
13

Case Study: The Steam-Boiler Control System

In this chapter we illustrate the use of CASL on a fairly large and complex case
study, the steam-boiler control system. This case study is particularly interest-
ing since it has been used several times as a competition problem, and many
other specification frameworks have been illustrated with it, see [1]. Here we
describe how to derive a CASL specification of the steam-boiler control system,
starting from the informal requirements provided to the participants of the
Dagstuhl meeting Methods for Semantics and Specification, organized jointly
by Jean-Raymond Abrial, Egon Börger and Hans Langmaack in June 1995.
The aim of this formalization process is to analyze the informal requirements,
to detect inconsistencies and loose ends, and to translate the requirements into
a CASL specification. During this process we have to provide interpretations
for the unclear or missing parts. We explain how we can keep track of these
additional interpretations by localizing very precisely in the formal specifica-
tion where they lead to specific axioms, thereby taking care of the traceability
issues. We also explain how the CASL specification is obtained in a stepwise
way by successive analysis of various parts of the problem description. Finally
we discuss the validation of the CASL requirements specification resulting from
the formalization process, and in a last step we refine the requirements specifi-
cation in a sequence of architectural specifications that describe the intended
architecture of the steam-boiler control system.1

The reader not already familiar with the steam-boiler control system
case study may want to start by reading App. C, where the original
description of the problem is reproduced.

1 This chapter partially relies on an earlier work published in [8] where the Pluss
specification language [7, 9] was used together with the Larch prover [25]. How-
ever, the specification methodology illustrated in this chapter is significantly im-
proved, and moreover CASL provides several features that lead to a much more
concise and perspicuous specification, as illustrated later in this chapter.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 155–190, 2004.
c© IFIP International Federation for Information Processing 2004

156 13 Case Study: The Steam-Boiler Control System

13.1 Introduction

The aim of this chapter is to illustrate how one can solve the steam-boiler
control specification problem with CASL. For this we have to provide a CASL

specification of the software system that controls the level of water in the
steam-boiler. Our work plan can be described as follows:

1. The main task is to derive, starting from the informal requirements, a
requirements specification, written in CASL, of the steam-boiler control
system. In particular, this task involves the following activities:
a) We must perform an in-depth analysis of the informal requirements.

Obviously, this is necessary to gain a sufficient understanding of the
problem to be specified, and this preliminary task may not seem worth
mentioning. Let us stress, however, that the kind of preliminary anal-
ysis required for writing a formal specification proves especially useful
to detect discrepancies in the informal requirements that would other-
wise be very difficult to detect. Indeed, from our practical experience,
this step is usually very fruitful from an engineering point of view,
and one could argue that the benefits to be expected here are enough
in themselves to justify the use of formal methods, even if for lack of
time (or other resources) no full formal development of the system is
performed.

b) Once we have a sufficient understanding of the problem to be specified,
we must translate the informal requirements into a formal specifica-
tion. This step will require us to provide interpretations for the unclear
or missing parts of the informal requirements. Moreover, this formal-
ization process will also be helpful to further detect inconsistencies
and loose ends in the informal requirements. Here, a very important
issue is to keep track of the interpretations made during the formaliza-
tion process, in order to be able, later on, to take into account further
modifications and changes of the informal requirements.

c) When we have written the formal requirements specification, we must
carefully check its adequacy with respect to the informal requirements:
this part is called the validation of the formal specification.

In principle there should be some interaction between the specification
team and the team who has designed the informal requirements, in par-
ticular to check whether the suggested interpretations of the detected
loose ends are adequate. In the framework of this case study, however,
such interactions were not possible, and we can only use our intuition to
assess the soundness of the interpretations made during the writing of the
formal specification.

2. Once a validated requirements specification is obtained, we can proceed
toward a program by a sequence of refinements. Here a crucial step is the
choice of an architecture of the desired implementation, expressed by an
architectural specification as explained in Chap. 8. Each refinement step

13.2 Getting Started 157

leads to proof obligations which allow the correctness of the performed
refinement to be assessed. In a last step, a program is derived from the
final design specification.

Before starting to explain how to write a CASL requirements specification
of the steam-boiler control system, let us make a few comments on this case
study. First, note that, although in principle a hybrid system, the steam-boiler
control system turns out to be merely a reactive system, not even a ‘hard real-
time’ system (see e.g. the assumptions made in App. C.3). Moreover, even if
the whole system, i.e., the control program and its physical environment is
distributed, this is not the case, at least at the requirements level, for the
steam-boiler control system. CASL turns out to be especially well-suited to
capture the features of systems like the steam-boiler control system, where
data and control are equally important (in particular, here data play a promi-
nent role in failure detection). The various constructs provided by CASL allow
the specifications to be formulated straightforwardly and perspicuously – and
significantly more concisely than in other algebraic specification languages.

As a last remark we must make clear that for the sake of simplicity the
initialization phase of the steam-boiler control system (see App. C.4.1) is
not specified. However, it should be clear that it would be straightforward to
extend our specification so as to take the initialization phase into account,
following exactly the same methodology as for the rest of the case study.

This chapter is organized as follows. In Sect. 13.2 we start by providing
some elementary specifications that will be useful for the rest of the case
study. In Sect. 13.3 we explain how we will proceed to derive the CASL re-
quirements specification in a stepwise way. Then in Sect. 13.4 we detail the
specification of the mode of operation of the steam-boiler control system. In
Sect. 13.5 we specify the detection of the various equipment failures, and in
Sect. 13.6 we explain how we can compute, at each cycle, some predicted val-
ues for the messages to be received at the next cycle. In Sect. 13.9 we explain
how our CASL requirements specification can be validated, and in Sect. 13.10
we refine the CASL requirements specification in a sequence of architectural
specifications that describe the intended architecture of the implementation
of the steam-boiler control system.

13.2 Getting Started

As explained in App. C.3, in each cycle the steam-boiler control system collects
the messages received, performs some analysis of the information contained
in them, and then sends messages to the physical units. We will therefore
start with the specification of some elementary datatypes, such as “messages
received” and “messages sent”. To specify the messages sent and received, we
follow App. C.5 and C.6. Note that some messages have parameters (e.g. pump
number, pump state, pump controller state, mode of operation), and we must

158 13 Case Study: The Steam-Boiler Control System

therefore specify the corresponding datatypes as well. For the sake of clarity,
we group together all similar messages (e.g. all “repaired” messages, all “fail-
ure acknowledgement” messages) by introducing a suitable parameter “physi-
cal unit”. A physical unit is either a pump, a pump controller, the water level
measuring device or the steam output measuring device. Remember that we
do not specify the physical units as such, since we do not specify the physical
environment of the steam-boiler (we do not specify the steam-boiler either,
we only specify the steam-boiler control system). Hence the datatype “physi-
cal unit” is just an elementary datatype that says that we have some pumps,
some pump controllers, and the two measuring devices.

Some messages have a value v as parameter. From the informal require-
ments we can infer that these values are (approximations of) real numbers,
but it is not necessary at this level to make any decision about the exact
specification of these values. In our case study, we will therefore rely on a
very abstract (loose) specification Value, introducing a sort Value together
with some operations and predicates, which are left unspecified (we expect
of course that these operations and predicates will have the intuitive inter-
pretation suggested by their names). This means that we consider Value as
being a general parameter of our specification.2 This point is discussed again
in Sect. 13.10. Note also that we will abstract from measuring units (such as
liter, liter/sec), since ensuring that these units are consistently used is a very
minor aspect of this particular case study.3

This first analysis leads to the following specifications: Value, Basics,
Messages Sent, and Messages Received.

from Basic/Numbers get Nat

%display half %LATEX /2

%display square %LATEX 2

spec Value =
%% At this level we don’t care about the exact specification of values.

Nat
then sorts Nat < Value

ops + : Value × Value → Value, assoc, comm , unit 0 ;
− : Value × Value → Value;
× : Value × Value → Value, assoc, comm , unit 1 ;

2 We leave Value as an implicit parameter of our specifications, rather than us-
ing generic specifications taking Value as a parameter, since our specifications
are not to be instantiated by argument specifications describing several kinds
of values, but on the contrary should all refer to the same abstract datatype of
values.

3 It is of course possible to take measuring units into account, following for instance
the method described in [18]. Appropriate CASL libraries supporting measuring
units are currently being developed.

13.2 Getting Started 159

/2 , 2 : Value → Value;
min, max : Value × Value → Value

preds < , ≤ : Value × Value
end

spec Basics =
free type PumpNumber ::= Pump1 | Pump2 | Pump3 | Pump4 ;
free type PumpState ::= Open | Closed ;
free type PumpControllerState ::= Flow | NoFlow ;
free type PhysicalUnit ::= Pump(PumpNumber)

| PumpController(PumpNumber)
| SteamOutput | WaterLevel ;

free type Mode ::= Initialization | Normal | Degraded
| Rescue | EmergencyStop;

end

spec Messages Sent =
Basics

then free type
S Message ::= MODE(Mode) | PROGRAM READY | VALVE

| OPEN PUMP(PumpNumber)
| CLOSE PUMP(PumpNumber)
| FAILURE DETECTION (PhysicalUnit)
| REPAIRED ACKNOWLEDGEMENT (PhysicalUnit);

end

spec Messages Received =
Basics and Value

then free type
R Message ::= STOP | STEAM BOILER WAITING

| PHYSICAL UNITS READY
| PUMP STATE(PumpNumber ; PumpState)
| PUMP CONTROLLER STATE(PumpNumber ;

PumpControllerState)
| LEVEL(Value) | STEAM (Value)
| REPAIRED(PhysicalUnit)
| FAILURE ACKNOWLEDGEMENT (PhysicalUnit)
| junk ;

end

In addition to the “messages received” specified in App. C.6, we add an
extra constant message junk . This message will represent any message received
which does not belong to the class of recognized messages. We do not add a
similar message to the messages sent, since we may assume that the steam-
boiler control system will only send proper messages. Obviously, receiving a

160 13 Case Study: The Steam-Boiler Control System

junk message will lead to the detection of a failure of the message transmission
system.

