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ZAMS and PULS Computer Codes

This file contains documentation for the two FORTRAN computer codes called
ZAMS.FOR and PULS.FOR, which are included as ASCII files in the directory
ZAMSPULS on the CD attached to the back cover of this text. The first program
makes ZAMS models which, in turn, may be analyzed for radial or nonradial
pulsations in the second code. Also included on the CD are sample input and
output files, executable versions of both codes for use on personal computers
(PCs), and a READ.ME file which should be consulted first for further details.

1.1 The ZAMS Model Builder

The FORTRAN program ZAMS.FOR constructs homogeneous zero-age main se-
quence models using the fitting technique outlined in Chapter 7. It is not
terribly sophisticated, but it will make very decent models. For those of you
who would prefer to use either C or PASCAL the transition is not too difficult,
but you will need a proficiency in FORTRAN to effect the translation. We have
tested this program on personal computers (with a Microsoft compiler), UNIX
workstations, and VAX VMS mainframes but cannot guarantee that your par-
ticular system will happily accept all that follows. We have made an effort to
use standard (even old-fashioned) FORTRAN for portability. If you use an old
PC, we suggest a fast one with a math coprocessor. On some machines you
may have to work in extended precision (e.g., G-float in VAX FORTRAN). In
addition, we have included what we hope is sufficient documentation within
the code. Note that provision is made to write output quantities that may
then be used for the radial and nonradial pulsation PULS code, which is dis-
cussed in the next section. ZAMS is written in double precision to provide a
smooth and accurate model for the PULS code.

The running of the code is fairly straightforward but requires guesses of
initial quantities. Some hints are given later. Because we use very simple pho-
tospheric conditions and the fit to opacity (c. 1970s) does not cover very cool
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temperatures, we do not recommend trying to construct models with low ef-
fective temperatures. Models with masses much below that of the sun will not
be very successful. Also, do not try compositions that differ substantially from
Pop I because the opacity fit does not cover a wide range of composition. You
are, of course, welcome to substitute your own opacities, etc., including tabu-
lated versions. Because the code assumes models in complete equilibrium, this
code cannot be used to construct even warm white dwarfs (and the equation
of state has no provisions for degeneracy). You are welcome to try to change
things so that it might.

The program includes public domain routines from LINPACK that are
used to solve systems of linear equations (in this case only a four-by-four
system). If you are familiar with such routines and can identify the input and
output quantities, you may substitute your own favorite programs. We also
use a Runge-Kutta integrator called RKF to integrate all four stellar structure
equations in this fitting program. (See the documentation before subroutine
RKF.) RKF, and its associated routines, is a general-purpose integrator that
works well with all but “stiff” systems of differential equations. You are again
invited to use your own integrator (such as those in Numerical Recipes by
Press et al., 1992).

There is quite a bit of output generated by this code and sample output
is included on the diskette. As a function of M, (actually 1 — M, /M) it will
tabulate r, P, T, p, and L,, ¢, k, L.(conv), L,(conv)/L,(tot), V, V.4, and
Viad for 201 points in the model. With this information you should be able
to figure out what makes the model tick.

Finally, we list guesses for central pressure, central temperature, total
radius, and luminosity for ZAMS models of three different masses and two
compositions (and see Tables 2.5 and 2.6). The compositions are X = 0.74,
Y =0.24, and X = 0.70, Y = 0.28. If the program has compiled properly
(among other things), then these models should converge in one iteration of
the fitting method. Note that poor guesses can be fatal. You are allowed NTRY
attempts to converge and it is set to 15. If the code wants to take more it-
erations than this, then your initial guesses were probably not very good. If
you are not satisfied with the composition used in Tables 2.5 and 2.6 then
we advise you to creep up on a new composition by slowly adjusting X and
Y away from that used in those tables and use graphical interpolation or
extrapolation to obtain decent guesses.

Table 1.1. Some guesses for the ZAMS model builder: X = 0.74, Y = 0.24.

M/ Mg P. T R (cm) L/Lo

1 1.482 x 10'7 1.442 x 107 6.932 x 10'°  0.9083
3 1.141 x 10'7 2.347 x 107 1.276 x 10'? 89.35
15 2.769 x 10'% 3.275 x 107 3.289 x 10'' 1.960 x 10*
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Table 1.2. Some guesses for the ZAMS model builder: X = 0.70, ¥ = 0.28.

