4

Partial Functions

Partial functions arise naturally.

Partial functions arise in a number of situations. CASL provides means
for the declaration of partial functions, the specification of their domains of
definition, and more generally the specification of system properties involving
partial functions. The aim of this chapter is to discuss and illustrate how to
handle partial functions in CAsL specifications.

4.1 Declaring Partial Functions

Partial functions are declared differently from total functions.

spec SET_PARTIAL_CHOOSE [sort Elem| =
GENERATED_SET [sort Elem ]

then op choose : Set —7 Elem

end

The choose function on sets is naturally a partial function, expected to be
undefined on the empty set. In CasL, a partial function is declared similarly
to a total one, but for the question mark ‘?’ following the arrow in the profile.
It is therefore quite easy to distinguish the functions declared to be total from
the ones declared to be partial.

A function declared to be partial may happen to be total in some of
the models of the specification. For instance, the above specification SET_
PARTIAL_CHOOSE does not exclude models where the function symbol choose
is interpreted by a total function, defined on all set values. Axioms can be

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 47-56, 2004.
© IFIP International Federation for Information Processing 2004



48 4 Partial Functions

used to specify the domain of definition of a partial function, and how to do
this is detailed later in this chapter.

Terms containing partial functions may be undefined, i.e., they may
fail to denote any value.

For instance, the (value of the) term choose(empty) may be undefined.!
This is more natural than insisting that choose(empty) has to denote some
arbitrary but fixed element of Elem.

Note that variables range only over defined values, and therefore a variable
always denotes a value, in contrast to terms containing partial functions.

Functions, even total ones, propagate undefinedness.

If the term choose(S) is undefined for some value of S, then the term
insert(choose(S), S”) is undefined as well for this value of S, although insert
is a total function.

Predicates do not hold on undefined arguments.

CasL is based on classical two-valued logic. A predicate symbol is inter-
preted by a relation, and when the value of some argument term is undefined,
the application of a predicate to this term does not hold. For instance, if the
term choose(S) is undefined, then the atomic formula choose(S) is_in S does
not hold.

Equations hold when both terms are undefined.

In CasL, equations are by default strong, which means that they hold
not only when both sides denote equal values, but also when both sides are
simultaneously undefined. For instance, let us consider the equation:

insert(choose(S), insert(choose(S), empty)) = insert(choose(S), empty)

! Note that the term choose(empty) is well-formed and therefore is a ‘correct term’.
It is its value which may be undefined. To avoid unnecessary pedantry, in the
following we will simply write that a term is undefined to mean that its value
is so. Obviously, a term with variables may be defined for some values of the
variables and undefined for other values.



4.1 Declaring Partial Functions 49

Either choose(S) is defined and then both sides are defined and denote equal
values due to the axioms on insert, or choose(S) is undefined and then both
sides are undefined, and the strong equation ‘holds trivially’.

CasL provides also so-called existential equations, explained at the end of
this chapter.

Special care is needed in specifications involving partial functions.

Partial functions are intrinsically more difficult to understand and specify
than total ones. This is why special care is needed when writing the axioms
of specifications involving partial functions. The point is that an axiom may
imply the definedness of terms containing partial functions, and as a conse-
quence that these functions are total, which may not be what the specifier
intended. Here are three typical cases:

o Asserting choose(S) is_in S as an axiom implies that choose(S) is defined,
for any S. The point here is that since predicates applied to an undefined
term do not hold, in any model satisfying choose(S) is_in S, the function
choose must be total (i.e., always defined).

e Asserting remove(choose(S), insert(choose(S), empty)) = empty as an ax-
iom implies that choose(S) is defined for any S, since the term empty
is always defined. To understand this, assume that choose is undefined
for some set value of §; then the above equation cannot hold for this
value, since the undefinedness of choose(S) implies the undefinedness of
remove(choose(S), insert(choose(S), empty)), giving a contradiction with
the definedness of empty. Hence, an equation between a term involving a
partial function PF and a term involving total functions only may imply
that the partial function PF is always defined.

e Asserting insert(choose(S),S) = S as an axiom implies that choose(S) is
defined for any S, since a variable always denotes a defined value. This
case is indeed similar to the previous one, the only difference being that
now the right-hand side of the equation is a variable (instead of a term
involving total functions only).

