
Backgrounder
T E C H N O L O G Y A N D A P P L I C A T I O N S

3

Content

Introduction 4

XML and Software AG 4

From SGML to HTML to XML 4

The Limitations of HTML 4

SGML - Flexible but Complex 4

From SGML to XML 5

XML - The Simple Meta Language 5

The Shakespeare Example 7

Implementation of XML 7

The Document Type Definition - DTD 7

XML Schema - XSD 7

The eXtensible Stylesheet Language - XSL 7

XPointer and XLink 8

XPath - For XML Document Queries 8

The Document Object Model - DOM 8

XQuery 8

XML - A Universal Document Standard 9

Standardization and W3C 9

XML Applications 9

EDI 10

XML and Databases 10

XML and SQL 11

XML and ODBMS 11

More examples of XML applications 12

Frank Jung, Software AG

February 2002

Introduction

XML AND SOFTWARE AG

Early in 1997, Software AG recog-

nized the importance of XML.

Already at that stage we had the

vision that the impact of XML would

be extensive for any organization

and therefore came up with the idea

of an XML strategy. Today we have

implemented this strategy with

Tamino XML Server, offering next-

generation XML services.

Tamino XML Server stores XML

documents without converting

them to other formats and helps

with finding and managing any type

of content across the enterprise.

Accompanied by a broad range of

services, Tamino enables rapid

implementation of mission-critical

electronic business applications

based on XML standards.

It´s no longer necessary to explain

the meaning of XML to Web experts.

After all, the W3C Recommendation

for the eXtensible Markup Language

is more than four years old - and in

the Web world that’s a very long

time. The situation in the traditional

IT world - that of large databases

and even larger machines - is quite

different. There, people are only just

beginning to take note of XML.

In our view, however, the long-term

benefits of XML are likely to be even

greater for IT users than for Web

users.

XML is a meta language which can

be used to describe the logical struc-

ture of a wide variety of documents

and data in different ways according

to the application. This universal,

flexible and extensible approach

opens up an almost unlimited range

of uses for XML, from word process-

ing through electronic business to

data archiving. XML can probably

best be compared with SQL in terms

of its impact. For decades this stan-

dard also provided a firm common

ground on which manufacturers

could meet, regardless of their own

particular platforms or system limi-

tations. SQL was one of the kingpins

on which the IT world hinged as it

set out on its overwhelmingly suc-

cessful campaign. XML will play a

similar role in the coming years.

From SGML to HTML
to XML

THE LIMITATIONS OF HTML

The history of XML is closely linked

to the evolution of the World Wide

Web. One of the mainstays of the

World Wide Web is HTML (Hypertext

Markup Language), which serves to

describe the layout of Web pages.

HTML is extremely simple to use:

the Web designer employs a series

of codes (known as ‘tags’) to define

what a document should look like in

the browser, create links to other

Web pages, integrate any required

applets, etc. HTML is a very simple

page description language. Its great

advantage is that Web pages have

much the same appearance every-

where and that they also adapt auto-

matically to different screen sizes.

HTML pages can now be generated

easily using a graphic editor, and the

previously obligatory chore of enter-

ing tags manually is now more or

less obsolete.

Thanks to the rapid advances in

Web technology, however, HTML

has now come up against certain

limitations:

• HTML does not allow individual

elements on a page to be marked

up semantically. It is not possible

to reproduce specifications of the

data structures - something that is

essential for databases or object

hierarchies, for instance.

• HTML only describes the appear-

ance of documents and cannot

cover any content aspects. It is

therefore unsuitable for explicit

queries.

• HTML is not extensible; it is thus

not possible to define your own

tags for specific requirements, or

to use data formats within docu-

ments.

If the requirements that have to be

satisfied by a Web page are more

complex, they can only be met by

indulging in time-consuming pro-

gramming work, either with applets

or with special applications. Finally,

the restrictions inherent to HTML

have led to a series of proprietary

extensions, which in turn have had a

negative effect on the universality of

HTML-formatted information and

thus also of the Web in general.

SGML - FLEXIBLE BUT COMPLEX

The majority of HTML users are

completely unaware that their lan-

guage is in fact based on SGML

(Standard Generalized Markup Lan-

guage). SGML is a highly complex

meta language used to define rules

for handling different types of docu-

ments. Numerous organizations

have developed their own standards

on the basis of SGML. The spectrum

ranges from ancient Sumerian writ-

ings to technical documentation for

the aircraft construction industry

and also includes special formats

such as musical notes.

HTML is one application of SGML.

4

It was “invented” by Tim Berners-Lee

in 1989 specifically for the purpose

of disseminating documents over

the Internet. Berners-Lee concen-

trated solely on the formal aspects

of document representation and

excluded everything that - from the

point of view the time - was not

absolutely essential for the new Web

medium. Although there are plenty

of possible objections to HTML, it

should not be forgotten that without

its straightforwardness and limita-

tions, the widespread use and

acceptance now enjoyed by the Web

would have been impossible. Nine

to ten years ago, for example,

nobody would have understood the

point of document content classifica-

tions on the Internet.

