
9

Libraries

Libraries are named collections of named specifications.

In the foregoing chapters, we have seen many examples of named specifica-
tions, and of references to them in later specifications. This chapter explains
how a collection of named specifications can itself be named, as a library. The
creation of libraries facilitates the reuse of specifications. For practical appli-
cations, it is important to be able to reuse (at least) existing specifications of
basic datatypes, such as those described in Chap. 12.

Local libraries are self-contained.

A library is called local when it is self-contained, i.e., for each reference to a
specification name in the library, the library includes a specification with that
name. Local libraries might appear at first sight to be all that we need, but
actually they provide poor support for reuse of specifications. The problem
is that when a specification from one local library is reused in another, it
has to be repeated verbatim. There is no formal link between the original
specification and the copy, despite them having the same name: the names
used in a library can be chosen freely, and different libraries could use the
same name for completely different specifications.

Distributed libraries support reuse.

Distributed libraries allow duplication of specifications to be avoided al-
together. Instead of making an explicit copy of a named specification from

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 111–122, 2004.
c© IFIP International Federation for Information Processing 2004

112 9 Libraries

one library for use in another, the second library merely indicates that the
specification concerned can be downloaded from the first one.

Different versions of the same library are distinguished by
hierarchical version numbers.

In practice, specifications evolve, e.g., to provide further operations or
predicates on the specified sorts, or to define new subsorts. The libraries
containing the specifications can evolve too, by adding or removing named
specifications. Without some form of version control, even a trifling change in
one library might cause specifications in other libraries to become ill-formed,
or affect their meanings. CASL allows different versions of the same library
to coexist (distinguishing them by hierarchical version numbers), and allows
downloadings in a library to indicate that a particular version of another
library is required.

Creation of new libraries is essential in connection with larger specification
projects, and projects of any scale can benefit from reuse of specifications
from existing libraries. The rest of this chapter illustrates the constructs used
to specify local libraries, distributed libraries, and versions, and gives some
advice on the organization of libraries.

9.1 Local Libraries

Local libraries are self-contained collections of specifications.

library UserManual/Examples
. . .
spec Natural = . . .
. . .
spec Natural Order = Natural then . . .
. . .

The collection of all the illustrative examples given in the foregoing chap-
ters is self-contained, so it could be made into a local library and named User-
Manual/Examples, as outlined above. To provide a separate local library
for each chapter would however involve a considerable amount of duplication,
since many of the specifications that are defined in the earlier chapters are
also referenced in later chapters (e.g., Set Partial Choose in Chap. 4 in-

9.1 Local Libraries 113

stantiates Generated Set, which is defined in Chap. 3). Using distributed
libraries, as explained in Sect. 9.2, this duplication can be avoided.1

The ‘same name, same thing’ principle of CASL applies only within specifi-
cations, and it is possible for a library to include alternative specifications for
the same symbols (e.g., using different sets of axioms). However, when such
alternative specifications are both extended (perhaps indirectly) in the same
specification, the principle does apply, and unintended name clashes might
then arise. Thus in general, it is advisable for the developers of a library to
respect the ‘same name, same thing’ principle when choosing symbols through-
out the library. In any case, this is obviously helpful to those who might later
browse the library. Alternative specifications for the same symbols should
therefore be given in separate libraries.2

Specifications can refer to previous items in the same library.

library UserManual/Examples
. . .
spec Strict Partial Order = . . .
. . .
spec Total Order = Strict Partial Order then . . .
. . .
spec Partial Order = Strict Partial Order then . . .
. . .

Although we may often regard libraries as sets of named specifications,
they are actually sequences, and the order in which the specifications occur is
significant.

Specification names have linear visibility: each specification can refer only
to the names of the specifications that precede it. Thus a series of extensions
has to be presented in a bottom-up fashion, starting with a specification that
is entirely self-contained, containing no references to other specifications at
all. Each specification name in a library has a unique defining occurrence, so
overriding cannot arise. Extensions that do not refer to each other may be
given in any order (e.g., Partial Order above could just as well be given
before Total Order).