M/ Mg P. T R (cm) L/Lo

1 1.683 x 10'7 1.536 x 107 7.411 x 10*° 1.175
3 1.088 x 107 2.387 x 107 1.281 x 10" 1.072 x 10
15 2.693 x 10%° 3.316 x 107 3.300 x 10*! 2.232 x 10*

1.2 Adiabatic Pulsation Code

The program PULS.FOR does an adiabatic pulsation analysis of either nonra-
dial modes in the Cowling approximation or radial modes for the full second
order system (see Chapter 8). Most of the input is from ZAMS where the first
block of data is, in order and usual notation, z = In (r/P), r, g, and p. The
quantity x is the independent variable and replaces r in the pulsation equa-
tions. It is used because it “stretches” the mesh at the surface and center to
allow for better zoning in integration. (See Osaki and Hansen 1973, ApJ, 185,
277.) The second block of data from ZAMS consists of z, g/r, (g/r)¢(¢+1)/SZ,
(r/g)N?, U (of 7.52), and (1 + V)~! (also of 7.52). These data are used as
is in the nonradial part of the code but is modified (see below) for the radial
portion.

The method of solution is by shooting from the center to the surface using
the same RKF integrator used in ZAMS. The solution is started by guessing a
value of the period, I (in seconds), setting one eigenfunction to unity (and
this is arbitrary because one normalization is arbitrary), and applying the
central boundary condition to yield the value of the second eigenfunction
at the center. With these starting values, the pulsation equations are then
integrated until the surface is reached. Unless the eigenvalue has been guessed
correctly, the outer boundary condition is not satisfied. A Newton’s method
is used to satisfy that boundary condition by iteration on the eigenvalue.

The non—ZAMS input, which you must provide for the code, is a guess for
the period and an integer choice for . An ¢ of zero yields the radial case. The
variables for the radial case are y; = dr/r and yo = 6P/ P.

The nonradial case is a bit more complicated and uses the “Dziembowski
variables” y; and yo discussed in Unno et al. (1989), §18.1 (but in the Cowling
approximation). These are more stable for numeric computation then the
horizontal and transverse displacements discussed in Chapter 8.

The output of PULS consists of information on convergence and, if desired,
the eigenfunctions (called y; and ys2 in both radial and nonradial problems).
For the radial case, y; and ys are printed out directly. The nonradial output
is different. To obtain y; and ys, you must multiply the tabulated output
by (r/R)*~2. This is not done in the code itself because for very high ¢ you
get overflow problems. (The computational variables for the code are really
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y1 and yo divided by that factor.) In any case, the overall normalization is
yi(R) = 1.

For guesses you might try the following. Both are for the X = 0.74, Y =
0.24 ZAMS sun listed in the model guesses given for the ZAMS program. For
the fundamental radial mode (¢ = 0 and no nodes in the y; eigenfunction), try
a period guess of 3583 seconds. (This period, of roughly an hour, corresponds
to the dynamic or pulsation time scale for the sun as discussed in Chapter 1.)
For a high ¢ nonradial mode try II = 254 and ¢ = 100. PULS should respond
by saying this mode has a “phase diagram mode” of —10. The minus sign
means that you have found a p-mode and the 10 implies that the order of the
mode is 10; i.e., a p1g mode. The phase diagram method of classifying modes
is discussed in Unno et al. (1989), §17. The results for p-modes you obtain
should agree to within a few seconds of those of the present-day sun. You
will, however, not get excellent agreement using PULS because it is a Cowling
code and does not take into account gravitational perturbations. Note also
that very high overtone modes may give you some difficulty because they
have many wiggles in their eigenfunctions. Experiments you might wish to
try include using models of different masses and compositions and looking for
modes of low frequency (periods longer than the radial fundamental). The
latter are gravity modes and tend to be concentrated in the inner portions of
the model. The phase diagram mode for a gravity mode is signaled by a +
sign. You should, for example, find a g1, £ = 1, mode at about 35,120 seconds
period in the 15 Mg model generated by the guesses given for ZAMS. A first
overtone radial mode (one node in y;) is at 6814 seconds for this model. Other
periods for upper ZAMS models may be found in Aizenman, Hansen, and Ross
(1975), ApJ, 201, 387.



