
6

Structuring Specifications

Large and complex specifications are easily built out of simpler ones
by means of (a small number of) specification-building operations.

In the previous chapters, we have focused attention on basic specifications
and detailed how to use the various constructs of CASL to write meaningful,
but relatively simple, specifications. The aim of this chapter is to discuss and
illustrate how to assemble simple pieces of specifications into more complex,
structured ones. In particular we explain how to extend specifications, make
the union of several specifications, as well as how to rename or hide symbols
when assembling specifications. Parametrization and instantiation of generic
specifications are explained in the next chapter.

6.1 Union and Extension

Union and extension can be used to structure specifications.

spec List Set [sort Elem] =
List Selectors [sort Elem]

and Generated Set [sort Elem]
then op elements of : List → Set

∀e : Elem; L : List
• elements of empty = empty
• elements of cons(e,L) = {e} ∪ elements of L

end

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 67–75, 2004.
c© IFIP International Federation for Information Processing 2004

68 6 Structuring Specifications

The above example shows how to make the union (expressed by ‘and’)
of two specifications List Selectors (see Chap. 4, p. 54) and Generated
Set (see Chap. 3, p. 35), and then further extend this union by an operation
and some axioms (using ‘then’). Union and extension are the most commonly
used specification-building operations. In contrast with extension, whose pur-
pose is to extend a given piece of specification by new symbols and axioms,
union is generally used to combine two self-contained specifications. Union of
specifications is obviously associative and commutative.

All symbols introduced by a specification are by default exported by it
and visible in its extensions or in its unions with other specifications. (Vari-
ables are not considered as symbols, and never exported.) Remember also the
‘same name, same thing’ principle: in the above List Set specification, it is
therefore the same sort Elem which is used to construct both lists and sets.1

Specifications may combine parts with loose, generated, and free
interpretations.

spec List Choose [sort Elem] =
List Selectors [sort Elem]

and Set Partial Choose 2 [sort Elem]
then ops elements of : List → Set ;

choose : List →? Elem
∀e : Elem; L : List
• elements of empty = empty
• elements of cons(e,L) = {e} ∪ elements of L
• def choose(L) ⇔ ¬(L = empty)
• choose(L) = choose(elements of L)

end

spec Set to List [sort Elem] =
List Set [sort Elem]

then op list of : Set → List
∀S : Set • elements of (list of S) = S

end

The specification List Choose is built as an extension of the union of
List Selectors and Set Partial Choose 2 (see Chap. 4, p. 50). This
extension introduces an operation elements of (as in List Set) and a partial
operation choose, which are defined by some axioms. In List Selectors,
lists are defined by a free datatype construct (with selectors), hence have a

1 The constant empty is overloaded, since we have a constant empty : List for lists
and a constant empty : Set for sets.

6.2 Renaming 69

free interpretation. Set Partial Choose 2 is itself an extension of (Set
Partial Choose which is an extension of) Generated Set, where sets are
defined by a generated datatype construct. However, note that as discussed in
Chap. 3, p. 35, the apparently loose specification Generated Set is in fact
not so. Moreover, the choose partial function on sets is loosely defined in Set
Partial Choose 2, and so is therefore also the choose partial function on
lists defined in List Choose. It is easy to see that the operation elements of
is uniquely defined. The sort Elem has of course a loose interpretation.

Thus the specification List Choose combines parts with a free interpre-
tation, parts with a generated interpretation, and parts with a loose interpre-
tation. The situation is similar to that with List Set (and Set to List),
where the operation list of is loosely defined with the help of the operation
elements of .