Moreover, the ‘same name, same thing’ principle has a subtle side-effect re-
garding partial operations: if an operation is declared both as a total operation
and as a partial operation with the same profile (i.e., the same argument sorts
and the same result sort) then it is interpreted as a total operation in all
models of the specification.



50 4 Partial Functions

4.2 Specifying Domains of Definition

The definedness of a term can be checked or asserted.

spec SET_PARTIAL_CHOOSE_1 [sort Elem ]| =
SET_PARTIAL_CHOOSE [sort Elem ]
then e — def choose(empty)
VS : Set o def choose(S) = choose(S) is_in S
end

A definedness assertion, written ‘def t’, where ¢ is a term, is a special kind
of atomic formula: it holds if and only if the value of the term ¢ is defined. For
instance, in the above example, = def choose(empty) explicitly asserts that
choose is undefined when applied to empty. Note that this axiom does not
say anything about the definedness of choose applied to values other than
empty, which means that choose may well be undefined on those values too.
The second axiom of the above example asserts choose(S) is-in S under the
condition def choose(S), to avoid undesired definedness induced by axioms,
as explained in the previous section.

Note that if the two axioms of the above example were to be replaced by:

VS : Set o (S = empty) = choose(S) is_in S

then we could conclude that choose(S) is defined when S is not equal to
empty, but nothing about the undefinedness of choose(empty).

The domains of definition of partial functions can be specified
ezactly.

spec SET_PARTIAL_CHOOSE_2 [sort Elem | =
SET_PARTIAL_CHOOSE [sort Elem ]

then VS : Set o def choose(S) < —(S = empty)
VS : Set o def choose(S) = choose(S) is_in S

end

In the above example, the domain of definition of the partial function
choose is exactly specified by the axiom def choose(S) < —(S = empty).



4.2 Specifying Domains of Definition 51

Loosely specified domains of definition may be useful.

spec NATURAL_WITH_BOUND_AND_ADDITION =
NATURAL_WITH_BOUND
then op __+7__: Nat x Nat —7 Nat
Vz,y: Nat
o def(z+7y) if x4+ y < maz_size
%{ =+ y < maz_size implies both
x < maz_size and y < max_size }%
o def(x+?y)=a+ly=x+y
end

In some cases, it is useful to loosely specify the domain of definition of a
partial function, as illustrated in the above example for ‘+7’, which is required
to be defined for all arguments z and y such that x + y < max_size, but
may well be defined on larger natural numbers as well. The point in loose
specifications of definition domains is to avoid unnecessary constraints on the
models of the specification. For instance, the above example does not exclude a
model where ‘+7’ is interpreted by a total function (which would then coincide
with ‘+7).2

Indeed, in some cases, specifying exactly domains of definition can be con-
sidered as overspecification. In most specifications, however, one would expect
an exact specification of domains of definition, even for otherwise loosely spec-
ified functions (see, e.g., choose in SET_PARTIAL_CHOOSE_2).

Domains of definition can be specified more or less explicitly.

spec SET_PARTIAL_CHOOSE_3 [sort Elem | =
SET_PARTIAL_CHOOSE [sort Elem ]
then e — def choose(empty)
VS : Set o =(S = empty) = choose(S) is_in S
end

SET_PARTIAL_CHOOSE_3 specifies exactly the domain of definition of
choose, but does this too implicitly, since some reasoning is needed to con-
clude that the above specification entails def choose(S) < —(S = empty).

