
8

Specifying the Architecture of Implementations

Architectural specifications impose structure on implementations,
whereas specification-building operations only structure the text of
specifications.

As explained in the previous chapters, the specification of a complex sys-
tem may be fairly large and should be structured into coherent, easy to grasp,
pieces. CASL provides a number of specification-building operations to achieve
this, as detailed in Chap. 6. Moreover, generic specifications, described in
Chap. 7, provide pieces of specification that are easy to reuse in different
contexts, where they can be adapted as desired by instantiating them.

Specification-building operations and generic specifications are useful to
structure the text of the specification of the system under consideration. How-
ever, the models of a structured specification have no more structure than do
those of a flat, unstructured, specification. Indeed, most examples given in
the previous chapters could have been structured differently, with the same
meaning (i.e., with the same models). Structured specifications are usually ad-
equate at the requirements stage, where the focus is on the expected overall
properties of the system under consideration.

In contrast, the aim of architectural specifications is to prescribe the in-
tended architecture of the implementation of the system. Architectural speci-
fications provide the means for specifying the various components from which
the system will be built, and describing how these components are to be assem-
bled to provide an implementation of the system of interest. At the same time,
they allow the task of implementing a system to be split into independent,
clearly-specified sub-tasks. Thus, architectural specifications are essential at
the design stage, where the focus is on how to factor the implementation of
the system into components.

The aim of this chapter is to discuss and illustrate both the role of archi-
tectural specifications and how to express them in CASL.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 93–109, 2004.
c© IFIP International Federation for Information Processing 2004



94 8 Specifying the Architecture of Implementations

The idea underlying architectural specifications is that eventually in the
process of systematic development of modular software from specifications,
components are implemented as software modules in some chosen program-
ming language. However, this step is beyond the scope of specification for-
malisms, so in CASL and in this chapter we identify components with models
(and with functions from models to models, in the case of generic components).
The modular structure of the software under development, as described by an
architectural specification, is therefore captured here simply as an explicit,
structural way to build CASL models.

The examples in this chapter are artificially simple.

Architectural specifications, and more generally component-oriented ap-
proaches, are intended for relatively large systems. In this chapter, however,
we have to rely on simple small examples to illustrate and explain CASL ar-
chitectural specification concepts and constructs. After reading this chapter,
the reader is encouraged to study Chap. 13, which provides realistic exam-
ples of the use of architectural specifications. A more detailed account of the
rationale behind architectural specifications in the context of formal software
development by stepwise refinement can be found in [11].

The following structured specifications will be referred to later in this
chapter when illustrating CASL architectural specifications:

spec Color = %{ As defined in Chap. 3, p. 37 }%

spec Natural Order = %{ As defined in Chap. 3, p. 38 }%

spec Natural Arithmetic = %{ As defined in Chap. 3, p. 38 }%

spec Elem = sort Elem

spec Cont [Elem ] =
generated type Cont [Elem] ::= empty | insert(Elem; Cont [Elem])
preds is empty : Cont [Elem];

is in : Elem × Cont [Elem]
ops choose : Cont [Elem] →? Elem;

delete : Elem × Cont [Elem] → Cont [Elem]
∀e, e ′ : Elem; C : Cont [Elem]
• empty is empty
• ¬ insert(e,C ) is empty
• ¬ e is in empty
• e is in insert(e ′,C ) ⇔ (e = e ′ ∨ e is in C )
• def choose(C ) ⇔ ¬ C is empty
• def choose(C ) ⇒ choose(C ) is in C
• e is in delete(e ′,C ) ⇔ (e is in C ∧ ¬(e = e ′))

end



8.1 Architectural Specifications 95

spec Cont Diff [Elem ] =
Cont [Elem ]

then op diff : Cont [Elem] × Cont [Elem] → Cont [Elem]
∀e : Elem; C ,C ′ : Cont [Elem]
• e is in diff (C ,C ′) ⇔ (e is in C ∧ ¬(e is in C ′))

end

spec Req = Cont Diff [Natural Order ]

spec Flat Req =
free type Nat ::= 0 | suc(Nat)
pred < : Nat × Nat
generated type Cont [Nat ] ::= empty | insert(Nat ; Cont [Nat ])
preds is empty : Cont [Nat ];

is in : Nat × Cont [Nat ]
ops choose : Cont [Nat ] →? Nat ;

delete : Nat × Cont [Nat ] → Cont [Nat ];
diff : Cont [Nat ] × Cont [Nat ] → Cont [Nat ]

