
7

Generic Specifications

Making a specification generic (when appropriate) improves its
reusability.

As mentioned in the previous chapter, naming specifications is a good
idea. In many cases, however, datatypes are naturally generic, having sorts,
operations, and/or predicates that are deliberately left loosely specified, to be
determined when the datatype is used. For instance, datatypes of lists and
sets are generic regarding the sort of elements. Generic specifications allow the
genericity of a datatype to be made explicit by declaring parameters when the
specification is named: in the case of lists and sets, there is a single parameter
that simply declares the sort Elem.1 A fitting argument specification has
to be provided for each parameter of a generic specification whenever it is
referenced; this is called instantiation of the generic specification.

The aim of this chapter is to discuss and illustrate how to define generic
specifications and instantiate them. We have seen plenty of simple examples
of generic specifications and instantiations in the previous chapters. In more
complicated cases, however, explicit fitting symbol maps may be required
to determine the exact relationship between parameters and arguments in
instantiations, and so-called imports should be separated from the bodies of
generic specifications.
1 Generic specifications are also useful to ensure loose coupling between several

named specifications, replacing an explicit extension by a parameter including
only the necessary symbols and their required properties. This is illustrated in
the Steam-Boiler Control System case study, see Chap. 13.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 77–92, 2004.
c© IFIP International Federation for Information Processing 2004

78 7 Generic Specifications

7.1 Parameters and Instantiation

Parameters are arbitrary specifications.

Any specification, named or not, can be used as the parameter of a generic
specification. Commonly, the parameter is a rather trivial specification con-
sisting merely of a single sort declaration, as in most of the examples given in
the previous chapters, e.g.:

spec Generic Monoid [sort Elem] = %{ See Chap. 3, p. 30 }%

spec List Selectors [sort Elem] = %{ See Chap. 4, p. 54 }%

However, the parameter can also be a more complex, possibly structured,
specification, as in:

spec List Order [Total Order with sort Elem, pred <] =
%{ See Chap. 6, p. 73 }%

Recall that ‘with’ requires the signature of the specification to include the
listed symbols; here, in fact, the signature of Total Order does not contain
any further symbols, so those are all the symbols that have to be supplied
when instantiating List Order.

The argument specification of an instantiation must provide symbols
corresponding to those required by the parameter.

spec List Order Nat = List Order [Natural Order]

The correspondence between the symbols provided by the argument spec-
ification and those required by the parameter can be described by a fitting
symbol map or left implicit when it is not ambiguous, which is often the case.

In the above example, the argument specification Natural Order pro-
vides the sort Nat , the operation symbols 0 and suc, and the binary predicate
symbol ‘<’. Hence this specification indeed provides symbols corresponding
to those required by the parameter specification Total Order and the cor-
respondence can be left implicit because the argument Natural Order has
only single symbols of the right kind. (The coincidence of the predicate sym-
bol in the parameter and argument is irrelevant here.)

How to describe explicit fitting symbol maps and when they can be omitted
is detailed later in this section.

7.1 Parameters and Instantiation 79

The argument specification of an instantiation must ensure that the
properties required by the parameter hold.

spec Nat Word = Generic Monoid [Natural]

A (fitting) signature morphism from the signature of the parameter part to
the signature of the argument specification is automatically deduced, taking
into account the explicitly specified fitting symbol map if any (the situation
here is quite similar to a renaming, where a signature morphism is deduced
from a symbol map). The instantiation is defined if all models of the argument
specification, when reduced along the induced fitting signature morphism,
provide models of the parameter part. In particular the symbols provided
by the argument specification must have the properties, if any, specified in
the parameter for their counterparts. When this is the case, we get not only
a signature morphism, but also a (fitting) specification morphism from the
argument specification to the parameter specification.2

In the above Nat Word example, since the parameter of Generic
Monoid is trivial, it is obvious that the instantiation is defined.

