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Preface

Often we encounter technical problems that we have to solve, to overcome somehow, or just to work
around. After having mastered the difficulty, we gladly add it to the knowledge-base in our mind, but
from a certain level of difficulty we start to make notes in one form or the other. These notes then
serve for later reference. A collection of related notes can be exploited to gain further insight in the
class of problems it describes. Last but not least one can get ambitious to fill the holes of knowledge
that an existing set of notes leaves unanswered.

Richard B. Johnson

An expert in a particular computer language is really an expert in the work-arounds necessary to use this
language to perform useful work. An ideal computer language would do exactly what it was told simply
from reading a specification. In the absence of a specification, it would ask enough questions to produce
such a specification, then it would generate the code necessary to perform the specified functions.

Even C has its shortcomings which have to be handled with assembly language extensions. A Master
Carpenter has many tools and is expert with most of them. If you only know how to use a hammer, every
problem begins to look like a nail. Stay away from that trap. It bytes (sic).

This is the story of sci-BOT paraphrased. It started with bits of experience gathered in our heads and
scattered e-mail correspondence. After more and more e-mails piled up, telling the same old stories,
one of the authors (lvd) decided to compile the problems and their solutions into a convenient
format. Perl’s plain old documentation, POD, was chosen for its simplicity paired with a multitude

of output formats. However, after 2000+ lines it became clear that POD was missing a feature that
would be needed as sci-BOT grows bigger: cross references. A more powerful documentation format
and the associated tools had to be found. A two week web research resulted in one clear winner:
DocBook. The downside of the necessary switch of formats was that the previous work done with
POD had to be converted into DocBook. Daytime work plus adding new material to sci-BOT plus
converting the old work into the new format is too much for a single volunteer. So, a second
idiotM-DELauthor was searched and found (cls). His ten years of experience with the TeX/LaTeX
typesetting system, his accuracy, and his intensity with which he attacks any obstacle made him the
ideal choice for this madnessM-DEL project.

1. QOutline

We open up talking about some of the most common syntactic pitfalls when using Sothlyiter

2. Finding that some of these syntax problems can be avoided with a clear programming style, the
next chapterChapter 3deals with coding issues. [Bhapter 4ve then focus on the parts of Scilab

that are not well documented, and therefore widely remain unknown spots. For many users not only
enjoy the nice user interface of Scilab, but demand high performance from the interpreter the
massiveChapter @about performance issues covers these needs. It begins by introducing techniques
suitable at a high level like vectorization which do not require low level programming and then dives

15



Preface

down into the extension of Scilab by compiled routines. This is a vast field by itself. Therefore we
have devoted a full chapteChapter 7to the low level API. sci-BOT closes witBhapter 8

containing remarks on compiling and debugging as well as comments on the supplied documentation
and available web pages. All of the programming snippets that belong to longer examples which do
not fit in the main text have been gatheredinapter 10where they show up in full length.

At the end of the document we have put two appendices with the GNU Free Documentation License,
and the GNU Public License, a bibliography, and an index.

2. Other Formats of sci-BOT

sci-BOT, the Scilab Bag-of-Tricks is available as SGML, as HTML, or several “printer-ready”
versions. Check ouHammersmith Consultindor the latest release. Each variant is available in
different packing-/compression formats.

SGML source distribution. The Real Thing (tm)! These are our SGML-sources. Building sci-BOT
from source requires XML DocBook version 4.x.

data checksum
sci-bot-sgml.tar.gz sci-bot-sgml.tar.gz.md5
sci-bot-sgml.tar.bz2 sci-bot-sgml.tar.bz2.md5
sci-bot-sgml.tar.Z sci-bot-sgml.tar.Z.md5
sci-bot-sgml.zip sci-bot-sgml.zip.md5

Web collection. This is sci-BOT rendered in HTML; conveniently bundled for your offline reading

pleasure.

data checksum
sci-bot-html.tar.gz sci-bot-html.tar.gz.md5
sci-bot-html.tar.bz2 sci-bot-html.tar.bz2.md5
sci-bot-html.tar.Z sci-bot-html.tar.Z.md5
sci-bot-html.zip sci-bot-html.zip.md5

Print versions. The printable versions are formatted for DIN A4 paper and are single files. By the
way, you do not have to print them; they look great with Ghostview, too.

data checksum

sci-bot.ps.gz sci-bot.ps.gz.md5
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data checksum
sci-bot.ps.bz2.md5
sci-bot.ps.Z.md5
sci-bot.ps.zip.md5
sci-bot.pdf.gz.md5
sci-bot.pdf.bz2.md5
sci-bot.pdf.Z.md5
sci-bot.pdf.zip.md5

sci-bot.ps.bz2
sci-bot.ps.Z
sci-bot.ps.zip
sci-bot.pdf.gz
sci-bot.pdf.bz2
sci-bot.pdf.Z
sci-bot.pdf.zip

3. Packed examples

Some of the examples in the main text and all examples in the Appendix can be obtained in a single
tar orzip -file.

data

checksum

scibot-examples.tar.gz
scibot-examples.tar.bz2
scibot-examples.tar.Z
scibot-examples.zip

4. Typographic conventions

scibot-examples.tar.gz.md5
scibot-examples.tar.bz2.md5
scibot-examples.tar.Z.md5
scibot-examples.zip.md5

This section covers the conventions used in this book. Depending on what version you are currently

reading some fonts may look the same.

Typographic Conventions

filename

This font designates the name of a file. A filename optionally includes a path.

user input

This font is used for the user’s input. This refers only to things that can be typed in at the

console.

17



Preface

meta-variable
This typeface is reserved for placeholders, i.e. stuff that always is replaced with the real input.

literal piece of code

We use this font to display literal pieces of code, variables, constant as well as operators.

variable

Variables of all kinds are marked up this way.
function

Functions or procedures of all kinds are marked up this way.
command

We use this font for shell commands, but also for Scilab commands.

environment-variable
To distinguish environment variables from program variables a separate font is used.
Transcripts from actual interactions with an interpreter, which can by Scilab, bash(1), or any other
interactive program are displayed like this.

>X = le22

1.000E+22

-> sin(x), cos(x)
ans =

0.4626130
ans =

- 0.8865603

In examples, which show some source-code, additional comments always start with two dashes
independent of the language. JadeTeX coerces these two dashes into one longer dash, called en-dash.

#include <stdio.h>
/* The world’'s most famous C-program */
int

main(void)

{
printf("Hello world\n");

return 0O; — exit code for success

18
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5. Scilab Release History

by Enrico Segre
Some details of the Scilab distribution depend on the version. Whenever the distinction between

different versions is necessary, the following identifiers will be used.

Scilab-2.4.1 (official release)

stable version

Scilab-2.5 (official release)

stable version, released December 1999

Scilab-2.5.1 (alpha version)

official unstable release as of 2000-7-21

Scilab-2.5.1 (first beta version)

unofficial release from the Saphir site; intended for an INRIA course; first spotted 2001-1-22.

Scilab-2.5.1 (second beta version)
unofficial branch from the INRIA sources as of 2001-1-10 modifications to up to and including
2001-1-18, courtesy of Stéphane Mottelet.

Scilab-2.6 (alpha version)

official unstable release

Scilab-2.6 (official release)

official version, released 2001-3-26

6. Contributions

Contributions, corrections, hints, and tips always are welcome. If you are willing to contribute a
whole section or even chapter, please take a lo@haipter 9or contact the authors.

This version of sci-BOT contains contributions from

Name E-mail Section[s]

Glen Fulford FulfordG@agresearch.cri.nz Section 5.1.8
Enrico Segre fesegre@wisemail.weizmann.ac.il Section 5 Sectiol
Dave Sidlauskas dsidlauskas@worldnet.att.net Section 6.2.2.6
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Chapter 1. Introduction

“I have read your posting as of ... to the Scilab newsgroup. It was very clear. Can you make a FAQ
out of it?” Yes, we can, and here it is!

The hints, tricks, and information put together in sci-BOT come from our own experience (read:

daily struggle), problems we have solved for our colleagues, and of course questions answered on
the newsgroup. Therefore, this document is a rather loose collection of facts, and is not necessarily to
be read cover to cover.

