

to be used by application program-

mers and by Software AG when in

higher level APIs, such as XML-ori-

ented applications.

Note: The XML API is not discussed

in this white paper. For more details

refer to the "Tamino Mobile XML

APIs" white paper.

Database Schema

The database schema contains meta

information about the data stored in

the database, i.e. information about

the structure and types of the data

objects and attributes in the data-

base. The database schema is up-

dated either through explicit calls

from a program, or by importing

database schema information in a

prescribed format.

Query Engine

The query engine performs query

operations returning collections of

objects matching the selected cri-

teria. The query engine also pro-

vides a cursor mechanism allowing

the application programmer to iter-

ate through the collection.

Transaction Handler

The transaction handler is a service

for the application programmer to

ensure that any write operation is

done exclusively. Many read opera-

tions can be processed in parallel,

but they will all have to terminate

their transactions before a write

operation is allowed to start.

Indexing and Search

This module includes mechanisms

for building indices when data is

entered, deleted or updated and

contains fast search routines in sub-

sequent lookup routines.

Storage Management

Storage management organizes the

creation, deletion, modification and

retrieval of objects and their attrib-

utes. It also administrates memory

allocation using file- and memory-

oriented features of the underlying

operating system platform. The stor-

age management module is not

directly accessible from an applica-

tion program, but is accessed

through the database schema, query

engine and the transaction handler.

7

Components

Application Programs

Secondary Memory

Indexing and Search

Transaction
Handler

Tamino Mobile API

Query Engine Database Schema

Storage Management

Operating System

Fig. 3: Components of the Tamino Mobile database

Objects

A Tamino Mobile database popu-

lated with data can be considered a

collection of objects. Each object

must have a type (class) which has

been declared in the database

schema.

Every object has an object ID which

is unique among all the objects in

the database. The object ID is

assigned by the database system

when the object is created, and is

not reused for new objects once the

object has been deleted. Thus the

object ID can be used to identify the

object without risking that the iden-

tity has been taken over by some

other object.

Attributes

An object may have zero or more

attributes. An attribute is either

mandatory or optional. Optional

attributes may be dynamically cre-

ated or deleted. For objects with

only optional attributes, a corres-

ponding class is not needed.

Tamino Mobile supports simple

inheritance, meaning that a class

can be declared as a subclass of a

previously declared class (super-

class), the effect being that all the

attributes declared in the superclass

at the time are automatically part of

the subclass as well. Subclassing

can be done to any desired level.

Optional attributes declared:

• An object can have zero or more

attributes.

• Attributes declared in the database

schema must be declared with an

attribute ID (of unsigned integer

type).

• Each attribute has a value which is

read/written atomically. The value

is a built-in type such as integer,

text, object identifier, etc.

• An attribute is either mandatory or

optional. Classes may be declared

to not support optional attributes

in order to optimize storage utiliza-

tion.

• All attributes have an attribute

name that is unique among the

attributes of the class (including

inherited attributes). All mandatory

attributes are declared with name

and type in the database schema.

Optional attributes do not have to

be declared in the database

schema. Their name and type can

be given when the attribute is cre-

ated.

The database system will group

mandatory attributes of the same

object in the database storage sys-

tem in order to optimize storage effi-

ciency and spatial locality of refer-

ence to the underlying storage

medium. Instances of optional attrib-

utes may be created and destroyed

dynamically. Optional attributes are

therefore allocated in a linked list

with its header in the object. By

optionally restricting an object to

have only mandatory attributes, this

header is no longer needed in the

objects, and storage utilization can

be improved at the expense of the

flexibility of the application data

model.

