3

Getting Started

Simple specifications may be written in CASL essentially as in many
other algebraic specification languages.

The simplest kind of algebraic specification is when each specified opera-
tion is to be interpreted as an ordinary total mathematical function: it takes
values of particular types as arguments, and always returns a well-defined
value. Total functions correspond to software whose execution always termi-
nates normally. The types of values are named by simple symbols called sorts.

In practice, a realistic software specification involves partial as well as total
functions. However, it may well be formed from simpler specifications, some of
which involve only total functions. This chapter explains how to express such
simple specifications in Casr, illustrating various features of the language.

The simple specifications discussed in this chapter can also be expressed
in many previous specification languages; it is usually straightforward to re-
formulate them in Casr. Readers who know other specification languages will
probably recognize some familiar examples among the illustrations given in
this chapter.

Casr provides also useful abbreviations.

The technique of algebraic specification by axioms is generally well-
suited to expressing properties of functions. However, when functions have
commonly-occurring mathematical properties, it can be tedious to give the
corresponding axioms explicitly. CAsL provides some useful abbreviations for
such cases. Similarly, so-called free datatype declarations allow sorts and value
constructors to be specified much as in functional programming languages, us-
ing a concise and suggestive notation.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 23-45, 2004.
© IFIP International Federation for Information Processing 2004

24 3 Getting Started

CasL allows loose, generated and free specifications.

The models of a loose specification include all those where the declared
functions have the specified properties, without any restrictions on the sets
of values corresponding to the various sorts. In models of a generated speci-
fication, in contrast, it is required that all values can be expressed by terms
formed from the specified constructors, i.e. unreachable values are prohibited.
In models of free specifications, it is required that values of terms are distinct
except when their equality follows from the specified axioms: the possibility
of unintended coincidence between them is prohibited.

Section 3.1 below focuses on loose specifications; Sect. 3.2 discusses the use
of generated specifications, and Sect. 3.3 does the same for free specifications.
Loose, generated, and free specifications are often used together in CASL:
each style has its advantages in particular circumstances, as explained below
in connection with the illustrative examples.

3.1 Loose Specifications

Casr syntaz for declarations and arioms involves familiar notation,
and is mostly self-explanatory.

spec STRICT_PARTIAL_ORDER =
%% Let’s start with a simple example !
sort FElem
pred __ < __: Elem x Elem %% pred abbreviates predicate

Vx,y,z: Elem

o ~(z < x) % (strict) %
ez <y=(y<m) % (asymmetric)%
e r<yhNy<z=uz<z % (transitive)%

%{ Note that there may exist z,y such that
neither z < y nor y < z. }%
end

The above (basic) specification, named STRICT_PARTIAL_ORDER, intro-
duces a sort Elem and a binary infix predicate symbol ‘<’. In the declaration
of a predicate symbol, argument sorts are separated by the sign ‘x’, which can
be input directly as such in ISO Latin-1 or as ‘*’ in ASCII. Note that CasL
allows so-called mizfix notation, i.e., the specifier is free to indicate, using ‘__’
(pairs of underscores) as place-holders, how to place arguments when building

3.1 Loose Specifications 25

terms (single underscores are treated as letters in identifiers).! Using mixfix
notation generally allows the use of familiar mathematical and programming
notations, which contributes substantially to the readability of specifications.

The interpretation of the binary predicate symbol ‘<’ is then constrained
by three axioms. A set of axioms is generally presented as a ‘bulleted’ list
of formulas, preceded by the universally quantified declaration of the relevant
variables, together with their respective sorts, as shown in the above example.
In CasrL, axioms are written in first-order logic with equality, using quantifiers
and the usual logical connectives. The universal quantification preceding a list
of axioms applies to the entire list. Axioms can be annotated by labels written
%(...)%, which is convenient for proper reference in explanations or by tools.

Note that ‘v’ is input as ‘forall’, and that ‘ e ’ is input as ‘.” or ‘’. The
usual logical connectives ‘=", ‘<’ ‘A’, ‘V’, and ‘=, are input as ‘=>7, ‘<=>’,
‘/\’, ‘\/’, and ‘not’, respectively; ‘=’ can also be input directly as an ISO
Latin-1 character. The existential quantifier ‘3’ is input as ‘exists’, and ‘3!’
is input as ‘exists!’.

It is advisable to comment as appropriate the various elements introduced
in a specification. The syntax for end-of-line and grouped multi-line comments
is illustrated in the above example. The ‘end’ keyword ending a specification
is optional.

The above STRICT_PARTIAL_ORDER specification is loose in the sense that
it has many (non-isomorphic) models, among which models where ‘<’ is in-
terpreted by a total ordering relation and models where it is interpreted by a
partial one.

Specifications can easily be extended by new declarations and axioms.

spec TOTAL_ORDER =

STRICT_PARTIAL_ORDER
then Vz,y: FElem ¢ z<yVy<zVz=y % (total)%
end

Extensions, introduced by the keyword ‘then’, may specify new symbols,
possibly constrained by some axioms, or merely require further properties of
old ones, as in the above TOTAL_ORDER example, or more generally do both
at the same time. In TOTAL_ORDER, we further constrain the interpretation
of the predicate symbol ‘<’ by requiring it to be a total ordering relation.

