
12

Basic Libraries

Till Mossakowski

The CASL Basic Libraries contain the standard datatypes.

The CASL Basic Libraries consist of specifications of often-needed datatypes
and views between them, freeing the specifier from re-inventing well-known
things. This can be compared to standard libraries in programming languages.
While this book often discusses several styles of specification with CASL, the
basic datatypes consistently follow a specific style described in [20].

Here we show a cut-down version without axioms.

Here, we describe two of the libraries (see the overview in Fig. 12.1): the
libraries of numbers and of structured datatypes. We also provide stripped-
down versions of the libraries themselves, with some of the specifications and
all axioms and annotations removed. These stripped-down versions can serve
for getting a first overview of the signatures of the specified datatypes.

The full CASL Basic Libraries with complete specifications is presented in
the CASL Reference Manual [20], and is also included in the CD-ROM coming
with this volume. The latest version is available at:

http://www.cofi.info/Libraries

HETS can be used to get an overview of the Basic Libraries.

The HETS tool described in Chap. 11 allows the structure of the specifi-
cations in the libraries to be displayed as a graph and their signatures to be
inspected. This is recommended as a way of obtaining a better overview, and
also for answering specific questions that arise when using the basic datatypes.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 143–154, 2004.
c© IFIP International Federation for Information Processing 2004

144 12 Basic Libraries

Numbers

RelationsAndOrders

Algebra_I SimpleDatatypes MachineNumbers

StructuredDatatypes

Algebra_II Graphs

LinearAlgebra_I

LinearAlgebra_II

Fig. 12.1. Dependency graph of the libraries of basic datatypes.

12.1 Library Basic/Numbers

This library provides specifications of natural numbers, integers, and rational
numbers.

The natural numbers are specified as a free datatype.

In the specification Nat, the natural numbers are specified as a free
datatype, together with a collection of predicates and operations over the
sort Nat of natural numbers.

Note that the names for the partial operations subtraction −? and
division /? include a question mark. This is to avoid overloading with the
total operations − on integers and / on rationals, which would lead
to inconsistencies as both these specifications import the specification Nat.
The total operation for subtraction differs from subtraction on the integers as

12.1 Library Basic/Numbers 145

well. It is written −! , and it is 0 whenever the partial subtraction −? is
undefined, while it otherwise coincides with the latter.

The digits are introduced as constants, together with an operation @@
for concatenation of digits. Together with an annotation (see Chap. 9):

%number @@

this allows one to write the usual literals (like e.g. 8364) for natural numbers.
The introduction of the subsort Pos , consisting of the positive naturals,

gives rise to certain new operations, e.g.:

× : Pos × Pos → Pos,

whose semantics is completely determined by overloading.

library Basic/Numbers

spec Nat =
free type Nat ::= 0 | suc(pre:?Nat)
preds ≤ , ≥ , < , > : Nat × Nat ;

even, odd : Nat
ops ! : Nat → Nat ;

+ , × , ˆ , min, max, −! : Nat × Nat → Nat ;
−? , /? , div , mod , gcd : Nat × Nat →? Nat

%% Operations to represent natural numbers with digits:

ops 1 : Nat = suc(0); %(1 def Nat)%

2 : Nat = suc(1); %(2 def Nat)%

3 : Nat = suc(2); %(3 def Nat)%

4 : Nat = suc(3); %(4 def Nat)%

5 : Nat = suc(4); %(5 def Nat)%

6 : Nat = suc(5); %(6 def Nat)%

7 : Nat = suc(6); %(7 def Nat)%

8 : Nat = suc(7); %(8 def Nat)%

9 : Nat = suc(8); %(9 def Nat)%

@@ (m: Nat ; n: Nat): Nat = (m × suc(9)) + n
%(decimal def)%

sort Pos = {p: Nat • p > 0}
ops 1 : Pos = suc(0); %(1 as Pos def)%

× : Pos × Pos → Pos ;
+ : Pos × Nat → Pos ;
+ : Nat × Pos → Pos ;

suc : Nat → Pos
end

The integers are specified as difference pairs of naturals.