8

Data Structures

Objects
(instances)

Class
(template)

Mandatory
attribute 1

Mandatory
attribute 2

Record
header

Optional
attribute 2

Optional
attribute 1

Mandatory
attribute 3

Fig. 4: Relationship between objects and classes

Fig. 5: Object with mandatory and optional attributes

9

Data types

The following are types of object

attributes:

• UChar represents an unsigned sin-

gle-byte character

• Char represents a single byte

• Ushort represents an unsigned

short integer (16 bits)

• Short represents a signed short

integer (16 bits)

• Ulong represents an unsigned long

integer (32 bits)

• Long represents a signed long inte-

ger (32 bits)

• Float represents a signed floating-

point number of 32 bits

• Double represents a signed float-

ing-point number of 64 bits

• Text consists of a string of ANSI

text characters

• Unicode represents a 16-bit

character. Unicode contains 49,194

distinct coded characters.

• Blob* is an acronym for Binary

Large OBject, and is used to hold

binary coded contents such as

sound, image, animation, etc. It

can also be used as the attribute

type of any data where operations

and semantics are irrelevant.

• Object ID is a reference to an

object in the database

• Time represents time

• Date represents date

* Note: BLOBs (Binary Large

OBjects) are typically used to imple-

ment multimedia elements, such as

sound, pictures, animations, moving

images, etc. They generally consist

of large chunks of data, and their

implementation in Tamino Mobile

has therefore been realized in a

unique way to avoid performance

and storage overhead. BLOBs are

divided into blocks of CPU page size

and aligned to minimize the number

of page faults when accessing the

database file. A Blob is stored as a

page directory, listing the pages that

make up the BLOB. BLOBs may be

accessed in two ways, either

through ordinary read and write

calls, which invoke a copy operation,

or through memory mappings that

can be established on a 'per block'

basis. When using memory map-

pings, copying is avoided. Instead,

the mapping is passed on to the

application program. Copying will

then only occur if the application

program chooses to do so.

Semistructured Data

Tamino Mobile supports semistruc-

tured data. This means that there is

not necessarily a database schema

that describes the structure of the

entire content of the database. In

order to offer good support for stor-

ing XML documents and similar

data with a less fixed structure,

Tamino Mobile may contain data

that is not covered by the database

schema.

The following mechanisms support

the representation of semistructured

data:

• Each object may be associated

with a type (class) which has been

declared in the database schema.

• A class can have a combination of

mandatory attributes and optional

attributes.

• Optional attributes can be added

dynamically, enabling representa-

tion of data structures that are not

defined initially through the data-

base schema.

• Objects can also be created with

out an association to a declared

class. In such cases, the object has

no type, and the object has no

mandatory attributes. It has only

optional attributes whose types

will be given as the attributes are

created.

Hierarchical Data Structures

Objects in a Tamino Mobile data-

base may be organized in a hierar-

chical structure. Therefore, Tamino

Mobile lends itself to representing

XML-oriented, hierarchical and

graph-oriented data structures.

Tamino Mobile contains mecha-

nisms to establish the structure and

navigate within the structure.

The following features are available

to programmers:

• An object may have zero or more

objects as children.

• The children of an object are

ordered. When new children are

created, they can be inserted rela-

tive to some other child.

• An object has at most a single-par-

ent object.

• The edge that connects an object

to its parent object has a textual

label that describes the role of the

object in its parent.

• Labels can be combined to form

paths in the database. Paths can be

used to limit the universe in

queries on hierarchically structured

data.

• Objects with the same parent may

have the same label on the edge

that connects them to their com-

mon parent. This means that a

path specifies a set of objects, not

a single object. Another way to

look at this is to view a label as a

subdirectory name, and children

attached to the same parent

through the same label as part of

the same subdirectory. The label

represents a subdirectory, and

objects can be viewed as files

stored in that subdirectory.

• Graphs can be represented

through a combination of parent-

child structures and through the

use of attributes referencing other

objects in the database.

Database Schema

The database schema contains infor-

mation about the structure of the

data objects and attributes in the

database. The database schema is

updated either through explicit calls

from a program, or through import-

ing database schema information in

a prescribed format. The database

schema typically holds information

about the names and structure of

classes (object templates) and the

name and type of attributes. It also

holds information about indexing.