What this document is not:

- Anintroduction to Scilab

There already is an excellent “Introduction to Scilab”, the Scilab User’s Guide,
SCldoc/Intro.ps

« Areplacement for reading the documentation

IONSHO (“In Our Not So Humble Opinion”) folks who do not read the documentation get what
they deserve. Scilab’s documentation is truly great, so why not using it? To get a command’s
manual-page typkelp at the command prompt. The same is achieved in the graphical
environment with thédelp button. If the exact command name is unknown, the powerful cousin
of help, aproposjumps in. It can by used from the command line as well as from the Help Panel.

- Another FAQ list

We do not follow the simple Question-and-Answer style, instead we try to explore Scilab right to
its very end.

In the spirit of the Free Software any helpful suggestion or correction concerning this collection will
be acknowledged with the author’s name and email address. If you want to tell us of a mistake, or
want an item added, please drop the authors an email at

<lvandijk@hammersmith-consulting.com >or

<cspiel@hammersmith-consulting.com >,
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Chapter 2. Common Pitfalls

The nice thing about Scilab? It is
almost usable!
Enrico Segre

There are several peculiarities in Scilab’s way of interpreting an expression that will trip the unwary.
Some of them are a result of “compatability” to a certain commercial product of similar sounding
name (which one?), others are home grown quirks.

2.1. The Infamous Dot

In Scilab a digit in front or after the decimal pointrist enforced. This is similar to e.g. Fortran and
C, but contrary to Ada. Thus, for Scilab the following three numbers are well formed

87.492211
.32493
6857.

As an aside:

digit+ .0

digit+

digit+
€.9.123.0 , 123. , and123 are considered identical. The last of the three examples, a decimal point
at the end of the numeral, baffles users who want to invert a vector or matrix component-wise.

>1 /123
ans =
! 1. 05  0.3333333 !

But, hey this is correct! Then, let us squeeze out the spaces in front ¢f thgerator.
>1/[1 2 3]

ans =
! 0.0714286 !

! 0.1428571 !
! 0.2142857 !

Oops! What happened? The last expression is not interpreted as
@ /@ 23)

but as
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@) /(@[ 23)

where the parentheses have been introduced for clarity. This behavior is describefRBARME
and in the Scilab FAQ.

We suggest to avoid whitespace that influences the calculation by not letting the decimal point stick
out on either side. That way expressions with numerals will always be interpreted correctly. For our
example this means

>1.0/ [1 2 3]
ans =
! 1. 05  0.3333333 !

which gives what we had in mind.

2.2. Vector Construction

The square bracket operafot is a convenient means to construct vectors. There even exists an
idiom to build a matrix with brackets, which is shownkxample 2-1

Example 2-1. Building a matrix column-by-column and row-by-row

mat = []
for i = 1in
row = []
for j = 1Im
— compute matrix entry
expr = ...
row = [row expr]
end
mat = [mat; row]
end

Rows are separated by semi-colons or newlines, which actually is straight forward. Columns are
separated by commas, or spaces—and here comes trouble. First, comma and space serve the same
purpose, and are interchangeable. Thus, the following expressions have the same result.

123 4]
[1,2,3,4]
[1 2 34]
[ 1,2 3 , 4]

Second, a space is sometimes considered a column-separating space, sometimes a intra-expression
space. This can lead to some confusion as the following three matrix definitions demonstrate. Who
gets all of them right without peeking at the answers?
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>ml = [1+%i -1+%i; -1+%i 1-%i]
ml
! 1.
-1
>m2 = [1 +%i - 1 + %i; - 1 + %i 1 - %i]
m2 =

! 1. -1+ 20!

-1+ 1. - !

>m3 = [1 +%i -1 + %i; - 1 + %i 1 -%i]

! 1. i -1+ !
-1+ 1. - !

Confusion makes the programmer susceptible to writing code she did not intend. To make the matrix
expression clear to you and to Scilab there are at least two possibilities.

1. Using no spaces in the construction of the elements of a matrix. This is e.g. demonstrated in
above, or

2. Putting every compound expression in parentheses, like

S +%i) (-1 + %i); (- 1 + %i) (1 -%i)]
ans =

!

I -

i -1+ !
i 1. - !

1. +
1. +
Both ways avoid the ambiguity.

Actually, matrices as simple as the ones shown in the examples can be arranged in a neat way. It is
discussed irsection 3.1.2See als&ection 3.1.1n how to improve the legibility of Scilab code by
the judicious use of whitespace.

2.3. Function head

Scilab treats the first (logical) line of a function definition, the function head, differently form any
other line in a sci-file. Any non-whitespace after the closing parenthassbe avoided. It is even
illegal to add a comment at the end of the function head. On the other hand it is legal to extend the
function head over more than one physical line by using “..” as long as the continuation happens
before the final parenthesis.

Here are some correct function heads:

function y = foo(x)
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function y ..
= foo(x)

function y = foo(a, b, c, d, ..
e f, g, h

The following examples are dllegal:

function y = foo(x) // This is foo!
function y = save_space(x); y = 1 + X
function y = bar(x) ..

y =1+ x

See als®&ection 5.1

2.4. Last Newline

In the Scilab versions prior to Scilab-2.6 (official release), the last line in a script or function is
ignored if the line is not terminated by a newline. (On UNI* systems the line terminator, isr,

written in C-style n ") This is emphasized at several places in the official Scilab documentation, but
it is so common to forget it especially when using emacs that we repeat it here.

emacs can be told always to add a final newline by ad@ieg require-final-newline 1)
to the startup-file,emacs or.gnu-emacs . See “Learning GNU Emacs[Cameron:1996]
Table C-8.

For function files the workaround is as simple as it is elegant. For Scilab allows a function optionally
to be terminated with thendfunction  keyword. The keyword being optional it does not matter
whether the last line is completely parsed.

Another weapon against this kind of syntax flaw, and a few other pesky things, is e.g. the Perl-script
shown inExample 2-2which fixes part of the format of a Scilab script.

Example 2-2. Canonicalization of Scilab files

use Text::Tabs;

while (<>) {

chomp; # remove newline if there is one
trA200-\377/ 1, # map 8-bit chars to spaces

s[\s+$][]; # kill whitespace at end of line

$ = expand $_; # convert tabs to spaces

print "$_\n"; # print adding a newline
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2.5. Variable Lifetime And Scoping

2.5.1. Local Variable Scoping

Scilab’s visibility rule for locally defined variables follow those of block structured languages:

Variables local to a block shadow all variables of the same name not local this this block.

When we say variable “shadows” variable’ , we mean that’ is not accessible neither for
reading nor for writing. What is available for manipulatiorvis

Example 2-3. Shadowing of local variables

->deff’y = foo(x), 'a = 2*x, y = a + 1)
->a = 1.0 // top level
a =
1.
->f00(3.5)
ans =
8.
->a
a =
1.
-> foo(a)
ans =
3.
.>a
a

Example 2-3demonstrates that varialkde which is local to functiorfoo has no influence on
variablea in the surrounding environment. Even callifog with a variable named does not break
this rule.

As usual in block structured languages variables fedinenclosing scopes can be accessed, unless
they are shadowedxample 2-4hows usage of variabkefrom an enclosing scope.

Example 2-4. Accessing variables from the enclosing scope

-> deff’y = bar(x)’, 'y = a + 1)
>a = 1/ top level
a =
1.
-> bar(3.5)
ans =
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2.
-> bar(-1)
ans =

Now whatis the “enclosing scope”? It is the call stack, Scilab scopes dynamically!

Example 2-5. Dynamic Scoping

/I scoping in Scilab

deff(first_local()’, 'x = ™foo™, second()’);
deff(first()’, 'second()’);

deff(second()’, 'disp(x)");

X =1
first_local() /I prints ’foo’
first() /I prints 1

Example 2-5eserves a close look. Dynamic scoping can be confusing for people used to e.g. C’s
lexically scopedauto variables.

/* lexical scoping in C */
void first_local(void);

void first(void);
void second(void);

int x = 1;

int

main(void)

{
first_local(); [* prints 1 */
first(); [* prints 1 */
return O;

}

void first_local(void)
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{
int x = 123; [* warning: unused variable X' */
second();
}
void first(void)
{
second();
}
void second(void)
{
printf("%d\n", x);
}

Now compare this to Pérl

# dynamical scoping with Perl’s local variables

sub first_local { local $x = 'foo’; second(); }
sub first { second(); }
sub second { print "$x\n"; }

$x = 1;
first_local(); # prints 'foo’
first(); # prints 1

Dynamic scoping is an inherently dangerous feature for it might not be obvious where a variable gets
its value.

