Communication Toolbox

Claude Gomez

Manual Version 1.0 for Scilab 2.4

This is a beta version of the Communication Toolbox. It lacks security problems when using remote
communications (se€.1). A good error trapping is also under development, so you can “block” Scilab when
doing mistakes in the names of the linked applications.

GeCl is an interactive communication manager created in order to manage remote executions of programs and
allow exchanges of messages between those programs. It offers the possibility to exploit numerous machines on a
network, as a virtual computer, by creating a distributed group of independent softwares.

It has been originally developed in the CallCo Project (LaBRI- UniverBibrdeaux |, France) by Nadine
Rouillon.

In Scilab, GeCl manages communications between Scilab itself and other applications (included Scilab itself).
In fact, thescilab command is a shell script which at last executes the command:

<Scilab directory>/bin/geci -local <Scilab directory>/bin/scilex

where<Scilab directory> is the main directory of Scilab. We will useScilab directory> to
denote this directory in this manual. This means that Scilab is ready to communicate with others applications. In
particular, this is the way Metanet Windows are executed in the Metanet toolbox.

In sectionl, we explain how to use the Scilab functions of the Communication Toolbox and in s@otien
describe the way to make an application able to communicate with Scilab.

1 Functions of the Communication Toolbox

There are six functions in the Communication Toolbox to make communications. ThegreagelLink
DestroyLink , ExecAppli , GetMsg, SendMsg andWaitMsg . They are described in the on-line manual.
We are only going here to describe how to use them for exchanging messages between two Scilab programs. You
will find in section2.2how to communicate between Scilab and other programs.

After executing Scilab, you can execute another Scilab on the same computer from the first one and create a
link to it and from it by issuing the commands:

-->h=unix_g("hostname");
-->ExecAppli(SCI+"/bin/scilex",h,"Scilab2")
-->CreateLink("SELF","Scilab2")
-->CreateLink("Scilab2","SELF")

Each application linked to GeCl has a name. Two special names are déftfigdds" always stands for the
name of the Scilab program where you are aX@eCl" stands for the first Scilab program.
Now, another Scilab namegktilab2 appears and you can send a message to it from the first Scilab:

-->SendMsg("Hi!","How are you?");

And in Scilab2 , you can get it:

-->[type,msg,apply] = GetMsg()
apply =

XGeCl
msg =

How are you?
type =

Hi!

You do not have to tell to which application you want to send the message: you send it to all applications
linked to you.
You can also send a message frBuoilab2 to first Scilab:

-->SendMsg("Answer","Fine and you?");
and you getitin Scilab:

-->[type,msg,apply] = GetMsg()
apply =

Scilab2
msg =

Fine and you?
type =

Answer

You can even open a new Scilab, nangxilab3 for instance, link it to Scilab and/d@cilab2 and ex-
change messages between them after having created links. UBedtieyLink function to destroy a link.

Note that there is no notion of client and server. The server is the GeCl program and all the applications
which communicate are at the same level. That means th&tréeteLink , DestroyLink andExecAppli
functions can be used in any Scilab instance.

2 Creating applications to communicate with Scilab

To communicate with Scilab, an application must have been prepared for, by including a communication library in
it. The way to do this is described in this section.

Suppose you have a C or fortran program and you want to add in it the functionalities to communicate using
GeCl. For this you need to add new C functions in the code. For instance, you can create a new C file which you
are going to link with your existing C or fortran program. You also need to link the program with the following
library:

<Scilab directory>/libs/libcomm.a
At the beginning of the C code, you must include the following header files:

#include "<Scilab directory>/routines/libcomm/libCalCom.h"
#include "<Scilab directory>/routines/libcomm/libCom.h"

Then you define the messages known by the application, usually:

static void QuitAppli();
static void EndAppli();
static void ParseMessage();
static void MsgError();

static actions_messages tb_messages|[]={
{ID_GeCI,MSG_QUITTER_APPLI,NBP_QUITTER_APPLI,QuitAppli},
{ID_GeCI,MSG_FIN_APPLI,NBP_FIN_APPLI,EndAppli},
{NULL,MSG_DISTRIB_LISTE_ELMNT,NBP_DISTRIB_LISTE_ELMNT,ParseMessage},
{NULL,NULL,0,MsgError}};

All these functions have one argument of typessage.

QuitAppli is executed when THIS application terminates.

EndAppli is executed when an application executed by THIS application terminates.