Since SGML is HTML’s “mother

tongue,” the most obvious approach

would appear to be to make use of

SGML to overcome the limitations

of HTML. In actual fact, SGML does

have a few crucial advantages.

Firstly, it is a universal standard that

is supported by a large number of

software manufacturers. A docu-

ment database founded on the

SGML standard is therefore much

more likely to survive the test of

time than one built around more

ephemeral, manufacturer-specific

standards. Secondly, its documents

can be read by anybody, and at the

same time syntactically dissected

and analyzed by suitable programs.

Thirdly, SGML documents describe

the data itself and not just the way

in which it is represented.

SGML has weaknesses of its own,

however, that prevent it from gain-

ing acceptance as a universal stan-

dard. It originated at a time when

most documents were still

processed in batch mode. SGML is

therefore extremely general-purpose

as well as complex and its specifica-

tion is comprised of around 500

pages, most of which are not rele-

vant for practical Web purposes. As

SGML permits such a large number

of alternatives for every single

aspect, interoperability between dif-

ferent firms is in practice very lim-

ited despite standardization.

FROM SGML TO XML

While SGML is too complicated to

meet present-day requirements,

HTML is not complicated enough.

An HTML extension would also be

limited and in need of constant

adaptation, each new addition bring-

ing with it a further risk of fragmen-

tation. A simplification of SGML is

consequently the answer, not a

broader-based HTML. A new meta

language, in other words, which

allows users to implement their own

applications on the basis of a simple

standard. Its name: XML.

XML, the eXtensible Markup Lan-

guage, is - unlike HTML - a subset of

SGML. XML is not really an inde-

pendent markup language at all, but

rather a meta language - a definition

tool that enables users to build their

own markup languages. XML merely

provides a linguistic framework that

permits the extremely diverse appli-

cations constructed with it to under-

stand one another. Compared with

SGML, XML is above all very simple:

its specification by the World Wide

Web Consortium (W3C) is restricted

to a much more manageable

twenty-six pages.

For the sake of compatibility, XML

was constructed in such a way that

HTML fits into the new framework.

The successor version of HTML 4

bears the name XHTML for this rea-

son and is in reality no more than a

special XML application. Of course,

not every HTML page ever written is

actually a valid XML page: Web

browsers have been extended over

the years so that they also under-

stand syntactically incorrect HTML

pages - something expressly forbid-

den by the XML standard.

XML - THE SIMPLE META

LANGUAGE

The main difference between HTML

and XML is that XML allows users

to define their own tags. As a result,

data can be structured not only

according to formal criteria (such as

header, body text, etc.), but also by

referring to its content. The content

criteria are not defined in XML, how-

ever, but on the basis of XML,

because XML is a meta language.

XML allows content-based structur-

ing because it functions on a differ-

ent level to HTML. Similarly, it

would permit a layout description

beyond the scope considered valid

by HTML.

XML therefore needs to be fed XML-

based input by users in order to

thrive. Users can define their own,

new tags to suit their specific

requirements with the aid of XML -

“DateOfBirth,” “ShoeSize” or “Cook-

ingTime,” for instance - providing

they also use XML to exchange their

recipes. XML does not define these

tags itself, but essentially lays down

the procedures for defining them.

Of course, XML tags do exist that

apply to all documents (XML Process-

ing Instructions), as well as tags that

are needed to save the definitions in

the respective documents

(Document Type Definitions).

XML thus provides a set of grammar

rules for describing document

content. For example:

<identifier> content </identifier>,

which the user then has to fill with

5

actual content, for instance:

<DateOfBirth> 25.10.78

</DateOfBirth>.

It would be equally conceivable, for

example, for meteorologists to

define their own tags for exchanging

data about the weather, such as

<Temperature>, <BarometricPres-

sure>, <WindForce>, etc., and then

to save these definitions in appropri-

ate schemas. XML-capable applica-

tions could then process a Web

page of this kind directly, in other

words by evaluating meteorological

data automatically via the Web for

instance.

Despite this capability, XML doesn’t

truly ‘understand’ the content of a

document. What the tags actually

conceal is entirely up to the user.

Instead of a ‘meaningful’ identifier

such as <DateOfBirth>, it would be

perfectly feasible to use something

like <XYZ56789ABC> without any

objection from the XML parser1.

However this would mean forfeiting

an important advantage of XML, as

it is precisely this option of user-

definable tags that allows them to

be ‘understandable’ in the first

place.

Even understandable, application-

specific tags only make sense if they

are known to all the users who are

likely to need them. This is the case

when user groups agree on certain

document types. They can do so

using DTDs (Document Type Defini-

tions)2 - or XML schema definitions -

document schemas which specify

the valid tags and the valid structure

of a document class. Even then, well

formed XML documents can still

cope with unknown tags: they are

automatically identified as such and

left unresolved, whereby the possi-

bility of incorrect interpretation is

excluded. The architecture is thus

very flexible and has been designed

bearing in mind that users who have

access to all information need to be

served as well. And since the defini-

tions are entered in plain text, not

using cryptic control characters,

XML documents remain readable by

humans. Regardless of the author’s

particular DTD or XML schema, all

XML-coded documents can be

processed, saved and distributed.