Let us look at functions which try to change variables from an enclosing scope.

->deff(’y = baz(x)’, 'a = 2*a, y = a + 1)
>a =3 /I top level
a =
3.
-> baz(1)
ans =
7.
-> baz(1)
ans =
7.
_>a
a

1. The behavior of the C example is reproduced by replalticey  with my.
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Obviously,a is unchanged by the calls baz . What happens is the following:

1. Alocal variable named is created, and the contentsaofrom the enclosing scope is copied
into it. Within baz thelocal a is changed.

2. When the thread of control leavbsz the previous value of is restored.

In other words: A local variableannotinfluence a variable of the same name in any enclosing
scope. The only ways to “export” a — possibly modified — value is either via the list of return values,
which is the preferred way, or withgiobal variable.

As strange as this may sound to programmers accustomed to languages that require an explicit
declaration of all variables, this is a necessary feature in Scilab as variables are created when they are
first written to (e.g. as in Perl and Python). If a local variable in a function would change a global
variable or local variable of the same name in another function, adding a new function to an existing
system or library became a major maintenance headache.

2.5.2. Global Variables

Theglobal attribute of a variabl@ar is often misunderstood. It do@st placevar in an all
encompassing name space so that it could be accessed from everywhere without further ado. Instead,
global places the variablear in a separate name space; separate from the interpreter’s name

space, and separate from all local functions’ name spaces. — And this is only the first half of the

story.
>v = -1
-> global('v’)

->who('global’)
ans =
v

->clear v
->who('global’)

ans =

v
-> deff(’y = useglobal()’, 'y = V')
-> useglobal()

l-error 4

undefined variable : v
at line 2 of function useglobal called by :
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useglobal()

As promised, this is only one half. After sayigtpbal  var , the variable lives in its new name
space, but it cannot be accessed. Doh! To work with it, we mysbrt it explicitely, using the
global modifier again. Therefore, a slightly modified versiorueéglobal ~ works.

-> deff(’y = useglobal2()’, 'global v, y = V')

-> useglobal2()
ans =
- 1.

\Y,
<
I}

1 + 2%%i
1.+ 2.
-> useglobal2()
ans =

- 1

Now what if we want to accessfrom the interpreter level again? It must be imported just as it must
be imported into any function.

-> global('v’)

>V

>v =17 + 4
21

->clear v

-> useglobal2()

ans =
21.

One last hint: global variables even survive a restart. If this is not desiezalglobal should be
called in the user’s Scilab startup filg,scilab

clearglobal()

will clear all global variables.
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2.5.3. Clearing Variables

During everyday programming it is not necessary to explicitely remove variables from the work
space. All local variables of a function die on exit from that function anyhow, and the variables in the
global name space usually do not need a special treatment.

However, there are conditions under which it is preferable to completely wipe out a variable. This
happens if one needs to avoid a pollution of the hame space e.g. while working with the list of all
variableswho(’local’) . The correct command to kill the non-global variablis

clear v
Note that there are no parentheses. The assignment
v =]

setsv to the empty matrix. It doesot remove the variable from the workspace.

Global variables are cleared with thiearglobal function, whose syntax is the samectsar 's
syntax.

There is no need to worry if you do not understand how and why to kill a variable. This feature is
only needed in very rare occasions.

2.6. Dangerous Range Generation

Range generation with the colon-operatof (see alscSection 6.1.3.1)1holds ready an unpleasant
surprise that is caused by the finite precision of Scilab’s floating-point numbers.

Colon expressions are used most often with inteigitibl_value , final_value , and

stride . These are the safe uses. However, all three parameters can be decimal fractions! Not all
decimal numbers have a finite representation in the binary system. For example, 0.1 has the infinite
binary representation

2#1.10011#E-4,

where the bar over the last four bits denotes infinite repetition of this bit pattern. Of course numbers
with an infinite binary representation must approximated by finite binary numbers. In our example
the approximation is

2#1.10011001100110011001100110011001100110011001100110011#E-4,

for Scilab uses IEEE 754 double-precision reals, which carry a 53 bit mantissa.

For a detailed analysis of the floating-point induced probldfmample 2-Gewrites a general
colon-expression as a loop.
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Example 2-6. Equivalent Representation of a Colon-Expression

v = initial_value : stride : final_value

translates into
v =]

if initial_value <= final_value
X = initial_value
while x <= final_value — note the comparison
v = [v, X]
X = X + stride — x accumulates rounding error
end

end

The approximate binary representation can influence all three pararmitietsvalue ,
final_value , andstride . Furthermore, each addition sfride  to x — as shown irExample
2-6— can introduce a rounding error. To stay clean of the rounding errors, colon-expressions
involving decimal fractions are best avoided.

A possible workaround is to generate a vector with an integral-only colon-expression, and then
rescale the vector to the desired range. For example, if a vector from 1.0t0 8.0in 0.7... (= 7/9)
increments is wanted, a save expressiqQis 7 : 72) / 9.0

Another possible substitute for a fractional colon-expression is the built-in function

linspace( initial_value , final_value [[. n = 100]) thatgenerates a vector ofevenly
spaced numbers starting and includingjal_value up to and includindinal_value . See
Section 6.1.3.1.%or a detailed discussion of this function.

The following piece of code shows that the rounding can strike in surprising ways. The vector
generated with a colon expression ranges from 1.0 to 2.0 - x in increments of 0.25. Both, 1.0 and
0.25 have exact binary representations, thus they do not introduce any rounding error, neither does
the repeated addition of 0.25 to 1.0. The upper end of the interval is decreased in increments of x =
2Mi. Again, 2.0 and 2.0 - x have exact representations for the chosen values of i.

function e = eps_hi
/I Return the smallest positive number E for
/Il which 1 + e is not equal to 1. This equals one
/I ' ULP (unit least precision) for 1 <= |x|] < 2.

x = 1.0;
while 1.0 + x ~= 1.0
e = x
X = x [/ 2.0;
end;
endfunction

function y = pow2(n)
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/I Return 2”n, but do not rely on the built-in
/I exponentiation operator.
y = prod(2.0 * ones(1, n))

endfunction
eps = eps_hi();
for i = 05
printf("i = %d ")
disp(1.0 : 0.25 : (2.0 - eps*pow2(i)));
end

-> exec("colon.sce");
i=0
! 1. 1.25 1.5 1.75 2.1

! 1. 1.25 15 1.75 2.1
! 1. 1.25 15 1.75 2.1
! 1. 1.25 15 1.75 !

! 1. 1.25 15 1.75 !

i=5
! 1. 1.25 15 175!

An upper boundary of 2.0 - 2"2*eps yields a vector of length 5, whereas 2.0 - 2*3*eps as the upper
boundary gives a vector of length 4. The conclusion is that the rounding procedure, which Scilab
imposes on the upper boundary, considers all numbers smaller than 2.0 by less than 4*eps as equal to
2.0. However, when asked directly, Scilab notices the difference as it should be:

->2.0 - 4*eps == 2.0

ans =
F

Conclusion: Using colon expressions with fractional parameters is nhot recommended ga
should be used instead.
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The one and only general guideline to good programming style is: “Make it clear!” And one might
extend that to

Make it clear — first of all toyou, and then to the poor persons that take over your project (after you have
been fired, because of writing illegible code).

Every possible style feature of the language should be used to express the meaning of the code more
clearly.

3.1. Spacing and Formatting

Although often underestimated, the format, i.e. the visual layout of the source code itself can greatly
help in the understanding of the actions described therein.

3.1.1. Intra-Expression Spacing

We often run into code like this
X=a*c+(x-y)"2*b

This is not bad, especially when typed at the command line for one-time use. However, the
expression is not as clear as it could be. It can easily be improved by making the precedence levels
(see als&ection 4.3 of the operators stand out, as e.g.

X = a*c + b*(x-y)"2

Now, the assignment is intuitively clear at first glance. We use the word “intuitive” here alert the
reader of the consequences of incorrectly formatting an expression. Then our intuition will mislead
us, asin

X = a * cH(x-y)"2*b

Ouch! This expression is evaluated differently from what it is telling us. We should call it a liar.

