
2

Underlying Concepts

CASL is based on standard concepts of algebraic specification.

This chapter reviews the main concepts of algebraic specification. It briefly
explains and illustrates standard terminology regarding specification language
constructs and models of specifications (i.e., algebras), and indicates the dif-
ferences between basic, structured, and architectural specifications.

The focus here is on concepts that are relevant to CASL, and which will
be needed in later chapters. For comprehensive presentations of concepts and
results concerning algebraic specification, see [3, 10, 16, 27, 34, 35, 37]; for an
overview of the design of CASL, see [2]; and for full details of CASL, see the
CASL Reference Manual [20].

The reader is assumed to be familiar with basic mathematical notions
(sets, relations, and total and partial functions) and with the use of logical
formulas as axioms.

2.1 Basic Specifications

A basic specification declares symbols, and gives axioms and
constraints.

A basic specification in an algebraic specification language generally con-
sists of a set of declarations of symbols, and a set of axioms and constraints,
which restrict the interpretations of the declared symbols. CASL allows basic
specifications to include also items which simultaneously declare symbols and
restrict their interpretations.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 11–20, 2004.
c© IFIP International Federation for Information Processing 2004



12 2 Underlying Concepts

The semantics of a basic specification is a signature and a class of
models.

The meaning or semantics of a basic specification SP generally has two
parts:

• a signature Σ , corresponding to the symbols introduced by the specifica-
tion, and

• a class of Σ-models,1 corresponding to those interpretations of the signa-
ture Σ that satisfy the axioms and constraints of the specification.

When a model M satisfies a specification SP , we write M |= SP and say
that M is a model of SP . (Formalizing this within the theory of so-called
institutions involves categorical structure on the set of signatures and on the
class of models, and a natural condition on the satisfaction relation. We need
not bother with the details here – but see however the concept of a signature
morphism in Sect. 2.2.) A specification is said to be consistent when its class
of models is non-empty, and otherwise inconsistent.

CASL specifications may declare sorts, subsorts, operations, and
predicates.

A CASL signature represents declarations of sorts, subsorts, operations,
and predicates. The signature is called many-sorted when there are no subsort
declarations, and otherwise subsorted ; it is called algebraic when there are no
predicate declarations.

Sorts are interpreted as carrier sets.

A sort is a symbol which is interpreted as a set, called a carrier set. The
elements of a carrier set are generally abstract representations of the data
processed by software: numbers, characters, lists, etc. Thus a sort declared by
a specification corresponds to a type in a programming language. Sort symbols
are usually chosen to be strongly suggestive of their intended interpretations,
e.g., Int for a sort to be interpreted as the set of integers, List for a set of
lists. CASL allows also compound sort symbols, such as List [Int ] for lists of
integers.
1 Readers who are not interested in foundational aspects may treat the word ‘class’

as a synonym for ‘set’. In general, the models of an algebraic specification in CASL

constitute a proper class, because there is no restriction on the elements of the
carrier sets.



2.1 Basic Specifications 13

Subsorts declarations are interpreted as embeddings.

A sort may be declared to be a subsort or a supersort of other sorts. The
subsort relation between two sorts could be interpreted as set inclusion. Its in-
terpretation in CASL is however more general: it is interpreted as an embedding,
i.e., a 1-1 function from the carrier set of the subsort to that of the supersort.
For example, if ASCII is specified to be a subsort of ISO Latin1 in CASL, the
carrier set for ASCII could be simply a subset of that for ISO Latin1 . If Char
were to be declared as a subsort of String, however, the carrier sets for Char
and String could be disjoint, with the embedding mapping each character to
the corresponding single-character string. (See also the concept of overloading,
below.)

Operations may be declared as total or partial.

An operation symbol consists of the name of the operation together with its
profile, which indicates the number and sorts of the arguments, and the result
sort. In CASL, a declared operation symbol is interpreted as either a total or a
partial function from the Cartesian product of the carrier sets of the argument
sorts to the carrier set of the result sort; the subset of the argument tuples for
which the result of a function is defined is called its domain of definition. The
declaration indicates whether the function is total or partial.2 For example,
integer addition would be declared as total, but integer division as partial. The
result of applying an operation is undefined whenever any of its arguments is
undefined (regardless of whether the operation itself is total or partial).