2 In this example, it is essential to choose a new name ‘+?’ for our partial addi-
tion operation. Otherwise, since ‘+’ is (rightly) declared as a total operation in
NATURAL_-WITH_BOUND, the declaration op -+ __: Nat X Nat —? Nat would
be useless: the same name, same thing principle would lead to models with just
one, total, addition operation.



52 4 Partial Functions

To improve the clarity of specifications, it is in general advisable to specify
definition domains as explicitly as possible, and SET_PARTIAL_CHOOSE_2 is
somehow easier to understand than SET_PARTIAL_CHOOSE_3 (both specifica-
tions define the same class of models).

spec NATURAL_PARTIAL_PRE =

NATURAL_ARITHMETIC
then op pre: Nat —7 Nat

e — def pre(0)

Vz : Nat e pre(suc(z)) =z
end

In the above example, one can consider that the domain of definition of pre
is (exactly) specified in an explicit enough way, since the first axiom states
exactly that pre(0) is undefined while the second one implies that pre is
defined for all natural numbers of the form suc(z).

spec NATURAL_PARTIAL_SUBTRACTION_1 =
NATURAL_PARTIAL_PRE
then op __— __: Nat x Nat —7 Nat
Va,y: Nat
e r— 0=z
oz — suc(y) = pre(z — y)
end

The above specification is perfect from a mathematical point of view, but
is clearly not explicit enough, since there is no easy way to infer when x — y is
defined. From a methodological point of view, the following alternative version
is much better.

spec NATURAL_PARTIAL_SUBTRACTION =
NATURAL_PARTIAL_PRE

then op __— __: Nat x Nat —7 Nat
Vz,y: Nat
o def(z—y) = (y<zVy=uz)
ez — 0=z
oz — suc(y) = pre(z — y)

end

The above examples clearly demonstrate why the explicit specification of
definition domains is generally advisable from a methodological point of view.
However, they also indicate that this recommendation should not be applied
in too strict a way, and that deciding whether a specification is explicit enough
or not is to some extent a matter of taste.



4.2 Specifying Domains of Definition 53

Partial functions are minimally defined by default in free
specifications.

spec LIST_SELECTORS_1 [sort Elem] =
L1sT [sort Elem |
then free { ops head : List —7 Elem;
tail : List —7 List

Ve : Blem; L : List

e head(cons(e,L)) = e

e tail(cons(e,L)) =L}
end

In the above example, the given axioms imply that head and tail are de-
fined on lists of the form cons(e, L). The freeness constraint requires that these
functions are minimally defined. Since the terms head(empty) and tail (empty)
are not equated to any other term, the freeness constraint implies that these
terms are undefined, and hence that the functions head and tail are unde-
fined on empty. The situation here is similar to the fact that predicates hold
minimally in models of free specifications (see Chap. 3, p. 38).

spec LIST_SELECTORS_2 [sort Elem] =

L1sT [sort Elem |
then ops head : List —?7 Elem;

tail : List —7 List

Ve : Elem; L : List
— def head(empty)
— def tail(empty)
head(cons(e, L)) = e
tail(cons(e, L)) = L

end

The above specification LIST_SELECTORS_2 is an alternative to LisST_
SELECTORS_1; both specifications define exactly the same class of models.
However, LIST_SELECTORS_2 is clearly easier to understand and can be con-
sidered as technically simpler, since it involves no freeness constraint.

Operations like head and tail are usually called selectors, and CASL pro-
vides abbreviations to specify selectors in a very concise way, as we see next.