∀e, e ′ : Nat ; C ,C ′ : Cont [Nat ]
• 0 < suc(e)
• ¬(e < 0 )
• suc(e) < suc(e ′) ⇔ e < e ′

• empty is empty
• ¬ insert(e,C ) is empty
• ¬ e is in empty
• e is in insert(e ′,C ) ⇔ (e = e ′ ∨ e is in C )
• def choose(C ) ⇔ ¬ C is empty
• def choose(C ) ⇒ choose(C ) is in C
• e is in delete(e ′,C ) ⇔ (e is in C ∧ ¬(e = e ′))
• e is in diff (C ,C ′) ⇔ (e is in C ∧ ¬(e is in C ′))

end

8.1 Architectural Specifications

Let’s assume in the following that Req describes our requirements about the
system to be implemented. First, note that both Req and Flat Req have
the same models, which illustrates our point about the fact that the CASL

specification-building operations are merely facilities to structure the text of
specifications into coherent units.



96 8 Specifying the Architecture of Implementations

An architectural specification consists of a list of unit declarations,
specifying the required components, and a result part, indicating how
they are to be combined.

arch spec System =
units N : Natural Order;

C : Cont [Natural Order ] given N ;
D : Cont Diff [Natural Order ] given C

result D

The System architectural specification is intended to prescribe a specific
architecture for implementing the system specified by Req.

The first part, introduced by the keyword units, indicates that we require
the implementation of our system to be made of three components N , C , and
D . The second part, introduced by the keyword result, indicates that the
component D provides the desired implementation.

Each component is provided with its specification. The line:

N : Natural Order

declares a component N specified by Natural Order, which means simply
that N should be a model of Natural Order.

The line:

C : Cont [Natural Order ] given N

declares a component C which, given the previously declared component N ,
provides a model of Cont [Natural Order ]. It is essential to understand
that the component C must expand the assumed component N into a model
of Cont [Natural Order ], which means that C reduced to the signature
of Natural Order must be equal to N . This property reflects the fact that
a software module is supposed to use what it is given exactly as supplied,
without altering it.

Similarly, the line:

D : Cont Diff [Natural Order ] given C

declares a component D which, given the component C , expands it into a
model of Cont Diff [Natural Order ].

The final result is therefore simply D . (More complex examples of result
expressions will be illustrated in examples below.)

As in the rest of CASL, visibility is linear in architectural specifications,
meaning that any component must be declared before being used (e.g., the
component N should be declared before being referred to by ‘given N ’ in the
declaration of the component C in the architectural specification System).



8.1 Architectural Specifications 97

Component names (such as N , C , and D in System) are local to the ar-
chitectural specification where they are declared, and are not visible outside
it.

There can be several distinct architectural choices for the same
requirements specification.

arch spec System 1 =
units N : Natural Order;

CD : Cont Diff [Natural Order ] given N
result CD

The architectural specifications System and System 1 both provide mod-
els of Req. However, the former insists on an implementation made of three
components, while the latter insists on an implementation made of two com-
ponents. Thus the architectural specification System 1 corresponds to a dif-
ferent architectural choice for implementing our Req specification. Of course,
further design for implementing the component CD of System 1 may lead
to splitting this implementation task exactly as in System above. However,
there are also other possibilities, including for instance an architectural design
where we would split the task of implementing CD into two different tasks,
one for implementing containers with all their operations (including diff ) ex-
cept delete, the other for implementing delete by means of diff and other
operations.

Each unit declaration listed in an architectural specification
corresponds to a separate implementation task.

For instance, in the architectural specification System, the task of provid-
ing a component D expanding C and implementing Cont Diff [Natural
Order ] is independent from the tasks of providing implementations N of
Natural Order and C of Cont [Natural Order ] given N . Hence,
when providing the component D , one cannot make any further assumption
on how the component C is (or will be) implemented, besides what is expressly
ensured by its specification.

