
WHITE PAPER

X-Application

3

Executive Summary 4

Introduction 5

Tamino XML Server - Made for Electronic Business 5

Architecture and Structure of the Framework 5

The Choice for JSP Tchnology 6
The Tag Library Layer 7
Dreamweaver and the Tag Library 7
Business Document Module 8
Store Module 8

The Real Estate Demo Application 9

Real Estate Behind the Scenes 9

Tamino X-Application Generator 10

Generator in Use 10

Tamino X-Application and Web Services 10

The Backbone of Web Services 10
Web Service Operations 11
Protocols and Communication 11
Support from Tamino X-Application 11

Distribution and Availability 13

Summary 13

Software AG
November 2001

Contents

Executive Summary

In the age of the Internet, electronic

business is setting new standards

for the design and development of

Web-bound applications. Countless

new products and services are pour-

ing onto the market to pave the way

to the future of business. However,

all this does not make it any easier

to create Web applications. Creative

thinking and skills when combining

tools are needed, because Web

applications are organized in a mul-

titude of layers:

• In most cases, the product presen-

tation is created by an external

design agency, and therefore exists

in the form of static HTML pages.

• The internal workings of the appli-

cation are formed by the applica-

tion logic. The logic is imple-

mented using conventional pro-

gramming languages or through

scripting, and it is integrated into

the Web using, for example, CGI.

• A further layer is the database

layer, which is linked to the appli-

cation logic and must be capable

of meeting the information-struc-

ture requirements of the Web.

The biggest hurdle in developing

e-business applications is to neatly

separate these three components

while combining them into a coher-

ent whole: presentation layer and

application logic are frequently

merged into a single block of pro-

gramming code, which makes it

impossible for designers to further

manipulate the presentation layer.

Tamino X-Application provides a

way out of this dilemma and, with

Tamino XML Server, gives develop-

ers all the tools they need to create

user-friendly and robust Web appli-

cations. Implementing this frame-

work successfully strikes a balance

between separating and integrating

the presentation layer and the appli-

cation logic, and it builds a bridge

between the two. The generic appli-

cation logic is neatly encapsulated in

a JSP tag library, so that the HTML

code can be tweaked directly by the

designers at any time. The designers

don't have to forgo using the usual

productivity tools, such as Macro-

media Dreamweaver, in their day-to-

day work.

With Tamino X-Application, it is pos-

sible to connect static HTML docu-

ments to Tamino XML Server in a

very short time. Developers can fall

back on a robust and expandable

architecture, which does the major-

ity of the work for them.

Also with Tamino X-Application,

organizations can save on a number

of resources in creating applications

for electronic business. The amount

of time needed is greatly reduced

and the team's productivity

increases significantly. Thanks to the

stability of the framework and the

clear separation of the layers, work-

flow processes can be carried out in

parallel. There is no loss of quality

in the resulting product. Applica-

tions that were developed using

Tamino X-Application are based on

a robust architecture and have intu-

itive controls, thanks to the JSP Tag

Library.

4

Generic
Application

Logic

Presentation

Tamino

Generic
Application

Logic

Fig. 1: Tamino X-Application is an engine that links static HTML pages to Tamino XML
Server through a link with generic application logic, which makes the pages dynamic.

Introduction

With Tamino X-Application,

Software AG has created a tool that

simplifies the development process

for Web applications considerably.

In order to remove as much of the

burden as possible from the devel-

oper, and at the same time meet the

requirements of today's applica-

tions, the newest technologies are

being implemented:

• XML is the language of the Web.

Tamino X-Application takes this

into account, and uses the XML

format to exchange information of

any kind.

• JSP is a scripting language derived

from Java, which is used to create

server-side presentation logic.

• Tamino XML Server is the first

XML server system that can store

XML data natively, that is without

conversion to other data struc-

tures.

The Tamino X-Application frame-

work consists of components that

are based on this technology and

connected to one another. Develop-

ers fall back on the prefabricated

building blocks, and can thus

dynamically link HTML pages to data

from Tamino XML Server.

