
5

Subsorting

Subsorts and supersorts are often useful in CASL specifications.

Many examples naturally involve subsorts and supersorts. CASL provides
means for the declaration of a sort as a subsort of another one when the values
of the subsort are regarded a special case of those in the other sort. The aim of
this chapter is to discuss and illustrate how to handle subsorts and supersorts
in CASL specifications.

5.1 Subsort Declarations and Definitions

Subsort declarations directly express relationships between carrier
sets.

spec Generic Monoid 1 [sort Elem] =
sorts Elem < Monoid
ops 1 : Monoid ;

∗ : Monoid × Monoid → Monoid , assoc, unit 1
end

The above example declares the sort Elem to be a subsort of Monoid , or,
symmetrically, the sort Monoid to be a supersort of Elem. Hence the spec-
ification Generic Monoid 1 is quite similar to the specification Generic
Monoid given in Chap. 3, p. 30, the only difference being the use of a subsort-
ing relation between Elem and Monoid instead of an explicit inj operation to
embed values of sort Elem into values of sort Monoid .

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 57–66, 2004.
c© IFIP International Federation for Information Processing 2004

58 5 Subsorting

In contrast to most other algebraic specification languages providing sub-
sorting facilities, subsorts in CASL are interpreted by arbitrary embeddings
between the corresponding carrier sets. In the above example, the subsort
declaration Elem < Monoid induces an implicit (unnamed) embedding from
the carrier of the sort Elem into the carrier of the sort Monoid . Thus the
main difference between Generic Monoid and Generic Monoid 1 is that
the embedding is explicit and named inj in Generic Monoid while it is
implicit in Generic Monoid 1.

Note that interpreting subsorting relations by embeddings rather than
inclusions does not exclude models where the (carrier of the) subsort hap-
pens to be a subset of (the carrier of) the supersort, and the embedding a
proper inclusion. Embeddings are just slightly more general than inclusions,
and technically not much more complex.

Operations declared on a sort are automatically inherited by its
subsorts.

spec Vehicle =
Natural

then sorts Car , Bicycle < Vehicle
ops max speed : Vehicle → Nat ;

weight : Vehicle → Nat ;
engine capacity : Car → Nat

end

The above example introduces three sorts, Car , Bicycle and Vehicle, and
declares both Car and Bicycle to be subsorts of Vehicle. A subsort declaration
entails that any term of a subsort is also a term of the supersort, so here, any
term of sort Car is also a term of sort Vehicle, and we can apply the operations
max speed and weight to it (and similarly for a term of sort Bicycle).

In other words, with the single declaration max speed : Vehicle → Nat ,
we get the effect of having declared also two other operations, max speed :
Car → Nat and max speed : Bicycle → Nat .1

Obviously, operations that are only meaningful for some subsort should
be defined at the appropriate level. This is the case here for the operation
engine capacity, which is only relevant for cars, and therefore defined with
the appropriate profile exploiting the subsort Car .

1 Strictly speaking, there is just one max speed operation in the signature of Vehi-
cle. The difference between the kind of inheritance described here and operations
actually declared on subsorts becomes important when writing symbol maps, see
Chap. 7.

5.1 Subsort Declarations and Definitions 59

Inheritance applies also for subsorts that are declared afterwards.

spec More Vehicle = Vehicle then sorts Boat < Vehicle

The order in which a subsort and an operation on the supersort are de-
clared is irrelevant. In More Vehicle, we introduce a further subsort Boat
of Vehicle, and as a consequence, we again get the effect of having both
max speed and weight available for boats, as was already the case for cars
and bikes.

Subsort membership can be checked or asserted.

spec Speed Regulation =
Vehicle

then ops speed limit : Vehicle → Nat ;
car speed limit , bike speed limit : Nat

∀v : Vehicle
• v ∈ Car ⇒ speed limit(v) = car speed limit
• v ∈ Bicycle ⇒ speed limit(v) = bike speed limit

end

A subsort membership assertion, written ‘t ∈ s ’, where t is a term and s
is a sort, is a special kind of atomic formula: it holds if and only if the value
of the term t is the embedding of some value of sort s . For instance, in the
above example, v ∈ Car holds if and only if v denotes a vehicle which is the
embedding of a car value. Note that ‘∈’ is input as ‘in’, but displayed as ‘∈’.

Datatype declarations can involve subsort declarations.