All attributes are declared with

name and type (integer, text, etc) in

the database schema. The database

schema for a class can be extended

in order to accommodate further

optional attributes dynamically.

Note that while the database

schema can be extended, there are

no methods that can modify the

schema in such a way that a data-

base instance valid under one

schema will become invalid under

the modified schema. Thus, we can

allow an application to modify the

database schema, knowing that the

application cannot modify the data-

base schema, so that the existing

database instance would violate the

modified schema.

Accessing Data

All access to data in the database is

done in three steps:

i) Define the collection of objects to

be accessed

A collection is a subset of the

objects in the database and is

defined dynamically in one of the

following ways:

• Queries. The collection consists of

all objects matching a given query.

The result of the query will return

a number of objects (or none if

there is no match).

• Navigating in the hierarchy. Navi-

gating up towards the root will

return one object, the parent. Navi-

gating down towards the leaves

will return a number of objects (or

none if there are no children).

• Creating a new object. The collec-

tion consists of the new object only.

ii) Locate the object within the col-

lection, if more than one, using cur-

sor iterations

Every collection has a cursor, which

is a reference to the current object

in the collection. For collections with

several objects the cursor is used to

iterate the collection. The database

provides mechanisms for this itera-

tion, such as GetFirst, GetNext, etc.

For singleton collections, i.e. collec-

tions which cannot have more than

one object (typically the result of

finding a parent or creating a new

object), iterations on the cursor are

ignored.

iii) Access the attribute(s) of the

object

Whenever an object is made cur-

rent, its data may be accessed

through mechanisms such as Read,

Write, etc.

10

<bookstore>

<list>

<book> <magazine>

<subscription-fee>

<frequency>

<title> <title>

XML World

Selected Short
stories

<last-name>

DoeJohn

<author>

<first-name>

Object ID

Object ID

Object IDObject ID

Object ID
Object IDObject ID

Object ID Object ID

Object ID
Object ID

Object ID

Object IDObject ID

Object ID

Fig. 6: Hierarchical object structure - example from XML

Indexing

The support for both structured and

semistructured data has conse-

quences for how indexing is done

by Tamino Mobile. Indices can be

regarded as part of the database

schema because they are very

important for the practical use and

the tuning of database performance.

Structured data (mandatory attrib-

utes) can be indexed using three

indexing mechanisms:

• single-attribute indexing

• multi-attribute indexing and

• attribute-group indexing.

All mechanisms invoke index-build-

ing routines when data is entered,

deleted or updated, and invoke fast

search routines in subsequent

lookup routines.

Single-attribute indexing causes all

existing values of the given attribute

to be entered into a separate search

structure for that attribute only.

Multi-attribute indexing defines two

or more attributes within objects of

the same class to act as an ordered

tuple, i.e. as an ordered sequence of

values. All tuples, i.e. all existing

combinations of values, are entered

into a separate search structure.

Attributes that are part of multi-

attribute indexing must be manda-

tory.

Attribute-group indexing defines

two or more attributes within

objects of any class to belong to the

same search structure. This means

that all values of attributes of the

attribute group will be entered into a

separate search structure for that

attribute group only. For obvious

reasons all attributes must be part of

the same base type. Attributes in an

attribute group index may either be

mandatory or optional. This allows a

program to perform a search that

spans across different attributes.

This is very useful when searching

semistructured data.

When accessing indexes, the data-

base engine uses iterative algo-

rithms. Thus, there is an upper limit

on the amount of stack space used.