146 12 Basic Libraries

The specification Int of integers is built on top of the specification Nat:
integers are defined as equivalence classes of pairs of naturals written as dif-
ferences — the axioms (which are omitted in the specification below) specify
that two pairs are equivalent if their differences are equal:

∀ a, b, c, d : Nat
• a − b = c − d ⇔ a + d = c + b %(equality Int)%

The sort Nat is then declared to be a subsort of Int . Besides the division
operator /? , the specification Int also provides the function pairs div/mod
and quot/rem, respectively, as constructs for division — behaving differently
on negative numbers, see [20] for a discussion. The operation sign gives the
sign of an integer (which is either -1, 0, or 1).

spec Int =
Nat

then generated type Int ::= − (Nat ; Nat)
sort Nat < Int

%% a system of representatives for sort Int is

%% a - 0 and 0 - p, where a: Nat and p: Pos

preds ≤ , ≥ , < , > : Int × Int ;
even, odd : Int

ops − , sign : Int → Int ;
abs : Int → Nat ;

+ , × , − , min, max : Int × Int → Int ;
ˆ : Int × Nat → Int ;
/? , div , quot , rem : Int × Int →? Int ;
mod : Int × Int →? Nat

end

The rationals are specified as fractions of integers.

The specification Rat of rational numbers follows the same scheme as
the specification of integers discussed above. This time, the specification Int
is imported. The rationals are then defined as equivalence classes of pairs
consisting of an integer and a positive number written as fractions, using the
axiom:

∀ i, j : Int ; p, q: Pos
• i / p = j / q ⇔ i × q = j × p %(equality Rat)%

The sort Int is then declared to be a subsort of Rat . Note that thanks to the
behavior of subsorted overloading in CASL, the declaration of the operation:

12.2 Library Basic/StructuredDatatypes 147

/ : Rat × Rat →? Rat;

allows rationals to be written also as x/y, for arbitrary integers x and y �= 0 .

spec Rat =
Int

then generated type Rat ::= / (Int ; Pos)
sort Int < Rat
preds ≤ , < , ≥ , > : Rat × Rat
ops − , abs : Rat → Rat ;

+ , − , × , min, max : Rat × Rat → Rat ;
/ : Rat × Rat →? Rat ;
ˆ : Rat × Int → Rat

end

12.2 Library Basic/StructuredDatatypes

This library provides specifications of the familiar structured datatypes as
used e.g. for the design of algorithms or within programming languages. Its
main focus is data structures like (finite) sets, lists, strings, (finite) maps,
(finite) bags, arrays, and various kinds of trees. Common to all these concepts
is that they are generic. Consequently, all of the specifications of this library
are generic.

Finite sets, maps and bags are specified as generated datatypes, with
equality determined by means of observers.

Finite sets, finite maps and finite bags are specified using a generated
sort. An observer operation or predicate is then introduced in order to define
equality on this sort. Concerning finite sets, equality on the sort Set [Elem] is
characterized using the predicate eps (displayed as ε) in the specification
GenerateSet. This leads to the extensionality axiom:

• M = N ⇔ ∀x : Elem • x εM ⇔ x εN %(equality Set)%

library Basic/StructuredDatatypes

148 12 Basic Libraries

spec GenerateSet [sort Elem] =
generated type Set [Elem] ::= {} | + (Set [Elem]; Elem)
pred ε : Elem × Set [Elem]

%% a system of representatives for sort Set[Elem] is

%%

%% {} and {} + x 1 + x 2 + ... + x n

%%

%% where x 1 < x 2 < ... < x n, n >= 1, x i of type Elem,

%% for an arbitrary strict total order < on Elem.

end

spec Set [sort Elem] given Nat =
GenerateSet [sort Elem]

then %def

preds isNonEmpty : Set [Elem];
⊆ : Set [Elem] × Set [Elem]

ops { } : Elem → Set [Elem];
� : Set [Elem] → Nat ;

+ : Elem × Set [Elem] → Set [Elem];
− : Set [Elem] × Elem → Set [Elem];
∩ , ∪ , − , symDiff :

Set [Elem] × Set [Elem] → Set [Elem]
end

Finite maps, i.e. elements of the sort Map[S ,T], are considered to be
identical if looking up any value in S yields the same result in both cases:

• M = N ⇔ ∀s : S • lookup(s,M) = lookup(s,N) %(equality Map)%

On top of this, the specification Map adds e.g. predicates for elementhood
(ε) as well as for determining the profile of a map (f :: x → y means that f is
a map from x to y).