See als@&ection 2.%or the influence of whitespace on the evaluation of dotted operators.

3.1.2. Line Breaking

Breaking a long expression into lines can improve its readability dramatically. It is particularly
recommended for matrix definitions with the square bracket operator. Segeigon 2.2

35



Chapter 3. Style

For example

ml = [ 1+%i -1+%i; ..
S14%i 0 1-%i ]

is superior to
ml = [1+%i -1+%i; -1+%i 1-%i]

If an arithmetic expression is split into lines the operator at which the split occurs always goes onto
thenextline. Preferred break points occur right before operators of equal precedence.

d2 = fact * (a/(a+d)*(b*(1-delta) + d*delta) - d) * (P./K)theta

for example becomes

d2 = fact * (a/(a+d)*(b*(1-delta) + d*delta) - d) ..
* (P./K).theta

or

d2 = fact ..

* (a/(at+d)*(b*(1-delta) + d*delta) - d) ..
* (P./K). theta

or more dramatic
d2 = fact ..
(.
a / (a+d) * (b*(1-delta) + d*delta) ..
-d .

) ..
* (P./K).theta

3.1.3. Setting Brackets Apart

If spaces right inside parentheses or brackets of an expressions make the subexpression stand out
more clearly, they should be used. That way

B(k) = al * exp(-b1*P(k)/K(k) + b2*Q(k)/K(K))
becomes

B(k) = al * exp( -bI*P(K)/K(K) + b2*Q(K)/K(K) )
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3.1.4. Vertical Spacing

All previous formatting suggestions of this sections have been concerned with horizontal spacing,
and indentation. Vertical spacing is as important as horizontal!

As sentences belonging together go into one paragraph and paragraphs are seperated by one ore
more blank lines, Scilab statements that belong together go into one visual block and the blocks
should be seperated by single blank lines.

n =1;
lo = 1.0 - n*2*epslo(); /I lo = pred(1)
hi = 1.0 + n* epshi(); /I hi = succ(1)
for k =2 : 4

x =1lo : (hi - lo)/(k - 1) : hi;

y = linspace(lo, hi, K);

disp(size(x, "c") - K);

disp(x - 1);

disp(y - 1);

end

If blank lines tear apart blocks of code within functions, it might be preferable to seperate pairs of
adjacent functions by at least two blank lines.

function y = baseconv(x, b)

/I Convert decimal fraction X into a base-B number. Each
/I "digit" of the result is one element in the result

/I vector Y. To get a monolithic string, apply strcat to Y,

Il like
1 strcat(["#", baseconv(x, b), "#", string(b)])
if x >=0
y =1
else
y =[]
end

y = [y, baseconv_integral(int(abs(x)), b)]
if frac(x) == 0.0

return
end
ity =10 | y==["]
y = Iy, "0
end
y = [y, ".", baseconv_frac(frac(abs(x)), b)]

function y = baseconv_integral(x, b)
/I Convert decimal integer X >= 0 into a base-B number. Each
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/I "digit" of the result is one element in the result
/I vector Y.

if x <0
error("integer X (arg 1) out of range; X >= 0.")
end
ifb<2 | b>36
error("base B (arg 2) out of range; 2 <= B <= 36.")
end

if x ==0
y = [IIOII]
return
end

y = 1[I
xv = abs(x)
while xv >= 1
r = modulo(xv, b)
if r <=9
rs = string(r)
else

rs = code2str(r)
end
xv = int(xv / b)
y =1[rs, V]

end

function y = baseconv_frac(x, b)
/I Convert decimal fraction 0 < X < 1 into a base-B number. Each

/I "digit" of the result is one element in the result
/I vector Y.

if x <=0 | x>=1

error("fraction X (arg 1) out of range; 0 < X < 1.")
end
ifb<2 | b>36

error("base B (arg 2) out of range; 2 <= B <= 36.")
end

y =11
XV =X *Db
max_mant = prod(2.0 * ones(1, 52)) /I 2"52

n=1
while xv > 0 & n <= max_mant
r = int(xv)
if r <=9
rs = string(r)
else
rs = code2str(r)
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end

xv = frac(xv) * b
y = [y, rs]
n=n+hb

end

if n >= max_mant
warning("loss of precision")
end

function f = frac(x)

/I Return the fractional part of X.

Il int(X) + frac(X) == X for all X.
f = x - int(x)

3.2. Indentation

Heavy indentation does not hurt! No, in fact it is a great help in finding out the control flow quickly.
Let us start with a good example this tintexample 3-1

Example 3-1. Functionwhocat

function s = whocat(cat)
/I return all local variables, functions,
/I etc. that are in category cat.

s =

nl = who(local’);

for i = l:size(nl, 1)
execstr( 'typ=type( + nl@i) + ) );
if typ == cat then
s = [s; nl(i)];
end
end

Thefor loop, and théf branch are immediately recognizable.

There are blank lines between the logical blocks of the function. They too aid the reader’s
comprehension afhocat ’s inner workings. As a rule of thumb lines of code that achieve a sub-goal
of the computation should be grouped together as sentences are grouped in a paragraph.

In longer functions the indentation becomes essential for the orientation of the maintainer. Here is a
excerpt of a longer function, that would be terribly hard to understand if not massively indented.
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while i <= nl & j <= n2
while i <= nl & j <= n2
if ~equ(lstl(i), Ist2(j)), break, end
i=i+ 1
=i+ L
end
if i >= nl | j >= n2, break, end

icurs = i
while icurs <= min(nl, i+fuzz)
if equ(lstl(icurs), Ist2(j)), break, end
icurs = icurs + 1;
end
if icurs <= nl1 then
if equ(lstl(icurs), Ist2(j)) then
/I record element(s) missing from Istl
for p = i : icurs-1
this_diff = [Istl(p), string(-p)];
diff = [diff; this_diff];
end
I/l re-sync
i = icurs;
end
end

end // while
The complete listing of this function can be foundGhapter 10

The last example also shows that we are switching between several style paradigms:

« Neither the “One statement per line” rule is followed consistently,
if equ(lsti(icurs), Ist2(j)), break, end

could be
if equ( Istl(icurs), Ist2(j) ) then

break
end

« Nor is the intra-line spacing always consistent with the guidelines presented here:
for p = i : icurs-1

could be
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for p = iiicurs-1
The Golden Rule is that there are no golden rules... This is best known under the term “freedom”.

3.3. Single Quotes vs. Double Quotes

Single or double quotes enclose literal strings in Scilab. The opening quotes must match the closing
ones, otherwise single and double quotes can be used interchangingly.

The single quote, used as postfix operator, has the additional meaning of Hermitian (complex)
transpostion. This double use almost causes not problems, but if you want to play it extra save, using
double quotes for strings only adds clarity to your scripts.

3.4. Choice Of Control Structures

Though not recognized as that by all programmers, the flow control structures themselves are first
class indicators of the code’s workings. We consider three important cases here.

1. while vs.for ,
2. if vs.select ,and

3. strict block structure vs. premature return.

3.4.1. while [for

Expressed in wordsfar loop tells us:

«  We know exactly how many iterations we shall need before we start looping.
« Nothing in the loop body will change this.

Whereas thevhile loop says:

«  We must check whether we should loop at all, and
- we have to re-check after each iteration whether we need another round-trip.
Corollary: The termination condition ofwhile must be influenced in the loop’s body.

Compare the next two code snippets, the first one calculating the average value of a vector of
numbers, the second searching zeroes of a given function.

values = [1.0, 2.0, 3.0, 4.0, 5.0];
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average = 0.0;
n = size(values, ’c’); /I line 3
for i = 1lin
average = average + values(i);
end;
average = average / n

From 7nbsp;3 on, we know the number of iterationsand we know that nothing will change that.
Thus afor loop is adequate.

deff([y, dy] = fun(x)’, ..
'y =-05 + 1.0/(1.0 + x*2), ..
dy = -2.0 * x / (y + 0.5)"2;

x0 = 0.76;
[y, dy] = fun(x0);
while abs(y) > sqrt(%eps)

X = yldy - XO0;
x0 = x;
[y, dyl = fun(x);
end;
X

Assuming that the functiofun , and the start gues® are supplied by the user, we do not know how
many loops it will take for Newton'’s algorithm to converge, if it does converge at all. (In the example
it does.) Here, thavhile -loop expresses this lack of a-priori knowledge.