The effect of the instantiation is to make the union of the argument spec-
ification and of the (non generic equivalent of the) generic specification, re-
named according to the induced fitting signature morphism. In particular, a
side-effect of the instantiation is to rename the symbols of the generic specifica-
tion according to the fitting signature morphism induced by the instantiation.
In our Nat Word example, the operation symbol inj : Elem → Monoid is
renamed into inj : Nat → Monoid , while the operation symbols ‘1 ’ and ‘∗’
are left unchanged (as well as the sort Monoid). Thus, the specification Nat
Word abbreviates the following specification:
Natural and { Non Generic Monoid with Elem �→ Nat }.

When convenient, the instantiation can be completed by a renaming, as
illustrated in the following variant of Nat Word.

spec Nat Word 1 =
Generic Monoid [Natural]
with Monoid �→ Nat Word

end

In the case of the specification List Order Nat above, checking the de-
finedness of the instantiation corresponds to a non-trivial proof obligation.
The instantiation is defined since the predicate ‘<’ provided by Natural
Order is indeed a total ordering relation, hence the properties required by
2 Note that consistency is entirely orthogonal to definedness: a defined instantiation

may be consistent or not.

80 7 Generic Specifications

Total Order are fulfilled, even if there is no syntactic correspondence be-
tween the axioms given in Total Order and those in Natural Order.

There must be no shared symbols between the argument specification
and the body of the instantiated generic specification.

spec This Is Wrong = Generic Monoid [Monoid]

The intention in the above example may have been to specify monoids
of monoids. However, the above instantiation is ill-formed since the sort
Monoid and the operation symbols ‘1 ’ and ‘∗’ are shared between the body
of the generic specification Generic Monoid and the argument specification
Monoid.

Section 7.3 provides useful hints on how to structure generic specifications
in order to avoid as far as possible undesirable clashes of symbols in instanti-
ations. A correct specification of monoids of monoids is provided in Sect. 7.2,
p. 86.

In instantiations, the fitting of parameter symbols to identical
argument symbols can be left implicit.

spec Generic Commutative Monoid [sort Elem] =
Generic Monoid [sort Elem]

then . . .

When the parameter and the argument have symbols in common, these
parameter symbols are implicitly taken to fit directly to the corresponding ar-
gument symbols. Thus it is never necessary to make explicit that a symbol is
mapped identically. In the above example, for instance, the parameter specifi-
cation of Generic Monoid is exactly the same as the argument specification
in its instantiation, so the fitting can be left implicit.

The fitting of parameter sorts to unique argument sorts can also be
left implicit.

When the argument specification has only a single sort, the fitting of all
parameter sorts to that sort is obvious, and can again be left implicit, as
illustrated earlier by the Nat Word specification. Of course, this does not
apply the other way round: if the parameter has a single sort (which is often

7.1 Parameters and Instantiation 81

the case in practice) but the argument specification has more than one sort,
the parameter sort could be mapped to any of the argument sorts, so the
fitting symbol map has to be made explicit – except when the parameter sort
is identical to one of the argument sorts, as previously explained, or when the
fitting of sorts can be implied from the fitting of other symbols, as explained
below.

Fitting of operation and predicate symbols can sometimes be left
implicit too, and can imply fitting of sorts.

spec List Order Positive = List Order [Positive]

Fitting of operation and predicate symbols can imply fitting of sorts. For
instance, when a parameter predicate symbol is fitted to an argument predi-
cate symbol whose profile involves different sorts, this implies that the param-
eter sorts involved have to be fitted to the corresponding sorts in the argument
specification.

This is illustrated in the above List Order Positive specification. In a
first step, the fitting of the parameter sort Elem to one of the argument sorts
Nat and Pos provided by the specification Positive (see Chap. 5, p. 61) may
seem ambiguous. However, no explicit fitting of symbols is necessary here,
since the argument specification provides only one binary predicate symbol,
and the fitting of the corresponding binary predicate symbol of the parameter
specification to it entails the fitting of the sort Elem to the sort Nat (Again,
the coincidence of the predicate symbol in the parameter and argument is
irrelevant here.)