Linear visibility of specification names means that mutual recursion be-
tween specifications is prohibited. When two specifications each make use of
symbols declared in the other, the declarations of those symbols have to be
duplicated, or moved to a preceding specification that can then be referenced
by them both.
1 A distributed library for each chapter of Part II is available via the CoFI web

pages; copies are provided on the CD-ROM accompanying this book.
2 If we intended our comprehensive UserManual/Examples library for general

use, we would remove all the illustrative alternative specifications.

114 9 Libraries

All kinds of named specifications can be included in libraries.

library UserManual/Examples
. . .
spec Strict Partial Order = . . .
. . .
spec Generic Monoid [sort Elem] = . . .
. . .
view Integer as Total Order : . . .
. . .
view List as Monoid [sort Elem] : . . .
. . .
arch spec System = . . .
. . .
unit spec Cont Comp = . . .
. . .

Items in libraries can be any kind of named specification, as illustrated
above: simple named specifications, generic specifications, named view defini-
tions, generic view definitions, and architectural and unit specifications. We
shall henceforth refer to them generally as library items.

Libraries themselves never include anonymous specifications, such as dec-
larations of sorts and operations. Moreover, the symbols declared by a library
item are not automatically available for use in subsequent items: an explicit
reference to the name of the library item is required to ‘import’ the item.

Technically, each library item is said to be closed, being interpreted with-
out any pre-declared symbols at all. This facilitates downloading items from
distributed libraries, see Sect. 9.2.

Display, parsing, and literal syntax annotations apply to entire
libraries.

library UserManual/Examples
. . .
%display <= %LATEX ≤
%display >= %LATEX ≥
%display union %LATEX ∪
%prec { + , − } < { ∗ }
%left assoc + , ∗
. . .
spec Strict Partial Order = . . .
. . .

9.1 Local Libraries 115

spec Partial Order = Strict Partial Order then . . .≤. . .
. . .
spec Generated Set [sort Elem] = . . .∪. . .
. . .
spec Integer Arithmetic Order = . . .≤. . .≥. . .
. . .

Annotations affecting the way terms are written or displayed apply to an
entire library, and have to be collected at the beginning of the library. These
annotations include display and precedence annotations, illustrated above.

Recall that various reserved words and symbols in CASL specifications are
input in ASCII, but displayed as mathematical signs (e.g., universal quantifi-
cation is input as ‘forall’, and displayed as ‘∀’ when this sign is available in
the current display format). Display annotations provide analogous flexibility
for declared symbols. For example, the display annotations illustrated above
determine how infix symbols input as ‘<=’, ‘>=’, and ‘union’ are displayed
when using LATEX to format the specification. Note that a display annotation
applies to all occurrences of the input symbol in the library, regardless of
overloading.

Display annotations can give alternative displays for different formats:
apart from LATEX, both RTF and HTML are presently supported. The display
of the annotation itself shows only the input syntax of the symbol and the
result produced by the current formatter. The input form of one of the above
annotations might be as follows:

%display __union__ %HTML __^U %LATEX __\cup__

When no display annotation is given for a particular format, the input format
itself is displayed. Thus the symbol displayed as ‘∪’ in the present LATEX
version of this User Manual would be displayed as ‘union’ in an RTF version,
unless the above annotation were to be extended with an RTF part.

Parsing annotations allow omission of grouping parentheses when terms
are input. A single annotation can indicate the relative precedence or the
associativity (left or right) of a group of operation symbols. The precedence
annotation for infix arithmetic operations given above, namely:

%prec { + , − } < { ∗ }
allows a term such as a + (b ∗ c) to be input (and hence also displayed) as
a + b ∗ c. The left-associativity annotation for + and ∗:

%left assoc + , ∗
allows (a + b) + c to be input as a + b + c, and similarly for ∗; but the
parentheses cannot be omitted in (a + b) − c (not even if ‘ − ’ were to be
included in the same left-associativity annotation).

