fy softwARE AG

THE XML COMPANY

Native

vs. XML-enabled

... the difference makes a difference!

Contents

Sinple concepts win
How things develop
It’s “I’’ not “ME”’
Unleash the power of XML
Quick fix or holistic approach?
XML -- enabled or native?
XML-enabled products
Native XML products
Database management systems
XML
RDBMS
Document authoring systems
Other application areas
Conclusion: XML ““steel”” vs. XML ““glue”’

More detailed information about XML is available
at our Web site: www.softwareag.com. You are also
invited to view our landmark Web conference at
www.xml4e-business.com.

© 0 ~NO O b~ WDN PR

P PR PR
N NP OO

Simple concepts win

Great inventions don't have to look difficult to be great.
As a matter of fact, most breakthrough inventions are
great because of their extreme simplicity and broad appeal.

And, most great inventions take time to be implemented. However, as a
rule, we always overestimate an invention in the short term and always
underestimate the impact of such technologies in the long term. | think
XML is such a technology. As some of the hype around XML subsides,
people will underestimate how fundamental XML will change the way we
store, publish and exchange information in the next decade.

Do you believe you are involved in something extremely significant as you
are working with XML? | believe XML may prove as significant to the

industry at large as any other major invention in the history of humankind.

But, you have to be careful in choosing your route.

How things develop

For example, the ancient Mayas already knew of the wheel but did not
have horses to make horse-drawn carriages. The Chinese knew about
steam power about 2000 years ago but only used it to raise the throne of
the emperor during coronation ceremonies. When the telephone was
invented, the then U.S. president said: “I think the telephone is great, |
can see a time when every town will have one.” Now there are nearly
twice as many mobile telephones as there are personal computers.

When Edison invented the modern light bulb, did he think about the
Hoover dam? When Stephenson invented the first steam locomotive,
could he even imagine a bullet train? When the Wright brothers flew on
the beaches of North Carolina, did they ponder frequent flier miles?

A

As much as gasoline was the killer application
for the oil barons of Texas and the Middle East,
XML will be the killer application for software

developers that want to deliver rich, personalized
content to the growing community of online
citizens. XML technology will go a similar
route to the examples above. Those that fail
to act on the XML shockwave now will get
steamrolled later.

At this point in time, we are still being bombarded with new products that
start with the letter “E” and increasingly, with the letter “M” for mobile.
Well, these terms still miss the point. Those of us that are dealing with
software are not dealing with electrons or with mobile devices as such.
These are just technical details. The point is the letter “I”.

It’s “I”” not “ME”’

“I” for Information. Information as in data that has context and meaning,
which enables normal people to make decisions and to create value in the
new economy. All the electrons and mobile devices in the world will not
create value unless people can understand the information that is being
provided to them. And, XML is the key technology to make information
understandable—and to make the Internet truly useful in the economic
domain.

Unleash the power of XML

If you want to unleash the power of XML today—whether for
B2B, B2C electronic commerce, content management, application
integration, or portals—you obviously won't be starting from
scratch. You'll need to integrate your core business processes and
perhaps those of your business partners. You'll need to store and
retrieve XML information in a native, reliable and rapid fashion.

When intelligently incorporated into your strategic plan, the power
of XML will amaze you.

Quick fix or holistic approach?

To reap the benefits of data exchange and management via XML, will it
be enough for you to make quick fixes that “XML-Enable” the outward-
bound interfaces of existing applications, relational and post-relational
databases and messaging systems?

While such quick fixes are sometimes useful and necessary, they ignore the
big picture and open up a Pandora’s box of complex questions. For example:
Where to use XML and where to leave it out; When to transform one
XML format to another; When to transform XML into another system’s
proprietary format; Where to do the transformations.

XML-enabled or native?

The market is currently laden with so-called
“XML-enabled” products that claim support
XML as an input/output format. While
these products clearly have advantages over
others without XML support, another class
of products referred to as “native XML” offer
significant additional advantages. These
products, which support XML down to their
internal architectures, are more scalable,
more reliable, and even more truly
interoperable than those that merely uses
XML as a data exchange format.

XML-enabled products

Many products currently support XML as an input/output format, that is,
they can translate back and forth between their internal data formats and
APIs and those of XML. Such “XML-enabled” products can exchange
data with products running on other platforms, and in some cases they
can be programmed to a limited extent by means of code written to XML-
related specifications.

This has encouraged some companies to use XML as “glue” to connect
existing enterprise systems with others within a single company, with those
of suppliers and customers, and to present live data to consumers over the
Web. A clear example of this sort of use case for XML is SOAP, an XML-
based object serialization format that can be used to perform asynchronous
messaging and remote procedure calls between non-XML applications
using the Internet infrastructure.

Native XML products

Another class of products, however, supports XML deeply in their internal
architectures. Such “native XML” products offer significant advantages
over those that are merely XML-enabled. Many of these advantages boil
down to scalability: as the volume and complexity of e-Business transac-
tions increases, the overhead needed to convert back and forth between
XML and other data representation will seriously impinge on the speed,
reliability, and functionality of “XML-enabled” systems. Native XML
systems, which deliver not only the appearance but the reality of an XML
architecture run faster, more reliably, and with less administration. Let’s
consider some examples.

Database Management Systems

Perhaps the clearest way to illustrate this is to compare architectures that
provide an XML view of an underlying relational database with those that
store and index data in a native XML internal format.