MsgError is executed when there is an error in a message.

ParseMessage is executed to get the received messages. For instance, you caPamseEMessage the
following way:

static char *TheAppli;
static char *TheType;
static char *TheMsg;

static void ParseMessage(message)
Message message;

{
int lappli, Itype, Imsg;

lappli = strlen(message.tableau[0]);
if ((TheAppli = (char *)malloc((unsigned)sizeof(char)*(lappli + 1)))
== NULL) {
return;

}
strepy(TheAppli,message.tableau[0]);

Itype = strlen(message.tableau[3]);
if (TheType = (char *)malloc((unsigned)sizeof(char)*(ltype + 1)))
== NULL) {
return;

}
strepy(TheType,message.tableau[3]);

Imsg = strlen(message.tableau[4]);
if ((TheMsg = (char *)malloc((unsigned)sizeof(char)*(Imsg + 1)))
== NULL) {
return;

}
strepy(TheMsg, message.tableau[4]);

and you get:

e in TheAppli the name of the application which has sent the message
e in TheType the type of the message (an ASCII string)
e in TheMsg the message (an ASCII string)

Then you must initialize the communications.
For this, the main function of the application must understand the argurpgmgs <pipel> <pipe2>
which are automatically given by GeCl when executing it by:

geci -local <my application>

A simple way to do this is to use tHmd function:

static int find(s,n,t)
char *s;
int n;
char **t;
{ . .
int i
for (i=0; i<n; i++)
if (Istremp(s,t[i])) return(i);
return(-1);

}

int main(argc, argv)
unsigned int argc;
char **argv;

int igeci;

int p1, p2;

igeci = find("-pipes",argc,argv);
if (igeci == -1) exit(1);

pl = atoi(argv(igeci+1]); p2 = atoi(argv[igeci+2]);

And you initialize the communications:
init_messages(tb_messages,pl,p2);

Then it is possible to use the functions of GeCl. For this, you have to send messages to GeCl.

e You can execute an application from your program:

envoyer_message_parametres_var(ID_GecCl,
MSG_LANCER_APPLI,
<appli>,
<host>,
<path appli>,
INS_ID_PIPES,
NULL);

where<appli> isthe name you give to the application you execgtmst> is the name of the host where

you want to execute the application anplath appli> is the path of the program of the application on

the host. If you want to execute an application locally on the same host, you give the name of your host.
You can also execute the application on a remote host on Internét,lsee

Every application has a name. The name of your program has also a name given automatically. When you
have to use it (to link applications for instance), you can get itleyntificateur _appli()

e To create a (directed) link from the application namegplil> to the application namedappli2>

envoyer_message_parametres_var(ID_GeCl,
MSG_CREER_LIAISON,
<applil>,
<appli2>,
NULL);

Then you are able to send messages frapplil> to <appli2>
Note that the two applications must have been executed first by the preceding message.

e To destroy a link fronxapplil> to <appli2>

envoyer_message_parametres_var(ID_GeCl,
MSG_DETRUIRE_LIAISON,
<applil>,
<appli2>,
NULL);

e To send a message to all linked applications:

envoyer_message_parametres_var(ID_GeCl,
MSG_POSTER_LISTE_ELMNT,
<type>,
<msg>,
NULL);

where<type> is a string corresponding to the type of the message<amsy> is the string corresponding
to the message.

Note that before being able to exchange messages, applications must have been linked.
e To get a message in an asynchronous way:

scanner_messages();

e To wait for a message frormappli> in a synchronous way:

attendre_reponse(<appli>,
MSG_DISTRIB_LISTE_ELMNT,
NBP_DISTRIB_LISTE_ELMNT);

2.1 Communication between remote hosts

CAUTION: With this beta version of the Communication Toolbox, nothing has been done for adressing possibly
security holes and problems when using tlgeecid daemon and remotgeci programs. So use them very
carefully.

With GeCl you can also have communications between programs on remote hosts.

Suppose you are on hadst, have a local applicatioal and you want to execute an applicatia® on host
h2 and open a communication betwesh anda2.

First, you must have geci program on both hosts. Second you must have a daemon, geldédl , on the
remote host. The C source code of this daemon is given igebe directory of Scilab distribution.

You have to give the good path géci program in the source code of prograecid in variableGECI.