116 9 Libraries

When an operation symbol is declared with the associativity attribute
assoc, an associativity annotation for that symbol is provided automatically.3

Thus in practice, explicit associativity annotations are needed only for non-
associative operations such as subtraction and division.

Libraries and library items can have author and date annotations.

library UserManual/Examples
%authors(Michel Bidoit <bidoit@lsv.ens-cachan.fr>,

Peter D. Mosses <pdmosses@brics.dk>)%
%dates 15 Oct 2003, 1 Apr 2000

. . .
spec Strict Partial Order = . . .
. . .
%authors Michel Bidoit <bidoit@lsv.ens-cachan.fr>

%dates 10 July 2003

spec Integer Arithmetic Order =
. . .

An author annotation at the beginning of a library indicates the collec-
tive authorship of the entire library; one preceding an individual library item
indicates its specific authorship.

A date annotation at the beginning of a library should indicate the release
date of the current version of the library. It may also give the release dates of
some previous major versions, possibly including that of the original version.
A date annotation on an individual library item should indicate when that
item was last changed, and (optionally) the dates of previous changes.

9.2 Distributed Libraries

Libraries can be installed on the Internet for remote access.

library Basic/Numbers
. . .
%left assoc @@

%number @@

%floating ::: , E

%prec { E } < { ::: }
3 This implicit parsing annotation is local to the enclosing specification and to

specifications that reference it, in contrast to ordinary parsing annotations.

9.2 Distributed Libraries 117

. . .
spec Nat =

free type Nat ::= 0 | suc(Nat)
. . .
ops 1 : Nat = suc(0); . . . ; 9 : Nat = suc(8);

@@ (m,n : Nat) : Nat = (m ∗ suc(9)) + n. . .
spec Int = Nat then . . .
spec Rat = Int then . . .
spec DecimalFraction = Rat then

. . .
ops ::: : Nat × Nat → Rat ;

E : Rat × Int → Rat. . .
The above example is an extract from one of the CASL libraries of basic

datatypes, described in Chap. 12 and available on the Internet. It illustrates
the overall structure of a library intended for general use, as well as some
helpful annotations concerning literal syntax for numbers, which are explained
below.

Validated libraries can be registered for public access.

CoFI will maintain a register of useful libraries. Registered CASL libraries
are identified by hierarchical path names. For instance, all the CASL libraries of
basic datatypes have names starting with ‘Basic/’, and path names starting
with ‘Casl/’ are reserved for libraries connected with the CASL language itself
(e.g., the specification of the abstract syntax of CASL in CASL).

Registered libraries will be mirrored at several sites, to ensure their con-
tinuous accessibility. The URLs of a library can be obtained from the library
name using a table provided on the CoFI web pages.

Libraries have to be validated before registration. The validation of a li-
brary ensures not only that it is well-formed, but also that semantic annota-
tions expressing consistency of specifications (or conservativity over the pa-
rameters, in case of generic or unit specifications) have been added, and that
all proof obligations (corresponding both to well-formedness conditions and
to semantic annotations in the library) have been verified.

It is likely that new versions of existing libraries will be produced, e.g.,
providing further operations whose usefulness was not realized beforehand.
Although the assignment and use of library version numbers allows users to
protect their specifications from changes due to new versions (see Sect. 9.3), at
least the names used in a registered library should not change much between
versions.

118 9 Libraries

Libraries should include appropriate annotations.

In particular, parsing and display annotations can be provided, as ex-
plained in Sect. 9.1. The above example illustrates a further kind of anno-
tation, used to provide literal syntax for numbers in CASL. The effect of the
illustrated annotations is that, after downloading the appropriate specifica-
tions from the library Basic/Numbers, conventional decimal notation can
be used for integers and decimal fractions, e.g., 42 , 2 .718 , 10E−12 . The digits
42 are interpreted as the term 4@@2 , and 2 .718 is interpreted as the term
2 :::718 (where 718 is subsequently interpreted as (7@@1)@@8). The defini-
tion of the operation @@ is shown above; those of ::: and E are a bit
more involved, and omitted here. Notice that the library Basic/Numbers is
not hard-wired into CASL, and users could provide annotations to interpret
the literal syntax for integers and decimal fractions as terms involving different
operations, e.g., on different sorts.