In the Sbcs Constants specification we describe the various constants
that characterize the steam-boiler (these constants are explained in App. C.2.6).

spec Sbcs Constants =
Value

then ops C , M1 , M2 , N1 , N2 , W , U1 , U2 , P : Value;
dt : Value %% Time duration between two cycles (5 sec.)

%% These constants must verify some obvious properties:

• 0 < M1 • M1 < N1 • N1 < N2 • N2 < M2 • M2 < C
• 0 < W • 0 < U1 • 0 < U2 • 0 < P

end

We will also specify the datatypes “set of messages received” and “set
of messages sent” since, as suggested at the end of App. C.3, all messages
are supposed to be received (or emitted) simultaneously at each cycle. The
two latter specifications are obtained by instantiation of a generic specifi-
cation Set of “sets of elements”, which is imported from the library Ba-
sic/StructuredDatatypes.

from Basic/StructuredDatatypes get Set

spec Preliminary =
Set [Messages Received fit Elem �→ R Message]

and Set [Messages Sent fit Elem �→ S Message]
and Sbcs Constants
end

♥ As illustrated by the above specifications, it is particularly conve-
nient to structure our formal specification into coherent, easy to grasp,
named specifications that will be easily reused later on by referring to
their names (and this of course will prove even more important in
the sequel). Moreover, free datatypes are especially useful here to ob-
tain concise specifications. On the other hand, loose specifications are
useful to avoid overspecification of values in Value and of the steam-
boiler constants in Sbcs Constants. Declaring that Nat is a subsort
of Value ensures that natural numbers can be used as arguments of op-
erations on values. Reusing standard specifications of usual datatypes
from the Basic libraries avoids the need to specify them again, and
of course it is essential that these specifications are generic in order
to easily adapt them as desired when they are reused. Finally, display
annotations are useful to conveniently display some symbols as usual
mathematical symbols.4 ♥

4 In this chapter, metacomments about the adequacy of CASL features will be
highlighted like this.

13.3 Carrying On 161

13.3 Carrying On

As emphasized in App. C.3, the steam-boiler control system is a typical ex-
ample of a control-command system. The specification of such systems always
follows the same pattern:

• A preliminary set of specifications group all the basic information about
the system to be controlled, such as the specification of the various mes-
sages to be exchanged between the system and its environment, and the
specification of the various constants related to the system of interest.
This is indeed the aim of the specification Preliminary introduced in
the previous section.

• Then, the various states of the control system should be described. At this
stage, however, it would be much too early to determine which state vari-
ables are needed. Thus states will be represented by values of a (loosely
specified) sort State, equipped with some observers (corresponding to ac-
cess to state variables). During the requirements analysis and formalization
phase we may need further observers, to be introduced on a by-need basis.

• Then a (group of) specification(s) will take care of the analysis of the
messages received – here, of failure detection in particular. On the basis of
this analysis, some actions should be taken, corresponding to the messages
to be sent to the environment. State variables are also updated according
to the result of the analysis of the messages received and to the messages
to be sent.

• Finally a specification describes the overall control-command system as a
labeled transition system.

A very rough preliminary sketch of the steam-boiler control system speci-
fication looks therefore as follows:

library Sbcs
from Basic/Numbers get Nat
from Basic/StructuredDatatypes get Set
%display half %LATEX /2

%display square %LATEX 2

...
spec Preliminary = %{ See previous section. }%

spec Sbcs State =
Preliminary

then sort State
ops %% Needed state observers are introduced here.

%% E.g., we need an observer for the mode of operation:

mode : State → Mode;
. . .

end

162 13 Case Study: The Steam-Boiler Control System

spec Sbcs Analysis =
Sbcs State

then %% Analysis of messages received and in particular failure detection.

%% Computation of the messages to be sent.

op messages to send : State × Set [R Message] → Set [S Message];
%% Computation of the updates of the state variables.
%{ For each observer obs defined in Sbcs State,

we introduce an operation next obs that computes the
corresponding update according to the analysis of the messages
received in this round. For instance, we specify here an operation
next mode corresponding to the update of the observer mode. }%

ops next mode : State × Set [R Message] → Mode;
. . .

end

spec Steam Boiler Control System =
Sbcs Analysis

then op init : State
pred is step : State × Set [R Message] × Set [S Message] × State
%% Specification of the initial state init by means of the observers, e.g:

• mode(init) = . . .
• . . .
%{ Specification of is step by means of the observers

and of the updating operations, e.g.: }%

∀s , s ′ : State; msgs : Set [R Message]; Smsg : Set [S Message]
• is step(s ,msgs ,Smsg, s ′) ⇔

mode(s ′) = next mode(s ,msgs) ∧ . . . ∧
Smsg = messages to send(s ,msgs)

then %% Specification of the reachable states:

free { pred reach : State
∀s , s ′ : State; msgs : Set [R Message]; Smsg : Set [S Message]
• reach(init)
• reach(s) ∧ is step(s ,msgs ,Smsg, s ′) ⇒ reach(s ′) }

end

Of course the specification Sbcs Analysis is likely to be further struc-
tured into smaller pieces of specifications. Indeed, since the informal require-
ments are too complex to be handled as a whole, we will therefore succes-
sively concentrate on various parts of them. The study and formalization of
each chunk of requirements will lead to specifications that will later on be put
together to obtain the Sbcs Analysis specification. As already pointed out,
it is likely that when analyzing a chunk of requirements we will discover the
need for new observers on states (i.e., new state variables). This means that
the specification Sbcs State will be subject to iterated extensions where we
introduce the new observers that are needed.

13.4 Specifying the Mode of Operation 163

For instance, in App. C.6 it is explained that when the STOP mes-
sage has been received three times in a row, the program must go into the
EmergencyStop mode. We need therefore an observer (i.e., a state variable) to
record the number of times we have successively received the STOP message.
So in the sequel we will start from the following specification of states:

spec Sbcs State 1 =
Preliminary

then sort State
ops mode : State → Mode;

numSTOP : State → Nat
end

Introducing the new observer numSTOP means that we will have to spec-
ify a corresponding next numSTOP operation in the Sbcs Analysis specifi-
cation.

♥ Let us insist again on the importance of structuring our formal
specification into coherent, easy to grasp, named specifications that
will be easy to reuse later on by referring to their names. As explained
above it is moreover essential to rely on a loose specification of states
so that we can introduce later on as many observers as needed. Using
a predicate (such as is step) to describe a labeled transition system is
quite convenient here, and provides us with an elegant way of handling
both input and output for each transition. Finally, it is essential to
use a free constraint to specify the reachable states, and thus we need
to combine parts with a loose interpretation and parts with an initial
interpretation in the same specification. ♥

13.4 Specifying the Mode of Operation

Our next step is the specification of the various operating modes in which the
steam-boiler control system operates. (As explained in Sect. 13.1 we do not
take into account the Initialization mode in this specification.) According to
App. C.4, the operating mode of the steam-boiler control system depends on
which failures have been detected (see e.g. “all physical units [are] operating
correctly”, “a failure of the water level measuring unit”, “detection of an
erroneous transmission”). It depends also on the expected evolution of the
water level (see “If the water level is risking to reach. . . ”).

We will therefore assume that the specification Sbcs Analysis will pro-
vide the following predicates which, given a known state and newly received
messages, should reflect the failures detected by the steam-boiler control sys-
tem:5

5 It is important to make a subtle distinction between the actual failures, about
which we basically know nothing, and the failures detected by the steam-boiler

164 13 Case Study: The Steam-Boiler Control System

• Transmission OK : State × Set [R Message]
should hold iff we rely on the message transmission system,

• PU OK : State × Set [R Message] × PhysicalUnit
should hold iff we rely on the corresponding physical unit,

• DangerousWaterLevel : State × Set [R Message]
should hold iff we estimate that the water level risks reaching the min
(M1) or max (M2) limits.

However, at this stage our understanding of the steam-boiler control system is
still quite preliminary, and it is therefore too early to attempt to specify these
predicates. Therefore, our specification Mode Evolution, where we specify
the new operating mode according to the previous one and the newly received
messages (i.e., the operation next mode), will be made generic w.r.t. these
predicates. Let us emphasize that here genericity is used to ensure a loose
coupling between the current specification of interest, Mode Evolution,
and other specifications expected to provide the needed predicates.

