
TECHNICAL WHITE PAPER

Tamino Mobile

XML APIs

Implementation of SAX, DOM and XPath



3

Introduction to XML 4

Tamino Mobile 5

SAX 6

Using SAX to Import XML Documents and Data 6

Using SAX to Retrieve XML Documents and Data from a Tamino 

Mobile Database 6

DOM 7

XPATH 8

Software AG
September 2001

Contents



XML documents can have two basic

representations:

• Serialized – a stream of characters 

that conform to defined XML syn-

tax rules. This representation is 

most suitable for transfer, for 

browsing and for reading by the 

human eye.

• Infoset Model – a hierarchy of 

nodes where each node represents

an information element, and where

each element can contain other 

elements or values. This represen-

tation is most suitable for navigat-

ing in the structure of the docu-

ment, to search for specific ele-

ments or values and to generate 

subdocuments.

The XML Infoset does not mandate

a specific serialization syntax.

The following picture shows seriali-

zation beside the hierarchical repre-

sentation.

4

XML is the universal format for structured documents and data on the Internet. A World

Wide Web Consortium (W3C) standard, XML is used to build structures of content and to

maintain meta data about that content. What this means in practice is that XML enables

organizations to share, exchange and publish data in a versatile and widely-accepted

way. For more information on XML, visit www.w3.org/XML/.

XML is widely viewed as an ideal means of building networks of information. XML is now also considered the preferred

format for the exchange of data using wireless communication devices. With its flexibility and widespread adoption,

XML offers a generalized means of extending applications to include mobile users, both in the consumer and industrial

markets. The XML-enabled Tamino Mobile Database Engine (DBE) in handheld device applications will also run smoothly

for occasionally connected users.

This XML database engine is referred to as "Tamino Mobile" throughout the remainder of the document.

The abstract definition of XML is called the XML Information Set (Infoset). Its purpose is to provide a consistent set of

definitions for referring to the information in a well-formed XML document. 

The formal Infoset definition is at www.w3.org/TR/xml-infoset.

Introduction to XML

Fig. 1: Hierarchical structure of a document object



Tamino Mobile

When an XML document is to be

represented in a hierarchical struc-

ture on a computer, the XML docu-

ment is either placed in memory or

stored in a database. If persistence

is needed, then obviously a data-

base to support the structure saves

time and gives a more robust solu-

tion than having to repeatedly parse

the document into memory. 

Relational databases are not very

well suited for representing XML

documents. 

They do not support 

• order,

• hierarchy,

• irregular structures or 

• variable length fields. 

Relational databases were designed

with tabular data structures as the

underlying data model. They are

designed for SQL queries, but are

not well suited to performing the

type of content-related queries in

XML-oriented structures.

Tamino Mobile was designed with a

focus on 

• effective representation,

• navigation and 

• searching within XML documents. 

The next paragraph indicates key

mechanisms found in Tamino

Mobile:

Tamino Mobile populated with data

can be considered a collection of

objects. Each object may be associ-

ated with a type (class) which has

been declared in the database

schema. Objects in Tamino Mobile

may be organized in a hierarchical

structure. Tamino Mobile is there-

fore particularly well suited to repre-

senting XML documents as a hierar-

chy of nodes. Tamino Mobile con-

tains mechanisms to establish the

structure, to navigate within it and

to search across it. 

The following features are available

in Tamino Mobile:

• A class can have a combination of 

mandatory attributes and optional 

attributes.

• Optional attributes can be added 

dynamically, enabling representa-

tion of data structures that are not 

defined initially through the data-

base schema.

• An object may have zero or more 

objects as children.

• The children of an object are 

ordered. 

• New children are inserted relative 

to some other child.

• An object has at most a single-

parent object.

• The edge that connects an object 

to its parent object has a text label 

that describes the role of the object

in its parent.

• Labels can be combined to form 

paths in the database. Paths can 

be used to limit the universe in 

queries on hierarchically structured

data.

• Objects with the same parent may 

have the same label on the edge 

that connects them to their com-

mon parent. This means that a 

path specifies a set of objects, not 

a single object. Another way to 

look at this is to view a label as a 

subdirectory name, and children 

attached to the same parent 

through the same label as part of 

the same subdirectory. The label 

represents a subdirectory, and 

objects can be viewed as files 

stored in that subdirectory.

• Graphs can be represented 

through a combination of parent-

child structures and use attributes 

to refer to other objects in the 

database.

• Indexing provides fast search and 

navigation.

These features of Tamino Mobile are

instrumental to the highly efficient

and robust implementation of the

XML interfaces. XML documents are

stored in Tamino Mobile's XML

database as objects in a hierarchical

structure. The database structure of

an XML document in Tamino Mobile

is constructed to resemble the

Infoset model as closely as possible.

