
Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

LARS Community
Edition

Agent and Messaging Handbook

Version 3.1

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

living systems and living markets are registered trademarks of:

living systems AG,
Humboldtstr. 11,
78166 Donaueschingen, Germany.

All other trademarks are property of their respective owners.

No part of this publication, with the exception of the software product
user documentation contained on a CD-ROM, may be copied,
photocopied, reproduced, transmitted, transcribed, or reduced to any
electronic medium or machine-readable form without prior written
consent of living systems.

Licensees may duplicate the software product user documentation
contained on a CD-ROM, but only to the extent necessary to support the
users authorized access to the software under the license agreement.
This copyright statement must accompany any reproduction of the
documentation, regardless of whether the documentation is reproduced
in whole or in part, in its entirety, without modification.

Rights are reserved under copyright laws of the Federal Republic of
Germany (Urhebergesetz) with respect to unpublished portions of the
Software.

Contents i

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Contents

1 INTRODUCTION ..1
1.1 Who should read this document?... 1
1.2 Overview.. 1

2 LIVING AGENTS RUNTIME SYSTEM3
2.1 Definitions.. 3
2.1.1 WHAT IS AN INTELLIGENT SOFTWARE AGENT?..................................... 3
2.1.2 WHAT IS A MULTIAGENT SYSTEM?... 4
2.1.3 WHAT IS LARS? ... 4
2.1.4 WHAT IS A LARS AGENT?.. 5
2.2 Benefits of LARS Agents ... 5
2.3 LARS Agent Lifecycle ... 5

3 MESSAGING ..9
3.1 A Primer on sending Messages .. 9
3.2 The different Message Types... 10
3.2.1 MESSAGE.. 10
3.2.2 SINGLEMESSAGE... 12
3.2.3 SERVICE MESSAGES ... 13
3.2.4 GROUP MESSAGES ... 15
3.2.5 MULTICASTMESSAGE .. 17
3.2.6 BROADCASTMESSAGE ... 18
3.3 Usage of basic Message features ... 19
3.3.1 FORWARDING MESSAGES.. 19
3.3.2 ASYNCHRONOUS VERSUS SYNCHRONOUS COMMUNICATION 19
3.3.3 QUESTIONS AND ANSWERS - HOW TO IDENTIFY REPLIES 22
3.3.4 QUALITY OF SERVICE .. 23
3.3.5 MESSAGING ARCHITECTURE .. 25

ii Contents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

3.4 The base class for LARS communication: CommunicationTemplate 26
3.4.1 ATTRIBUTES... 27
3.4.2 METHODS ... 28

4 AGENTS...31
4.1 Introduction.. 31
4.2 System Agents.. 32
4.2.1 AGENTTEMPLATE ... 32
4.2.2 AGENTMANAGER ... 44
4.2.3 AGENTMESSAGEROUTER .. 52
4.2.4 AGENTPLATFORMSECURITY ... 62
4.3 Service Agents .. 67
4.3.1 AGENTTIMER.. 67
4.3.2 AGENTCRON .. 69
4.3.3 AGENTLOGIN.. 73
4.3.4 AGENTLISTENER.. 75
4.3.5 AGENTSOCKETLISTENER .. 76
4.3.6 AGENTJSOCKETLISTENER ... 79
4.3.7 AGENTJSECURESOCKETLISTENER.. 80
4.3.8 AGENTRMILISTENER .. 82
4.3.9 AGENTJMSLISTENER .. 82
4.3.10 AGENTSYNCHRONIZATION .. 85
4.3.11 AGENTSYNCHRONIZESUPERVISOR ... 87
4.3.12 AGENTSYNCHRONIZECONNECTIONHANDLER 89
4.3.13 AGENTSYSTEMINFORMATION ... 90

5 AGENT-LIKE CLIENTS..93
5.1 Introduction.. 93
5.2 Design ... 94
5.3 Communication Protocols ... 95
5.3.1 AVAILABLE COMMUNICATION PROTOCOLS... 95
5.3.2 CONFIGURATION.. 95
5.4 Framework for a Client Application .. 98

6 PLATFORM SYNCHRONIZATION101
6.1 General ...101
6.2 Related Agents...104
6.2.1 AGENTSYNCHRONIZESUPERVISOR ..104
6.2.2 AGENTSYNCHRONIZECONNECTIONHANDLER104

Contents iii

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

6.2.3 AGENTPLATFORMSECURITY ..105
6.2.4 AGENTTIMER...105
6.2.5 AGENTLISTENER...105
6.3 Platform Synchronization Configuration File105
6.3.1 GENERAL CONFIGURATIONS ...106
6.3.2 SYNCHRONOUS COMMUNICATION CONFIGURATIONS108

7 HOWTOS ...111
7.1 LARS Config-Files ...111
7.1.1 REQUIREMENTS..111
7.1.2 LOCATION ..112
7.1.3 APPEARANCE ...113
7.1.4 SPECIFYING CONFIGURATION FILES ..114
7.1.5 PLATFORM CONFIGURATION FILES ..114
7.1.6 AGENT CONFIGURATION FILES ..116
7.1.7 INTERNATIONALIZATION PARAMETERS CONFIGURATION117
7.1.8 ADDRESSING OF CONFIGURATION AND LOGFILES117
7.1.9 VARIABLE SUBSTITUTION ..117
7.1.10 AGENTMANAGER CONFIGURATION FILES...118
7.1.11 AGENTMANAGER.CFG ...119
7.1.12 STARTUP-ORDER OF AGENTS..121
7.1.13 LOG FILE AND LOG LEVEL CONFIGURATION......................................121
7.1.14 LARSADMINISTRATOR.CFG ...122
7.1.15 MULTIPLE CONFIGURATION FILE ..122
7.1.16 MORE THAN ONE CONFIGURATION FILE..123
7.1.17 STARTUP DEPENDENCIES...124
7.1.18 DEFINING AGENT STARTUP DEPENDENCIES124
7.1.19 SENDING A MESSAGE TO AN AGENT ..125
7.1.20 TYPES OF MESSAGES TO BE SENT...126
7.1.21 PRIORITIZING MESSAGES ..126
7.1.22 READING MESSAGES..126
7.1.23 RESTRICTIONS...126
7.1.24 OVERCOMING RESTRICTIONS..127
7.1.25 MESSAGING ..127
7.1.26 SECURITY.CFG ...127
7.1.27 SECURITY.CFG ...128
7.1.28 CONFIGURE LISTENERS...128
7.1.29 CONFIGURE PLATFORM SYNCHRONIZATION......................................129

iv Contents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

7.1.30 AGENT POOLING (AGENT LOAD BALANCING).....................................132
7.2 Employing JMS for connecting agents132
7.2.1 SELECTING A JMS SERVER...132
7.2.2 CONFIGURING A JMS SERVER ...133
7.2.3 CONFIGURING LARS TO ENABLE THE USE OF JMS133

8 LARS COCKPIT ..135
8.1 Introduction...135
8.2 Installing the Cockpit ..136
8.2.1 PACKAGES NEEDED..136
8.2.2 WRITING A START SCRIPT FOR WINDOWS136
8.3 Configuring the Cockpit ...137
8.3.1 WRITING A COCKPIT CONFIGURATION FILE137
8.3.2 WRITING A HELP FILE FOR COCKPIT...147
8.4 Using Commands ...148
8.4.1 INTRODUCTION ..148
8.4.2 COMMANDMANAGER ..149
8.4.3 CONNECT...149
8.4.4 COMPRESSION ...152
8.4.5 HISTORY..154
8.4.6 INBOX...156
8.4.7 OUTBOX ..157
8.4.8 MONITOR...158
8.4.9 HELP ..160
8.4.10 QUIT ..161
8.4.11 STANDARDCOMMANDLIB ...161
8.5 Programming your own command classes168
8.5.1 WRITING A COMMAND CLASS ..168
8.5.2 STARTING A COMMAND CLASS ...170
8.6 Using the user interface ‘shell’ ...171
8.6.1 INTRODUCTION ..171
8.6.2 USING THE COMMAND LINE ..172
8.6.3 COMMAND LINE EXAMPLES ...173

9 APPENDIX...175
9.1 Contact ...175
9.1.1 LIVING SYSTEMS WEB SITE ..175
9.1.2 TECHNICAL SUPPORT ...175

Contents v

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

9.1.3 FEEDBACK ..175
9.1.4 SUBSIDIARIES ...176

10 INDEX179

Introduction 1

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

1 Introduction

1.1 Who should read this document?

This document is written for agent programmers and LARS
administrators.

1.2 Overview

The document contains all the necessary information about LARS agents
and messaging:

The following Topics are covered:

� A brief introduction to Agents, Multiagent-Systems, LARS and LARS
agents.

� A general discussion on Messaging, the different Message Types and
other basic message features supported by LARS.

� A list of all Agents with an explanation of the services they offer.

2 Introduction

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

� In-depth descriptions of How-To connect any client to a LARS
platform.

� Configuration of LARS.

� Guides on How-To use the LARS Cockpit, which is an application that
helps to administer a LARS Platform.

Living Agents Runtime System 3

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

2 Living Agents Runtime System

2.1 Definitions

The general trend of growing complexity of present software systems
leads in most cases to increased difficulty in developing high
performance, low-maintenance and adequately functioning products.
Agents, which can be viewed as electronic digital assistants, can
eliminate this problem. Living Systems Agents can assist System Users
in the sense that they can make decisions independently, but on behalf
of the User and proactively relieve Users from routine assignments.

2.1.1 What is an Intelligent Software Agent?

To be honest, this topic like it was in the early days of object-oriented
software design is not easy to answer, because within the agent society
there exists no universally accepted definition of an intelligent software
agent. But the existing definitions are very closely related to each other,
as shown in the following definitions:

(1) An intelligent software agent is a software object that proactively
operates on behalf of its human master in performing a delegated
task.

4 Living Agents Runtime System

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

(2) An intelligent software agent is a program, that is situated in some
environment and that is capable of flexible autonomous action in
order to meet its design objectives.

The following characteristics can be deduced from the above definitions:

� autonomy:
Agents are able to act independently without the intervention of
other systems or humans - they have control over their internal state
and over their behavior.

� reactivity:
Agents perceive their environment and are able to respond to
changes.

� pro-activeness:
Agents exhibit goal-directed behavior by taking the initiative.
Therefore they decide and act along a solution path in order to
achieve predefined goals.

� collaboration:
Agents are able to interact with other agents (and possibly humans).

� domain expertise:
Agent's perceptions and actions imply and contain complete and
detailed domain specific knowledge / industry know how.

The characteristics just mentioned show that Agents differ from usual
objects in object-oriented software in the sense that an agent is able to
make decisions autonomously within the designated strategy defined by
the user.

2.1.2 What is a Multiagent System?

A multiagent system is a system, in which several interacting intelligent
agents pursue sets of goals by performing sets of tasks.

2.1.3 What is LARS?

LARS (Living Agents Runtime System) is a multiagent system developed
by the living systems AG. It is written entirely in Java.

Living Agents Runtime System 5

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

2.1.4 What is a LARS Agent?

A LARS Agent is an intelligent software agent, that is programmed
entirely in Java and that runs on a LARS platform.

A Mobile agent is able to transmit itself across a computer network (e.g.
the internet) and continue its execution on a remote site.

2.2 Benefits of LARS Agents

The Benefits of the LARS Agent Technology are as follows:

(1) LARS agents can be seen as the natural representation for modeling
a wide range of domains, because they can be used to model both
active and passive entities.

(3) LARS agent technology is able to cover an extensive area of
different technologies and application fields (e.g. collaborative
commerce, telecommunications, distributed systems).

(4) Because of their slim design and their role-oriented nature, LARS
agents are easy to model, develop and extend. Their ability to
communicate makes them ideal user representatives (e.g. in
collaborative commerce).

(5) LARS agents offer a configurable load balancing, which allows the
usage of LARS in environments, where scaling issues are important.

(6) The messaging mechanism used in LARS abstracts a low-level
communication protocols (changes of the low-level communication
protocol e.g. RMI is possible at configuration time and does not
require recompiling). LARS messaging system allows synchronous
and asynchronous messages to be sent.

2.3 LARS Agent Lifecycle

A LARS agent runs through a predefined lifecycle. First its messenger
including its message box and its thread are created and started by
AgentManager. Then the following run levels are passed through:

0 EMBRYONIC initial run level

6 Living Agents Runtime System

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

1 INTERPRET_METHODS_REGISTERED Reached after agent has
initialized internal data
structures for calling interpret
methods automatically when
receiving corresponding
service requests (e.g. when
receiving a message with the
service "do_something", the
method protected boolean
interpretDoSomething
(Message) is called).

2 CONFIG_FILE_READ Reached after agent has read
(but not yet interpreted) its
config files from file system
without any unforeseen
exceptions/errors.

3 ACTIONS_INITIALIZED Reached after agent has
executed its initializeAction ()
method without any
unforeseen exceptions/errors.

4 CONFIG_FILE_INTERPRETED Reached after agent has
interpreted its config files
method without any
unforeseen exceptions/errors

Living Agents Runtime System 7

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

5 POOL_INITIALIZED Reached after agent has
passed the initializing of its
thread pool without any
unforeseen exceptions/errors.
Note, that a pool is initialized
only, if agent load balancing
was configured in the
appropriate start_agent
message for AgentManager -
the run level instead is
reached independently of an
agent running pooled or
unpooled.

6 RUNNING Reached after agent has
executed its initializeMessages
() method without any
unforeseen exceptions/errors.

As long as the agent is in run
level RUNNING, it executes its
executeWhileRunning ()
method. There it usually waits
for incoming messages and
interprets them1.

7 STOPPED Reached automatically, if
unforeseen exceptions/errors
occur in agent initialization
phase2 or is intentionally set to
stop/shutdown the agent.

8 TERMINATED Reached, if agent has
executed its
terminateAction(). In the
terminateAction method, the
agent sends a
ServiceBroadcastMessage to
the service providers for
"sender_rip" to inform
everyone, who is interested,
about its death3.

1 If the agent runs in a pooled mode, it does not interpret the message
itself but hands it over to one of its interpretation threads from its
thread pool.
2 The initialization phase involves all run levels that are less than
RUNNING.
3 One of those service providers is AgentMessageRouter, which then
removes the Messenger including the inbox of the agent from the
message router.

8 Living Agents Runtime System

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Note: To assure a deterministic behavior, agent run levels can only
increase (e.g. it is impossible to set the run level RUNNING after the run
level STOPPED has been reached).

Messaging 9

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

3 Messaging

3.1 A Primer on sending Messages

As sending messages is essential for all agents, the following section
tries to outline this process. If you already know how to send messages
from agent to another agent within LARS, you can safely skip this
section.

Usually, agents will have to transmit information to other agents at
some point. This is done by sending messages with certain services (or
subjects) and contents. Further on in this document, we will refer to the
“requested service“ as the “subject”.

The service of a message prompts the concerned agent to perform a
certain action. If the action needs supplementary information, this is
transmitted in the content section of the message. For more complex
information, the content section of an agent message will usually
contain a Map.

Below is a sample code for generating and sending a message:

1. Map content=new HashMap();
2. content.put("value1", String.valueOf(359901));
3. content.put("value2", "bogus");

4. sendMessage(new SingleMessage("test", agentA, content));

Line 4 would result in a message with subject “test” sent to Agent A on
the current platform. The Message has two parameters stored in a Map
(value1 and value2).

Messaging 10

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

3.2 The different Message Types

Messaging is the technology used to interlink agents. This chapter
describes the general messaging architecture, the message format and
explains how to use asynchronous and synchronous messaging.

The LARS messaging system currently supports six different message
types, which are shown in Figure 1. Each of these messages can be
represented in XML.

All message classes are located in the com.ls.lars.communication
package. A detailed description of the different message classes follows
in the next paragraphs.

«abstract»
Message

«abstract»
ServiceMessage

ServiceSingle
Message

ServiceBroadcast
MessageSingleMessage GroupMessage Multicast

Message
Broadcast
Message

Figure 1: class diagram for LARS messages4

3.2.1 Message

All messages between agents or between agents and agent-like clients
in the LARS (Living Agents Runtime System) inherit from the abstract
Message class. The actual recipient is determined by the message router
and depends on the type of the message.

The abstract message class has the following attributes:

Field Description

Service

(String)

Service that is accessed by the message.

This attribute needs to be set by the creator
of the message.

4 Note, that the BroadcastMessage is not yet implemented in release
3.1.

Messaging 11

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Note: there is a standard for naming
message services:

• a message service is written in lower case

• if a service consists of multiple words,
they are separated by an underscore ("_"),
e.g. "set_constants"

This standard is needed for automatic
registration of "interpret" methods in
agents.

sender

(String)

Name of the agent that sent the message.

This attribute is initially null and
automatically set in the
CommunicationTemplate at send time.

Note: the sender attribute can be used to
determine if a message is sent or unsent. If
the sender is not null, the message is
assumed to be sent, otherwise it is not sent.

forwardedBy

(List of Strings)

List of all agents that forwarded this
message.

This attribute is maintained automatically
and initially set to null. It remains null as
long as this message is not forwarded by
someone.

replyWith

(String)

ID that is used to identify a reply to this
message, see section 3.3.3 for details.

This attribute needs to be set by the creator
of the message. Otherwise it remains null. It
can only be set while the message is “not
yet sent”.

inReplyTo

(String)

ID that identifies this message as a reply to
a previous message, see section 3.3.3 for
details.

This attribute is automatically set by the
Message.createReply method, if the
message, for which the reply is generated,
contains a non-null replyWith attribute
(otherwise the attribute remains null).

replyCounter

(short)

Specifies the number of replies that have
already been generated for this message.
Note: this does not tell you anything about
the replies being sent or not!

priority

(short)

Priority with which the message is delivered.

This attribute needs to be set by the creator
of the message, otherwise it remains

Messaging 12

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Message.PRIORITY_NORMAL.

qualityOfServic
e

(short)

The quality of service defines the suitable
conditions in which an automatic reply
should be sent to this message by the
system.

The System offers constants for different
qualities in the
classcom.ls.lars.communication.QualityOfSer
vice.

currentHops

(short)

Number of messengers this message
already passed. If this number is reaching a
threshold (see next expireHops) it is
considered to be bouncing and therefore
removed from the net.

expireHops

(short)

Number of messengers this message is
allowed to pass, before it is considered to be
bouncing and therefore removed by the
routing components.

sentTime

(long)

Time in milliseconds since 01.01.1970
specifying, when this message was sent out
(unsent messages have a sentTime of 0).

content

(Object)

The content of the message. Typically this is
either a String containing the message as an
(XML) string or it is a List containing a
collection of Strings, Lists or Maps or it is a
Map containing a collection of Strings, Lists
or Maps.

If the message is sent via a
RemoteMessenger, it is important, that the
content consists of serializableobjects.

In config files service and content are the only required entities.
Additional mandatory parameters may exist depending on the specific
type of the message.

3.2.2 SingleMessage

This message type is used for a peer-to-peer communication between
agents or agent-like clients, where the name of the receiving agent is
known. The SingleMessage inherits directly from the Message class and
contains the following additional attributes:

Field Description

receiver

(String)

Short name (without LARS id and IP) or fully
qualified name (containing the agent name, an
"@", and the LARS id and IP) of an agent to

Messaging 13

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

whom this message shall be delivered.

For example:

<MESSAGE>
 <service>ping</service>
 <type>single</type>
 <receiver>amr</receiver>
 <sender>AgentExample@192.168.100.114-lars</sender>
 <sentTime>993634068273</sentTime>
 <currentHops>1</currentHops>
 <expireHops>10</expireHops>
 <priority>20</priority>
 <qualityOfService>0</qualityOfService>
 <content></content>
</MESSAGE>

Figure 2: Example of an XML-representation of a SingleMessage

3.2.3 Service Messages

Agents can register themselves as providers of services. This
mechanism can be used to distribute a message to a service provider
and to hide the agent name from the clients requesting for the service.
The agent, which receives the service message, is dependent on the
concrete platform configuration.

Note, that the ServiceMessage itself is abstract and only the
ServiceSingleMessage (see below) and the ServiceBroadcastMessage
(see below) can be instantiated.

The ServiceMessage contains only one additional attribute:

Field Description

platform

(String)

Name of the platform (LARS id and IP) where
the service is requested.

This is an optional attribute, which allows
requesting a service from a specific platform
instead of using the default one5.

AgentMessageRouter is responsible for service Registration.

5 The default platform for an agent-like client is the first platform, which
is reached by the message; for an agent it is the local platform.

Messaging 14

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Registering a Service

An agent can register itself as a service provider by sending a
‘register_service’ message to AgentMessageRouter containing the
service(s) it is ready to provide.

Note: only the service provider itself is allowed to register himself as
provider for a service.

<MESSAGE>
 <receiver>amr</receiver>
 <service>register_service</service>
 <content>log_system_information</content>
 <content>any_other_service</content>
</MESSAGE>

Figure 3: Example of a register_service message

Unregistering a Service

A single service can be unregistered by sending an
‘unregister_service’ message containing the name(s) of the service(s)
as content. If no agent is provides that service, the service list is
deleted.

Unregistering all Services of an Agent

All services an agent has registered can be unregistered by sending an
‘unregister_all_services’ message with no additional parameters.

ServiceSingleMessage

This service message is delivered to only one service provider (if one
exists) of the specified service. It is used for accessing applications
(agent-like clients) by the name of the service instead of by their agent-
name.

An example of ServiceSingleMessaging:

Two agent-like clients offer the service "transfer_money_to_account".

A ServiceSingleMessage will arrive at only one of the clients. This allows
shutting down and restarting the agent-like clients at runtime even
though it is certain that the transfer_money_to_account service is
accessible and only once by one message.

Messaging 15

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

<MESSAGE>
 <service>transfer_money</service>
 <type>service_single</type>
 <platform>192.168.100.114-lars</platform>
 <sender>CustomerOrganization@192.168.100.96-lars</sender>
 <sentTime>993655353260</sentTime>
 <currentHops>1</currentHops>
 <expireHops>10</expireHops>
 <priority>20</priority>
 <qualityOfService>1047548</qualityOfService>
 <content>
 <transactionId>8977246</transactionId>
 </content>
</MESSAGE>

Figure 4: Example of an XML-representation of a ServiceSingleMessage

ServiceBroadcastMessage

A ServiceBroadcastMessage is delivered to all service providers of the
specified service.

Usage example: When an agent dies, it sends ServiceBroadcastMessage
to the service "sender_rip" to inform all those agents, that might be
interested in an agent’s death (e.g. AgentTimer, AgentCron,
AgentMessageRouter to unregister the dying agent as their client).

<MESSAGE>
 <service>log_system_information</service>
 <type>service_broadcast</type>
 <platform>192.168.100.114-lars</platform>
 <sender>Cockpit.993655092615@192.168.100.96-lars</sender>
 <sentTime>993655353273</sentTime>
 <currentHops>1</currentHops>
 <expireHops>10</expireHops>
 <priority>20</priority>
 <qualityOfService>1047548</qualityOfService>
 <content></content>
</MESSAGE>

Figure 5: Example of an XML-representation of a
ServiceBroadcastMessage

3.2.4 Group Messages

Group messages have been introduced in order to send messages to a
whole group of agents. AgentMessageRouter provides the necessary
services to manage message groups.

Field Description

Messaging 16

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

group

(String)

Short name (without LARS id and IP) or
fully qualified name (containing the group
name, an "@", and the LARS id and IP) of
the group to which this message shall be
delivered.

For example:

<MESSAGE>
 <service>compute_amount</service>
 <type>group</type>
 <group>calculation</group>
 <sender>Cockpit.993655092615@192.168.100.96-lars</sender>
 <sentTime>993655353274</sentTime>
 <currentHops>1</currentHops>
 <expireHops>10</expireHops>
 <priority>20</priority>
 <qualityOfService>1047548</qualityOfService>
 <content>
 <customerRelation>friend</customerRelation>
 <productId>34089</productId>
 </content>
</MESSAGE>

Figure 6: Example for an XML-representation of a GroupMessage

Subscribing to a Message Group

Any agent can subscribe any other agent to a message group. To
subscribe a single agent or a group of agents to a message group, a
message must be sent to AgentMessageRouter. This message contains
the group name as well as all agent names that should be subscribed. If
the group does not exist, a new message group is generated
automatically.

<MESSAGE>
 <receiver>amr</receiver>
 <service>subscribe_to_message_group</service>
 <content>
 <group>theGroupName</group>
 <agent>agentname1</agent>
 <agent>agentname2</agent>
 </content>
</MESSAGE>

The AgentMessageRouter returns
‘subscribe_to_message_group_succeeded’ if all agents are subscribed,
otherwise it returns ‘subscribe_to_message_group_failed’.

Messaging 17

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Unsubscribing from a Message Group

To unsubscribe a single agent or a list of agents from a message group
the ‘unsubscribe_from_message_group’ message is sent to
AgentMessageRouter. A group is removed from the list of message
groups if all agents are removed from that group (i.e. it becomes
empty). Parameters are the same as with the subscribe message. The
AgentMessageRouter returns
‘unsubscribe_from_message_group_succeeded’ if all agents could
unsubscribe or ‘unsubscribe_from_message_group_failed’ in all other
cases. If the group does not exist a warning message is logged, but a
success message is returned.

Unsubscribing an Agent from all Message Groups

To remove an agent from all message groups where it is subscribed to
(e.g. when shutting down the agent) the
‘unsubscribe_from_all_message_groups’ message is provided. The
only required passed is the name of the agent that should be
unsubscribed. The AgentMessageRouter returns
‘unsubscribe_from_all_message_groups_succeeded‘, if the agent could
unsubscribe from all groups otherwise it returns
‘unsubscribe_from_all_message_groups_failed’.

Removing a Message Group

A message group can be deleted by sending the
‘remove_message_group’ message. The only required parameter is
the name of the group to be removed. The AgentMessageRouter returns
‘remove_message_group_succeeded' if the group is deleted.

Sending Messages to a Message Group

A message can simply be sent to a group of agents by specifying the
group name as the receiver of the message.

<MESSAGE>
 <group>theGroupName</group>
 <service>ping</service>
</MESSAGE>

3.2.5 MulticastMessage

A multicast message is sent to a list of receivers. Each of the specified
receivers gets a clone of the original message. The multicastMessage

Messaging 18

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

inherits directly from the Message class and contains the following
additional attributes:

Field Description

Receiver

(List)

List of recipients6 of the agents to whom this
message shall be delivered.

For example:

<MESSAGE>
 <service>recalculation_event</service>
 <type>multicast</type>
 <receiver>orbiter</receiver>
 <receiver>moon</receiver>
 <receiver>asteroid</receiver>
 <sender>spaceshuttle@192.168.100.96-lars</sender>
 <sentTime>993655625364</sentTime>
 <currentHops>1</currentHops>
 <expireHops>10</expireHops>
 <priority>20</priority>
 <qualityOfService>1047548</qualityOfService>
 <content>
 <speed>37.7859</speed>
 <objectId>77</objectId>
 <x>245.567</x>
 <y>567.255</y>
 <z>569.253</z>
 </content>
</MESSAGE>

Figure 7: Example of an XML-representation of a MulticastMessage

3.2.6 BroadcastMessage

The BroadcastMessage is not yet implemented in the release 3.2.