The sequence of declarations:

sorts Car , Bicycle, Boat
type Vehicle ::= sort Car | sort Bicycle | sort Boat

is equivalent to the declaration sorts Car , Bicycle, Boat < Vehicle. There
may be some values of sort Vehicle which are not the embedding of any value
of sort Car , Bicycle, or Boat . Intuitively, the above datatype declaration just
means that Vehicle ‘contains’ the union (which may not be disjoint) of Car ,
Bicycle and Boat . Note that the subsorts used in the datatype declaration
must already be declared beforehand.

60 5 Subsorting

The sequence of declarations:

sorts Car , Bicycle, Boat
generated type Vehicle ::= sort Car | sort Bicycle | sort Boat

is more restrictive, since the generatedness constraint implies that any value
of the supersort Vehicle must be the embedding of some value of the declared
subsorts Car , Bicycle and Boat . Intuitively, the above datatype declaration
means that Vehicle ‘is exactly’ the union (which again may not be disjoint)
of Car , Bicycle and Boat . In particular, this declaration prevents subsequent
introduction of further subsorts (unless the values of the new subsorts are
intended to correspond to some values of the already declared subsorts). For
instance, if we were now to extend the above specification with sorts Plane <
Vehicle, all values of sort Plane would have to correspond to Car , Bicycle or
Boat values (which is presumably not what we were intending).

The sequence of declarations:

sorts Car , Bicycle, Boat
free type Vehicle ::= sort Car | sort Bicycle | sort Boat

entails the same generatedness constraint as in the previous example, and,
moreover, the freeness constraint requires that there is no ‘common’ value in
the subsorts of Vehicle. Intuitively, the above declaration means that Vehicle
‘is exactly’ the disjoint union of Car , Bicycle and Boat . This means in par-
ticular that the introduction of a further common subsort of both Car and
Boat (say, sorts Amphibious < Car ,Boat) is impossible.

Subsorts may also arise as classifications of previously specified
values, and their values can be explicitly defined.

spec Natural Subsorts =
Natural Arithmetic

then pred even : Nat
• even(0)
• ¬ even(1)
∀n : Nat • even(suc(suc(n))) ⇔ even(n)
sort Even = {x : Nat • even(x)}
sort Prime = {x : Nat • 1 < x ∧

∀y, z : Nat • x = y ∗ z ⇒ y = 1 ∨ z = 1}
end

The subsort definition sort Even = {x : Nat • even(x)} is equivalent to
the declaration of a subsort Even of Nat (i.e., sorts Even < Nat) together
with the assertion ∀x : Nat • x ∈ Even ⇔ even(x).

5.2 Subsorts and Overloading 61

The main advantage of defining the subsort Even in addition to the predi-
cate even is that we may then use the subsort when declaring operations (e.g.,
op times2 : Nat → Even) and variables.

The subsort definition for Prime above illustrates that it is not always
necessary to introduce and define an explicit predicate characterizing the val-
ues of the subsort: the formula used in a subsort definition is not restricted
to predicate applications. In fact whenever a (unary) predicate p on a sort s
could be defined by pred p(x : s) ⇔ f for some formula f , we may instead
define sort P = {x : s • f }, and use sort membership assertions t ∈ P in-
stead of predicate applications p(t), avoiding the introduction of the predicate
p altogether.

The following example is a further illustration of subsort definitions. We
declare a subsort Pos of Nat and ensure that values of Pos correspond to
non-zero values of Nat . (Several alternative ways of specifying the sort Pos
will be considered later in this section.)

spec Positive =
Natural Partial Pre

then sort Pos = {x : Nat • ¬(x = 0)}

5.2 Subsorts and Overloading

It may be useful to redeclare previously defined operations, using the
new subsorts introduced.

spec Positive Arithmetic =
Positive

then ops 1 : Pos ;
suc : Nat → Pos ;

+ , ∗ : Pos × Pos → Pos ;
+ : Pos × Nat → Pos ;
+ : Nat × Pos → Pos

end

Since, in Positive, we have defined Pos as a subsort of Nat , all operations
defined on natural numbers, like suc, ‘+’ and ‘∗’ (see Natural Arithmetic
in Chap. 3, p. 38, which is extended into Natural Partial Pre in Chap. 4,
p. 52), are automatically inherited by Pos and can be applied to terms of sort
Pos . However, according to their declarations, these operations, when applied
to terms of sort Pos , yield results of sort Nat . To indicate that these results
always correspond to values in the subsort Pos , it is necessary to explicitly
overload these operations by similar ones with the appropriate profiles. This is

62 5 Subsorting

the aim of the first three lines of operation declarations in the above example.
The last two operation declarations further overload ‘+’ to specify that ‘+’
also yields a result of sort Pos as soon as one of its arguments is a term of
sort Pos .