As may be clear by now, the exact rules for when the fitting between pa-
rameter and argument symbols can be left implicit are quite sophisticated. It
seems best to make the intended fitting explicit whenever it is not completely
obvious, using the notation for fitting arguments illustrated in the following
examples.

The intended fitting of the parameter symbols to the argument
symbols may have to be specified explicitly.

spec Nat Word 2 =
Generic Monoid [Natural Subsorts fit Elem �→ Nat]

The correspondence between the symbols required by the parameter and
those provided by the argument specification can be made explicit using so-
called fitting symbol maps. For instance, the above Nat Word 2 specifica-
tion, which differs from Nat Word only regarding the presence of subsorts of

82 7 Generic Specifications

Nat , is obtained as an instantiation of Generic Monoid, fitting the param-
eter part ‘sort Elem’ to the Natural Subsorts specification. The mapping
between the parameter sort Elem and the sort Nat provided by Natural
Subsorts is described by the fitting symbol map ‘fit Elem �→ Nat ’.

A generic specification may have more than one parameter.

spec Pair [sort Elem1] [sort Elem2] =
free type Pair ::= pair(first : Elem1 ; second : Elem2)

Using several parameters is merely a notational convenience, since they
are equivalent to their union. For instance, the above Pair specification is
nothing but a variant of the specification Pair 1 with just one parameter
‘sorts Elem1 , Elem2 ’ defined in Chap. 4, p. 54.

Note that writing:

spec Homogeneous Pair 1 [sort Elem] [sort Elem] =
free type Pair ::= pair(first : Elem; second : Elem)

merely defines pairs of values of the same sort, and Homogeneous Pair 1
is (equivalent to and) better defined as follows:

spec Homogeneous Pair [sort Elem] =
free type Pair ::= pair(first : Elem; second : Elem)

since the two parameters in Homogeneous Pair 1 are equivalent to just one
‘sort Elem’ parameter.

From a methodological point of view, it is generally advisable to use as
many parameters as convenient: the part of the specification that is intended
to be specialized at instantiation time is better split into logically coherent
units, each one corresponding to a parameter. Consider for instance:

spec Table [sort Key] [sort Val] = . . .

Here, using two parameters in Table emphasizes that Key and Val are
logically distinct entities which can be specialized as desired independently of
each other.

Instantiation of generic specifications with several parameters is
similar to the case of just one parameter.

spec Pair Natural Color =
Pair [Natural Arithmetic] [Color fit Elem2 �→ RGB]

7.1 Parameters and Instantiation 83

In the above example, the first parameter ‘sort Elem1 ’ of Pair is instan-
tiated by Natural Arithmetic, which exports only one sort Nat , hence no
explicit fitting symbol map is necessary. The second parameter ‘sort Elem2 ’
of Pair is instantiated by Color: in this case a fitting symbol map must be
provided, since Color exports two sorts, RGB and CMYK .

Using the specification Pair 1 would require us to write:

spec Pair Natural Color 1 =
Pair 1 [Natural Arithmetic and Color

fit Elem1 �→ Nat , Elem2 �→ RGB]

which clearly demonstrates the benefit of using two parameters as in Pair
instead of just one as in Pair 1.

When parameters are trivial ones (i.e., just one sort), one can always avoid
explicit fitting maps. Consider for instance the following alternative to Pair
Natural Color:

spec Pair Natural Color 2 =
Pair [sort Nat] [sort RGB]

and Natural Arithmetic and Color

This may be convenient when the argument specification exports several
sorts. Compare for instance:

spec Pair Pos =
Homogeneous Pair [sort Pos] and Integer Arithmetic 1

with:

spec Pair Pos 1 =
Homogeneous Pair [Integer Arithmetic 1 fit Elem �→ Pos]

Note that the instantiation:
Homogeneous Pair 1 [Natural] [Color fit Elem �→ RGB]
is ill-formed, since it entails mapping the sort Elem to both Nat and RGB .