Another component of Tamino X-

Application is Tamino X-Application

Generator, which is a generic Web

application that was created from a

schema in Tamino. It offers the user

a convenient graphic interface to

search the database and to add,

delete, and process new and exist-

ing information.

In addition, Tamino X-Application

provides numerous support options,

such as tutorials, demos, and docu-

mentation, to help developers who

are embedding their applications in

a Web service. Web services repre-

sent the next step in the develop-

ment of distributed software compo-

nents and are transforming the Web

into a network of interacting pro-

grams.

Tamino XML Server-
Made for
Electronic Business

Tamino X-Application is based on a

three-tiered architecture. Tamino

XML Server, the first system that

can store information in native XML

format, is used for data storage.

This has an enormous advantage

over relational database manage-

ment systems (RDBMSs), because

RDBMSs are capable of storing

XML only when retrofitted with

special extensions:

• Conventional RDBMSs do not have

the inherent hierarchical and semi-

structured form that XML does.

Instead, they use a transformation

process to put the nested XML

data into shallow tables and rela-

tions.

• SQL (Structured Query Language)

is suited for tables that are subject

to a fixed schema. It is not

designed for the dynamic and com-

plex nature of XML.

Because Tamino, in contrast, uses

XML to store data natively, keeping

its own structure, the essence is

maintained. And Tamino´s query

language, X-Query, which is based

on the familiar XML Path Language

(XPath), is tailored exactly to the

singularities of this format.

Architecture and
Structure of the
Framework

Software systems are growing ever

more complex, while production

cycles are growing shorter. Great

care must be taken to make sure

that applications are built on a

robust and broad foundation of

complete components. These com-

ponents must eliminate significant

time-consuming tasks from the

developer's workload, and at the

same time allow the developer suffi-

cient scope for development.

In developing Tamino X-Application,

this balance was struck perfectly:

a neat architecture that is organized

in modular layers lets developers

decide to what extent they intend

to use the framework's prefabricated

building blocks or if they want to

expand it by writing their own code.

This underlying structure guarantees

a clear division between the presen-

tation layer and the application

logic. Applications created with the

help of Tamino X-Application can be

changed and modified by designers,

without them having to worry about

the technical details that are under-

neath.

5

The functionality of the framework is

created entirely in Java and is en-

capsulated in libraries. A series of

JSP pages forms the server-side

presentation layer. These pages

embody the actual Web application

that takes care of creating HTML

code and is run by a JSP-capable

Web server, for example the Tomcat

server from the Apache Project.

The JSP tag library from Tamino

X-Application, which packs the com-

plex Java classes into easily man-

ageable JSP tags, is what builds the

bridge between the presentation

layer and the generic application

logic.

THE CHOICE FOR JSP

TECHNOLOGY

JSP (Java Server Pages) is a server-

side scripting language that was

developed by Sun Microsystems.

Pages that have been coded in JSP

can be understood as HTML that is

pushed with Java commands, where

the Java commands are carried out

on the server and in turn take care

of creating hypertext markup.

JSP has many competitors, such as

Microsoft Active Server Pages and

Allaire ColdFusion, which neverthe-

less have a crucial disadvantage: for

almost all well-known servers, freely

available modules can be acquired

to run JSP, and this is generally not

the case for the competitors.

The tag libraries are another impor-

tant factor that makes JSP the

server-side scripting language of

choice. Tag libraries form an inter-

face between business components

and JSP. The purpose of this is to

reduce the percentage of Java code

in JSP pages as much as possible,

in order to prevent the mixing of the

presentation layer and the applica-

tion logic. This is realized by associ-

ating Java classes with XML-com-

patible parameterizable elements.

Additional tags are created that con-

ceal certain application-specific

behavior. Tag libraries are like sets

of building blocks that can expand

the functionality of predefined tools.

In this example, a new tag that

changes the tagged text to capital

letters is defined through a library.