It is quite important to understand that the above overloading declarations
are enough to achieve the desired effect, and that no axioms are necessary.
The fundamental rule is that, in models of CASL specifications with subsort-
ing, embedding and overloading have to be compatible: embeddings commute
with overloaded operations. This can be rephrased into the following intuitive
statement: If terms look the same, then they have the same value in the same
sort. Thus, in our example, the value of ‘1 + 1 ’ is the same in Nat whatever
the combination of the overloaded constant ‘1 ’ and operation ‘+’ is chosen,
and there is no need for any axiom to ensure this, since this is implicit in the
semantics of subsorting.

5.3 Subsorts and Partiality

A subsort may correspond to the definition domain of a partial
function.

spec Positive Pre =
Positive Arithmetic

then op pre : Pos → Nat

Since we have introduced the subsort Pos of non-zero natural numbers, it
makes sense to overload the partial pre operation on Nat by a total one on Pos ,
as illustrated above, to emphasize the fact that indeed pre is a total operation
on its definition domain. Note again that no further axiom is necessary, and
that the semantics of subsorting will ensure that both the partial and total
pre operations will give the same value when applied to the same non-zero
value.2

Using subsorts may avoid the need for partial functions.

spec Natural Positive Arithmetic =
free types Nat ::= 0 | sort Pos ;

Pos ::= suc(pre : Nat)

2 This should not be confused with the same name, same meaning principle, which
does not apply here: the total pre and the partial one have different profiles, and
hence are just overloaded.

5.3 Subsorts and Partiality 63

ops 1 : Pos = suc(0);
+ : Nat × Nat → Nat , assoc, comm, unit 0 ;
∗ : Nat × Nat → Nat , assoc, comm, unit 1 ;
+ , ∗ : Pos × Pos → Pos ;
+ : Pos × Nat → Pos ;
+ : Nat × Pos → Pos

∀x , y : Nat
• x + suc(y) = suc(x + y)
• x ∗ 0 = 0
• x ∗ suc(y) = x + (x ∗ y)

end

It is indeed tempting to exploit subsorting to avoid the declaration of par-
tial functions, as illustrated by the above Natural Positive Arithmetic
specification, which is an alternative to Positive Pre and avoids the intro-
duction of the partial predecessor operation. Note that in the above example,
we have fully used the facilities for defining free datatypes with subsorts, and
in particular non-linear visibility for the declared sorts, which allows us to
refer to the subsort Pos in the first line before defining it in the second one.

Avoiding the introduction of the partial predecessor operation has some
drawbacks, since some previously well-formed terms (with defined values) have
now become ill-formed, e.g., pre(pre(suc(1))), where pre(suc(1)) is a (well-
formed) term of sort Nat but pre expects an argument of sort Pos . (The fact
that pre(suc(1)) = 1 is a consequence of the specified axioms, and that 1 is
of sort Pos , does not of course entail that pre(suc(1)) is of sort Pos too, since
axioms are disregarded when checking for well-formedness.) See below for
possible workarounds using explicit casts. Moreover, it is not always possible,
or easy, to avoid the declaration of partial operations by using appropriate
subsorts—just consider, e.g., subtraction on natural numbers.

As a last remark on this issue, the reader should be aware of the fact that,
while overloading a partial operation on a supersort (say, pre on Nat) with a
total one on a subsort (pre on Pos) is fine, overloading a total operation on
a supersort with a partial one on a subsort forces the partial operation to be
total, and hence, the latter would be better declared as total too.3

Casting a term from a supersort to a subsort is explicit and the value
of the cast may be undefined.

3 Overloading a total cons on List with a partial cons on the subsort OrderedList
would either lead to a total cons operation on OrderedList, or to an inconsis-
tent specification, depending on how the definition domain of the partial cons is
specified.

64 5 Subsorting

In CASL, a term of a subsort can always be considered as a term of any
supersort, and embeddings are implicit. On the contrary, casting a term from
a supersort to a subsort is explicit, and since casting is essentially a partial op-
eration, the resulting casted term may not denote any value. Casting a term t
to a sort s is written t as s . Consider the term pre(pre(suc(1)) as Pos) which
is well-formed in the context of the Natural Positive Arithmetic speci-
fication. This term does indeed denote a value, but the value is not a positive
natural number, so the value of the term pre(pre(suc(1)) as Pos) as Pos is
undefined.