11

Mandatory
attribute 1

Mandatory
attribute 2

Record
header

Optional
attribute 2

Optional
attribute 1

Mandatory
attribute 3

1 9

14

5

12

11

13

7

Mandatory
attribute 1

Mandatory
attribute 2

Record
header

Optional
attribute 2

Optional
attribute 1

Mandatory
attribute 3

Search tree for attribute i (integer)
of class c

Search tree for attribute x (text)
of class c

det

bar

aldr

fort

galt

Next object of same class

Fig. 7: Single-attribute indexing

Database addresses of
object instances
containing the value tuple

A tuple of values for
specific sequence

of attrubutes

V1 V2 V3 Object X

Object Y

Fig. 8: Multi-attribute indexing

Object o1

Object o5

Object o14

1
3

7

158
12

Search tree for attribute i (integer) of class c1,
and attribute j (integer) of class c2

Fig. 9: Attribute-group indexing

12

Queries

Queries in Tamino Mobile are per-

formed using the Lookup functions

LookupByClass and LookupBy-

Group.

In LookupByClass the query will

return all objects of a given class

having attributes that match speci-

fied criteria. For each attribute/value

pair, an operator may be specified.

Attributes used in a LookupByClass

must be mandatory attributes.

In LookupByGroup the query will

return all objects of classes where

the attribute belonging to the group

matches the specified criteria. The

collection of objects in the result set

may consist of objects of different

classes.

Multi-Threading

Tamino Mobile processes will not

preempt other processes. Tamino

Mobile can be run as an in-process

library without creating any inde-

pendent threads of control. Its data-

base engine does not interfere with

processing or other low level sched-

uling in the operating system.

Tamino Mobile 3.0 is based on a

multi-threaded database that can

easily handle multiple users. This is

true whether it is different processes

with different address spaces or dif-

ferent threads in the same process

that use the same database. Data-

base access from different processes

in different address spaces is con-

trolled through an OS-dependent

semaphore that grants access to the

database and to the processes one

at a time. The semaphore is part of

the specific implementation for each

platform and might be realized dif-

ferently on different platforms.

Secondary Storage

Tamino Mobile was designed to pro-

vide maximum flexibility with regard

to the actual storage medium. This

ensures that the database engine

can be tailored to any storage

medium. Various types of secondary

storage are supported, such as tradi-

tional disks, flash memory,

microdisks and memory sticks.

Tamino Mobile has its own database

medium abstraction layer shielding

the database core from the actual

storage technology used by the

device. Adapting Tamino Mobile to a

device consists of implementing a

version of the database medium

abstraction layer for that platform in

order to make the best use of the

underlying storage hardware.

Tamino Mobile uses a storage allo-

cation algorithm that does coalesc-

ing of adjacent free blocks. Also, the

allocator maintains separate free-

lists for each block size up to a cer-

tain size, thus preventing fragmenta-

tion by reusing blocks of the same

size.

Transaction
Mechanism
The transaction-handling scheme is

based on a read-many, write-one

strategy. This means that all readers

must complete their transactions

before the writer is allowed to start.

The writer will then have exclusive

access to the database. This transac-

tion scheme is very simple to imple-

ment and is also very effective. It is

the responsibility of client applica-

tions to begin and end code seg-

ments with BeginTransaction and

EndTransaction tags.

Note: It is possible for a transaction

to start as a read-only transaction

and later upgrade to a write transac-

tion.

Traditional database designs go to

great lengths to allow as many

transactions as possible to proceed

concurrently. This is important in

order to maximize the utilization of

the disk channel and cache:

While one transaction is blocked

waiting for the disk I/O to complete,

other transactions may be able to

run using data from the disk cache

and should be allowed to execute

concurrently with the blocked trans-

action.

Tamino Mobile will typically run as a

single-user database. Also, some

devices have no secondary storage,

so that the database will run as an

in-memory database. This means

that there will be no or very little I/O.

Only seldom is a transaction blocked

for an I/O to complete. The durability

property of transactions obviously

requires that I/Os take place at the

end of a transaction, but this

requirement may be lifted on certain

platforms where there is little to

gain by allowing concurrent execu-

tion of transactions on the database.