6.2 Renaming

Renaming may be used to avoid unintended name clashes, or to
adjust names of sorts and change notations for operations and
predicates.

spec Stack [sort Elem] =
List Selectors [sort Elem] with sort List �→ Stack ,

ops cons �→ push onto ,
head �→ top,
tail �→ pop

end

While the ‘same name, same thing’ principle has proven to be appropri-
ate in numerous examples given in the previous chapters and above, it may
still happen that, when combining specifications, this principle leads to unin-
tended name clashes. An unintended name clash arises for instance when one
combines two specifications that both export the same symbol (with the same
profile in case of an operation or a predicate), while this symbol is not intended
to denote the same ‘thing’ in the combination. In such cases, it is necessary
to explicitly rename some of the symbols exported by the specifications put
together in order to avoid the unintended name clashes.

When reusing a named specification, it may be convenient to rename some
of its symbols; moreover, in the case of operation or predicate symbols, one
may also change the style of notation. This is illustrated in the specifica-
tion Stack above which is obtained as a renaming of the specification List
Selectors. (A renaming is introduced by the keyword ‘with’.) First, the sort
List is renamed into Stack , then the operation cons is renamed into a mixfix

70 6 Structuring Specifications

operation push onto , and finally the selectors head and tail are renamed
into top and pop, respectively. Note that ‘�→’ is input as ‘|->’.

The user only needs to indicate how symbols provided by the renamed
specification are mapped to new symbols. A signature morphism is auto-
matically deduced from this ‘symbol map’. For instance, the signature mor-
phism inferred from the symbol map specified in Stack maps the operation
symbol cons : Elem × List → List to the operation symbol push onto :
Elem × Stack → Stack : not only the operation name is changed, but also its
profile according to the renaming of List into Stack .

In a symbol map, one can qualify the symbol to be renamed by its kind,
using the keywords sort, op, and pred (or their plural forms), as appropriate;
this is illustrated in Stack above. Qualification in symbol maps is generally
recommended since it improves their readability.

While it is possible to change the syntax of an operation or predicate
symbol, as illustrated above for cons mapped to push onto , it is not possible
to change the order of the arguments of the renamed operation or predicate.

In general, one does not need to rename all the symbols provided by the
specification to be renamed. In the symbol map describing the intended re-
naming, it is indeed enough to mention only the symbols that change. By
default, any symbol not explicitly mentioned is left unchanged (although its
profile may be updated according to the renaming specified for some sorts).
This is illustrated here in Stack where there is no need to rename the constant
empty, which will therefore have the same name for both lists and stacks. How-
ever, the induced signature morphism maps the constant symbol empty : List
into the constant symbol empty : Stack .

One can also explicitly rename a symbol to itself, say by writing ‘empty �→
empty’, or just mention it without providing a new name, as in ‘with empty’,
which is equivalent to ‘with empty �→ empty’.

By default, overloaded symbols are renamed simultaneously. For instance,
in Integer Arithmetic 1 with + �→ plus , all the five overloaded infix
‘+’ operations exported by Integer Arithmetic 1 (see Chap. 5, p. 64) are
renamed into five plus operations, with a functional syntax and the appropri-
ate profiles.

In general, it is possible to specifically rename one of some overloaded sym-
bols, by specifying its profile in the symbol map. For instance, in List Set
with empty : List �→ nil , only the constant empty of sort List is renamed into
nil , while the constant empty of sort Set remains unchanged. However, care is
needed in the presence of subsorts, since the signature morphism induced by
the specified symbol map should preserve the overloading relations associated
with subsorts. For instance, if we attempt to only rename in the specification
Integer Arithmetic 1 the addition ‘+’ of two positive numbers into plus
and write Integer Arithmetic 1 with + : Pos × Pos → Pos �→ plus ,
we merely obtain an ill-formed specification. Thus in the specification Inte-
ger Arithmetic 1, all the five overloaded ‘+’ operations must be renamed
simultaneously, again into five overloaded symbols.

