
11

Tools

Till Mossakowski

This chapter gives an overview of the CASL tools. Analysis tools for CASL like
parsers and static checkers, as well as formatters, are stable now and cover
the whole of CASL. Proof tools are available but are less mature.

CASL has been designed with the goal of subsuming many previous spec-
ification languages. Most of these languages come with specific tools, and of
course, these tools should be reusable in the context of CASL. Hence, a central
issue is to build bridges to existing tools (rather than building new tools from
scratch). Using an interchange format generated by the analysis tools, CASL

has been interfaced in this way to rewriting engines and theorem provers,
usually working for a subset of CASL.

Naturally, due to the ongoing development of these tools, detailed descrip-
tions would become outdated sooner or later. Therefore, we give here just an
appetizer, intended to encourage the reader to install the tools and experiment
with them (and to convince her/him that this is rather easy). More detailed
descriptions of the tools, as well as their latest versions and other tools that
may be developed in the future, are available by following the links on the
CoFI tools home page [21]: http://www.cofi.info/Tools.

The analysis tools for CASL have been used to check all the examples
contained in this book, as well as the CASL Basic Libraries [20]. Moreover,
some proofs from a case study in refinement have been carried out with the
proof tools.

CASL specifications can be checked for well-formedness using a
form-based web page.

The easiest way to check a CASL specification for well-formedness is to
visit the web interface. Using a web form, you can submit your specification
(without the need to install anything on your machine), and get immediate

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 131–142, 2004.
c© IFIP International Federation for Information Processing 2004

132 11 Tools

feedback about the well-formedness of the specification. Follow the “web in-
terface” link on the CoFI tools home page.

11.1 The Heterogeneous Tool Set (HETS)

The Heterogeneous Tool Set (HETS) is the main analysis tool for
CASL.

HETS is a tool set for the analysis of specifications written in CASL, its
extensions and sublanguages – hence the name “heterogeneous”. HETS con-
sists of logic-specific tools for the parsing and static analysis of the different
CASL extensions and sublanguages, as well as a logic-independent parsing and
static analysis tool for structured and architectural specifications and libraries
(which of course calls the logic-specific tools whenever a basic specification is
encountered). In order to be able to tackle proof obligations occurring in
(statically well-formed) specifications, HETS is interfaced with various logic-
specific theorem proving, rewriting and consistency checking tools. On top of
this, there is a logic-independent proof engine called MAYA, which manages
the proof obligations. MAYA uses so-called development graphs, a graphical
representation of CASL structured specifications.

The architecture of HETS is shown in Fig. 11.1. The latest version can be
obtained from the CoFI tools home page [21]. Installation is easy; just follow
the instructions.

Consider the first example in this book:

spec Strict Partial Order =
sort Elem
pred < : Elem × Elem
∀x , y, z : Elem
• ¬(x < x) %(strict)%

• x < y ⇒ ¬(y < x) %(asymmetric)%

• x < y ∧ y < z ⇒ x < z %(transitive)%

%{ Note that there may exist x, y such that
neither x < y nor y < x. }%

end

HETS can be used for parsing and checking static well-formedness of
specifications.

11.1 The Heterogeneous Tool Set (HETS) 133

�

�

�

�

�

�

�

�

�
��

�
��

����

�� ��
����

�� ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

	

�

�

	

�
� 	

�
�

	

�
�

�

Text

Parser

Abstract syntax

Static analysis

(Signature, Sentences)

Interfaces

XML, ATerms

CASL

CoCASL CASL-LTL

CSP-CASL

SB-CASLHasCASL

SubFOL= PFOL=

FOL=

Horn=• •

Basic specifications

(logic-specific tools for

CASL and extensions)

Graph of CASL Structured and

architectural

specifications

Text

Parser

Abstract syntax

Static analysis

Development graph

Interfaces

XML, ATerms

(e.g. CCC)
Consistency checker

(e.g. HOL-CASL)

Theorem prover

Management of proofs & change

Heterogeneous proof engine

MAYA
(e.g. ELAN-CASL)

Rewriter

proposed extensions

sublanguages and

Fig. 11.1. Architecture of the heterogeneous tool set.

Let us assume that the example is in a file named Order.casl (actually,
this file is provided on the web and on the CD-ROM coming with this volume).
Then you can check the well-formedness of the specification by typing (into
some shell):

hets Order.casl

HETS checks both the correctness of this specification with respect to the
CASL syntax, as well as its correctness with respect to the static semantics
(e.g. whether all identifiers have been declared before they are used, whether
operators are applied to arguments of the correct sorts, whether the use of
overloaded symbols is unambiguous, and so on).