Figure 1: The basic syntax of XML

XML can thus be adapted extremely

flexibly for every conceivable appli-

cation. The only limit is the user’s

imagination: all information that is

available in text form can be entered

with XML. It is possible to define

prices, authors’ names, time and

date information, keywords, stock

values and so on. If content of this

kind is involved, it is advisable to

define special document types for

specific application families (such as

realtors, stock exchange services,

publishing houses) with the aid of a

DTD or an XML schema. Many pro-

fessional associations and industrial

groups have already reached agree-

ment on suitable XML document

types. It is then possible on this

basis to issue explicit queries

according to the defined logical

criteria. The results of an analysis of

documents or Web pages that con-

form to an XML standard can also

be processed directly in application

programs. An application can, for

instance, automatically extract and

utilize prices or stock values it finds

on Web pages. And in the same way,

meta data can be generated for CAD

information or X-ray photographs.

XML is widely used for data inter-

change between heterogeneous sys-

tems. It is far more flexible than the

rigid field concept of relational data

and enhances the performance of

interface standards such as CORBA

or DCOM. Even though the current

debate about XML technology

applies mainly to the Web, XML’s

range of applications extends well

beyond this area, indeed embracing

any situation in which complex data

needs to be stored or transmitted.

Once agreement has been reached on

an XML format, for example for rep-

resenting molecular structures, it is

not only possible to search explicitly

in the Web for specific chemical com-

pounds, but also to store and retrieve

this kind of information in a database

in a similar manner. To map this type

of structure in the fields of a rela-

tional database in such a way that

individual components or compounds

could be searched for explicitly would

be nearly impossible. The main stum-

bling block of the relational approach

is the complexity of information.

What usually happens in the end is

that the information is saved as

unformatted text or graphics, in

which case it can only be represented

and not analyzed. Since an estimated

60 percent of all information is only

available in the IT system unformat-

ted - the remainder is made up of

documents, photographs, graphics,

spreadsheets, etc. The potential of a

language can be gauged by its ability

to handle this data.

6

<?XML version=”1.0”?> XMLheader

<product>

....

<price valid-from=”01/01/99”>

49.95 Start tags

</price> Attribute

</product>

Content

End tags

1 The parser analyzes XML documents for syntactic correctness.

2 See page 7.

THE SHAKESPEARE

EXAMPLE

The example reproduced below3

demonstrates the underlying logic of

XML as compared with an “ordinary“-

text. In other words one which is not

IT-compatible, on the one hand, and

with HTML on the other. It is based

on an XML application for represent-

ing Shakespeare’s dramas. Once all

“Shakespeare users“ have agreed

on a set of standardized rules for

their XML tags (in this case: <ACT>,

<TITLE>, etc.), that is with regard to

the meaning and usage of keywords

such as ACT, SCENE or SPEECH, it

will be a straightforward matter to

program an application that is suit-

able for printing out these dramas

or, for instance, transferring them to

a voice output algorithm. Extensions

can be attached seamlessly.

Implementation of
XML

The XML world is made up of a

series of separate “sub-standards”

describing various aspects of docu-

ment representation and reproduc-

tion.

THE DOCUMENT TYPE

DEFINITION - DTD

DTDs are schemas for defining doc-

ument types. They can, for instance,

be used to specify that the docu-

ments concerned should always

contain tags with a fixed structure.4

DTDs are laid down at the time the

XML applications are developed.

XML documents can also be

processed without a DTD, but in this

case the structure information

stored in them is lost. DTDs are nor-

mally only used to control XML

tools and to verify the structural

validity of XML documents - they

are not necessary to understand

these documents.

EXAMPLE OF A DTD:

<!ELEMENT product (name, category?,

color?, description?, product-number,

availability?, price?)>

<!ELEMENT name (#PCDATA)*>

<!ELEMENT description (#PCDATA)*>

<!ELEMENT product-number (#PCDATA)*>

<!ELEMENT availability (#PCDATA)*>

<!ELEMENT price (#PCDATA)*>

<!ATTLIST product price valid-from #required>

XML SCHEMA - XSD

The XML Schema 1.0 recommenda-

tion addresses one of the most seri-

ous drawbacks of XML, namely the

absence of data types. Although

XML DTDs (Document Type Defini-

tions) allow the tags and structure of

a document class to be specified,

the content of document elements

and the values of attributes are plain

text (strings). The XML schema

introduces types such as number,

date, time, etc. into XML and also

permits user-defined data types.

The XML schema additionally sup-

ports modularization, which makes

a schema easier to reuse. XML

schemas are written in XML and can

thus be processed using XML tools.