To understand this, let us consider again the requirements specification
Req (or its variant Flat Req). Among its models, there is one where con-
tainers are implemented by sorted lists (in increasing order, without repeti-
tions), and in this model we can choose to implement diff by the following
algorithm:



98 8 Specifying the Architecture of Implementations

diff (L,L′) = nil when L = nil
else L when L′ = nil
else insert(head(L), diff (tail(L),L′)) when head(L) < head(L′)
else diff (tail(L), tail(L′)) when head(L) = head(L′)
else diff (L, tail(L′))

In this model, however, we rely on knowledge about the implementation
of containers to decide how to implement diff – which is fine, since both
are simultaneously implemented in the same component. In contrast, in the
architectural specification System, we request that containers are to be im-
plemented in the component C while diff is to be provided by a separate com-
ponent D . Imposing that the component D can be developed independently of
the component C means that for D it is no longer possible to implement diff
as sketched above, since this specific implementation choice may not be com-
patible with an independently chosen realization for C (where containers may
be implemented by bags, for instance). Hence an implementation of diff in the
component D can only rely on the operations provided by C (e.g., choose and
delete); this may turn out to be less efficient for some particular realization of
C , but should be compatible with any independently chosen realization for C
(bags, for instance). In the case of the architectural specification System 1,
since both containers and the diff operation are implemented in the same
component CD , we can of course decide to implement containers by ordered
lists without repetitions and diff as sketched above.

Thus the component D should expand any given implementation C of
Cont [Natural Order ] and provide an implementation of Cont Diff
[Natural Order ], which is tantamount to providing a generic implemen-
tation G of Cont Diff [Natural Order ] which takes the particular im-
plementation of Cont [Natural Order ] as a parameter to be expanded.
Then we obtain D by simply applying G to C .

Genericity here arises from the independence of the developments of C
and D , rather than from the desire to build multiple implementations of
Cont Diff [Natural Order ] using different implementations of Cont
[Natural Order ]. This is reflected by the fact that G is left implicit in the
architectural specification System.

A unit can be implemented only if its specification is a conservative
extension of the specifications of its given units.

For instance, the component D can exist only if the specification Cont
Diff [Natural Order ] is a conservative extension of Cont [Natural
Order ], i.e., if any model of the latter specification can be expanded into a
model of the former one, which is indeed the case here. Similarly, the compo-
nent C can exist since Cont [Natural Order ] is a conservative extension
of Natural Order.



8.1 Architectural Specifications 99

Consider now the following variant of Cont Diff [Natural Order ]
and the associated variant of the architectural specification System.

spec Cont Diff 1 =
Cont [Natural Order ]

then op diff : Cont [Nat ] × Cont [Nat ] → Cont [Nat ]
∀x , y : Nat ; C ,C ′ : Cont [Nat ]
• diff (C , empty) = C
• diff (empty,C ′) = empty
• diff (insert(x ,C ), insert(y,C ′)) =

insert(x , diff (C , insert(y,C ′))) when x < y
else diff (C ,C ′) when x = y
else diff (insert(x ,C ),C ′)

• x is in diff (C ,C ′) ⇔ (x is in C ∧ ¬(x is in C ′))
end

arch spec Inconsistent =
units N : Natural Order;

C : Cont [Natural Order ] given N ;
D : Cont Diff 1 given C

result D

The specification Cont Diff 1 is consistent (has some models, for in-
stance sorted lists, in increasing order, without repetitions), but is not a con-
servative extension of Cont [Natural Order ] (since, for instance, a model
of Cont [Natural Order ] where containers are realized by arbitrary lists,
possibly with repetitions, cannot be expanded into a model of Cont Diff 1
– in that case, the last two axioms are contradictory). As a consequence, in the
architectural specification Inconsistent, the specification of the component
D is inconsistent, since no component can expand all implementations C of
Cont [Natural Order ] into models of Cont Diff 1. The architectural
specification Inconsistent is therefore itself inconsistent.

To summarize, architectural specifications not only prescribe the intended
architecture of the implementation of the system, but they also ensure that
the specified components can be developed independently of each other (which
imposes a certain degree of genericity for these components).



100 8 Specifying the Architecture of Implementations

8.2 Generic Components

Genericity of components can be made explicit in architectural
specifications.

arch spec System G =
units N : Natural Order;

F : Natural Order → Cont [Natural Order ];
G : Cont [Natural Order ] → Cont Diff [Natural Order ]

result G [F [N ]]

The architectural specification System G is a variant of System; here
we choose to specify the second and third components as explicit generic
components.