The specification TotalMap restricts maps to everywhere-defined maps
(which are isomorphic to tuples). Since maps are finite, totality is only possible
for maps over finite argument sorts. The latter is specified in the specification
Finite, using a partial surjection from the natural numbers. Since this spec-
ification is rather unusual, we make an exception and also show its axioms.

spec GenerateMap [sort S] [sort T] =
generated type Map[S,T] ::= empty | [/](Map[S,T]; T ; S)
op lookup : S × Map[S,T] →? T

end

12.2 Library Basic/StructuredDatatypes 149

spec Map [sort S] [sort T] given Nat =
GenerateMap [sort S] [sort T]

and Set [sort S]
and Set [sort T]
then %def

free type Entry[S,T] ::= [/](target :T ; source:S)
preds isEmpty : Map[S,T];

ε : Entry[S,T] × Map[S,T];
:: → : Map[S,T] × Set [S] × Set [T]

ops + , − : Map[S,T] × Entry[S,T] → Map[S,T];
− : Map[S,T] × S → Map[S,T];
− : Map[S,T] × T → Map[S,T];

dom : Map[S,T] → Set [S];
range : Map[S,T] → Set [T];
∪ : Map[S,T] × Map[S,T] →? Map[S,T]

end
spec Finite [sort Elem] =

{ Nat
then op f : Nat →? Elem

• ∀ x : Elem • ∃ n: Nat • f (n) = x %(f surjective)%

• ∃ n: Nat • ∀ m: Nat • def f (m) ⇒ m < n %(f bounded)%

}
reveal Elem

end

spec TotalMap [Finite [sort S]] [sort T] =
{ Map [sort S] [sort T]
then sort TotalMap[S,T] =

{M : Map[S,T] • ∀ x : S • def lookup(x, M)}
ops [/] : TotalMap[S,T] × T × S → TotalMap[S,T];

lookup : S × TotalMap[S,T] → T ;
+ : TotalMap[S,T] × Entry[S,T] → TotalMap[S,T];

range : TotalMap[S,T] → Set [T];
∪ : TotalMap[S,T] × TotalMap[S,T]

→? TotalMap[S,T]
pred ε : Entry[S,T] × TotalMap[S,T]

}
hide Map[S,T]

end

In the specification GenerateBag, those elements of sort Bag[Elem] are
identified that show the same number of occurrences (observed by the opera-
tion freq) for all entries:

• M = N ⇔ ∀x : Elem • freq(M, x) = freq(N, x) %(equality Bag)%

150 12 Basic Libraries

spec GenerateBag [sort Elem] given Nat =
generated type Bag[Elem] ::= {} | + (Bag[Elem]; Elem)
op freq : Bag[Elem] × Elem → Nat

end

spec Bag [sort Elem] given Nat =
GenerateBag [sort Elem]

then preds isEmpty : Bag[Elem];
ε : Elem × Bag[Elem];
⊆ : Bag[Elem] × Bag[Elem]

ops + : Elem × Bag[Elem] → Bag[Elem];
− : Bag[Elem] × Elem → Bag[Elem];
− , ∪ , ∩ : Bag[Elem] × Bag[Elem] → Bag[Elem]

end

Lists are specified as a free datatype.

In the specification GenerateList, lists are built up from the empty list
by adding elements in front. The usual list operations are provided: first and
last select the first or last element of a list, while rest or front select the
remaining list; # counts the number of elements in a list, while freq counts
the number of occurrences of a given element; take takes the first n elements
of a list, while drop drops them.

spec GenerateList [sort Elem] =
free type List [Elem] ::= [] | :: (first :?Elem; rest :?List [Elem])

end

spec List [sort Elem] given Nat =
GenerateList [sort Elem]

then preds isEmpty : List [Elem];
ε : Elem × List [Elem]

ops + : List [Elem] × Elem → List [Elem];
first, last : List [Elem] →? Elem;
front, rest : List [Elem] →? List [Elem];
� : List [Elem] → Nat ;

++ : List [Elem] × List [Elem] → List [Elem];
reverse : List [Elem] → List [Elem];

! : List [Elem] × Nat →? Elem;
take, drop : Nat × List [Elem] →? List [Elem];
freq : List [Elem] × Elem → Nat

end

12.2 Library Basic/StructuredDatatypes 151

Arrays are specified as certain finite maps.

The specification Array includes the condition min ≤ max as an axiom
in its first parameter. This ensures a non-empty index set. Arrays are defined
as finite maps from the sort Index to the sort Elem, where the typical array
operations lookup (!) and assignment (! :=) are introduced in terms
of finite map operations. Finally, revealing the essential signature elements
yields the desired datatype.

spec Array [ops min, max : Int • min ≤ max %(Cond nonEmptyIndex)%]
[sort Elem]

given Int =
sort Index = {i : Int • min ≤ i ∧ i ≤ max}

then { Map [sort Index] [sort Elem]
with sort Map[Index,Elem] �→ Array[Elem],

op empty �→ init
then ops ! := : Array[Elem] × Index × Elem → Array[Elem];

! : Array[Elem] × Index →? Elem
}
reveal sort Array[Elem], ops init, ! , ! :=

end

Several kinds of tree are available, differing in the branching and in
the positions of elements.