6 short name (without LARS id and IP) or fully qualified name
(containing the agent name, an "@", and the LARS id and IP)

Messaging 19

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

3.3 Usage of basic Message features

3.3.1 Forwarding messages

Upon receipt of a message, An Agent may think that another Agent
might be interested in the received message, in which case the first
Agent would forward the received message.

This functionality is offered by two methods in the
CommunicationTemplate and therefore exists in any agent or agent-like
client.

The first method allows a received message to be forwarded to a single
receiver:

void forwardMessage(Message message, String forwardReceiver)

The method forwards a message by creating a shallow copy of the
message and then forwarding the copy to the new receiver. If the given
message is not an instance of SingleMessage, it is converted into a
SingleMessage. Then the original message type cannot be determined at
the forwardReceiver any more.

The second method allows message forwarding to multiple receivers:

void forwardMessage(Message message, List forwardReceivers)

The method forwards a message by creating a shallow copy of the
message and then forwarding the copy to the new receiver. If the given
message is not an instance of MulticastMessage, it is converted into a
MulticastMessage. Then the original message type cannot be determined
at the forwardReceivers any more.

Note: For performance reasons both forwardMessage methods only
make a shallow copy of the message's content, if you need to change
parts of the message (e.g. the content), make a copy yourself before
calling forwardMessage.

3.3.2 Asynchronous versus Synchronous communication

In contrast to simple object oriented designs, where synchronous
communication between objects is used (by just calling a method and
waiting for the result), in a Multi Agent System normally asynchronous
communication is used. LARS offers both types of communication
synchronous and asynchronous. The advantages and disadvantages of
the different approaches are explained in detail in this section.

Messaging 20

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Asynchronous Messaging

Asynchronous messages can be sent through the send message method
of the ItoLars interface.

Message message =
 new SingleMessage("finish_contract",
 "AgentContractSupervisor",
 content);
sendMessage(message);

Sending an asynchronous message does not involve blocking (i.e. the
sending agent can get on with other work while waiting for a result).

Asynchronous communication should be used if an answer is not needed
or when the overhead for administering the reply identifications (see the
message attributes replyWith and inReplyTo) is low compared to the
performance losses suffered during synchronous communication
(because the calling agent is blocked while the called agent performs its
tasks).

Servlet 1 Servlet 2 Servlet 3 Agent A Agent B

do_a2

do_b

do_b

done_b

done_a1

done_a1

done_a2

do_a1

do_a1

done_b

0

5

10

15

20

0

5

10

15

20

Figure 8: Example for Asynchronous Messaging

Synchronous Messaging

Synchronous Messaging should be used when an Agent needs to wait for
the reply to a message (see disadvantages below). The IToLars interface
sendSynchronousRequest method is used to send a synchronous
message.

Messaging 21

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Please note that synchronous messages cannot work without a
replyWith attribute.

Message message =
 new SingleMessage("finish_contract",
 "AgentContractSupervisor",
 content);

message.setReplyWith(uniqueReplyId);

try {
 replyMessage = sendSynchronousRequest(message, 4000);
} catch (TimeoutException tex) {
 ...
}

Sending a synchronous message involves blocking, i.e. the agent waits
until a reply (usually sent by the receiver agent) is received. One can
specify a timeout in milliseconds: If no Reply is received within that
amount of milliseconds, a TimeoutException is thrown.

Disadvantages: Sending synchronous instead of the asynchronous
messages shall be used if it is absolutely ensured that the call does not
block an agent for a long period. Especially when the agent holds a very
important position on the platform, this blocking could result in very bad
runtime behavior of the whole system.

Example: Think of an agent A, who is to process multiple incoming
requests from three connected servlets (see Figure 9).

Servlet 1 Servlet 2 Servlet 3 Agent A Agent B

do_a1

do_a2

do_b

done_b

done_a1

do_a1

do_b

done_b

done_a1

done_a2

0

5

10

15

20

0

5

10

15

20

Figure 9: An Example of Synchronous Messaging

When a servlet requests an agent A to communicate with another agent
B synchronously, agent A cannot process other messages while waiting

Messaging 22

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

for the reply7. This means all other requests to agent A are blocked
until it receives the response for the synchronous message or it receives
a TimeoutException.

A more sophisticated way would be to send all messages asynchronously
using the standard sendMessage(Message) method (see Figure 8, which
is the same as Figure 9 but using asynchronous messages). In this case
the agent is not blocked and thus free to perform any other operations,
instead of wasting time while waiting for a response message.

3.3.3 Questions and Answers - How to identify Replies

Questions and Answers are matched in the LARS communication by
using the two attributes replyWith and inReplyTo as in

KQML (Knowledge Query and Manipulation Language).

If the replyWith attribute of a message is not set, it means that the
value returned by getReplyWith() is null (i.e. the sender does not
expect a reply). On the other hand if the attribute has a value the
message is considered to be a question and the sender expects a reply.

The reply would be a message with a parameter inReplyTo, which has a
value identical to the question's replyWith value.

Example:

The following message, which is sent from agent A to agent B, expects a
reply:

<MESSAGE>
 <receiver>agentB</receiver>
 <sender>agentA</sender>
 <service>ping</service>
 <replyWith>A-question-0815</replyWith>
</MESSAGE>

Agent B sends back the subsequent message:

<MESSAGE>
 <receiver>agentA</receiver>
 <sender>agentB</sender>
 <service>pong</service>
 <inReplyTo>A-question-0815</inReplyTo>
</MESSAGE>

7 except that it is running in pooled mode, which is not possible for all
agents

Messaging 23

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Note:

The attributes replyWith and inReplyTo make it possible to create
complex communication patterns of questions and answers. It is very
important when generating replyWith values to ensure that they are
unique for the sending agent. This is because the replyWith parameter
would be used later on to identify an incoming message as the reply.
The CommunicationTemplate has a method createReplyId().

3.3.4 Quality of Service

The quality of service attribute for a message determines which
conditions are suitable for the system to automatically generate a reply
for that message.

The default quality of service for a message is QOS_REPLY_ERROR, which
means that a reply is required for any possible error that might occur
after the message has been sent out. For a detailed description of all
available constants have a look at the Java Doc of
com.ls.lars.communication.QualityOfService.

Automatically generated replies

Different automatic replies can be generated (these are listed below)
depending on the problem that brought about the reply:

� ILarsConstants.SERVICE_DELIVERY_FAILED: this means that the
message given in the content of this message couldn't be delivered.

� ILarsConstants.SERVICE_NOT_UNDERSTOOD: this means that the
interpretation of the message given in the content of this message
failed, because it was not understood or an internal error happened
in the agent.

� ILarsConstants.SERVICE_ACCESS_DENIED: this means that the
interpretation of the message given in the content of this message
was denied.

� ILarsConstants.SERVICE_INTERPRETATION_SUCCESSFUL: this means
that the interpretation of the message given in the content of this
message was successful.

All these replies have one thing in common in that they contain the
message that brought about the reply as a map (returned by
Message.toMap()) within the content of the reply.

Additionally the content of the reply contains the following tags:

Messaging 24

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

� reasonOfFailureText: textual description of the cause of the failure

� reasonOfFailureCode: An integer that specifies the exact quality of
service, which caused the reply
(e.gQualityOfService.QOS_REMOTE_MESSENGER_NOT_REACHABLE)

� routeFailedAt (optional tag)8: specifies the name of the messenger,
where the routing has failed. This tag is optional, because not all
failure reasons deal with a specific messenger.

Note, that such an automatically generated reply has a quality of service
value of QualityOfService.QOS_NONE to avoid message loops.

<MESSAGE>
 <service>delivery_failed</service>
 <type>single</type>
 <receiver>ac@192.168.52.7-lars</receiver>
 <sender>LARS_INTERNAL</sender>
 <sentTime>-1</sentTime>
 <currentHops>0</currentHops>
 <expireHops>10</expireHops>
 <priority>normal<priority>
 <qualityOfService>QOS_NONE</qualityOfService>
 <content>
 <receiver>AgentReminderSender</receiver>
 <sender>ac@192.168.52.7-lars</sender>
 <replyCounter>0</replyCounter>
 <reasonOfFailureCode>QOS_RECEIVER_NOT_AVAILABLE
 </reasonOfFailureCode>
 <sentTime>993708138462</sentTime>
 <inReplyTo />
 <service>notify_canceled</service>
 <content>
 content of the original request
 </content>
 <qualityOfService>QOS_REPLY_ERROR</qualityOfService>
 <type>single</type>
 <replyWith />
 <priority>10</priority>
 <expireHops>10</expireHops>
 <forwardedBy />
 <currentHops>1</currentHops>
 <routeFailedAt>AgentReminderSender</routeFailedAt>
 <reasonOfFailureText>
 no messenger and no forward found
 </reasonOfFailureText>
 </content>
</MESSAGE>

Figure 10: An Example of a delivery_failed message

8 The routeFailedAt tag is optional, because not all failure reasons deal
with a specific messenger.

Messaging 25

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Defining a composite quality of service

Generating any of the available constants and using binary operations
can define a composite quality of service without a predefined constant.

For example a quality of service that requests system replies for an
agent failure at interpret time and also for a routing problem would be
generated as shown below in Figure 11.

Message message = ...;
int quality =
 (QualityOfService.QOS_AGENT_FAILURE
 | QualityOfService.QOS_ROUTING_FAILURE)

message.setQualityOfService (quality);

Figure 11: An Example of a newly defined composite quality of service

3.3.5 Messaging Architecture

A message is sent by the Agent’s messenger and then routed to the
recipient(s) by the message router. To prevent messages being lost if an
agent is currently busy, each agent’s messenger has a message box to
store incoming messages.

Different messengers can be used to achieve communication depending
on where the agent resides.

Agents running on the LARS platform would use a local messenger while
Agents or agent-like clients running remotely would use a remote
messenger. There are different types of remote messengers, which use
the abstract from the underlying network protocol:

� SocketMessenger is used for sending XML data.

� If a socket connection is to be used, but XML communication is not
needed, the much faster JSocketMessenger, which transports
serialized messages over the net, is used.

� The RMIMessenger also uses serialization, but uses the underlying
protocol RMI (Remote Method Invocation) instead of using socket
communication directly.

� The JMSMessenger can also be used for communication between
homogeneous and heterogeneous platforms. It has all the features of
RemoteMessenger and it also has the ability to transmit persistent
messages across the platforms. All it needs is an extra layer i.e. a
JMS provider for creating as well as locating the queues. Queues are
just containers of messages.

Messaging 26

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

� Encrypted communication with serialized message objects is possible
with the help JSecureSocketMessenger.

� Finally HTTP tunneling enabled by the HTTPMessenger can also be
used.

Figure 12: General messaging architecture of LARS

3.4 The base class for LARS communication:
CommunicationTemplate

The CommunicationTemplate is the base class for all LARS agents and
the agent-like clients (such as servlets, applets), respectively. This class
provides the basic communication and logging functionalities needed by
LARS agents.

Messaging 27

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

3.4.1 Attributes

The CommunicationTemplate and every single agent or agent-like client
provides the following attributes, which are essential for agent handling
on the LARS platform:

� the agentName, which is necessary for uniquely identifying every
single agent on a running LARS platform.

� the homePlatform identifier – the name of the platform where the
current agent originated.

� the startTime, which can be used to determine the actual lifetime of
an agent.

� a set of connection Parameters, which hold protocol specific
information regarding the remote communication.

� the logger - every single agent can keep its own logging details while
doing its job.

Agent naming

An Agent has a local name and a global name and this should be
considered when the Agent is being referred to.

Local names are used for identifying agents uniquely on a single
platform. For example the local names ‘AgentStaticMaker’ and
‘AgentUpdateMaker’ may be based on the same source code, but they
can be uniquely identified by their local names.

An agent’s global name is useful for identifying the agent uniquely
across different LARS platforms. Remember that ‘amr’ is used for
identifying the AgentMessageRouter on the local platform, however if
your agent wants to communicate with the AgentMessageRouter on a
remote platform, you could not simply use ‘amr’ without running into
trouble.

Each agent’s global name is a combination of the agent’s local name and
its home platform using the following format:

<localName>@<homePlatform>,

The homePlatform is built from the platform’s IP address and the
platformId as follows:

<ipAddress>-<platformId>

Messaging 28

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

For example, AgentManager on the lars4 platform (IP address:
141.28.227.129). This agent’s local name is ‘am’, and its global name
would be ‘am@141.28.227.129-lars4’.

Hint: There is a utility class LarsNaming in the package
com.ls.lars.communication, which can be used to construct global
names from locally ones, or to extract local names from globally ones.

3.4.2 Methods

The CommunicationTemplate implements the IToLars interface and
therefore uses the following connection- and message-specific methods:

Connection-specific methods

� void setConnectionParameters(Map) – sets the connection
parameters for connecting to a LARS platform

� Map getConnectionParameters() – returns the actual connection
settings

� void connect() – connects to the LARS platform using the connection
settings as given in the CommunicationTemplate constructor

� void disconnect() – disconnects from the LARS platform (if currently
connected)

� boolean getConnectionStatus() – returns the current connection
status

Message-specific methods

� void sendMessage(Message) – sends an asynchronous message to
another agent/agent-like client

� void forwardMessage(Message, String) – forwards the given message
object to the given receiver.

� Message sendSynchrononousRequest(Message) – sends a
synchronous message to another agent and waits for the responding
message.

� Message sendSynchronousRequest(Message, long) – sends a
synchronous message to another agent and waits for the responding
message. The second parameter specifies a timeout, after which this
method returns null.

Messaging 29

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

� Message receiveBlockedMessage() – returns the next incoming
message, which was sent to the current agent.

� Message receiveBlockedMessage(long) – returns the next incoming
message, which was sent to the current agent. The second
parameter specifies a timeout, after which this method returns null.

Agents 31

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

4 Agents

4.1 Introduction

This chapter covers generic agents that are available within LARS. You
will find a detailed description of agent interfaces, reactions and
behaviors. Readers must note that agent description in this chapter
differs from that in the standard Java class documentation. Message
handling and agent communication over the LARS are the focus of the
generic agent documentation.

Generic agents are divided into system agents and business domain
specific agents. The business domain specific agents are further
classified according to agent functionality.

In documenting generic agents, the following terms are used:

Function generally describes the agent’s functionality, what it is
designed for and what it can do.

Relation describes how other agents relate to the agent being described
and visa versa.

Messages are the most extensive part of every agent description.
Messages is a list of message services the agent is able to provide,

32 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

describing what the message service function is, how an agent reacts on
receiving a message, including the response message service.

Config file describes the agent configuration file. Here you can find
advice on writing config files to include information on how to avoid
common pitfalls. In some cases config file samples are also presented.

4.2 System Agents

4.2.1 AgentTemplate

Child of: CommunicationTemplate

Related to: all other agents

Functionality: All living markets agents descend from this class,
which has the core functionality of answering messages
that cannot be understood by the intended agent.
AgentTemplate sends a “pong” reply to a “ping”
message.

Incoming Messages

All incoming messages are tested in order to determine whether a valid
and corresponding interpretXXX() can be found. If no valid
interpretXXX() is to be found, AgentTemplate’s
performDefaultBehavior() method is invoked.

The return type of performDefaultBehavior() indicates whether the
incoming message was successfully interpreted or not. If the incoming
message was not successfully interpreted, a ‘not_understood’ messages
is sent to the originator of the incoming message.

All messages that AgentTemplate can handle are listed below.

set_access_privileges (Config file only)

Function: Sets the privileges for accessing the services of the
current agent.

Parameters: map containing the privilege settings

Agents 33

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Responses: none

Note: This message is used for defining access privileges in order to
control which agent is allowed to request what services.

Service access control can be set in two ways:

- specificSetting refers to the case in which service access privileges are
regulated.

- generalSetting refers to the case in which service access control is not
regulated.

All agents are allowed to access the service under consideration.
generalSetting is the default setting when access privileges are not
regulated. A message with set_access_privileges subject will be
interpreted only when it is read from the config file or when the
sender is LARS_INTERNAL.

The default access privileges for all services are set to
FULL_SERVICE_ACCESS, which can later be changed in
AgentTemplate sub classes by modifying the
defaultServiceAccessPrivilege member variable.

The general schema for specifying service access rules is shown below:

<generalSettings>[full_access | no_access]</generalSettings>

<specificSettings>
 <service>[{single_service_name} | *]</service>
 <accessRule>
 <permission>[allowed | denied]</permission>
 <basedOn>[agent-name | platform-name]</basedOn>
 <name>[{defined_agent} | {defined_platform}]</name>
 </accessRule>
</specificSettings>

An example explaining how to regulate service access privileges is
shown below:

<MESSAGE>
 <service>set_access_privileges</service>
 <content>
 <generalSetting>no_access</generalSetting>
 <specificSetting>
 <service>{service_name}</service>
 <accessRule>
 <permission>allowance</permission>
 <basedOn>platform-name</basedOn>
 <name>HOME_PLATFORM</name>
 </accessRule>
 </specificSetting>
 </content>

34 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

</MESSAGE>

The above example denies access to all agents first. It then permits
those agents who reside on the platform on which the provider of the
service is running to access the service. The service name is specified
between the service tags. If an asterisk "*" is specified between the
service tags instead of a service name, a blanket access control to all
services is achieved.

set_log

Function: Sets the name for the log file, the logging verbosity
level and the kind of logging (e.g. log4j).

Parameters: logFile, logLevel, logType (Map)

Responses: none

Note: In releases prior to V2.5, all agents must receive set_log
message first otherwise they will log (write) into System.out. In later
releases agent log settings are included in AgentManager.cfg file.

register_service (Config file only)

Function: Registers this agent as a service provider agent for the
given services.

Parameters: service (String or List) the service(s) this agent
wants to become a service provider for.

Responses: none

Note: If this message is not read from a config file, a security violation
is assumed and the message is ignored.

load_object (Config file only)

Function: Instantiates and configures an object of the given class
to be stored in this agent's dynamicObjectController.
Whether or not a configuration is to be performed
depends on whether the new object implements
com.ls.util.objectcontrol.Iconfigurable or not.
If the new object implements
com.ls.util.objectcontrol.Iconfigurable,
method configure() is called and a configuration
object passed to it as a parameter.

Agents 35

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

In the end the new object is stored in the
dynamicObjectController under the given key.

Parameters: class (String): name of the class to instantiate

key (String): access key for the new object (needed to
retrieve it from the dynamicObjectController)

configuration (optional, Map or String):

(if instance of Map): object-dependant XML structure
used for the new object's configuration

(if instance of String): A config file containing the new
object's configuration is used.

Responses: none

define_object (Config file only)

Function: Defines an object of the given class. A new instance of
the defined object can then be retrieved with the
DynamicObjectController:getInstanceFromDefined()
method from this agent's dynamicObjectController.
Whether or not a configuration is to be performed after
an instantiation depends on whether the new object
implements
com.ls.util.objectcontrol.Iconfigurable or not.
If the new object implements
com.ls.util.objectcontrol.Iconfigurable, the
configure() method is invoked and a configuration
object passed to it as a parameter.

Parameters: class (String): name of the class to define/instantiate

key (String): access key for the object definition
(needed to retrieve it from the
dynamicObjectController)

configuration (optional, Map or String):

(if instance of Map): object-dependant XML structure is
used for the new object's configuration.

(if instance of String): config file containing the new
object's configuration.

36 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Responses: none

set_run_level

Function: Sets the runlevel of the agent to a new value. The new
runlevel can be set to TERMINATED, STOPPED or
RUNNING.

Parameters: runLevel (String)

Responses: ‘run_level_set’ agent's run level is changed.

run_level_not_set agent's run is changed.

Both replies contain a map with:

agentName: name of the agent who requested to
change the run level.

requestedRunLevel: requested run level or "lacking" if
the request cannot be interpreted.

previousRunLevel: previous run levels prior to the
run level change request.

currentRunLevel: Current run level following the
receipt and processing of the change run level request.

ping

Function: Checks whether the agent is alive. If it is, it will reply
with a “pong” message.

Parameters: none

Responses: ‘pong’ Agent is alive and working. Response message
content: map with following entries

time, the current time

location, the platform this agent does currently live on

Agents 37

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

not_understood

Function: Writes a warning log to the system log that the agent
did not interpret the current message. Check for
spelling errors in the message services or for a wrong
content if you encounter this.

Parameters: all fields of a Message.toMap() of the message that was
not understood plus the following fields:

reasonOfFailureText: Textual description of the reason
for the failure

reasonOfFailureCode: code of the failure (see
QualityOfService

Responses: none

delivery_failed

Function: Writes a warning log to the system log that a message
for an agent could not be interpreted because the
agent could not be reached.

Parameters: all fields of a Message.toMap() of the message that was
not deliverable plus the following fields:

reasonOfFailureText: textual description of the reason
for the failure.

reasonOfFailureCode: code of the failure (see
QualityOfService).

routeFailedAt (optional): messenger or component,
where the failure occurred.

Responses: none

access_denied

Function: Writes a warning log to the agent's log file, that a
message for an agent could not be interpreted because
the recipient denied the interpretation.

38 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Parameters: all fields of a Message.toMap() of the message that was
requesting the particular service plus the following
fields:

reasonOfFailureText: contains a request denial
message.

reasonOfFailureCode: code of the failure (see
QualityOfService)

Responses: none

interpretation_successful

Function: Writes an info log entry to the agent's log file, that a
message for another agent was interpreted correctly.

Parameters: all fields of a Message.toMap() of the message that was
successfully interpreted plus the following fields:

reasonOfFailureText: contains an "interpretation
returned true" text description.

reasonOfFailureCode: code of failure (see
QualityOfService).

Responses: none

get_revision_information

Function: Reads the revision information of the agent and sends
a reply message with that revision information.

Parameters: none

Responses: ‘revision_information’ the revision information of the
current agent.

log_inbox

Function: Reads the messages of the agent from the inbox and
writes the messages into the log file of the agent.

Agents 39

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Parameters: none

Responses: none

Note: It is advisable to set this message’s priority to
SYSTEM_PRIORITY.

set_pki_environment

Function: Sets the Public Key Infrastructure (PKI) depending on
the given parameters.

Parameters: pki_handler specifies which PKIHandler class shall be
used

pki_provider specifies which IPKIUtils-implementation
shall be used (only known implementation is
com.ls.pki.BaltimorePKIUtils)

Responses: none

Note: This is the base for all following PKI-related messages, because
the PKI-classes are dynamically instantiated through this message.

set_private_key

Function: Sets the private key for the Public Key Infrastructure
(PKI) to sign or encrypt contents.

Parameters: keyfile_name specifies the name of the private key file.

 Location specifies the file-location of the private key
file.

Password specifies the password of the private key file
(this field is mandatory).

Responses: none

set_own_public_key_certificate

40 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Function: Sets the own public key certificate for the Public Key
Infrastructure (PKI). The own public key is not really
used, but there might be reasons to distribute it.

Parameters: keyfile_name specifies the name of the public key
certificate file.

 Location specifies the file-location of the public key
certificate file.

Responses: none

Note: The public key certificate file has to be PEM or DER formatted.
Other formats are not supported!

set_foreign_public_key_certificate

Function: Sets a public key certificate for the Public Key
Infrastructure (PKI) of a foreign platform.

Parameters: keyfile_name specifies the name of the public key
certificate file

 Location specifies the file-location of the public key
certificate file.

 keyID the ID to identify this foreign public key
certificate

Responses: none

Note: The public key certificate file has to be PEM or DER formatted.
Other formats are not supported!

set_pki_messages

Function: Sets one or more messages, which have to be signed,
verified, encrypted, decrypted, signed and encrypted,
or decrypted and verified.

Parameters:

Service: the service, for which a PKI-action has to be
done.

Agents 41

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Action: the action, which has to be carried out.

sending actions: sign, encrypt, sign_encrypt.

receiving actions: decrypt, verify, decrypt_verify.

data_key: only used for sending actions. It specifies,
which message data-keys should be handled. If no
data-key is specified, all content-keys of the message
will be handled.

Responses: none

Example: An example to illustrate how to construct set_pki_messages
messaged is show below. It is to be noted that the message entity in
this example is child of a content entity that is a child of an outer
message entity.

<message>
 <service>name of service</service>
 <action>name of action</action>
 <data_key>data_key1</data_key>
 <data_key>data_key2</data_key>
 <data_key>.........</data_key>
</message>

check_registered_services

Function: For monitoring the set PKI services
(set_pki_messages). Logs the registered PKI services
of this agent into the log file and returns a message
“registered_services” with this information.

Parameters: none

Responses: ‘registered_services’

signature_not_valid

Function: Used from class PKIHandler to redirect messages with
invalid signatures. This method logs the message to
the agent’s log file.

Parameters: keys created by method toMap() of class Message.

verify_message: a detailed trace-message.

42 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Responses: none

startup_constraint

Function: Defines interdependencies between the current agent
and one or more other agents in the start-up phase.
This message tells the current agent to wait for a given
set of specified agents. As soon as all awaited agents
are available on the local platform, the set of specified
messages will be interpreted.

Parameters: awaitedAgent one or more agents to wait for, each
single agent’s name is specified within an
‘awaitedAgent’ tag.

 MESSAGE the messages to be interpreted when all
awaited agents are available on the platform.

Responses: none

Example:

<MESSAGE>
 <service>startup_constraint</service>
 <content>
 <awaitedAgent>AgentA</awaitedAgent>
 <awaitedAgent>AgentB</awaitedAgent>
 <MESSAGE>
 <service>do_this_or_that_first</service>
 <content>
 [message specific content goes here]
 </content>
 </MESSAGE>
 <MESSAGE>
 <service>do_another_task_afterwards</service>
 <content>
 [message specific content goes here]
 </content>
 </MESSAGE>
 </content>
</MESSAGE>

agent_connected

Function: Notifies the current agent that another agent is
available on the local platform.

Parameters: Agent’s name (String)
The string message containing the agent’s name.

Agents 43

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Responses: none

notified_agent, notify_canceled, notify_not_canceled, wake_up

Function: These messages are captured without functionality.

If your agent cooperates with AgentTimer, it should
implement the methods:

interpretNotifiedAgent(),

interpretNodifyCanceled() and

interpretNotifyNotCanceled(), in order to deal with
those services.

Parameters: none

Responses: none

send_as_configured (Config file only)

Function: Forwards one or more messages as being read from
this message's content. For more flexibility in
configuration the messages can contain $a in order to
reference this agent's name

Parameters: one or more MESSAGES

Responses: none

Note: This message can be send only by setting up this agent's config
file.