The line:

F : Natural Order → Cont [Natural Order ]

declares a generic component F . Given any component implementing (i.e.,
model of) Natural Order, F should expand it into an implementation of
Cont [Natural Order ]. The models of the generic-component specifica-
tion Natural Order → Cont [Natural Order ] are functions that map
any model of Natural Order to a model of Cont [Natural Order ].
These functions are required to be persistent, meaning that the result model
expands the argument model.

The third component G is also specified as a generic component: given
any implementation of Cont [Natural Order ], G should expand it into
an implementation of Cont Diff [Natural Order ].

Hence the whole system is obtained by the composition of applications
G [F [N ]], as described in the result part. In CASL, such combinations of com-
ponents are called unit terms. (More complex examples of unit terms will be
illustrated in examples below.)

The component C of System corresponds to the application F [N ] in
System G, and similarly the component D in System corresponds to G [C ],
i.e., to G [F [N ]] in System G.

The models of a specification of the form SP1 → SP2 are generic com-
ponents GC that should always expand their argument into a model of the
target specification. This only makes sense as long as the signature of the tar-
get specification contains the signature of SP1 . This is why in CASL, SP2 is
always considered as an implicit extension of SP1 , and SP1 → SP2 abbrevi-
ates SP1 → { SP1 then SP2 }.1 Moreover, since the generic component GC

1 When SP2 is already defined as an extension of SP1 , as it is the case for instance
here for Cont Diff [Natural Order ], SP2 is equivalent to SP1 then SP2 .



8.2 Generic Components 101

should expand any model of SP1 , the specification SP1 → SP2 is consistent
(i.e., has some models) if and only if the specification SP1 then SP2 is a
conservative extension of SP1 . Forgetting this fact is a potential source of in-
consistent specifications of generic components in architectural specifications.
For instance, the specification Cont [Natural Order ] → Cont Diff 1 is
inconsistent, for the reasons explained at the end of the previous section.

A generic component may be applied to an argument richer than
required by its specification.

arch spec System A =
units NA : Natural Arithmetic;

F : Natural Order → Cont [Natural Order ];
G : Cont [Natural Order ] → Cont Diff [Natural Order ]

result G [F [NA]]

The above architectural specification System A is a variant of Sys-
tem G. Here we require a component NA implementing the specification
Natural Arithmetic, instead of a component N implementing Natural
Order as in System G (perhaps because we know that such a component is
already available in some collection of previously-implemented components.)

The generic component F requires a component fulfilling the specification
Natural Order, but can of course be applied to a richer argument, as in
F [NA]. A similar reasoning applies to G.

More generally, a generic component can be applied to any component (or
to any unit term) that can be reduced along some morphism to an argument
of the required ‘type’ (i.e., to a model of the required specification). When
necessary, a fitting symbol map can be used to describe the correspondence
between the symbols provided by the argument and those expected by the
generic component. We do not detail here the technicalities related to these
fitting symbol maps, since they are quite similar to those used in instantiations
of generic specifications and the notations are the same.

As a last remark, note that, similarly to what happens when instantiating a
generic specification by an argument specification, when a generic component
is applied to an argument richer than required, the extra symbols are kept in
the result. Hence the result of the architectural specification System A above
contains also the interpretations of the arithmetic and ordering operations on
natural numbers, as they are provided by the component NA. This means in
particular that the implementations described by System A have a larger
signature than the ones described by System G.



102 8 Specifying the Architecture of Implementations

Specifications of components can be named for further reuse.

unit spec Cont Comp = Elem → Cont [Elem ]

unit spec Diff Comp = Cont [Elem ] → Cont Diff [Elem ]

arch spec System G1 =
units N : Natural Order;

F : Cont Comp;
G : Diff Comp

result G [F [N ]]

In the above example, we give the name Cont Comp to the specification
(of generic components) Elem → Cont [Elem ]. Similarly, we give the name
Diff Comp to the specification Cont [Elem ] → Cont Diff [Elem ]. Then
both named specifications can be reused in the architectural specification
System G1 which is similar to the architectural specification System G.

In the architectural specification System G1, we use again the fact that
the generic component F can be applied to richer arguments than models
of Elem (and similarly for G). Since Elem is more general (has more mod-
els) than Natural Order, there are potentially fewer possibilities for im-
plementing the generic component specified by Cont Comp (which should
be compatible with any model of Elem) than there are for implementing
the generic component specified by Natural Order → Cont [Natural
Order ] (which only needs to be compatible with models of Natural
Order; a similar argument holds for Diff Comp). As a consequence, the
architectural specifications System G and System G1 do not describe the
same implementations of the requirements specification Req.