THE EXTENSIBLE STYLESHEET

LANGUAGE - XSL

The layout of an XML document

is not defined in the document itself

or in its DTD. It is one of the funda-

mental principles of XML that con-

tent should be absolutely separate

from presentation. How a document

is represented is defined in a style-

sheet that is created with XSL (or

possibly CSS). One document can

also have several different XSL style-

sheets, resulting in different docu-

7

ICE

XMI

BML

HTML

XML/
EDI

BRML

VoxML SMIL

CML

OFX
FpML

WML

XML

SGML

HL7

FinXML

SOAP

OTP

MathML

BizTalk
cXML

xCBL

Figure 2: The structure of SGML and XML: XML is a subset of SGML, while HTML
is an application of SGML (and of XML)

4 XML distinguishes “well formed” documents that

are syntactically correct from those which are

“valid” (structurally correct in accordance with a

DTD).

3 Source: http://metalab.unc.edu/pub/sun-info/stan

dards/xml/eg/shakespeare.1.10.xml.zip; Shakespeare’s

complete work was retrieved from this source in

XML format. Also, see example “XML in Helsingôr,”

page 12.

5 http://www.w3.org/XML/1998/06/xmlspec-19980910.dtd

6 http://www.w3.org/TR/NOTE-xml-schema-req

7 http://www.xml.com/schemas/

8 http://www.xml.com/pub/1999/07/schemas/syntax.html

Further information5

Further information6, 7, 8

ment presentations. XSL likewise

supports a variety of output media,

such as screen display, printouts, etc.

In addition, XSL enables XML docu-

ments to be translated into HTML

documents. If this takes place on a

server, terminal devices that under-

stand HTML but not XML can be sup-

ported as well.

EXAMPLE OF AN XSL STYLE-

SHEET:

<xsl:template match=”product-catalog”>

<xsl:apply-templates select=”product”>

<xsl:sort select=”name”/>

</xsl:apply-templates>

</xsl:template>

<xsl:template match=”product”>

<xsl:value-of select=”name”/>

<xsl:text> </xsl:text>

<xsl:value-of select=”product-number”/>

<xsl:text> </xsl:text>

<xsl:value-of select=”price”/>

</xsl:template>

In this example a stylesheet sorts all

products from a product catalog by

“name” and outputs the list as an

HTML document. As we can see, XSL

style sheets are themselves XML doc-

uments and can therefore also be

processed using the same tools as

XML. XSLT is a subset of XSL de-

signed for transformation of XML doc-

uments into other XML documents.

XSL attained W3C recommendation

status on October 15, 2001.

XPOINTER AND XLINK

The conventions for linking objects to

XML documents are defined by

means of XLink and XPointer. The

following link types are supported in

addition to “classic“ HTML links:

• Bidirectional links

• Extended 1:n links (links to several

versions of the same document, for

example)

• Indirect links

• Pointer addressing (links can also

pinpoint certain locations within a

document)

XPATH - FOR XML DOCUMENT

QUERIES

XPath is a W3C recommendation

that is becoming the favored lan-

guage for querying and addressing

parts of XML documents. As such, it

replaces the initially proposed XQL

query language. XPath was created

to provide a common syntax and

semantics for querying and address-

ing the contents of XML documents.

In the same way as SQL with rela-

tional databases, XPath serves to

retrieve XML documents or parts of

documents from an XML data

source, such as a database. XPath is

also used by XSLT (XSL Transforma-

tion Language), XLink and XPointer.

It operates on the abstract, logical

structure of an XML document as a

tree of nodes, allowing certain ele-

ments or fragments to be picked out

of a document.

THE DOCUMENT OBJECT MODEL -

DOM

The Document Object Model is

an API (Application Programming

Interface) for HTML and XML

documents. It allows application

programs to navigate within the

structures of documents and to

retrieve, add, modify or delete

individual elements or attributes.

DOM is designed to be used with

practically any programming

language. The model is supported,

for instance, by Microsoft’s

Office2000 and by other vendors.

XQUERY

Currently in a working draft status,

XQuery is W3C's attempt to propose

an XML query language that allows

the combining of data from multiple

sources. While these sources can be

transient or persistently stored in tra-

ditional databases, native XML data-

bases, XML programming libraries or

other XML repositories, XQuery is a

flexible functional language that

allows one to generate query expres-

sions which are often composed of

many other expressions. Its expres-

sive power gives users in any envi-

ronment the possibility to intelli-

gently query the many kinds of data

contained in XML documents

through a single query language.

Similarly, XQuery now allows devel-

opers to implement their DOM,

XPath and XSLT applications in just

one language.

Adding to this, XQuery also covers

the major functionality of former

query language proposals like XML-

QL, XQL, OQL or the SQL standard,

thus making it a viable candidate for

replacing these query languages

before long.

QUIP is Software AG's first imple-

mentation of XQuery which develop-

ers can download and try out free

of charge through the Tamino

Developer Community.