Libraries can include items downloaded from other libraries.

library Basic/StructuredDatatypes
. . .
from Basic/Numbers get Nat, Int
. . .
spec List [sort Elem] given Nat = . . .
. . .
spec Array . . . given Int = . . .
. . .

Individual specifications and other items can be downloaded from other
libraries. For example, the library Basic/StructuredDatatypes, outlined
above, does not itself provide the specifications of natural numbers and in-
tegers that are needed in the specifications List and Array, but instead
downloads Nat and Int from the Basic/Numbers library.

The names of the items to be downloaded from a library have to be listed
explicitly: one cannot request the downloading of all the items that happen to
be provided by a library. However, although the name of each item provided
by a downloading is always explicit, no indication is given of its kind (i.e.,
whether it is an ordinary, generic, or architectural specification, or a view) nor
of what symbols it declares. Thus the well-formedness of a library depends on
what items are actually downloaded from other libraries.

The construct ‘from . . .get . . . ’ above has the effect of downloading the
specifications that are named Nat and Int in Basic/Numbers, preserving
their names. It is also possible to give downloaded specifications different

9.2 Distributed Libraries 119

names, e.g., to avoid clashes with specification names that are already in use
locally:

from Basic/Numbers get Nat �→ Natural, Int �→ Integer

Items that are referenced by downloaded items are not themselves auto-
matically downloaded, e.g., downloading Int does not entail the downloading
of Nat. This is because downloading involves the semantics of the named
items, not their text. The semantics of Int consists of a signature and a class
of models, and is a self-contained entity – recall from Chap. 6 that the models
of a structured specification have no more structure than do those of a flat,
unstructured specification. Thus downloading Int gives exactly the same re-
sult as if the reference to Nat in its text had already been replaced by the text
of Nat before downloading. For the same reason, the presence of another item
with the name Nat in the current library makes no difference to the result of
downloading Int. In terms of software packages, downloading specifications
from CASL libraries is analogous to installing packages from binaries, rather
than from sources.

Downloading any item from another library B in a library A causes all the
parsing and display annotations of B to be inserted at the beginning of A.
(Conflicting annotations from different libraries are ignored altogether, and
local annotations override conflicting downloaded annotations.) The copied
annotations allow terms to be written and displayed in A in the same way as
in B.

Substantial libraries of basic datatypes are already available.

The organization of the following libraries of basic datatypes is explained
in Chap. 12:

Basic/Numbers: natural numbers, integers, and rationals.
Basic/RelationsAndOrders: reflexive, symmetric, and transitive rela-

tions, equivalence relations, partial and total orders, boolean algebras.
Basic/Algebra I: monoids, groups, rings, integral domains, and fields.
Basic/SimpleDatatypes: booleans, characters.
Basic/StructuredDatatypes: sets, lists, strings, maps, bags, arrays, trees.
Basic/Graphs: directed graphs, paths, reachability, connectedness, colorabil-

ity, and planarity.
Basic/Algebra II: monoid and group actions on a space, euclidean and

factorial rings, polynomials, free monoids, and free commutative monoids.
Basic/LinearAlgebra I: vector spaces, bases, and matrices.
Basic/LinearAlgebra II: algebras over a field.
Basic/MachineNumbers: bounded subtypes of naturals and integers.

120 9 Libraries

These libraries form a coherent collection of highly-polished specifications.
The libraries themselves are provided in full in the CASL Reference Manual
[20], and are available on the Internet.

Libraries need not be registered for public access.

library http://www.cofi.info/CASL/Test/Security
. . .
from http://casl:password@www.cofi.info/CASL/RSA get Key
. . .
spec Decrypt = Key then . . .
. . .