When there are no arguments, the operation is called a constant. A con-
stant is interpreted simply as an element of the result sort.

Predicates are different from boolean-valued operations.

A predicate symbol consists of the name of the predicate together with its
profile, which indicates the number and sorts of the arguments but no result
sort: predicates are syntactically different from boolean-valued operations,
and are used to form atomic formulas rather than terms. In CASL, a declared
predicate symbol is interpreted as a relation on (i.e., a subset of) the Cartesian
product of the carrier sets of the argument sorts. An application of a predicate
is said to hold when the tuple of arguments is in the relation. For example, a
2 A partial function might just happen to be everywhere defined, of course.



14 2 Underlying Concepts

symbol ‘<’ to be interpreted as the less-than relation could be declared as a
binary predicate on integers.

An application of a predicate simply fails to hold when any of its arguments
is undefined: there is no undefinedness about holding or not. This allows the
logic to remain two-valued, and the logical connectives to have their familiar
interpretations.

In contrast, the result of evaluating an application of even a total boolean-
valued operation could be true, false, or undefined: the last case arises when
any argument of the application is undefined. Thus boolean-valued operations
corresponding to logical connectives (conjunction, implication, etc.) have to
take account of undefinedness, which leads to a three-valued logic.

A further significant difference between predicates and boolean-valued op-
erations shows up in connection with the concept of initiality, see Sect. 2.2.
(Predicates of two-valued logic can be represented accurately by partial oper-
ations with a single-valued result sort, holding being represented by defined-
ness.)

Operation symbols and predicate symbols may be overloaded.

An operation or predicate name can be declared with different profiles in
the same specification. This is called overloading. For example, the constant
‘empty’ could be overloaded, being interpreted as (unrelated) elements of the
sorts List and Set , according to the context of its use. Similarly, a predicate
name such as ‘<’ could be overloaded on unrelated sorts such as Char and
Int .

In CASL, overloading is required to be compatible with embeddings between
subsorts. For example, the sort Nat , interpreted as the set of natural numbers,
might be a subsort of Int , interpreted as the set of all integers; then when the
operation name ‘+’ and the predicate name ‘<’ are declared both on Nat and
on Int , their interpretations are required to be such that it makes no difference
whether the embedding from Nat to Int is applied to the arguments or to the
result of the operation, and whether it is applied to the arguments of the
predicate or not.

Axioms are formulas of first-order logic.

The interpretation of quantification (universal, existential, and unique-
existential) and of the usual logical connectives (negation, conjunction, dis-
junction, implication, and equivalence) in CASL axioms is completely standard.
Variables in formulas range over the carrier sets of specified sorts.



2.2 Structured Specifications 15

Apart from the usual predicate applications, the atomic formulas in CASL

axioms are equations (strong or existential), definedness assertions, and sub-
sort membership assertions. An existential equation holds when the values of
its terms are defined and equal; a strong equation holds moreover when the
values of the terms are both undefined.

Regardless of whether the values of the terms occurring in an axiom are
defined, the axiom either holds or it does not hold in a particular model: the
logic is two-valued, there is no “maybe” or undefinedness about the holding
of axioms. Recall that when the value of any argument term is undefined,
an application of a predicate never holds; similarly, definedness and subsort
membership assertions never hold when their arguments are undefined.

Sort generation constraints eliminate ‘junk’ from specific carrier sets.

In general, the carrier sets of the models of a specification may contain
‘junk’ elements, i.e., elements which cannot be obtained by any composition
of the operations declared by the signature of the specification.

A sort generation constraint in CASL concerns specific sorts and opera-
tions, and is satisfied in a model when no elements of the indicated carrier
sets are junk with respect to the indicated operations – i.e., all the elements
of those sets can be obtained by consecutively applying those operations to
elements of the carrier sets of the remaining sorts. For example, the carrier
set for the sort Container might be constrained to be generated from that for
the sort Elem by the following operations:

• a constant ‘empty’ of sort Container , and
• a binary operation ‘insert ’ with argument sorts Elem and Container , and

result sort Container .