Further information about XQuery17

Further information about QUIP18

8

Further information16

9 http://www.w3.org/TR/xslt

10 http://www.w3.org/TR/2001/REC-xsl-20011015/

11 http://www.w3.org/TR/WD-xptr

12 http://www.w3.org/TR/xlink/

13 http://www.xml.com/pub/a/2000/09/xlink/index.html

14 http://www.w3.org/TR/xpath

15 http://www.w3.org/TR/xpath20/

16 http://www.w3.org/DOM/

17 http://www.w3.org/TR/xquery/

18 http://www.softwareag.com/developer/quip/default.htm

Further information14, 15

Further information9

Further information10

Further information11, 12, 13

XML - A universal
document standard
Since XML is a meta language, it is

specified on two different levels:

• The XML standard itself is supported

by the World Wide Web Consortium

(W3C), which is also responsible

for developing it further.

• Specific XML applications are

developed by independent user

groups.

STANDARDIZATION AND W3C

XML is an independent standard

which is maintained by the World

Wide Web Consortium.

W3C was set up by the Massachu-

setts Institute of Technology (MIT) in

collaboration with CERN in Geneva

and with the backing of the Euro-

pean Commission. W3C enjoys

widespread support within the IT

industry. Software AG is also an

active member of W3C.

XML APPLICATIONS

There are already a number of

industrial initiatives aimed at estab-

lishing XML as a data interchange

standard. Firms and organizations

in all branches have joined forces

to develop XML applications:

• HL7 (Kona proposal), a coalition of

health organizations which devel-

ops standards for exchanging hos-

pital, financial and administrative

data electronically between various

independent computer systems

used in the health service.21, 22

• CML The Chemical Markup

Language, developed in the United

Kingdom to enable chemists to ex-

change descriptions of molec-ules,

formulas and other chemical data.23

• OFX Open Financial Exchange

the format used by Intuit Quicken

and Microsoft Money to communi-

cate with banks.

• OSD Open Software Distribution

from Marimba and Microsoft.

Other activists, to name but

a few:

• aecXML for Architecture, Engineer-

ing and Construction

• AIML - Artificial Intelligence

Markup Language

• BioML - Biopolymer Markup

Language

• BizTalk - Framework for exchange

of business documents24

• BML - Bean Markup Language

• BRML - Common Rules and Busi-

ness Rules Markup Language

• BSML - Bioinformatic Sequence

Markup Language

• CFML - Cold Fusion Markup

Language

• CPML - Call Policy Markup

Language

• CPL - Call Processing Language

• cXML - Commerce XML protocol25

• DTD for patent documents - ST32

US Patent Grant

• EAD - Encoded Archival Description

• ebXML - Electronic Business XML

Initiative26

• ECMdata - Electronic Component

Manufacturer Data Sheet Library

Specification

• FinXML - XML for Capital Markets

(Financial ML)

• FLBC - Formal Language for

Business Communication

• FpML - Financial Product Markup

Language

• ICE - Information and Content

Exchange

• IOTP - Internet Open Trading

Protocol

• JSML - Java Speech Markup

Language

• KBML - Koala Bean Markup

Language

• LitML - Liturgical Markup Language

• MathML - Mathematical Markup

Language27

• MoDL - Molecular Dynamics

(Markup) Language

• NAA Standard for Classified

Advertising Data

• NVML - Navigation Markup

Language

• OTP - Open Trading Protocol

• PDX - Product Definition Exchange

• PML - Markup Language for

Paper and Printing -

Procedural ML - Portal ML

• PMML - Predictive Model Markup

Language

• RDF - Resource Description

Framework28

• RosettaNet PIPs - Partner Interface

Processes29

• SMIL - Synchronized Multimedia

Integration Language30

• SOAP - Simple Object Access

protocol31

• SVG - Scalable Vector Graphics32

• TML - Tutorial Markup Language

• TMX - Translation Memory

Exchange

• VoxML - Voice Recognition ML

• WIDL - Web Interface Definition

Language

• WML - Wireless Markup Language

for WAP33

• XBEL - XML Bookmark Exchange

Language

• XBRL - Extensible Business

Reporting Language

• xCBL - XML Common Business

Library34

• XFRML - Extensible Financial

Reporting Markup Language

• XMI - XML Metadata Interchange

Detailed information available at:

http://www.xml.com/

Further information19

Further information20

19 http://www.w3.org/XML/

20 http://www.xml.com/pub/q/stdlist

21 http://xml.coverpages.org/gen-apps.html#HL7-SGML

22 http://xml.coverpages.org/konaProp970718.html

23 http://www.xml-cml.org/

24 http://www.biztalk.org

25 http://www.cxml.org/home/

26 http://www.ebxml.org/

27 http://www.w3.org/TR/MathML2

28 http://www.w3.org/TR/PR-rdf-schema

29 http://www.rosettanet.org

30 http://www.w3.org/TR/REC-smil/

31 http://www.w3.org/TR/SOAP/

32 http://www.w3.org/TR/2001/PR-SVG-20010719/index.html

33 http://www.wapforum.org/what/technical.htm

34 http://www.commerceone.com/xml/cbl/index.html

9

EDI

EDI (Electronic Data Interchange) is

one of the most important applica-

tions of XML. For several years now,

attempts have been made to establish

a standard for exchanging information

between corporations on the basis of

EDI. The underlying principle is both

simple and convincing: if it were pos-

sible to exchange data of the kind that

is contained, for instance, in delivery

documents, orders or invoices in a

compatible format, we could cut out

the time-consuming, error-prone

process of entering it manually. In

practice, however, this approach has

always failed to live up to expecta-

tions on account of the overwhelming

abundance of data, data types and

formats. In the USA, EDI is used by

a mere 2-3 percent of all companies.