Libraries under development, and libraries provided for restricted groups
of users, are named and accessed by their URLs (instead of the simple path
names used for registered libraries). This allows the CASL library constructs
to be fully exploited for libraries that are not yet – and perhaps never will
be – registered for public access. Moreover, validation of libraries can be a
demanding and time-consuming process, and getting a library approved and
registered is appropriate only when it provides specifications that are likely
to be found useful by persons not directly involved in its development.

The primary Internet access protocols HTTP and FTP both support pass-
word protection of libraries and the insertion of usernames and passwords in
URLs allows downloading between protected libraries (With HTTP, the user-
name and password can be unrelated to those used for the host file system.)

9.3 Version Control

Subsequent versions of a library are distinguished by explicit version
numbers.

library Basic/Numbers version 1.0
. . .
spec Nat = . . .
. . .
spec Int = Nat then . . .
. . .
spec Rat = Int then . . .
. . .

9.3 Version Control 121

As illustrated above, a library can be assigned an explicit version num-
ber, allowing it to be distinguished from previous and future versions of the
same library. CASL allows conventional hierarchical version numbers, familiar
from version numbers of software packages: the initial digits indicate a major
version, digits after a dot indicate sub-versions, and digits after a further dot
indicate patches to correct bugs. (Distinctions between alpha, beta, and other
pre-release versions are not supported.)

The smallest version number is written simply ‘0’, and can be omitted
when specifying the initial version of a library; this is the case with the version
of Basic/Numbers shown in Sect. 9.2, it implicitly has version number ‘0’,
but in general the first-installed version of a library could have any version
number at all. The numbers of successively installed versions do not have to
be contiguous, nor even increasing: e.g., a patched version 0.99.1 could be
installed after version 1.0.

Individual library items do not have separate version numbers. Date anno-
tations can be used to indicate which items have changed between two versions
of a library.

Libraries can refer to specific versions of other libraries.

library Basic/StructuredDatatypes version 1.0
. . .
from Basic/Numbers version 1.0 get Nat, Int
. . .
spec List [sort Elem] given Nat = . . .
. . .
spec Array . . . given Int = . . .
. . .

Downloading items from particular versions of libraries is necessary if one
wants to ensure coherence between libraries. For example, as illustrated above,
version 1.0 of Basic/StructuredDatatypes downloads Nat and Int from
version 1.0 of Basic/Numbers. Omitting the version number when down-
loading gives implicitly the current version of the library, which may of course
change. By the way, the current version of a library is not necessarily the one
most recently installed: it is the one with the largest version number. As pre-
viously mentioned, a patched version 0.99.1 could be installed after version
1.0, but a downloading without an explicit version number would still refer to
version 1.0.

Even though the developers of libraries may try to ensure backwards com-
patibility between versions, it could happen that symbols introduced in a new
version of a downloaded specification clash with symbols already in use in
the library that specified the downloading, causing ill-formedness or incon-
sistency. So for safety, it is advisable to give explicit version numbers when

122 9 Libraries

downloading (also when downloading from version ‘0’ of another library). If
one subsequently wants to use symbols that are introduced only in some later
version of another library, all that is needed is to change the version number
in the downloading(s).

An alternative strategy is to ensure consistency with the current versions
of all libraries from which specifications are downloaded, by observing the
changes in the new versions and adapting the downloading library accord-
ingly. For instance, one might download Int from the current version of Ba-
sic/Numbers, instead of from version 1.0 of that library. This may involve
extra work when a new version of Basic/Numbers appears, but it has sev-
eral advantages over the more cautious approach. CASL leaves the choice to
the user, although registered libraries will generally be required to use explicit
version numbers when downloading from other libraries.

All downloadings should be collected at the beginning of a library.

Although CASL allows downloadings to be interleaved with specification
definitions, it is advisable to collect the downloadings at the beginning of
libraries (together with any parsing and display annotations). This makes
it easy to see dependencies between libraries, and to ensure that different
downloadings from the same library all refer to the same version of it.

	9.1 Local Libraries
	9.2 Distributed Libraries
	9.3 Version Control