The definition of a “Native XML Database” is one whose internal data
structures map directly onto the hierarchical format of XML. Users of a
native XML database are not required to distinguish between some external
“interchange” format and an internal “efficient” format, nor to design
applications that distinguish “business data” from “document content”.

In a native XML database, such distinctions are meaningless.

Most RDBMS vendors now or will soon provide interfaces and utilities to
allow XML data to be stored in their systems with relatively little obvious
pain to the developer. But, consider the mismatches between XML data
and normalized RDBMS storage that these interfaces must paper over:

10

XML

Nested hierarchies of elements

Elements are ordered

A formal schema is not necessary

Ordinary business documents can be represented, stored,
and retrieved as a single object

O The XPath standard provides a common (if limited) query

language for locating data.

Oo0oodg

RDBMS

0 Data arranged in rows and columns, with atomic cell values, and
multiple tables JOINed together must be defined to represent
hierarchical relationships

O Row ordering is not defined

0 A predefined schema is usually necessary to describe the structure
of the data

0 JOINSs of several tables are usually necessary to retrieve even simple
business documents

O Queries are done with SQL retrofitted with proprietary XML

enhancements

In effect, the major database vendors have masked the immediate pain once
required to store XML in an RDBMS. These interfaces, however, cause pains
of their own as more complex XML documents and messages are stored and as
the transaction volume increases.

The complexity of the underlying tables, separate full-text databases, and
number of JOINs may be hidden from the developer, but will be a constant
burden on the DBAs and system administrators responsible for a large-scale
system.

Similarly, as the XML view of data and the standards that support it become
more widely understood, end-users will employ more sophisticated queries that
will be easy to express in XPath and future XML query languages but difficult
to decompose into some combination of SQL and full-text queries.

Document Authoring Systems

A native XML text handling system that is truly built on implementations
of standard formats, APIs, and protocols will tend to be easier to use and
integrate than one that implements XML interfaces via translation. For
example, contrast, using a native XML authoring tool such as SoftQuad
XMetaL versus using an ordinary word processor to author content then
converting it to XML format for storage and interchange.

Many vendors have devised clever techniques for minimizing developers’
immediate pain by translating MS Word and/or RTF data produced by
conventional word processing systems into XML, and this does indeed
XML-enable these products in a way that can be useful. But, here again
native XML tools have capabilities that will make them much more useful
as the volume and complexity of your data increases.

XML authoring tools allow the author to be aware of the underlying
distinctions in the XML markup that have no obvious equivalent in an
ordinary word processor. These distinctions may be crucial, for example, in
identifying the “essence” of a document that is to be preserved when it is
translated to a format suitable for viewing on PDAs or mobile phones.
Techniques that allow such content to be identified in MS Word are often
fragile and “break” when new authors are hired, as documents are “round-
tripped” between the authoring and storage environment, etc.

Other application areas

As industry standards are developed and vendors refine their native XML
products, similar patterns will be seen in other areas, especially:

0 Display and entry of ordinary business data presented in forms

Routing and transformation of e-Business messages (B2B, EAI, etc.)

O Development of workflows, scripts, and software objects that
automate the actual handling of data

O Extraction and cataloging of “metadata” describing the semantics of

the information embedded in documents and messages

O

Conclusion—XML as ““Steel’”” vs XML as “Glue”

XML offers developers very significant advantages when it is deeply
embedded in the infrastructure of enterprise systems and not just used as a
kind of industrial-strength glue to connect them together. Native XML
systems are far easier to develop while being more scalable, reliable, and
even more truly interoperable than those that merely uses XML as a data
exchange format.

XML is the enabler for the information
economy. Those of you who are writing
applications in native XML will be the
leaders of this new stage of software
development. When we look back to
this time 20 years from now, we will not
remember the year 2000 as the year of
potential catastrophic computer failures
but as the year in which the Internet
became truly valuable through the use
of XML technologies.

What it comes down to is a “quick fix” versus a long-term strategy. If
you're weighing the pros and cons of Native XML versus XML-enabled,
my advice is . . . go native!

12

Michael Champion is a Research and Development Specialist
at Software AG. He is an alumnus of the University of Michi-
gan and did graduate study specializing in data analysis and
computer simulation. He has been a software developer in for
20 years, working primarily in the area of middleware for
client-server document and image management systems. Mike
has been active in the World Wide Consortium's Document
Object Model (DOM) Working Group for more than three
years and was a principal author of the core XML portion of

the DOM Level 1 recommendation.

fy SoftWARE AG

THE XML COMPANY

Software AG, based in Darmstadt, Germany, is one of
the largest and most highly respected system software
companies in the world and the premier provider of
database management technology. With products and
services in use globally, our focus is on mission-critical
electronic business applications linking heterogeneous
platforms, and our commitment to and support for
open-standard XML technology is absolute.

Software AG is a founding member and active partici-
pant in the World Wide Web Consortium (W3C) and
the Organization for the Advancement of Structured
Information Standards (OASIS).

Software AG, Inc.
Bishop Ranch 3
2613 Camino Ramon, Suite 110
San Ramon, CA 94583-4289

©2001 Software AG USA. All rights reserved. Software AG and/or all
Software AG products are either trademarks or registered trademarks of
Software AG. Other product, company names and logos mentioned or
depicted herein are the trademarks of their respective owners.