On such platforms Tamino Mobile

will implement the ACID properties

by executing update-transactions in

a serial fashion, thereby eliminating

the need for complex locking tables,

etc. Read-only transactions are

allowed to proceed concurrently as

long as there is no write transaction

in progress. This simple transaction

concurrency regime offers a practi-

cal approach to transaction concur-

13

rency and dramatically reduces the

code footprint of the database

engine.

Transactions executed by Tamino

Mobile have the following proper-

ties, also known as ACID properties:

• Atomicity:

A transaction is an atomic unit of

processing; it is either performed

in its entirety or not performed at

all. If a transaction fails to com-

plete for some reason, such as a

system crash in the midst of trans-

action execution, the recovery

method must undo any partial

effects of the transaction on the

database.

• Consistency preservation:

A correct execution of the transac-

tion must take the database from

one consistent state to another.

• Isolation:

A transaction should not make its

updates visible to other transac-

tions until it is committed.

• Durability (persistency):

Once a transaction changes, the

database and the changes are

committed, these changes must

never be lost because of subse-

quent failure.

All in all, this guarantees serializabil-

ity, meaning that the effect of run-

ning transactions in an interleaved

fashion is equivalent to running

them serially in some order.

Note: The transaction mechanisms

are necessary only when the device

has secondary storage capacity. If a

device, such as a PDA, is used with

this product, there is no need for

transaction mechanisms. When the

device loses all power, then it resets

to the factory settings, thus all soft-

ware must be reinstalled. A PDA can

be turned off in middle of a transac-

tion without affecting the database,

since it operates in such a way that

it does not kill the transaction. But, if

the device requires extra memory,

such as flash cards, etc, and these

are removed in the middle of a data-

base update, then transaction mech-

anisms are necessary to ensure the

consistency of the data. It is in this

case only that you require such

mechanisms to ensure data consis-

tency. For this purpose, Version 3.1

will support such mechanisms.

Transaction Log1

A writeback cache will be employed

to delay the writing of database

updates until the transaction com-

mits. Whenever something is

evicted from the cache and must be

written to the persistent medium,

the overwritten data is first flushed

to a transaction log with a marker at

the end. Only thereafter will the

database medium be updated with

the data evicted from the writeback

cache. When the transaction ends,

the transaction log is deleted. If a

transaction log is found to be pres-

ent when the database is opened,

the log is carried out on the data-

base until the last marker in the log

appeared, in order to reverse the

effect of the transaction that was

only partially completed.

A transaction in Tamino Mobile is

either carried out in its entirety on

the database or has no effect at all,

even when faced with a loss of

power. This transaction atomicity is

guaranteed by introducing a trans-

action log and maintaining the fol-

lowing invariant:

The database file and the transac-

tion log taken together will always

reflect the database state at the end

of the last committed transaction. To

uphold this invariant, the database

engine needs to write the transac-

tion log to persistent storage when-

ever something is evicted from the

cache or a database transaction is

committed. The transaction log has

to be stored persistently before

Tamino Mobile can proceed to

update the database file. The trans-

action log is typically short-lived and

is frequently accessed. Tamino

Mobile can therefore be configured

to place the transaction log in

NVRAM, if such a feature is avail-

able on the hardware platform.

Tamino Mobile can limit the size of

the transaction log for the entire

database at compile time if the cus-

tomer wants to introduce an upper

threshold for all applications that

use the database. The database

engine would then abort all transac-

tions that exceed the size of the

transaction log. This will probably

only be used in embedded systems

with limited hardware capabilities or

strict footprint requirements for user

data.

1 Transaction logs will be supported start-
ing in October 2001. Tamino Mobile Ver-
sions 3.1 and higher, available on Win32
and WinCE, will support this feature.

On many PDA platforms, switching

off the PDA is akin to a task switch.

When power is switched off, the

PDA will enter sleep mode until

power is turned back on. The PDA

processor will therefore terminate

any ongoing transaction before it is

switched off. On such platforms,

there is no need for a transaction

recovery mechanism. This mini-

mizes the code footprint even fur-

ther.