Let us now explain how to specify the new mode of operation. At first
glance the informal requirements (see App. C.4) look quite complicated,
mainly because they explain, for each operating mode, under which condi-
tions the steam-boiler control system should stay in the same operating mode
or switch to another one. However, things get simpler if we analyze under
which conditions the next mode is one of the specified operating modes. In
particular, a careful analysis of the requirements shows that, except for switch-
ing to the EmergencyStop mode, we can determine the new operating mode
(after receiving some messages) without even taking into account the previous
one.

To improve the legibility of our specification it is better to introduce some
auxiliary predicates (Everything OK , AskedToStop, SystemStillControllable,
and Emergency) that will facilitate the characterization of the conditions un-
der which the system switches from one mode to another:

• The aim of the predicate Everything OK is to express that we believe that
all physical units are operating correctly, including the message transmis-
sion system.

• The aim of the predicate AskedToStop is to determine if we have received
the STOP message three times in a row.

• The aim of the predicate SystemStillControllable is to characterize the con-
ditions under which the steam-boiler control system will operate in Rescue
mode. Let us point out that the corresponding part of the informal require-
ments (see App. C.4.4) is not totally clear, in particular the exact meaning
of the sentence “if one can rely upon the information which comes from the
units for controlling the pumps”. There is a double ambiguity here: on the
one hand it is unclear whether “the pumps” means “all pumps” or “at least

control system. The behavior of the steam-boiler control system is induced by the
failures detected, whatever the actual failures are.

13.4 Specifying the Mode of Operation 165

one pump”; on the other hand there are two ways of “controlling” each
pump (the information sent by the pump and the information sent by the
pump controller), and it is unclear whether “controlling” refers to both of
them or only to the pump controller. Our interpretation will be as follows:
we consider it is enough that at least one pump is “correctly working”,
and for us correctly working will mean we rely on both the pump and the
associated pump controller. As with all interpretations made during the
formalization process, we should in principle interact with the designers of
the informal requirements in order to clarify what was the exact intended
meaning and to check that our interpretation is adequate. The important
point is that our interpretation is entirely localized in the axiomatization
of SystemStillControllable, and it will therefore be fairly easy to change
our specification in case of misinterpretation.

• The aim of the predicate Emergency is to characterize when we should
switch to the EmergencyStop mode. In App. C.4.2, it is said that the
steam-boiler control system should switch from Normal mode to Rescue
mode as soon as a failure of the water level measuring unit is detected.
However, in App. C.4.4, it is explained that the steam-boiler control system
can only operate in Rescue mode if some additional conditions hold (rep-
resented by our predicate SystemStillControllable). We decide therefore
that when in Normal mode, if a failure of the water level measuring unit
is detected, the steam-boiler control system will switch to Rescue mode
only if SystemStillControllable holds, otherwise it will switch (directly) to
EmergencyStop mode.6

The axiomatization of the next mode of operation is now both simple and
clear, as illustrated by the Mode Evolution specification.7

spec Mode Evolution
[preds Transmission OK : State × Set [R Message];

PU OK : State × Set [R Message] × PhysicalUnit ;
DangerousWaterLevel : State × Set [R Message]]

given Sbcs State 1 =
local %% Auxiliary predicates to structure the specification of next mode.

6 If our interpretation is incorrect, then in some cases we may have replaced
a sequence Normal → Rescue → EmergencyStop by a sequence Normal →
EmergencyStop. Note that a sequence Normal → Rescue → Normal or Degraded
is not possible since several cycles are necessary between a failure detection and
the decision that the corresponding unit is again fully operational, see Sect. 13.5,
i.e., we must have a sequence of the form Normal → Rescue → . . . → Rescue →
Normal or Degraded in such cases.

7 Note that once in the EmergencyStop mode, we specify that we stay in this mode
forever, rather than specifying that the steam-boiler control system actually stops.
Note also that we realize that the operation next numSTOP is better specified
in this Mode Evolution specification.

166 13 Case Study: The Steam-Boiler Control System

preds Everything OK , AskedToStop, SystemStillControllable,
Emergency : State × Set [R Message]

∀s : State; msgs : Set [R Message]
• Everything OK (s ,msgs) ⇔

(Transmission OK (s ,msgs) ∧
(∀pu : PhysicalUnit • PU OK (s ,msgs , pu)))

• AskedToStop(s ,msgs) ⇔ numSTOP(s) = 2 ∧ STOP ε msgs
• SystemStillControllable(s ,msgs) ⇔

(PU OK (s ,msgs ,SteamOutput) ∧
(∃pn : PumpNumber • PU OK (s ,msgs ,Pump(pn))

∧ PU OK (s ,msgs ,PumpController(pn))))
• Emergency(s ,msgs) ⇔

(mode(s) = EmergencyStop ∨
AskedToStop(s ,msgs) ∨
¬Transmission OK (s ,msgs) ∨
DangerousWaterLevel(s ,msgs) ∨
(¬PU OK (s ,msgs ,WaterLevel) ∧
¬ SystemStillControllable(s ,msgs)))

within ops next mode : State × Set [R Message] → Mode;
next numSTOP : State × Set [R Message] → Nat

∀s : State; msgs : Set [R Message]
%% Emergency stop mode:

• Emergency(s ,msgs) ⇒ next mode(s ,msgs) = EmergencyStop
%% Normal mode:

• ¬Emergency(s ,msgs) ∧
Everything OK (s ,msgs) ⇒ next mode(s ,msgs) = Normal

%% Degraded mode:

• ¬Emergency(s ,msgs) ∧
¬Everything OK (s ,msgs) ∧
PU OK (s ,msgs ,WaterLevel) ∧
Transmission OK (s ,msgs) ⇒ next mode(s ,msgs) = Degraded

%% Rescue mode:

• ¬Emergency(s ,msgs) ∧
¬PU OK (s ,msgs ,WaterLevel) ∧
SystemStillControllable(s ,msgs) ∧
Transmission OK (s ,msgs) ⇒ next mode(s ,msgs) = Rescue

%% next numSTOP :

• next numSTOP(s ,msgs) = numSTOP(s) + 1 when STOP ε msgs
else 0

end

In the next step of our formalization process, we will specify the predicates
assumed by Mode Evolution, which amounts to specifying the detection
of equipment failures. This will be the topic of the next section.

13.5 Specifying the Detection of Equipment Failures 167

♥ Two essential features of CASL have been used in the specification
Mode Evolution. On the one hand, the use of a generic specification
(with imports) ensures loose coupling of the current specification of
interest with the rest of the steam-boiler control system specification.
On the other hand, auxiliary predicates improve the legibility of the
specification, and declaring them in the local part of the specification
ensures they are hidden and therefore not exported. ♥

13.5 Specifying the Detection of Equipment Failures

The detection of equipment failures is described in App. C.7. It is quite clear
that this detection is the most difficult part to formalize, mainly because
both our intuition and the requirements (see e.g. “knows from elsewhere”,
“incompatible with the dynamics”) suggest that we should take into account
some inter-dependencies when detecting the various possible failures.

For instance, if we ask a pump to stop, and if in the next cycle the pump
state still indicates that the pump is open, we may in principle infer either
a failure of the message transmission system (e.g. the stop order was not
properly sent or was not received, or the message indicating the pump state
has been corrupted) or a failure of the pump (which was not able to execute
the stop order or which sends incorrect state messages). Our understanding
of the requirements is that in such a case we must conclude there has been
a failure of the pump, not of the message transmission system. Let us stress
again that it is important to distinguish between the actual failures of the
various pieces of equipment, and the diagnosis we will make. Only the latter
is relevant in our specification.

13.5.1 Understanding the Detection of Equipment Failures

Before starting to specify the detection of equipment failures, we must proceed
to a careful analysis of App. C.7, in order to clarify the inter-dependencies
mentioned above. Only then will we be able to understand how to structure
our specification of this crucial part of the problem.

A first rough analysis of the part of App. C.7 devoted to the description of
potential failures of the physical units (i.e. of the pumps, the pump controllers
and the two measuring devices) shows that these failures are detected on
the basis of the information contained in the messages received: we must
check that the received values are in accordance with some expected values
(according to the history of the system, i.e. according to the “dynamics of
the system” and to the messages previously sent by the steam-boiler control
system). In particular, the detection of failures of the physical units relies on
the fact that we have effectively received the necessary messages. If we have
not received these messages, then we should conclude there has been a failure
of the message transmission system (see below), and in these cases (see the

168 13 Case Study: The Steam-Boiler Control System

Mode Evolution specification), the steam-boiler control system switches
to the EmergencyStop mode. The further detection of failures of the physical
units (in addition to the already detected failure of the message transmission
system) is therefore irrelevant in such cases.

Let us now consider the message transmission system. The description of
potential failures of the message transmission system in App. C.7 is quite
short. Basically, it tells us that we should check that the steam-boiler con-
trol system has received all the messages it was expecting, and that none of
the messages received is aberrant. However, it is important to note that the
involved analysis of the messages received combines two aspects: on the one
hand, there is some ‘static’ analysis of the messages received in order to check
that all messages that must be present in each transmission are effectively
present (see App. C.6). These messages are exactly the messages required to
proceed to the detection of the failures of the physical units. On the other
hand, the steam-boiler control system expects to receive (or, on the contrary,
not to receive) some specific messages according to the history of the system
(for instance, the steam-boiler control system expects to receive a “failure
acknowledgement” from a physical unit once it has detected a corresponding
failure and sent a “failure” message to this unit, but not before), and here some
‘dynamic’ analysis is required. Obviously, the static analysis of the messages
can be made on the basis of the messages received only, while the dynamic
analysis must take into account, in addition to the messages received, the his-
tory of the system, and more precisely the history of the failures detected so
far and of the “failure acknowledgement” and “repaired” messages received
so far.