Both named and unnamed specifications can be used to specify
components.

unit spec Diff Comp 1 =
Cont [Elem ] → { op diff : Cont [Elem] × Cont [Elem] → Cont [Elem]

∀e : Elem; C ,C ′ : Cont [Elem]
• e is in diff (C ,C ′) ⇔

(e is in C ∧ ¬(e is in C ′)) }
So far we have always used named (structured) specifications to specify

components. unnamed specifications can be used as well, as illustrated by
the above variant Diff Comp 1 of Diff Comp. Here, for the sake of the
example, we directly specify the diff operation instead of referring to the



8.2 Generic Components 103

named specification Cont Diff. Remember that in a specification of a generic
component of the form SP1 → SP2 , SP2 is always considered as an implicit
extension of SP1 , which explains why the above example is well-formed.

Specifications of generic components should not be confused with
generic specifications.

Generic specifications naturally give rise to specifications of generic com-
ponents, which can be named for later reuse, as illustrated above by Cont
Comp. However, the reader should not confuse a generic specification (which
is nothing other than a piece of specification that can easily be adapted by
instantiation) with the corresponding specification of a generic component:
the latter cannot be instantiated, it is the specified generic component which
gets applied to suitable components.

Conservative extensions of the form ‘spec SP2 = SP1 then SP ’ also
naturally give rise to specifications of generic components of the form SP1 →
SP2 , as illustrated by Diff Comp above.

A generic component may be applied more than once in the same
architectural specification.

arch spec Other System =
units N : Natural Order;

C : Color;
F : Cont Comp

result F [N ] and F [C fit Elem �→ RGB ]

The above architectural specification requires a component N specified
by Natural Order, a component C specified by Color, and a generic
component F specified by Cont Comp. Then, as described by the result
part, the desired system is obtained by applying F to N and applying F to C
(in this case, an explicit fitting symbol map is necessary, since Color exports
two sorts RGB and CMYK ). Finally both application results are combined,
which is expressed by ‘and’.

Apart from ‘free’, all specification-building operations for structured
specifications have natural counterparts at the level of components, which
are expressed using the same keywords.2 The reader should remember that
specification-building operations work with specifications defining classes of
2 The situation is however a bit different with specification extensions, which lead

to specifications of generic components, as explained above, or to specifications of
components expanding a given component, as illustrated in the previous section.



104 8 Specifying the Architecture of Implementations

models (e.g., union of specifications, denoted by ‘and’), while in architectural
specifications we work with individual models (corresponding to components,
as is the case here in Other System where ‘and’ is used to combine the two
components F [N ] and F [C fit Elem �→ RGB ] ).

Hence renaming and hiding also have natural counterparts at the level of
components. For instance, remember that the implementations described by
System A have a larger signature than the implementations described by
System G. It is however easy to modify the result part of System A if what
we really want are implementations with the same signature as the imple-
mentations described by System G: one has just to hide the extra symbols
resulting from the component NA as follows:

result G [F [NA]] hide 1 , + , ∗
or:

result G [F [NA hide 1 , + , ∗ ]]

Symbol maps used in renaming and hiding at the level of components
follow the same rules as symbol maps used in renaming and hiding at the
level of structured specifications (see Chap. 6).

Several applications of the same generic component is different from
applications of several generic components with similar specifications.

arch spec Other System 1 =
units N : Natural Order;

C : Color;
FN : Natural Order → Cont [Natural Order ];
FC : Color → Cont [Color fit Elem �→ RGB ]

result FN [N ] and FC [C ]

The above architectural specification Other System 1 is a variant of
Other System. However, in Other System, we insist on choosing one im-
plementation for containers in the generic component F , and then we apply it
twice, first to a component N implementing Natural Order, and then to
a component C implementing Color. In contrast, in Other System 1, we
may choose two different implementations for containers, one for containers
of natural numbers in the component FN and another one for containers of
colors in the component FC .

The architectural specifications Other System and Other System 1
are therefore similar but clearly different. Neither is better than the other:
each corresponds to a different architectural decision, and selecting one rather
than the other is a matter of architectural design. Components that are more
widely reusable tend to have less efficient implementations, in general. (Here



8.2 Generic Components 105

the fact that RGB has only three values might be exploited in FC to give a
more space-efficient representation of containers than is possible for FN .)