54 4 Partial Functions

4.3 Partial Selectors and Constructors

Selectors can be specified concisely in datatype declarations, and are
usually partial.

spec LIST_SELECTORS [sort Elem| =
free type List ::= empty | cons(head :? Elem; tail :?7 List)

The above free datatype declaration introduces, in addition to the con-
structors empty and cons, two partial selectors head and tail yielding the
respective arguments of the constructor cons. Hence, this free datatype decla-
ration with selectors has exactly the same effect as the ordinary free datatype
declaration free type List ::= empty | cons(Elem; List), together with
the operation declarations and axioms of LIST_SELECTORS_2 (i.e., LIST_
SELECTORS and LIST_SELECTORS_2 define exactly the same class of models).
The following example is similar in spirit.

spec NATURAL_SUC_PRE = free type Nat ::= 0 | suc(pre :? Nat)

Selectors are usually total when there is only one constructor.

spec PAIR_1 [sorts Eleml1, Elem2] =
free type Pair ::= pair(first : Elem1; second : Elem2)

While selectors are usually partial operations when there is more than one
alternative in the corresponding datatype declaration, they can be total, and
this is generally the case when there is only one constructor, as in the above
example. The free datatype declaration entails in particular axioms asserting
that first and second yield the respective arguments of the constructor pair
(i.e., first(pair(el,e2)) = el and second(pair(el,e2)) = e2).

Constructors may be partial.

spec PART_CONTAINER [sort Elem] =
generated type
P_Container ::= empty | insert(Elem; P_Container)?
pred addable : Elem x P_Container
vars e, e’ : Elem; C: P_Container
o def insert(e, C) < addable(e, C')



4.4 Existential Equality 55

pred __is_in__: Elem x P_Container

e —(e is_in empty)

e (e is_in insert(e’,C) < (e =¢' Ve is_in C)) if addable(e’, C)
end

The intention in the above example is to define a reusable specification of
partial containers. The insert constructor is specified as a partial operation,
defined if some condition on both the element e to be added and the container
C' to which the element is to be added holds. This condition is abstracted
here in a predicate addable, so far left unspecified. Later on, instantiations
of the PART_CONTAINER specification can be adapted to specific purposes by
extending them with axioms defining addable.

The above generated datatype declaration abbreviates as usual the dec-
laration of a sort P_Container, a constant constructor empty, and a partial
constructor insert : Elem x P_Container —?7 P_Container. It also entails the
corresponding generatedness constraint.

4.4 Existential Equality

Ezxistential equality requires the definedness of both terms as well as
their equality.

spec NATURAL_PARTIAL_SUBTRACTION_2 =
NATURAL_PARTIAL_SUBTRACTION_1
then Vz,y,z:Nat @« y—z=2—2=y=2
%{y—x=2—2x=y =2 would be wrong,
def(y—z) Ndef(z—z)Ny—x=z—x=>y==2
is correct, but better abbreviated in the above axiom }%
end

An existential equation t1 = t2 is equivalent to def(t1) A def(t2) A
t1 = t2, so it holds if and only if both terms ¢/ and t2 are defined and denote
the same value. Existential equality ‘=’ is input as ‘=e=".

Note that while a trivial strong equation of the form ¢ = ¢ always holds,
this is not the case for existential equations. For instance, the trivial existential
equation z —y = z — y does not hold, since the term z — y may be undefined.

In general consequences of undefinedness are undesirable. Hence a con-
ditional equation of the form t1 = t2 = t3 = t4 is often wrong if ¢/ and
t2 may be undefined, because the equality t3 = t4 would be implied when
both t1 and t2 are undefined (since then the strong equation ¢t1 = t2 would
hold). The above specification provides a typical example of such a situation:
y—x =2z—x =y = z would be wrong, since it would entail that any two



56 4 Partial Functions

arbitrary values y and z are equal (it is enough to choose an x greater than
y and z to make y — z and z — z both undefined).

Therefore, to avoid such undesirable consequences of undefinedness, it
is advisable to use existential equations instead of strong equations in the
premises of conditional equations involving partial operations. An alternative
is to add the relevant definedness assertions explicitly to the equations in the
premises.



	4.1 Declaring Partial Functions
	4.2 Specifying Domains of Definition
	4.3 Partial Selectors and Constructors
	4.4 Existential Equality