From this first analysis we draw the following conclusions on how to specify
the detection of equipment failures:

1. In a first step we should keep track of the failure status of the physical
units. This will lead to a new observer status on states, and to a specifica-
tion Status Evolution of how this status evolves, i.e., of a next status
operation.

2. Then we specify the detection of the message transmission system failures
(hence Transmission OK) in the specification Message Transmission
System Failure. As explained above, in a first step we take care of the
static analysis of the messages received, and then in a second step we take
care of the dynamic analysis of the messages received, using how we have
kept track of the “status” of the physical units, i.e., using the observer
status .

3. Then, for each physical unit, we specify the detection of its failures by
comparing the message received with the expected one. For this compari-
son we can freely assume that the static analysis of the messages received
has been successful, i.e., that the message sent by the physical unit has
been received.

The corresponding specifications are described in the next subsections.

13.5 Specifying the Detection of Equipment Failures 169

13.5.2 Keeping Track of the Status of the Physical Units

Remember that to perform the dynamic analysis of the messages received, as
explained above, we must check that we receive “failure acknowledgement”
and “repaired” messages when appropriate. In order to do this, we must keep
track of the failures detected and of the “failure acknowledgement” and “re-
paired” messages received. Since the same reasoning applies for all physical
units, we can do the analysis in a generic way. For each physical unit, we
will keep track of its status, which can be either OK , FailureWithoutAck or
FailureWithAck . The status of a physical unit will then be updated accord-
ingly to the detection of failures, and receipt of “failure acknowledgement”
and “repaired” messages.

Thus, in a first step we should extend the specification Sbcs State 1 to
add an observer related to the failure status of physical units:

spec Sbcs State 2 =
Sbcs State 1

then free type Status ::= OK | FailureWithoutAck | FailureWithAck
op status : State × PhysicalUnit → Status ;

end

Now the specification of how the status of a physical unit evolves, i.e.,
of the operation next status in Status Evolution, is quite straightforward.
We rely again on the predicate PU OK .8

spec Status Evolution
[pred PU OK : State × Set [R Message] × PhysicalUnit]
given Sbcs State 2 =
op next status : State × Set [R Message] × PhysicalUnit → Status
∀s : State; msgs : Set [R Message]; pu : PhysicalUnit
• status(s , pu) = OK ∧ PU OK (s ,msgs , pu)

⇒ next status(s ,msgs , pu) = OK
• status(s , pu) = OK ∧ ¬PU OK (s ,msgs , pu)

⇒ next status(s ,msgs , pu) = FailureWithoutAck
• status(s , pu) = FailureWithoutAck ∧

FAILURE ACKNOWLEDGEMENT (pu) ε msgs
⇒ next status(s ,msgs , pu) = FailureWithAck

• status(s , pu) = FailureWithoutAck ∧
¬ (FAILURE ACKNOWLEDGEMENT (pu) ε msgs)

⇒ next status(s ,msgs , pu) = FailureWithoutAck

8 The reader may detect that the specification Status Evolution is not com-
pletely correct. However, we prefer to give here the text of the specification as
it was originally written, and we will explain in Sect. 13.9 how we detect, when
validating the specification of the steam-boiler control system, that something is
not correct, and how the problem can be fixed.

170 13 Case Study: The Steam-Boiler Control System

• status(s , pu) = FailureWithAck ∧ REPAIRED(pu) ε msgs
⇒ next status(s ,msgs , pu) = OK

• status(s , pu) = FailureWithAck ∧ ¬ (REPAIRED(pu) ε msgs)
⇒ next status(s ,msgs , pu) = FailureWithAck

end

♥ Here again we rely on a generic specification with imports to en-
sure loose coupling. As claimed earlier, the loose specification of states
makes it easy to introduce further observers (hence further state vari-
ables). ♥

13.5.3 Detection of the Message Transmission System Failures

As explained above, we first specify the static analysis of the messages re-
ceived, and then we specify the dynamic analysis of these messages.

To specify the static analysis of messages, it is necessary to check that all
“indispensable” messages are present. In addition, a set of messages received
is “acceptable” if there are no “duplicated” messages in this set. Since we have
specified the collection of messages received as a set, we cannot have several
occurrences of exactly the same message in this set. (Note that this means
that our choice of using “sets” instead of “bags”, for instance, is therefore not
totally innocent: either we assume that receiving several occurrences of exactly
the same message will never happen, and this is an assumption about the
environment, or we assume that this case should not lead to the detection of
a failure of the message transmission system, and this is an assumption about
the requirements.) However, specifying the collection of messages received as
a set does not imply that a set of messages received cannot contain several
LEVEL(v) messages, with distinct values (for instance). Hence we must check
this explicitly.

Remember that receiving “unknown” messages (i.e., messages that do not
belong to the list of messages as specified in App. C.6) is taken into account via
the extra constant junk message (see the specification Messages Received).
Another erroneous situation is when we simultaneously receive a failure ac-
knowledgement and a repaired message for the same physical unit, i.e., that
at least one cycle is needed between acknowledging the failure and repairing
the unit. We will check this as well.9

We focus now on the dynamic analysis of the messages received. As ex-
plained above, to perform this dynamic analysis, we check that we receive
“failure acknowledgement” and “repaired” messages when appropriate, ac-
cording to the current status of each physical unit. We understand that for
9 We must confess that this belief is induced by our intuition about the behavior

of the system. Indeed nothing in the requirements allows us to make either this
interpretation or the opposite one. Although not essential, this assumption will
simplify the axiomatization.

13.5 Specifying the Detection of Equipment Failures 171

each failure signaled by the steam-boiler control system, the corresponding
physical unit will send just one failure acknowledgement. Moreover, we will
specify the steam-boiler control system in such a way that when it receives
a “repaired” message, the steam-boiler control system acknowledges it imme-
diately. Hence, if there is no problem with the message transmission system,
and due to the fact that transmission time can be neglected, the steam-boiler
control system must in principle receive only one repaired message for a given
failure. Note that this does not contradict the “until. . . ” part of the sen-
tences describing the “repaired” messages in the informal requirements (see
App. C.6). To summarize, we consider that we have received an unexpected
message when:

• the program receives initialization messages but is no longer in initializa-
tion mode; or

• the program receives for some physical unit a “failure acknowledgement”
without having previously sent the corresponding failure detection mes-
sage, or receives redundant failure acknowledgements; or

• the program receives for some physical unit a “repaired message”, but the
unit is OK or its failure is not yet acknowledged.

We now have all the ingredients required to specify the Transmission OK
predicate, taking into account both static and dynamic aspects, which leads
to the following Message Transmission System Failure specification.

spec Message Transmission System Failure =
Sbcs State 2

then local %% Static analysis:

pred is static OK : Set [R Message]
∀msgs : Set [R Message]
• msgs is static OK ⇔

(¬(junk ε msgs) ∧
(∃!v : Value • LEVEL(v) ε msgs) ∧
(∃!v : Value • STEAM (v) ε msgs) ∧
(∀pn : PumpNumber • ∃!ps : PumpState •

PUMP STATE(pn, ps) ε msgs) ∧
(∀pn : PumpNumber • ∃!pcs : PumpControllerState •

PUMP CONTROLLER STATE(pn, pcs) ε msgs) ∧
(∀pu : PhysicalUnit •

¬ (FAILURE ACKNOWLEDGEMENT (pu) ε msgs
∧ REPAIRED(pu) ε msgs)))

%% Dynamic analysis:

pred is NOT dynamic OK for : Set [R Message] × State

172 13 Case Study: The Steam-Boiler Control System

∀s : State; msgs : Set [R Message]
• msgs is NOT dynamic OK for s ⇔

((¬(mode(s) = Initialization) ∧
(STEAM BOILER WAITING ε msgs ∨

PHYSICAL UNITS READY ε msgs))
∨ (∃pu : PhysicalUnit •

FAILURE ACKNOWLEDGEMENT (pu) ε msgs ∧
(status(s , pu) = OK ∨ status(s , pu) = FailureWithAck))

∨ (∃pu : PhysicalUnit •
REPAIRED(pu) ε msgs ∧
(status(s , pu) = OK ∨ status(s , pu) = FailureWithoutAck)))

within
pred Transmission OK : State × Set [R Message]
∀s : State; msgs : Set [R Message]
• Transmission OK (s ,msgs) ⇔

(msgs is static OK ∧ ¬(msgs is NOT dynamic OK for s))
end

♥ Here again auxiliary predicates declared in the local part of the
specification are quite useful to improve the legibility of the specifica-
tion. Note also the use of nested quantifiers in axioms (‘∀’, ‘∃’ as well
as ‘∃!’) – without them the axioms would be much more intricate, or
further auxiliary operations would be needed. ♥

13.5.4 Detection of the Pump and Pump Controller Failures

We start by considering the detection of the failures of the pumps.
As explained in Sec 13.5.1, we rely on the predicted pump state message.