Config File

The AgentTemplate itself does not require a config file. For the PKI
related tasks the PKI.cfg should be used to configure the required
settings.

For handling config files, AgentTemplate comes with a config file reader
that fills the configHash member of the class and runs the interpret()
method for every message entry in the config file.

44 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Note: Although the LARS agents can be configured with XML messages,
the default config handler does not understand XML attributes. This
means that you cannot use attributes when you set up configuration
files for your agents. If you want to do so, you have to call the method
setIXMLHandler() from within the constructor of your agent, passing it
an instance of com.ls.util.xml.XMLComplexHandler, which is capable
of processing XML attributes. For detailed information of this class,
please consult the API documentation.

4.2.2 AgentManager

Child of: AgentTemplate

Related to: all other agents

Functionality: AgentManager is available on every LARS platform. It
is responsible for creating and deleting agents from the
platform, listing them and can serialize or rebuild
serialized agents.

Incoming Messages

You can send messages with the following services to AgentManager.
The required Input parameters are listed with the messages.

start_agent

Function: Creates a new agent for the specified class with the
given name, which gets configured by cfgFile. In
contrast to the new_agent message this method
doesn't send any response. By specifying the
loadBalancing parameter and passing a value >1, it is
possible to occupy the load balancing functionality

Parameters: class, name, cfgFile and loadBalancing (Map)

cfgFile The configuration file or files for the agent.

When there is more than one configuration file, every
file name is given an extra cfgFile tag. It is also
possible to use the source tag, in which case the
settings will only be valid for the specified configuration
file. However it should be noted that the global source

Agents 45

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

settings would be overwritten. See below for a detailed
explanation.

class The full class of the agent.

name The agent’s name. The naming conventions should
always be adhered to e.g. AgentTimer should always
be named at.

loadBalancing There are two tags for loadbalancing i.e. ‘minPoolSize’
and ‘maxPoolSize’. They both have to be numeric. The
pool size has to be between ‘1’ and ‘127’.

Example:

 <loadBalancing>
 <minPoolSize>1</minPoolSize>
 <maxPoolSize>5</maxPoolSize>
 </loadBalancing>

source The location of the configuration files. It is very useful
for loading from any URL. Some additional tags are as
follows: ‘protocol’ (file, http, ftp), ‘url’ any valid url
without the protocol, ‘path’ the path from which to get
the files, ‘archive’ the jar/zip file to load from, ‘name’
the name of the file, ‘port’ the port to connect to

All these settings are optional, but if you want to load
from a URL the protocol and URL parameters are
mandatory.

Example:

 <source>
 <protocol>http</protocol>
 <url>ls500.living-systems.de</url>
 <archive>lars.jar</archive>
 </source>

Responses: none

new_agent

Function: Creates a new agent for the specified agent class with
the given name. Another agent usually sends this
message to AgentManager and then the agent
manager will send a reply message to indicate if the
creation was successful or unsuccessful.

Parameters: class, name and cfgFile (Map, see start_agent)

46 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Responses: ‘agent_created’ the agent was successfully created and
inserted into the platform.

 ‘type_not_found’ the agent could not be built, probably
due to a class not found error.

 ‘agent_present’ an agent with this name is present,
choose another name.

reload_agent

Function: Creates a new agent for the specified agent class with
the given name, and reloads the agent class. Another
agent usually sends this message to AgentManager and
then agent manager will send a reply message to
indicate if the creation was successful or unsuccessful.

Parameters: class, name and cfgFile (Map, see above)

Responses: ‘agent_created’ the agent was successfully created and
inserted into the platform

 ‘type_not_found’ the agent could not be built, probably
due to a class not found

 ‘agent_present’ an agent with this name is already
present, choose another name

restart_agent

Function: Restarts an agent that was originally created by the
agent manager and is not currently running on the
platform.

Parameters: agentName (String)

Responses: ‘agent_not_build’ the agent was not built because the
generation parameters (class name, config file(s)) were
unknown.

 ‘agent_created’ the agent was successfully created and
inserted into the platform.

 ‘type_not_found’ the agent could not be built, probably
due to a ClassNotFoundException.

Agents 47

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 ‘agent_present’ an agent with this name is already
present, choose another name

delete_agent

Function: Deletes the agent agentName from the platform by
first running the terminateAction() method and then
killing the agent (see below).

Parameters: agentName (String)

Responses: ‘terminating_agent’ the agent is being deleted.

 ‘delete_failed’ the agent could not be deleted.

 agent_not_present an agent with this name does not
exist on the platform.

kill_agent

Function: Deletes the agent agentName from the platform
without running the terminateAction() method first.

Parameters: agentName (String)

Responses: ‘agent_killed’ the agent was successfully killed off.

 ‘agent_not_killed’ the agent could not be deleted.

restart_group

Function: Restarts all the agents within the group requested by
the Sender that were originally created by the agent
manager.

Parameters: group name (String)

Responses: ‘restart_group_complete’ all the agents within the
group could be restarted.

 ‘restart_group_partially’ only some of the agents
within the group could be restarted, the message
informs the sender about the status of each agent.

48 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 ‘restart_group_failed’ all the agents within the group
could not be restarted. This message contains a special
"description" field, which holds the reason for which
the group couldn't be restarted.

delete_group

Function: Deletes all the agents within the group that were
initially created by this agent manager by first running
the terminateAction() method and then killing them.

Parameters: group name (String)

Responses: ‘delete_group_complete’ all the agents within the
group have been deleted

 ‘delete_group_partially’ only some of the agents within
the group could be deleted, the message also informs
the sender about the status of each agent.

 ‘delete_group_failed’ all the agents within the group
could not be deleted. This message contains a special
"description" field, which holds the reason for which
the group couldn't be deleted.

kill_group

Function: Deletes all the agents within the group that were once
created by the agent manager without firstly running
the terminateAction() method.

Parameters: group name (String)

Responses: ‘kill_group_complete’ All the agents within the group
have been killed

 ‘kill_group_partially’ Only some of the agents within
the group could be killed, the message informs the
sender about the status of each agent.

 ‘kill_group_failed’ all the agents within the group could
not be killed. This message contains a special
"description" field, which holds the reason for which
the group couldn't be killed.

Agents 49

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

serialize_agent

Function: Serializes an agent, i.e. converts the entire agent
object into a string object, which can then be sent over
any data connection. To serialize an agent, the agent
will be stopped and then converted into a string. The
string is then sent back to the message’s originator
after which the agent is removed from the platform.

Parameters: agentName (String)

Responses: ‘serializing_agent’ the agent is being serialized

 ‘serialized_agent’ the agent was successfully serialized.
This message (Map) contains two elements: the name
(name) and the generated object string (code) for the
serialized agent.

 ‘serialize_failed’ serialization could not be performed
because the agent’s terminateAction() did not return
successfully.

 ‘agent_not_present’ an agent with this name does not
exist on the platform

make_agent

Function: Takes a serialized agent, builds a new agent from the
string object and injects it into the platform. The agent
is started on the platform as usual.

Parameters: name, code (Map, see above)

Responses: ‘agent_build’ the agent was properly built and started

 ‘class_not_found’ the agent class could not be decoded
or rebuilt, probably due to a missing class or a wrong
class path.

 ‘agent_not_build’ the agent could not be built, try
another name

start_migration

50 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Function: Prepare the mobile agent for migration, serialize it, and
send it to the destination platform

Parameters: destination platform (String)

Responses: ‘migrating_agent’ the preparation and serialization for
the moving of the agent was successful.

‘migration_failed’ the agent couldn't be moved to the
destination platform.

migrating_agent

Function: Takes the received serialized agent and builds another
agent from the received information.

Parameters: code of the agent (String)

Responses: ‘start_up’ the de-serialized agent receives a message
with which it tries to restart itself.

‘migration_successful’ inform the sender of the agent
that the migration of the agent was successful.

‘migration_failed’ inform the sender of the agent that
the migration of the agent has failed.

present_agent

Function: Checks whether the agent exists on the platform (this
does not mean it is alive or working, only that it
exists!)

Parameters: agentName (String)

Responses: ‘agent_available’ Agent exists

 ‘agent_not_available’ Agent does not exist

list_agents

Agents 51

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Function: Creates a list of all agents and puts the list into a map.
The map’s keys are an enumeration of items in the
style of “agent0, agent1, agent2, agent3…”

Parameters: none

Responses: ‘list_of_agents’ the content of the response are the
listed agents.

get_version

Function: Get information about the build number and build date
of the running platform

Parameters: none

Responses: ‘version’ String containing the current version of the
platform.

set_lars_administrator (Config file only)

Function: Configures the user and password to be used to
identify a LARS administrator (The LARS Administrator
is someone who is allowed to shutdown the platform,
see "shutdown_platform").

Parameters: administrator, password (Map)

Responses: none

Note: This message is interpreted only if it was obtained from a config
file!

shutdown_platform

Function: Sends a request to AgentManager to shutdown the
LARS platform. The values for the administrator and
password have to be correct, see
"set_lars_administrator".

Parameters: administrator, password (Map)

Responses: ‘shutdown_platform_in_progress’ if administrator and
password were correct.

52 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

‘shutdown_platform_declined’ if administrator and
password were not correct.

Config File

The config file for the AgentManager is usually called AgentManager.cfg
and is located in the conf/lars directory of the platform installation. It
contains the messages, to be sent to AgentManager during the startup
phase of the platform, most importantly it contains the messages to
start up other agents.

A very simple config file would look like this:

<CONFIG>
 <MESSAGE>
 <service>start_agent</service>
 <content>
 <class>com.ls.lars2.AgentMessageRouter</class>
 <name>amr</name>
 <cfgFile>lars/$c.log</cfgFile>
 <logFile>$a.log</logFile>
 <logLevel>INFO</logLevel>
 <logType>LOG4J</logType>
 </content>
 </MESSAGE>
</CONFIG>

The config file for AgentManager is quite easy to create.

The XML values within the message in the config file will form the
message AgentManager receives. The requested service is start_agent
and the content of the message consist of a Map with the following
entries: class, name, cfgFile and the logging configuration. Agent config
files can be referred to as a textual dump of normal LARS messages.

4.2.3 AgentMessageRouter

Child of: AgentTemplate

Related to: all agents that send messages

Functionality: This class is the wrapper agent for the MessageRouter
class. Almost every agent sends AgentMessageRouter a
register message in its initialization phase for it to
become registered in the local platform's message
router. If an agent terminates, it sends a sender_rip
service message AgentMessageRouter can also be used
for the following purposes:

Agents 53

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Registering and deregistering (unregistering) service
providers.

For maintaining message groups to which agents can
be subscribed to and un-subscribed from.

AgentMessageRouter can be used by migrated agents
to inform their home platform's message router of their
new location.

Note: AgentMessageRouter logs ERROR and WARNING information in
both the system's log file and it's own log file; all log messages with a
less important log level are logged only in AgentMessageRouter's own
log file.

Incoming Messages

AgentMessageRouter offers the following services. Required input
parameters you have to specify are listed with the messages.

notify_agent_connected

Function: Instructs the AgentMessageRouter to notify the sender
of this message as soon as the awaitedAgent(s) got
connected to the local LARS platform.

Parameters: awaitedAgent (String or Map)

Responses: ‘agent_connected' this response is sent as soon as the
awaitedAgent(s) have been connected to the local
platform. The content of this message is the name of
the connected agent.

agent_connected (internal use only!)

Function: Notifies the AgentMessageRouter that the
connectedAgent is available on the local platform.
When AgentMessageRouter receives this message, it
will notify all registered agents, who want to be
informed about the availability of the connected Agent.

Parameters: connectedAgent (String)

Responses: none

54 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Note: AgentMessageRouter interprets this message for internal use,
only. Therefore, it checks the sender of this message in order to prevent
any misuse of it.

notify_service_status_changed

Function: Registers the sender of this message at the
AgentMessageRouter for being notified, when the
status of a defined service has changed (i.e. a service
provider registers or un-registers for that service).

Parameters: awaitedService (String)

Responses: ‘service_status_changed’ every time the status of that
service has changed. Content of this message is: (i)
the name of the service; (ii) the string "INCREASED" or
"DECREASED", depending whether a service provider
did register or unregister; (iii) the actual number of
service providers for that service.

Note: the message router can only send the 'service_status_changed'
response message. If you want to prevent the misuse of this message
by other parties, you should ensure the message's sender to be
LARS_INTERNAL.

initialize_inbox_check

Function: Registers this agent to the notifierAgent (mostly
AgentCron) for being notified regularly, in order to
check the inbox size of all connected messengers. This
check implies a warning, which will be written to the
System Logger when the size of any messenger’s inbox
exceeds the given delimiterSize.

 The notification period is set up as in AgentCron.

Parameters: notifierAgent (String)

 delimiterSize (String)

 period (Map) (compare to AgentCron)

To configure the inbox_check correctly, you should place the following
message into the config file of AgentMessageRouter (the period
definition can be changed to your needs):

<MESSAGE>

Agents 55

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 <service>startup_constraint</service>
 <content>
 <awaitedAgent>AgentCron</awaitedAgent>
 <MESSAGE>
 <service>check_inbox_size</service>
 <content>
 <delimiterSize>3</delimiterSize>
 <notifierAgent>AgentCron</notifierAgent>
 <period>
 <type>INTERVAL</type>
 <minute>10</minute>
 <hour>0</hour>
 <day>0</day>
 </period>
 </content>
 </MESSAGE>
 </content>
</MESSAGE>

Responses: none

check_inbox_size

Function: Tells AgentMessageRouter to check the inboxes of all
connected messengers. Normally, this message is read
from the notifierAgent configuration file.

Parameters: none

Responses: none

agent_not_notified

Function: Informs the AgentMessageRouter that its notification
request per notify_agent (normally being sent due to
an incoming ‘initialize_inbox_check’ message) has not
been processed properly.

Parameters: none

Responses: none

register

Function: Tells the LARS platform’s message router to forward
any messages to the message router agent as specified
in the message parameter. The newMessageRouter is

56 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

the global name of the agent message router, which
will handle the sender messages.

Parameters: newMessageRouter (String)

Responses: none

unregister

Function: Removes a forwarding entry from the platform’s
message router.

Parameters: none

Responses: none

register_service

Function: sender wants to receive a copy of all service messages.

Parameters: service (String) or services (List); The service(s) this
agent wants to become a service provider for.

Responses: none

Note: If multiple services are specified (message content is a List), the
agent is registered as a service provider for all of the specified services.
Naturally, the sender will not be registered as a provider of any of the
specified services if the message cannot be processed successfully.

unregister_service

Function: The sender doesn’t want to receive a copy of all service
messages any more.

Parameters: service (String) or services (List); the service(s) that
are no longer provided by the sender.

Responses: none

unregister_all_services

Agents 57

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Function: sender doesn’t want to receive a copy of any service
messages.

Parameters: none

Responses: none

subscribe_to_message_group

Function: subscribes a single agent or a list of agents to the
specified message group. If the group does not exist, a
new group is created. All messages being sent to this
group will be passed to all subscribed agents.

Parameters: group (String), the name of the group to subscribe to.

agent (String or Collection). The agent(s) that should
be subscribed to that group.

transaction (String):

on (default): subscribe all agents or none of them

off: subscribe as many agents as possible

Responses: ‘subscribe_to_message_group_succeeded’ message is
dispatched as a response if all concerned agents are
subscribed. The content of the response message is the
same as the content of the request message.

 ‘subscribe_to_message_group_failed’ message is
dispatched as a response if all concerned agents
cannot be subscribed. The content of the response
message is the same as the request message.

 ‘subscribe_to_message_group_partially’ response
message is sent when the request message’s
transaction field is set to ‘off’ and partial subscription
cannot be achieved. In addition to the request
message’s content, this response introduces two new
keys/value pairs:

succeeded: value is a collection of names of agents
that are now subscribed to the message group.

58 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

failed: value is a collection of names of agents that
could not be subscribed to the message group.

Note: If multiple agents are specified (value of key 'agent' in message
content is a Collection), either all of those agents are added to the
specified message group or none of them.

unsubscribe_from_message_group

Function: Unsubscribes a single agent or a list of agents from the
specified message group. All empty message groups
will be removed from the message group’s list.

Parameters: group (String), the name of the group to unsubscribe
from.

 agent (String or List). The agent(s) that should be
unsubscribed.

Responses: ‘unsubscribe_from_message_group_succeeded’
if all agents can be successfully unsubscribed.

 ‘unsubscribe_from_message_group_failed’
if all agents cannot be successfully subscribed.

 Content of the above response is that of the original
request message.

unsubscribe_from_all_message_groups

Function: Unsubscribes a single agent from all message groups
that the agent is subscribed to. All empty message
groups will be removed from the message group’s list.

Parameters: agent (String). The agent that should be unsubscribed.

Responses: ‘unsubscribe_from_all_message_groups_succeeded’
 if the agent can be successfully unsubscribed from all
groups.

 ‘unsubscribe_from_all_message_groups_failed’
 if the agent cannot be successfully unsubscribed from
all groups

Agents 59

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 Content of the above responses is that of the original
request message.

remove_message_group

Function: removes a message group from the list of message
groups.

Parameters: group (String). The name of the group that should be
removed.

Responses: ‘remove_message_group_succeeded’
if the message group can be removed successfully or if
the message group does not exist.

 ‘remove_message_group_failed’
if the message group name is malformed.

 Content of the above responses is that of the original
request message.

close_connection

Function: AgentMessageRouter will instruct the underlying
message router to send a 'close_connection' message
to all connected messengers.

Parameters: none

Responses: none

Note: This message can be sent either by AgentManager, or by the
message router. All other originators of this message will be ignored.

sender_rip

Function: Before an agent dies, it should send this message to
request that all references pointing to that agent
should be removed (service registrations, message
groups, forward, agent connect-notifications)

Parameters: none

Responses: none

60 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

log_system_information

Function: logs all known services, message groups and
platforms.

Parameters: none

Responses: none

ask_group_members

Function: asks for members of one or multiple message groups.

Parameters: Map with one key group: value is a String or a List of
Strings specifying the name of the group(s) the sender
is interested in.

Responses: ‘response_group_members’

map content contains the key “group” and as value one
map or a list of maps (one for each group of the
request) with the following keys:

name specifying the group name

agent specify the subscribed agent(s) (String or List)

errorerror holding
ILarsConstants.NO_GROUP_AVAILABLE, if the group
does not exist or is empty.

ask_service_provider_members

Function: asks for members (service providers) of one or multiple
message services.

Parameters: Map with one key “service”: value is a String or a List
of Strings specifying the name of the services(s) the
sender is interested in.

Responses: ‘response_group_members message’

Agents 61

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

map content contains the key “service_provider” and
as value one map or a list of maps (one for each
service of the request) with the following keys:

name Æ specifying the service name

agent Æ specifying the service provider agent(s)
(String or List)

error Æ holding
ILarsConstants.NO_SERVICE_PROVIDER_AVAILABLE, if
the service is unknown or no service providers for it
are registered.

show_all_provided_services

Function: asks for a list of services, which are provided on the
local LARS platform.

Parameters: none

Responses: ‘provided_services message’

map content, which includes the key "service" and a
List with the names of all provided services as value.

Config File

AgentMessageRouter does not have a config file by default. However, it
should register the log_system_information service (with help of a
register_service message in its config file) if system information should
be available in the logfile.

The following example shows how to register log_system_information:

<MESSAGE>
 <service>register_service</service>
 <content>log_system_information</content>
</MESSAGE>

When the message router inspects the inbox size of all connected
messengers, the config file of AgentMessageRouter must contain the
correct settings for sending the required 'initialize_inbox_check'
message. As the initialization of the inbox checks sends a ‘notify_agent'
to the given notifier agent, the config file of AgentMessageRouter should
contain an adequate 'startup_constraint' message (compare to
AgentTemplate).

62 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

4.2.4 AgentPlatformSecurity

Child of: AgentSynchronization (see 4.3.10)

Related to: All components that are concerned with remote parties
connection to the local platform.

Functionality: The LARS platform synchronization process allows the
inter-connection of LARS platforms in order to enable
cross-platform messaging. Lars platforms can be
configured to 'know' remote platforms and to connect
to them at runtime.

For instance, 141.168.1.1-lars1 can be configured to connect to
141.168.1.1-lars3, which enables the agents on both platforms to inter-
communicate with each other.

Platform synchronization can also establish connections dynamically; a
LARS platform, which connects to a remote platform, can be
automatically informed of other platforms that are currently connected
to that remote platform. This notification process depends on the kind of
connection type that exists between the various platforms.

There are 3 kinds of connection types:

� public: all publicly known platforms and own platform connection
parameters are send to the publicly connected remote platform.

� private: all publicly and privately known platforms and own platform
connection parameters are send to the privately connected remote
platform.

� hidden: only own platform connection parameters are sent to a
remote platform with a hidden connection.

The following is an example to illustrate how platform connections are
passed.

platform1 is connected to platform2a using a “hidden” connection, and
to platform2b using a “public” connection. Now, platform3 opens a
“private” connection to platform1. In this case, platform3 will be
informed on the connection parameters of platform2b, which enables it
to connect to the platform directly. The platform3 will not receive the
connection parameters of platform2a, as this platform is 'hidden' by
platform1.

AgentPlatformSecurity controls what information will be sent to a
connecting platform. The information that is sent during platform
connection will always contain the connection parameters of the local

Agents 63

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

platform and additional connection parameters depending on the
connection type as explained above.

Furthermore, AgentPlatfromSecurity manages the security settings
regarding the client-to-lars- and inter-lars-communication. The agent
provides possibilities to define: trusted and untrusted parties - on the
basis of the following settings (to be configured within the agent’s config
file):

� trusted and/or untrusted agents

� trusted and/or untrusted LARS platforms

� trusted and/or untrusted IP addresses

You can define the security of your local LARS platform to a very fine-
grained level. For instance, you could specify that all agents coming
from platform1 are not allowed to connect, but AgentX and AgentY of
the very same platform are.

Note: By default your local LARS platform is absolutely locked. This
means that connection to the local platform from the outside is
prohibited by default. This default locking mechanism is deliberate in
order to encourage living markets users to think about security from the
onset and to only permit access to trusted agents, platforms or IP
addresses.

Incoming Messages

You can send messages with the following services to
AgentPlatformSecurity. Message parameters are listed with the
messages and must be transmitted using a map.

set_trusted_agent (Config file only)

Function: Adds agent name(s) to the list of trusted agents.

Parameters: Map with key “agent” and with a String or Collection
denoting the trusted agent name(s) as value(s).

Responses: none

set_untrusted_agent (Config file only)

Function: Adds agent name(s) to the list of untrusted agents.

64 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Parameters: Map with key “agent” and with a String or Collection
denoting the untrusted agent name(s) as value(s).

Responses: none

set_trusted_platform (Config file only)

Function: Adds platform name(s) to the list of trusted platforms.

Parameters: Map with key “platform” and with a String or Collection
denoting the trusted platform name(s) as value(s).

Responses: none

set_untrusted_platform (Config file only)

Function: Adds platform name(s) to the list of untrusted
platforms.

Parameters: Map with key “platform” and with a String or Collection
denoting the untrusted platform name(s) as value(s).

Responses: none

set_trusted_ip (Config file only)

Function: Adds the IP address(s) to the list of trusted IP
addresses.

Parameters: Map with key “ipAddress” and with a String or
Collection denoting the trusted IP address name(s) as
value(s).

Responses: none

set_untrusted_ip (Config file only)

Function: Adds the IP address(s) to the list of untrusted IP
addresses.

Agents 65

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Parameters: Map with key “ipAddress” and with a String or
Collection denoting the untrusted IP address name(s)
as value(s).

Responses: none

response_for_connection_parameters

Function: Local listener agents send this message to request for
their connection parameters.

Parameters: Map with key 'port' and with a String denoting the port
the sender of this message (a listener) is listening on.

Responses: none

register_platforms (Internal use only)

Function: Registers the platforms given by this message with the
local LARS platform.

Parameters: List containing one or more
AgentSynchronization.LarsPlatformRepresentation
entries.

Responses: none

Note: This message is used for the platform synchronization process,
thus it can only be sent by this platform's AgentSynchronizeSupervisor
or AgentSynchronizeConnectionHandler. register_platforms messages
that are sent by other originators will be ignored.

unregister_platforms (Internal use only)

Function: Unregisters the platforms given by this message from
the local LARS platform.

Parameters: List containing one or more
AgentSynchronization.LarsPlatformRepresentation
entries.

Responses: none

66 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Note: This message is used for the platform synchronization process,
thus it can only be sent by this platform's AgentSynchronizeSupervisor
or AgentSynchronizeConnectionHandler. unregister_platforms messages
that are sent by other originators will be ignored.

inform_remote_platforms (internal use only!)

Function: This message is a request to inform all platforms as
indicated in the message of the connection settings of
all other connected platforms. The extend of the
connection settings information that is passed depends
on the connection type.

Parameters: List containing one or more
AgentSynchronization.LarsPlatformRepresentation
entries.

Responses: none

Note: This message is used for the platform synchronization process
only, thus it can only be sent from this platform's
AgentSynchronizeSupervisor or AgentSynchronizeConnectionHandler.
inform_remote_platforms messages that are sent by other originators
will be ignored.

Config File

The config file for this agent is usually called AgentPlatformSecurity.cfg
and is located in the conf/lars directory of the platform installation.
AgentPlatformSecurity.cfg describes the trusted/untrusted status of all
agents, platforms and IPs.

Example:

<CONFIG>
 <MESSAGE>
 <service>set_trusted_ip</service>
 <content>
 <ipAddress> </ipAddress>
 </content>
 </MESSAGE>
 <MESSAGE>
 <service>set_trusted_platform</service>
 <content>
 <platform> </platform>
 </content>
 </MESSAGE>
</CONFIG>

Agents 67

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Note: When specifying trusted and untrusted agents, platforms and/or
IP addresses, a connectionType can be included.

There are two permitted connectionType entities:

� an asterisk “*”: to indicate that the trusted/untrusted setting will be
valid for all connection types.

� a connection type (e.g. rmi, socket or http): to indicate that the
trusted/untrusted setting will only be applicable to connection type as
specified.

It has to be noted that the default connectionType is '*'.

4.3 Service Agents

4.3.1 AgentTimer

Child of: AgentTemplate

Related to: any agent that requires a timing functionality.

Functionality: AgentTimer can send “wake up” calls to other agents
after a specified time.

Note: AgentTimer logs ERROR and WARNING log information in both
the system's log file and it's own log file. All log messages with a low
priority log level are logged in AgentTimer's own log file.

Incoming Messages

You can send messages with the following service to AgentTimer.
Message parameters you have to specify are listed with the messages.

notify_agent

Function: Inserts a notification request into the timer queue. The
request identifies an agent and a set time. The time
value is an absolute value and not relative to the
current time. On the given time the specified agent will
be notified with a wake_up message call.

68 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Parameters: time, agent (Map).

Responses: ‘agent_notified’ the notification request is added to the
timer queue.