6.3 Hiding 71

When combining specifications, origins of symbols can be indicated.

spec List Set 1 [sort Elem] =
List Selectors [sort Elem] with empty, cons

and Generated Set [sort Elem] with empty, { }, ∪
then op elements of : List → Set

∀e : Elem; L : List
• elements of empty = empty
• elements of cons(e,L) = {e} ∪ elements of L

end

Since, as explained above, ‘with empty, cons ’ means ‘with empty �→
empty, cons �→ cons ’, identity renaming can be used just to emphasize the
fact that a given specification exports some symbols. This is illustrated in the
specification List Set 1 above, which is quite similar to List Set, but for the
fact that here we emphasize that List Selectors exports in particular the
operations empty and cons , and that Generated Set exports in particular
the operations empty, ‘{ }’, and ‘∪’.

6.3 Hiding

Auxiliary symbols used in structured specifications can be hidden.

spec Natural Partial Subtraction 3 =
Natural Partial Subtraction 1 hide suc, pre

end

spec Natural Partial Subtraction 4 =
Natural Partial Subtraction 1
reveal Nat , 0 , 1 , + , − , ∗ , <

end

When writing large specifications, it is quite frequent to rely on auxiliary
operations (and predicates) to specify the operations (and predicates) of in-
terest. Once these are defined, the auxiliary operations are no longer needed,
and are better removed from the exported signature of the specification, which
should include only the symbols that were required to be specified. This is the
purpose of the hide construct.

Consider for instance the specification Natural Partial Subtraction
1 given in Chap. 4, p. 52. Once addition and subtraction are defined, the

72 6 Structuring Specifications

two basic operations suc and pre are no longer needed (since suc(x) is more
conveniently written x + 1 , and similarly pre(x) is expressed by x − 1), and
can therefore be hidden. This is illustrated by the specification Natural
Partial Subtraction 3 given above.

Depending on the relative proportion of symbols to be hidden or not, in
some cases it may be more convenient to explicitly list the symbols to be
exported by a specification rather than those to be hidden. The construct
‘reveal’ can be used for that purpose, and ‘hide’ and ‘reveal’ are just two
symmetric constructs to achieve the same effect. The use of ‘reveal’ is il-
lustrated in Natural Partial Subtraction 4 above, and the reader can
convince himself that both Natural Partial Subtraction 3 and Natu-
ral Partial Subtraction 4 export exactly the same symbols. However,
in this case the first specification is clearly more concise. A more convincing
example of the use of ‘reveal’ is provided by the following example.

spec Partial Order 2 = Partial Order reveal pred ≤
Similar rules to the ones explained for renaming apply to the hide and

reveal constructs. One can qualify a symbol to be hidden or revealed by its
kind (sort, op or pred), and by default, overloaded symbols are hidden (or
revealed) simultaneously.

Note that hiding a sort entails hiding all the operations or predicates that
use it in their profile. Similarly, revealing an operation or a predicate entails
revealing all the sorts involved in its profile. For instance, in the specification
Partial Order 2 above, revealing the predicate ‘≤’ entails revealing also
the sort Elem.

As a consequence, hiding sorts should be used with care in the presence
of subsorts. For instance, hiding the sort Nat in the specification Positive
given in Chap. 5, p. 61, leads to a specification of positive natural numbers
with a sort Pos which has the expected carrier set, but without any operation
or predicate available on it. Hiding the sort Nat in the specification Posi-
tive Arithmetic (see Chap. 5, p. 61) may seem more appropriate, but one
should still note that the predicate ‘<’ is no longer available in Positive
Arithmetic hide sort Nat .

As a last remark, note that when convenient, reveal can be combined
with a renaming of (some of) the exported symbols. For instance, in the
above Partial Order 2 specification, we could have written ‘reveal pred

≤ �→ leq’ if, in addition to a restriction of the signature of Partial
Order, we wanted to rename the infix predicate ‘ ≤ ’ into a predicate leq
with a functional notation.