On non-PDA platforms, the portabil-

ity layer of Tamino Mobile will

implement the proper recovery

mechanisms at the price of some-

what higher code footprint.

Implementation and
Portability Issues
Tamino Mobile is implemented in

C++ with portability layers that can

adapt the database to any hardware

platform. The implementation uti-

lizes object-oriented mechanisms.

This leads to a concise and well-

defined API, and simplifies applica-

tion development. Moving to a new

processor will require only a recom-

pilation of the Tamino Mobile source

code, while moving to a new operat-

ing system and/or hardware will

require minor changes in the porta-

bility layer. There are no #ifdefs in

the Tamino Mobile 3.0 code. Instead

we have defined a portability layer,

which is given a concrete implemen-

tation for each platform we port to.

The rest of the source code rests on

top of the portability layer and does

not have to be touched when port-

ing. The portability layer handles all

adaptation to a certain environment.

The database image is binary-com-

patible across operating systems,

but may require conversion by a

standard conversion tool when mov-

ing between platforms having differ-

ent byte ordering. The requirement

to run a conversion tool can be

removed at the expense of perform-

ance (in this case Tamino Mobile will

perform byte order conversion at

runtime).

Tamino Mobile runtime versions are

available for Windows CE 3.0 on

handheld PCs (StrongARM, MIPS or

SH3 processors supported), and fur-

ther runtime licenses will be avail-

able for Windows ME, Windows98.

Runtime versions for other plat-

forms can be made available on

request.

Tamino Mobile does not use any

C++ libraries. The code is completely

self-contained. This includes mem-

ory allocation, where new() and

delete() operators have been over-

ridden to use the memory allocation

of the underlying operating system.

For specific operating systems, we

have developed our own memory

allocation mechanisms.

Tamino Mobile can use standard

C++, such as libc, instead of its own

libraries, if necessary.

MobileLogic – The
Mobile Service
Platform
Technical Description

MobileLogic is primarily designed as

an open solution, specifically regard-

ing integration aspects and extensi-

bility. Thus, it guarantees a maxi-

mum of interoperability with appli-

cation servers, object request

brokers, Web services and standard

applications. Throughout the entire

processing chain XML is used as the

common data description language

and for interoperable method invo-

cation. This turns MobileLogic into a

powerful, universal instrument for

mobile access to existing and to-be-

developed services.

COMPONENTS:

Service Integration Framework:

The service integration framework

enables the integration of any kind

of service provider, such as Web

services, components, application

and security systems through a uni-

fied XML interface.

Content Cache:

In principle, the informational con-

tent of any message is time-related.

The content cache ensures that not

every system request results in

immediate accesses to systems run-

ning in the background. In effect,

system scalability is significantly

improved.

Meta Data:

Meta data contains all system infor-

mation necessary for operation. This

includes, for instance, personaliza-

tion data, user preferences and a

directory for all available services.

PDA Mirror:

The PDA mirror provides all data

that the mobile end device has been

synchronized with. On one hand,

this guarantees that all data residing

in the mobile end device can be

restored in case of a system failure

(e.g. battery power loss). On the

other hand, changes can be detected

instantly, allowing for automatic

data exchange / update between

connected systems.

14

HTTP Server:

The HTTP server – or Web server –

provides access to system resources

using the standard Internet protocol

HTTP.

Agents:

Agents are components used for

controlling and monitoring the sys-

tem. Depending on their purpose,

they utilize user-specific data buried

in the meta data. For example, noti-

fication of the user about new infor-

mation received would be an exam-

ple of a monitoring function. Subse-

quently, this information can then be

synchronized manually or automati-

cally.

Communication Components:

The access layer is the level of com-

munication processing for the

respective end-user device. It is

implemented based on XML.

Access control is carried out by a

system component specifically pro-

vided for the respective end device.

Thus, for example, a Web compo-

nent based on Java Server Pages is

used for HTML-based browsers.