All symbols introduced in a specification are by default exported by it and
visible in its extensions. This is for instance the case here for the sort Elem and

I Mixfix notation is so-called because it generalizes infix, prefix, and postfix nota-
tion to allow arbitrary mixing of argument positions and identifier tokens.

26 3 Getting Started

the predicate symbol ‘<’; which are introduced in STRICT_PARTIAL_ORDER,
exported by it, and therefore available in TOTAL_ORDER.?

In simple cases, an operation (or a predicate) symbol may be declared
and its intended interpretation defined at the same time.

spec TOTAL_ORDER_WITH_MINMAX =
TOTAL_ORDER
then ops min(z,y : Elem) : Elem = x when x < y else y;
max(x,y : Elem) : Elem = y when min(z,y) = z else x
end

TOTAL_ORDER_-WITH_-MINMAX extends TOTAL_ORDER by introducing
two binary operation symbols min and mazx, for which a functional notation
is to be used, so no place-holders are given. The intended interpretation of
the symbol min is defined simultaneously with its declaration, and the same
is done for max. For instance:

op min(z,y : Elem) : Elem = z when x < y else y
abbreviates:

op min : Elem x Elem — FElem
Va,y: Elem o min(z,y) =z when x < y else y

(and similarly for maz). As for predicate symbol declarations, in an operation
symbol declaration, the argument sorts are separated by the sign ‘x’; the
result sort is preceded by ‘—’, which is input as ‘=>’.
The ‘... when ... else ...” construct used above is itself an abbreviation,
and:
min(z,y) = x when x < y else y

abbreviates:
(z <y=min(z,y) =) A (~(z <y) = min(z,y) = y)

In CasL specifications, visibility is linear, i.e., any symbol must be declared
before being used. In the above example, min should be declared before being
used to define mazx.

Linear visibility does not imply, however, that a fixed scheme is to be
used when writing specifications: the specifier is free to present the required
declarations and axioms in any order, as long as the linear visibility rule is re-
spected. For instance, one may prefer to declare first all sorts and all operation

2 See Chap. 6 for constructs allowing the explicit restriction of the set of symbols
exported by a specification.

3.1 Loose Specifications 27

or predicate symbols needed, and then specify their properties by the relevant
axioms. Or, in contrast, one may prefer to have each operation or predicate
symbol declaration immediately followed by the axioms constraining its inter-
pretations. Both styles are equally fine, and can even be mixed if desired. This
flexibility is illustrated in the following variant of the TOTAL_ORDER_WITH_
MiINMAX specification, where for explanatory purposes we refrain from using
the useful abbreviations explained above.

spec VARIANT_OF_TOTAL_ORDER_WITH_MINMAX =
TOTAL_ORDER
then vars z,y: Elem
op min : Elem x Elem — FElem
o r<y=min(z,y) =1
o ~(z <y)=min(z,y) =y
op max : Elem x Elem — Elem
o r <y=max(r,y)=y
o ~(z<y)= maxr(z,y) =1
end

Note that in order to avoid the tedious repetition of the declaration of the
variables z and y for each list of axioms, we have used here a global variable
declaration which introduces z and y for the rest of the specification. Variable
declarations are of course not exported across specification extensions: the
variables z and y declared in VARIANT_OF_TOTAL_ORDER_WITH_MINMAX
are not visible in any of its extensions.

Symbols may be conveniently displayed as usual mathematical
symbols by means of %display annotations.

%display __<=__ %YLATEX __ < __

spec PARTIAL_ORDER =
STRICT_PARTIAL_ORDER

then pred __< _(z,y:FElem)< (z<yVz=y)

end

The above example relies on a %display annotation: while, for obvious
reasons, the specification text should be input using the ISO Latin-1 char-
acter set, it is often convenient to display some symbols differently, e.g., as
mathematical symbols. This is the case here where the ‘<=" predicate symbol
is more conveniently displayed as ‘<’. Display annotations, as any other CAsL
annotations, are auxiliary parts of a specification, for use by tools, and do not
affect the semantics of the specification.?

3 Display annotations should be provided at the beginning of a library, and are
explained in more detail in Chap. 9.

28 3 Getting Started

In the above example, we have again used the facility of simultaneously
declaring and defining a symbol (here, the predicate symbol ‘<’) in order to
obtain a more concise specification.

The Zimplies annotation is used to indicate that some axioms are
supposedly redundant, being consequences of others.

spec PARTIAL_ORDER_1 =

PARTIAL_ORDER
then %implies

Vr,y,z:EBlem ¢ x <yANy<z=>2<z % (transitive)%
end

The %implies annotation above is used to emphasize that the transitivity
of ‘<’ should follow from the other axioms, or, in other words, that the model
class of PARTIAL_ORDER_1 is exactly the same as the model class of PARTIAL_
ORDER. The %implies annotation applies to the whole of the specification
extension where it occurs (which happens here to introduce a single axiom).

Note however that an annotation does not affect the semantics of a spec-
ification, hence removing the %implies annotation does not change the class
of models of the above specification. The sole aim of an %implies annotation
is to stress the specifier’s intentions, and it will also help readers confirm their
understanding. Some tools may of course use such annotations to generate
corresponding proof obligations. For instance, here, the proof obligation is:

PARTIAL_ORDER = Vz,y,2z: Elem ¢ x <yAy<z=z<z2

Discharging these proof obligations increases the trustworthiness of a specifi-
cation.