Then, you first start the daemgecid on hosth2. After, you execute applicatioal, Scilab for instance,
on hosthl and use GeCl functions to execute applicat@non hosth2: you have to give the complete Internet
name of hosh2 in these functions.

If applicationa2 is another Scilab, do not forget to give the goaisplay = argument to thescilex
command.

In fact thegecid daemon will wait for a socket connection on port 2001 and thengéait on hosth2.

5

2.2 Examples

You will find below two complete C programs as examples.
The first program opens Scilab, wait for messages and print them. We call the file of this paigheant
and we suppose that the main directory of Scitefilab directory> is/usr/local/lib/scilab-2.4
Compile this program with:

cc -0 alpha alpha.c /usr/locall/lib/scilab-2.4/libs/libcomm.a
and execute it with (if shell is csh):

setenv SCI /usr/local/lib/scilab-2.4
Jusr/local/lib/scilab-2.4/bin/geci -local alpha

Then a new Scilab is executed and you can execute in it commands of th8éomivsg("Hi","How are
you?") . On the console you must see:

Message received from Scilab
type: Hi
message: How are you?

"alpha.c” is given below and in the directodpcs/comm of Scilab distribution.

/***/

#include <stdio.h>
#include <string.h>

/* Communications headers */
#include "/usr/local/lib/scilab-2.4/routines/libcomm/libCalCom.h"
#include "/usr/local/lib/scilab-2.4/routines/libcomm/libCom.h"

static void QuitAppli();
static void EndAppli();
static void ParseMessage();
static void MsgError();

/* Known messages */

static actions_messages tb_messages[]={
{ID_GeCI,MSG_QUITTER_APPLI,NBP_QUITTER_APPLI,QuitAppli},
{ID_GeCI,MSG_FIN_APPLI,NBP_FIN_APPLI,EndAppli},
{NULL,MSG_DISTRIB_LISTE_ELMNT,NBP_DISTRIB_LISTE_ELMNT,ParseMessage},
{NULL,NULL,0,MsgError}};

static void QuitAppli(message)
Message message;
{

printf("Quit application\n");
exit(0);
}

static void EndAppli(message)
Message message;

{
printf("End application\n™);

}

static void MsgError(message)
Message message;

{
}

printf("Bad received message\n”);

static char *TheAppli;
static char *TheType;
static char *TheMsg;

/* ParseMessage is executed when a message is received */
static void ParseMessage(message)
Message message;

{
int lappli, Itype, Imsg;

lappli = strlen(message.tableau[0]);
if ((TheAppli = (char *)malloc((unsigned)sizeof(char)*(lappli + 1)))
== NULL) {
return;

}
strepy(TheAppli,message.tableau[0]);

ltype = strlen(message.tableau[3]);
if ((TheType = (char *)malloc((unsigned)sizeof(char)*(ltype + 1)))
== NULL) {
return;

}
strcpy(TheType,message.tableau[3]);

Imsg = strlen(message.tableau[4]);
if ((TheMsg = (char *)malloc((unsigned)sizeof(char)*(Imsg + 1)))
== NULL) {
return;

}
strcpy(TheMsg,message.tableau([4]);

}

static int find(s,n,t)
char *s;
int n;
char **t;
{ . .
int i
for (i=0; i<n; i++)
if (!stremp(s,t[i])) return(i);
return(-1);

}

int main(argc, argv)
unsigned int argc;
char **argv;

{

int igeci;

int p1, p2;

char myhost[128];

/* Scilab application to execute */

char *scilex = "/usr/locall/lib/scilab-2.4/bin/scilex";

igeci = find("-pipes",argc,argv);
if (igeci == -1) exit(1);

pl = atoi(argv(igeci+1]); p2 = atoi(argv[igeci+2]);

/* Intialization of communications */
init_messages(tb_messages,pl,p2);

/* Get the name of my computer */
gethostname(myhost,128);

/* Execute Scilab with name "Scilab" on my local host */
envoyer_message_parametres_var(ID_GeCl,
MSG_LANCER_APPLI,
"Scilab”,
myhost,
scilex,
INS_ID_PIPES,
NULL);

/* Link THIS application with "Scilab" */

envoyer_message_parametres_var(ID_GeCl,
MSG_CREER_LIAISON,
identificateur_appli(),
"Scilab",NULL);

/* Link "Scilab" with THIS application */

envoyer_message_parametres_var(ID_GeCl,
MSG_CREER_LIAISON,
"Scilab",
identificateur_appli(),NULL);