It is also possible to generate a pretty printed LATEX version of Order.casl
by typing:

hets -o pp.tex Order.casl

One use of Order.casl might be to express the fact that the natural
numbers form a strict partial order as a view, as follows:

spec Natural = free type Nat ::= 0 | suc(Nat) end

134 11 Tools

spec Natural Order 2 =
Natural

then pred < : Nat × Nat
∀x , y : Nat
• 0 < suc(x)
• ¬x < 0
• suc(x) < suc(y) ⇔ x < y

end

view v1 : Strict Partial Order to Natural Order 2 =
Elem �→ Nat

end
Again, these specifications can be checked with HETS. However, this only

checks syntactic and static semantic well-formedness – it is not checked
whether the predicate ‘ < ’ introduced in Natural Order 2 actually
is constrained to be interpreted by a strict partial ordering relation. Checking
this requires theorem proving, which will be discussed below.

HETS also displays and manages proof obligations, using development
graphs.

However, before coming to theorem proving, let us first inspect the proof
obligations arising from a specification. This can be done with:

hets -g Order.casl

(assuming that the above two specifications and the view have been added to
the file Order.casl). HETS now displays a so-called development graph (which
is just an overview graph showing the overall structure of the specifications
in the library), see Fig. 11.2.

Strict_Partial_Order

Natural_Order_2

Natural

Fig. 11.2. Sample development graph.

11.1 The Heterogeneous Tool Set (HETS) 135

Nodes in a development graph correspond to CASL specifications.
Arrows show how specifications are related by the structuring
constructs.

The solid arrow denotes an ordinary import of specifications (generated
by the extension), while the dashed1 arrow denotes a proof obligation (corre-
sponding to the view). This proof obligation needs to be discharged in order
to show that the view is well-formed.

As a more complex example, consider the following loose specification of
a sorting function, taken from Chap. 6:
spec List Order Sorted

[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

(cons(e ′,L) is sorted ∧ ¬(e ′ < e))
within op order : List → List

∀L : List • order(L) is sorted
end

The following specification of sorting by insertion also is taken from
Chap. 6:
spec List Order [Total Order with sort Elem, pred <] =

List Selectors [sort Elem]
then local op insert : Elem × List → List

∀e, e ′ : Elem; L : List
• insert(e, empty) = cons(e, empty)
• insert(e, cons(e ′,L)) = cons(e ′, insert(e,L)) when e ′ < e

else cons(e, cons(e ′,L))
within op order : List → List

∀e : Elem; L : List
• order(empty) = empty
• order(cons(e,L)) = insert(e, order(L))

end

Both specifications are related. To see this, we first inspect their signatures.
This is possible with:

hets -g Sorting.casl

1 Actually, the dashed arrow will be displayed as solid and in red by HETS; we do
not have colors available here.

136 11 Tools

assuming that Sorting.casl contains the above specifications. HETS now
displays a more complex development graph, see Fig. 11.3.

ElemStrict_Partial_Order

Total_Order List_Selectors

List_Order_Sorted

List_Order

Fig. 11.3. Development graph for the two sorting specifications.

11.1 The Heterogeneous Tool Set (HETS) 137

Internal nodes in a development graph correspond to unnamed parts
of a structured specification.

In the above-mentioned development graph, we have two types of nodes.
The named ones correspond to named specifications, but there are also un-
named nodes corresponding to anonymous basic specifications like the dec-
laration of the insert operation in List Order above. Basically, there is an
internal node for each structured specification that is not named.

Again, the simple solid arrows denote an ordinary import of specifications
(corresponding to the extensions and unions in the specifications), while the
double arrows denote hiding (corresponding to the local specification).

By clicking on the nodes, one can inspect their signatures. In this way,
we can see that both List Order Sorted and List Order have the same
signature. Hence, it is legal to add a view:
view v2[Total Order] : List Order Sorted[Total Order] to List

Order[Total Order]
end

We have already added this view to Sorting.casl. The corresponding
proof obligation between List Order Sorted and List Order is displayed
in Fig. 11.3 as a dotted arrow.

Proof obligations can be discharged in various ways.