This means that there is a one-to-

one correspondence between nodes

in the Infoset structure, and the

nodes in the tree corresponding to a

database document object. For effi-

ciency, attribute nodes in the Infoset

are not represented as object

instances in the database, so this

imposes a structural difference

between the Infoset definition and

the XML representation in the data-

base. For reasons of efficiency,

Infoset attributes are represented as

attributes in the object where the

attributes appear. To look at the seri-

alized representation of XML docu-

ments, these typically contain attrib-

utes, values and tags. In Tamino

5



Mobile's database, tags are stored

as objects (tag objects). Attributes

and their values are stored as attrib-

utes of the tag objects and in the

attributes of the tag objects.

Figure 2 illustrates how Tamino

Mobile offers SAX, DOM and XPATH

to application programmers through

the set of classes and methods

defined in these standards. The

implementations of SAX, DOM and

XPATH are tied to the database

engine through native API calls to

the database.

SAX

SAX, the Simple API for XML, was

designed to allow programmers to

access their information without

writing a parser.

SAX is a set of abstract program-

matic interfaces that projects a doc-

ument onto a stream of well-known

method calls. Tamino Mobile uses

the open source Expat-parser to

parse the stream and read the inte-

grated tags, attributes, values, text,

and structure of XML documents.

Tamino Mobile’s SAX module con-

tains methods to transform the doc-

ument into a hierarchy of objects 

and attributes that will represent the

document.

SAX describes an event-driven inter-

face to the process of parsing XML

documents. SAX is an API in the

public domain, developed by indi-

viduals on the XML-DEV mailing list.

It does not have a formal specifica-

tion document, but is defined by a

public domain implementation using

the Java™ programming language.

An XML parser is SAX-conformant if

it implements the interface defined

by this public domain implementa-

tion.

An event-driven interface provides a

mechanism for notifications to the

application code as the underlying

parser recognizes XML syntactic

constructions in the document.

USING SAX TO IMPORT XML

DOCUMENTS AND DATA

SAX allows you to access the infor-

mation in your XML document, not

as a tree of nodes, but as a se-

quence of events. The Tamino

Mobile SAX implementation listens

to SAX events, which are generated

by the SAX parser as it is reading 

the XML document. It utilizes these 

events to create objects in the data-

base.

SAX will fire an event for every

open tag and every close tag. It also

fires events for #PCDATA and CDATA

sections, processing instructions,

DTDs, comments, and so on. Figure 3

illustrates how the Tamino Mobile

SAX implementation is used to

import an XML document into a

Tamino Mobile database.

USING SAX TO RETRIEVE XML

DOCUMENTS AND DATA FROM

TAMINO MOBILE 

An XML document stored in a

Tamino Mobile database can be

retrieved in part or whole, using our

SAX implementation. You can then

write application programs using the

Tamino Mobile SAX interface as an

event-driven feeder of the elements

of the document. Note that the ele-

ments are fed sequentially. Navigat-

ing back and forth is not possible

using SAX. The application program

is of course free to choose how to

respond to the events. It may, for

example, choose to serialize the

document, i.e. rebuild the document;

it may choose to look for a specific

tag or it may perform statistics. Fig-

ure 4 shows how Tamino Mobile’s

SAX implementation interfaces with

your program and the Tamino

Mobile database engine.

6

XML
document Tamino Mobile

Database

XML
parser

Tamino Mobile
SAX

XML
document

Tamino Mobile
SAX

Tamino Mobile
Database

Application
program

Fig. 3: Tamino Mobile SAX implementation: Import of XML documents

Application Programs

Tamino Mobile ˝Native˝ API

Tamino Mobile
Database Engine

SAX DOM XPath

Fig. 2: APIs available for Tamino Mobile

Fig. 4: Tamino Mobile SAX implementation: Retrieval of XML documents



DOM

Just as an XML parser in general

and SAX in particular add a layer of

abstraction over the actual textual

representation of the XML docu-

ment, the Document Object Model

(DOM) adds a layer of abstraction on

top of the entire document. DOM

standardizes the object model repre-

senting an XML document and

defines a language- and platform-

neutral interface to the structure and

style of XML documents, which a

process may dynamically access and

update. Elements are considered as

nodes in a tree instead of being

composed by start and end tags.

Nodes may have parents and chil-

dren, and they may have internal

properties that can be modified

using objects and methods.

DOM gives programs access to the

information stored in an XML docu-

ment as a hierarchical object model.

DOM regards the document as a

tree of nodes (based on the struc-

ture and information in the XML

document). Programmers can

access the information by interact-

ing with this tree of nodes. DOM

defines a set of abstract interfaces

that models a document conforming

to the XML Infoset specifications.