To fully understand that an %implies annotation has no effect on the
semantics, the best is to consider an example where the corresponding proof
obligation cannot be discharged, as shown below.

spec IMPLIES_DOES_NOT_HOLD =

PARTIAL_ORDER
then %implies

Ve,y: FElem e t<yVy<zVzr=y % (total)%
end

Since the loose specification PARTIAL_ORDER has models where ‘<’ is in-
terpreted by a partial ordering relation, the proof obligation corresponding
to the above %implies annotation cannot be discharged. However, since an-
notations have no impact on the semantics, the specification IMPLIES_DOES_
NoT_HoLD is well-formed and just constrains the interpretation of ‘<’ to be a
total ordering relation. The fact that the proof obligation cannot be discharged
merely points out a potential mistake in the specification.

3.1 Loose Specifications 29

Attributes may be used to abbreviate axioms for associativity,
commutativity, idempotence, and unit properties.

spec MONOID =
sort Monoid
ops 1 : Monoid;
__* __: Monoid x Monoid — Monoid, assoc, unit 1
end

The above example introduces a constant symbol 1 of sort Monoid, then a
binary operation symbol ‘x’, which is asserted to be associative and to have 1
as unit element. (Note that there is no ‘—’ sign before the sort when declaring
a constant.) The assoc attribute abbreviates, as expected, the following axiom:

Vo, y,z: Monoid e (zxy)xz=xx%(yx*2)
The ‘unit 1’ attribute abbreviates:
Vo : Monoid e (xx1 =x)A (1 *z=uz)

Note that to make the use of ‘unit 1’ legal, it is necessary to have previously
declared the constant I, to respect the linear visibility rule.

Other available attributes are comm, which abbreviates the obvious axiom
stating that a binary operation is commutative, and idem, which can be used
to assert the idempotence of a binary operation f (i.e., that f(z,z) = z).

Asserting ‘x’ to be associative using the attribute assoc makes the term
x %y x z well-formed (assuming z,y,z of the right sort), while otherwise
grouping parentheses would be required. Moreover, it is expected that some
tools (e.g., systems based on rewriting) may make special use of the assoc
attribute, so it is generally advisable to use this attribute instead of stating
the same property by an axiom (the same applies to the other attributes).

Genericity of specifications can be made explicit using parameters.

spec GENERIC_MONOID [sort Elem| =
sort Monoid
ops inj : Elem — Monoid;
1 : Monoid;
__x __: Monotd x Monoid — Monoid, assoc, unit 1
Va,y: Elem o inj(x) =inj(y) =z =1y
end

30 3 Getting Started

The above example describes monoids built over arbitrary elements (of sort
Elem). The intention here is to reuse the specification GENERIC_MONOID to
derive from it specifications of monoids built over, say, characters, symbols,
etc. In such cases, it is appropriate to emphasize the intended genericity of
the specification by making explicit, in a distinguished parameter part (which
is here [sort Elem]), the piece of specification that is intended to vary in
the derived specifications. In these, it will then be possible to instantiate the
parameter part as desired in order to specialize the specification as appropriate
(to obtain, e.g., a specification of monoids built over characters). A named
specification with one or more parameter(s) is called generic.

The body of the generic specification GENERIC_MONOID is an extension
of what is specified in the parameter part. Hence an alternative to the above
generic specification GENERIC_MONOID is the following, less elegant, non-
generic specification (which cannot be specialized by instantiation):

spec NON_GENERIC_MONOID =

sort Elem
then sort Monoid
ops inj : Elem — Monoid,
1 : Monoid;
__* __: Monoid x Monoid — Monoid, assoc, unit 1

Va,y: Elem o inj(z) =1inj(y) =z =1y
end

A generic specification may have more than one parameter, and parame-
ters can be arbitrary specifications, named or not. When reused by reference to
its name, a generic specification must be instantiated. Generic specifications
and how to instantiate them are discussed in detail later in Chap. 7. Using
generic specifications when appropriate improves the reusability of specifica-
tion definitions.

References to generic specifications always instantiate the
parameters.

spec GENERIC_COMMUTATIVE_MONOID [sort Elem | =
GENERIC_MONOID [sort Elem |

then Vz,y: Monoid e xxy=yxzx

end

The above (generic) specification GENERIC_.COMMUTATIVE_MONOID is de-
fined as an extension of GENERIC_MONOID, which should therefore be in-
stantiated, as explained above. Instantiating a generic specification is done
by providing an argument specification that ‘fits’ the parameter part of the
generic specification to be instantiated.

3.1 Loose Specifications 31

It is however quite frequent that the instantiation is ‘trivial’, i.e., the ar-
gument specification is identical to the parameter one. This is the case for the
above example, where the generic specification GENERIC_MONOID is instanti-
ated by providing the same argument specification ‘sort Elem’ as the original
parameter.

spec GENERIC_COMMUTATIVE_MONOID_1 [sort Elem| =
GENERIC_MONOID [sort Elem |

then op __x __: Monoid x Monoid — Monoid, comm

end

GENERIC_.COMMUTATIVE_MONOID_1 is an alternative version of the for-
mer specification where, instead of requiring explicitly with an axiom the
commutativity of the operation ‘«’, we require it using the attribute comm.
As explained before, it is in general better to describe such requirements using
attributes rather than explicit axioms, since it is expected that some tools will
rely on these attributes for specialized algorithms (e.g., AC term rewriting).