Trivial proof obligations can be discharged by HETS alone using the
“Proofs” menu. The proof obligation in Fig. 11.3, indicated by the lower dotted
arrow between List Order Sorted and List Order, states that insertion
sort, as defined by the operation order in List Order, actually has the prop-
erties of a sorting algorithm. Here, one has to choose a theorem prover that
is to be used to discharge the proof obligation, which is then done by using
commands specific to the theorem prover (cf. e.g. Section 11.2). Alternatively,
one can state that one just conjectures the obligation to be true.

HETS is written in Haskell. Its parser uses combinator parsing. The user-
defined (also known as “mixfix”) syntax of CASL calls for a two-pass approach.
In the first pass, the skeleton of a CASL abstract syntax tree is derived, in order
to extract user-defined syntax rules. In a second pass, which is performed
during static analysis, these syntax rules are used to parse any expressions
that use mixfix notation. The output is stored in the so-called ATerm format
[12], which is used as interchange format for interfacing with other tools.

HETS provides an abstract interface for institutions, so that new logics can
be integrated smoothly. In order to do so, a parser, a static checker and a
prover for basic specifications in the logic have to be provided.

138 11 Tools

HETS has been built based on experiences with its precursors, CATS and
MAYA. The CASL Tool Set (CATS) [28, 30] comes with roughly the same anal-
ysis tools as HETS. The management of development graphs is not integrated
in CATS, but is provided with a stand-alone version of the tool MAYA [5, 4].
CATS and MAYA can be obtained from the CoFI tools home page [21].

11.2 HOL-CASL

HOL-CASL is an interactive theorem prover for CASL, based on the
tactical theorem prover ISABELLE.

The HOL-CASL system [28] provides an interface between CASL and the
theorem proving system ISABELLE/HOL [31]. We have chosen ISABELLE be-
cause it has a very small core guaranteeing correctness, and its provers, like
the simplifier or the tableaux prover, are built on top of this core. Further-
more, there is over ten years of experience with it, and several mathematical
textbooks have been partially verified with ISABELLE.

CASL is linked to ISABELLE/HOL by an encoding.

Since subsorting and partiality are present in CASL but not in ISABELLE/HOL,
we have to encode these features, as explained in [29]. This means that theorem
proving is not done in the CASL logic directly, but in the logic HOL (for higher-
order logic) of ISABELLE. HOL-CASL tries to make the user’s life easy by:

• choosing a shallow embedding of CASL into HOL, which means that e.g.
CASL’s logical implication => is mapped directly to ISABELLE/HOL’s logical
implication --> (and the same holds for other logical connectives and
quantifiers); and

• adapting ISABELLE/HOL’s syntax to conform with the CASL syntax, e.g.
ISABELLE/HOL’s --> is displayed as =>, as in CASL.

However, it is essential to be aware of the fact that the ISABELLE/HOL logic is
different from the CASL logic. Therefore, the formulas appearing in subgoals of
proofs with HOL-CASL will not fully conform to the CASL syntax: they may use
features of ISABELLE/HOL such as higher-order functions that are not present
in CASL. HOL-CASL can be obtained from the CoFI tools home page [21].

To start the HOL-CASL system, follow the installation instructions, and
then type:

HOL-CASL

11.3 ASF+SDF Parser and Syntax-Directed Editor 139

You can load the above specification file Order.casl by typing:

use_casl "Order";

Let us try to prove part of the view v1 above. To prepare for conducting
a proof in the target specification of the view, Natural Order 2, type in:

CASL_context Natural_Order_2.casl;

AddsimpAll();

The first command just selects the specification as the current proof context;
the second one adds all the axioms of the specification to ISABELLE’s simplifier
(a rewriting engine). Note that the latter is advisable only if the axioms are
terminating, when considered as a set of rewrite rules.

To prove the first property expressed by the view, we first have to type
in the goal. Then we chose to perform induction over the variable x , and the
rest can be done with automatic simplification. Finally, we name the theorem
for later reference:

Goal "forall x:Nat . not x<x";
by (induct_tac "x" 1);
by Auto_tac;
qed "Nat_irreflexive";

Both the stand-alone MAYA as well as the MAYA part of HETS also provide
an interface to HOL-CASL, so that it can be used to discharge proof obligations
arising in development graphs.

11.3 ASF+SDF Parser and Syntax-Directed Editor

ASF+SDF was used to prototype the CASL syntax.

The algebraic specification formalism ASF+SDF [22] and the ASF+SDF

Meta-Environment [13] have been deployed to prototype CASL’s concrete syn-
tax, and to develop a mapping for the concrete syntax to an abstract syntax
representation using so-called ATerms [12]. Currently, only the first pass of
parsing (i.e. without mixfix analysis) is realized in SDF. Parsing is performed
based on the underlying Scannerless Generalized LR parsing technology. A
prototype of the mapping from the concrete to abstract representation is writ-
ten in ASF rewrite rules.