XML enables these difficulties to be

overcome because it provides a com-

mon umbrella for all EDI applications,

though one which still allows suffi-

cient free scope to accommodate all

possible requirements. XML/EDI,

developed by the XML/EDI Group, rep-

resents a new framework for business-

to-business data interchange and thus

also for the important field of elec-

tronic business. Not only can docu-

ments be exchanged on the basis of

XML, but ‘proper’ transactions can be

effected. A high-performance XML

infrastructure is therefore crucial for

developing powerful applications.35

XML AND DATABASES

XML’s great flexibility opens up a

range of applications for this stan-

dard, far broader than that available

to HTML. Not only can XML process

complex, hierarchical information, it

can also be used for commercial

transactions. XML is to the applica-

tion layer what TCP/IP is to the com-

munication layer. These two stan-

dards together form a foundation

that allows the Web to be utilized for

electronic business.

Against this backdrop there are two

requirements that must be satisfied

by the XML infrastructure:

• XML information must be made

available quickly and reliably - if

necessary in large amounts and for

transactions.

• XML information must be inte-

grated with existing corporate data.

Whereas HTML pages can still be

managed in a file system, more

powerful concepts are needed for

complex XML documents. The

present state of the art is to use

databases whose functionality -

consistency, restart capability, data

security and recovery, etc. - can be

utilized by the XML data.

The simplest way to accommodate

XML objects in a database would

be to save them as “character

large objects.“ The tags in these

objects would be interpreted as

straightforward running text, which

could be handled using the retrieval

methods for full text. A database

offers further possibilities for

indexing the information objects

and thus facilitates more flexible

access paths. This would permit

these objects to be accessed both

via their structures (structure-based

retrieval) and via their content

(content-based retrieval). All rele-

vant information would in this

case have to be managed in sepa-

rate fields or tables, however. On

the other hand, it would not be

possible to use this method to

map the hierarchical structures of

XML documents. Although a solu-

tion of this kind could be imple-

mented relatively easily with the

means currently available, it would

certainly not be adequate to cope

efficiently with large volumes of

data or, above all, XML transaction

data.

Communications XML/EDI

Web Server
Catalogs/

Push

X12/EDIFACT

Mainframe / VAN

IntranetBusiness
Application

Repository/
Search

Content/
Docs

Web Browser

Figure 3: Business-to-business communication with XML/EDI

10

35 Further information:

XML/EDI Group Home Page URL:

http://www.xmledi.net/

XML AND SQL

The most obvious approach for inte-

grating XML into conventional data-

base technologies would be to

implement XML structures with the

aid of data models that are in com-

mon use today, such as the rela-

tional model. Either SQL data struc-

tures could be used at an XML inter-

face or any desired XML object

could be converted to a relational

data structure.

It is never problematic to convert

existing SQL data into XML objects.

Although the absence of data types

in XML still constitutes an obstacle

at the moment, a remedy is seen in

the form of the XML schema (see

above). Since, with relational data,

complex data objects are composed

of “flat” tables in the application

logic, either additional definitions

are required in the form of data

maps or different data records must

be joined together with a JOIN oper-

ator integrated in an XQL query.

On the other hand, implementing

every possible tree structure that is

supported by XML in a relational

data model is a surmountable prob-

lem, one which in practice is

extremely difficult to assimilate,

though. XML allows information to

be graded hierarchically to any

required depth. In order to repro-

duce such hierarchies in a relational

database, complex table links would

have to be not simply created but

also maintained. Practice has shown

that even a comparatively low num-

ber of levels leads to massive prob-

lems with regard to performance.

This kind of model would therefore

only be suitable for managing very

simple XML documents.

The locking mechanisms of RDBMSs

represent a further serious obstacle.

Locks on the document level are not

supported, since documents are

irrelevant to the RDBMS methodol-

ogy. In order to modify an XML doc-

ument mapped in an RDBMS, a

large number of locks would have to

be checked in several different

tables - yet another cause of deterio-

rations in performance which would

also entail an enormous amount of

internal administration.

Moreover, the typical document

structure of many information

objects modeled with the aid of

XML, such as long text elements,

images and complex lateral links,

resists direct representation with

relational tools, quite apart from the

fact that XML also allows the use of

non-predefined tags. After all, the

great advantage of XML is that is

capable of mapping such objects

better than “pure” SQL.

