10

Foundations

Donald Sannella and Andrzej Tarlecki

A complete presentation of CasL is in the Reference Manual.

This User Manual has introduced the potential user to the features of CasL
mainly by means of illustrative examples. It has presented and discussed the
typical ways in which the language concepts and constructs are expected to be
used in the course of building system specifications. Thus, the presentation in
Part IT focused on what the constructs and concepts of CAsL are for, and how
they should (and should not) be used. We tried to make these points as clear
as possible by referring to simple examples, and by discussing both the general
ideas and some details of CAsL specifications. We hope that this has given the
reader a sufficient feel of the formalism, and enough understanding, to look
through the presentation of a basic library of CAsL specifications in Chap. 12,
to follow the case study in Chap. 13, and to start experimenting with the
use of CasL for writing specifications — perhaps employing the support tools
presented in Chap. 11.

By no means, however, should this book be regarded as a complete presen-
tation of the CAsL specification formalism — this is given in the accompanying
volume, the CasL Reference Manual [20)].

CAsL has a definitive summary.

The CasL Reference Manual begins with a definitive summary of the en-
tire CAsL language: all the language constructs are listed there systematically,
together with the syntax used to write them down and a detailed explana-
tion of their intended meaning. However, although it tries to be precise and
complete, the CASL Summary still relies on natural language to present CASL.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 125-129, 2004.
© IFIP International Federation for Information Processing 2004



126 10 Foundations

This inherently leaves some room for interpretation and ambiguity in vari-
ous corners of the language, for example where details of different constructs
interact.

CAsL has a complete formal definition.

A key aim of the entire CoFI initiative is to avoid any potential ambiguities
by providing a complete formal definition for CAsL, and sound mathematical
foundations for the advocated methodology of its use in software specification
and development.

Abstract and concrete syntax of CASL are defined formally.

The next part of the Reference Manual is a formal definition of the syntax
of CAsL. Abstract syntax is given, where each phrase is written in a way that
directly indicates its components, thus making evident its internal structure.
In essence, the use of each construct of the language is explicitly labeled
here. This is convenient for formal manipulation and analysis, but is not so
readable. Therefore, the so-called concrete syntaz of CasL (as used for instance
in the examples throughout this book) is given as well, retaining a direct
correspondence with the abstract syntax. This offers to the user of CAsL a
convenient and readable way of writing down CAsL specifications, in a way
that makes clear the formal structure of the phrases and constructs used to
build them. As usual, the syntax is given as a context-free grammar, using
a variant of the BNF notation, relying on well-established theory to give its
formal meaning, and on a variety of tools and techniques available for syntactic
analysis of languages presented in such a style.

CasL has a complete formal semantics.

The ultimate definition of the meaning of CAsL specifications is provided
by the semantics of CasL in the Reference Manual. The semantics first defines
mathematical entities that formally model the intended meaning of various
concepts underlying CAsL, as already hinted at in Chap. 2, and further intro-
duced and discussed throughout the summary.

The key concepts here are that of CasL signature, model and formula,
together with the satisfaction relation between models and formulas over a
common signature. In fact, these are variants of the standard algebraic and
logical notions, thus linking work on CAsL to well-established mathematical
theories and ideas.



10 Foundations 127

In a more or less standard way, we use these concepts to build the semantic
domains which the meanings of phrases in various syntactic categories of CAsL
inhabit. We have chosen to give the semantics in the form of so-called natural
semantics, with formal deduction rules to derive judgments concerning the
meaning of each CAsL phrase from the meanings of its constituent parts. Not
only is this a mathematically well-established formalism with an unambiguous
interpretation, but we also hope that this makes the semantics itself more
readable, with details easier to follow than in some other approaches.

The overall semantics of CASL consists of two parts. The static semantics
captures a form of static analysis of CASL specifications, in which they are
checked for well-formedness — for example, that axioms are well-typed, and
references to named entities are in scope. Then the model semantics takes a
well-formed CAsL specification and assigns a model-theoretic meaning to it.

Casr specifications denote classes of models.

In Casr, well-formed specifications denote signatures (static semantics)
and classes of models (model semantics). Basic specifications, which in essence
present a signature and a set of axioms over this signature, denote the class
of models that satisfy all the axioms. The semantics of basic specifications is
split into two parts: first many-sorted basic specifications are described and
then features for defining and using subsorts are added.

The semantics s largely institution-independent.

A few more concepts are needed to explain the semantics of structured
specifications. Key here is the notion of signature morphism, and the model
reducts and translation of sentences that signature morphisms induce. Having
introduced those, we obtain the institution [23] of CasL, that is, the under-
lying logical system of CAsSL equipped with extra structure to capture ways
of moving between signatures linked by signature morphisms. One important
point of the semantics is that all the layers of the semantics “above” basic
specifications are institution-independent, i.e., well-defined for any institution
chosen to build basic specifications (as long as the institution comes with a bit
of extra structure concerned with forming unions of signatures and defining
signature morphisms).

Next, we have the semantics of architectural specifications, which relies
on a formal counterpart of the concept of a unit (module) of a system to be
developed: self-contained units are viewed simply as models of the underly-
ing institution, and parametrized units as functions mapping such parameter
models to result models. Architectural specifications provide a way of speci-
fying the component units of a system and indicating how the overall system



128 10 Foundations

is built by putting these units together. This intuition is captured by the se-
mantics of architectural specifications, which denote a class of permitted unit
bindings and a function that maps each such environment to a result unit.

Finally, the libraries layer of CASL is given a rather standard description
with libraries modeled as environments giving names to the entities introduced
(specifications, architectural specifications, etc.).

The semantics is the ultimate reference for the meanings of all CASL
constructs.

Overall, the formal mathematical semantics is crucial in the understanding
of CasL specifications. It provides their unambiguous meaning, and thus gives
the ultimate reference point for all questions concerning the interpretation of
any CAsL phrase in any context.

We have already experienced how important such a formal semantics may
be in the design of CAsL itself. In many cases, the intended semantics was
prominent in internal discussions on the details of the constructs under con-
sideration, and provided guidelines for many choices in the design of CASL.
Indeed, the concrete syntax of CAsL was designed only after the semantics
was settled.

Proof systems for various layers of CASL are provided.

The semantics is also a necessary prerequisite for the development of mech-
anisms for formal reasoning about CAsL specifications. This is the role of proof
calculi that support reasoning about the various layers of CAsL. The starting
point is a formal system of deduction rules which determines a proof-theoretic
counterpart of the consequence relation between sets of formulas, thus provid-
ing a way for deriving consequences of sets of axioms in CASL specifications.
This is then extended to systems of rules for deriving consequences of struc-
tured specifications and for proving inclusions between classes of models of
such specifications. These systems are also used in rules for formal verification
of the internal correctness of system designs as captured by architectural spec-
ifications. For all these systems, their soundness is proved and completeness
discussed by reference to the formal semantics of CAsL.

One point of interest is that, again, the extension of the basic proof system
for consequences between sets of formulas to structured and architectural
specifications does not really rely on the specifics of the underlying institution,
but just reflects the way in which the structuring and architectural constructs
are defined for an arbitrary institution.



10 Foundations 129

The foundations of our CASL are rock-solid!

All this work on the mathematical underpinnings of CasL and related
specification and development methodology, as documented in the Reference
Manual, should make it exceptionally trustworthy — at least in the sense that
it provides a formal point of reference against which all the claims may (and
should) be checked.