140 11 Tools

The ASF+SDF Meta-Environment provides syntax-directed editing of
CASL specifications.

Given the concrete syntax definition of CASL in SDF, syntax-directed ed-
itors within the ASF+SDF Meta-Environment come for free. Recent develop-
ments in the Meta-Environment even allow for the development of a CASL

specification environment.
The ASF+SDF Meta-Environment provides a built-in library mechanism

which contains a collection of grammars, among others CASL. Via the library
the user of the Meta-Environment has access to the CASL syntax in SDF and
a collection of ASF equations to map CASL specifications into an interchange
format named CasFix. The asfc tool compiles the CASL grammar into a
stand-alone C program.

A link to the ASF+SDF Meta-Environment with further information and
a download possibility can be found at the CoFI tools home page [21]. The
built-in library of the Meta-Environment (Version 1.5 and higher) will pro-
vide the full CASL grammar in SDF and the mapping to CasFix as an ASF
specification.

11.4 Other Tools

The following tools are at a prototype stage at the time of appearance of this
volume. Please refer to at the CoFI tools home page [21], where the latest
versions can be downloaded.

Translation to OCAML

A translation from CASL into OCAML has been developed at Paris and
Poitiers. The translation works for a “functional programming” sublanguage
of CASL that includes free datatypes and recursive definitions of operations
over these types.

Translation to Haskell

A translation from CASL into Haskell has been developed in Bremen. Actually,
the translation works on an executable subset of HASCASL (a higher-order ex-
tension of CASL). Using an embedding of CASL into HASCASL, this translation
can also be used for CASL.

ELAN-CASL

ELAN-CASL is a rewriting engine for the HORN
= sublanguage of CASL. It is

based on a translation of that sublanguage to the input language of the rewrit-
ing engine ELAN.

11.4 Other Tools 141

Given a CASL specification and a query term, ELAN-CASL computes the
normal forms of the term. Note that because the set of rules is not required to
be terminating nor confluent, a query term may have several normal forms,
or may not terminate.

ELAN can be called either as an interpreter or as a compiler.

CASL consistency checker

The CASL consistency checker (CCC) has been developed in Bremen and
Swansea. With CCC, one can interactively check whether a CASL specification
is consistent. It is a faithful implementation of a consistency calculus for full
CASL [32].

Besides using certain syntactical criteria, the consistency calculus relies
heavily on the CASL structuring mechanisms and their semantic annotations.
Consequently, consistency proofs follow the structure of the given specifica-
tion. In this way, the calculus highlights the (usually few) ‘hot spots’ of a
specification (e.g. views requiring theorem proving), while the (lengthy) ‘triv-
ial’ parts of the consistency argument are discharged automatically. As the
consistency calculus works along the structure of the specification, the need
to construct (and prove correct) actual models of specifications is avoided as
far as possible.

definitional CATS
static analysis

is_theorem

wellformed

HOL−CASL
...

...

Ext

Ext

Cons

Cons

Derived

Basic

Rules Provers

...

sig_test

Logical

Core

Proof Infrastructure

Goals, Tactics and Rules Library

CASL Abstract Syntax

Unification & Substitution

Fig. 11.4. CCC System Architecture

142 11 Tools

The CASL Consistency Checker consists of four parts (see Fig. 11.4): first,
a logical core implementing a representation of the propositions to be proved,
and the basic proof rules, along with a generic unification package for the
CASL abstract syntax; secondly, representations of the calculi : the base rules
which are stated axiomatically, and derived rules; thirdly, proof procedures
(automatic or semi-automatic decision procedures), which serve to discharge
specific proof obligations; and finally, proof infrastructure such as a package
which helps users to conduct goal-directed proofs, tactics that support writing
advanced proof procedures, and a simple database which allows storage and
retrieval of proved theorems. The system is encapsulated by a single interface
which does not allow the end-user (i.e. the working specifier) to add any more
axiomatic rules or provers; thus, the typing is used to both increase confidence
in the correctness of the implementation in the style of LCF, and to protect
the integrity of the system from user intervention.

	11.1 The Heterogeneous Tool Set (HETS)
	11.2 HOL-CASL
	11.3 ASF+SDF Parser and Syntax-Directed Editor
	11.4 Other Tools