This problem furthermore depends

on the location within the database

at which the conversion from XML

to the relational model takes place -

as an external interface in other

words or close to the kernel.

XML AND ODBMS

At first glance, the world of hierar-

chically structured XML objects sug-

gests a direct relationship with

object-oriented databases (ODBMS).

The latter do indeed offer the almost

generic option for XML of imple-

menting the structures of persistent

objects in a server. Persistent

objects could thus be made avail-

able with XML at a transparent inter-

face and accessed by a large num-

ber of users either locally or via the

Web. On the other hand, the familiar

drawbacks of ODBMSs cannot be

avoided if the data passes via an

XML interface. In practice, ODBMSs

are inadequate for high throughput

or large volumes of data, as well as

being particularly unsuitable for

transaction tasks of the kind essen-

tial for electronic business. In addi-

tion, ODBMSs are complex to imple-

ment and prone to an especially

serious deterioration in performance

if required to integrate “old data”

from an RDBMS or - worse still - a

file system. In the past, ODBMSs

have only proved successful for

special tasks - and XML most defi-

nitely cannot be considered “spe-

cial.“ An XML server provides an

ideal basis for storing and exchang-

ing XML objects of different types.

Thanks to the option of implicit data

structuring, it offers an enormous

degree of flexibility, which is particu-

larly important for electronic busi-

ness applications. Database queries

and instructions are not formulated

as a string of SQL queries, but are

sent to the server as URL. This

means that a single query can be

applied not just to the documents

actually on the XML server, but also

to other data sources such as

remote XML servers, relational data-

bases and multimedia elements

installed on special multimedia

servers. As far as the user is con-

cerned, the data appears to come

from one server only - XML is the

glue that holds the different ele-

ments together.

11

In a hospital system, for instance,

patient records might be available

as XML documents, their master

data might be stored in a relational

database and their CAT-scan images

could exist in the form of volume

image files. All this information

could be combined by XML and an

XML server in to a single document.

Example 1:

XML in Helsingör Castle

Using XML shields a concept of this

kind from the problems associated

with proprietary approaches.

In order to provide the highest

access speed to stored information,

Software AG has realized this con-

cept with Tamino XML Server. The

product stores XML documents

natively, that is, without converting

them in to other formats.

More examples of
XML applications

The examples below are not simpli-

fications of the kind customarily

used to explain the basic principles

of XML, but rather genuine XML

applications. Tamino has been

designed for managing precisely

this type of information.

12

HTML

<H1>ACT ONE</H1>

<P><I>SCENE ONE. Helsingör. A terrace in

front of the castle.</I></P>

<P><I>FRANCISCO is on sentinel duty. Enter

BERNARDO.</I></P>

<P>BERNARDO:Who’s there?</P>

<P>FRANCISCO:Nay, answer me.

Stand and unfold yourself.</P>

<P>BERNARDO:Long live the

King!</P>

The same text in HTML format. The

HTML tags merely define how the

text is represented in a browser.

They do not add any semantic value

to it and are thus unable to provide

any information with regard to con-

tent (for example: “How much text

does Bernardo have to recite?”).

XML

<ACT><TITLE>ACT ONE</TITLE>

<SCENE>

<TITLE>SCENE ONE.

Helsingör. A terrace in front of the

castle.</TITLE>

<STAGEDIR>FRANCISCO is on

sentinel duty. Enter BERNARDO.</STAGEDIR>

<SPEECH>

<SPEAKER>BERNARDO</SPEAKER>

<LINE>Who’s there?</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>FRANCISCO</SPEAKER>

<LINE>Nay, answer me. Stand and unfold

yourself.</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>BERNARDO</SPEAKER>

<LINE>Long live the King!</LINE>

</SPEECH>

</SCENE> </ACT>

This time, XML tags have been added

to the text. A computer is not able to

derive meaning from a context, just

to analyze character strings on the

basis of defined rules. It therefore

needs text codes to infer information

about the content. The XML text

could now be loaded in a voice com-

puter, for instance, or used to draw

up a cast list.

Plain text

Act One

SCENE ONE. Helsingör. A terrace

in front of the castle. Francisco is

on sentinel duty. Enter Bernardo.

BERNARDO: Who’s there?

FRANCISCO: Nay, answer me. Stand and

unfold yourself.

BERNARDO: Long live the King!

Human beings don’t need any text

codes or tags in order to be able to

read this excerpt from Shake-

speare’s Hamlet. Thanks to what

they learned in school many

moons ago, they are able to iden-

tify or derive the meaning of indi-

vidual text passages.