Thus, in a first step we should extend the specification Sbcs State 2 to
add an observer related to the prediction of pump state messages. The pre-
diction (Open or Closed) can however only be made when the status of the
corresponding pump is OK . This is why we extend the sort PumpState to
introduce a constant Unknown PS :

spec Sbcs State 3 =
Sbcs State 2

then free type ExtendedPumpState ::= sort PumpState | Unknown PS
op PS predicted : State × PumpNumber → ExtendedPumpState;
%{ status(s,Pump(pn)) = OK ⇔

¬ (PS predicted(s, pn) = Unknown PS) }%
end

The specification of the detection of pump failures is now straightforward
and is given in the Pump Failure specification. Remember that the meaning
of Pump OK is only relevant when Transmission OK holds, which in partic-
ular implies that for each pump, there is only one PUMP STATE message for

13.5 Specifying the Detection of Equipment Failures 173

it in msgs . Moreover, we check the received value only if the predicted value
is not Unknown PS .

spec Pump Failure =
Sbcs State 3

then pred Pump OK : State × Set [R Message] × PumpNumber
∀s : State; msgs : Set [R Message]; pn : PumpNumber
• Pump OK (s ,msgs , pn) ⇔

PS predicted(s , pn) = Unknown PS ∨
PUMP STATE(pn,PS predicted(s , pn) as PumpState) ε msgs

end

Let us now consider the detection of the failures of the pump controllers.
Again we rely on the predicted pump state controller message. Here, we must
be a bit careful in order to reflect the fact that stopping a pump has an
instantaneous effect, while starting it takes five seconds (see App. C.2.3).
Since five seconds is, unfortunately, exactly the elapsed time between two
cycles, when we decide to activate a pump we may have to wait two cycles to
receive a corresponding Flow pump controller state. This is why, in addition
to the constant Unknown PCS , used for the cases where no prediction can be
made since the pump controller is not working correctly, we also introduce a
constant SoonFlow to be used for the prediction related to a just activated
pump.

spec Sbcs State 4 =
Sbcs State 3

then free type
ExtendedPumpControllerState ::= sort PumpControllerState

| SoonFlow | Unknown PCS
op PCS predicted : State × PumpNumber

→ ExtendedPumpControllerState;
%{ status(s,PumpController(pn)) = OK ⇒

¬ (PCS predicted(s, pn) = Unknown PCS) }%

end

The specification of the detection of pump controller failures is now
straightforward and is given in the Pump Controller Failure specifica-
tion. Remember that the meaning of Pump Controller OK is only relevant
when Transmission OK holds, which in particular implies that for each pump,
there is only one PUMP CONTROLLER STATE message for it in msgs .
Moreover, we check the received value only if the predicted value is either
Flow or NoFlow , since if it is SoonFlow or Unknown PCS we cannot con-
clude.

174 13 Case Study: The Steam-Boiler Control System

spec Pump Controller Failure =
Sbcs State 4

then pred Pump Controller OK : State × Set [R Message]×PumpNumber
∀s : State; msgs : Set [R Message]; pn : PumpNumber
• Pump Controller OK (s ,msgs , pn) ⇔

PCS predicted(s , pn) = Unknown PCS
∨ PCS predicted(s , pn) = SoonFlow
∨ PUMP CONTROLLER STATE(pn,

PCS predicted(s , pn) as PumpControllerState) ε msgs
end

♥ In the above specifications, using supersorts to extend previously
defined datatypes is particularly convenient, and avoids the need to ex-
plicitly relate values of PumpState and values of ExtendedPumpState
(and similarly for PumpControllerState). Note the use of explicit cast-
ings in the axioms – in particular, the fact that predicates do not hold
on undefined arguments resulting from castings is used in the above
specifications. ♥

13.5.5 Detection of the Steam and Water Level Measurement
Device Failures

To specify the failures of the steam and water level measurement devices, we
must again rely on some predicted values. Here however we cannot predict
an exact value, but only an interval in which the received value should be
contained. This leads to the following extension of Sbcs State 4:

spec Sbcs State 5 =
Sbcs State 4

then free type Valpair ::= pair(low : Value; high : Value)
ops steam predicted , level predicted : State → Valpair ;
%{ low(steam predicted(s)) is the minimal steam output predicted,

high(steam predicted(s)) is the maximal steam output predicted,
and similarly for level predicted. }%

end

The specification of the failures of the measurement devices is again
straightforward and is given in the Steam Failure and Level Failure
specifications. Remember that the meaning of Steam OK (Level OK resp.) is
only relevant when Transmission OK holds, which in particular implies that
there is only one STEAM (v) (LEVEL(v) resp.) message in msgs (hence only
one possible v in the quantifications ∀v : Value . . . below). Note also that
here we assume that the predicted values will take care of the static limits (0
and W for the steam, 0 and C for the water level), thus we do not need to
check these static limits explicitly here.

13.5 Specifying the Detection of Equipment Failures 175

spec Steam Failure =
Sbcs State 5

then pred Steam OK : State × Set [R Message]
∀s : State; msgs : Set [R Message]
• Steam OK (s ,msgs) ⇔

(∀v : Value • STEAM (v) ε msgs ⇒
(low(steam predicted(s)) ≤ v) ∧
(v ≤ high(steam predicted(s))))

end

spec Level Failure =
Sbcs State 5

then pred Level OK : State × Set [R Message]
∀s : State; msgs : Set [R Message]
• Level OK (s ,msgs) ⇔

(∀v : Value • LEVEL(v) ε msgs ⇒
(low(level predicted(s)) ≤ v) ∧
(v ≤ high(level predicted(s))))

end

13.5.6 Summing Up

We now have all the ingredients necessary for the specification of the predi-
cate PU OK . This is done in the Failure Detection specification, which
integrates together all the specifications related to failure detection.

spec Failure Detection =
{ Message Transmission System Failure

and Pump Failure and Pump Controller Failure
and Steam Failure and Level Failure
then pred PU OK : State × Set [R Message] × PhysicalUnit

∀s : State; msgs : Set [R Message]; pn : PumpNumber
• PU OK (s ,msgs ,Pump(pn)) ⇔ Pump OK (s ,msgs , pn)
• PU OK (s ,msgs ,PumpController(pn)) ⇔

Pump Controller OK (s ,msgs , pn)
• PU OK (s ,msgs ,SteamOutput) ⇔ Steam OK (s ,msgs)
• PU OK (s ,msgs ,WaterLevel) ⇔ Level OK (s ,msgs)

} hide ops Pump OK , Pump Controller OK , Steam OK , Level OK
end

♥ In the above specification, we rely on explicit hiding of operations
that are no longer needed. Moreover, the ‘same name, same thing’
principle is essential here: each of the five specifications extended in
Failure Detection is itself an extension of some specification Sbcs
State i of states, but with the ‘same name, same thing’ principle we
get the effect that each of them extends Sbcs State 5. ♥

176 13 Case Study: The Steam-Boiler Control System

13.6 Predicting the Behavior of the Steam-Boiler

In the previous section we have explained that failure detection was to a large
extent based on a comparison between the messages received and the expected
ones. For this purpose we have extended the specification Sbcs State by sev-
eral observers, which means we have assumed that at each cycle, we record in
some state variables the information needed to compute the expected messages
at the next cycle. According to our explanations in Sect. 13.3, we must now
specify, for each observer obs introduced, a corresponding next obs operation.
This is the aim of this section.

We have already defined the operation next mode in the generic specifica-
tion Mode Evolution (see Sect. 13.4) and the operation next status in the
generic specification Status Evolution (see Sect. 13.5.2). Thus what is left
is the specification of the operations next PS predicted , next PCS predicted ,
next steam predicted and next level predicted .

As explained in Sect. 13.5, the informal requirements suggest that we
should take into account some inter-dependencies when predicting values to
be received at the next cycle. For instance, the water level in the steam-boiler
depends on how much steam is produced, but also on how much water is
poured into the steam boiler by the pumps which are open. The information
provided by the water level prediction is obviously crucial to decide whether
we should activate or stop some pumps. On the other hand, to predict the
pump state and pump controller state messages to be received at the next
cycle, we must know which pumps have been ordered to be activated or to be
stopped.

From this first analysis we draw the following conclusions on how to specify
the needed predictions:

1. In a first step we should predict the interval in which the steam output is
expected to stay during the next cycle: this prediction relies only on the
just received value STEAM (v) (if we trust it) or on the previously pre-
dicted values for the steam production. This is because the production of
steam is expected to vary according to its maximum gradients of increase
and decrease, and nothing else.

2. In the next step we should decide whether some pumps have to be ordered
to activate or to stop. This decision, plus the knowledge about the current
state of the pumps (as much as we trust it), and the predicted evolution
of the steam production, should allow us to predict the evolution of the
water level.

3. Then, on the basis of the current states of the pumps and pump controllers,
together with the choice of pumps to be activated or stopped, we can
predict the states of the pumps and of the pump controllers at the next
cycle.

Of course all these predictions are only meaningful as long as no failure of the
message transmission system has been detected (but if this is not the case the

13.6 Predicting the Behavior of the Steam-Boiler 177

steam-boiler control system switches to the EmergencyStop mode and stops,
so no predictions are needed anyway). The corresponding specifications are
described in the next subsections.