3.4.2.if [select

The relationship betwedh andselect bears similarity tavhile andfor , respectively. In a

select clause the different cases are known — and spelled out explicitely — before the thread of
control enters the construct. There is a one to one relationship between the statessletthang
expression and thease branch taken. Thelse branch in aselect works exactly as thelse in
anif .

function f = fibonacci(n)
/I return n-th Fibonacci number

select n
case 0 then
f=1
case 1 then
f=1
else
f = fibonacci(n - 1) + fibonacci(n - 2)
end
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Theselect ing expression is not restricted to scalars, vectors for example work too:

function s = shape4(m)
/I classify a 2x2 matrix according to its shape

select abs(m) <= %eps
case [%t 9%t; ..
%t %t] then
s = ‘empty’
case [%t %f; ..
%f %t] then
s = ’diagonal’
case [%f %f; ..
%t %f] then
s = 'upper triangular
case [%t %t; ..
%f %t] then
s = ’lower triangular’
case [%f %f; ..
%f %f] then
s = dense’
else
s = ’'general
end

Anif clause is more flexible thansalect clause, but at the price of being less expressive.
Whenever a whole range of values has to be covereif ttidause is the only way to go, as is

demonstrated bi#xample 3-2

Example 3-2. Functionmysign
function y = mysign(x)
/I re-write of the sign-function, taking

/I floating-point precision into account

if abs(x) < %eps

y = 0.0
elseif x >= %eps
y =10

else
y = -1.0

end
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3.4.3. Strict Block Structure/Early Return

The paradigm of structured programming is: “Every block has one and only one entry point.” That is
it! Nothing is said about the number of exit points. The purists often misinterpret the paradigm,
demanding a single exit point, too. We prefer our freedom, and choose whatever we find adequate to
the problem.

Here are two different implementations of an algorithm calculating the factorial of a given integral
number.

function y = fact_block(x)
/I faculty of x; block-structured version

select x
case 0 then
y =1
case 1 then
y =1
else
y = x * fact(x - 1)
end

The two special casds andl are tested separately, and the general case is handleddis¢he
branch.

function y = fact_early_ret(x)
/I faculty of x; early-return version

if x >= 0 & x <=1 then
y=1
return

end

y = x * fact(x - 1)

This version immediately returns after having treated the special cases, leaving the general case to
the “rest” of the function. In this very short function the advantages of the early return are not
striking, however they are if many special cases are to be handled. The “rest” of the function can
then concentrate on the core of the problem without being obscured by deeply nested conditionals.

3.5. Size of a Function

There is a rule of thumb for the length of a C-function:

Linus Torvalds
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Functions should be short and sweet, and do just one thing. They should fit on one or two screenfuls of
text (the ISO/ANSI screen size is 80x24, as we all know), and do one thing and do that well.

In older versions of sci-BOT the reader found the following paragraph:

Itis also true for Scilab functions with the exception that high level functions, or functions that are called
from the command line directly should be harnessedSsstion 5.1.5Therefore, they are usually much
longer than just two screenful. Yet, their structure decomposes quite naturally into two parts: the argument
checking, and the computation. What remains true is that a Scilab function too should do only one thing
and do that well.

Meanwhile, the authors have slightly changed their minds, opting for short functions throughout. All
functions should be short, no matter how much argument checking is done. If the argument checking
code bloats a function definition, the checking code must go into a separate function or even separate
functions in the case the things checked are unrelated. We follow one of the prophets of concise
programming, Martin Fowler, and recommend his book “Refactorifigéfactoring:1999] Of

particular interest in connection with this section are the refactorings “Decompose Conditional”

(238), “Consolidate Conditional Expression” (240), and “Replace Nested Conditional with Guard
Clauses” (250).

For more information about programming style consult “The practice of programming”
[Kernighan:1999}wvhich is centered around C-like languages, but offers extremely valuable advice
throughout. “Programming Perl”, also known as “The CamVall:1996] has a section called
“Efficiency” in chapter 8. It is as insightful as it is fun to read for the authors discuss the various
optimization directions. They do not hesitate to put up contradictory suggestions along the different
paths.

Conclusion of this section: Whatever makes the code’s workings more obvious to the reader is good.
In other words: “If it makes ya high, or saves you taxes, then — by any means — do it!”
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In this chapter we shed some light onto widely unknown features. Parts like the operator precedence
unconsciously are exploited in every-day programming by all of us. Others, like integer variables are
easily misused. So, read on and become a Yedi*H*H"H"HScilab master.

4.1. Keywords and Commands

The Scilab language protects only twelve words against any modification by the user. These
identifiers cannot be used as variables or function names. Any attempt to do so immediately raises an
error, which typically reads “incorrect clause”.

Table 4-1. Reserved Words

Name Description

break Force (premature) exit fromfar or while
loop

case Start clause within aelect statement

do Synonym for " after for, while, if,
etc.

else Start alternative in aii or case statement

elseif Add a conditional branch to ah statement

end Terminatefor, if, select, and while
statements

endfunction Terminate a function definition

for Start a loop with a known number of iterations

function Start a function definition

if Start a conditional

select Start a multi-branch conditional

then Synonym for " after expression in if
or select

Reserved words are protected against abuse by the interpreter, commands which foove ih-2

are not! Some of the commands ought to be reserved words, but they are not. Commands can be used
in contexts where variables are valid, however, the results are surprising. Therefore they should not

be used as names for variables or functions.

Table 4-2. Commands
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Name

Description

abort

apropos word

Stop current evaluation and return to primary
command-level

Search for manual-pages whose synopsis matches

word

clear varname Remove variable (or functionjarname from
workspace; see also Section 2.5.3

exit Terminate Scilab sesssion

help word Display manual page on topieord

pause Switch into pause mode (can be used multiple
times)

pwd Print the current working directory

quit Jump out of pause mode (can be used multiple
times) or quit Scilab session

resume Stop execution of a function or, in pause mode,
return from function

return Return from function

what List all Scilab reserved words

while Start a conditional iteration

who(local’ | 'global’)

Some uses ado:

List local or gobal variables in workspace; see
alsoSection 5.2.1

for i = 1:n do ..., end
while i < n do ..., end
if a < b do .., else ..., end

4.2. Operator Overloading *

Scilab bears a feature which strongly reminds one of object-oriented programming languages:
operator overloading. Yet, Scilab is not object oriented. Strictly speaking operator overloading has
nothing to do with object-oriented programming, but as it turns out overlading operators is

1. Thanks go to Bruno Pingon for carefully proofreading this section.
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particularly useful in object-oriented languages. Overloading grafts new functionality onto an
existing function-name. Scilab accomplishes this with a special syntax similar to mangled symbol
names of a C++-compiler’s output.

The overloading of operators is described in Section 3.3 (“Definition of Operations On New Data
Types”) of in SCldoc/Intro.ps , and information is also available througélp overloading

Even if you never will overload an operator, knowing the syntax and the function codes helps when
deciphering error messages that involve overloaded operators. The following session transcript
shows what happens if you request the boolean mhaiiito be converted into a string.

->bm = [%t, %f;, %f, %f]
bm =

I'TF !

I'F F !

-> string(bm)

l-error 246
impossible to overload this function for given argument type(s)
undefined function %b_string

Without further knowledge the user is nothing but puzzled by “undefined function %b_string”.

4.2.1. Overloading crash course

If we drop the buzzword “Operator overloading”, which comes from the OO-camp, and call every
operator a function, we are (a) absolutely right in a mathematical sense, and (b) get a good grasp of
what is going onOperators are simply functions written in a special syntaxnost imperative

languages (C and descendants, Pascal and descendants) functions are written in prefix notation, i.e.
the function name precedes all arguments. In the same languages operators are written in infix
notation, i.e. the operator put between the operands.

Lisp as a (functional) language which employs pure prefix syntax all functions and operators are
written before all arguments.

(+ 3.9 54.0 -45 745 -57 -56)
(setq x (list "a" -1 (- 3 10)))
(length x)

The same expressions look more or less differently in Scilab:

3.9 + 54.0 + (-45) + 745 + (-57) + (-56)

sum( [3.9 54.0 -4.5 745 -57 -56] ) — alternative to previous line
x = list("a", -1, (3 - 10))
length(x)

As becomes clear in the above example, operators are specially written functions, but otherwise
behave like ordinary functions.
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Overloading has been hyped since to advent of C++. A closer look reveals that even Fortran-77
endows certain intrinsics with an overloaded syntax. What the heck is overloaitiray2rload a
symbol means assigning another meaning to it, augmenting the existing meanipgiclly, the
symbol is a function name and the additional meaning is an additional function definition.