This example illustrates also an important feature of CAsL, the ‘same
name, same thing’ principle. The operation symbol ‘x’ is indeed declared
twice, with the same profile, first in GENERIC_MONOID and then again in
GENERIC_COMMUTATIVE_MONOID_1 (the second declaration being enriched
by the attribute comm). This is perfectly fine and defines only one binary
operation symbol ‘*’ with the corresponding profile, according to the ‘same
name, same thing’ principle. This principle applies to sorts, as well as to
operation and predicate symbols. It applies both to symbols defined locally
and to symbols imported from an extended specification, as it is the case here
for “x’. Of course, it does not apply between separate named specifications, i.e.,
the same symbol may be used in different named specifications with entirely
different interpretations.

Note that for operation and predicate symbols, the ‘same name, same
thing’ principle is a little more subtle than for sorts: the ‘name’ of an operation
(or of a predicate) includes its profile of argument and result sorts, so two
operations defined with the same symbol but with different profiles do not have
the same ‘name’, the symbol is just overloaded. When an overloaded symbol
is used, the intended profile is to be determined by the context (e.g., the sorts
of the arguments to which the symbol is applied).* Explicit disambiguation
can be used when needed, by specifying the profile (or result sort) in an
application.® Note that overloaded constants are allowed in CASL (e.g., empty
may be declared to be a constant of various sorts of collections).

4 See also the discussion of overloading in presence of subsorts in Chap. 5, p. 61.

5 For instance, depending on the context, the term ¢ *¢2 can be disambiguated by
writing (op * : Monoid x Monoid — Monoid)(t1,t2), or just (t1 : Monoid) * (t2 :
Monoid), or even (t1 t2) : Monoid.

32 3 Getting Started

Datatype declarations may be used to abbreviate declarations of sorts
and constructors.

spec CONTAINER [sort Elem| =
type Container ::= empty | insert(Elem; Container)
pred __is_in__: Elem x Container
Ve, €' : Elem; C : Container
e —(e is_in empty)
o c is_in insert(e’,C) < (e =¢ Ve is.in C)
end

Specifications of ‘datatypes’ with constructors are frequently needed. CasL
provides special constructs for datatype declarations to abbreviate the corre-
sponding rather tedious declarations. For instance, the above datatype decla-
ration:

type Container ::= empty | insert(Elem; Container)
abbreviates:

sort Container
ops empty : Container;
insert : Elem x Container — Container

A datatype declaration looks like a context-free grammar in a variant
of BNF. It declares the symbols on the left of ‘::=’ as sorts, and for each
alternative on the right it declares a constructor.

A datatype declaration as the one above is loose since it does not imply
any constraint on the values of the declared sorts: there may be some values
of sort Container that are not built by any of the declared constructors, and
the same value may be built by different applications of the constructors to
some arguments.

Datatype declarations may also be specified as generated (see Sect. 3.2) or
free (see Sect. 3.3). Moreover, selectors, which are usually partial operations,
may be specified for each component (see Chap. 4).

Loose datatype declarations are appropriate when further
constructors may be added in extensions.

spec MARKING_CONTAINER [sort Elem] =
CONTAINER [sort Elem]
then type Container ::= mark_insert(Elem; Container)

3.2 Generated Specifications 33

pred __is_marked_in__: Elem x Container

Ve, e’ : Elem; C : Container

e ¢ is.in mark_insert(e’, C) < (e =€ V e is_in C)

o —(e is_marked_in empty)

o ¢ is_marked_in insert(e’, C) < e is_marked_in C

o ¢ is_marked_in mark_insert(e’, C) < (e = €' V e is_marked_in C)
end

The above specification extends CONTAINER (trivially instantiated) by
introducing another constructor mark_insert for the sort Container (hence,
values added to a container may now be ‘marked’ or not). Note that we
heavily rely on the ‘same name, same thing’ principle here, since it ensures
that the sort Container introduced by the datatype declaration of CONTAINER
and the sort Container introduced by the datatype declaration of MARKING_
CONTAINER are the same sort, which implies that the combination of both
datatype declarations is equivalent to:

type Container ::= empty | insert(Elem; Container)
| mark_insert(Elem; Container)

Note that since ‘new’ values may be constructed by mark_insert, it is
necessary to extend the specification of the predicate symbol is_in by an
extra axiom taking care of the newly introduced constructor.

3.2 Generated Specifications

Sorts may be specified as generated by their constructors.

spec GENERATED_CONTAINER [sort Elem] =
generated type Container ::= empty | insert(Elem; Container)
pred __is_in__: Elem x Container
Ve, €' : Elem; C : Container
e —(e is_in empty)
o e is_in insert(e’,C) < (e =¢' Ve is_in C)
end

When a datatype is declared as generated, as in the above example, the
corresponding sort is constrained to be generated by the declared constructors,
which means that any value of this sort is built by application of construc-
tors. This constraint is sometimes referred to as the ‘no junk’ principle. For
instance, in the above example, having declared the datatype Container to be
generated entails that in any model of GENERATED_CONTAINER, any value of

34 3 Getting Started

sort Container is denotable by a term built with empty, insert, and variables
of sort Elem only.