This constraint would ensure that the only elements of the Container carrier
are those obtained by a finite number of successive applications of the insert
operation to elements of sort Elem, starting with the empty value of sort
Container .

2.2 Structured Specifications

Structured specifications are formed from basic specifications, references to
named specifications, and instantiations of generic specifications, using various
constructs for composing specifications.



16 2 Underlying Concepts

The semantics of a structured specification is simply a signature and
a class of models.

The semantics of a structured specification is of the same form as that of
a basic specification: a signature, together with a class of models. Thus the
structure of a specification is not reflected in its models: it is used only to
present the specification in a modular style. (Specification of the architecture
of implementations is addressed in Sect. 2.3.) The symbols in the signature
are called the exported symbols of the specification.

The interpretation of structured specification constructs involves mappings
between signatures Σ , called signature morphisms, and corresponding map-
pings between models M , called reducts along morphisms. In CASL, a signature
morphism σ from Σ to Σ ′ consists of a mapping which gives:

• for each sort of Σ , a corresponding sort of Σ ′, preserving any subsort
relationships, and

• for each operation or predicate symbol whose profile has sorts in Σ , a
corresponding symbol in Σ ′ whose profile has the corresponding sorts,
preserving any overloading between symbols whose profiles are related by
subsorting. A partial operation may be mapped to a total operation, but
not vice versa.

Let M ′ be any Σ ′-model. We can define its reduct along the signature mor-
phism σ to be the Σ -model M obtained as follows: each symbol of Σ is
interpreted in M in exactly the same way as the corresponding symbol in
Σ ′ is interpreted in M ′. Conversely, given M , a model M ′ is said to be an
expansion of M when the reduct of M ′ is M .

Suppose that a specification SP has signature Σ and SP ′ has signature Σ ′.
A signature morphism σ from Σ to Σ ′ is said to be a specification morphism
from SP to SP ′ when the reduct along σ of each model of SP ′ is a model of
SP .

For two Σ -models M1 ,M2 , a (weak) homomorphism from M1 to M2 maps
the elements of the carrier sets of M1 to the elements of the corresponding car-
rier sets of M2 , preserving the embeddings between subsorts, the values (and
definedness) of operations, and the holding of predicates. A homomorphism
is an isomorphism when it has an inverse homomorphism.

A model M is initial in a class of Σ -models if there is a unique homo-
morphism from M to each model in the class. When a class of models has
an initial model (which need not be the case in CASL) it is unique, up to
isomorphism.

With reference to the above concepts of signature morphism, model reduct,
and homomorphism, we can now proceed to explain the constructs involved
with structured specifications.



2.2 Structured Specifications 17

A translation merely renames symbols.

Translating a sort symbol requires translating the profiles of all opera-
tion and predicate symbols involving that sort; translating an operation or
predicate symbol has to respect overloading between symbols whose profiles
are related by subsorting. The translation of sort, operation, and predicate
names in CASL determines a signature morphism σ mapping the signature Σ
of a specification SP onto a new signature Σ ′. The models of the translation
specification are all those models interpreting Σ ′ whose reducts along σ are
models of SP .

Hiding symbols removes parts of models.

Hiding a sort symbol implies hiding also all operation and predicate sym-
bols whose profiles involve that sort; hiding an operation or predicate symbol,
however, does not have further implications. Hiding a set of symbols that
occur in the signature Σ of a specification SP to give a subsignature Σ ′ de-
termines a signature morphism σ which simply includes Σ ′ in Σ . The models
of the hiding specification are the reducts of the models of SP along σ.

For example, the operation suc might be introduced purely to facilitate
the specification of the natural numbers, with sort Nat , constants 0 and 1 ,
and the usual arithmetic operations. Hiding suc removes the interpretation
of suc from the models of the specification3 but leaves the carrier set for Nat
unchanged.