13.6.1 Predicting the Steam Output and the Water Level

To predict the intervals in which the steam output and the water level are
expected to stay during the next cycle, we will proceed as follows (taking into
account the “Additional Information” provided in [1, pp. 507–509]):

1. Following the analysis sketched above, when we are in the state s and
have received the messages msgs , to predict the interval in which the
steam output is expected to stay during the next cycle, we first should
compute the adjusted steam interval: this interval is either the (inter-
val reduced to the) received steam value if we can rely on it (i.e., if
PU OK (s ,msgs ,SteamOutput) holds), or the steam predicted interval
(stored in the state s at the previous cycle).

2. Then, we use the maximum gradients of increase and decrease (i.e., U1
and U2), to predict the interval in which the steam output is expected to
stay during the next cycle.

3. We proceed similarly for the water level: first we compute the adjusted level
interval, which is either the (interval reduced to the) received level value
if we can rely on it (i.e., if PU OK (s ,msgs ,WaterLevel) holds), or the
level predicted interval (stored in the state s at the previous cycle).

4. Then we should consider broken pumps (the pumps pn for which either
PU OK (s ,msgs ,Pump(pn)) does not hold or PU OK (s ,msgs ,Pump-
Controller(pn)) does not hold – or both) and the reliable pumps , which
are not broken and are therefore known to be either Open or Closed .

5. At this point we must decide which pumps are ordered to activate or to
stop.
However, the specific control strategy for deciding which pumps should be
activated or stopped need not to be detailed in this requirements specifica-
tion: this can be left to a further refinement towards an implementation of
the steam-boiler control system. (Obviously the strategy should compare
the adjusted level with the recommended interval (N1 ,N2) and decide
accordingly.)
We will therefore rely on a loosely specified chosen pumps operation, for
which we just impose some soundness conditions (e.g., a pump ordered to
activate should be currently considered as “reliable” and Closed , a pump
ordered to stop should be currently considered as “reliable” and Open).

6. Now we can compute the minimal and maximal amounts of water that
will be poured into the steam-boiler during the next cycle. To compute
minimal pumped water , we consider that only the pumps which are “re-
liable” and already Open will pour some water in; the broken pumps , the
pumps which are just ordered to activate, and the pumps which are or-
dered to stop are all considered not to be pouring water in. Similarly, to

178 13 Case Study: The Steam-Boiler Control System

compute maximal pumped water , we consider that the pumps which are
“reliable” and already Open, the pumps which are just ordered to acti-
vate, as well as all the broken pumps , may pour some water in; only the
“reliable” pumps just ordered to stop or already stopped are known not
to be pouring any water in.

7. Finally, we can predict the interval in which the water level is expected
to stay during the next cycle.

8. This prediction is the basis for deciding whether the water level risks to
reach a DangerousWaterLevel (i.e., below M1 or above M2).

Note that the intervals in which the steam output and the water level are
expected to stay during the next cycle are predicted without considering the
next status of these devices. This is indeed necessary for the Degraded and
Rescue operating modes. This leads to the following Steam And Level
Prediction specification.

spec Steam And Level Prediction =
Failure Detection and Set [sort PumpNumber]

then local
ops received steam : State × Set [R Message] → Value;

adjusted steam : State × Set [R Message] → Valpair ;
received level : State × Set [R Message] → Value;
adjusted level : State × Set [R Message] → Valpair ;
broken pumps : State × Set [R Message] → Set [PumpNumber];
reliable pumps :

State × Set [R Message] × PumpState → Set [PumpNumber]
∀s : State; msgs : Set [R Message]; pn : PumpNumber ; ps : PumpState
%% Axioms for STEAM:

• Transmission OK (s ,msgs) ⇒
STEAM (received steam(s ,msgs)) ε msgs

• adjusted steam(s ,msgs) =
pair(received steam(s ,msgs), received steam(s ,msgs))
when (Transmission OK (s ,msgs) ∧ PU OK (s ,msgs ,SteamOutput))
else steam predicted(s)

%% Axioms for LEVEL:

• Transmission OK (s ,msgs) ⇒
LEVEL(received level(s ,msgs)) ε msgs

• adjusted level(s ,msgs) =
pair(received level(s ,msgs), received level(s ,msgs))
when (Transmission OK (s ,msgs) ∧ PU OK (s ,msgs ,WaterLevel))
else level predicted(s)

%% Axioms for auxiliary pumps operations:

• pn ε broken pumps(s ,msgs) ⇔
¬ (PU OK (s ,msgs ,Pump(pn)) ∧

PU OK (s ,msgs ,PumpController(pn)))

13.6 Predicting the Behavior of the Steam-Boiler 179

• pn ε reliable pumps(s ,msgs , ps) ⇔
¬ (pn ε broken pumps(s ,msgs)) ∧
PUMP STATE(pn, ps) ε msgs

within
ops next steam predicted : State × Set [R Message] → Valpair ;

chosen pumps :
State×Set [R Message]×PumpState → Set [PumpNumber];

minimal pumped water ,maximal pumped water :
State × Set [R Message] → Value;

next level predicted : State × Set [R Message] → Valpair
pred DangerousWaterLevel : State × Set [R Message]
%% Axioms for STEAM:

∀s : State; msgs : Set [R Message]; pn : PumpNumber
• low(next steam predicted(s ,msgs)) =

max (0 , low(adjusted steam(s ,msgs)) − (U2 × dt))
• high(next steam predicted(s ,msgs)) =

min(W , high(adjusted steam(s ,msgs)) + (U1 × dt))
%% Axioms for PUMPS:

• pn ε chosen pumps(s ,msgs ,Open) ⇒
pn ε reliable pumps(s ,msgs ,Closed)

• pn ε chosen pumps(s ,msgs ,Closed) ⇒
pn ε reliable pumps(s ,msgs ,Open)

• minimal pumped water(s ,msgs) =
dt × P × �(reliable pumps(s ,msgs ,Open)

− chosen pumps(s ,msgs ,Closed))
• maximal pumped water(s ,msgs) =

dt × P × �((reliable pumps(s ,msgs ,Open)
∪ chosen pumps(s ,msgs ,Open)
∪ broken pumps(s ,msgs))
− chosen pumps(s ,msgs ,Closed))

%% Axioms for LEVEL:

• low(next level predicted(s ,msgs)) =
max (0 , (low(adjusted level(s ,msgs))

+ minimal pumped water(s ,msgs))
− ((dt2 × U1/2)

+ (dt × high(adjusted steam(s ,msgs)))))
• high(next level predicted(s ,msgs)) =

min(C , (high(adjusted level(s ,msgs))
+ maximal pumped water(s ,msgs))

− ((dt2 × U2/2)
+ (dt × low(adjusted steam(s ,msgs)))))

• DangerousWaterLevel(s ,msgs) ⇔
(low(next level predicted(s ,msgs)) ≤ M1) ∨
(M2 ≤ high(next level predicted(s ,msgs)))

180 13 Case Study: The Steam-Boiler Control System

hide ops minimal pumped water , maximal pumped water
end

♥ Note the combination of implicit hiding of auxiliary operations de-
clared in the local part and of explicit hiding: the operations minimal
pumped water and maximal pumped water cannot be made local since
their specification relies on chosen pumps which must be exported. ♥

13.6.2 Predicting the Pump and Pump Controller States

Specifying the predicted state of each pump at the next cycle is almost trivial.
The next pump state is Unknown PS if the next status of the pump is not
OK , otherwise it should be Open if:

• it is Open now and the pump is not ordered to stop, or
• the pump is ordered to activate;

otherwise, it should be Closed since:

• it is Closed now and the pump is not ordered to activate, or
• it is ordered to stop.

This leads to the following Pump State Prediction specification. This
specification extends Steam And Level Prediction (since we rely on
chosen pumps for our predictions), and Status Evolution (which provides
next status) instantiated by Failure Detection (which provides the pred-
icate PU OK parameter of Status Evolution).

spec Pump State Prediction =
Status Evolution [Failure Detection]
and Steam And Level Prediction

then op next PS predicted :
State × Set [R Message] × PumpNumber → ExtendedPumpState

∀s : State; msgs : Set [R Message]; pn : PumpNumber
• next PS predicted(s ,msgs , pn) =

Unknown PS when ¬ (next status(s ,msgs ,Pump(pn)) = OK)
else Open when (PUMP STATE(pn,Open) ε msgs ∧

¬ (pn ε chosen pumps(s ,msgs ,Closed)))
∨ pn ε chosen pumps(s ,msgs ,Open)

else Closed
end

The reasoning to predict the pump controller state is similar, but we must
take into account that two cycles may be needed before a just activated pump
leads to a Flow state (provided the pump is not stopped meanwhile). Thus,
the next pump controller state is Unknown PCS if the next status of the
pump controller is not OK , or if the next status of the corresponding pump
is not OK , otherwise the predicted pump controller state value is:

13.6 Predicting the Behavior of the Steam-Boiler 181

• Flow when the pump is not ordered to stop and it is currently Flow , or it
is currently NoFlow but PCS predicted SoonFlow ;

• NoFlow if the pump is ordered to stop, or if it is currently NoFlow and is
not PCS predicted SoonFlow and the pump is not ordered to activate;

• SoonFlow otherwise.