How can the language decide which definition to take? That depends on the language. The most
common scheme to determine which function definition to trigger is the analysis atthal

function arguments. Fortran-77 provides so-called generic functonsis one example, which can

be called with arguments of several types and the compiler selects the routine that matches that type.

program f77ovl
implicit none
real xr, sl

double precision xd, s2
complex xc, s3

* floating point literals default to real*4 in f77
xr = 1.0
sl = sin(xr) — compiler selects single precision routine
xd = 1.0d0
s2 = sin(xd) — compiler selects double precision routine
xc = (1.0, 0.0)
s3 = sin(xc) — compiler selects complex routine

* alternative using explicit call
s2 = dsin(xd) — user demands double precision routine
s3 = csin(xc) — user demands complex routine
end

Modern languages like e.g. C++, F9x, and Ada let the user define functions with the same name as
long as they can be uniquely identified by their argument list (C++) or argument list and return value
(Ada).

We can define thre®laximum functions. The Ada-compiler distinguishes them by their arguments
and return values.

function Maximum(X1, X2 : Float) return Float;
function Maximum(F1, F2 : Fraction) return Fraction;
function Maximum(l1, 12 : ArbitraryPrecisioninteger) re-
turn ArbitraryPrecisioninteger;

As we know from the beginning of this section, operators are functions written in a special way.
Thus it is easy to imagine that an operator can be overloaded just the way a function can. The next
Ada example shows how the addition operator can be overloaded.
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function "+"(Left, Right : Fraction) return Fraction is
begin

return  — code for addition of two fractions
end "+";

If you want to learn more about overloading and class construction and object oriented (C-)
programming, we recommend Scott Myers’ bodkdyers:EffCPP:1998] and
[Myers:MoreEffCPP:1996]

4.2.2. Overload syntax

In Scilab an operator gets overloaded with a new function, if we define this function having a special
name in a particular format. For unary operators the format is

function result = %optype _opcode (argument )
whereas for binary operators except insertion and extraction it is
function result = %optypel _opcode _optype2 (argumentl , argument2 )

where valid operand-variable-type codesdptype , optypel , andoptype2 are defined in

Table 4-3andTable 4-4 and the operator-codepcode are defined ifmable 4-5 The formal

function argumentargument , argumentl , argument2 , andresult are usual argument and
return-value names. To descibe the syntax in words: a percent-sign starts the definition followed by
the type[s] of the operands and the operator seperated by [an] underscore][s].

The syntax for overlading vector/matrix insertion

target (indexl , index2 , ..., indexN ) = source
and vector/matrix extraction

target = source (indexl , index2 , ..., indexN )

is a bit more convoluted as it has to account for the indices:

/I insertion

function target = %argettype _i_ sourcetype (indexl , index2 , ..., in-
dexN, source , target )

/I extraction

function [  resultl, result2, ..., resultM ] = %sourcetype _e(indexl , in-

dex2, ..., indexN , source )

51



Chapter 4. Unknown Spots

Warning

The online-help of Scilab-2.5, help overloading , is incorrect in its explanation
of the argument names to insertion-overloading. It says that target is the
next-to-last, and source is the last argument. In fact the two arguments
occupy exchanged positions as we have listed them.

Note that for extraction the number of return values, M, is completely independent of the number of
index expressions, N.

Table 4-3. List of all operand type codes

Variable type Code string  optype Code index
floating point scalar, vector, or s a 1
matrix
polynomial Pa 2
boolean ba 4
Sparse matrix sp 5
sparse boolean matrix spb 6
Matlab® sparse matrix msp 7
matrix of integers (8, 16, or 32hit 8
entries)
string Ca 10
uncompiled function M 11
compiled function mc 13
function library f 14
untyped list la 15
typed list name of the tlist 16
matrix list ml 17
pointer ptr 128
? ip 129

Notes: a. This type code is already overloaded by Scilab itself. The formal code string for typed liststis

Two types are particularly well suited for overloading; these are the tlist and its close relative the
mlist. tlists are used by Scilab itself to define some sophisticated types like polynomials, or sparse
boolean matriceslable 4-4summarizes all typeis, in use as of version 2.5.1. As the type of a tlist is
the list's first element, we sometimes call it, in a Lisp like manner, the head of the tlist. Note that
when working with tlists of typé , Scilab calls the predefined function for untyped lists,

%I_opcode , or %l_opcode _| until the user provides [a] replacement function[s] with the name

% _opcode , or % _opcode _t .

52



Chapter 4. Unknown Spots

Note: Only the first 8 characters of the name of a tlist ~ or mlist are significant when
overloading any unary or binary operator! See also Section 4.6.1.

The first column ofTable 4-4states the name of the variable type, column two lists the tlist
identification heads, and column three holds the code number, Scilab associates with the specific
head. The type-name/type-code — not only for tlists — translation can be queried witheireeme
function.

Table 4-4. List heads used by Scilab

Variable type Code string Code index
sparse matrix sp 5
sparse boolean matrix spb 6
Matlab® sparse matrix msp 7
linear-state system Iss 16
rational function, i.e. quotient of 16
two polynomials
hyper-matrix hm 17
? ip 129

Now that we have defined all operand type codes, we can turn to the operator type codes.

Caution

Several operators listed in Table 4-5 behave specially! Some, like equality and
inequality tests, are auto-overloaded, i.e. are available even before the user
defines her replacement function. Others cannot be overloaded at all, like
unary plus (all types), and insertion/extraction (tlists).

Warning

There is a mistake in the SCl/doc/Intro.ps concerning this operator. The
first table in Sec. 3.3, page 64 states that code b defines the row-separator “; "
SCl/doc/Intro.ps is wrong here, but the online help is correct in that the
row-seperator “; ” is overloaded with the code f .

Warning
The online-help of Scilab-2.5, help overloading , is incorrect, and
SCl/doc/Intro.ps is correct. u is associated with “*. ", and x with “.* ",
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Table 4-5. Operator type codes

Operator Code Note

N 0 pure transposition (no complex
conjugate)

less-than

greater-than

less-or-equal

greater-or-equal

logical-not

\
1]
Q OB~ W N

binary operator. The unary plus
is automatically overloaded for
any new type with the
identity-transformation or “do
nothing”. Unary plus cannot be
overloaded!

b range generator

[.1] c matrix row constructor “,
A d element-wise division

() e extraction form a matrix, like
= v(k). The operator is
automatically defined
for new types.

Extraction from tlists
cannot be overloaded,
use mlists instead.

[ ] f concatenation or matrix column
construction “;”

| g logical-or

& h logical-and

() i insertion into a matrix, liker(k)
= s. The operator is
automatically defined
for new types. Insertion
into tlists cannot be
overloaded, use mlists
instead.

A j element-wise exponentiation
X k Kronecker multiplication
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Operator

disp

Note

left division; solve a linear
system of equations

matrix multiplication

unequality test. Both operators
are automatically defined for any
new type withlist

semantics, i.e.

component-wise

comparison and a boolean
return vector. Both can

be overloaded with user
functions.

equality test. The operator is
automatically defined for any
new type withlist

semantics, i.e.

component-wise

comparison and a boolean
return vector. It can be
overloaded with a user
function.

unary operator; display results
with disp or at the
command line

binary operator; matrix
exponentiation

element-wise left division
right matrix division

unary%ead_s, and binary
%headl_s_head2 operator;
see also: overloading of
unary plus %head_a.

unary operator, Hermitian
(complex) transposition

element-wise multiplication
element-wise division
element-wise right division
element-wise multiplication
Kronecker division
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Operator Code Note
A z Kronecker right division

Almost all unary built-in functions likebs, ceil , floor ,imag,int ,real ,round ,sqgrt , and
string  can be overloaded, too. The syntax borrows for the syntax for unary operators. Function
names which are not already used by Scilab cannot be used for overloading.

function result = %optype _functioname (argument )

wherefunctioname is the name of the function.