‘agent_not_notified’ the request is malformed (i.e.
invalid time format) and is not added to the time
queue. To create AgentTimer’s time stamp, a value in
milliseconds can be added to the value returned by
Java's System.currentTimeMillis().

The responses above use the reply ID of the incoming
messages to send back the original parameter
hashtable, which can be saved and used to cancel a
notification at a later stage.

cancel_notify

Function: Removes a notification from the timer queue.

Parameters: time, agent (Map)

Responses: ‘notify_canceled’:
The notification request is removed from the timer
queue.

‘notification_not_canceled’: The notification cannot be
removed from the timer queue because of a malformed
time argument, or because the notification request
does not exist.

The above responses use the reply ID of the incoming
message to send back the original parameter
hashtable.

sender_rip

Function: Removes all notification requests of the sender from
the timer queue. The terminateActions() method of all
agents that cooperate with AgentTimer are required to
send sender_rip message.

Parameters: none (content is not needed and will be ignored if
included).

Agents 69

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Responses: none.

Config File

AgentTimer does not need a config file by default.

4.3.2 AgentCron

Child of: AgentTemplate

Related to: any agent that requires a timing functionality.

Functionality: Agents that require executing a certain task
periodically can request a periodical notification call
from AgentCron. Details of the periodical calls are
parsed and internally stored into a queue.

Furthermore, clients of AgentCron can request the
removal or modification of their periodical notification
calls. (To modify a periodical notification call, the
original request must be removed and replaced with a
new request.).

Note: AgentCron is depending on the services of AgentTimer!

Incoming messages

You can send messages with the following services to AgentCron.
Message parameters are listed with the messages and must be
transmitted using a Map.

notify_agent

Function: Inserts a notification request into the cron queue.

Parameters: The period, agent and task to be carried out (Map).

Responses: ‘notified_agent’ The notification request is added to
cron queue.

70 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

‘agent_not_notified’ The request is malformed (i.e.
invalid specification of period of time) and is not added
to the queue.

The above responses use the reply ID of the incoming
message to send back the original parameter
hashtable, which can be saved and used to cancel a
notification at later stage. .

cancel_notify

Function: Removes a notification from the cron queue.

Parameters: The period, agent and task to be carried out
(Hashtable).

Responses: ‘notify_canceled’: The notification request is removed
from the cron queue.

‘notify_not_canceled’: The notification request cannot
be removed because of a malformed specification of
the time parameter or because the notification request
does not exist.

Both responses use the reply ID of the incoming
message to send back the original parameter
hashtable.

wake_up

Function: AgentTimer informs AgentCron to send one or multiple
messages to its clients (agents that placed notification
requests).

Parameters: none (content is not needed and will be ignored if
included).

Responses: The message that the agent requested to be notified at
the specified notification time. It should to be noted
that a response to a wake up call is not generic.

sender_rip

Function: Removes all notification requests of the sender from
the cron queue, because the sender has just died.

Agents 71

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Parameters: none (content is not needed and ignored).

Responses: none.

Config File

AgentCron does not need a config file, however if supplied it can contain
any of the above notification request(s).

The content of a notify_agent message must have the following format:

<content>
 <period>
 <type> </type>
 <minute> </minute>
 <hour> </hour>
 <day> </day>
 <day_of_month> </day_of_month>
 </period>

 <MESSAGE>
 <service> </service>
 <receiver> </receiver>
 <content> </content>
 </MESSAGE>
</content>

The possible values for the tag "type" are: CRON, INTERVAL and TIME.

CRON: specifies the exact period in time the notification has to
be sent

"minute" can be an integer in the range of (0 to 59) or
"*".

"hour" can be an integer in the range of (0 to 23) or
"*".

"day" can be one of the days of the week in English or
the"*".

"day_of_month" can be one of the days of the month
an integer between 1 and 31 or "*".

72 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Note:

(7) The char "*" denotes "every" (e.g. if the minute field is set to ‘*’, a
notification call will be sent out every minute of the specified period).

(8) The day or the day_of_month fields must be set. Setting both fields
in the same message is permitted. .

Example: To notify "agent_A" with the message "an_example_notify" on
the third of every month when the 3rd is a Monday at 5 minutes pass
every hour.

<content>
 <period>
 <type>CRON</type>
 <minute>5</minute>
 <hour>*</hour>
 <day>MONDAY</day>
 <day_of_month>3</day_of_month>
 </period>

 <MESSAGE>
 <service>an_example_notify</service>
 <receiver>agent_A</receiver>
 <content> </content>
 </MESSAGE>
</content>

INTERVAL: specifies interval of time between notifications

� "minute" - can be any positive integer => 0.

� "hour" - can be any positive integer => 0.

� "day" - can be any positive integer => 0.

Note: 1. The value 0 is the neutral value.

2. The "day_of_month" field is not permitted when an interval
is specified.

Example: To notify "agent_A" with the message "an_example_notify" at
an interval of 2 days and 5 minutes.

<content>
 <period>
 <type>INTERVAL</type>
 <minute>5</minute>
 <hour>0</hour>
 <day>2</day>
 </period>

 <MESSAGE>

Agents 73

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 <service>an_example_notify</service>
 <receiver>agent_A</receiver>
 <content> </content>
 </MESSAGE>
</content>

TIME: specifies a point in time when the notification is required

� "minute" - can be an integer in the range of (0 to 59).

� "hour" - can be an integer in the range of (0 to 23).

� "day" - can be one of the days of the week in English.

� "day_of_month" - can be one of the days of the month as an integer
between 1 and 31.

Note:

1. A TIME notification request is satisfied only once!

2. The day or the day_of_month filed must be set. Setting both
fields in the same message is permitted.

Example: To notify “agent_A” with the message “an_example_notify” on
Monday at 00:05 hours.

<content>
 <period>
 <type>TIME</type>
 <minute>5</minute>
 <hour>0</hour>
 <day>Monday</day>
 </period>

 <MESSAGE>
 <service>an_example_notify</service>
 <receiver>agent_A</receiver>
 <content> </content>
 </MESSAGE>
</content>

4.3.3 AgentLogin

Child of: AgentTemplate

Related to: any user, who wants to communicate with the LARS
platform.

Functionality: This agent handles the login process pertaining
JSecureSocket communication. User authentication

74 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

occurs without a database. The configuration file for
this agent should contain a "set_user_list" message
with users and their passwords in plain text. For
security reasons, it is advised to pay a special attention
to the location of AgentLog.cfg.

Incoming messages

You can send messages with the following services to AgentLogin.
Message parameters are listed with the messages and must be
transmitted using a map.

set_user_list (Config file only)

Function: Set a list of users, which are allowed to contact the
platform via JSecureSocket communication.

Parameters: name, password (Map)

Name The name of the user.

Password The user's password.

Responses: none.

authenticate

Function: Checks whether a given user is allowed to contact the
platform.

Parameters: userid, seed, public_key, hash (Map)

userid The name of the user.

seed Random number generated by the client.

public_key Client’s public_key to enable an encrypted
communication.

fingerprint A fingerprint including the user’s password.

Responses: ‘user_ok’ The user is successfully authenticated.

Agents 75

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 ‘user_not_ok’ The user is not successfully
authenticated.

Config File

The config file for AgentLogin is usually called AgentLogin.cfg and is
located in the conf/lars directory. Living markets customers must be
aware of the fact that AgentLogin.cfg contains security critical
information (user list) and an as such it must be protected adequately.

4.3.4 AgentListener

Child of: AgentTemplate

Related to: any agent, which communicates with agents on other
platforms

Functionality: This agent facilitates remote parties communication
with the local LARS platform.

Incoming Messages

Listed below are messages that are understood by the top abstract
AgentListner class and its inherited listener subclasses. Message
parameters are listed with the messages.

set_port (Config file only)

Function: Sets the port number where the agent will listen for
incoming communication requests.

Parameters: port (String)

Responses: none

ask_for_connection_parameters

Function: Every listener provides an
ask_for_connection_parameters service. A reply to

76 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

ask_for_connection_parameters service request is a
‘response_for_connection_parameters’ response.

Parameters: sender of the message

Responses: ‘response_for_connection_parameters’
map content of the above response includes the
following:

- port Æ specifies the port this listener is listening on.

- ip-address Æ specifies the ip address of the local
platform.

set_outbox (Config file only)

Function: Sets the status of the outbox to

- true: to use outbox or

- false: for do not use the outbox

Parameters: status value for the outbox (String: true/false)

Responses: none

4.3.5 AgentSocketListener

Child of: AgentListener

Related to: any agent, which communicates with agents on other
platforms.

Functionality: AgentSocketListener receives messages through a
UNIX or Windows socket connection and passes them
to the local platform. The messages are communicated
using xml-formatted plain text.

Agents 77

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Incoming Messages

You can send messages with the following services to
AgentSocketListener. Message parameters are listed with the messages.

set_max_message_length (Config file only)

Function: Sets the maximum message length to be read from a
socket.

Parameters: message length (String).

Responses: none.

set_compression (Config file only)

Function: Sets the compression settings to compress messages.

Parameters: ConnectionCompressionType:

no_compression

No compression will be used regardless of whether the
auto compression is on or off.

zip:

Zip compression, if auto compression is set or a given
message size is specified; a zip compression can be
applied.

gzip:

GZip compression, if auto compression is set or a given
message size is specified; a gzip compression can be
applied.

 ConnectionAutoCompression:

on:

78 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Switches on the auto compression in order to apply the
selected compression type on messages with a size
greater than the given auto compression start size.

off:

Switches the auto compression off. .

ConnectionAutoCompressionStartSize: (default 16384)

Sets the auto compression message size.

connectionCompressionLevel: (0..9)

Sets the zip compression level. Zip compression allows
for a fine tuned compression ranging from 0 (for no
compression) to 9 (for maximum compression).

ConnectionZipEntryName

This parameter specifies the name of the ZIP file entry
being created by compressing a message. This is an
optional parameter and can be omitted.

Responses: none

Example:

<MESSAGE>
 <service>set_compression</service>
 <content>
 <connectionCompressionType>
 gzip
 </connectionCompressionType>
 <connectionAutoCompression>
 off
 </connectionAutoCompression>
 <connectionAutoCompressionStartSize>
 4096
 </connectionAutoCompressionStartSize>
 <connectionCompressionLevel>
 7
 </connectionCompressionLevel>
 <connectionZipEntryName>
 Message
 </connectionZipEntryName>
 </content>
</MESSAGE>

Agents 79

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Config File

AgentSocketListener‘s config file usually has two entries:

 set_port message:

To set the port a vacant port has to be selected to avoid conflict with
other socket operations, namely the RMI listener or a web server.

set_max_message_length message:

The maximum message length is a string representation of an integer
value and is used to set the maximum length of messages to be read
from the socket.

Compression settings are optional and can be excluded from the
AgentSocketListener‘s config file. However, we can distinguish two
options should we choose to include compression settings:

Auto compression:

With auto compression, compression is applied if the received
message size reaches a maximum size. The maximum size has a
default value, which can be overridden.

A fine-tuned compression (applicable to ZIP compression only):

A fine tuned compression is possible with ZIP compression only. ZIP
compression permits various levels of compression ranging from 0 for
no compression to 9 for maximum compression. It has to be noted
that a zip entry name is optional and can be omitted if not desired.

Notes: Messages understood by AgentSocketListener have the same
XML format as the individual messages in the config files.
AgentSocketListener can pass only one message at a time.

TIP: The default communication mode with AgentSocketListner is
through plain XML text messages, which can be encrypted with PKI
encryption if necessary PKI encryption is set in the agent’s configuration
file.

4.3.6 AgentJSocketListener

Child of: AgentSocketListener

80 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Related to: any agent, which communicates with agents on other
platforms.

Functionality: AgentJSocketListener receives messages through a
UNIX or Windows socket connection and pass them
into the platform. Messages are communicated using
object serialization.

Incoming Messages

This agent offers the same services as AgentSocketListener.

Config File

This agent’s config file can contain the same configuration settings as
that of AgentSocketListener. A vacant port is to be selected to avoid
conflict with other socket operations, namely the RMI listener or a web
server.

Notes: Messages understood by AgentSocketListener have the same
XML format as the individual messages in the config files.
AgentSocketListener can pass only one message at a time.

TIP: The default communication mode with AgentSocketListner is
through plain XML text messages, which can be encrypted with PKI
encryption if necessary. PKI encryption is set in the agent’s
configuration file.

4.3.7 AgentJSecureSocketListener

Child of: AgentSocketListener

Related to: any agent, which needs to communicate with agents
on other platforms over a secure (encrypted)
communication line.

Functionality: AgentJSecureSocketListener receives messages
through a UNIX or Windows socket connection, decrypt
them and pass them to the local platform.
Communicated messages are exchanged using object
serialization.

Agents 81

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Incoming Messages

You can send messages with the following services to
AgentSocketListener. Message parameters are listed with the messages
and must be transmitted using a Map.

set_login_agent (Config file only)

Function: Sets the name of the login agent, which is responsible
for authenticating remote parties.

Parameters: agent name (String)

Responses: none

Config File

AgentJSecureSocketListener‘s config file usually has three entries:

set_port

To select a port that is not occupied by any other socket operation,
namely the RMI listener or a web server.

set_max_message_length message:

To set the maximum length of messages to be read from the socket.
The maximum message length is a string representation of an integer
value.

set_login_agent

To specify the login agent. Care must be taken to ensure that the
specified login agent really exist, otherwise the remote parties attempts
to be authenticated and to connect to the local will fail.

Notes: Messages understood by AgentSecureSocketListener have the
same XML format as the individual messages in the config files.
AgentSocketListener can pass only one message at a time.

Attention: Encrypted object stream communication mode using
synchronous encoding is the default communication mode of
AgentSecureSocketListener. For increased security, the agent can be
configured to apply PKI encryption.

82 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

4.3.8 AgentRMIListener

Child of: AgentListener.

Related to: any agent, which communicates with agents on other
platforms.

Functionality: This class is the wrapper agent needed for the
communication of a RMI listener. It waits for incoming
RMI requests from remote agents.

Note: RMI (Remote Method Invocation) is a standard Java technique to
remotely call methods on a server system. Further details on RMI can be
found in the Sun’s Java documentation.

For AgentRMIListener to work, the RMI registry (located in the JDK's bin
directory) has to be started and running on the same port as the agent
is configured.

Incoming Messages

This agent offers the same services as AgentSocketListener.

Config File

AgentRMIListener ‘s config file usually has only one entry (set_port
message to set the required port as inherited from AgentListener). A
vacant port must be selected to avoid conflicts with other socket
operations, namely the socket listener or a web server operation.

4.3.9 AgentJMSListener

Child of: AgentListener.

Related to: any agent, which communicates with agents on other
platforms.

Functionality: AgentJMSListener is the wrapper agent that enables
the JMSListener communication. AgentJMSListener
main purpose is to start up the JMSListener.

Agents 83

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Note: JMS (Java Messaging Service) is a standard API for
communicating with different platforms. Further details on JMS can be
found in the Sun’s Java documentation. For AgentJMSListener to work, a
JMS server has to be started as well as the LARS platform.

Incoming Messages

You can send messages with the following services to AgentJMSListener.
Message parameters are listed with the messages and must be
transmitted using a Map.

set_jms_parameters (Config file only)

Function: Configures the JMS communication protocol.

Parameters The message should contain the following:

java.naming.provider.url
The URL address of the JMS server.

java.naming.factory.initial
The JNDI initial context factory, usually defined by the
JMS provider.

java.naming.security.principal
The security principal, which can be an empty String
but must not be null.

java.naming.security.credentials
The security credential, which can be an empty String
but must not be null.

Example:

<MESSAGE>
 <service>set_jms_parameters</service>
 <content>
 <java.naming.provider.url>
 localhost
 </java.naming.provider.url>
 <java.naming.factory.initial>
 org.jnp.interfaces.NamingContextFactory
 </java.naming.factory.initial>
 <java.naming.security.principal/>
 <java.naming.security.credentials/>
 </content>
</MESSAGE>

84 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

register_queue_pair

Function: Connects a specified receiver and a sender queue with
the JMS server.

Parameters The message should contain the following:

sendingQueueName
Defining the queue name for sending JMS messages.

receivingQueueName
Defining the queue name for receiving JMS messages.

Example:

<MESSAGE>
 <service>register_queue_pair</service>
 <content>
 <sendingQueueName>queue/A</sendingQueueName>
 <receivingQueueName>queue/B</receivingQueueName>
 </content>
</MESSAGE>

unregister_queue_pair

Function: Disconnects a specified receiver and a sender queue
from the JMS server. This releases the queue pair for
further usage by someone else.

Parameters The message should contain the following:

sendingQueueName
Defining the queue name for sending JMS messages.

receivingQueueName
Defining the queue name for receiving JMS messages.

ask_for_connected_queue_pairs

Function: Allows others to retrieve the queue pairs, which are in
use by JMS consumers.

Parameters no parameters

Agents 85

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Response The message the sender receives contains the queue
pairs. Service name:
response_for_connected_queue_pairs

Config File

JMS communication parameters and JMS queue pairs are usually set up
in AgentJMSListener’s config file.

4.3.10 AgentSynchronization

Child of: AgentTemplate

Related to: AgentSynchornization is an abstract class.
AgentPlatformSecurity, AgentSynchronizeSupervisor
and AgentSynchronizeConnectionHandler extend
AgentSynchornization.

Functionality: The required functionalities of the extending classes
are defined in AgentSynchornization.

Incoming Messages

You can send messages with the following services to
AgentSynchornization. Message parameters are listed with the messages
and must be transmitted using a Map.

set_constants

Function: This message, which is found in the agents
configuration file, contains local platform specific
information that is required by all
AgentSynchornization inherited classes (agents).

Parameters: own platform settings (Map)

set_constants message contains the following:

- the names of the 3 synchronization agents:

<AgentSynchronizeSupervisor>...
<AgentSynchronizeConnectionHandler>...

86 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

<AgentPlatformSecurity>...

- the names and types of the listeners running on the
local platform:

<ownPlatformListener>
 <listenerName> ...
 <listenerType> ...
</ownPlatformListener>

- order of protocol, if more then one protocol to
connect to other platforms is defined:

<preferredProtocolOrder>
 <protocolType>...
</preferredProtocolOrder>

- synchronization intervals. Under this tag the
following two values can be specified:

attemptConnections:

The time that must lapse prior to a reconnection
attempt with a lost remote platform.

CheckConnections:

The time interval for remote connections inspection:

<synchronizatonIntervals>
 <attemptConnections>...
 <checkConnections>...
</synchronizatonIntervals>

Responses: none

synchronize_platforms

Function: This message, which is to be found in the agents
configuration file, contains remote platform specific
information that are required by all
AgentSynchornization inherited classes (agents):

Parameters: remote platform settings (Map) as described below:

- platformId Æ specifies the remote platform’s name

- ipAddress Æ specifies the remote platform’s ip
address

Agents 87

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

- connectionType Æ specifies the used communication
protocol

- port Æ specifies the port, where a protocol-specific
listener listens on

- connectionParameters Æ some protocol-specific
connection parametersThe xml-tags are:

<platform>
 <platformId>...
 <ipAddress>...
 <port>...
 <access>...
 <connectionType>...
 <connectonParameters>...
</platform>

Responses: none

Config File

AgentSynchnonization does not need a config file.

4.3.11 AgentSynchronizeSupervisor

Child of: AgentSynchronization.

Related to: agents that participate in the synchronization
mechanism.

Functionality: This agent is the platform synchronization supervisor.

AgentSynchronizeSupervisor issues connection orders
to establishing connections with new remote platforms.
It closes properly lost connections to remote platforms
and checks from time to time whether the remote
platforms are still connected.

Incoming Messages

You can send messages with the following services to
AgentSynchronization. Message parameters are listed with the messages
and must be transmitted using a Map.

88 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

register_remote_platforms (registered as a service)

Function: A new remote platform is registered. After registration
AgentSynchronizeSupervisor instructs
AgentSynchronizeConnectionHandler to establish the
new registered platform’s connection.

Parameters: remote platform parameters (Hashtable).

Example:

<platform>
 <access>public</access>
 <port>7002</port>
 <ipAddress>192.168.140.104</ipAddress>
 <connectionType>socket</connectionType>
 <platformId>lars2</platformId>
</platform>

Responses: none

unregister_remote_platforms (registered as a service)

Function: A new remote platform is unregistered. After
unregistration AgentSynchronizeSupervisor instructs
AgentSynchronizeConnectionHandler to close the
remote platform’s connection.

Parameters: remote platform parameters (Hashtable).

Example:

<platform>
 <ipAddress>192.168.140.104</ipAddress>
 <platformId>lars2</platformId>
</platform>

Responses: none

list_platforms (registered as a service)

Function: If AgentSynchronizeSupervisor receives a
list_platforms message, it responds with a
list_of_platforms reply. The platform list contains all
remotely connected platforms.

Parameters: none

Agents 89

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Responses: ‘list_of_platforms’ (Map of all remotely connected
platforms).

Config File

The config file for AgentSynchronizeSupervisor, which contains
important messages to connect other LARS, is usually called
PlatformSynchronization.cfg and can be found in the conf/lars.

4.3.12 AgentSynchronizeConnectionHandler

Child of: AgentSynchronization.

Related to: Agents that participate in the synchronization
mechanism.

Functionality: AgentSynchronizeConnectionHandler manages remote
platforms’ connections. It creates new messengers or
removes existing messengers from a LARS platform by
closing open connections. The following connection
types are possible and can be specified in
PlatformSynchronization.cfg:

socket

jsocket

jsecuresocket

rmi

All synchronization agents’ configuration files have the
structure as defined in AgentSynchronization.cfg.

Incoming Messages

You can send messages with the following services to
AgentSynchronization. Message parameters are listed with the messages
and must be transmitted using a Map.

open_connections (internal use only!)

90 Agents

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Function: Receives a list of remote platforms and tries to connect
to them.

Parameters: remote LARS platforms (List).

Responses: none.

close_connections (internal use only!)

Function: Receives a list of remote platforms and tries to close
their connections.

Parameters: remote LARS platforms (List).

Responses: none.

Config File

AgentSynchronizeConnectionHandler does not need a config file.

4.3.13 AgentSystemInformation

Child of: AgentTemplate.

Related to: AgentCron.

Functionality: AgentSystemInformation is able to write system
information in the system's log file.

Incoming Messages

You can send messages with the following services to
AgentSystemInformation. Message parameters are listed with the
messages and must be transmitted using a Map

log_system_information

Function: This message causes AgentSystemInformation to call
Lars.logSystemInformation().

Agents 91

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Parameters: none.

Responses: none.

In order to be able to write to system’s log file constantly you need to
do two things:

1. The following message (notification) must be included in
AgentCron.cfg:

<MESSAGE>
 <service>notify_agent</service>
 <content>
 <period>
 <type>INTERVAL</type>
 <minute>15</minute>
 <hour>0</hour>
 <day>0</day>
 </period>
 <MESSAGE>
 <service>log_system_information</service>
 <receiver>SERVICE_PROVIDER</receiver>
 <content></content>
 </MESSAGE>
 </content>
</MESSAGE>

2. The log_system_information service must be registered in
AgentSystemInformation’s config file as show below:

<MESSAGE>
 <service>register_service</service>
 <content>log_system_information</content>
</MESSAGE>

Config File

AgentSynchronizeConnectionHandler does not need a config file.

Agent-like clients 93

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

5 Agent-like clients

5.1 Introduction

This chapter gives a short overview of these components and how to use
them in an application. Agent-like clients can be considered to be
counterparts of the LARS agents that are not running on the LARS
platform although they behave as if they are (from the LARS point of
view).

Agent-like clients are remote applications (e.g. servlets, applets) that
can connect to a running LARS platform and communicate with any of
the agents living on that platform. Afterwards the remote application
disconnects from the LARS platform.

There is a client communication framework in the LARS package that
allows agent-like clients to communicate with a running LARS platform.
Remote applications can use this framework to send and retrieve
messages from the platform as if they are agents.

This framework currently consists of the following components:

� The interface IToLars, which defines methods for connecting to and
disconnecting from a LARS platform.

94 Agent-like clients

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

� The interface ICommunication that defines methods for
communicating with a LARS platform using synchronous or
asynchronous messaging. This interface also defines some
communication-dependent constants.

� The interface IFromLars that defines a single method for receiving
messages from the LARS platform.

� The class ClientCommunication that implements the IToLars interface
and provides the infrastructure for communicating with the LARS.

� A set of communication protocols, which are configured using
different connection parameters.

5.2 Design

The overall client communication framework design is shown below.

«interface»
ICommunication

ClientCommunication

«interface»
IToLars

Application

interpret()

«interface»
IFromLars

Figure 134: The design of the client communication framework

Figure 14 above shows that there are two points from which a remote
client-side application can connect to the framework through an
interface.

Agent-like clients 95

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

1. It has to implement the IFromLars interface, which is then used by
the framework to deliver messages from the connected LARS
platform to the application.

2. It has to instantiate a ClientCommunication object that will be used
for sending messages from the application to the connected LARS
platform.

5.3 Communication Protocols

5.3.1 Available communication Protocols

The following protocols are currently used to establish a connection with
the LARS platform:

� RMI™ (Remote Method Invocation) RMI communicates by invoking
remote objects methods and communicating the relevant message to
them.

� Socket
Socket communication is achieved by sending a data-stream from
the remote application to the LARS platform and vice versa. The
Socket protocol transmits messages as XML formatted string.

� Jsocket is used for communication by transmitting a datastream.
Unlike Socket communication, Jsocket messages are sent as
serialized objects instead of XML formatted strings.

� JSecureSocket
This communication protocol works in a way similar to the Jsocket
communication. In addition, the transmitted messages will be
secured by encrypting them using a synchronous encoding algorithm.

� JMS™ (Java Message Service)
This protocol communicates by interposing a JMS server, which is
used as a communication middleware.

� HTTP (hypertext transfer protocol)
The messages will be transmitted via POST/GET request from the
client application to a special Java Servlet™ and vice versa.

5.3.2 Configuration

As mentioned above the interface ICommunication defines a couple of
constants or connection parameters needed for establishing a

96 Agent-like clients

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

connection with a remote LARS platform. These parameters can be
separated into two groups i.e. general parameters and protocol-specific
parameters.9

General communication parameters

The parameters for this group are vital for setting up a connection.
These parameters include information on:

� The HOST_IP of the machine where the remote LARS platform is
running on. This parameter is mandatory.

� The logical HOST_ID for the contacted LARS platform. This is
necessary because multiple LARS platforms could run on the same
machine. This parameter is mandatory.

� The PROTOCOL to be used for establishing the connection. This can be
one of the following: rmi, socket, jsocket, jsecuresocket, jms or http.
This parameter is mandatory.

� The PORT where the LARS platform’s communication listener is
listening on. The port does mainly depend on the used protocol: in
general the RMI listener is listening on port 1099, while HTTP listener
uses port 80. This parameter is mandatory.