Union of specifications identifies common symbols.

The signature of a union of specifications SP1 ,SP2 is simply the union of
their respective signatures Σ1 ,Σ2 . The models of the union are those mod-
els of the union signature whose reducts to Σ1 and Σ2 along the signature
inclusions satisfy SP1 and SP2 respectively. Thus each symbol that the two
signatures have in common has a single interpretation in any model of the
union specification. This is known as the ‘same name, same thing’ principle.
3 The successor of a number can of course still be obtained, using addition and 1 .



18 2 Underlying Concepts

Extension of specifications identifies common symbols too.

The signature of the extension of a specification SP by further specification
items (declarations, axioms, and constraints) is simply the extension of the
signature Σ of SP with the symbols of the new declarations. The models of
the extension are those models of the extended signature which satisfy the
axioms and constraints specified by the extension and whose reducts to Σ
satisfy SP . If the extension redeclares a symbol of SP , there is still only one
occurrence of that symbol in the signature of the extension, and hence only
one interpretation of it – again the ‘same name, same thing’ principle.

In CASL, unions, extensions, and other kinds of structured specification
can be formed from specification fragments that determine only signature
extensions, not necessarily complete signatures.

Free specifications restrict models to being free, with initiality as a
special case.

When a specification is freely extended by additional specification items,
the interpretations of the additional declarations are required to satisfy the
axioms, but nothing more: that is, properties that are not consequences of
the axioms should not hold. In particular, the domains of definition of partial
operations – and the sets of arguments for which predicates hold – are as
small as possible. The carriers for the original sorts are left unchanged; any
new carriers are no larger than is required to provide interpretations for the
operations, without unnecessary junk elements. This restriction of the models
is referred to as a freeness constraint. In the degenerate case where the speci-
fication being enriched is empty, the models of the free extension are just the
initial models.

The difference between predicates and boolean-valued operations is par-
ticularly apparent in free specifications: with predicates, it is only required to
specify when they hold, since not holding is the default; with boolean-valued
operations, however, the true and false values are treated symmetrically, and
it is necessary to specify both cases, since neither is the default.

Generic specifications have parameters, and have to be instantiated
when referenced.

A named specification may declare some parameters, the union of which
is extended by a body; it is then called generic. The purpose of a generic



2.3 Architectural Specifications 19

specification is to reuse the body in different contexts; hence a reference to a
generic specification should instantiate it by providing, for each parameter, an
argument specification together with a fitting morphism from the parameter
to the argument specification. Fitting may also be achieved by use of named
views between the parameter and argument specifications. The instantiation
of the generic specification gives the union of the arguments, together with
the translation of the generic specification by an expansion of the fitting mor-
phism. This corresponds to a so-called push-out construction – taking into
account any explicit imports of the generic specification.

2.3 Architectural Specifications

The semantics of an architectural specification reflects its modular
structure.

The intention with architectural specifications is primarily to impose struc-
ture on implementations, expressing their composition from component units
– and thereby also a decomposition of the task of developing such implemen-
tations, from requirements specifications. This is in contrast to the structured
specifications considered in Sect. 2.2, where the specified models have no more
structure than do those of the basic specifications considered in Sect. 2.1.

Architectural specifications involve the notions of persistent function
and conservative extension.

A function F mapping Σ -models to Σ ′-models, where the signature Σ ′

extends Σ , is said to be persistent when for each Σ -model M , the reduct of
F (M ) to a Σ -model is exactly M .

A specification extension SP ′ of SP is said to be conservative when each
model of SP can be expanded to a model of SP ′.

A persistent function mapping models of SP to models of SP ′ exists only
if SP ′ is a conservative extension of SP .



20 2 Underlying Concepts

2.4 Libraries of Specifications

The semantics of a library of specifications is a mapping from the
names of the specifications to their semantics.

The specification of a library gives also a library name, and determines a
version number.


	2.1 Basic Specifications
	2.2 Structured Specifications
	2.3 Architectural Specifications
	2.4 Libraries of Specifications