6

Tamino

X-Application GeneratorJSP Tag LibraryEJB, Web Services

X-
A

pp
lic

at
io

n
Co

m
po

ne
nt

s

HTMLHTMLSOAP

Java API

Business Document
Module

Store Module

Tamino API

Web Server

Fig. 2: The Tamino X-Application
framework is divided into several
layers, which allow developers to
have the greatest possible flexibility
in designing Web applications.

<%@page language="java” content-type="text/html” %>
<%@taglib uri="http://www.sag.com/test1” prefix="test” %>
<test:toUpper>this text will appear in uppercase</test:toUpper>

THE TAG LIBRARY LAYER

In the X-Application framework, the

outer layer consists of a tag library

that was created for the special

requirements of a database-sup-

ported Web application. With the

available tags, graphic controls can

be created in a short time that allow

the user to browse, change, delete,

and create databases (see Figure 3).

It is not necessary to know the

details of how to control Tamino's

data store when creating JSP pages,

because the elements of the tag

library relieve the developer of this

heavy burden. Only path expres-

sions that are related to XPath are

transferred to the tags as an attrib-

ute in order to create an association

between the control panel and the

pertinent data in Tamino.

DREAMWEAVER AND THE TAG

LIBRARY

WYSIWYG tools such as Macrome-

dia Dreamweaver and Microsoft

Frontpage have become popular for

creating HTML pages. They became

widely used because it is quicker

and more efficient to compose Web

pages graphically than to process

them in a text editor. In a draft win-

dow, HTML elements can be placed

on the page like building blocks and

parameterized, and the results of the

changes are immediately visible. In

order for this convenience to be

available for the JSP tag library in

Tamino X-Application as well, the

framework is shipped with an add-

on for Macromedia Dreamweaver.

When the user double-clicks on the

file with the .mxp extension, the

Dreamweaver Extension Manager is

opened and installs the add-on auto-

matically.

After the installation process is com-

plete, an additional set of objects is

available in the graphic editor (see

Figure 4). This set contains graphic

symbols for all the tags in the

Tamino X-Application tag library,

and each of them has its own dialog

for setting attributes. From that

point on, Dreamweaver recognizes

all the framework's tags and can

present them in design view.

7

Fig. 3: Thanks to the JSP tag
library, Tamino X-Application cre-
ates convenient graphic controls,
such as the list that browses
databases, shown here.

BUSINESS DOCUMENT MODULE

While the presentation layer of the

framework is formed by the JSP tag

library, the underlying Java API

forms the actual application logic.

Developers can access the Java API

directly if they consider the function-

alities provided by JSP tags to be

insufficient or if, for example, the

application will be included in a Web

service. The Java API is subdivided

into two layers: the first is the Busi-

ness Document Module (BDM) and

the second is the Store Module.

The BDM is responsible for main-

taining XML documents and can

keep several documents in its mem-

ory at the same time. In the context

of relational systems, the functional-

ity of this layer is somewhat compa-

rable to operating on data sets via a

cursor in a host language.

The following are a selection of the

methods offered:

• Maintenance of several

documents:

- Object-oriented queries

- Document browsing

- Workspace management

• Maintenance of a single document:

- Creation, reading, updating, and

deletion of a document

- Browsing of a single element

- Access via XPath

- State maintenance

- Optimistic locking

- Creation of copies of a document

- Linking to schemas

The BDM is the middle layer of

Tamino X-Application, because it

provides the interface for accessing

information in the data source. In

doing so, it conceals the technical

details for controlling Tamino and

dealing with XML documents.

STORE MODULE

While the Business Document Mod-

ule is the main support for the appli-

cation logic, the Store Module repre-

sents the storage logic. This inner

layer forms an abstraction level sim-

ilar to ODBC, which abstracts the

singularities of access to the Tamino

database API (see Figure 2). Its func-

tionality is used by the BDM, but can

also be controlled directly by the

application developer.