As a consequence, properties of values of sort Container can be proved
by induction on the declared constructors. A major benefit of generated
datatypes is indeed that induction on the declared constructors is a sound
proof principle.

The construct ‘generated type ... used above is just an abbreviation
for ‘generated { type ... }’, and ‘generated’ can be used around arbitrary
signature declarations, enclosed in ‘{” and ‘}’.

Generated specifications are in general loose.

spec GENERATED_CONTAINER_MERGE [sort Elem| =
GENERATED_CONTAINER [sort Elem]

then op __merge__: Container x Container — Container
Ve : Elem; C,C’': Container
o ¢ isiin (C merge C') < (e is_in C'V e is_in C")

end

A generated specification is in general loose. For instance, GENERATED -
CONTAINER is loose since, although all values of sort Container are specified to
be generated by empty and insert, the behavior of the insert constructor is still
loosely specified (nothing is said about the case where an element is inserted
into a container which already contains this element). Hence GENERATED_
CONTAINER admits several non-isomorphic models.

GENERATED_CONTAINER_-MERGE is as loose as GENERATED_CONTAINER
with respect to insert, and in addition, the newly introduced operation symbol
merge is also loosely specified: nothing is said about what happens when
merging two containers which share some elements.

It is important to understand that looseness of a specification is not a prob-
lem, but on the contrary avoids unnecessary overspecification. In particular,
loose specifications are in general well-suited to capturing requirements.

The fact that merge is loosely specified does not mean that it can pro-
duce new values of the sort Container. On the contrary, since this sort has
been specified as being generated by empty and insert, it follows that any
value denotable by a term of the form merge(...,...) can also be denoted by
a term built with empty and insert (and no merge). Hence, for the specifi-
cation GENERATED_CONTAINER_-MERGE, proofs by induction on Container
only need to consider empty and insert, and not merge, as was the case for
GENERATED_CONTAINER.

3.2 Generated Specifications 35

Generated specifications need not be loose.

spec GENERATED_SET [sort Elem| =
generated type Set ::= empty | insert(Elem; Set)
pred __is_in__: Elem x Set
ops {__}(e: Elem) : Set = insert(e, empty);
U : Set x Set — Set;
remove : Elem x Set — Set
Ve,e' : Elem; S,8" : Set
(e is_in empty)
e is_in insert(e’,S) & (e =€ V e is_in S)
S =8« (Vz:Elem o z is.in S < x is_in S') %(equal_sets)%
e isiin (SUS’) < (e issin SV e is_in S')
o ¢ is_in remove(e’,S) < (—(e=¢€') Aeis_in S)
then %implies
Ve, e : Elem; S : Set
o insert(e, insert(e,S)) = insert(e, S)
o insert(e,insert(e’,S)) = insert(e, insert(e, S))
generated type Set ::= empty | {-_}(Elem) | .U __(Set; Set)
op -_U__: Set x Set — Set, assoc, comm, idem, unit empty

end

Although generated specifications are in general loose, they need not be so,
as illustrated by the above GENERATED_SET specification, where the axiom
%(equal_sets)%, combined with the axioms defining is_in, fully constrains (up
to isomorphism) the interpretations of the sort Set and of the constructors
empty and insert, once an interpretation for the sort Elem is chosen.

Note also that this example displays the power of the annotation %implies.
Remember that this annotation applies to the whole of the specification ex-
tension where it occurs, so here it applies not only to the two explicit axioms
about insert, but also to the properties corresponding to the attributes of ‘U’
as well as to the generatedness constraint. Hence, the %implies annotation is
used here not only to stress that the usual properties of insert are expected to
follow from the preceding declarations and axioms, but also that an alterna-
tive induction scheme, based on empty,{__} and __U __, can be used for sets.
Moreover, it asserts that __U __ is expected to be associative, commutative,
idempotent (i.e., SUS = 5), and to have empty as unit. Note again that this
%implies part heavily relies on the ‘same name, same meaning’ principle.

36 3 Getting Started

Generated types may need to be declared together.

The following specification fragment illustrates what may go wrong.

sort Node
generated type Tree ::= mktree(Node; Forest)
generated type Forest ::= empty | add(Tree; Forest)

The above is incorrect, due to the linear visibility rule. This can easily
be fixed by replacing ‘sort Node’ by ‘sorts Node, Tree, Forest’. Even when
corrected, the above is wrong, since the corresponding semantics is not what a
naive reader may expect. One may expect that only models where the carrier
sets of the sorts Tree and Forest are generated by mktree, empty and add are
acceptable, but more models satisfy the above two separate sort generatedness
constraints. For instance, a model with both a junk tree j¢ and a junk forest
jf fulfills the above declarations (assuming that the interpretations of mktree
and add on jt and jf in this model are such that jt = mktree(n, jf) for any
node n and that jf = add(jt, jf)). Hence, one must write instead:

sort Node
generated types Tree ::= mktree(Node; Forest);
Forest ::= empty | add(Tree; Forest)

Here, the mutually recursive datatypes Tree and Forest are correctly de-
fined simultaneously within the same generated types construct, and the
resulting semantics is the expected one (without junk values for trees and
forests). Note that therefore, the linear visibility rule is not applicable within
a generated types construct (to allow such mutually recursive definitions),
but that this is the only exception to the linear visibility principle. Only
mutually recursive generated datatypes need to be declared together; in sim-
pler cases, it makes no difference to have a sequence of successive generated
datatype declarations or just one introducing all the desired datatypes.