6.4 Local Specifications 73

6.4 Local Specifications

Auxiliary symbols can be made local when they do not need to be
exported.

spec List Order [Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local op insert : Elem × List → List
∀e, e ′ : Elem; L : List
• insert(e, empty) = cons(e, empty)
• insert(e, cons(e ′,L)) = cons(e ′, insert(e,L)) when e ′ < e

else cons(e, cons(e ′,L))
within op order : List → List

∀e : Elem; L : List
• order(empty) = empty
• order(cons(e,L)) = insert(e, order(L))

end

In many cases, auxiliary symbols are introduced for immediate use, and
they do not need to be exported by the specification where they are declared.
Then the best is to limit the scope of the declarations of such auxiliary symbols
by using the ‘local . . . within . . . ’ construct. This is illustrated in the above
specification List Order, where the insert operation is introduced only for
the purpose of the axiomatization of order . The declaration of insert has its
scope limited to the part that follows ‘within’, and insert is therefore not
exported by the specification List Order.

It is generally advisable to ensure that auxiliary symbols are declared in
local parts of specifications.

spec List Order Sorted
[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

cons(e ′,L) is sorted ∧ ¬(e ′ < e)
within op order : List → List

∀L : List • order(L) is sorted
end

The specification List Order Sorted above is a variant of the specifi-
cation List Order illustrating again the use of the ‘local . . . within . . . ’

74 6 Structuring Specifications

construct – this time to declare an auxiliary predicate. (Actually, the two
specifications are not equivalent, since List Order Sorted is much looser
and only requires that order(L) is a sorted list, but perhaps not with the same
elements as L.)

Care is needed with local sort declarations.

spec Wrong List Order Sorted
[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local pred is sorted : List
sort SortedList = {L : List • L is sorted}
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

cons(e ′,L) is sorted ∧ ¬(e ′ < e)
within op order : List → SortedList

end

Note that the above specification Wrong List Order Sorted, which
may at first glance be considered as a slight variant of List Order Sorted,
is ill-formed : order is exported by Wrong List Order Sorted, and hence
all sorts occurring in its profile should also be exported, which cannot be,
since the sort SortedList is auxiliary. So, if the specifier really intends to insist
that the result sort of order is SortedList , this subsort should be exported, as
shown below.

spec List Order Sorted 2
[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

cons(e ′,L) is sorted ∧ ¬(e ′ < e)
within sort SortedList = {L : List • L is sorted}

op order : List → SortedList
end

In fact the ‘local . . . within . . . ’ construct abbreviates a combination
of extension and explicit hiding. The specification List Order Sorted 2
above, for instance, abbreviates:

6.5 Named Specifications 75

spec List Order Sorted 3
[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then { pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

cons(e ′,L) is sorted ∧ ¬(e ′ < e)
then sort SortedList = {L : List • L is sorted}

op order : List → SortedList
} hide is sorted

end

The main advantage of using the ‘local . . . within . . . ’ construct is that
hiding the symbols introduced in the local part is left implicit. The conve-
nience of this generally outweighs the danger of overlooking a locally-declared
sort that is needed for the profile of an exported symbol. In any case, CASL

allows both styles, and users can simply choose the one they prefer.

6.5 Named Specifications

Naming a specification allows its reuse.

It is in general advisable to define as many named specifications as felt
appropriate, since this improves the reusability of specifications: a named
specification can easily be reused by referring to its name.

Not only do the names serve as abbreviations when writing specifications,
they also make it easy for readers to notice reuse. Moreover, when the name
of a specification is aptly chosen, e.g., Natural Arithmetic, readers may
well be able to guess its signature – and perhaps even the specified axioms –
from the name itself. (In Chap. 9, we shall see how named specifications and
other items can be collected in libraries, and particular versions of them made
available for use over the Internet.)

References to named specifications are particularly convenient for specifi-
cations structured using unions and extensions, where verbatim insertion of
unnamed specifications would tend to obscure the structure. When needed,
the signature of a referenced specification can be adjusted through appropri-
ate combinations of renaming and hiding (although this should not often be
necessary, provided that auxiliary symbols are made local, as explained in the
previous section).

	6.1 Union and Extension
	6.2 Renaming
	6.3 Hiding
	6.4 Local Specifications
	6.5 Named Specifications