Tamino Mobile’s DOM implementa-

tion consists of a set of methods to

provide access to the document

stored as a hierarchy of objects in

the database. Our DOM implementa-

tion supports applications written in

C++.

The Document Object Model speci-

fies a tree-based representation for

an XML document. A top-level docu-

ment instance is the root of the tree

and has a single child that is the top-

level element instance; this element

has children nodes representing the

content and any sub-elements.

These sub-elements may have fur-

ther children, many generations

deep. Functions are defined which

let you traverse the resulting tree

any way you like, access element

and attribute values, insert and

delete nodes, and convert the tree

back into XML.

The DOM is useful for modifying

XML documents because you can

create a DOM tree, modify it by

adding new nodes and moving sub-

trees around and then produce a

new XML document as output. You

can also construct a DOM tree your-

self, and convert it to XML; this is

often a more flexible way of produc-

ing XML output than simply writing

<tag1>...</tag1> to a file.

For some classes of applications,

using SAX or interfacing directly

with an XML parser may be the

ideal way to process XML docu-

ments. If the application is expected

to handle XML documents – with as

little latency as possible, or to han-

dle documents too large to fit in

memory – processing each event as

it occurs in the document is needed.

The problem with using SAX is that

the application has to set up event

handlers for all elements the appli-

cation cares about and build its own 

data structures on-the-fly as the

events occur. Rather than respond-

ing to each event, it would be easier

if the entire tree was already loaded

into memory and it was possible to

navigate the tree and manipulate

parts of it in a simple way.

The Tamino Mobile storage model is

designed to be as close to the DOM

as possible, but still simple enough

to be efficient when outputting data

sequentially, i.e. through SAX. Since

Tamino Mobile stores XML data in

structures that are close to the DOM,

the DOM interface (or SAX handler)

does not have to load an entire XML

document into memory before the

user may access it. The DOM meth-

ods and objects can be accessed

while the document is in the buffer

cache. This is a major difference

from the approach necessary when

the XML document is stored as a

sequential chain of entities.

Tamino Mobile's XML Interface is

influenced significantly by Apache's

DOM interface, Xerces. This allows

users who are familiar with Xerces

to get started quickly with Tamino

Mobile's XML Interface. It also

means that that projects using

Xerces as the underlying interface

can be easily ported to the Tamino

Mobile XML Interface. However, the

underlying architecture is com-

pletely different, since the Tamino

Mobile DOM interface is based on a

persistent database medium and

Xerces is based on a dynamic mem-

ory representation.

7



XPath

XPath, the XML Path Language, is a

language for selecting a set of nodes

in an XML document. The syntax of

the language is path-based. Tamino

Mobile’s XPath module contains

logic to interpret the query, trans-

form the query into a series of calls

to Tamino Mobile's API methods,

and present the resulting set of

nodes.

The primary purpose of XPath is to

address parts of an XML document.

In support of this primary purpose, it

also provides basic facilities for the

manipulation of strings, numbers

and Boolean values. XPath uses a

compact, non-XML syntax to facili-

tate its use within URLs and XML

attribute values. XPath operates on

the abstract, logical structure of an

XML document, rather than its sur-

face syntax. It got its name by using

a path notation such as a URL for

navigating through the hierarchical

structure of an XML document.

The primary syntactic construct in

XPath is the expression. 

An expression is evaluated to yield 

an object of one of the following

four basic types:

• node-set (an unordered collection 

of nodes without duplicates)

• Boolean (true or false)

• number (a floating-point number)

• string (a sequence of UCS charac-

ters)

XPath is used to extract parts of an

XML document. In Tamino Mobile

the XML document is represented as

a hierarchy of objects (nodes). When

an XPath statement is used in a pro-

gram, the expression and the con-

text node are given as parameters.

The XPath parser evaluates the

expression and transforms the

expression into a query to Tamino

Mobile. The result of the query is an

unordered set of nodes (which can

be empty) that satisfies the expres-

sion’s criteria.

The query is implemented using the

LookUp functions of Tamino Mobile.

The indexing scheme of the data-

base engine provides high perform-

ance searching. The result set is pro-

vided through the cursor-oriented

collections in Tamino Mobile.

8



T
M

O
/W

P
02

E
09

01
 2

29

Software AG
Corporate Headquarters
Uhlandstraße 12
64297 Darmstadt/Germany
Tel: +49-61 51-92-0
Fax: +49-61 51-92-11 91
www.softwareag.com

More information on 
Tamino XML Server:
http://www.softwareag.com/tamino

Tamino Community:
http://www.softwareag.com/developer

Download XML Starter Kit:
http://www.xmlstarterkit.com