3.3 Free Specifications

Free specifications provide initial semantics and avoid the need for
explicit negation.

spec NATURAL = free type Nat ::= 0 | suc(Nat)

5 The same explanations apply to free datatypes, introduced in the next subsection.

3.3 Free Specifications 37

A free datatype declaration corresponds to the so-called ‘no junk, no
confusion’ principle: there are no other values of sort Nat than those denoted
by the constructor terms built with 0 and suc, and all distinct constructor
terms denote different values.

Hence, a free datatype declaration such as the one above has exactly the
same effect as the corresponding generated datatype declaration, together
with axioms stating that suc is injective, and that 0 cannot be the successor
of a natural number. An alternative to the above ‘free type Nat := 0 |
suc(Nat)’ is therefore:

generated type Nat ::= 0 | suc(Nat)
Va,y: Nat e suc(z)= suc(y) =z =y
Vo : Nat e —(0 = suc(z))

Free datatype declarations are particularly convenient for defining
enumerated datatypes.

spec COLOR =

free type RGB ::= Red | Green | Blue

free type CMYK ::= Cyan | Magenta | Yellow | Black
end

Using ‘free’ instead of ‘generated’ for defining enumerated datatypes
saves the writing of many explicit distinctness assertions (for instance, here,
—(Red = Green), ~(Red = Blue), ...).

Free specifications can also be used when the constructors are related
by some axioms.

spec INTEGER =
free { type Int ::= 0 | suc(Int
YV : Int ® suc(pre(z)) =
o pre(suc(z)) =
end

When some relations are to be imposed between the constructors (as is the
case here for suc and pre which are inverses of each other), a free datatype
declaration cannot be used, since the contradiction between the ‘no confu-
sion’ principle and the axioms imposed on the constructors would lead to an
inconsistent specification. Instead, one should impose a ‘freeness constraint’
around the datatype declaration followed by the required axioms. A freeness

38 3 Getting Started

constraint, expressed by the keyword free, can be imposed around any spec-
ification.

In the case of the above INTEGER specification, the freeness constraint
imposes that the semantics of the specification is the class of all algebras iso-
morphic to the quotient of the constructor terms by (the minimal congruence
induced by) the given axioms. This is exactly the desired semantics. More gen-
erally, a freeness constraint around a specification indicates its initial model,
which may not exist, of course. It is however well-known that initial models of
basic specifications with axioms restricted to Horn clauses (of which equations
as in INTEGER are a special case) always exist.” Remember also that equality
holds minimally in initial models of equational specifications.

Predicates hold minimally in models of free specifications.

spec NATURAL_ORDER =

NATURAL
then free { pred __ < __: Nat x Nat
Vz,y: Nat
o 0 < suc(zx)

o 7 <y = suc(z) < suc(y) }
end

A freeness constraint imposed around a predicate declaration followed by
some defining axioms has the effect that the predicate only holds when this
follows from the given axioms, and does not hold otherwise. For instance, in
the above example, it is not necessary to explicitly state that ‘=(0 < 0)’,
since this will follow from the imposed freeness constraint. Hence, in such
cases a freeness constraint has exactly the same effect as the so-called ‘nega-
tion as failure’ or ‘closed world assumption’ principles in logic programming.
More generally, it is often convenient to define a predicate within a freeness
constraint, since by doing so, one has to specify the ‘positive’ cases only.

Operations and predicates may be safely defined by induction on the
constructors of a free datatype declaration.

spec NATURAL_ARITHMETIC =
NATURAL_ORDER

7 Strictly speaking, existence of initial models depends on a further requirement:
namely the existence of a ground term for each sort. This ensures that the term-
algebra has non-empty carriers and hence is a CASL model.

3.3 Free Specifications 39

then ops I : Nat = suc(0);
——+ __: Nat x Nat — Nat, assoc, comm, unit 0;
__*% __ : Nat x Nat — Nat, assoc, comm, unit 1
Va,y: Nat
o 1+ suc(y) = suc(z + y)
e zx(0 =10

o rxsuc(y)=(zx*xy)+ax
end

To define some operation on a free datatype, it is generally recommended
to make a case distinction with respect to the various constructors defined.
This is illustrated by the above definitions of ‘4+” and ‘x’ (although for the
‘+’ operation, the case for the constructor 0 is already taken care of by the
attribute ‘unit 07).8

More care may be needed when defining operations or predicates on
free datatypes when there are axioms relating the constructors.

spec INTEGER_ARITHMETIC =
INTEGER
then ops I 2 Int = suc(0);
__+ __: Int x Int — Int, assoc, comm, unit 0;
__— __:Int x Int — Int;

% __ : Int X Int — Int, assoc, comm, unit 1

Vx,y: Int

o 1+ suc(y) = suc(z + y)

o 1z + pre(y) = pre(z + y)

o x— () =z

oz — suc(y) = pre(z — y)

o z —pre(y) = suc(z — y)

e Tx() =0

o rxsuc(y) = (z*xy)+z

o rxpre(y) = (z*xy)—z

end

While a case distinction with respect to the constructors of a free datatype
is harmless, this may not be the case for a datatype defined within a freeness
constraint, since, due to the axioms relating the constructors to each other,
some cases may overlap. This does not mean, however, that one cannot use
the case distinction, but just that more attention should be paid than for a
free datatype — since one needs to ensure that the definitions lead to the same

8 In specification libraries, ordinary decimal notation for natural numbers can be
provided by use of so-called literal syntax annotations, see Chap. 9.