XSLT (stylesheets) provide for the

transformation and representation

of information objects.

A proprietary description of access

modes, information representation

and control (e.g. HTML page struc-

tures) by outsourced menu struc-

tures has generally been avoided,

due to the complexity of such meth-

ods and the poor cost/benefit ratio,

Thus, the control of voice modules

cannot be described in the same

manner as HTML pages, for exam-

ple. In addition, it should be possible

to generate a suitable user interface

by using standard programming

methods and tools. The communica-

tion components also implement the

synchronization with the mobile end

device. The network connection can

be established using any IP-based

method, such as wireless LAN

(WLAN), GPRS, UMTS or intercon-

nection via mobile GSM networks.

Data Loader:

The data loader is a component

residing on the mobile end device. It

controls the synchronization with

the remote XML server. The syn-

chronization rules are integrated in

the meta data specified and man-

aged on the XML server.

Tamino Mobile:

Tamino Mobile stores the XML doc-

uments (orders, bookings, news, etc.)

as well as the associated stylesheets

for accurate representation of the

respective XML data (HTML). Since

stylesheets must also be synchro-

nized with the remote XML server, it

is obviously the best choice to man-

age and maintain the data of the

mobile system directly on the

15

MobileLogic – The Mobile Service Platform

Technical Description

WLAN, GPRS, UMTS Agents

Communication Components

Content
Cache

Metadata

PDA
Mirror

Tamino XML Server

HTTP Server

Compo-
nents

ERP

CMS
Service

Integration
Framework

Web
Services

Pocket IE

Tamino
Mobile
XML DB

Web Server

DataLoader

Sync HTML WML Other

Fig. 10: Primary components of the MobileLogic development framework.

server. This way, changes to the

content can automatically be trans-

mitted to the mobile end device.

Besides XML-based data, it is possi-

ble to store pictures and audio

(binary files) in Tamino Mobile.

Thus, Tamino Mobile represents a

unified, personalized database for all

kinds of information.

Pocket IE:

The browser (Internet Explorer) is

the central I/O interface for the user.

It displays the HTML pages gener-

ated from XML documents and

stylesheets by the PDA's Web

server. It is easy to generate entire

applications by just linking single

information objects, overview pages

and input forms. Links pointing to

external information pages can be

resolved in the same way as links to

internal data stored in Tamino

Mobile's database. Thus, for a posi-

tive user experience supported by

standard technologies, the browser

combines online and offline offer-

ings with a consistent view.

PDA Web Server:

On the mobile end-user device, the

Web server implements the interface

between the browser and Tamino

Mobile. Therefore, references to

stylesheets and associated XML data

will be resolved and merged into

resulting HTML pages. Input data

from data entry forms can be stored

in Tamino Mobile.

Areas of
Application

When analyzing application scenar-

ios, the Tamino Mobile system com-

ponent must always be considered

in the context of complete customer

solutions. The description of the fol-

lowing use cases focuses mainly on

Tamino Mobile as an inherent part

of the MobileLogic framework. But

this special view does not exclude

Tamino Mobile from being used in

other possible application scenarios.

Typical use cases are found in all

enterprises with one or more of

the following requirements:

• Personalized portal

• Customer relationship manage-

ment system

• Sales force / service communica-

tion linking

in order to take a modern and tech-

nically future-oriented route in e-

business.

PERSONALIZED PORTAL

Here, all enterprises are addressed,

intending to offer heterogeneous

services over the Web, mixed with

services of public interest, in order

to achieve a higher visitor frequency

and improve the website. By

enhancing a company's services

portfolio with external, value-adding

services, the personalized portal will

lower the barrier for customers to

provide their personal data. This

allows for 1:1 marketing.

An intranet application within a

large enterprise with many different

branch offices and departments is a

good example of a personalized por-

tal application. The personalized

portal is one of the core components

of MobileLogic. Its advantages are a

requirement throughout the use

cases described later.