The library concludes with several specifications concerning trees. There
are specifications of binary trees (BinTree, BinTree2), k -branching trees
(KTree), and trees with possibly different branching at each node (NTree).
Each of these branching structures can be equipped with data in different
ways: Either all nodes of a tree carry data (as is the case in BinTree, KTree,
and NTree), or just the leaves of a tree have a data entry (as in BinTree2).

152 12 Basic Libraries

Binary trees admit two children for each internal node.

spec GenerateBinTree [sort Elem] =
free type

BinTree[Elem] ::= nil
| binTree(entry:?Elem; left :?BinTree[Elem];

right :?BinTree[Elem])
end

spec BinTree [sort Elem] given Nat =
GenerateBinTree [sort Elem] and Set [sort Elem]

then preds isEmpty, isLeaf : BinTree[Elem];
isCompoundTree : BinTree[Elem];

ε : Elem × BinTree[Elem]
ops height : BinTree[Elem] → Nat ;

leaves : BinTree[Elem] → Set [Elem]
end

spec GenerateBinTree2 [sort Elem] =
free type NonEmptyBinTree2 [Elem] ::=

leaf (entry:?Elem)
| binTree(left :?NonEmptyBinTree2 [Elem];

right :?NonEmptyBinTree2 [Elem])
free type BinTree2 [Elem] ::= nil | sort NonEmptyBinTree2 [Elem]

end

spec BinTree2 [sort Elem] given Nat =
GenerateBinTree2 [sort Elem] and Set [sort Elem]

then %def

preds isEmpty, isLeaf : BinTree2 [Elem];
isCompoundTree : BinTree2 [Elem];

ε : Elem × BinTree2 [Elem]
ops height : BinTree2 [Elem] → Nat ;

leaves : BinTree2 [Elem] → Set [Elem]
end

12.2 Library Basic/StructuredDatatypes 153

k-trees admit k children for each internal node (with k fixed).

We now come to k -branching trees. The branching is specified by using
arrays of trees of size k , which are used to contain the children of a node in
the tree.

spec GenerateKTree [op k : Int • k ≥ 1 %(Cond nonEmptyBranching)%]
[sort Elem] given Int =

Array [ops 1 : Int ; k : Int
fit ops min : Int �→ 1, max : Int �→ k]

[sort KTree[k,Elem]]
then free type

KTree[k,Elem] ::= nil
| kTree(entry:?Elem;

branches :?Array[KTree[k,Elem]])
end

spec KTree [op k : Int • k ≥ 1 %(Cond nonEmptyBranching)%]
[sort Elem]

given Int =
GenerateKTree [op k : Int] [sort Elem]

and Set [sort Elem]
then %def

preds isEmpty, isLeaf : KTree[k,Elem];
isCompoundTree : KTree[k,Elem];

ε : Elem × KTree[k,Elem]
ops height : KTree[k,Elem] → Nat ;

maxHeight : Index × Array[KTree[k,Elem]] → Nat ;
leaves : KTree[k,Elem] → Set [Elem];
allLeaves : Index × Array[KTree[k,Elem]] → Set [Elem]

end

154 12 Basic Libraries

n-trees admit arbitrary branching.

Finally, n-trees are trees with possibly different branching at each node.
This is specified by equipping each node in a tree with a list of child trees.

spec GenerateNTree [sort Elem] =
List [sort NTree[Elem]]

then free type
NTree[Elem] ::= nil

| nTree(entry:?Elem;
branches :?List [NTree[Elem]])

end

spec NTree [sort Elem] given Nat =
GenerateNTree [sort Elem] and Set [sort Elem]

then preds isEmpty, isLeaf : NTree[Elem];
isCompoundTree : NTree[Elem];

ε : Elem × NTree[Elem]
ops height : NTree[Elem] → Nat ;

maxHeight : List [NTree[Elem]] → Nat ;
leaves : NTree[Elem] → Set [Elem];
allLeaves : List [NTree[Elem]] → Set [Elem]

end

	12.1 Library Basic/Numbers
	12.2 Library Basic/StructuredDatatypes