/* Loop waiting for messages */
while (1) {
scanner_messages();
if (TheType != NULL) {
printf("Message received from %s\n", TheAppli);
printf(" type: %s\n",TheType);
printf(" message: %s\n", TheMsg);
TheAppli = NULL; TheType = NULL; TheMsg = NULL;

The second program has everything to communicate with another application linked to GeCl, Scilab for in-
stance. It waits for messages and print them. We call the file of this prolgeterc and we suppose that the
main directory of ScilabsScilab directory> is /usr/local/lib/scilab-2.4

Compile this program with:

cc -0 beta beta.c /usr/localllib/scilab-2.4/libs/libcomm.a

Then, being in the directory whebeta lies, execute Scilab and issue the following Scilab command:

/I get host name of my computer

h=unix_g("hostname")

/I execute program beta from Scilab and give it "Beta" as a name
ExecAppli("beta",h,"Beta")

/I create a link from Scilab to

CreateLink("SELF","Beta")

/I send a message to "Beta"

SendMsg("Hi","How are you?")

On the console you must seen (writtentista):

Message received from Scilab
type: Hi
message: How are you?

"beta.c” is given below and in the directodpcs/comm of Scilab distribution.

/***/

#include <stdio.h>
#include <string.h>

/* Communications headers */
#include "/usr/local/lib/scilab-2.4/routines/libcomm/libCalCom.h"
#include "/usr/local/lib/scilab-2.4/routines/libcomm/libCom.h"

static void QuitAppli();
static void EndAppli();
static void ParseMessage();
static void MsgError();

/* Known messages */

static actions_messages tb_messages|[]={
{ID_GeCI,MSG_QUITTER_APPLI,NBP_QUITTER_APPLI,QuitAppli},
{ID_GeCI,MSG_FIN_APPLI,NBP_FIN_APPLI,EndAppli},
{NULL,MSG_DISTRIB_LISTE_ELMNT,NBP_DISTRIB_LISTE_ELMNT,ParseMessage},
{NULL,NULL,0,MsgError}};

static void QuitAppli(message)
Message message;

{
printf("Quit application\n");
exit(0);

}

static void EndAppli(message)
Message message;
{

printf("End application\n");
}

static void MsgError(message)
Message message;

{
}

printf("Bad received message\n");

static char *TheAppli;
static char *TheType;
static char *TheMsg;

/* ParseMessage is executed when a message is received */
static void ParseMessage(message)

{

}

Message message;
int lappli, ltype, Imsg;

lappli = strlen(message.tableau[0]);
if ((TheAppli = (char *)malloc((unsigned)sizeof(char)*(lappli + 1)))
== NULL) {
return;

}
strcpy(TheAppli,message.tableau[0]);

ltype = strlen(message.tableau[3]);
if (TheType = (char *)malloc((unsigned)sizeof(char)*(Itype + 1)))
== NULL) {
return;

}
strcpy(TheType,message.tableau[3]);

Imsg = strlen(message.tableau[4]);
if ((TheMsg = (char *)malloc((unsigned)sizeof(char)*(Imsg + 1)))
== NULL) {
return;

}
strcpy(TheMsg,message.tableau[4]);

static int find(s,n,t)

{

}

char *s;
int n;
char **;

int i;
for (i=0; i<n; i++)

if (!stremp(s,t[i])) return(i);
return(-1);

int main(argc, argv)

{

unsigned int argc;
char **argv;

int igeci;
int p1, p2;

10

}

igeci = find("-pipes",argc,argv);
if (igeci == -1) exit(1);

pl = atoi(argv[igeci+1]); p2 = atoi(argv[igeci+2]);

/* Intialization of communications */
init_messages(tb_messages,pl,p2);

/* Loop waiting for messages */
while (1) {
scanner_messages();
if (TheType != NULL) {
printf("Message received from %s\n", TheAppli);
printf(" type: %s\n",TheType);
printf(" message: %s\n", TheMsg);
TheAppli = NULL; TheType = NULL; TheMsg

}
}

NULL,;

/***/

11

Contents
1 Functions of the Communication Toolbox

2 Creating applications to communicate with Scilab
2.1 Communication betweenremotehosts L oo o
2.2 Examples. e

12

	Functions of the Communication Toolbox
	Creating applications to communicate with Scilab
	Communication between remote hosts
	Examples

