Migration Strategies for the Manual Migration Process Migration Strategies for the Manual Migration Process

Migration Strategies for the Manual
Migration Process

This section describes the possible strategies for migrating Tamino schemas manually under the following
headings:

® Comparison to Former Tamino Schema Language

® Migrating a Schema from a Previous Version of Tamino

Defining a Schema from a DTD

Defining a Schema from a given XML Schema

Defining a Schema from Scratch

Comparison to Former Tamino Schema Language

In the former versions of Tamino, teehemdanguage is implemented as an Xbcument Type
Definition (DTD). This DTD consists of three elementSpllectior!, "Doctypé and 'Node', which stand
in the following relation to each other:

<IELEMENT
Collection (Doctype*)> <IELEMENT Doctype (Node+)> <!IELEMENT Node
EMPTY>

You define a schema by specifying values for the attributes on these elements. The attributes are not
shown here: for an overview of the Tamino schema attributeQsek Reference to the Mapping
Language.

® A Collection relates to a database. The Collection element therefore has no parent element, though
the Data Map can contain multiple Collections. A Collection can contain zero or more Doctype
elements. Collections are used to combine Doctypes for the purpose of providing parallel access to
multiple Doctypes. Examples of Collections are: a hospital’s administration database; an inventory
database of a supplier of spare parts; an on-line library.

® A Doctype is a data definition, comparable to Tables or Views used in relational database systems.
Doctypes relate to "real-world" data objects such as a patient’s health record in a hospital database, a
particular spare part in a spare parts database, or a book in an online library. One Tamino schema
describes one Doctype, so that the two terms are sometimes used synonymously (for example, an
"instance of the schema" could also be said to be "an instance of the Doctype"). A Doctype must
contain one or more Node elements.

e The Node element is empty. Nodes express all the information items contained in the Doctype, for
example, a patient’s name, the article number of a spare part, the title of a book. Nodes can be
arranged in a tree structure by using attributes to express parent-child relationships. Some Nodes are
thus intermediate Nodes, describing a path to the actual information item. For example, since a
patient’s name can be further structured into a first name and surname, the Node representing the
patient’s name is defined as an intermediate Node, whereas the Nodes representing first name and
surname contain character data and are therefore referred to as "terminal Nodes" or "leaves".



Migration Strategies for the Manual Migration Process Migrating a Schema from a Previous Version of Tamino

Using the example of a hospital database, the following figure illustrates the schema of a patient’s record
(Doctype "patient"):

Callestion MNarme="Hospital"
Doctype MNarme="Fai=rt"
Hode MName="Faiznt"
- Hode Marme="MNarm="
Nod e Marme="5Surnamea"
Haode Marme="Firstnamsa"
— Mode Mame="Address"

The figure shows that Doctype structures can be seen as trees. Intermediate Nodes and their subordinate
Nodes are "branches" or "subtrees". Terminal Nodes (or "leaves") are those that contain "real" data. In the
above example, the Node with Name="Name" is an intermediate Node, the Nodes "Surname" and
"Firstname" are terminal Nodes. A Collection, as a collection of trees, is said to be a "grove".

The figure also gives you some idea of how, by specifying appropriate attributes, subtrees or Nodes can be
assigned to be stored in different data locations.

The Name attribute is available for naming the Collection, the Doctype and the Nodes. Note that the name
of the Doctype must be same as the name of the root (top-level) Node. Other essential attributes are
ID-declared attributes used to uniquely identify information items, and IDREF-declared attributes to
representing the relationship between information items. Other attributes relate to parameters relevant to a
specific database (for example, SQL or Adabas-specific attributes) and whether or how data is to be
indexed.

Migrating a Schema from a Previous Version of Tamino
The current version of Tamino allows you to migrate schemas defined using versions of Tamino up to 2.2.

These earlier versions used schemas based on the Tamino Data Map DTD and can be migrated to the
Tamino schema language that is based oXMk Schematandard and used in versions of Tamino
higher than 2.2.



Defining a Schema from a DTD Migration Strategies for the Manual Migration Process

The easiest way of migrating an "old" schema todhi. Schemdased Tamino Schema Language is to

read the schema into the Schema Editor 3 and redefining the schema to Tamino. The Schema Editor has a
built-in schema converter that will express the schenxdh schemayntax. You can, of course, refine

the schema using the supported XML Schema features.

For more information on migrating schemas, see the next section of this docivignattion from Old
to New Schema Language

Note:

Once you have migrated a schema, you must also reload (reindex) its document instances. The current
version of Tamino supports the "old" schema language, thus allowing you to migrate schemas and
instances over a period of time. You are, however, strongly recommended to proceed with migration, as
support for the "old" syntax will be phased out.

Defining a Schema from a DTD

Tamino allows you to start the schema definition process using an arbitrary external DTD.

Using the Import DTD function of the Schema Editor 3, you can read a DTD into the editor and either use
default mapping for the elements and attributes of the DTD, or you can specifically map each
element/attribute that interests you.

A combination of both is also possible: you define default mapping, and refine the mapping information
for appropriate nodes, using the features of XML Schema that cannot be inferred from DTRIMIKey
Schemdeatures not provided for by DTDs are:

e XML Schemas are themselves XML documents and can therefore be parsed as such.
® Contents of elements can be specified as being of a specific data type.
® The number of instances of element types within a parent element can be restricted.

® The order in which instances of different element types can occur within a parent element can be
fixed.

® Text values in simple type elements can be restricted.
e The number of items in white-space separated lists that amke up atribute values can be restricted.

e Attribute vales can be specified as a union of different white-space separated lists.

Defining a Schema from a given XML Schema

Tamino allows you to start the schema definition process using an arbitrary external XML schema.

You can read aKkML Schemainto the Schema Editor 3 and add Tamino-specific information to it. Note,
however, Tamino currently supports only a subsME Schemafeatures.


http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-1

Migration Strategies for the Manual Migration Process Defining a Schema from Scratch

Defining a Schema from Scratch

You can define a Tamino schema from scratch, that is, you have neither an existing schema to migrate,
nor an external DTD, nor &ML Schemaas starting point for schema definition.

You can use the Schema Editor 3 to build a Tamino schema. The advantage of using the Tamino Schema
Editor over other schema editing tools is that the Schema Editor 3 will not generate any syntax not
supported by Tamino.


http://www.w3.org/TR/xmlschema-1

	Migration Strategies for the Manual Migration Process
	Comparison to Former Tamino Schema Language
	Migrating a Schema from a Previous Version of Tamino
	Defining a Schema from a DTD
	Defining a Schema from a given XML Schema
	Defining a Schema from Scratch