13

<?xml version=”1.0”?>
<!DOCTYPE bioml SYSTEM=”bioml.dtd”>
<bioml label=”Insulin, gene and protein structure”>

¶graph;This BIOML file contains a simple set of information about the
protein insulin. It is not meant to be an exhaustive study of insulinlin Instead
it is meant to be a demonstration of the organization of a BIOML file. To advance to the
next item, either select it with the mouse or press the “DOWN” button.
<organism label=”Homo sapiens (human)”>

<chromosome label=”Chromosome 11” number=”11”>
¶graph;
The chromosome entry indicates that the locus that contains the insulin gene
has been localized to the number 11 chromosome in humans. All of the
entries linked to this entry are localized on this chromosome.
<locus label=”HUMINS locus”>

¶graph;
The HUMINS locus contains all of the sequence information necessary to code for
insulin. A locus can be completely known, or only fragments may be known. In
many BIOML files, the locus will contain a gene (or genes) of interest.
…

<gene label=”Insulin gene”>
<dna label=”Complete HUMINS sequence” start=”1” end=”4992”>

1 ctcgaggggc ctagacattg ccctccagag agagcaccca acaccctcca ggcttgaccg
61 gccagggtgt ccccttccta ccttggagag agcagcccca gggcatcctg cagggggtgc
121 tgggacacca gctggccttc aaggtctctg cctccctcca gccaccccac tacacgctgc
181 tgggatcctg gatctcagct ccctggccga caacactggc aaactcctac tcatccacga
…
4861 ggccagggct gggcaggcgg gtggacggcc ggacactggc cccggaagag gagggaggcg
4921 gtggctggga tcggcagcag ccgtccatgg gaacacccag ccggccccac tcgcacgggt
4981 agagacaggc gc
…

</dna>
</gene>

</locus>
</chromosome>
...

</organism>
…
<copyright label=”1998 ProteoMetrics, LLC”>

&cr;Copyright ©right; 1998 ProteoMetrics, LLC. All rights reserved.
</copyright>

</bioml>

Example 2:

BIOML – Polymer sequences, insulin (considerably shortened)

BIOML was developed with XML for annotating biopolymer structures. The aim was to facilitate an exchange of

experiences between scientists using the Web. This example describes an insulin protein.

Example 2 has been reproduced in part, courtesy of
ProteoMetrics, LLC, New York.

Source: http:www.bioml.com/BIOML/Examples/insulin3.html

14

<?xml version=”1.0”?>

<!DOCTYPE anzmeta PUBLIC “-//ANZLIC//DTD ANZMETA 1.1//EN”

“http://www.environment.gov.au/net/anzmeta/anzmeta-1.1.dtd”>

<anzmeta>

<citeinfo>

<uniqueid>

ANZCW0301000001

</uniqueid>

<title>

AVHRR NDVI biweekly series covering

continental Australia at full resolution.

</title>

<origin>

<custod>

Bureau of Meteorology

</custod>

<jurisdic>

<keyword>

Australia

</keyword>

</jurisdic>

</origin>

</citeinfo>

<descript>

<abstract>

<p>

AVHRR NDVI (Normalized Difference

Vegetation Index) biweekly series covering

continental Australia at a 1 kilometer

resolution. NDVI is a measure of the absorp-

tion of red light by plant chlorophyll and the

reflection of infrared adiation by water-filled

leaf cells. Its values broadly measure the

density of active foliage.

</p>

</abstract>

<theme>

<keyword qualifier=”biodiversity”>

AGRICULTURE

</keyword>

<keyword qualifier=”Management”>

ATMOSPHERE

</keyword>

<keyword qualifier=”Monitoring”>

ATMOSPHERE Pressure

</keyword>

<keyword qualifier=”Mapping”>

CLIMATE AND WEATHER

</keyword>

<keyword>

HAZARDS Pests

</keyword>

</theme>

<spdom>

<place>

<dsgpolyo>

<long>112.5</long>

<lat>-10</lat>

<long>154</long>

<lat>-10</lat>

<long>154</long>

<lat>-44</lat>

<long>112.5</long>

<lat>-44</lat>

<long>112.5</long>

<lat>-10</lat>

</dsgpolyo>

</place>

<bounding>

<northbc>-10</northbc>

<southbc>-44</southbc>

<eastbc>154</eastbc>

<westbc>112.5</westbc>

</bounding>

</spdom>

</descript>

<timeperd>

<begdate>

<date>

1991-04-01

</date>

•

•

•

•

•

Example 3

DETERMINATION OF VEGETATION DIFFERENCES IN AUSTRALIA

Source: http://www.proteometrics.com/BIOML/Examples/insulin3.html

X
M

L/
W

P
04

E
02

02
 0

40

Software AG

Corporate Headquarters

Uhlandstraße 12

64297 Darmstadt/Germany

Tel.: +49-61 51-92-0

Fax: +49-61 51-92-11 91

www.softwareag.com/tamino

For more information on Tamino XML Server:
http://www.softwareag.com/tamino

Tamino Community:
http://www.softwareag.com/developer

Download XML Starter Kit:
http://www.xmlstarterkit.com

Tamino Demo Zone:
http://tamino.demozone.softwareag.com/

"XML - The Site" Resource Pages:
http://www.softwareag.com/xml/