More generally, care is needed when the several parameters of a generic
specification share some symbols, which in general is not advisable.

As a last remark, note that it is easy to specialize a generic specification
with several parameters, using a ‘partial instantiation’, as in the following
version of Table:

spec My Table [sort Val] =
Table [Natural Arithmetic] [sort Val]

where we still have a parameter for the values to be stored, but have decided
that the keys are natural numbers.

84 7 Generic Specifications

Composition of generic specifications is expressed using instantiation.

spec Set of List [sort Elem] =
Generated Set [List Selectors [sort Elem] fit Elem �→ List]

The above generic specification Set of List describes sets of lists of ar-
bitrary elements, and is obtained by an instantiation of the generic specifi-
cation Generated Set, whose parameter ‘sort Elem’ is instantiated by the
specification List Selectors, itself trivially instantiated. Since the (trivially
instantiated) specification List Selectors exports two sorts Elem and List ,
it is of course necessary to specify, in the instantiation of Generated Set,
the fitting symbol map from the parameter sort Elem to the argument sort
List .

Note especially that the following specification:

spec Mistake [sort Elem] =
Generated Set [List Selectors [sort Elem]]

does not provide sets of lists of elements: The sort Elem in the parameter
of Generated Set is mapped by the identity fitting symbol map to the
sort Elem provided by the instantiation of the generic specification List
Selectors [sort Elem], rather than to the sort List .3 Thus Mistake just
provides sets of arbitrary elements and lists of arbitrary elements. If this was
indeed the desired effect, then one should rather write instead:

spec Set and List [sort Elem] =
Generated Set [sort Elem] and List Selectors [sort Elem]

As illustrated by Set of List, composition of generic specifications is
fairly easy in CASL. Note however that this composition is achieved by means
of appropriate instantiations (some possibly trivial), and that CASL does not
provide higher-order genericity.

It may be worth mentioning that the following composition of generic
specifications is ill-formed:

spec This Is Still Wrong =
Generic Monoid [Generic Monoid [sort Elem]

fit Elem �→ Monoid]

3 However, the situation would be different if the parameter of Generated Set
had been, e.g., ‘sort Val ’, since then the absence of an explicit fitting symbol map
would have led to an ambiguity: in that case the specifier would have to specify
whether the sort Val is to be mapped to Elem or to List .

7.2 Compound Symbols 85

The above instantiation is ill-formed since the sort Monoid and the operation
symbols ‘1 ’ and ‘∗’ are shared between the body of the generic specification
Generic Monoid and the argument specification Generic Monoid [sort
Elem] (where this time the generic specification Generic Monoid is triv-
ially instantiated). The next section provides (p. 86) a correct specification of
monoids of monoids.

7.2 Compound Symbols

Compound sorts introduced by a generic specification get
automatically renamed on instantiation, which avoids name clashes.

spec List Rev [sort Elem] =
free type List [Elem] ::= empty |

cons(head :? Elem; tail :? List [Elem])
ops ++ : List [Elem] × List [Elem] → List [Elem],

assoc, unit empty;
reverse : List [Elem] → List [Elem]

∀e : Elem; L,L1 ,L2 : List [Elem]
• cons(e,L1) ++ L2 = cons(e,L1 ++ L2)
• reverse(empty) = empty
• reverse(cons(e,L)) = reverse(L) ++ cons(e, empty)

end

spec List Rev Nat = List Rev [Natural]

A compound sort is a sort of the form ‘Name[Name1 , . . . ,NameN]’. In the
specification List Rev, we introduce a compound sort List [Elem] to denote
lists (of arbitrary elements), instead of the simple sort List used in the previous
examples. When the specification List Rev is instantiated as in List Rev
Nat, the translation induced by the (implicit) fitting symbol map is applied
to the component Elem also where it occurs in List [Elem], providing a sort
List [Nat]. Thus, compound sorts can be seen as a convenient way of implicitly
completing the instantiation by an appropriate renaming of the (compound)
sorts introduced by the generic specification.