The modularity and separation of

the application logic and the storage

logic make it possible to interchange

Tamino XML Server with other data

sources, such as a file system. To do

this, one need only substitute the

appropriate Store Module.

8

Fig. 4: The JSP library tags can be
integrated into Macromedia
Dreamweaver seamlessly using a
plug-in module that comes with
Tamino X-Application.

9

The Real Estate
Demo Application

Among the sample applications is

the Real Estate Demo, which gives

the user an idea of the functionali-

ties of Tamino X-Application through

an example from the field of real

estate.

With a multitude of graphically

appealing dialogs, the underlying

database can be searched for real

estate that is for sale or for homes

that are being sought. It is possible

to refine the search by entering vari-

ous criteria. And it is possible to use

various available forms to publish

an offer or a search with all the rele-

vant information. After the form is

sent, the data is immediately trans-

ferred to the Tamino data pool and

is then ready to be called up right

away.

REAL ESTATE BEHIND THE SCENES

The sample application was created

with the help of Tamino X-Applica-

tion. Only the available tags from

the JSP tag library were used to cre-

ate the application; it was not neces-

sary to extend their functionality by

directly controlling the Java API. The

framework of the database structure

is formed by the property schema,

which is shown in Figure 5.

A designer who had no program-

ming knowledge was hired to give

the interface, which was somewhat

plain at first, the typical Tamino look.

It was no problem for the designer

to carry out this "facelift" and give

the application its final, attractive

appearance. This test clearly demon-

strated the advantages of the

Tamino X-Application architecture.

Not only is the developer relieved of

a large part of the work, but also

implementing the framework solidi-

fies the clear separation of the pres-

entation layer and the application

logic.

● PropertyType
stringstring

● Category

♦ NumberOfBedRooms

♦ NumberOfBathRooms

♦ ContactPerson

♦ Email

♦ Name

♦ Zip

♦ City

♦ Street

♦ Text?

♦ Area?

♦ Email

♦ Phone

?

?

?

♦ Description

♦ Address

♦ Property

?

♦ Price
Fig. 5: The Real Estate Demo is based

on the property schema.

Tamino X-Applica-
tion Generator
The JSP tag library and the Java API

aid developers in creating an appli-

cation. In addition, with X-Applica-

tion Generator, Tamino X-Applica-

tion offers an even simpler way of

creating Web applications. Exe-

cutable JSP pages can be created

completely automatically using a

schema that is stored in Tamino. In

most cases, not a single line of code

is necessary for this (see Figure 6).

The application that is generated in

this way can have two purposes:

• Firstly, it can be used as a front

end for Tamino, to enrich its data

pool with information through a

Web interface and to retrieve the

information.

• Secondly, the automatically gener-

ated application can also be used

as a starting point for creating a

full Web application.

In the second case, some modifica-

tions and extensions are needed.

Although the result of the auto-

mated process can only be of a

generic nature, it is easy to make

the necessary changes. These usu-

ally confine themselves to the gen-

erated JSP pages: the application

logic underlies the Java API and

conceals confusing technical details.

GENERATOR IN USE

The result of every automated

generation by means of Tamino

X-Application Generator is a set of

six JSP pages. These include menus

for searching, browsing, and view-

ing the database, and for adding,

modifying, and deleting new or

existing information. Furthermore,

it is possible to change the GUI in

which the generated application is

wrapped and to modify it to meet

individual requirements. The Gener-

ator requires that stylesheets be

entered, which set the structure and

the appearance of the pages.

Instead of predefined standards,

users can choose to use their own

style.

Additional tuning is possible with

XML files that determine, among

other things, how the structure of

the underlying schemas will be

mapped. The resulting application

can be adapted specifically to the

user's unique needs when these

files are modified.

Tamino X-Applica-
tion and
Web Services
Web services are the next big thing

in information technology and serve

to integrate distributed applications.