40 3 Getting Started

results for overlapping cases. For instance, in the above example no problem
arises. But one should be more careful with the next one, since a negative
integer can be of the form suc(z), hence asserting, e.g., 0 < suc(z), would of
course be wrong.

spec INTEGER_ARITHMETIC_ORDER =
INTEGER_ARITHMETIC

then preds < __, _>__, _<__, > __:IntxInt
Vz,y: Int

0<0

—(0 < pre(0))

0<z= 0 < suc(z)

~(0 < z) = (0 < pre(z))

suc(z) <y &z < pre(y)

pre(z) <y &z < suc(y)

T2y y<z

z<ye (z<yA-(z=y))

T>yY=y<e

end

Generic specifications often involve free extensions of (loose)
parameters.

spec LIST [sort Elem| = free type List ::= empty | cons(Elem; List)

The parameter of a generic specification should be loose to cope with the
various expected instantiations. On the other hand, it is a frequent situation
that the body of the generic specification should have a free, initial interpre-
tation. This is illustrated by the above example, where we want to combine a
loose interpretation for the sort Elem with a free interpretation for lists. The
following example is similar in spirit.

spec SET [sort Elem | =
free { type Set ::= empty | insert(Elem; Set)

pred __is_in__: Elem x Set
Ve, e' : Elem; S : Set
o insert(e, insert(e,S)) = insert(e, S)
o insert(e, insert(e’,S)) = insert(e’, insert(e, S))
o —(e is_in empty)
e ¢ is_in insert(e,S)
e c is_in insert(e’, S) if e is_in S }

end

3.3 Free Specifications 41

As for the LIST example, we want to have a loose interpretation for the
sort Elem and a free interpretation for sets. Since some axioms are required to
hold for the Set constructors empty and insert, we cannot use a free datatype
declaration, hence we use a freeness constraint.

Note that since, as already explained, predicates hold minimally in models
of free specifications, it would have been enough, in the above example, to
define the predicate is_in by the sole axiom e is_in insert(e, S).” However,
doing so would have decreased the comprehensibility of the specification and
this is the reason why we have preferred a more verbose axiomatization of the
predicate is_in.

Note also the use of the keyword ‘if’ to write an implication in the reverse
order:

e is_in insert(e’,S) if e is_in S
is equivalent to:
e is-in S = e is_in insert(e’, S)

The following example specifies the transitive closure of an arbitrary binary
relation R on some sort Elem (both provided by the parameter).

spec TRANSITIVE_CLOSURE [sort Elem pred __R__: Elem x Elem] =
free { pred _R™__: Elem x Elem
Vx,y,z: Elem
ez Ry=1 Rty
e v RYyAy R z=1 R"2}

In the above example, it is crucial that predicates hold minimally in models
of free specifications, since this property ensures that what we define as ‘R’
is actually the smallest transitive relation including R. Without requiring the
freeness constraint, one would allow arbitrary transitive relations containing
R (and these undesired relations cannot be eliminated merely by specifying
further first-order axioms).

Loose extensions of free specifications can avoid overspecification.

spec NATURAL_WITH_BOUND =
NATURAL_ARITHMETIC
then op maz_size : Nat
o () < max_size
end

9 If an element e belongs to a set S’, then this set S’ can always be denoted by
a constructor term of the form insert(e, S), due to the axioms constraining the
constructor nsert.

42 3 Getting Started

The above example shows another benefit of mixing loose and initial se-
mantics. Assume that at this stage we want to introduce some bound, of sort
Nat, without fixing its value yet (this value is likely to be fixed later in some
refinement, and all that we need for now is the existence of some bound). This
is provided by the above specification NATURAL_WITH_BOUND, where we mix
an initial interpretation for the sort Nat (defined using a free datatype dec-
laration in NATURAL) and a loose interpretation for the constant mazx_size.
Each model of NATURAL_WITH_BOUND will provide a fixed interpretation
of the constant maz_size, and all these models are captured by NATURAL_
WITH_BOUND, which is in this sense loose. Using such loose extensions is in
general appropriate to avoid unnecessary overspecification.

spec SET_CHOOSE [sort Elem| =

SET [sort Elem |
then op choose : Set — Elem

VS : Set o (S = empty) = choose(S) is_in S
end

This example shows again the benefit of mixing initial and loose seman-
tics. Here, we want to extend sets, defined using a free constraint in SET, by a
loosely specified operation choose.' At this stage, the only property required
for choose is to provide some element belonging to the set to which it is ap-
plied, and we do not want to specify more precisely which specific element is
to be chosen. Note that each model of SET_CHOOSE will provide a function
implementing some specific choice strategy, and that since all these interpreta-
tions of choose have to be functions, they are necessarily ‘deterministic’ (e.g.,
applied twice to the same set argument, they return the same result).

Datatypes with observer operations or predicates can be specified as
generated instead of free.

spec SET_GENERATED [sort Elem| =

generated type Set ::= empty | insert(Elem; Set)

pred __is_in__: Elem x Set

Ve, e’ : Elem; S,S": Set

e —(e is_in empty)

o ¢ is_in insert(e’,S) < (e=¢€ Ve isiin S)

e S=95"< (Vo: Elem e xis_in S < x is_in S)
end

10 For the purpose of this example, we disregard the fact that choose should be un-
defined on the empty set, and we just leave this case unspecified. Partial functions
are discussed in Chap. 4.