spec Two Lists =
List Rev [Natural] %% Provides the sort List [Nat]

and List Rev [Color fit Elem �→ RGB] %% Provides the sort List [RGB]

Using a compound sort List [Elem] proves particularly useful in the above
example Two Lists, where we make the union of two distinct instantiations

86 7 Generic Specifications

of List Rev. If we had used an ordinary sort List , then an unintentional name
clash would have arisen,4 and we would have to complete each instantiation
by an explicit renaming of the sort List .

Note that in the specification Two Lists, we have two sorts List [Nat] and
List [RGB], hence two overloaded constants empty (one of each sort), which
may need disambiguation when used in terms. (How to disambiguate terms
is explained in Chap. 3, p. 31.)

Similarly, we have overloaded operation symbols cons , head , tail , ++,
and reverse, but in general their context of use in terms will be enough to
disambiguate which one is meant.

spec Two Lists 1 =
List Rev [Integer Arithmetic 1 fit Elem �→ Nat]

and List Rev [Integer Arithmetic 1 fit Elem �→ Int]

Since the specification Integer Arithmetic 1 provides three sorts Nat ,
Pos , and Int , an explicit fitting symbol map is needed in the above instantia-
tions, which provide the sorts List [Nat] and List [Int]. Note that the subsorting
relation Nat < Int does not entail List [Nat] < List [Int], but of course this
can be added if desired in an extension by a subsorting declaration.

Using compound sorts, we can now easily specify monoids of monoids.

spec Monoid C [sort Elem] =
sort Monoid [Elem]
ops inj : Elem → Monoid [Elem];

1 : Monoid [Elem];
∗ : Monoid [Elem] × Monoid [Elem] → Monoid [Elem],

assoc, unit 1
∀x , y : Elem • inj (x) = inj (y) ⇒ x = y

end

spec Monoid of Monoid [sort Elem] =
Monoid C [Monoid C [sort Elem] fit Elem �→ Monoid [Elem]]

The instantiation in Monoid of Monoid is now correct, since the use of a
compound sort Monoid [Elem] ensures there is no clash of symbols between the
body of the instantiated generic specification and the argument specification.
4 And the specification Two Lists would have been inconsistent, due to the same

name, same thing principle and the fact that List is defined by a free type con-
struct.

7.2 Compound Symbols 87

Compound symbols can also be used for operations and predicates.

spec List Rev Order [Total Order] =
List Rev [sort Elem]

then local op insert : Elem × List [Elem] → List [Elem]
∀e, e ′ : Elem; L : List [Elem]
• insert(e, empty) = cons(e, empty)
• insert(e, cons(e ′,L)) = cons(e ′, insert(e,L)) when e ′ < e

else cons(e, cons(e ′,L))
within op order [<] : List [Elem] → List [Elem]

∀e : Elem; L : List [Elem]
• order [<](empty) = empty
• order [<](cons(e,L)) = insert(e, order [<](L))

end

spec List Rev with Two Orders =
List Rev Order
[Integer Arithmetic Order fit Elem �→ Int , < �→ <]
%% Provides the sort List [Int] and the operation order [<]

and List Rev Order
[Integer Arithmetic Order fit Elem �→ Int , < �→ >]
%% Provides the sort List [Int] and the operation order [>]

then %implies

∀L : List [Int] • order [<](L) = reverse(order [>](L))
end

The above example illustrates the use of compound identifiers for operation
symbols, and the same rules apply to predicate symbols. While in most cases
using compound identifiers for sorts will be sufficient, in some situations it
is also convenient to use them for operation or predicate symbols, as done
here for order [<]. When List Rev Order is instantiated, not only does
the sort List [Elem] get renamed (here, to List [Int]), but also the operation
symbol order [<], according to the fitting symbol map corresponding to
the instantiation. If we had not used a compound identifier for the order
operation, then an unintentional name clash would have arisen. Note that on
the other hand we rely on the same name, same thing principle to ensure that
the sorts List [Int] provided by each of the two instantiations are the same,
which indeed is what we want for this example.