� The TIMEOUT to be used for the communication. This parameter is
used when sending a message to the LARS platform and awaiting a
response from it using synchronous communication. This parameter
is optional – default setting is 3000 ms.

� A specification whether or not to USE_OUTBOX. When using the
outbox, the outgoing communication (from the application to the
LARS) will be handled in a single thread, making the communication
non-blocking. This parameter is optional – default setting is false.

Protocol-specific parameters

Depending on the used protocol there are additional parameters, which
allow the remote application to configure the connection in a more
detailed way. The following list shows the existing parameters. For more
information please consult the LARS API documentation.

� Parameters for Socket

� the MAXIMUM_MESSAGE_LENGTH, which specifies how many
characters a receiving message can contain. This parameter is
optional – default setting is 32768 characters.

9 The separation does not apply to the JMS messenger, as this communication
protocol does expect a complete different set of connection parameters.

Agent-like clients 97

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

� the COMPRESSION_TYPE, which configure how the
communicated messages shall be compressed using either no,
zip or gzip compression. This parameter is optional – default
setting is NO_COMPRESSION. Additional compression
parameters are described in the API documentation of the
AgentSocketListener.

� Parameters for JSocket

� the compression settings as described for the Socket protocol.

� Parameters for JSecureSocket

� the compression settings as described for the Socket protocol.

� the AUTHENTICATION_USER and AUTHENTICATION_PASSWORD,
which are needed for getting authenticated by the LARS
platform.
These both parameters are mandatory.

Communication parameters for the JMS protocol

When an application communicates with the LARS platform using the
JMS technology, another set of connection parameters that are quite
different from the above-mentioned ones10 need to be specified:

� JMS_PROVIDER_URL specifies where to find the JMS server.
This parameter is mandatory. The parameter awaits the string
representation of an ip address or a url.

� JMS_INITIAL_CONTEXT_FACTORY specifies where to find the initial
context for JMS communication. This parameter is mandatory. The
parameter awaits a fully qualified classname of an implementation
for the interface InitialContextFactory.

� JMS_SECURITY_PRINCIPAL specifies the identity of the principal for
authenticating the remote party. Although this parameter is
mandatory, it can contain an empty string.

� JMS_SECURITY_CREDENTIALS specifies the credentials of the principal
for authenticating the remote party. Although this parameter is
mandatory, it can contain an empty string.

� JMS_RECEIVING_QUEUE_NAME specifies the name of the JMS queue to
be used for incoming messages. This parameter is mandatory.

� JMS_SENDING_QUEUE_NAME specifies the name of the JMS queue to be
used for outgoing messages. This parameter is mandatory.

10 Please consult http://www.java.sun.com/products/jms/index.html for detailed
information

98 Agent-like clients

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Note: When configuring the names for JMS_RECEIVING_QUEUE_NAME for
a remote application, you have to specify the JMS_SENDING_QUEUE_NAME
of the contacted LARS platform should also be specified. This is because
the platform’s outgoing messages are going to be the application’s
incoming messages. Likewise the LARS platform’s
JMS_RECEIVING_QUEUE_NAME has to be specified when setting up your
application’s JMS_SENDING_QUEUE_NAME.

5.4 Framework for a Client Application

A remote application that wants to communicate with the LARS platform
needs to perform the following steps:

(9) The class needs to implement the IFromLars interface by
implementing the method interpret (Message).

import com.ls.lars.communication.*;

public class SampleApplication implements IFromLars
{
 public boolean interpret(Message message)
 {
 ...
 }
...
}

(10) The application needs to hold an instance of IToLars. As
com.ls.lars.communication.ClientCommunication implements
that interface the application just creates an object of that class.

private IToLars larsConnection = null;

larsConnection = new ClientCommunication(...);

(11) The constructor for the ClientCommunication class takes three
parameters which are listed below:

- a logical name which uniquely identifies the client to the LARS
platform

- a Map containing connection parameters that configure the
communication protocol to be used

- an instance of IFromLars, which receives the messages that have
been sent from the LARS to the remote application

In this example we create a ClientCommunication that communicates
with the remote LARS platform over RMI.

String clientName = “SampleApplication”;

Agent-like clients 99

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Map parameters = new HashMap();
parameters.put(ICommunication.HOST_ID, “lars”);
parameters.put(ICommunication.HOST_IP, “141.28.228.12”);
parameters.put(ICommunication.HOST_PORT, “1099”);
parameters.put(ICommunication.PROTOCOL, “rmi”);

//for ensuring uniqueness we append the current time
//in milli-seconds to the clientName
clientName += System.currentTimeMillis();

try {
 larsConnection = new ClientCommunication(clientName,
 parameters,
 this);
 larsConnection.start();
} catch (ConnectionException cex) {
 ...
}

(1) As the ClientCommunication class is based on thread, we have to call
start() after creating an instance of ClientCommunication with the
new object.

(2) From now on, the client application is free to perform any other
useful stuff (for example initializing a GUI).

(3) Before it can send the first message to the LARS platform, it needs
to be sure that the connection has been established. Therefore the
following line is mandatory before sending the first message:

try {
 larsConnection.waitForConnection();
} catch (ConnectionException cex) {
 ..
}

(1) Messages are sent and received as described in previous chapters.

message = new SingleMessage(ILarsConstants.SERVICE_PING,
 "amr@" + larsConnection.getLarsHost(),
 "ping");

(2) The ‘pong’ response for this message would be received by the
underlying ClientCommunication object, which would call the
interpret () method in the new application and pass the received
message to it.

Platform Synchronization 101

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

6 Platform Synchronization

6.1 General

Platform synchronization allows connection of LARS platforms in order to
enable cross-platform messaging. One of the simplest tasks of platform
synchronization is to connect two LARS platforms, as shown in Figure
14.

Figure 14: Two connected LARS platforms

Platform lars1 is configured to connect to platform lars2 at port 7002.
This enables the agents residing on platform lars1 to communicate with
agents residing on platform lars2 and vice versa.

Platform synchronization can also establish connections with other
platforms dynamically. This means that a running LARS platform only
needs to know one other LARS platform to connect to. After connecting
with that platform, it receives the connection information for other
connected platforms. Therefore a network of connected platforms can be
established automatically.

102 Platform Synchronization

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Figure 15: A network of inter-connected LARS platforms

Figure 15 shows a network of four connected LARS platforms. The solid
arrows indicate that actual connections were established from one
platform to another platform as stated in the configuration file. The
dashed lines show the connections established dynamically by the
platform synchronization algorithm. Only the neighbors listed below are
included in the platform synchronization files for the different LARS
platforms.

For platform:

� lars1: Connect to platform lars2 and platform lars3.

� lars4: Connect to platform lars3.

The result of platform synchronization is that all platforms know each
other and are able to send messages to their neighbors without routing.
Generally it should be enough to make one connection to a number of
synchronized platforms and the connections to the other platforms are
established automatically.

Dynamic building up of the platform synchronization depends on the
platform synchronization security policy. The security policy is related to
the type of connection between two platforms.

There are three different kinds of connections:

a. Public: If two platforms share a public connection, they
inform each other about their connection parameters (defined
as public) and all other public connected platforms they know.

Platform Synchronization 103

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

b. Private: If two platforms share a private connection, they
inform each other about their connection parameters (defined
as private) and all other public connected platforms they
know. This seems to be the same as the public security
policy. The difference is that other public connected platforms
do not get the connection information from private ones. Thus
private connected platforms establish connections with public
connected platforms dynamically and not the other way
around.

c. Hidden: If two platforms share a hidden connection, they
inform each other about their connection parameters (defined
as hidden) and nothing else. This prevents establishing
connections with other platforms dynamically.

These different kinds of security policies allow partially synchronized
platform networks. Figure 16 and Figure 17 are examples for combining
different platform security policies.

Figure 16: Four LARS platforms with public and hidden connections

104 Platform Synchronization

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Figure 17: Four LARS platforms with public and private connections

6.2 Related Agents

There are three new agents for platform synchronization i.e.
AgentSynchronizeSupervisor, AgentSynchronizeConnectionHandler,
AgentPlatformSecurity and at least one listener agent and the
AgentTimer.

6.2.1 AgentSynchronizeSupervisor

AgentSynchronizeSupervisor gives connection orders establishing
connections to new remote platforms. It closes lost connections to
remote platforms properly and checks from time to time whether the
remote platforms are still connected. The messages the
AgentSynchronizeSupervisor understands see 5.3.10 and 5.3.12.

6.2.2 AgentSynchronizeConnectionHandler

AgentSynchronizeConnectionHandler manages the connections to the
remote platforms. It creates new messengers or removes messengers
from a LARS platform. The messages the
AgentSynchronizeConnectionHandler understands see 5.3.10 and
5.3.12.

Platform Synchronization 105

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

6.2.3 AgentPlatformSecurity

AgentPlatformSecurity is responsible for the security policy of the LARS
platform synchronization. The chosen policy (public, private, hidden) is
obtained from the information sent about the connected remote
platforms.

It is also important that the security policy of trusted and untrusted
platforms/IP addresses allows the listener to accept connections from
the particular remote platform(s). For example, make sure that the
security configuration file (often called Security.cfg) contains the IP
addresses of the remote platforms. For messages understood by
AgentSynchronizeConnectionHandler, please see 5.3.10

6.2.4 AgentTimer

Since the platform synchronization mechanism checks connected remote
platforms from time to time, the AgentTimer must run on the LARS
platform.

6.2.5 AgentListener

To establish connection it is essential that the configured port of the
agent listeners is the same as the port defined in the platform
synchronization configuration file.

6.3 Platform Synchronization Configuration File

All platform synchronization related agents read the same configuration
file (often called PlatformSynchronization.cfg). In the configuration file
there are two services specifiable:

� set_constants: The service set_constants defines the general
configurations of the platform synchronization.

� platform_synchronization: It defines the configurations of the
remote platform connections.

106 Platform Synchronization

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

6.3.1 General Configurations

The following default settings can be overwritten using the
set_constants message:

� Name of the AgentSynchronizeSupervisor:

� Default: ass

� Configurable in the configuration file with an XML-tag:

 <AgentSychronizeSupervisor>ass</AgentSychronizeSupervisor>
� Name of the AgentSynchronizeConnectionHandler:

� Default: asch

� Configurable in the configuration file by XML-tag:

<AgentSychronizeConnectionHandler>asch</AgentSychronizeConnecti
onHandler>
� Name of the AgentPlatformSecurity:

� Default: aps

� Configurable in the configuration file with an XML-tag:

<AgentPlatformSecurity>aps</AgentPlatformSecurity>
� Name of the listeners for the platform:

� Default: asl (AgentSocketListener) Only the
AgentSocketListener must run. Therefore platform
synchronization is done by socket connections only.

� Configurable in the configuration file with an XML-tag: other
forms of communication with other platform(s) can also be
defined by specifying other listeners in the configuration file.
For each listener, the name and type of connection to be used
have to be specified. Constants for the supported connection
types are defined in the
com.ls.lars.communication.ICommunication interface.

<ownPlatformListener>
 <listenerName>asl</listenerName>
 <listenerType>socket</listenerType>
</ownPlatformListener>
<ownPlatformListener>
 <listenerName>arl</listenerName>
 <listenerType>rmi</listenerType>
</ownPlatformListener>
� Preferred protocol order:

� Default: socket

� Configurable in the configuration file with an XML-tag: If
connection with a remote platform can be established using

Platform Synchronization 107

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

several different connection types (e.g. jsecure socket, jsocket,
socket, rmi), the preferred order of connection establishment
can be predefined.

� Constants for the supported connections are defined in
com.ls.lars.communication.ICommunication interface.

<preferredProtocolOrder>
 <protocolType>jsecuresocket</protocolType>
 <protocolType>socket</protocolType>
 <protocolType>rmi</protocolType>
</preferredProtocolOrder>

Note: It is important to specify the listener supporting the protocol type
defined in the preferredProtocolOrder tag and to make sure that the
AgentManager starts the specified listener.

� Synchronization Intervals: There are two different time intervals
which can be specified:

� attemptConnections: If there are orders to establish or to close
the connections to a remote platform(s), the retry time interval
(default: 6s) can be set. This time interval is used if the
platform synchronization is not completely finished.

� checkConnections: If the platform has no new information or
the platform connections are not established, the retry time
interval (default: 60s) can be set. This time interval is used if
the platform synchronization is stable.

The attemptConnection interval is shorter than the checkConnection
interval.

 <synchronizationIntervals>
 <attemptConnections>6</attemptConnections>
 <checkConnections>60</checkConnections>
 </synchronizationIntervals>

If the default values are good enough you do not have to specify
anything.

An example of set_constants configuration:

 <MESSAGE>
 <service>set_constants</service>
 <content>
 <AgentSychronizeSupervisor>
 ass
 </AgentSychronizeSupervisor>
 <AgentSychronizeConnectionHandler>
 asch
 </AgentSychronizeConnectionHandler>
 <AgentPlatformSecurity>aps</AgentPlatformSecurity>
 <ownPlatformListener>
 <listenerName>asl</listenerName>
 <listenerType>socket</listenerType>
 </ownPlatformListener>

108 Platform Synchronization

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 <ownPlatformListener>
 <listenerName>ajsl</listenerName>
 <listenerType>jsocket</listenerType>
 </ownPlatformListener>
 <preferredProtocolOrder>
 <protocolType>socket</protocolType>
 <protocolType>jsocket</protocolType>
 </preferredProtocolOrder>
 <synchronizationIntervals>
 <attemptConnections>5</attemptConnections>
 <checkConnections>60</checkConnections>
 </synchronizationIntervals>
 </content>
 </MESSAGE>

6.3.2 Synchronous Communication Configurations

The remote platform(s) with which a platform should establish a
connection is defined here. A remote LARS platform is configured with
the five parameters listed below:

Platform Id

 <platformId>lars2</platformId>

Platform IP address

 <ipAddress>192.168.0.2</ipAddress>

Port number set by the AgentListener

 <port>7002</port>

Access type of the platform synchronization

 <access>public</access>

Type of listener to be connected (e.g. AgentSocketListener,
AgentRMIListener)

 <connectionType>socket</connectionType>

Parameters of the connection (e.g. AgentSocketListener). An example of
the connection parameters for AgentSocketListener is shown below for
more details:

 <connectionParameters>
 <compressionType>zip</compressionType>
 <autoCompression>off</autoCompression>
 <autoCompressionStartSize>
 4096
 </autoCompressionStartSize>
 <compressionLevel>7</compressionLevel>
 <zipEntryName>Message</zipEntryName>
 </connectionParameters>

Platform Synchronization 109

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

An example of synchronize_platform configuration excluding
connection parameters:

<CONFIG>
 <MESSAGE>
 <service>synchronize_platforms</service>
 <content>
 <platform>
 <platformId>lars2</platformId>
 <ipAddress>192.168.0.2</ipAddress>
 <port>7002</port>
 <access>public</access>
 <connectionType>socket</connectionType>
 </platform>
 </content>
 </MESSAGE>
</CONFIG>

Note: It is important that the particular LARS platform(s) have
connection permission on the remote platform(s).

HowTos 111

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

7 HowTos

7.1 LARS Config-Files

This section shall provide information about config files used in the
LARS in form of a FAQ. The FAQ starts with common questions one
should ask before starting to configure a LARS platform. It ends with
questions that could come up during the configuration of specific agents.

7.1.1 Requirements

� lars.cfg: general config file for the LARS platform (see 7.1.4)

� AgentManager.cfg: config file to specify which agents AgentManager
has to create (see 7.1.10)

� LarsAdministrator.cfg: config file to specify the LARS administrators
allowed to shutdown the LARS platform (see 7.1.14)

� AgentRMIListener.cfg: to specify the RMI port (otherwise the default
port 1099 is used) and to define how to use the message out buffer

� If some project specific configuration is needed, a project specific
config file, e.g. Project.cfg or <Projectname>.cfg is created to
configure things that are needed by nearly all agents (see Error!
Reference source not found.)

112 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

� Security.cfg: to specify trusted/distrusted agents, LARS platforms or
IP addresses used by remote agents or remote platforms. The
Security.cfg file is used by the AgentPlatformSynchronization agent
(see 7.1.26 and 7.1.27)

� Config file for each agent, that lives on the LARS platform and needs
different configuration parameters than those in the config files
mentioned above.

7.1.2 Location

Config files are usually located in the following directory:

“/www/<customerName>/<projectName>/conf” with the subdirectories
as shown in Figure 18. Apart from the specific project config files and
other project related installations that need config files, configurations
can be found in the following sub directories:

� conf/lars contains only LARS config files (e.g. lars.cfg,
LarsAdministrator.cfg)

� conf/agents/<agent-purpose> contains agent specific config-files

� conf/common contains config-files that are common to all agents of
the project

HowTos 113

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Figure 18: configuration directory structure

7.1.3 Appearance

Config files are written in XML. Each file starts with a “<CONFIG>” tag
and ends with a closing “</CONFIG>” tag. The tags in between depend
on the config file.

<CONFIG>
 <!-- depend on the agent you want to configure -->
</CONFIG>

Note 1: Tag names are case sensitive.

Note 2: Config files are much more easy to read if the XML structure is
made visible by indenting inner tags with tabulators!

114 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

7.1.4 Specifying Configuration Files

The config file used to configure the LARS platform is given as a
command line argument when invoking the LARS.

Example:
 java com.ls.lars.server.Lars –config /www/living-
systems/auction/conf/lars/lars.cfg

Figure 19: An Example for specifying the LARS platform’s
configuration file

If no config file is specified, the file lars.cfg in the current working
directory is used as default.

7.1.5 Platform Configuration Files

<CONFIG>

 <LOGGING>
 <globalLogPath>
 /www/customerName/projectName/log
 </globalLogPath>
 <logFile>lars.log</logFile>
 <logLevel>INFO</logLevel>
 </LOGGING>

 <PLATFORM>
 <platformId>lars</platformId>
 <ipAddress>195.226.125.242</ipAddress>
 <globalConfigPath>
 /www/customerName/projectName/conf/
 </globalConfigPath>
 <agentManagerConfigFile>
 agents/lars/AgentManager.cfg
 </agentManagerConfigFile>
 <agentManagerConfigFile>
 agents/lars/Administrator.cfg
 </agentManagerConfigFile>
 <agentManagerLogFile>
 $a.log
 </agentManagerLogFile>
 <agentManagerLogLevel>INFO</agentManagerLogLevel>
 <locale>de_DE</locale>
 <encoding>UnicodeBig</encoding>
 </PLATFORM>

</CONFIG>

Figure 20: An Example of lars.cfg

The platform config file is usually named lars.cfg and contains the
following two tags enclosed within its CONFIG tag:

HowTos 115

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

In the LOGGING block i.e. within the LOGGING tag, configuration issues
regarding logfiles are specified as follows:

� globalLogPath specifies an absolute path used as the starting path for
relative logfile access (compare question 7.1.8). There is no need to
specify this tag, but if it is not given, all logfiles have to be addressed
with the absolute path! The path specified in this tag does not need
to end with a slash (/), but it may.

� logFile determines the file to which the LARS platform writes log
messages. It may be given as a relative path, if the globalLogPath is
specified with a valid directory.

� logLevel sets the log level for the platform11. The recommended log
level for the platform is INFO.

In the PLATFORM block other platform specific parameters are
configured:

� platformId sets the name of the LARS platform, which is used for
communication and logging purposes12.

� ipAddress can be used to set the IP address of the LARS platform.
This tag is only needed if the address cannot be determined
automatically, e.g. if the machine the LARS is running on has
multiple network addresses

� globalConfigPath specifies an absolute path used as the starting path
for relative config file access (compare question 7.1.8). There is no
need to specify this tag, but if it is not given, all config files have to
be addressed with the absolute path!
Since LARS v3.0 you are also able to load config files from a web
server. Therefore you can set the globalConfigPath to a URL (see
example in Figure 21).

<globalConfigPath>
 <protocol>http</protocol>
 <ipAddress>www.server.com</ipAddress>
 <path>customerName/projectName/conf</path>
</globalConfigPath>

Figure 21: An example of how to set the global config path to a URL

� agentManagerConfigFile specifies where the config file of the agent
manager will be found. The addressing may be absolute or – if
globalConfigPath is set – relative. Since LARS v3.0 it is possible to
specify multiple config files by having multiple AgentManager config
files, e.g.:

 <agentManagerConfigFile>
 agents/lars/AgentManager.cfg

11 Note, that since LARS v2.1 it is possible to use the name of the log
level instead of a number
12 This name really needs to be the same as configured in the servlet –
otherwise communication between servlet and agents is impossible.

116 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 </agentManagerConfigFile>
 <agentManagerConfigFile>
 agents/lars/CatalogAgentManager.cfg
 </agentManagerConfigFile>
 <agentManagerConfigFile>
 agents/lars/ServiceAgentManager.cfg
 </agentManagerConfigFile>
 <agentManagerConfigFile>
 agents/lars/BusinessAgentManager.cfg
 </agentManagerConfigFile>
� agentManagerLogFile specifies where the log file of the agent

manager will be located. The addressing may be absolute or relative
to the configured globalLogPath.

� agentManagerLogLevel specifies the level up to which the agent
manager should write its logging details into its log file.

� locale is used to set the default Locale of the Java Virtual Machine
and consists of a valid ISO Language Code13, a delimiting underscore
(‘_’) and a valid ISO Country Code14. This tag is not mandatory, if it
is not specified; the locale settings of the environment where LARS
started are taken. But note that this it is the only way to influence
the locale settings, because changing the locale at LARS runtime is
disallowed!

� encoding specifies how files and streams (for example written to a
socket or read from a socket) are encoded (the java property
"sun.io.unicode.encoding" is set to the configured value). This tag is
not mandatory.

Note: The order of the tags in each block of the platform config file is
not evaluated – except of the tag order in the AgentManger config file!

7.1.6 Agent Configuration Files

Agent config files consist of a CONFIG block containing MESSAGE tags.
These message tags are read and interpreted by the agent (see 7.1.22).
The config file may contain a message that the agent understands and
that does not expect an answer (see 7.1.23).

13 A valid ISO Language Code is a lower-case two-letter code as defined
by ISO-639. You can find a full list of these codes at a number of sites,
such as:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
14A valid ISO Country Code is an upper-case two-letter code as defined
by ISO-3166. You can find a full list of these codes at a number of sites,
such as:

http://www.chemie.fu-berlin.de/adressen/isocodes.html

HowTos 117

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Note: The order of several messages given is derived from their order in
the config file.

The MESSAGE block contains the following tags:

� service specifies the service of the message (that’s the string, which
is checked in the interpret method to determine the action to
perform).

� receiver remains unset and is not interpreted if given.

� sender remains unset and is not interpreted if given.
The sender of a config file message is automatically set to
Message.ADDRESS_CONFIG_FILE.

� content depends on the message service and contains the body of
the message – this may be only one value or another complex XML
structure, which then reaches the agent as a map.

7.1.7 Internationalization Parameters Configuration

Locale and stream encoding see 7.1.5.

7.1.8 Addressing of Configuration and Logfiles

It is possible to specify relative paths to log- and config files in the
lars.cfg (see 7.1.5).

Even if the relative paths are specified in lars.cfg, it is possible to
configure any path to a different absolute directory just by specifying an
absolute path to the file instead of a relative one. (A path being absolute
or relative, is determined via java.io.File.isAbsolute (). Note, that for a
Windows configuration, the path “\log” is not absolute, because there is
no drive specification, the following example shows an absolute path
“d:\log” or “\\networkdrive\log”.)

If the given logfile or config file path is recognized as a relative path, the
configured globalLogPath respectively globalConfigPath is appended to
the name used to access the file.

7.1.9 Variable Substitution

There are currently three variables that can be used to replace logfile
and config file names:

118 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

� $A is replaced with the agent’s name

� $P is replaced with the platform’s name

� $C is replaced with the agent’s class name without the package
(since LARS v2.3)

These variables may be used, when specifying an agent’s logfile or
config file, but not for specifying the log or config file for the LARS
platform itself.

This makes it quite flexible to use config files: If the same agent is
running on more than one LARS platform (e.g. for load scalability
reasons) or if some agents need the same configuration parameters. All
these agents may use the same config file (and yet have their own
logfiles).

Examples:

� The String from the config file
‘/www/customerName/projectName/log/$A.log’ could become
'/www/customerName/projectName/log/AgentInfo@192.168.100.114
-lars.log'.

� The String from the config file
‘/www/customerName/projectName/log/AgentInfo_$P.log’ could
become
'/www/customerName/projectName/log/AgentInfo_192.168.100.114
-lars.log'.

� The String from the config file
‘/www/customerName/projectName/log/$C.log’ could become
'/www/customerName/projectName/log/AgentInfo.log'.

7.1.10 AgentManager Configuration Files

Since LARS v3.0 it is recommended to specify at least two config files for
AgentManager in the agentManagerConfigFile tag of the LARS platform’s
config file: AgentManager.cfg (see 7.1.11) and LarsAdministrator.cfg
(see 7.1.14).

Further on the following files may be used to organize start_agent
messages:

� AgentManager.cfg
(containing the LARS agents startup messages)

� BusinessAgentManager.cfg
(containing the business agents like auction agents startup
messages)

HowTos 119

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

� ServiceAgentManager.cfg
(containing the service agents like AgentSendMail, AgentStaticMaker
...startup messages)

� CommunityAgentManager.cfg
(containing the community agents like AgentMessageBoard ...
startup messages)

� NetAgentManager.cfg
(containing the net agents like AgentFTP startup messages)

Of course additional AgentManager config files are possible.

All of these config files are located in the ".../conf/agents/lars" directory
and are listed in the "lars.cfg" file which is located in the ".../conf/lars"
directory.

7.1.11 AgentManager.cfg

AgentManager.cfg starts with a “start_agent” message that asks
AgentManager to start AgentMessageRouter.

Note: AgentMessageRouter needs to be the first agent started by
AgentManager!

Note: In former versions of LARS, a “set_log” message had to be the
first message of the AgentManager.cfg. With the new LARS v3.0, this
message has become obsolete, as the appropriate settings are done in
the platform’s config file (see 7.1.5).

This is followed by the “start_agent” message, which tells
AgentManager to start platform services like AgentTimer,
AgentSystemInformation and Listeners.