This leads to the following Pump Controller State Prediction spec-
ification.

spec Pump Controller State Prediction =
Status Evolution [Failure Detection]
and Steam And Level Prediction

then op next PCS predicted :
State × Set [R Message] × PumpNumber

→ ExtendedPumpControllerState
∀s : State; msgs : Set [R Message]; pn : PumpNumber
• next PCS predicted(s ,msgs , pn) =

Unknown PCS when
¬ (next status(s ,msgs ,PumpController(pn)) = OK ∧

next status(s ,msgs ,Pump(pn)) = OK)
else Flow when

(PUMP CONTROLLER STATE(pn,Flow) ε msgs ∨
(PUMP CONTROLLER STATE(pn,NoFlow) ε msgs ∧

PCS predicted(s , pn) = SoonFlow))
∧ ¬ (pn ε chosen pumps(s ,msgs ,Closed))

else NoFlow when
(pn ε chosen pumps(s ,msgs ,Closed))
∨ (PUMP CONTROLLER STATE(pn,NoFlow) ε msgs ∧

¬ (PCS predicted(s , pn) = SoonFlow) ∧
¬ (pn ε chosen pumps(s ,msgs ,Open)))

else SoonFlow
end

All our predictions are summarized in the following PU Prediction spec-
ification.

spec PU Prediction =
Pump State Prediction
and Pump Controller State Prediction
%{ Both specifications extend Status Evolution

(instantiated by Failure Detection)
and Steam And Level Prediction }%

end

♥ Since the specification Failure Detection provides the predi-
cate PU OK required by Status Evolution, we can now put pieces

182 13 Case Study: The Steam-Boiler Control System

together as illustrated by PU Prediction. Again the ‘same name,
same thing’ principle is essential here. ♥

13.7 Specifying the Messages to Send

At this stage we are left with the specification of the messages to send at each
cycle. This is easily specified, following App. C.5, and leads to the following
Sbcs Analysis specification.

The specification Sbcs Analysis is obtained by instantiating the Mode
Evolution specification by PU Prediction, and extending the result by
the specification of the operation messages to send .

spec Sbcs Analysis =
Mode Evolution [PU Prediction]

then local
ops PumpMessages, FailureDetectionMessages :

State × Set [R Message] → Set [S Message];
RepairedAcknowledgementMessages :

Set [R Message] → Set [S Message]
∀s : State; msgs : Set [R Message]; Smsg : S Message
• Smsg ε PumpMessages(s ,msgs) ⇔

(∃pn : PumpNumber •
(pn ε chosen pumps(s ,msgs ,Open)
∧ Smsg = OPEN PUMP(pn))

∨ (pn ε chosen pumps(s ,msgs ,Closed)
∧ Smsg = CLOSE PUMP(pn)))

• Smsg ε FailureDetectionMessages(s ,msgs) ⇔
(∃pu : PhysicalUnit •

Smsg = FAILURE DETECTION (pu) ∧
next status(s ,msgs , pu) = FailureWithoutAck)

• Smsg ε RepairedAcknowledgementMessages(msgs) ⇔
(∃pu : PhysicalUnit •

Smsg = REPAIRED ACKNOWLEDGEMENT (pu) ∧
next status(s ,msgs , pu) = FailureWithAck)

within
op messages to send : State × Set [R Message] → Set [S Message]
∀s : State; msgs : Set [R Message]
• messages to send(s ,msgs) =

(PumpMessages(s ,msgs) ∪
FailureDetectionMessages(s ,msgs) ∪
RepairedAcknowledgementMessages(msgs))
+ MODE(next mode(s ,msgs))

end

13.8 The Steam-Boiler Control System Specification 183

♥ We rely again here on auxiliary operations declared in the local part,
and their axiomatization is fairly easy using existential quantifiers. ♥

13.8 The Steam-Boiler Control System Specification

According to our work plan detailed in Sect. 13.3, we have already specified
the main parts of our case study. First, let us display a basic (flat) specifica-
tion equivalent to Sbcs State 5 and where all the state observers are listed
together.

spec Sbcs State =
Preliminary

then sort State
free type Status ::= OK | FailureWithoutAck | FailureWithAck
free type ExtendedPumpState ::= sort PumpState | Unknown PS
free type

ExtendedPumpControllerState ::= sort PumpControllerState
| SoonFlow | Unknown PCS

free type Valpair ::= pair(low : Value; high : Value)
ops mode : State → Mode;

numSTOP : State → Nat ;
status : State × PhysicalUnit → Status ;
PS predicted : State × PumpNumber

→ ExtendedPumpState;
PCS predicted : State × PumpNumber

→ ExtendedPumpControllerState;
steam predicted , level predicted : State → Valpair

end

We are now ready to provide the specification of the steam-boiler control
system, considered as a labeled transition system. We leave partly unspeci-
fied the initial state init , since in our specification this state represents the
state immediately following the receipt of the PHYSICAL UNITS READY
message. Hence intuitively the omitted axioms should take into account the
messages sent and received during the initialization phase (at least at the end
of it). It is therefore better to leave open for now the value of most observers
on init , and to note that this would have to be taken care of when specifying
the initialization phase. The value of mode(init) is specified according to the
end of App. C.4.1.

spec Steam Boiler Control System =
Sbcs Analysis

then op init : State
pred is step : State × Set [R Message] × Set [S Message] × State

184 13 Case Study: The Steam-Boiler Control System

%% Specification of the initial state init :

• mode(init) = Normal ∨ mode(init) = Degraded
%% Specification of is step:

∀s , s ′ : State; msgs : Set [R Message]; Smsg : Set [S Message]
• is step(s ,msgs ,Smsg, s ′) ⇔

mode(s ′) = next mode(s ,msgs) ∧
numSTOP(s ′) = next numSTOP(s ,msgs) ∧
(∀pu : PhysicalUnit •
status(s ′, pu) = next status(s ,msgs , pu)) ∧

(∀pn : PumpNumber •
PS predicted(s ′, pn) = next PS predicted(s ,msgs , pn) ∧
PCS predicted(s ′, pn) = next PCS predicted(s ,msgs , pn)) ∧

steam predicted(s ′) = next steam predicted(s ,msgs) ∧
level predicted(s ′) = next level predicted(s ,msgs) ∧
Smsg = messages to send(s ,msgs)

then %% Specification of the reachable states:

free { pred reach : State
∀s , s ′ : State; msgs : Set [R Message]; Smsg : Set [S Message]
• reach(init)
• reach(s) ∧ is step(s ,msgs ,Smsg, s ′) ⇒ reach(s ′) }

end

13.9 Validation of the CASL Requirements Specification

Once the formalization of the informal requirements is completed, we must
now face the following question: is our formal specification adequate? This
is a difficult question to answer since there is no formal way to establish
the adequacy of a formal specification w.r.t. informal requirements, i.e., we
cannot prove this adequacy. However, we can try to test it, by performing
various ‘experiments’. When these experiments are successful, our confidence
in the formal specification is increased. If some experiment fails, then we
can inspect the specification and try to understand the causes of the failure,
possibly detecting some flaw in the specification.

We will base our validation process on theorem proving, i.e., we will check
that some formulas are logical consequences of our requirements specifica-
tion Steam Boiler Control System. For this purpose we use the tools
described in Chap. 11. During this validation process we can consider two
kinds of proof obligations:

1. We can inspect the text of the specification and derive from this inspec-
tion some formulas that are expected to be logical consequences of our
specification. This can be considered as a kind of internal validation of
the formal specification.

13.9 Validation of the CASL Requirements Specification 185

2. We can check that some expected properties inferred from the informal
requirements are logical consequences of our specification (external valida-
tion). To do this, we must first reanalyze the informal specification, state
some expected properties, translate them into formulas, and then attempt
to prove that these formulas are logical consequences of our specification.
This task is not easy, since in general one has the feeling that all expected
properties were already detected and included in the axioms during the
formalization process.

The application of these principles to the requirements specification of the
steam-boiler control system leads to various proofs. Below we give only a few
illustrative examples.

For instance, let us consider the specification of next mode in Mode
Evolution: it is advisable to prove that all the cases considered in the spec-
ification of next mode are mutually exclusive, and that their disjunction is
equivalent to true. This is a typical example of internal validation of the spec-
ification, since we just consider the text of the specification to decide which
proof attempt will be performed, without considering the informal require-
ments again. We do not spell out the corresponding proofs here, but the
reader can easily check that indeed the operation next mode is well-defined
(i.e., all cases are mutually exclusive and their disjunction is equivalent to
true). In the same spirit we can prove that the same pump cannot simulta-
neously be ordered to activate and to stop, that we never resignal a failure
which has already been signaled, that as long as the operating mode is not
set to EmergencyStop the water level is safe, etc.