4.2.3. Overloading example

Tip: Lots of overloading functions can be found in SCl/macros/percent

After so much theory, definitions and tables we deserve an example that demonstrates operator
overloading in action. As usual for sci-BOT the complete example can be fouekiion 10.1The
following is not production strength code, most error checks are left out.

function f = frac(p, g, reduce)
/I constructor for fractions

select type(p)
case 1 then // constant
if size(p, ™) ~= 1 then
error('argument p is non-scalar’)

end
po = p
q0 = 1

case 16 then // tlist

/I copy constructor behavior

pO = p(num’)

q0 = p('denom’)
else

error(argument p has wrong type’)
end

if isdef('q’) then // q is an optional argument
select type(q)
case 1 then // constant
if size(q, ™*) ~= 1 then
error(argument ¢ is non-scalar’)
end
q0 = q0 * q
case 16 then // tlist
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/I copy constructor behavior
pO0 = p0 * g('denom’)
g0 = g0 * g(num’)
else
error(argument g has wrong type’)
end
end

if isdef(’reduce’) then // (isdef(’reduce’) & re-
duce == %t) does not work, for
/I Scilab performs a complete boolean evaluation

if reduce == %t then
[p_red, g_red] = reduce_int(p0, qO)
else
p_red = pO
g_red = q0
end
else
[p_red, g_red] = reduce_int(p0, g0) —reduce_int defined in complete example
end

f = tlist(['frac’; 'num’; 'denom’], p_red, q_red)

function s = %frac_p(f)

/I display function for fractions
s = string(f)

disp(s)

1l
/I addition
1l

function r = %frac_a_frac(fl, f2)
dl = gcd_int(f1('denom’), f2('"denom’))
if dl == 1 then
r = frac(fl(num’)*f2('denom’) + f1(’'denom’)*f2('num’), ..
f1(denom’)*f2('denom’))
else
t = fACnum’)*(f2(denom’) / d1) + f2(num’)*(f1(denom’) / di)
d2 = ged_int(t, d1)
r = frac(t/d2, (f1(denom’) / d1)*(f2(denom’) / d2))
end

i
/I conversion
1l

function fl = frac2float(f)
/I convert a fraction to a floating point number
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fl = fCnum’) / f(denom’)

function s = %frac_string(f)
/I string( frac(...) )
if f(denom’) == 1 then
s = sprintf('%.0f, f(’'num’))
else
s = sprintf('%.0f/%.0f, f('num’), f(denom’))
end

After loading these definitions a new type named frac exists. It can be used like this:

f = frac(2, 3);
g = frac(l, 3);
h = frac(-1, 3);
i = frac(12);
f+g

g+h

i

frac2float(h)

4.3. Operator Precedence And Associativity

Strange but true, there is no listing of the precedence and associativity of neither class of Scilab’s
operators anywhere in the documentation. So, we discuss the operator precedence and associativity
in detail.

4.3.1. Numeric Operators

Table 4-6shows the list of all numeric operators up to digrapberted in descending order of their
precedence. An equal precedence value (column 1) means the operators are evaluated following the
given associativity (column 3).

The table has been generated with a Scilab script, i.e., we had the interpreter determine its own
precedence rules. These scripts are liste@hapter 10

2. The trigraph operators. ,.. ,and.\. are left out.
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Table 4-6. Arithmetic Operators

precedence operator associativity comment

21 + right unary
20 N right

20 A right

19 - right unary
8 * non

8 / left

8 * non

8 A left

4 \ left

4 A left

1 + non binary
1 - left binary

Warning

One line begs for an additional warning, and that is the unary minus ranking at
level 19. It looses against the power operator, ~. Therefore, -172 gives -1, and
not 1. In other words Scilab sees -1*2 as -(1"2)

The association rules follow those of standard algebra. Thus, nobody should be surpriaéihthat
is interpreted aa”(b"c)

4.3.2. Relational Operators

Scilab implements the usual gang of relational operators with some syntactic sugar of having two
“unequality”-operators>, and~=. The relational operators’ precedences rank in between the
numeric and the logical operators like they do in many other modern programming languages. This
allows for a minimal use of parentheses in larger expressions like

if 20*n > 1+1.0 | n/3.0 <= k then

end

which evaluates exactly the same way as

if (20 *n) > (I + 1.0) | (n / 3.0) <= k) then

end
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just with much less line-noise.

4.3.3. Logical Operators

There are three logical operatogs] , and~, meaning “and”, “or”, and “not”. The twiddle; has the
unique syntactic property that any number of consecutive twiddles are allowed and evaluated. But
unless you want to enter the obfuscated Scilab contest, sticking with one probably is best as e.g. 15
are as good as one, and therefore

%ot

returnsr.

Table 4-7shows the complete list of Scilab’s logical, also known as boolean, operators sorted
according to decreasing precedence.

Table 4-7. Boolean Operators

operator associativity comment

~ right unary
& non
| non

4.4. Boolean Peculiarities

Scilab’s booleans are much more versatile that in most conventional programming languages. This
section explains the enhancements that makes the boolean type powerful.

4.4.1. Implicit Cast To Boolean

For the logical operators have boolean expressions as their arguments, it is time now to discuss the
implicit promotion of numeric types to boolean type, something very familiar to C, Perl, and Python
programmers. You have guessed right, the rule is: “Zero is false, everything else is true.” Here are
some examples of that rule at work:

>0t & O

ans =
F

->%t & 0.1
ans =

60



Chapter 4. Unknown Spots

T

>6.34 | %f
ans =
T

>6.34 | -0.3
ans =
T

Scilab always evaluates boolean expressions completely. No operator is defined with short-circuit
evaluation semantics.

->deff(b = ret_false()’, 'b = %f, disp(’ret_false”));
->ret_false() & ret_false()
ret_false

ret_false
ans =

F

4.4.2. Boolean Vector- or Matrix-Indices

Booleans are valid indices for vectors or matrices. Both, the host object, which is indexed, and the
index itself are used in their flattened representati®ecion 6.1.2.8 A boolearvst at positioni
selects elemernt from the host objectsf does nothing.

If the size of the boolean index does not match the host object’s, missing indices are implicitly
assumed to b&f. Extraneous that aféf do not produce a runtime error, ortgt index values at
positions after the host object’s end.

->a = [11, 12; 21, 22; 31, 32]

a =
! 11. 12. 1
! 21. 22. !
! 31. 32. !
-> a(%t)
ans =

11.

> a([%t, %t; %f, %t])
ans =
roo11 !
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4.5. Integers
by Enrico Segre

Integer types were introduced in Scilab-2.5 (official release); they are an important concept, but to
date their support still is incomplete and partially buggy. In many situations the use of integer
variables can provide dramatic storage improvements; moreover, large problems, for example those
occurring in image manipulation, often fit the hardware constraints when integer storage is exploited.
Thus, even though the integer types in Scilab still leave something to be desired, their use may be a
matter of necessity; and even considering that integer support is largely broken, yet, the existing
possibilities can provide workable solutions. The following section is a guide to what is available

and what is not when it comes to integer expressions.

4.5.1. Missed Opportunities

The following spots are — to our opinion — missing parts in the current implementation of integers.

4.5.1.1. No Integer Literals

Integer constants can only be defined as results aftan function (N = 8, 16, or 32) with a real
argument. No special notation exists for integer literals as for exan2gke or 1123 . Variables are
declared as integral when they are assigned an integer value. The integer value has to be produced
first, and this is only possible with a function.

This is inconvenient, and often also performance critical, for instance when defining large integer
arrays. The requirement of duplicate storage for passing by value and the calling overhead can be
demanding. For example,

ia = int8(modulo(1:1e6, 16))

produces the arragt that occupies 1 MB of RAM. Even thought, the definition procedure requires
an intermediate storage of 24 MB (IEEE 754 double-precision reals have a size of 8 bytes each):

8 MB go for definingl:1e6 and 16 MB for passing by value the resulintedulo and to some other
internals ofmodulo . Scilab goes on a detour in the construction of integral variables instead of
attacking this area directly: the parser ought to recognize terminal symbols making up integral
expressions, so that no double-precision intermediate result is called into play. The pitfall lies partly
in the missing notation itself, and partly in the need to do the integer conversion only at the last step
of the evaluation, for lack of usable integer constructs &estion 4.5.2.1
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4.5.1.2. No Implicit Conversion in Mixed Typed Expressions

Altogether, the introduction of integers has brought 6 new data types:

+ int8,

+ uint8,

+ intl6,

+ uintl6,

- int32, and
+ uint32.