Generic components may have more than one argument.

unit spec Set Comp = Elem → Generated Set [Elem ]

spec Cont2Set [Elem ] =
Cont [Elem ] and Generated Set [Elem ]

then op elements of : Cont [Elem] → Set
∀e : Elem; C : Cont [Elem]
• elements of empty = empty
• elements of insert(e,C ) = {e} ∪ elements of C

end

arch spec Arch Cont2Set Nat =
units N : Natural Order;

C : Cont Comp;
S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result F [C [N ]] [S [N ]]

The architectural specification Arch Cont2Set Nat requires a compo-
nent N implementing Natural Order, a generic component C implement-
ing Cont Comp, i.e., containers, and a generic component S implementing
Set Comp, i.e., sets. Then it further requires a generic component F that,
given any pair of compatible models X of Cont [Elem ] and Y of Gener-
ated Set [Elem ], expands them into a model of Cont2Set [Elem ].

Models X and Y are said to be compatible if they share a common interpre-
tation for all symbols they have in common. Here the only symbol they have
in common is the sort Elem, so the compatibility condition means that X and
Y have the same carrier set for Elem. Compatibility is a natural condition,
since it is obviously necessary that X and Y have a common interpretation of
their common symbols, otherwise they cannot be both expanded to the same
more complex component.

The result is then produced by applying F to the pair obtained by applying
C to N and S to N . Here the pair of arguments C [N ] and S [N ] are obviously
compatible, since their common symbols (the sort Nat equipped with the
operations 0 and suc) all come from the same component N which provides
their interpretation, which is expanded (hence cannot be modified) in C [N ]
and in S [N ], thus compatibility is guaranteed.



106 8 Specifying the Architecture of Implementations

Open systems can be described by architectural specifications using
generic unit expressions in the result part.

arch spec Arch Cont2Set =
units C : Cont Comp;

S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result λX : Elem • F [C [X ]] [S [X ]]

arch spec Arch Cont2Set Used =
units N : Natural Order;

CSF : arch spec Arch Cont2Set
result CSF [N ]

So far our example architectural specifications have described ‘closed’,
stand-alone systems where all components necessary to build the desired sys-
tem were declared in the architectural specification of interest. In CASL, it is
however possible to describe ‘open’ systems, i.e., systems made of some com-
ponents that would require further components to provide a ‘closed’ system.
This is illustrated by the architectural specification Arch Cont2Set which
describes a system with a generic component C implementing containers, a
generic component S implementing sets, and a generic component F that ex-
pands them to provide an implementation of the operation elements of . The
result part is therefore a generic structured component, i.e., an ‘open’ system,
which, given any component X implementing Elem, provides a system built
by applying F to the pair made of the applications of C to X and of S to X .
In CASL, ‘λ’ is input as ‘lambda’.

As illustrated by Arch Cont2Set Used, we can then describe a ‘closed’
system made of a component N implementing Natural Order, and of an
‘open’ system CSF specified by Arch Cont2Set, which is then applied to
N in the result part.

8.3 Writing Meaningful Architectural Specifications

In the previous sections we have already pointed out potential sources of in-
consistent specifications of components. Another issue which deserves some
attention when designing an architectural specification is compatibility be-
tween components (or, more generally, unit terms) that are to be combined
together, either by ‘and’, or by fitting them to a generic component with
multiple arguments.



8.3 Writing Meaningful Architectural Specifications 107

When components are to be combined, it is best to check that any
shared symbol originates from the same non-generic component.

arch spec Arch Cont2Set Nat 1 =
units N : Natural Order;

C : Cont Comp;
S : Set Comp;
G : { Cont [Elem ] and Generated Set [Elem ] }

→ Cont2Set [Elem ]
result G [C [N ] and S [N ] fit Cont [Elem] �→ Cont [Nat ] ]

The architectural specification Arch Cont2Set Nat 1 is a variant of
Arch Cont2Set Nat where, instead of declaring a generic component F
with two arguments, we now declare a generic component G with a single
argument, which must be a model of the specification { Cont [Elem ] and
Generated Set [Elem ] }, obtained as the union of the two (trivially in-
stantiated) specifications of containers and sets.