Let us now consider an example of external validation. According to our
understanding of failure detection (see Sect. 13.5), if we have detected a failure
of some physical unit pu (so PU OK does not hold for pu), then the status of
this physical unit should not be set to OK . The corresponding proof obligation
reads as follows:

Steam Boiler Control System |=
∀s : State; msgs : Set [R Message]; pu : PhysicalUnit
• Transmission OK (s ,msgs) ∧ ¬PU OK (s ,msgs , pu)

∧ reach(s) ⇒ ¬ (next status(s ,msgs , pu) = OK)

However here we are unable to discharge this proof obligation. A careful
analysis of the proof attempt shows that the proof fails since it could be
the case that, simultaneously with the receipt of a repaired message for the
physical unit pu, we nevertheless detect again a failure of the same unit. From
this analysis we conclude that the following axiom in Status Evolution is
not adequate:

• status(s , pu) = FailureWithAck ∧ REPAIRED(pu) is in msgs
⇒ next status(s ,msgs , pu) = OK

This means we must fix the Status Evolution specification and replace
the above axiom by:

186 13 Case Study: The Steam-Boiler Control System

• status(s , pu) = FailureWithAck ∧ REPAIRED(pu) is in msgs
⇒ next status(s ,msgs , pu) = OK when PU OK (s ,msgs , pu)

else FailureWithoutAck

Once the specification Status Evolution is modified as explained above,
we can prove that the expected property holds.

To conclude, the reader should keep in mind that the validation of the
specification is a very important task that deserves some serious attention. In
this section we have only briefly illustrated some typical proof attempts that
would naturally arise when validating the Steam Boiler Control System
specification, and obviously many other proof attempts are required to reach
a stage where we can trust our requirements specification of the steam-boiler
control system.

13.10 Designing the Architecture

We now have a validated requirements specification Steam Boiler Control
System of the steam-boiler control system. The next step is to refine it into
an architectural specification, thereby prescribing the intended architecture
of the implementation of the steam-boiler control system. Indeed, the expla-
nations given in Sect. 13.3 suggest the following rather obvious architecture
for the steam-boiler control system:

arch spec Arch Sbcs =
units P : Value → Preliminary;

S : Preliminary → Sbcs State;
A : Sbcs State → Sbcs Analysis;
C : Sbcs Analysis → Steam Boiler Control System

result λV : Value • C [A [S [P [V]]]]
end

Note that we decide to describe the implementation of the steam-boiler
control system as an open system, relying on an external component V im-
plementing Value. This is consistent with our explanations in Sect. 13.2:
choosing a specific implementation of Value is obviously orthogonal to de-
signing the implementation of the steam-boiler control system. This means in
particular that the component V implementing Value will encapsulate the
chosen representation of natural numbers and values, together with operations
and predicates operating on them.

♥ As illustrated by Arch Sbcs, the intended architecture of the
steam-boiler control system is easily described by an architectural
specification. Then we can proceed with four separate implementa-
tion tasks, which are independent of each other. ♥

13.10 Designing the Architecture 187

In a next step, we can refine the specification Value → Preliminary of
the component P into the following architectural specification.

arch spec Arch Preliminary =
units SET : { sort Elem} × Nat → Set [sort Elem];

B : Basics;
MS : Messages Sent given B ;
MR : Value → Messages Received given B ;
CST : Value → Sbcs Constants

result λV : Value • SET [MS fit Elem �→ S Message] [V]
and SET [MR [V] fit Elem �→ R Message] [V]
and CST [V]

end

Here we decide to implement (generic) sets in a component SET , reused
both for sets of messages received and sets of messages sent. Since the imple-
mentation of natural numbers is provided by the (external) component V , we
use V for the second argument of the generic component SET in the result
unit term.

♥ Note how the generic specification with imports Set is transposed
into a specification of a generic component SET . Note also, for the
component MR, the use of a specification of a generic component ex-
tending a given unit. ♥
The specification of the components C and S of Arch Sbcs are simple

enough that they do not need to be further architecturally refined. The speci-
fication of the component S (which implements the states of the steam-boiler
control system) can be refined into the following specification Unit Sbcs
State, which provides a concrete implementation of states as a record of all
the observable values.

from Basic/StructuredDatatypes get TotalMap

spec Sbcs State Impl =
Preliminary

then free type Status ::= OK | FailureWithoutAck | FailureWithAck
free type ExtendedPumpState ::= sort PumpState | Unknown PS
free type ExtendedPumpControllerState ::=

sort PumpControllerState | SoonFlow | Unknown PCS
free type Valpair ::= pair(low : Value; high : Value)

then TotalMap [Basics fit S �→ PhysicalUnit] [sort Status]
and TotalMap [Basics fit S �→ PumpNumber] [sort ExtendedPumpState]
and TotalMap [Basics fit S �→ PumpNumber]

[sort ExtendedPumpControllerState]

188 13 Case Study: The Steam-Boiler Control System

then free type State ::= mk state(
mode : Mode;
numSTOP : Nat ;
status : TotalMap[PhysicalUnit ,Status];
PS predicted :
TotalMap[PumpNumber ,ExtendedPumpState];

PCS predicted :
TotalMap[PumpNumber ,ExtendedPumpControllerState];

steam predicted , level predicted : Valpair)
ops status(s : State; pu : PhysicalUnit) : Status

= lookup(pu, status(s));
PS predicted(s : State; pn : PumpNumber) : ExtendedPumpState

= lookup(pn,PS predicted(s));
PCS predicted(s : State; pn : PumpNumber)

: ExtendedPumpControllerState
= lookup(pn,PCS predicted(s))

end

unit spec Unit Sbcs State =
Preliminary → Sbcs State Impl

♥ During the formalization process it was convenient to rely on a loose
specification of states. At the design stage, this loose specification is
refined into a specification where state variables are now explicit. ♥
The specification Sbcs State → Sbcs Analysis of the component A of

Arch Sbcs can be refined into the following architectural specification:

arch spec Arch Analysis =
units FD : Sbcs State → Failure Detection;

PR : Failure Detection → PU Prediction;
ME : PU Prediction → Mode Evolution [PU Prediction];
MTS : Mode Evolution [PU Prediction] → Sbcs Analysis

result λS : Sbcs State • MTS [ME [PR [FD [S]]]]
end

In the above architectural specification Arch Analysis, the component
FD provides an implementation of failure detection, the component PR an
implementation of the predicted state variables for the next cycle, the compo-
nent ME provides an implementation of next mode (and of next numSTOP),
and the component MTS provides an implementation of messages to send .

The specifications of the components ME and MTS are simple enough to
be directly implemented. The specifications of the components FD and PR
can be refined as follows.

13.10 Designing the Architecture 189

arch spec Arch Failure Detection =
units MTSF : Sbcs State

→ Message Transmission System Failure;
PF : Sbcs State → Pump Failure;
PCF : Sbcs State → Pump Controller Failure;
SF : Sbcs State → Steam Failure;
LF : Sbcs State → Level Failure;
PU : Message Transmission System Failure

× Pump Failure × Pump Controller Failure
× Steam Failure × Level Failure

→ Failure Detection

result λS : Sbcs State •
PU [MTSF [S]] [PF [S]] [PCF [S]] [SF [S]] [LF [S]]
hide Pump OK , Pump Controller OK , Steam OK , Level OK

end

The above architectural specification Arch Failure Detection refines
the specification Sbcs State → Failure Detection of the component FD
in Arch Analysis and introduces a component for each kind of failure de-
tection. Then the component PU implements PU OK , and in the result unit
expression we hide the auxiliary predicates provided by the components PF ,
PCF , SF , and LF .10

We refine the specification Failure Detection → PU Prediction of
the component PR of the architectural specification Arch Analysis as fol-
lows:

arch spec Arch Prediction =
units SE : Failure Detection →

Status Evolution [Failure Detection];
SLP : Failure Detection → Steam And Level Prediction;
PP : Status Evolution [Failure Detection]

× Steam And Level Prediction
→ Pump State Prediction;

PCP : Status Evolution [Failure Detection]
× Steam And Level Prediction

→ Pump Controller State Prediction

result λFD : Failure Detection •
local SEFD = SE [FD]; SLPFD = SLP [FD] within
PP [SEFD] [SLPFD] and PCP [SEFD] [SLPFD]

end
10 These auxiliary predicates are already hidden in the specification Failure

Detection. However, remember that in the specification of a generic component,
the target specification is always an implicit extension of the argument specifica-
tions. This is why it is necessary to hide the auxiliary predicates at the level of
the result unit expression.

190 13 Case Study: The Steam-Boiler Control System

In the above architectural specification, the component SE provides an im-
plementation of next status . The component SLP provides an implementation
of next steam predicted , next level predicted , chosen pumps , and Dangerous-
WaterLevel . The component PP provides an implementation of next PS pred -
icted , and the component PCP provides an implementation of next PCS pred -
icted .

We are now left with specifications of components that are simple enough
to be directly implemented, and this concludes our case study.

	13.1 Introduction
	13.2 Getting Started
	13.3 Carrying On
	13.4 Specifying the Mode of Operation
	13.5 Specifying the Detection of Equipment Failures
	13.5.1 Understanding the Detection of Equipment Failures
	13.5.2 Keeping Track of the Status of the Physical Units
	13.5.4 Detection of the Pump and Pump Controller Failures
	13.5.5 Detection of the Steam and Water Level Measurement Device Failures
	13.5.6 Summing Up

	13.6 Predicting the Behavior of the Steam-Boiler
	13.6.1 Predicting the Steam Output and the Water Level
	13.6.2 Predicting the Pump and Pump Controller States

	13.7 Specifying the Messages to Send
	13.8 The Steam-Boiler Control System Specification
	13.9 Validation of the CASL Requirements Specification
	13.10 Designing the Architecture