Of course we do not bother to use a compound identifier for the insert
operation symbol. This operation being local, it is not exported by List
Rev Order and cannot be the source of unintentional name clashes in in-
stantiations.

88 7 Generic Specifications

7.3 Generic Specifications with Imports

Parameters should be distinguished from references to fixed
specifications that are not intended to be instantiated.

spec List Weighted Elem [sort Elem op weight : Elem → Nat]
given Natural Arithmetic =

List Rev [sort Elem]
then op weight : List [Elem] → Nat

∀e : Elem; L : List [Elem]
• weight(empty) = 0
• weight(cons(e,L)) = weight(e) + weight(L)

end

In the above example, we specialize lists of arbitrary elements to lists
of elements equipped with a weight operation, which is then overloaded by
a weight operation on lists. Therefore we specify that the generic specifica-
tion List Weighted Elem has for parameter a specification extending the
‘given’ specification Natural Arithmetic by a sort Elem and an operation
symbol weight . Thereby the intention is to emphasize the fact that only the
sort Elem and the operation weight are intended to be specialized when the
specification List Weighted Elem is instantiated, and not the ‘fixed part’
Natural Arithmetic. In CASL, the specifications listed after the ‘given’
keyword are called imports. One could have written instead:

spec List Weighted Elem
[Natural Arithmetic then sort Elem op weight : Elem → Nat]
= . . .

but the latter, which is correct, misses the essential distinction between the
part which is intended to be specialized and the part which is ‘fixed’ (since,
by definition, the parameter is the part which has to be specialized).

Note also that omitting the ‘given Natural Arithmetic’ clause would
make the declaration:

spec List Weighted Elem [sort Elem op weight : Elem → Nat] = . . .

ill-formed, since the sort Nat is not available.
To summarize, the ‘given’ construct is useful to distinguish the ‘true’

parameter from the part which is ‘fixed’. Both the parameter and the body of
the generic specification extend what is provided by the imports (i.e., by the
specifications listed after the ‘given’ keyword), whose exported symbols are
therefore available.

7.3 Generic Specifications with Imports 89

Argument specifications are always implicitly regarded as extension of
the imports.

spec List Weighted Pair Natural Color =
List Weighted Elem [Pair Natural Color fit Elem �→ Pair ,

weight �→ first]

The instantiation specified in List Weighted Pair Natural Color is
correct since the fitting symbol map is the identity on all the symbols exported
by the ‘fixed part’ Natural Arithmetic (which happens here to be included
in the argument specification Pair Natural Color). More generally, the
argument specification is always regarded as an extension of the imports, and
the fitting symbol map should be the identity on all symbols provided by these
imports. This is illustrated in the next example:

spec List Weighted Instantiated =
List Weighted Elem [sort Value op weight : Value → Nat]

Here we rely on a rather trivial instantiation (whose purpose is merely
to illustrate our point) where the fitting symbol map can be omitted since
no ambiguity arises and where the argument specification ‘sort Value op
weight : Value → Nat ’ is well-formed because it is regarded as an extension
of the imports of List Weighted Elem (i.e., as an extension of Natural
Arithmetic), which implies that the sort Nat is available.

Imports are also useful to prevent ill-formed instantiations.

spec List Length [sort Elem] given Natural Arithmetic =
List Rev [sort Elem]

then op length : List [Elem] → Nat
∀e : Elem; L : List [Elem]
• length(empty) = 0
• length(cons(e,L)) = length(L) + 1

then %implies

∀L : List [Elem] • length(reverse(L)) = length(L)
end

The specification List Length needs the sort Nat and the usual arith-
metic operations provided by Natural Arithmetic to specify the length
operation. In this case it is clear that the imports have nothing to do with
the (trivial) parameter of List Length. The reason to specify Natural
Arithmetic as an import is that this will make instantiations of List
Length similar to the following one well-formed.