<CONFIG>

 <MESSAGE>
 <!--this needs to be the first message -->
 <service>start_agent</service>
 <content>
 <class>
 com.ls.lars.server.AgentMessageRouter
 </class>
 <name>amr</name>
 <cfgFile />
 <logFile>$a.log</logFile>
 <logLevel>INFO</logLevel>
 </content>
 </MESSAGE>

 <MESSAGE>

120 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 <service>start_agent</service>
 <content>
 <class>com.ls.lars.server.AgentRMIListener</class>
 <name>arl</name>
 <cfgFile>agents/lars/$c.cfg</cfgFile>
 <logFile>$a.log</logFile>
 <logLevel>INFO</logLevel>
 </content>
 </MESSAGE>

 <MESSAGE>
 <service>start_agent</service>
 <content>
 <class>com.ls.lars.server.AgentTimer</class>
 <name>at</name>
 <cfgFile />
 <logFile>$a.log</logFile>
 <logLevel>INFO</logLevel>
 </content>
 </MESSAGE>

 <MESSAGE>
 <service>start_agent</service>
 <content>
 <class>
 com.ls.lars.server.AgentSystemInformation
 </class>
 <name>asi</name>
 <cfgFile>
 agents/lars/AgentSystemInformation.cfg
 </cfgFile>
 <logFile>$a.log</logFile>
 <logLevel>WARNING</logLevel>
 </content>
 </MESSAGE>

 <!--... further start_agent messages -->

</CONFIG>
Figure 22: An Example of AgentManager.cfg (LARS v2.3)

The content tags of such a “start_agent” message consist of the
following elements:

� class tag: the name of the class to be started (complete class name
with package, without. class)

� name tag: how the agent will be named (the platform extends this
name with an “@” character and the platform’s name)

� logFile tag: which log file has to be used (since LARS v2.3, see
7.1.13)

� logLevel tag: at what log level the new agent should be started
(since LARS v2.3, see 7.1.13)

HowTos 121

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

� cfgFile tag(s): which config files are to be read and interpreted (see
7.1.16).
Since LARS v2.3: If no config file is needed, an empty cfgFile
(<cfgFile /> or <cfgFile></cfgFile>) tag should be written to avoid
error messages in the log files.

� Since LARS v3.0: if you are using a globalConfigPath within a URL
you can explicitly set where to get each config file by just
overwriting the TAGs (protocol, ipAddress, path), see the example in
Figure 23.

<cfgFile>
 <protocol>ftp</protocol>
 <ipAddress>www.server2.com</ipAddress>
 <path>lars/conf/config.jar</path>
 <name>AgentLogin.cfg</name>
</cfgFile>
Figure 23: An Example of a cfgFile tag with a protocol

It is also possible to load a config file from a jar file by adding the jar/zip
file to the path. Otherwise the path is set without any file, because the
file name from name tag will be used.

7.1.12 Startup-Order of Agents

Yes, the startup-order is very important (See 7.1.10).

With the new LARS v3.0, it is also possible to define startup constraints
(see 7.1.17).

7.1.13 Log file and Log Level Configuration

Since we started using LARS v2.3, the log file in the “start_agent”
message in AgentManager’s config file(s) should be configured. Only
then can this log file be used for logging errors that may occur when the
agent is being started (e.g. when parsing the XML syntax of the agents’
config files). This makes finding configuration errors (like a forgotten
slash on the closing tag) much easier.

There are lots of agents that start logging before their log file is set up.
If the log file in the start_agent message has not been configured, this

122 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

results in writing log messages to standard output, the output in this
instance would be found in a log file like “/www/log/lars.log”15.

7.1.14 LarsAdministrator.cfg

One or more LARS Administrators can be specified in order to shutdown
the LARS platform. An admin name and password should be defined for
each administrator.

This file is usually located in the …/conf/lars/ directory.

Note: It is important to have a separate config file for the definition of
the LARS administrators. This is because the LARS Administrator(s) is
obtained by the larsctl script before shutting down the platform.

<CONFIG>

 <MESSAGE>
 <service>set_lars_administrator</service>
 <content>
 <administrator>mattin</administrator>
 <password>questVK6G</password>
 </content>
 </MESSAGE>

 <MESSAGE>
 <service>set_lars_administrator</service>
 <content>
 <administrator>michael</administrator>
 <password>7gj8op</password>
 </content>
 </MESSAGE>

</CONFIG>

Figure 24: An Example of LarsAdministrator.cfg

Note: The permissions for this file should not allow others to read
this file!

7.1.15 Multiple Configuration File

Is it possible to use more than one config file for one agent.

15 The directory “/www/log/” is used for logging everything, that is
written to standard out or standard error. Ideally LARS-logfiles residing
there should be empty.

HowTos 123

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

This occurs when the information needed by the Agent is obtained from
different config files set up for project specific functionalities.

It is generally a good idea to set up project specific things that are
interesting for most agents in a separate config file instead of copying
this information into every single config file16.

A good example of where it makes sense to have multiple config files
are some config files containing project specific configuration messages
or a config file containing the parser to be used.

Prior to LARS v2.3 config files for the different log levels had to be
defined e.g. a config file named LoglevelWarning.cfg containing only one
message as shown in Figure 25.

<CONFIG>

 <MESSAGE>
 <service>set_log</service>
 <content>
 <logFile>$A.log</logFile>
 <logLevel>WARNING</logLevel>
 </content>
 </MESSAGE>

</CONFIG>

Figure 25: An Example of LoglevelWarning.cfg

By using variable substitution (see question 7.1.9) and relative file
addressing (see question 7.1.6) in the logFile tag, this config file can be
used by each agent that needs to run with log level WARNING (see also
question 7.1.17). It is no longer necessary to create separate config files
for different log levels because the log level and the log file’s name are
now specified in the start_agent message (see question 7.1.10).

7.1.16 More than One Configuration File

To use more than one config file for one agent, multiple cfgFile tags can
be defined in the content of the start_agent message in the project
specific AgentManager config file, e.g. BusinesAgentManager.cfg:

<MESSAGE>
 <service>start_agent</service>
 <content>
 <class>

16 Often problems arise when deploying your project from the stage
server to the production server, because someone forgot to update a
config file. This difficulty increases, if the same information is
maintained in different config files.

124 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 com.ls.business.trading.auction.english.server.AgentAuctionBid
 </class>
 <name>AgentAuctionBid</name>
 <logFile>$a.log</logFile>
 <logLevel>TRACE5</logLevel>
 <cfgFile>agents/service/ErrorHandler.cfg</cfgFile>
 <cfgFile>agents/parser/ParserDefault.cfg</cfgFile>
 <cfgFile>
 agents/business/trading/AgentAuctionBid.cfg
 </cfgFile>
 </content>
</MESSAGE>

Figure 26: Specifying more than one config file for an agent

The files are read and interpreted in the order they are defined.

7.1.17 Startup Dependencies

Startup dependencies are an elegant way of specifying requirements
that must be satisfied before the agent's starts. Reasons could be:

� A particular agent must run before a message can be sent to it.

� The sequence of agents is of importance.

� Etc.

Note: The agent start sequence in the AgentManager.cfg is also
important. Therefore, it is usually sufficient enough to put agents on
which other agents depend at the beginning of the AgentManager.cfg
file.

7.1.18 Defining Agent Startup Dependencies

It often happens that an agent is dependent on another agent’s service
(see 7.1.17). An example of this is when an agent needs to perform
some tasks regularly and therefore depends on the service of
AgentCron. With the new LARS 3.0, to ensure AgentCron is not asked
for regular notification before it has started up completely, startup
constraints can be defined within any config file message or list of config
file messages.

This is done with help of a Startup dependencies can be defined by using
a startup_constraint message that contains one or more
<awaitedAgent> tags in the content. (The names of the awaited agents
are automatically extended with an “@” and the platform ID’s.) If all of
the so awaited agents are available on the platform,
AgentMessageRouter notifies the agent and the agent then interprets

HowTos 125

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

the messages from the content of the startup_constraint message in the
given order. The message is interpreted is interpretation as any other
message read from a config file, see question 7.1.22.

<MESSAGE>
 <service>startup_constraint</service>
 <content>
 <awaitedAgent>AgentA</awaitedAgent>
 <awaitedAgent>AgentB</awaitedAgent>
 <MESSAGE>
 <service>do_this_or_that_first</service>
 <content>
 [message specific content goes here]
 </content>
 </MESSAGE>
 <MESSAGE>
 <service>do_another_task_afterwards</service>
 <content>
 [message specific content goes here]
 </content>
 </MESSAGE>
 </content>
</MESSAGE>

Figure 27: An example of how to specify startup constraints

7.1.19 Sending a Message to an Agent

The agent being waited for is defined in the startup_constraint (see
7.1.17 and 7.1.18). You can send a message to an agent you waited for
(<awaitedAgent>) by specifying a message: send_as_configured

For example to register an agent with AgentCron for regular
check_inbox_size (every 5 minutes). Then the following
startup_constraint could be defined in the agent’s config file. (Figure
28):

<CONFIG>
 <MESSAGE>
 <service>startup_constraint</service>
 <content>
 <awaitedAgent>aCron</awaitedAgent>
 <MESSAGE>
 <service>send_as_configured</service>
 <content>
 <MESSAGE>
 <service>notify_agent</service>
 <receiver>aCron</receiver>
 <content>
 <period>
 <type>INTERVAL</type>
 <minute>5</minute>
 <hour>0</hour>
 <day>0</day>

126 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 </period>
 <MESSAGE>
 <service>check_inbox_size</service>
 <receiver>$a</receiver>
 <content/>
 </MESSAGE>
 </content>
 </MESSAGE>
 </content>
 </MESSAGE>
 </content>
 </MESSAGE>
</CONFIG>
Figure 28: startup constraints with send_as_configured

7.1.20 Types of Messages to be Sent

If no message type is specified, the SingleMessage message type is
used. In most cases, this is sufficient for the configuration files. If it is
necessary to send another type, e.g. a SingleServiceMessage, it has to
be defined with the type xml-tag:

 <type>service_single</type>

For a detailed description see section 3.2.

7.1.21 Prioritizing Messages

There is no general rule in deciding which message should be the first
one in an agent’s config file.

7.1.22 Reading Messages

When a message is read from a config file, the agent’s interpret method
is invoked and the agent processes the config file message like any
other agent communication message.

7.1.23 Restrictions

Because the sender of a message that was read from a config file is
always Message.ADDRESS_CONFIG_FILE, a reply to such a message will
fail. This failure will be logged to the agent’s log file.

HowTos 127

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

7.1.24 Overcoming Restrictions

To use such a message in a config file, the agent’s behavior can be
changed to interpret the message in the following way:

If the sender equals Message.ADDRESS_CONFIG_FILE, the agent should
not send a reply, but write INFO message to the log file containing the
information that otherwise would have been sent as a reply.

7.1.25 Messaging

The messages an agent understands are explained in the agent’s
javadoc pages in detail in the classes’ header. It is also noted if a
message is expected to be read from a config file.

7.1.26 Security.cfg

The Security.cfg file is used in the AgentPlatformSecurity and defines
the trusted/untrusted agents , LARS platforms and IP addresses. This is
relevant for all remote messengers and actions initiated from outside the
local LARS platform. IP addresses may contain an asterisk (“*”) at the
end (as in the Apache Web Server configuration), which denotes a set
of IP addresses including every possibility behind the asterisk, e.g.
“192.168.100*” or “192.168.100. *” is the set of all IP addresses
starting with “192.168.100.”

 Untrusted agents can also be specified (by their name). The untrusted
agents are not allowed to request a connection. Similar to the trusted IP
addresses the names may include asterisks, which is useful in denying
e.g. client requests, because client names are often extended by adding
the current time (in milliseconds since 1970-01-01) in order to create
unique names.

<CONFIG>

 <MESSAGE>
 <!--configures the list of platforms, that are -->
 <!--allowed to contact the platform -->
 <service>set_trusted_platform</service>
 <content>
 <platform>141.168.1.1-lars2</platform>
 <!-- or more -->
 </content>
 </MESSAGE>

 <MESSAGE>
 <!--configures the list of platforms, that -->

128 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 <!--are not allowed to contact the platform -->
 <service>set_untrusted_platform</service>
 <content>
 <platform>141.168.1.1-lars4</platform>
 <!-- or more -->
 </content>
 </MESSAGE>

 <MESSAGE>
 <!--configures the list of agents, that are -->
 <!--allowed to contact the platform -->
 <service>set_trusted_agents</service>
 <content>
 <agent>Servlet*</agent>
 <!-- or more -->
 </content>
 </MESSAGE>

 <!--configures the list of agents, that are not -->
 <!--allowed to contact the platform -->

 <MESSAGE>
 <!--configures the list of IP addresses, that are -->
 <!--allowed to contact the platform -->
 <service>set_trusted_ip</service>
 <content>
 <ipAddress>192.168.100.*</ipAddress>
 <ipAddress>195.172.8.81</ipAddress>
 </content>
 </MESSAGE>

 <!--configures the list of IP addresses, that are -->
 <!--not allowed to contact the platform -->

</CONFIG>

Figure 29: Example of a Security.cfg

7.1.27 Security.cfg

The Security.cfg file is used in the AgentPlatformSecurity and is
mandatory if connections are to be established. The default is to trust
no one.

7.1.28 Configure Listeners

There are different protocols that can be used (rmi, socket, jsocket,
jsecuresocket and jms) to connect to a LARS platform. In the config files
of the specific AgentXXXListeners, the connection specific parameters
are specified for the XXXListeners. Only security issues are configured in

HowTos 129

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

AgentPlatformSecurity’s config file (see 7.1.26 and 7.1.27) i.e. who is
allowed or not allowed. An example of the configuration for the
AgentRMIListener is shown below:

<CONFIG>

 <MESSAGE>
 <service>set_port</service>
 <content>8006</content>
 </MESSAGE>

</CONFIG>
Figure 30: An Example of the AgentRMIListener.cfg file

7.1.29 Configure Platform Synchronization

The following example illustrates how to set up four LARS platforms in
such a way that there will be a permanent17 connection between the
four platforms.

Figure 31 shows the synchronization of four platforms using public
connections. The solid lines show what has to be configured in the
configuration files and the dashed lines indicate the connections
established automatically by the platform synchronization algorithm.

17 In fact the connection is not permanent at all – but if the connection
gets broken, the platform synchronization mechanism will re-establish it
automatically

130 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Figure 31: An Example of Four Platforms With public connections

The following sections show the configuration files for this setup.

Configuration of the platform lars1

PlatformSynchronization.cfg read by the AgentSynchronization
agents:

<CONFIG>
 <MESSAGE>
 <service>synchronize_platforms</service>
 <content>
 <platform>
 <platformId>lars2</platformId>
 <ipAddress>192.168.0.2</ipAddress>
 <port>7002</port>
 <access>public</access>
 <connectionType>socket</connectionType>
 </platform>
 <platform>
 <platformId>lars3</platformId>
 <ipAddress>192.168.0.3</ipAddress>
 <port>7003</port>
 <access>public</access>
 <connectionType>socket</connectionType>
 </platform>
 </content>
 </MESSAGE>
</CONFIG>

Security.cfg read by AgentPlatformSecurity:

HowTos 131

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

<CONFIG>
 <MESSAGE>
 <service>set_trusted_ip</service>
 <content>
 <ipAddress>192.168.0.1</ipAddress>
 <ipAddress>192.168.0.2</ipAddress>
 <ipAddress>192.168.0.3</ipAddress>
 <ipAddress>192.168.0.4</ipAddress>
 </content>
 </MESSAGE>
</CONFIG>

Configuration of the platform lars2

PlatformSynchronization.cfg not needed.

Security.cfg read by AgentPlatformSecurity:

<CONFIG>
 <MESSAGE>
 <service>set_trusted_ip</service>
 <content>
 <ipAddress>192.168.0.1</ipAddress>
 <ipAddress>192.168.0.2</ipAddress>
 <ipAddress>192.168.0.3</ipAddress>
 <ipAddress>192.168.0.4</ipAddress>
 </content>
 </MESSAGE>
</CONFIG>

Configuration of the platform lars3

PlatformSynchronization.cfg not needed.

Security.cfg read by AgentPlatformSecurity:

<CONFIG>
 <MESSAGE>
 <service>set_trusted_ip</service>
 <content>
 <ipAddress>192.168.0.1</ipAddress>
 <ipAddress>192.168.0.2</ipAddress>
 <ipAddress>192.168.0.3</ipAddress>
 <ipAddress>192.168.0.4</ipAddress>
 </content>
 </MESSAGE>
</CONFIG>

132 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Configuration of the platform lars4

PlatformSynchronization.cfg read by AgentSynchronization
agents:

<CONFIG>
 <MESSAGE>
 <service>synchronize_platforms</service>
 <content>
 <platform>
 <platformId>lars3</platformId>
 <ipAddress>192.168.0.3</ipAddress>
 <port>7003</port>
 <access>public</access>
 <connectionType>socket</connectionType>
 </platform>
 </content>
 </MESSAGE>
</CONFIG>

Security.cfg read by AgentPlatformSecurity:

<CONFIG>
 <MESSAGE>
 <service>set_trusted_ip</service>
 <content>
 <ipAddress>192.168.0.1</ipAddress>
 <ipAddress>192.168.0.2</ipAddress>
 <ipAddress>192.168.0.3</ipAddress>
 <ipAddress>192.168.0.4</ipAddress>
 </content>
 </MESSAGE>
</CONFIG>

7.1.30 Agent Pooling (agent load balancing)

Firstly, it is required that the agent you want to pool must implement
the IPoolable interface. The Developer should make sure that this
agent is safe to be run threaded and takes care of the shared resources.

For example, consider a poolable agent with the start_agent
configuration within AgentManager set to request for several threads
when starting the Agent by defining the xml-tag loadbalancing as shown
below:

 <loadBalancing>
 <minPoolSize>1</minPoolSize>
 <maxPoolSize>5</maxPoolSize>
 </loadBalancing>

HowTos 133

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

7.2 Employing JMS for connecting agents

This section provides an outline of how to use Java Message Services
(JMS) as the communication protocol between agent-like clients and
agents or agents running on different platforms.

7.2.1 Selecting a JMS server

Since JMS is an API, an implementation of the API should be selected in
order to use JMS.

EJB 2.0 compliant servers provide a JMS implementation. Even some
servers that support only an earlier version of the EJB standard provide
JMS implementations. Examples are BEA Weblogic Server (commercial)
or JBoss (open source).

Besides EJB servers, there are also standalone implementations of JMS,
like MQSeries (IBM).

For testing purposes, we recommend to use the JBoss EJB server (see
http://www.jboss.org).

With respect to production purposes, this section does not give
guidelines for evaluation and selection. Issues like license costs,
reliability and available support have to be taken into account.

7.2.2 Configuring a JMS server

The JMS implementation of your choice must be configured to provide
two named JMS queues for every pair of platforms that shall be
connected via JMS:

� a queue for sending messages

� a queue for receiving messages

Please consult the JMS server manuals for vendor-specific instructions
on how to do this. In case you are using JBoss, its default configuration
is already sufficient.

Whatever implementation of JMS is used, please make sure that the
chosen server does not use the standard RMI port 1099 for its own
purposes. In case you encounter any strange behavior after starting the
JMS implementation, please check for this error first.

134 HowTos

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

7.2.3 Configuring LARS to enable the use of JMS

Please adapt the configuration settings for AgentJMSListener (see the
corresponding section in the Agent Handbook for details). The default
configuration settings apply to the default installation of JBoss; therefore
you only need to set the name or IP address of the computer that hosts
the JMS implementation. AgentJMSListener should be configured on
each platform.

AgentManager should also be configured so that it starts
AgentJMSListener on startup. In case you are not yet familiar with the
purpose or the configuration of the AgentManager, the chapter HowTos
in the Agent Handbook provides several sections that deal with all
aspects you need to be familiar with.

As a final step, the preferred communication protocol between the
platforms has to be set to JMS. For the details, please refer to the
chapter on Platform Synchronization in the Agent Handbook.

LARS Cockpit 135

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

8 LARS Cockpit

8.1 Introduction

Cockpit is the successor of the LARS Manager. The big difference
between Cockpit and LarsManager is that the Cockpit builds a main
Interface for all user interface implementations. The cockpit package
recognizes the need to split the functionality of the LARS into two i.e.
‘View’ and ‘Control’.

This means that all functionality like connecting, disconnecting, sending
messages, message boxes, starting command classes, … is implemented
in the cockpit package and is independent of the user interface
implementation.

The only important connection between the cockpit and the user
interface implementation is an interface (‘ICommand’) that implements
the main method to do anything. This method is called
‘executeCommand’. But more details about this are given later on in this
document.

The cockpit will obviously have more functionality than the LarsManager,
but in the first release there will only be a shell implementation of the
user interface. Therefore most of the examples will be for the shell
implementation.

136 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

8.2 Installing the Cockpit

8.2.1 Packages needed

There are a lot of packages needed. The first one is the cockpit
package. Probably all the User interface implementations will also be in
this package.

The other packages are:

• ls-packages: base, lars, util, service, security

• external-packages: logi.crypto.jar, xml.jar

The names of the internal (living-systems) jar-Files will change, but this
does not matter at the moment.

8.2.2 Writing a start script for Windows

Example:

@ECHO OFF

SET javaSun=C:\JavaSoft\jdk13\lib
SET javaLib=C:\lars3\lib
SET javaLS=C:\lars3\build\

SET CP=.;..
SET CP=%CP%;%javaSun%
SET CP=%CP%;%javaLS%

SET CP=%CP%;%javaLib%\external\logi.crypto.jar
SET CP=%CP%;%javaLib%\external\xml.jar

SET CP=%CP%;%javaLib%\internal\lsbase_3_1.jar
SET CP=%CP%;%javaLib%\internal\lslars_3_1.jar
SET CP=%CP%;%javaLib%\internal\lsutil_3_1.jar
SET CP=%CP%;%javaLib%\internal\lsservice_3_1.jar
SET CP=%CP%;%javaLib%\internal\lssecurity_3_1.jar
SET CP=%CP%;%javaLib%\internal\lscockpit_3_1.jar

java -cp %CP% com.ls.cockpit.Cockpit –cfg cockpit.cfg

The start script for unix or linux is as shown in the example above. The
names of the packages can change. Using the same versions of the
cockpit and the LARS platform is recommended. As long as nothing

LARS Cockpit 137

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

changes in the Messengers, or ClientCommunication, the cockpit should
run with each LARS version since the new package structure is available.

The last line specifies to start the cockpit. There are two possible
parameters to specify, the config file and the user interface type. There
is no need to specify the user interface type, if you configured it in the
configuration file. Otherwise the default will be used. Default is ‘shell’.

The order in which the User Interface is used is as follows: firstly the
type given by command line is used, secondly the type obtained from
the configuration file is used and the thirdly the default is used. To
specify the user interface type just type ‘-type [uiType]’, where ‘uiType’
is the type like ‘shell’, ‘applet’, ‘servlet’,

The same order given above is valid for the configuration file. To specify
the configuration file just type ‘-cfg c:\cockpit\cockpit.cfg’ or something
similar. Using the full path for the configuration file is recommended.

8.3 Configuring the Cockpit

8.3.1 Writing a cockpit configuration file

Example of a cockpit configuration file:

<CONFIG>
 <LOGGING>
 <logFile>c:/cockpit/log/cockpit.log</logFile>
 <logLevel>TRACE5</logLevel>
 </LOGGING>

 <CONNECTION>
 <name>default</name>
 <platformId>lars3</platformId>
 <platformIp>192.168.0.2</platformIp>
 <platformPort>1099</platformPort>
 <connectionType>RMI</connectionType>
 <keyFile></keyFile>
 <protocol></protocol>
 <provider></provider>
 <user></user>
 <password></password>
 <larsDirectory></larsDirectory>
 </CONNECTION>

 <CONNECTION>
 <name>360T</name>
 <platformId>lars3</platformId>
 <platformIp>192.168.0.2</platformIp>
 <platformPort>8006</platformPort>

138 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 <connectionType>RMI</connectionType>
 </CONNECTION>

 <COMPRESSION>
 <compressionType>no_compression</compressionType>
 <autoCompression>off</autoCompression>
 <autoCompressionStartSize>
 16384
 </autoCompressionStartSize>
 <compressionLevel>9</compressionLevel>
 <zipEntryName>Message</zipEntryName>
 </COMPRESSION>

 <MONITORING>
 <agentList>c:/cockpit/agentListStd.lst</agentList>
 <agentList>c:/cockpit/agentListExt.lst</agentList>
 </MONITORING>

 <DIRECTORIES>
 <historyDir>c:/cockpit/history/</historyDir>
 <monitorDir>c:/cockpit/monitor</monitorDir>
 <commandListDir>c:/cockpit/cmdList</commandListDir>
 </DIRECTORIES>

 <UI>
 <uiType>shell</uiType>
 <maxColumns>80</maxColumns>
 <maxRows>25</maxRows>
 <tabSize>4</tabSize>
 <helpFile>c:/cockpit/cockpitHelp.help</helpFile>
 </UI>

 <COMMANDLIST>
 <class>
 <name>com.ls.cockpit.Test1</name>
 <parameters>
 <parameter>test1</parameter>
 </parameters>
 <command>
 <name>test1</name>
 <alias>t1</alias>
 <description>
 <short>executes the command test1</short>
 <long>
 <usage>test1</usage>
 <parameter>-test1</parameter>
 <example>
 test1 -test1 test1
 </example>
 </long>
 </description>
 <dependencies>
 <command>Disconnect</command>
 </dependencies>
 </command>
 <command>

LARS Cockpit 139

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 <name>test2</name>
 <description>
 <short>executes the command test2</short>
 <long>
 <usage>test2</usage>
 <parameter>-test2</parameter>
 <example>
 test2 –test2 test2
 </example>
 </long>
 </description>
 </command>
 </class>
 </COMMANDLIST>

 <ALIASES>
 <class>
 <name>com.ls.cockpit.StandardCommandLib</name>
 <command>
 <name>ping</name>
 <alias>p</alias>
 </command>
 <command>
 <name>logSystem</name>
 <alias>sys</alias>
 </command>
 </class>
 <class>
 <name>com.ls.cockpit.Connect</name>
 <command>
 <name>connect</name>
 <alias>con</alias>
 </command>
 </class>
 </ALIASES>
</CONFIG>

This is just an example. The details will be explained later.

Main TAGs of the configuration file

TAG Child TAGs Description

LOGGING logFile specifies, where the log file
shall be stored.

Default is ‘cockpit.log’.

140 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 logLevel specifies the level to log with
(see the logging
documentation, what kind of
log levels exists).

Default is ‘TRACE5’.

name specifies the connection
session name. If no name is
given it will be set to default.

Default is ‘default’.

platformId specifies the platform ID you
want to connect to.

Default is ‘lars’.

platformIp specifies the IP address you
want to connect to.

Default is ‘127.0.0.1’.

platformPort specifies the port on which the
platform is listening to.

Default is ‘1099’.

connectionType specifies the connection type
you want to connect with, like
RMI, Socket, JSocket,
JSecureSocket,.

Default is ‘RMI’.

CONNECTION

keyFile specifies the security key file
for encrypting messages. (This
is no longer used because you
have to pay for the file and a
secure connection is also
obtained by using a
combination of asymmetric
and symmetric encryption with
jSecureSocket).

Default is an empty String.

LARS Cockpit 141

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

protocol specifies the protocol to be
used for the key file (no longer
used, see above).