Microsoft, Sun Microsystems, IBM,

and Hewlett Packard have played a

very important role in the evolution

of Web services, and IBM and

Hewlett Packard are strategic part-

ners of Software AG. The approach

that was followed has not simply

risen like the phoenix from its ashes:

Web services are in the tradition of

well-known models such as CORBA,

COM, and DCE.

Until now, the Web was reserved

for browsing, but now it is opening

up to all kinds of programs.

The consumers of the services do

not have to have any knowledge of

the hardware or the operating sys-

tem that the services are running

on. Nor is it necessary to know any-

thing about the object model or the

programming language in which the

service is implemented. Instead of

using proprietary protocols includ-

ing a proprietary infrastructure, as in

the past, the new technology is

based on an array of standard Inter-

net technologies, such as XML and

HTTP.

THE BACKBONE OF WEB

SERVICES

Web services are realized through

the interaction of various software

components, which play certain

roles within the Web services archi-

tecture and have a relationship with

each other (see also Service

Provider and Service Requestor in

Figure 7). In essence, there are three

types of involved parties that must

be defined:

• Service Providers make services

available that can be used by any

other application. In addition, they

offer descriptive information on

the type of services that are

offered.

10

Fig. 6: Tamino X-Application Generator builds a fully functional Web application that is
based solely on a Tamino schema.

X-Application Generator
Tamino JSP Pages

<schema>
...
</schema>

• Service Requestors are applica-

tions that one or more Web serv-

ices intend to make use of. Service

Requestors get the help from Ser-

vice Brokers to locate a suitable

Service Provider.

• Service Brokers are intermediaries

that make sure that an appropriate

Service Provider is offered to a

Service Requestor. To this end,

they maintain a registry database,

which includes all relevant infor-

mation about the Service Providers

and their available services.

WEB SERVICE OPERATIONS

The parties described here typically

carry out several operations in order

to guarantee interaction and com-

munication among themselves:

• Publish is the operation that the

Service Provider uses to declare

the availability of a service to one

or more Service Brokers.

The opposite operation is called

Unpublish, which asks a Service

Broker to remove from the registry

database a service that was previ-

ously declared available.

• The Find operation is used by the

Service Requestors. They address

this query to the Service Brokers to

find a Service Provider that has

access to their desired functionali-

ties.

• The Bind operation represents the

creation of a contract between a

Service Requestor and a Service

Provider. If this operation is com-

pleted successfully, the Service

Requestor can call up the Service

Provider and take advantage of its

services.

PROTOCOLS AND

COMMUNICATION

Web services run on all kinds of

platforms and can be implemented

in any programming language.

Common standards are needed so

that the individual participants can

still communicate with one another:

• XML is the basis for understand-

ing. All protocols for Web services

are based on the syntax of this

meta language.

• SOAP (Simple Object Access Proto-

col) uses XML to wrap remote

method invocations and send them

to the recipient. The recipient is

usually also an application.

• UDDI stands for Universal Discov-

ery, Description, and Integration.

This refers to a specification for

describing information and regis-

tering services. Data that is coded

in UDDI can be searched and ana-

lyzed, and a result volume is then

extracted from it.

• Services that have been made

available are described using

WSDL (Web Services Description

Language). WDSL is used by both

Service Providers and the Service

Requestors. It is a contract lan-

guage that gives the Service

Requestor specific information on

the methods that are being offered,

and therefore makes links to the

providers possible.

SUPPORT FROM TAMINO

X-APPLICATION

It is assumed that the application

logic will be programmed when a

proprietary Web service is devel-

oped. Currently, there are no special

requirements to be met when cod-

ing this logic; the creation process is

similar to that of conventional appli-

cations. It is primarily changes to the

outer interfaces that are needed to

transform the generic application

logic into a Web service. The appli-

cation must simply be modified to fit

the previously mentioned protocols

to allow communication with the

other involved parties.

11

Service Provider

Service Broker Service Requestor

Description Client

Service

Publish
(WSDL)

Bind
(SOAP)

Find (UDDI)

Fig. 7: The architecture of Web services is based on the interaction of various
components that communicate with one another via a set of protocols.