3.3 Free Specifications 43

The above specification is an alternative to the specification SET (see
p. 40). Both SET and SET_GENERATED define exactly the same class of
models. The former specification relies on a freeness constraint, while SET_
GENERATED relies on the observer is_in to specify when two sets are equal.
Indeed, the last axiom of SET_GENERATED expresses directly that two sets
having exactly the same elements are equal values. This axiom, together with
the first two axioms defining is_in, will entail as well the expected proper-
ties on the constructor insert (see GENERATED_SET p. 35). Note also that
since, in SET_GENERATED, the predicate is_in is not defined within a free-
ness constraint, we specify when it holds using ‘<’ rather than a one-way
implication.

While a freeness constraint may be unavoidable to define a predicate, as
illustrated by TRANSITIVE_CLOSURE, the choice between relying on a free-
ness constraint to define a datatype such as Set, or using instead a generated
datatype declaration together with some observers to unambiguously deter-
mine the values of interest, is largely a matter of convenience. One may argue
that SET is more suitable for prototyping tools based on term rewriting, while
SET_GENERATED is more suitable for theorem-proving tools.

The %def annotation is useful to indicate that some operations or
predicates are uniquely defined.

spec SET_UNION [sort Elem| =
SET [sort Elem |
then %def
ops __U__ : Set x Set — Set, assoc, comm, idem, wunit empty;
remove : Elem x Set — Set
Ve, e : Elem; S,5" : Set
S Uinsert(e’, S") = insert(e’, SUS")
remove(e, empty) = empty
remove(e, insert(e, S)) = remove(e, S)
remove(e, insert(e’, S)) = insert(e’, remove(e, S)) if (e =¢’)

end

The annotation %def expresses that SET_UNION is a definitional extension
of SET, i.e., that each model of SET can be uniquely extended to a model of
SET_UNION, which means that the operations introduced in SET_UNION are
uniquely defined. As with the %implies annotation, the %def annotation
has no impact on the semantics, but a corresponding proof obligation can be
generated, to be discharged by theorem proving tools. The %def annotation
is especially useful to stress that the specifier’s intention is to impose a unique
interpretation of what is defined within the scope of this annotation (once an
interpretation for the part which is extended has been chosen).

44 3 Getting Started

Operations can be defined by axioms involving observer operations,
instead of inductively on constructors.

spec SET_UNION_1 [sort Elem] =
SET_GENERATED [sort Elem]
then %def
ops __U__ : Set x Set — Set, assoc, comm, idem, wunit empty;
remove : Elem x Set — Set
Ve,e' : Elem; S,5" : Set
o cisiin (SUS') < (eis_in SV eis.in §)
o ¢ is_in remove(e’,) < (—(e=¢€') Aeis_in S)
end

The specification SET_UNION_1 is an alternative to SET_UNION and de-
fines exactly the same model class. While an inductive definition style was cho-
sen for the operations ‘U’ and remove in SET_UNION, in SET_UNION_1 these
operations are defined ‘implicitly’ by characterizing their results through the
observer is_in. Note that this ‘observer’ style does not prevent us providing a
unique definition of both operations, as claimed by the %def annotation.

Similarly to the discussion on the respective merits of SET and of SET_
GENERATED, the choice between an inductive definition style and an ‘ob-
server’ definition style is partly a matter of taste. One may argue that the
‘observer’ definition style is more abstract in the sense that there is no hint
to any algorithmic computation of the so-defined operations, while the induc-
tive definition style mimics a recursive definition in a functional programming
language. Again, the inductive definition style may be more suitable for pro-
totyping tools based on term rewriting, while the ‘observer’ definition style
may be more suitable for theorem-proving tools.

Sorts declared in free specifications are not necessarily generated by
their constructors.

spec UNNATURAL =
free { type UnNat ::= 0 | suc(UnNat)
op _+ __:UnNat x UnNat — UnNat,
assoc, comm, unit 0
Vz,y: UnNat e x+ suc(y) = suc(z + y)
Vz: UnNat e Jy: UnNat ¢ z+y =0}
end

This rather peculiar example illustrates the fact that a sort defined within
a freeness constraint need not be generated by its constructors. In UNNAT-
URAL, the specification enclosed within the free { ...} construct specifies

3.3 Free Specifications 45

Abelian groups with one generator suc(0), and the integers are the free such
Abelian group. Hence, the (unique up to isomorphism) model of UNNATURAL
corresponds to integers, and not to natural numbers as one may expect — just
consider the last axiom. This example points out why in general datatypes
defined using freeness constraints can be more difficult to understand than
datatypes defined using generatedness constraints. However, the reader should
be aware that the specification UNNATURAL uses a proper first-order formula
with an existential quantifier in the axioms. The specification UNNATURAL is
provided here for explanatory purposes only, and clearly the writing of simi-
lar specifications should be discouraged. When only Horn clauses are used as
axioms in a freeness constraint, then the datatype will indeed be generated
by its constructors.

	3.1 Loose Specifications
	3.2 Generated Specifications
	3.3 Free Specifications