Default is an empty String.

provider specifies the provider for the
key file where the
implementation of using the
key file is located (no longer
used, see above).

Default is an empty String.

user specifies the user name for
connecting to any LARS
platform using the
jSecureSocket. The user has
to be entered in the
corresponding configuration
file of the running LARS
platform.

Default is an empty String.

password specifies the password for the
user above.

Default is an empty String.

larsDirectory specifies the directory where
the main class of the LARS
platform (in the package) is
located. This is used if at any
time it will be implemented to
start a LARS platform from the
cockpit.

Default is ‘./com/ls/lars2’.

messageLength specifies the maximum length
of messages that can be
received.

Default is ‘32768’.

142 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

compressionType specifies the type of the
compression. There are three
possibilities: ‘no_compression’,
‘zip’ and ‘gzip’. If you’re using
compression I recommend you
use gzip compression.

Default is ‘no_compression’.

autoCompression specifies if the auto
compression is to be turned
‘on’ or ‘off’. If the auto
compression is turned on, the
messages will be compressed
with the specified compression
type. If they are bigger than
the specified compression
type, the auto compression
start size is used.

Default is ‘off’.

autoCompression
StartSize

specifies the start size with
which messages should be
compressed if auto
compression is activated.

Default is ‘16384’.

COMPRESSION

compressionLevel specifies the compression level
to compress the messages
with. This feature is only used
on zip compression. Therefore
the compression level ‘0’
means no compression and
compression level ‘9’ means
maximal compression.

Default is ‘9’.

LARS Cockpit 143

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 zipEntryName specifies the zip entry name. It
doesn’t really matter, what
name is used, because this
feature isn’t used. The zip
entry name is normally used in
zip compression to name the
entries (in most cases the file
names).

Default is ‘Message’.

MONITORING agentList specifies an agent list file. The
agent list file contains the
agents listed in the agent
manager’s configuration file.
An agentList file will be
described later on in this
document. With this TAG you
just specify the file name or a
list of file names.

globalDir specifies the global directory
valid for all possible entries
where a path or file is
specified in this configuration
file.

helpDir specifies the default search
path for loading any help file
during runtime.

historyDir specifies the default search
path for stored history
messages.

commandListDir specifies the default search
path for stored command list.
A command list file will be
described later on in this
document.

DIRECTORIES

monitorDir specifies the default search
path for stored monitor list
files. This means it is the
search path for monitoring list
files.

UI uiType specifies the type of user
interface. Currently there is
only ‘shell’ implemented. The
ui type ‘swing’ will soon follow.

144 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 helpFile Specifies where the help file
can be found. You can set the
help files as a normal string,
or within the configuration files
using a URL. An example will
be shown below.

maxRows specifies the maximum view of
rows.

Default is 25.

maxColumns specifies the maximum view of
columns.

Default is 80.

tabSize specifies the tabulator size.

Default is 4.

User interface
type specific
settings. Here
for ui type
shell.

minRestSpace specifies the minimum rest
space allowed. If there is a
hierarchical view, with
tabulators and the minimum
rest space is reached before
line breaking, the tabs will be
reduced until the minimum
rest space is smaller than the
possibility of line breaking.

The help files can be in the jar file. To load files from a jar file you have
to use a URL string. The URL string will be generated if you specify the
helpfile as shown in the following example.

<helpFile>
 <protocol>file</protocol>
 <archive>c:/cockpit/lib/lscockpit_3_1.jar</archive>
 <name>com/cockpit/HelpFiles/cockpitHelp.help</name>
</helpFile>

TAGs for setting ‘aliases’ of commands

TAG Child TAGs Description

LARS Cockpit 145

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

ALIASES class ‘Aliases’ is the root TAG after
which other TAGs can be
defined i.e. a single class TAG
for only one class, or a list of
class TAGs for specifying more
than one class to set aliases
for.

name specifies the class name. E.g.:
‘com.ls.cockpit.Connect’

class

command specifies one single command
or a list of commands.

name specifies the original name of a
command. E.g.: ‘connect’

Command

alias specifies the alias to which the
command will be mapped. E.g.:
‘con’

TAGs for starting new command classes

This can be in a separate file and can be loaded via command. But if you
want to start external command classes on startup of the cockpit, it has
to be set it in the configuration file.

TAG Child TAGs Description

COMMANDLIST class ‘COMMANDLIST’ is the root
TAG. After that can be a single
class TAG for only one class, or
a list of classes TAGs for
specifying more than one class.

name specifies the classes name.
E.g.: ‘com.ls.cockpit.Connect’

class

parameters specifies the parameters of a
command class. In between this
TAG you can do what you want,
because you have to care about
it what happens with this values
by your own. The parameters a
classes specific, so they wont
be used in parent class.

146 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 command specifies one single command
or a list of commands.

name specifies the original name of a
command. E.g.: ‘connect’

alias specifies the alias to which the
command should be mapped.
E.g.: ‘con’

dependencies specifies the commands , which
the current command depends
on. E.g.: You can only send
messages if you are connected.
To be able to specify more than
one command, you have to
specify the commands between
the ‘command’ TAGs. E.g.:
‘<dependencies><command>
connect</command></depend
encies>’

command

description specifies the description of the
current command. There are
two more TAGs. One for the
short description and one for
the long description. See below
for these TAGs.

short specifies the short description.
In this case only a single String.

description

long specifies the long description.
There are three more TAGs that
can be used. The first TAG is
the ‘usage’ TAG, the second
TAG is the ‘parameter’ TAG,
which can be used than once
for a list and the last TAG is the
‘example’ TAG, where you can
specify en example. See the
example above for more details.

The monitoring list file

<LISTINDEX>
 <LIST>
 <service>start_agent</service>
 <content>

LARS Cockpit 147

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 <class>com.ls.lars.server.AgentPingPong</class>
 <name>app</name>
 <cfgFile>lars3/AgentPingPong.cfg</cfgFile>
 </content>
 </LIST>
 <LIST>
 <service>start_agent</service>
 <content>
 <class>
 com.ls.internet.generic.AgentExchange
 </class>
 <name>AgentExchange</name>
 <cfgFile>
 LivingAuctions/AgentExchange.cfg
 </cfgFile>
 </content>
 </LIST>
</LISTINDEX>

This file is exactly the same as the AgentManager configuration file
except for a few changes. It differs from the AgentManager config file
with the rootTAG and the TAG for each agent (LIST instead of
MESSAGE).

The class and config files are not really needed for monitoring. However,
to be able to start agents that contain the monitoring list file, the class
and config files should be set.

8.3.2 Writing a help file for cockpit

The example of the help file shown below can be used for the shell
implementation. It can also be used for other implementations. It will
be used for other implementations as a default help file, but there will
be some additional things. For example the long description of the shell
implementation can’t be used for the swing implementation, but the
short description can be used.

<HELP>
 <class>
 <name>com.ls.cockpit.CommandManager</name>
 <command>
 <name>commandPath</name>
 <description>
 <short>
 shows the default command path to load command files from
 </short>
 <long>
 <usage>commandPath</usage>
 </long>
 </description>
 </command>
 <command>
 <name>setCommandPath</name>

148 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 <description>
 <short>
 sets the default command path to load command files from
 </short>
 <long>
 <usage>setCommandPath</usage>
 <parameter>-name [pathName]</parameter>
 <example>
 setCommandPath c:/command
 </example>
 </long>
 </description>
 </command>
 </class>

 <class>
 <name>com.ls.cockpit.Quit</name>
 <command>
 <name>quit</name>
 <description>
 <short>
 disconnects from platform (if connected) and ends cockpit
 </short>
 <long>
 <usage>quit</usage>
 </long>
 </description>
 </command>
 </class>
</HELP>

The structure of the TAGs used is similar to the structure of the
command list file used to instantiate new command classes. The only
thing to look out for as shown above is the ‘parameter’ TAG which looks
like this: ‘<parameter>-name [pathname]</parameter>’. The squared
brackets are important because of the XML structure. You can’t take
spike brackets (‘<’, ‘>’), but if you want to take it just use ‘<’ for ‘<’
and ‘>’ for ‘>’.

8.4 Using Commands

8.4.1 Introduction

The parameters for commands can be set in two ways. The first way is if
the parameter is just a string. This causes the shell implementation. The
string will be parsed and then converted to a Map. It really makes no
sense to have only strings as parameters, for example, within a
graphical user interface; the parameters can be set directly, as they are
needed. The second way to set the parameters would be as a Map. The

LARS Cockpit 149

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

two forms of setting the parameters will be described in the standard
implementation of the cockpit.

8.4.2 CommandManager

Command ‘commandPath’

The command ‘commandPath’ shows the current valid path to load
command files from. It returns a String containing the current valid
command path. Parameters are not needed.

Command ‘setCommandPath’

The command ‘setCommandPath’ sets the current valid path to load
command files from. It returns a String containing the result of setting
the path. The parameter is just a String containing the path you want to
set to.

Command ‘loadCommandPath’

The command ‘loadCommandPath’ loads a command file containing the
command classes to be started. The command file has to be a valid
command file as described below. If the command file is a valid
command file the classes will be instantiated automatically. It returns a
String containing the result of loading the command file and
instantiating the classes. The parameter is just a String containing the
command file with the full path, or only the command file on its own. If
only the command file is set, the command path will be added in front of
it.

8.4.3 Connect

There are two ways of specifying the parameters. Firstly a single string
can be used which generates shell implementation and the second is to
use a Map containing the keys and values to be changed.

The following keys are valid when a string is used:

� -name

� -id

150 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

� -ip

� -port

� -type

� -key

� -protocol

� -provider

� -user

� -password

� -larsDirectory

� -messageLength

The following keys are valid when a Map is used:

� name (NAME_TAG)

� platformId (PLATFORM_ID_TAG)

� platformIp (PLATFORM_IP_TAG)

� platformPort (PLATFORM_PORT_TAG)

� connectionType (CONNECTION_TYPE_TAG)

� keyFile (KEY_FILE_TAG)

� protocol (PROTOCOL_TAG)

� provider (PROVIDER_TAG)

� user (USER_TAG)

� password (PASSWORD_TAG)

� larsDirectory (PLATFORM_DIRECTORY_TAG)

� messageLength (MESSAGE_LENGTH_TAG)

To be sure the right entries are always used; the String constants
defined in ‘com.ls.cockpit.ICockpitConstants’ should be used. Otherwise
some changes might be lost.

When using the string parameters, constants are not defined for all
entries, because the user enters the string in a shell like
implementation. The string(s) are stored in String-Arrays. In other
implementations where you use TextFields, CheckBoxes and similar

LARS Cockpit 151

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

things, the Map implementation should be used, otherwise the string has
to be parsed and this takes a lot of time.

Command ‘connect’

The command ‘connect’ connects to any LARS platform. Generally the
following parameters should be specified:

1. the LARS ID for the required LARS

2. the IP address for the machine the required LARS is running on

3. the connection type required (please note that there has to be a
listener for the connection type required)

4. the port , which the listener of the connection type is listening
on.

If a connection is specified in the configuration file without a name, the
name will be set to ‘default'. This default name will then be used for
session handling.

Connection can be made without any parameters, in which case the
default settings specified in the configuration file will be used for the
connection.

If there are no default settings given the defaults from the cockpit will
be used.

If another session is specified (defined in the config file), the settings
from the specified session will be used. For example, if a connection
setting called ‘hello’ is defined in the config file and the User types (in
shell version) ‘connect hello’, the user will be connected to the platform
using connection settings specified in the ‘hello’ connection settings.

You can also connect by specifying the connection parameters directly
by typing (in shell version) ‘connect –type socket –port 2005 –ip
192.168.0.1 –id lars’ for example. The order doesn’t matter. It might
look a bit different in the other user interface implementation.

Command ‘disconnect’

The command ‘disconnect’ disconnects the cockpit from the platform it is
connected to. It returns the result of disconnecting from the platform.
Parameters aren’t needed.

152 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Command ‘connection’

The command ‘connection’ shows the different connections available.
Just typing ‘connection’ shows the default connection settings. If you
want to get a list of the available connections just type ‘connection all’.
To show a special connection you can type ‘connection’ and the desired
connection like ‘hello’.

Command ‘setConnection’

The command ‘setConnection’ sets the different connections. By using
‘setConnection’ without specifying a name, the default connection will be
changed. To change another connection setting other than the default
connection, the name of the connection to be changed has to be
specified. See above for all settings that can be changed.

It is generally used like the ‘connect’ command.

Command ‘currentConnection’

The command ‘currentConnection’ shows the connection settings the
user is currently connected with. If the settings have been changed, it
returns the result of the command with the parameters that are not
needed.

Command ‘removeConnection’

The command ‘removeConnection’ removes the specified connection
from your connection entries. It returns the result of the command. The
parameter needed is the name of the connection to be removed. If a
connection name is not specified, the default connection will be
removed.

8.4.4 Compression

There are two ways of specifying the parameters. Firstly a single string
can be used which generates the shell implementation and the second
way is to use a Map containing the keys and values to be changed.

The following keys are valid when using the string:

� -type

LARS Cockpit 153

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

� -auto

� -size

� -level

� -name

The following keys are valid when using the Map:

� compressionType
 (COMPRESSION_TYPE_TAG)

� autoCompression
 (AUTO_COMPRESSION_TAG)

� autoCompressionStartSize
 (AUTO_COMPRESSION_START_SIZE_TAG)

� compressionLevel
 (COMPRESSION_LEVEL_TAG)

� zipEntryName
 (ZIP_ENTRY_NAME_TAG)

To ensure that the right entries are used, please use the String
constants defined in ‘com.ls.cockpit.ICockpitConstants’. Otherwise some
changes might be lost.

When using the string parameters, constants don’t have to be defined
for all entries, because the user enters the string in a shell like
implementation. The string(s) are stored in String-Arrays. In other
implementations where you use TextFields, CheckBoxes and similar
things, the Map implementation should be used, otherwise the string has
to be parsed and this takes a lot of time.

Command ‘compression’

The command ‘compression’ shows the current compression settings. It
returns the result (the settings in a Map) of the connection settings.
Parameters aren’t needed.

Command ‘setCompression’

The command ‘setCompression’ sets the compression settings. It returns
the result of changing the compression settings. The parameter needed
is a String containing the values to be changed or a Map.

154 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

8.4.5 History

The only way to handle the parameters is by using a single String,
because only one parameter is used for each command. (E.g.: name of
a file or path, number of a message,)

The history stores all outgoing messages to a list with the exception of
normal ‘ping’ messages. The reason is to make it possible to store such
messages and send it again at any other time.

The following keys valid when using the string:

� -name

� -num

Command ‘history’

The command ‘history’ shows the current history entries containing
messages in a list. It returns the result (the Messages in a list, a single
Message or a String). Parameters aren’t needed.

Command ‘historyEntry’

The command ‘historyEntry’ searches through the history entries and
shows the specified message entries like ‘service’, ‘receiver’, etc. For
example, this can be used to get all messages (message numbers),
which get the agent ‘hello’. The parameter has to be a valid message
‘TAG’ like service, sender and receiver. See the new Message
documentation for valid message TAGs.

Command ‘loadHistory’

The command ‘loadHistory’ loads the specified history file. This can be
used to send messages sent before without typing in all the content. It
can also be used to send messages like a script, by sending all
messages. It returns the result of sending the message. The parameter
needed is the file name of the history file. You can give the name with
the full path, or just use the name without specifying the path. The
specified commandListPath will then be used.

LARS Cockpit 155

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Command ‘saveHistory’

The command ‘saveHistory’ saves the current messages containing the
history list to the specified history file. It returns the result of saving the
history messages. The parameter needed is the file name of the history
file. You can give the name with the full path, or just use the name
without specifying the path. The specified commandListPath will then be
used.

Command ‘clearHistory’

The command ‘clearHistory’ clears the complete history entries if
nothing is specified. If any message number is specified which contains
the history, only the specified message will be deleted from history.

Command ‘sendHistory’

The command ‘sendHistory’ sends all messages containing the history if
no message is specified. Otherwise it will only send the specified
message. Normally the messages sent from the history file will be added
to the outbox and the history file itself once again. But if all messages
will be sent it makes no sense to add all the messages to the history file
once again. In this case the messages won’t be added to the history file.

Command ‘historyPath’

The command ‘historyPath’ shows the current valid default path for
saving and loading history files. If no path is specified, the user has to
add the full path or the history files will be stored in the path where
cockpit was started.

Command ‘setHistoryPath’

The command ‘setHistoryPath’ sets the default path to load and save
files. Only valid paths will be accepted, this means the path has to be
available.

156 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

8.4.6 Inbox

The only way to handle the parameters is by using a String, because
only one parameter is used for each command. (E.g.: name of a
message field, number of a message,)

All messages coming in are visible in the Inbox. Messages to be sent to
the cockpit by any agent running on the LARS platform can also be
seen. In most cases, these will be messages that are responses to
previously sent messages. For example, when a ping message is sent, a
pong message is sent back as the reply. This might not be a very good
example, because a ping message won’t be stored in the inbox and the
outbox if the ping command is used directly. But if the send command is
used to send a ping message, it will be stored in the outbox and the
answer ‘pong’ will be stored in the inbox.

The following keys are valid when using the string:

� -name

� -num

Command ‘inbox’

The command ‘inbox’ shows the current inbox entries containing
messages in a list. It returns the result (the Messages in a list, a single
Message or a String). Parameters aren’t needed.

Command ‘inboxEntry’

The command ‘inboxEntry’ searches through the inbox entries and
shows the specified message entries like ‘service’, ‘receiver’, This can be
used to get all messages (message numbers), which get e.g. the agent
‘hello’. The parameter has to be a valid message ‘TAG’ like service,
sender and receiver. See the new Message documentation for valid
message TAGs.

Command ‘clearInbox’

The command ‘clearInbox’ clears the complete inbox entries if nothing is
specified. If any message number is specified containing the inbox
entry, only the specified message will be deleted from inbox.

LARS Cockpit 157

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

8.4.7 Outbox

The only way to handle the parameters is to use a String, because only
one parameter to be used for each entry. (E.g.: name of a message
field, number of a message).

All out going messages are stored in the outbox, with the exception of
the ‘ping’ command. The messages associated with the ‘ping’ command
won’t be stored, because it makes no sense to store messages just to
see if an agent sends a pong in response to the ping command.

The following keys are valid when using the string:

• -name

• -num

Command ‘outbox’

The command ‘outbox’ shows the current outbox entries containing
messages in a list. It returns the result (the Messages in a list, a single
Message or a String). Parameters aren’t needed.

Command ‘outboxEntry’

The command ‘outboxEntry’ parses through the outbox entries and
shows the specified message entries like ‘service’, ‘receiver’, etc. For
example, this can be used to get all messages (message numbers),
which get the agent ‘hello’. The parameter has to be a valid message
‘TAG’ like service, sender and receiver. See the new Message
documentation for valid message TAGs.

Command ‘clearOutbox’

The command ‘clearOutbox’ clears the complete outbox entries if
nothing is specified. If any message number is specified containing the
outbox entry, only the specified message will be deleted from the
outbox.

158 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

8.4.8 Monitor

The monitor can be used to monitor any agent. This means that sending
pings and receiving pongs, or getting a delivery message from the
MessageRouter can monitor agents.

If a ping is sent to an agent containing the monitoring list and the agent
responds with a pong, this proves that the agent is present and can
react to messages. If the MessageRouter sends a delivery message, this
means that it has no entry of a messenger for this agent. This means
that the agent isn’t present on this platform. If the agent doesn’t
respond within a period of time and the MessageRouter doesn’t send a
delivery message, this means that a messenger is present for this
agent, but the agent is not responding. This could mean that the agent
is present, but has so much to do that it can’t or the agent is dead.

The only way to handle the parameters is using a single String, because
where is for each command only one parameter to be used. (E.g.: name
of an agent, class containing the full package structure, cfg the
configuration files for this agent,)

The following values are mainly used for adding agents to monitor.

The following keys are valid when using the String:

• -name

• -class

• -cfg

• -xml

The following keys are valid when using the Map:

• name (NAME_TAG)

• class (CLASS_TAG)

• cfgFile (CFG_FILE_TAG)

• xml (XML_TAG)

LARS Cockpit 159

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Command ‘monitor’

The ‘monitor’ command shows the state of each agent containing the
monitor. There are three states. The first is that the agent responds and
is active. The second is that the agent isn’t present on this platform and
the third that the agent doesn’t respond. If the third case is valid, the
agent is probably dead. It returns the result (the agents in a list with the
state of each agent). Parameters aren’t needed.

Command ‘addMonitor’

The command ‘addMonitor’ adds the specified agent to the monitoring
list. But it is recommended that the corresponding configuration file be
also specified. The class name has to be specified; otherwise the agent
won’t be added to the monitoring list. This is to ensure that the agent
can be restarted if necessary. There are two ways to specify the agent,
either by specifying the name, class and configuration files, or by
specifying it within an xml structure as a combination of the three files.

Command ‘clearMonitor’

The command ‘clearMonitor’ clears the specified agent from the
monitoring list. If no agent is specified the complete monitoring list will
be cleared.

Command ‘monitorPath’

The command ‘monitorPath’ just shows the current valid default path for
loading monitoring files. If no path is specified, the full path has to be
added by the user or the monitor files will be loaded from the path
where the cockpit was started.

Command ‘setMonitorPath’

The command ‘setMonitorPath’ sets the default path to load monitoring
files. Only valid paths will be accepted, this means that the path has to
be available.

160 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Command ‘loadMonitor’

The ‘loadMonitor’ command loads any specified monitoring file, parses it
and gets the state of the agents within the monitoring list. The file can
be accessed by loading it with the file name.

Command ‘restartMonitor’

The ‘restartMonitor’ command restarts the specified agent. There are
two possibilities. First is that the agent has started already and will be
restarted by using this command and by specifying the agent with the
specific class and configuration files. The second possibility is that the
agent has not been started at all and will be started by using the
specified agent name with the specific class and configuration files. To
restart any agent just call this command and specify the agent to be
restarted.

Command ‘updateMonitor’

The ‘updateMonitor’ command updates the state of the monitoring
agents. The state is usually updated automatically, but if there is ever
any problem with updating the state, it can be done manually with this
command.

8.4.9 Help

Help is only used to display a description of the available commands. A
description is only available if a valid help file was loaded before. By
default it will use the help file of the ‘shell’ implementation if available.
The help file for the shell implementation should implement a description
of all commands that can be used by all other user interface
implementations.

Command ‘help’

There is no parameter available for the ‘help’ command. Just using this
command returns a list of all available commands containing a short
description if available. To get more information, the command for which
a better description is required should be specified. If a better
description is available it will be returned. The return value can be a
string, a list, a map, etc. Any object is allowed and can be returned, it
depends on the help file.

LARS Cockpit 161

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

To specify a command just use the argument wit which to specify it. If
you want to get the help for the command ‘connect’ you have to execute
the command ‘help’ containing the argument ‘connect’. If a help
description is available it will be returned. Otherwise it will return a
String with ‘No description available!’

Command ‘helpPath’

The ‘helpPath’ command shows the current valid default path from which
help files are loaded. If no path is specified, the full path has to be
added or the help file will be loaded from the path where the cockpit was
started.

Command ‘setHelpPath’

The command ‘setHelpPath’ sets the default path to load help files from.
Only valid paths will be accepted, this means that the path has to be
available.

Command ‘loadHelp’

The command ‘loadHelp’ loads any specified help file, parses it and sets
the description for all available commands. You can access the file by
loading the command with the specific file name.

8.4.10 Quit

Command ‘quit’

This ‘quit’ command ends the cockpit. If the user is already connected, it
will try to disconnect from any platform the user is connected to and
then the cockpit program will be terminated.

8.4.11 StandardCommandLib

The StandardCommandLib defines all standard commands with which to
send standard messages to the LARS platform. Most of these messages
are interpreted by the AgentManager e.g. ‘new agent’, ‘delete agent’,

162 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

A receiver isn’t needed for these commands. There are some special
TAGs like ‘class’, ‘cfg’, … which are used to start e.g. a new agent. This
information can also be set by using the xml TAG.

The following keys are valid when using the string:

� -service (used in messages for setting the service)

� -receiver (used in messages for setting the receiver, it can be a
string or a list of receivers)

� -replyWith (used in messages for setting the replyWith)

� -inReplyTo (used in messages for setting the inReplyTo)

� -type (the message type: single, serviceSingle, serviceBroadcast,
group, multicast)

� -platform (used by service messages for the platform to send
messages to)

� -xml (used for content, specified as an xml content, an xml valid
structure or a Map)

� -string (used for content, specified as a string content)

� -priority (the priority of a message)

� -expireHops (the expireHops of a message)

� -admin (the administrators name if needed)

� -pwd (the administrators password if needed)

� -name (a name for an agent to be started, deleted, …)

� -class (the class to start a new agent, e.g. ‘com.ls…’)

� -cfg (the configuration file(s) used for starting an agent)

� -inboxNumber (the message number containing the inbox
entry to be forwarded, or to create a reply for)

 The following keys are valid when using a Map:

� service (SERVICE_TAG)

� receiver (RECEIVER_TAG)

� replyWith (REPLY_WITH_TAG)

� inReplyTo (IN_REPLY_TO_TAG)

� type (TYPE_TAG)

LARS Cockpit 163

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

� platform (PLATFORM_TAG)

� xml (XML_CONTENT_TAG)

� string (STRING_CONTENT_TAG)

� priority (PRIORITY_TAG)

� expireHops (EXPIRE_HOPS_TAG)

� admin (ADMINISTRATOR_TAG)

� pwd (PASSWORD_TAG)

� name (NAME_TAG)

� class (CLASS_TAG)

� cfgFile (CFG_FILE_TAG)

� inboxNumber (INBOX_NUMBER_TAG)

Command ‘send’

The command ‘send’ sends any message to any agent. The command
send is absolutely flexible. You can send different possible types of
messages.

The TAGs always needed for this command are the ‘service’, and
receiver TAGs. Additional information is not necessary in each message.
It depends on the service. E.g. if you just want to wake up an agent, the
agent just has to get a wakeup message with no content. But if the
agent needs more information the content has to be set. There are two
types of content. The string content is used if you just have a single
string, e.g. ‘<content>hello</content>’ (the content TAGs aren’t
needed). The xml content will be parsed by an xml parser and added to
the message. Examples of how it is used in shell implementation are
shown below in the shell description.

The replyWith TAG specifies the id with which to answer the message.
This means that if a ping is sent and the replyWith was ‘1’ the pong will
have a ‘1’ in the ‘inReplyTo’ TAG.

The type TAG specifies the kind of message to be sent like ‘single
message’, ‘service single message’. On service messages, no receiver is
needed, but it is possible to specify the platform to send a service
message to.

On all messages, a priority for the message and the expired hops for
which the message is valid can be set. This means that if a message has
the value ‘2’ for expireHops and the message is sent through three

164 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

platforms, the message will be deleted. It’s like the hop limit flag in the
IP Header.