12

Tamino X-Application is particularly

suited to creating unique Web serv-

ices, because the majority of the

work, the programming of the appli-

cation logic, is simplified through

the use of the Java API. Developers

need only embed the application in

a Web service. And they are sup-

ported in this by Tamino X-Applica-

tion as well. The framework comes

with detailed documentation and

tutorials that use examples to

demonstrate the development and

publishing of a Web service and the

service clients. Among them is an

example that is very similar to the

Real Estate Demo application.

The Web service presents an elec-

tronic marketplace for buying and

selling real estate and offers its

service requestors the following

services:

• A potential customer can show

interest in an item. The notice is

stored persistently in the data pool.

• A seller can call up a list of all

notices and respond to them.

• In addition, the seller can lower the

price of an object that is for sale.

An electronic notice is then sent to

all interested parties.

The demo application is based on

the Apache SOAP framework. Pro-

grams of any type that have access

to an appropriate SOAP Client API

could conceivably be Service

Requestors (see Figure 8). In the

tutorial, both a Java client and a

.NET client are used; however,

both of them could be replaced by

any other.

When conventional applications

are transformed into Web services,

they can be accessed via the Web.

They can be accessed by a virtually

unlimited number of different types

of clients, which, as Service Re-

questors, need only offer a suitable

interface.

JAVA
Client

Location A

SOAP
Client
API

Web Service
X-Application

API

Tamino

➀

Jakarta
Tomcat

➆

Location B
➁

➅
➂

➃
➄

SOAP via HTTP SOAP
Framework

Fig. 8: The Service Provider in Location B is accessed through the Java client in Location A that is acting as a Service Requestor.

Distribution and
Availability

The complete framework is freely

available to Tamino developers via

the Developer Community Web.

Not only are all source texts,

detailed documents, and numerous

examples included, but there is also

a test suite in JUnit and scripts for

building via Ant. JUnit is a tool that

is used to easily set up test cases

for Java programs and thus evaluate

the correctness of the programs'

behavior. Ant is a complex tool for

compiling and linking Java source

texts.

The project is subject to a controlled

open-source process: Suggestions

from the Tamino Developer Commu-

nity for improvements and expan-

sions will be collected, assessed,

and finally worked into the new

release by the Research and Devel-

opment department at Software AG.

Summary

Tamino X-Application allows Tamino

developers to create their own appli-

cations within a very short time-

frame. The clear organization of the

framework into layers demonstrates

that the reduction in effort required

for development does not necessar-

ily lead to a lower quality of the soft-

ware:

• The JSP tag library forms the

outer layer of Tamino X-Applica-

tion and is a part of the server-side

presentation layer.

• The Business Document Module

implements the framework's appli-

cation logic and allows various

types of access to XML documents

in Tamino.

• The inner layer is the Store Mod-

ule, which abstracts the specifics of

controlling connected data

sources, usually Tamino.

With the help of Tamino X-Applica-

tion Generator, generic applications

can be created without any pro-

gramming. The Generator produces

an executable Web application

based on a Tamino schema. The

implementation possibilities are

many: the results can be used as a

front end to manipulate data, and as

a starting point for developing appli-

cations that can be adapted to meet

the developer's needs.

Web services are the next step in the

evolution of Web-based applications

and are transforming the Internet

into a network of interacting pro-

grams. Tamino X-Application sup-

ports this development and Tamino

developers in embedding their appli-

cations in Web services though

extensive documentation and exam-

ples that have been hammered out

in detail.

13

14

Software AG
Corporate Headquarters
Uhlandstraße 12
64297 Darmstadt/Germany
Tel: +49-61 51-92-0
Fax: +49-61 51-92-11 91
www.softwareag.com IN

S
/W

P
07

E
10

01
 2

49

For more information on Tamino XML Server:
http://www.softwareag.com/tamino

Tamino Community:
http://www.softwareag.com/developer

To download the XML Starter Kit:
http://www.xmlstarterkit.com