As a consequence, to obtain the desired system, in the result part we apply
the generic component G to the combination (denoted by ‘and’) of C applied
to N and of S applied to N .3 This combination makes sense only if both C [N ]
and S [N ] share the same interpretation of their common symbols. Here their
common symbols (the sort Nat equipped with the operations 0 and suc)
all come from the same component N which provides their interpretation,
which is expanded (hence cannot be modified) in C [N ] and in S [N ], thus
compatibility is guaranteed.

There is a clear analogy here between the application of the generic com-
ponent F with multiple arguments in Arch Cont2Set Nat and the com-
bination of C [N ] and S [N ] in Arch Cont2Set Nat 1: in both cases the
result is meaningful because we can trace shared symbols like the sort Nat
and the operations 0 and suc to a single component N introducing them.

Let us emphasize again that compatibility is a natural requirement: since
each unit declaration corresponds to a separate implementation task (and
hence each unit subterm to an independently developed subsystem), obviously
the combination of components or unit terms makes sense only when some
compatibility conditions are fulfilled.

Let us now consider an example where the compatibility condition is vio-
lated.
3 In the application of the generic component G we need an explicit fitting symbol

map since otherwise the sort Cont [Elem] can ambiguously be mapped to either
Cont [Nat ] or Set .



108 8 Specifying the Architecture of Implementations

arch spec Wrong Arch Spec =
units CN : Cont [Natural Order ];

SN : Generated Set [Natural Order ];
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result F [CN ] [SN ]

The architectural specification Wrong Arch Spec is a variant of Arch
Cont2Set Nat where, instead of requiring a component N implementing
Natural Order and two generic components implementing containers and
sets respectively, we just require a component CN implementing containers of
natural numbers and a component SN implementing sets of natural numbers.
However, then the application F [CN ] [SN ] makes no sense since there is
no way to ensure that the common symbols of CN and SN have the same
interpretation. It may indeed be the case that natural numbers are interpreted
in some way in CN and in a different way in SN , which makes the application
of F impossible. (Hence a similar problem would arise if one would use the
combination of components ‘CN and SN ’.)

Let us now consider a more complex example.

arch spec Badly Structured Arch Spec =
units N : Natural Order;

A : Natural Order → Natural Arithmetic;
C : Cont Comp;
S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result F [C [A [N ]]] [S [A [N ]]]

The architectural specification Badly Structured Arch Spec is a vari-
ant of Arch Cont2Set Nat where, in addition to the component N imple-
menting Natural Order, we require a generic component A which is used
to expand N into an implementation of Natural Arithmetic. In the archi-
tectural specification Arch Cont2Set Nat, the compatibility condition in
the application F [C [N ]] [S [N ]] was easy to discharge. Here, in the result unit
term F [C [A [N ]]] [S [A [N ]]] of Badly Structured Arch Spec, we apply
F to the pair made of C [A [N ]] and S [A [N ]]. In this case only a semantic
analysis can ensure that these two arguments are compatible, since the com-
mon symbols cannot be traced to the same non-generic component, but only
to two applications of the same generic component A to similar arguments.
(Actually the arguments are just the same here, but in general checking this
would require non-trivial semantic reasoning.)

It is advisable to use unit terms where compatibility can be checked by
a simple static analysis. CASL provides additional constructs which make it
easy to follow this recommendation, as explained below.



8.3 Writing Meaningful Architectural Specifications 109

Auxiliary unit definitions or local unit definitions may be used to
avoid repetition of generic unit applications.

arch spec Well Structured Arch Spec =
units N : Natural Order;

A : Natural Order → Natural Arithmetic;
AN = A [N ];
C : Cont Comp;
S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result F [C [AN ]] [S [AN ]]

arch spec Another Well Structured Arch Spec =
units N : Natural Order;

A : Natural Order → Natural Arithmetic;
C : Cont Comp;
S : Set Comp;
F : Cont [Elem ] × Generated Set [Elem ]

→ Cont2Set [Elem ]
result local AN = A [N ] within F [C [AN ]] [S [AN ]]

The problem illustrated in Badly Structured Arch Spec can be fixed
easily. An auxiliary unit definition may be used to avoid the repetition of
generic unit applications, such as ‘AN = A [N ]’ in Well Structured
Arch Spec. An alternative is to make the definition of AN local to the result
unit term, as illustrated in Another Well Structured Arch Spec. In
both cases common symbols can be traced to a non-generic unit, and com-
patibility can be checked by an easy static analysis.


	8.1 Architectural Specifications
	8.2 Generic Components
	8.3 Writing Meaningful Architectural Specifications