Command ‘sendSync’

The command ‘sendSync’ is used in exactly the same as the command
‘send’. The only difference is that the message is sent synchronously.
This means that the message is sent and the agent will wait for an
answer. The agent is blocked until the answer comes or a timeout is
thrown.

The command needs also a valid replyWith TAG. If the TAG isn’t set, it
will be generated automatically with a replyWith id. It will return the
answer message instead of a string if the message was successfully
sent.

Command ‘createReply’

The command ‘createReply’ creates a reply message for a message in
the inbox. There are three TAGs to be specified. The first is the service.
The second is to specify the content. The content can also be null. The
third TAG to specify is the message number of the message in the inbox
to create a reply for.

The result of creating a reply for a message is that the message is
successfully sent, or it fails. The result is just a string like most of the
results.

To specify the service, inbox number and content just use the TAGs as
described above.

Command ‘forwardMessage’

The command ‘forwardMessage’ forwards any message to one or more
receivers. You can forward a message by just specifying the receiver(s)
as described above and specifying the message number for the message
within the inbox to be forwarded.

Command ‘new’

The command ‘new’ is for starting a new agent for any agent’s class.
There are two or more things to be specified in order to start an agent.
The first is the agent’s name with which the agent will be registered on
the platform. The second is the class name e.g.

LARS Cockpit 165

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

‘com.ls.lars.server.TestAgent’. If the agent needs any configuration file
to start, one or more configuration files can be specified. If there is
more than one configuration file to be specified the file names has to be
in a list.

There is a default name for the AgentManager. If the AgentManager’s
name differs from the default, the receiver containing the
AgentManager’s name has to be specified. The result is usually a
message returned from the LARS that the new agent has been started.

Command ‘restart’

The command ‘restart’ first deletes an agent and then starts it again. It
won’t take the agent’s source from cache; it will be started newly
irrespective of the agent being present before or not. This is very useful
if an agent is being developed and something new is to be tested. The
LARS platform does not have to be restarted, it is possible just to restart
the agent and the changed code will be used.

For restarting any agent just specify the required agent’s name. A
message will be sent back to indicate if the start was successful or not.

There is a default name for the AgentManager. If the AgentManager’s
name differs from the default, the receiver containing the
AgentManager’s name has to be specified. The result is usually a
message returned from the LARS that the agent has been restarted.

Command ‘reload’

The command ‘reload’ does exactly the same as the command restart as
described above. The difference is that you have to specify the agent
name, the class name and the configuration files as it is used for the
command ‘new’.

There is a default name for the AgentManager. If the AgentManager’s
name differs from the default, the receiver containing the
AgentManager’s name has to be specified. The result is usually a
message returned from the LARS that the agent has been reloaded.

Command ‘delete’

The command ‘delete’ deletes the specified agent. To delete any agent
you have to specify the agent’s name. A message is usually returned
stating that command has been executed. There is a default name for
the AgentManager. If the AgentManager’s name differs from the default,
the receiver containing the AgentManager’s name has to be specified.

166 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Command ‘kill’

The command ‘kill’ kills the specified agent. To kill any agent you have
to specify the agent’s name. A message is usually returned stating that
command has been executed.

The difference between delete and kill is that the delete command tries
to delete the agent. If the agent is busy and has to finish its job, it won’t
be deleted. The kill command kills an agent irrespective of the agent
being busy or not. The agent will be killed even if it is just doing
something on a database or any other task.

There is a default name for the AgentManager. If the AgentManager’s
name differs from the default, the receiver containing the
AgentManager’s name has to be specified.

Command ‘list’

The command ‘list’ lists all agents running on the platform. Parameters
aren’t needed. The response to the message is a string. The response
message contains the inbox and then in the content of the message all
agents available on the platform will be shown.

There is a default name for the AgentManager. If the AgentManager’s
name differs from the default, the receiver containing the
AgentManager’s name has to be specified.

Command ‘listPlatforms’

The command ‘listPlatforms’ equals the command list in usage, but not
the running agents will be shown, it will be shown all available platforms
if some platforms are synchronized together.

There is a default name for the AgentSynchronizeSupervisor. If the
AgentSynchronizeSupervisor’s name differs from the default, the
receiver containing the AgentSynchronizeSupervisor’s name has to be
specified.

Command ‘logSystem’

The command ‘logSystem’ sends a message to log the system
information to the log file. A receiver isn’t needed. Normally this service
is implemented as a service message. The result is the string indicating
if the message was successfully sent or not.

LARS Cockpit 167

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Command ‘shutdownLars’

The command ‘shutdownLars’ ends all agents by deleting them after
they finish their jobs and then it stops the running LARS session. To do
this just call the command by specifying the administrator’s name and
password as described above.

There is a default name for the AgentManager. If the AgentManager’s
name differs from the default, the receiver containing the
AgentManager’s name has to be specified.

Command ‘restartGroup’

The ‘restartGroup’ command works exactly like the restart command,
but it won’t restart just one agent, it will restart all agents within the
specified group.

Instead of the agent name, the group name has to be specified.

Command ‘deleteGroup’

The ‘deleteGroup’ command works exactly like the delete command, but
not just one agent will be deleted, it will delete all agents within the
specified group.

Instead of the agent name, the group name has to be specified.

Command ‘killGroup’

The ‘killGroup’ command works exactly like the kill command, but not
just one agent will be killed, it will kill all agents within the specified
group.

Instead of the agent name you have to specify the group name.

Command ‘ping’

The command ‘ping’ sends a ping to the specified agent and expects a
pong from this agent. It will be sent a synchronous ping and receive a
pong or a timeout exception will be thrown. The return value is a
message containing the pong if the pinged agent answered successfully.

The command ping can be sent, by just specifying the receiver.

168 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

8.5 Programming your own command classes

8.5.1 Writing a command class

There are several methods you have to implement. You can inherit from
three classes. The first is the ‘CommandTemplate’, the second is the
‘InternalCommand’ and the third is the ‘ExternalCommand’ class.

It is recommended that the user should inherit from the
‘InternalCommand’ or ‘ExternalCommand’ class.

The three methods you have to implement are: ‘init ()’, ‘Map getHelp ()’
and ‘Map getAlias ()’.

The init () method is for doing initial things, i.e. whatever needs to be
initialized. The getHelp () method is used to get the help information if
some help is hardcoded in the class. Otherwise null or a new Map can be
returned. The getAlias () method is used to set aliases for any
command. If aliases are not needed null or a new Map can be returned.

The structure of these Maps’s has to be the same as that of the
configuration file for the cockpit, or as it is specified in the help file or
command list file, (see above - ‘Configuring the Cockpit’).

These methods will be called automatically when running the command
class. The command class can be started by specifying it in the
configuration file for the cockpit, or by using the command
‘loadCommand [filename]’ as specified above.

The best way to understand how it works is to see the example below.

An example of a class

package com.ls.cockpit;

import java.util.Map;
import java.util.HashMap;

import com.ls.InvalidArgumentException;

public class Test1 extends InternalCommand implements
 ICockpitConstants
{

LARS Cockpit 169

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 public Test1(Map parameters, Map dependencies,
 Map description)
 {
 super(parameters, dependencies, description);
 }

 protected void init()
 {
 }

 protected Map getHelp()
 {
 Map help = new HashMap();
 Map help1 = new HashMap();

 help1.put("test1", "executes test1");
 help1.put("test1Execute", "executes test1Execute");
 help.put("short", help1);

 help1 = new HashMap();
 help1.put("test1", "Usage: test1 -hello you, ...");
 help1.put("test1Execute",
 "Usage: test1Execute -hello you, ...");
 help.put("long", help1);

 return help;
 }

 protected Map getAlias()
 {
 Map alias = new HashMap();
 Map alias1 = new HashMap();

 alias1.put("test1", "t1");
 alias1.put("test1Execute", "t1e");

 alias.put("alias", alias1);

 return alias;
 }

 protected Object commandTest1(Object arguments)
 throws CommandNotFoundException,
 CommandNotAvailableException,
 InvalidArgumentException
 {
 return "command Test1 executed.";
 }

 protected Object commandTest1Execute(Object arguments)
 throws CommandNotFoundException,
 CommandNotAvailableException,

170 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

 InvalidArgumentException
 {
 return "command Test1Execute executed.";
 }
}

The constructor has to call the super method, otherwise the settings for
the dependencies; parameters and description won’t be set.

The Map parameter can be used for any specific command class
settings. It can be used to create settings needed only by this class. If
the parameters are stored in a class variable, this class variable can be
used to do some initial settings by using the init method since the init
method is called automatically.

The help method needs two settings a short description and a long
description. The short description contains a Map with all commands
relevant to this class. The value of these commands (i.e. the value of
the ‘keys’ in the Map) does not need to be strings. They can be any
hierarchical structure containing maps and lists. The same thing applies
for the long description.

As shown in the example above, the aliases are set in a map containing
all commands with their aliases. This map of aliases has to be put in a
map with a key value ‘alias’.

The Command methods as shown above have to be protected, returning
an object and expecting an object. They have to throw the
‘CommandNotFoundException’, ‘CommandNotAvailableException’ and
the ‘InvalidArgumentException’. Otherwise the method won’t be
registered.

To register a method, the method name has to start with the prefix
‘command’. The rest of the method name after the prefix will be used as
the command name. For example if the method name is called
‘commandHello’ the command will be available by calling ‘hello’.

8.5.2 Starting a command class

There are two ways of starting a command class. It has already been
described above. Firstly it can be set it in the cockpit configuration file
as described in the example of a configuration file, or it can be started
by using the command ‘loadCommand [filename]’.

It has been described above, but this is a short example:

<COMMANDLIST>
 <class>
 <name>com.ls.cockpit.Test1</name>

LARS Cockpit 171

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

 <parameters>
 <parameter1>test1</parameter1>
 <parameter2>test2</parameter2>
 </parameters>
 <command>
 <name>test1</name>
 </command>
 </class>
</COMMANDLIST>

8.6 Using the user interface ‘shell’

8.6.1 Introduction

The user interface and all its settings can be specified in the
configuration file for the cockpit.

A description of the file has been given in the chapter on ‘Writing a
configuration file’. There are five possible settings for the shell
implementation. Not all of them are needed because there are default
settings for them. The possible settings are as follows:

� maxColumns (specifies the available columns)

� maxRows (specifies the available rows)

� tabSize (specifies the width of tabs)

� minRestSpace (specifies the minimum number of rows after
any key containing a Map)

� helpFile (specifies the location and name of a help file)

The values for a help file are special . To make it possible to load a help
file from a jar file, it is necessary to use a URL form. If the help file is
anywhere on the harddisk, it can be specified as follows:

<helpFile>c:/cockpit/HelpFiles/cockpit.help</helpFile>

If the help file is located in a jar file, it can be specified as follows:

<helpFile>
 <protocol>file</protocol>
 <archive>lscockpitshell.jar</archive>
 <name>com/ls/cockpit/shell/HelpFiles/cockpit.help</name>
</helpFile>

172 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

8.6.2 Using the command line

After starting the shell implementation a string will be shown to indicate
that the program has started e.g. FTP programs. The string is called
‘Command>’. The cockpit now waits for user entries to execute any
command. The command line shall be instinctive as all command lines
are in any operating system. As in most operating systems, a help
description can be obtained if the command was specified. A help
description can also be obtained from the cockpit if a valid help file was
specified in the configuration file of the cockpit. All available commands
will then be shown with a short description. If a command is specified, a
detailed description will be shown for that command.

There are many different ways to enter a command. Firstly the
command has to be valid. Secondly commands and arguments should
be separated by a white space. Therefore the command always has to
be a string without any white spaces. The rest of the string entry is the
arguments.

Generally there are three ways to call a command. The kind of user
entry needed depends on the command.

(3) The first possibility is to execute a command without having
arguments. An example of such a command is the command ‘help’.

(4) The second way is a command with only one argument. If only one
argument is needed, the argument can be specified by just typing
the argument, or by using the valid TAG. An example of this is the
help command specifying a command. The first possibility is to
enter ‘help connect’ and the second is to enter ‘help –name
connect’.

(5) The third way to enter a command is if more than one argument is
needed. Then the TAGs always have to be used. An example of this
is the connect send command. For the send command, at least the
service and the receiver parameters are needed. The command can
be specified as follows: ‘send –service ping –receiver am’.

If there is more than one receiver (e.g. for Multicast messages) or a list
of configuration files, the receivers or config files can be separated with
a comma.

It is quite difficult to parse the arguments because of so many different
possibilities.

A complex example is as follows: ‘send –service set_log –receiver aps –
xml <logFile>test.log</logFile><logLevel>ERROR</logLevel>’

LARS Cockpit 173

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

This might seem a bit easy, but it could become difficult in xml settings
where anything is allowed. This means there can be white spaces, -
anything and any other strings.

These arguments could be parsed as follows:

For each command class are different key values possible. For example
in the command class 'Connect' are the following keys valid: '-name', '-
id', '-ip', '-port', '-type', '-user', '-pwd', '-directory', '-messagelength', '-
key', '-value'. This means, if you want to set the lars id for connection
you can use the command 'setConnection -id lars'. With this command
the id of lars for connection settings will be changed to 'lars'. Cause you
have different connection sessions, and the session name wasn't
specified it was set for the default connection. Otherwise you had to
specify e.g.: 'setConnection -id lars -name test'.

It makes no difference in which order the key value pairs will be
specified and how many of these key value pairs are used. These key
value pairs are the arguments. In shell version it is only a String so it
has to be parsed. The arguments '-id lars -name test' has to parsed to
mappings id=lars, name=test then.

To parse this arguments it will be searched first for '-' characters.
Afterwards it will be checked if the key '-xxx' (e.g. '-id') is a valid key for
this command class. Now it will be checked if the next '-yyy' key (if
present) is a valid key and isn't contained in a xml-structure. Then you
can be nearly sure that the key and the following string until the next
key is a valid argument setting and you can take this for a key value
pair.

But one problem exists anymore. If you specify e.g. a name and the
name contains a string that would be a valid key it won't work correctly
(e.g. '-name xy-type', where '-type' would be a valid key). For such
things you can quote this like it's known in most shells like in Windows,
and most linux and unix shells (e.g. '-name "xy-type"').

8.6.3 Command line examples

Here are some command examples:

Command> connect –type jSocket –port 2003 –id lars –ip
192.168.0.2

Command> list

Command> new –name test –class com.ls.lars.server.TestAgent -
cfg Test1.cfg, Test2.cfg

Command> new –xml <name>test</name>
<class>com.ls.lars.server.TestAgent</class><cfgFile>Test1.cfg</
cfgFile><cfgFile>Test2.cfg</cfgFile>

174 LARS Cockpit

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

Command> send –service sql –receiver AgentSql –xml <sql>select
* from table where agentName=’Hello’</sql> <sql>select * from
hello where agentName=’Hello’</sql>

Command> send –service ping –receiver AgentSql, TestAgent,
HelloAgent –type multicast

Command> send –service ping –receiver AgentSql, TestAgent,
HelloAgent –type multicast –replyWith 1 –priority 10

Command> connect socket

Command> connect –name socket

Command> setConnection –name socket –type jSocket –port 2001 –
id lars3 –ip 192.168.0.100

Command> history

Command> history 5

Command> clearHistory 5

Command> loadHistory test1.msg

Command> saveHistory test1.msg

Command> createReply –inboxNumber 3 –service hello

Command> forwardMessage –inboxNumber 7 –receiver asl, ajsl

Command> logSystem asi

Appendix 175

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

9 Appendix

9.1 Contact

9.1.1 living systems Web Site

http://www.living-systems.com

9.1.2 Technical Support

product.support@living-systems.com

9.1.3 Feedback

Please send all you feedback concerning

• Wish list

• Enhancement Requests

176 Appendix

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

• Bug Reports

to:

product.feedback@living-systems.com

9.1.4 Subsidiaries

All living systems subsidiaries are autonomous with marketing and sales
responsibilities, including software expertise in customizing our
technologies locally and providing local support. All subsidiaries are
wholly owned by living systems AG.

Global Headquarters:

living systems AG
Humboldtstraße 11
D-78166 Donaueschingen
Germany

Tel.: +49 (771) 8987-0
Fax: +49 (771) 8987-100

Boston:

living systems, inc.
150 Baker Avenue
Suite 108
Concord, MA 01742
Boston – USA

Tel.: +1 (978) 371-5500
Fax: +1 (978) 371-7203

London:

living systems UK Ltd.
78 Cannon Street
London EC4N 6NQ
United Kingdom

Appendix 177

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

Tel.: +44 (207) 618-8580
Fax: +44 (207) 618-8583

São Paulo:

living systems Americas Ltda.
Rua Dr. Cardoso de Melo 1460, 10.
andar Vila Olímpia - SP - São Paulo
CEP 04548-005 – Brazil

Tel.: +55 (11) 3047-4635
Fax: +55 (11) 3047-4735

Singapore:

living systems Asia Pte. Ltd.
8 Temasek Boulevard
#25-02 Suntec Tower Three
Singapore 038988

Tel.: +65 (887) 5995
Fax: +65 (887) 4994

Timisoara:

s.c. living systems Romania s.r.l.
Str. Paris no. 2A
1900 Timisoara
Romania

Tel.: +40 (56) 29 37-26
Fax: +40 (56) 29 27-25

Index 179

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

10 Index

A

absolute addressing of config- and logfiles · 100

access privileges · 30

access_denied · 34

access_denied service · 23

ACTIONS_INITIALIZED · 9

agent

run level · 9

startup dependencies · 106

trusted/untrusted · 108

Agent Manager · 41, 43

agent naming · 27

agent_connected · 39, 48

agent_not_notified · 50

agent-like client · 81

2 Index

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

AgentManager.cfg · 95, 101

agentManagerConfigFile tag · 98, 101

agentManagerLogFile tag · 99

agentManagerLogLevel tag · 99

AgentMessageRouter · 101

AgentPlatformSecurity · 90, 108

AgentRMIListener.cfg · 95

AgentSynchronizeConnectionHandler · 90

AgentSynchronizeSupervisor · 90

ask_for_connection_parameters · 67

ask_group_members · 54

ask_service_provider_members · 54

asynchronous communication · 19

authenticate · 66

autonomy · 7

C

cancel_notify · 61, 62

cfgFile tag · 103

check_inbox_size · 50

check_registered_services · 37

class tag · 103

ClientCommunication · 81

close_connection · 53

close_connections · 79

collaboration · 8

communication parameters · 83

communication protocol · 82

CommunicationTemplate · 26, 29

CONFIG tag · 97, 99

CONFIG_FILE_INTERPRETED · 9

CONFIG_FILE_READ · 9

Index 3

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

configuration

agent config files · 41

agent pooling · 41

AgentSystemInformation · 79

compression settings · 69

config file parsers · 40

directory structure · 96

JMS configuration example · 73, 74

load balancing · 41

log_system_information · 79

platform synchronization · 75

start_agent · 47

starting an agent · 47

startup constraints · 38

connection parameters · 83

Contact · 147

content · 14

currenthops · 13

D

define_object · 32

definition

intelligent software agent · 7

Definitions · 7

delete_agent · 42

delete_group · 43

delivery_failed · 34

delivery_failed service · 23

domain expertise · 8

E

EMBRYONIC · 9

encoding code · 99

4 Index

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

expirehops · 13

F

forwardedby · 12

forwarding · 19

G

get_revision_information · 35

get_version · 46

globalConfigPath tag · 98

globalLogPath tag · 98

group · 16

GroupMessage · 16

H

HTTP · 83

HTTPMessenger · 25

hypertext transfer protocol · 83

I

ICommunication · 81

IFromLars · 81

inform_remote_platforms · 59

initialize_inbox_check · 49

inReplyTo · 13

tag · 22

internationalization parameters · 100

INTERPRET_METHODS_REGISTERED · 9

interpretation_successful · 35

interpretation_successful service · 23

ipAddress tag · 98

ISO country code · 99

ISO language code · 99

Index 5

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

IToLars · 81

J

java message service · 83

JMS · 72

JMSMessenger · 25

JMS™ · 83

jsecuresocket · 83

JSecureSocketMessenger · 25

jsocket · 83

JSocketMessenger · 25

K

kill_agent · 43

kill_group · 44

L

LARS · 8

agent lifecycle · 9

configuration FAQ · 95

messaging architecture · 26

LARS Agent · 8

lars.cfg · 95

LarsAdministrator.cfg · 95

list_agents · 46

list_platforms · 77

Living Agents Runtime System · 8

load_object · 31

locale code · 99

LocalMessenger · 24

log_inbox · 35

log_system_information · 53, 79

logFile tag · 98, 103

6 Index

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

LOGGING tag · 97

logLevel tag · 98, 103

M

make_agent · 44

message · 12

forwarding · 19

reply · 22

message group

removing · 18

subscribing · 17

unsubscribing · 17

message router · 24

MESSAGE tag · 99

message types · 11

messaging

synchronous · 20

Messaging · 11

migrating_agent · 45

mobile agent · 8

multiagent system

definition · 8

MulticastMessage · 18

N

name tag · 103

new_agent · 41

not_understood · 33

not_understood service · 23

notified_agent · 39

notify_agent · 60, 62

notify_agent_connected · 48

Index 7

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

notify_canceled · 39

notify_not_canceled · 39

notify_service_status_changed · 48

O

open_connections · 78

P

ping · 33

platform · 15

platform synchronization · 87

configuration · 110

PLATFORM tag · 98

platformId tag · 98

POOL_INITIALIZED · 10

present_agent · 45

priority · 13

pro-activeness · 7

Project.cfg · 95

Q

quality of service · 22

qualityofservice · 13

R

reactivity · 7

reasonOfFailureCode tag · 23

reasonOfFailureText tag · 23

receiver · 14

register · 50

register_platforms · 58

register_remote_platforms · 77

register_service · 31, 50

8 Index

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

relative addressing of config- and logfiles · 100

reload_agent · 41

remote application · 81

remote method invocation · 82

RemoteMessenger · 24

remove_message_group · 53

reply · 22

replycounter · 13

replyWith · 13

tag · 22

response_for_connection_parameters · 58

restart_agent · 42

restart_group · 43

RMIMessenger · 25

RMI™ · 82

routeFailedAt tag · 23

run level

ACTIONS_INITIALIZED · 9

CONFIG_FILE_INTERPRETED · 9

CONFIG_FILE_READ · 9

EMBRYONIC · 9

INTERPRET_METHODS_REGISTERED · 9

POOL_INITIALIZED · 10

RUNNING · 10

STOPPED · 10

TERMINATED · 10

RUNNING · 10

S

Security.cfg · 95, 108

send_as_configured · 39

sender · 12

Index 9

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

sender_rip · 53, 61, 63

senttime · 13

serialize_agent · 44

service · 12

access_denied · 34

agent_connected · 39, 48

agent_not_notified · 50

ask_for_connection_parameters · 67

ask_group_members · 54

ask_service_provider_members · 54

authenticate · 66

cancel_notify · 61, 62

check_inbox_size · 50

check_registered_services · 37

close_connection · 53

close_connections · 79

define_object · 32

delete_agent · 42

delete_group · 43

delivery_failed · 34

get_revision_information · 35

get_version · 46

inform_remote_platforms · 59

initialize_inbox_check · 49

interpretation_successful · 35

kill_agent · 43

kill_group · 44

list_agents · 46

list_platforms · 77

load_object · 31

log_inbox · 35

log_system_information · 53, 79

make_agent · 44

10 Index

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

migrating_agent · 45

new_agent · 41

not_understood · 33

notified_agent · 39

notify_agent · 60, 62

notify_agent_connected · 48

notify_canceled · 39

notify_not_canceled · 39

notify_service_status_changed · 48

open_connections · 78

ping · 33

present_agent · 45

register · 50

register_platforms · 58

register_remote_platforms · 77

register_service · 31, 50

reload_agent · 41

remove_message_group · 53

response_for_connection_parameters · 58

restart_agent · 42

restart_group · 43

send_as_configured · 39

sender_rip · 53, 61, 63

serialize_agent · 44

set_access_privileges · 30

set_compression · 68

set_constants · 75

set_foreign_public_key_certificate · 36

set_jms_parameters · 73, 74

set_lars_administrator · 46

set_log · 31

set_login_agent · 71

Index 11

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

set_max_message_length · 68

set_outbox · 67

set_own_public_key_certificate · 36

set_pki_environment · 35

set_pki_messages · 37

set_port · 67

set_private_key · 36

set_run_level · 33

set_trusted_agent · 57

set_trusted_ip · 57

set_trusted_platform · 57

set_untrusted_agent · 57

set_untrusted_ip · 58

set_untrusted_platform · 57

set_user_list · 66

show_all_provided_services · 55

shutdown_platform · 46

signature_not_valid · 38

start_agent · 40

start_migration · 45

startup_constraint · 38

subscribe_to_message_group · 51

synchronize_platforms · 76

unregister · 50

unregister_all_services · 51

unregister_platforms · 58

unregister_remote_platforms · 77

unregister_service · 51

unsubscribe_from_all_message_groups · 52

unsubscribe_from_message_group · 52

wake_up · 39, 62

service message · 14

service provider · 14

12 Index

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

registering · 15, 50

unregistering · 15, 51

ServiceBroadcastMessage · 16

ServiceSingleMessage · 15

set_access_privileges · 30

set_compression · 68

set_constants · 75

set_foreign_public_key_certificate · 36

set_jms_parameters · 73, 74

set_lars_administrator · 46

set_log · 31, 101

set_login_agent · 71

set_max_message_length · 68

set_outbox · 67

set_own_public_key_certificate · 36

set_pki_environment · 35

set_pki_messages · 37

set_port · 67

set_private_key · 36

set_run_level · 33

set_trusted_agent · 57

set_trusted_ip · 57

set_trusted_platform · 57

set_untrusted_agent · 57

set_untrusted_ip · 58

set_untrusted_platform · 57

set_user_list · 66

show_all_provided_services · 55

shutdown_platform · 46

signature_not_valid · 38

SingleMessage · 14

socket · 82

Index 13

Copyright © 2001 living systems AG Agent and Messaging Handbook

LARS Community Edition V3.1

SocketMessenger · 24

standard

for naming message services · 12

start_agent · 40, 101

start_migration · 45

startup_constraint · 38

startup-order of agents · 103

definition · 38

STOPPED · 10

subscribe_to_message_group · 51

synchronize_platforms · 76

synchronous communication · 19

T

TERMINATED · 10

trusted agent · 108

type tag · 107

U

Unix · 68

unregister · 50

unregister_all_services · 51

unregister_platforms · 58

unregister_remote_platforms · 77

unregister_service · 51

unsubscribe_from_all_message_groups · 52

unsubscribe_from_message_group · 52

untrusted agent · 108

V

variable substitution · 100

14 Index

Agent and Messaging Handbook Copyright © 2001 living systems AG

 LARS Community Edition V3.1

W

wake_up · 39, 62