Note that def (t as s) is equivalent to t ∈ s , for a well-formed term t of a
supersort of s .

Supersorts may be useful when generalizing previously specified sorts.

spec Integer Arithmetic 1 =
Natural Positive Arithmetic

then free type Int ::= sort Nat | − (Pos)
ops + : Int × Int → Int , assoc, comm, unit 0 ;

− : Int × Int → Int ;
∗ : Int × Int → Int , assoc, comm, unit 1 ;

abs : Int → Nat
∀x : Int ; n : Nat ; p, q : Pos
• suc(n) + (−1) = n
• suc(n) + (−suc(q)) = n + (−q)
• (−p) + (−q) = −(p + q)
• x − 0 = x
• x − p = x + (−p)
• x − (−q) = x + q
• 0 ∗ (−q) = 0
• p ∗ (−q) = −(p ∗ q)
• (−p) ∗ (−q) = p ∗ q
• abs(n) = n
• abs(−p) = p

end

The specification Integer Arithmetic 1 extends Natural Positive
Arithmetic and defines the sort Int as a supersort of the sort Nat . As a
consequence, terms which have two parses in sort Int , depending whether the
embedding from Nat to Int is applied to the arguments or to the result of
overloaded operations, are required by the semantics of subsorting to have the
same value for both parses, and they can therefore be used without explicit
disambiguation.

5.3 Subsorts and Partiality 65

The situation would be quite different if one would be using a combination
of Natural Arithmetic and Integer Arithmetic (see Chap. 3), say by
extending both in a structured specification (see the next chapter for more
details on structured specifications). In such a combination, a term such as
suc(0) would have two parses, one in sort Nat and one in sort Int ; in the
absence of any subsort declaration relating Nat and Int , and hence of any
implicit embedding, this term would then be ambiguous, and would require
explicit disambiguation to become a well-formed term.

Supersorts may also be used for extending the intended values by new
values representing errors or exceptions.

spec Set Error Choose [sort Elem] =
Generated Set [sort Elem]

then sorts Elem < ElemError
op choose : Set → ElemError
pred is in : ElemError × Set
∀S : Set • ¬(S = empty) ⇒ choose(S) ∈ Elem ∧ choose(S) is in S

end

The above specification Set Error Choose is another variant of the
various specifications of sets equipped with a partial choose function given in
Chap. 4. This variant avoids the declaration of a partial function choose by
using instead a supersort of Elem, namely ElemError , as the target sort of
choose. The idea here is that values of ElemError which are not (embeddings
of) values of Elem represent errors, e.g., the application of choose to the
empty set. Note that to obtain the desired effect, it is necessary to explicitly
state that choose(S) ∈ Elem when S is not the empty set; moreover, to make
the term choose(S) is in S well-formed, we have to explicitly overload the
predicate is in : Elem × Set provided by Generated Set by a predicate

is in : ElemError × Set as shown above. This example demonstrates that
avoiding partial functions by the use of ‘error supersorts’ is not as innocuous
as it may seem, since in general one would need to enlarge the signatures
considerably by adding all required overloadings.

spec Set Error Choose 1 [sort Elem] =
Generated Set [sort Elem]

then sorts Elem < ElemError
op choose : Set → ElemError
∀S : Set • ¬(S = empty) ⇒ (choose(S) as Elem) is in S

end

The specification Set Error Choose 1 above is a last attempt to avoid
the use of partial functions; again, we introduce a supersort ElemError as

66 5 Subsorting

in Set Error Choose, but to avoid the need for overloading the predicate
is in, we explicitly cast the term choose(S) in (choose(S) as Elem) is in S .
Note that when, for some value of S , (choose(S) as Elem) is in S holds, this
implies that choose(S) as Elem is defined, and hence that choose(S) ∈ Elem
holds as well. This last version may seem preferable to the previous one.
However, one should be aware that here, despite our attempt to avoid the use
of partial functions, we rely on explicit casts, hence on terms that may not
denote values: partiality has not been eliminated, the partial functions have
merely been factorized as compositions of total functions with casting.

	5.1 Subsort Declarations and Definitions
	5.2 Subsorts and Overloading
	5.3 Subsorts and Partiality