90 7 Generic Specifications

spec List Length Natural =
List Length [Natural Arithmetic]

To understand this point, consider the following variant of List Length:

spec Wrong List Length [sort Elem] =
Natural Arithmetic and List Rev [sort Elem]

then . . .
end

The specification Wrong List Length is fine as long as one does not
need to instantiate it with Natural Arithmetic as argument specifica-
tion. The instantiation Wrong List Length [Natural Arithmetic] is
ill-formed since some symbols of the argument specification are shared with
some symbols of the body (and not already occurring in the parameter) of the
instantiated generic specification, which is wrong, as already explained p. 80.
Of course the same problem will occur with any argument specification which
provides, e.g., the sort Nat .

In generic specifications, auxiliary required specifications should be
imported rather than extended.

As illustrated by the above examples, one should remember the follow-
ing essential point. Since an instantiation is ill-formed as soon as there are
some shared symbols between the argument specification and the body of
the generic specification, when designing a generic specification, it is gener-
ally advisable to turn auxiliary required specifications (such as Natural
Arithmetic for List Length) into imports, and generic specifications of
the form ‘F [X] = SP then . . . ’ are better written ‘F [X] given SP = . . . ’
to allow the instantiation ‘F [SP]’.

7.4 Views

Views are named fitting maps, and can be defined along with
specifications.

view Integer as Total Order :
Total Order to Integer Arithmetic Order =
Elem �→ Int , < �→ <

7.4 Views 91

view Integer as Reverse Total Order :
Total Order to Integer Arithmetic Order =
Elem �→ Int , < �→ >

spec List Rev with Two Orders 1 =
List Rev Order [view Integer as Total Order]

and List Rev Order [view Integer as Reverse Total Order]
then %implies

∀L : List [Int] • order [<](L) = reverse(order [>](L))
end

A view is nothing but a convenient way to name a specification morphism
(induced by a symbol map) from a (parameter) specification to an (argument)
specification. The rules regarding the omission of ‘evident’ symbol maps in
explicit fittings apply to views too. A view proves particularly useful when
the same instantiation (with the same fitting symbol map) is intended to be
used several times: naming a specification morphism once and for all makes
its reuse easier. Once a view is defined, as e.g. Integer as Total Order
above, it can be referenced in instantiations as in List Rev Order [view
Integer as Total Order], where the keyword ‘view’ makes it clear that
the argument is not merely a named specification with an implicit fitting map,
which would be written differently.

Since a view is defined only when the given symbol map induces a spec-
ification morphism (i.e., all models of the target specification, when reduced
along the signature morphism induced by the given symbol map, provide
models of the source specification), it may be convenient to use views just
to explicitly document the existence of some specification morphisms, even
when these are not intended to be used in any instantiation. For instance, the
view Integer as Total Order can be seen as the assertion that Integer
Arithmetic Order indeed specifies ‘<’ to be a total ordering relation, and
would therefore make sense even without being used later on in instantiations.

Views can also be generic.

view List as Monoid [sort Elem] :
Monoid to List Rev [sort Elem] =
Monoid �→ List [Elem], 1 �→ empty, ∗ �→ + +

A view can be generic, being then defined with some parameters (as il-
lustrated above in the List as Monoid view) and possibly some imports.
The reader should be aware that, in a generic view, the target specification
(here, the trivially instantiated specification List Rev) is not interpreted as
such, but as the body of a generic specification with the same parameters and

92 7 Generic Specifications

imports as the view. (The source specification is on the contrary interpreted
exactly as provided.)

The above example illustrates again the use of a view as a ‘proof obliga-
tion’, asserting that lists (equipped with the ‘++’ operation) form a monoid.

	7.1 Parameters and Instantiation
	7.2 Compound Symbols
	7.3 Generic Specifications with Imports
	7.4 Views