Within a personalized portal, Tamino

Mobile provides mobile access to

required information, independent

of an available online connection.

Constant access to the latest infor-

mation is guaranteed by synchroniz-

ing Tamino Mobile with the appro-

priate remote XML server.

CUSTOMER RELATIONSHIP MAN-

AGEMENT SYSTEM

Here, enterprises are addressed who

need to contact and inform their

existing large customer base directly

and who want their customers to

have contact to each other as mem-

bers of a greater community.

Target groups are companies that

want to maintain their existing cus-

tomer base by offering them more

services. Since globalization and lib-

eralization of the market lead to

higher customer fluctuation, busi-

nesses like energy providers,

telecommunication providers or

mailing and delivery services will

most likely experience the highest

impact.

In addition, such a system is ideally

suited for high-volume retailers of

high-quality goods, such as comput-

ers or telephones (Nokia, Siemens,

Alcatel, etc.).

Besides delivering dedicated infor-

mation, the login makes the cus-

tomer step out of the shadows. This

increases the likeliness that he/she

will bind himself/herself to the enter-

prise emotionally and will provide

more information about personal

preferences. Customer loyalty will

be increased if personal assistants

16

are used regularly ("Finally I've

found someone who really cares

about me ...").

Through Tamino Mobile, customers

can control all information relevant

to them without the high costs of

communication. The server provides

a precise overview about which

services customers have requested

and been provided. It is even possi-

ble to monitor the usage patterns on

the mobile end-user device by

implementing respective counters.

The usage information can be trans-

mitted easily whenever Tamino

Mobile is re-synchronized with the

central server.

SALES FORCE / SERVICE

COMMUNICATION LINKING

This application is most relevant to

enterprises running a mobile sales

force or service organization.

Besides scheduling data (trips), all

customer relevant data will be

downloaded onto the PDA. This way

all important and relevant informa-

tion can be made available to the

field. Examples of such data are

accounts receivables lists, past

ordering preferences, price lists or

product descriptions, drawings for

service technicians and more.

Orders can be entered from any-

where and at any time. By synchro-

nizing the mobile end-user device,

the MobileLogic system can provide

for automatic transfer of the data

into ERP systems connected to the

central server.

Typical applications are found in

enterprises with

• sales forces requiring quick and

autonomous decision making.

Some examples are, for instance,

representatives of the pharmaceu-

tical or health care industries or

those selling products to retailers.

Since most of these deals are on

the fly, thorough planning and

information are of vital importance.

• technical service staff who main-

tain or repair heterogeneous sys-

tems. For the trip planning or ad

hoc services on request, the

worker will be supplied with a

mobile end-user device providing

all data that is relevant for the spe-

cific services. This proactive work

style minimizes idle time and

empty loads – factors which

account for a considerable percent-

age of costs in these types of

enterprises. Good examples are

maintenance technicians for gas

stations, cooling appliances, hard-

ware service technicians and simi-

lar staff.

EMBEDDED SYSTEMS

Implementing Tamino Mobile within

embedded systems can maximize

the standardization of these sys-

tems. Hence, the XML data format

can be utilized throughout all areas

of electronic business, even when

the final user interface is a refrigera-

tor door, a radio, a vending machine

or a fully automated navigation sys-

tem.

Tamino Mobile is ideally suited

for creating applications with

significantly greater user friend-

liness compared with conven-

tional solutions. Thanks to

Tamino Mobile, these mobile

applications can be implemented

efficiently and with a maximum

of standardization and open-

ness.

17

Software AG
Corporate Headquarters
Uhlandstraße 12
64297 Darmstadt/Germany
Tel: +49-61 51-92-0
Fax: +49-61 51-92-11 91
www.softwareag.com T

M
O

/W
P

01
E

09
01

 2
28

More information on
Tamino XML Server:
http://www.softwareag.com/tamino

Tamino Community:
http://www.softwareag.com/developer

Download XML Starter Kit:
http://www.xmlstarterkit.com