Scilab generally does implicit type conversions in expressions involving reals, booleans, and several
other types, buhotwhen at least one of the operands is an integer. Automatic conversions — for
example, the result of an addition of an int8 and an int16 becomes an int16, an int16 plus a real
makes a real, etc. — anmtimplemented. In some programming languages, strong typing can be a
design decision; here, it is probably just a lack. The only automatic conversion takes place when
assigning a real value to elements of an array, which has been predefined as integral. Then, the right
hand side is silently cast to the left hand side’s type.

->a = int8(zeros(1, 8));

->a(2:4) = 53

a =

o 5 5 5 0 0 0 0!

In addition to the lack of automatic type conversion, a few bugs involving mixed type expressions
are exemplified below (se®ection 4.5.2.32

4.5.1.3. No Integer Array Indices

Indexing of array elements is a classical use for integers. However, Scilab solely supports
double-precision, and not integer-typed indices for arrays and hyper-arrays. In many situations
juggling integer indices would be more memory efficient than dealing with double precision. The
double-precision indices finally have to be (internally) cast to integers to actually index into an array.
Consider for example

a
a

rand(1, 1e6)
a(le6:-1:1)

The reversal of the elements of the array requires 24 MB: 8 MB for steri8MB for storing the
right hand side of the assignment, and 8 MB for storing the index expresson:1 . If int32s
were used instead, half a megabyte could be saved.
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Indexing Done Right

If indexing were done right, it would not require any additional core. The stride ahagically turns your
index expression into a efficient call toopy .

4.5.1.4. Limited Support of Integers in Functions

Only a small subset of the functions which work on reals, or of the syntactical constructs which
involve reals, can be applied to integers. Which functions support integers and which not do not, does
not follow a rule — it just looks like unfinished work. A practical account is giveSéation 4.5.2.1

4.5.1.5. Partial Support of Integer Values in Data Files

Reading and writing of integer data from and to data files is still imperfect. As for reading: in
Scilab-2.5 (official release), values retrieved withet orread from external data files always are
rendered as double precision reals. Only afterwards they can be converted to integers. This once
more carries the disadvantage of the real (ho pun intended) detour, as discussed in the previous
section. An external datafile containing many short integers might not be loadable, because the data
are expanded to double precision reals, filling the available memory, though, once reconverted to
short integers, the data would fit. From Scilab-2.5.1 (alpha version) on, fumsgieth exists, and is

well suited for integers stored in binary files, but no integer equivalerdzaf yet exists.

As for the complementary operation, writing integers into a binary file, functiom( data ,

type ) has been present before Scilab-2.5 (official release). There, howgxgraccepted only real

data, even though data could be written into the file as an integer of any type, if specified. Only from
Scilab-2.5.1 (alpha version) on, it has become possible to pass integagsttoActually, in

Scilab-2.5.1 (alpha version) there were still a couple of bugs lying around: when integer data was
output, extensive garbage was printed, and explicit reference of the unit number was impossible. So,
in Scilab-2.5.1 (alpha version):

->fd = mopen('my_file’, 'wb’);
-> mput(int8(1:1000), 's’, fd);
I-

error 201 : argument 3 should be a real or complex matrix
-> mclose(fd);

while
->fd = mopen(my_file’, 'wb’);
-> mput(int8(1:1000), 's’);

-> mclose(fd);

worked, but printed a lot of output to the console, considerably slowing down the computation. Both
of these bugs are ironed out in Scilab-2.6 (official release).

In contrastjoad seamlessly retrieves integer values, if the corresporsting wrote them as such.
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4.5.2. Digest of Integer Go And No-Gos

With integers, some Scilab constructs work, some simply do not, and others apparently work, but
incorrectly, and are thus best avoided. If a usdorcedto use integers, she needs a road map to

what is viable and where to stay away from. The following considerations can help in surviving with
integer data.

4.5.2.1. Which Functions Support Integers?

Plainly, some Scilab functions work as expected with integer arguments, and some do not. In many
cases this seems a matter of lazily done homework or homework not done at all. The proper
overloading alternatives to the real constructs are missing! We cannot give any general rules, except
for these two:

1. Functions that can give a real or complex result with an integer input, for exaspleor
spec , in most of the cases do not accept integer types.

2. Itis naive to expect any function or expression which relies on indices or index counts to work
with integer enumerators.

Table 4-8. Selected Functions and Operators Thatork With Integers

Operator or Function Comment

“

+7, e e e gnd <7 their dotted cousins are also working

[T

colon operator used as implicit or explicit indexer
of integer arrays, with real indices. For example,
il = int8(1:10); i1(:) is accepted.

min( ival), max(ival), matrix(ival), returning integer valueisal of the same
hypermatrix(zval, ival), type as their arguments; zval is
real or complex.
size real result!
eye( ival), ones(ival), zeros(ival) real result!
eye( ival), cumsum(ival), sum(ival), integer result
disp( ival) string result
fit( ival) complex result

In this section, “not work” means that Scilab complains with an error, usually about a wrong
argument type or a missing overload function.

Table 4-9. Selected Functions and Operators ThaDo Not WorkWith Integers
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Operator or Function Comment

“ colon operator used as binary or ternary range
generator

length( ival), mean(ival)

eye( ivall, ival2), ones(ivall, whereivall and ival2 are integer

ival2), zeros(ivall, ival2) variables

sqrt( ival)

cumprod( ival), prod(ival)

ceil( ival), floor(ival), int(ival), These are all real-to-real functions!

modulo(ival)

gsort( ival), lex_sort(ival),

sort(ival)

Sparse integer matrices are not supported at all.

4.5.2.2. Modular Integers

Unsigned integer expressioaannot overflowin particular, no warnings are issued. The result of an
expression involving unsigned integers is always computed with respect to the modulus of the type.

> uint8(129) + uint8(129)
ans =
2

-> int16(32769)
ans =
-32767

This is not surprising, but has to be kept in mind when doing integer calculations.

Background Information

On our days hardware, integer arithmetic is almost always done modwladtt , wherewidth is the
number of bits (typically 32 or 64) to represent an integer as a two’s complement. This behavior kind of
“leaks through” from the central processing unit (CPU), where neither integer overflow nor underflow
exists. The main reason for implementing modular integers is speed. Implementing integers as
range-checked type would incur a vast overhead and massively hurt performance.

However, integer divisions by integer zero are trapped, even when sieti#{g)

-> ieee(2);
->int8(4) / int8(0)

l-error 27
division by zero...
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Incidentally,int N(%nan) , int N(-%inf) andint N(%inf) , whereN is 8, 16, or 32 all return 0.
The same holds for allint functions.

No overflow or underflow warning is reported either, if a longer integer is converted to a shorter one,
whereas no loss of precision ever occurs when any kind of integer is cast to a real, because real
mantissas (also known as significants) are represented by more bits — 52 to be precise — than any
Scilab integer type.

4.5.2.3. Troublesome Spots

Integer types are a nice idea, and were definitely missing to Scilab before Scilab-2.5 (official

release), but this said, we regretfully continue with our list of bugs. Unfortunately, it is not just a
matter of implemented versus unimplemented integer constructs. Even some seemingly working
constructs are problematic. Short of discouraging the use of integers types altogether, we go on
reporting some troublesome spots, hoping that they will be addressed in future releases. We point out
alternatives where appropriate.

4.5.2.3.1. Array Concatenation

In Scilab-2.5 (official release), there were serious bugs, which gave rise to wrong results even in the
simplest concatenations of integer arrays. For instance,

> [uint16(1), uint16(2)]

ans =

11 0!
->[ans, ans]
ans =

1 0 2 0!

Similar things happen with int8 and uint8, but not with int32 and uint32. These bugs appear to have
been corrected in subsequent versions of Scilab-2.5 (official release).

4.5.2.3.2. Mixed Type Expressions

Here, anything can happen, depending on the context and on the Scilab version. Most of the time,
overloading functions (see alS®ection 4.2 for operators that involve two different types are
undefined. Consequently, errors result from calling them. In several cases, however, wrong results
show up.

->int16(10) * 3.2

l-error 4
undefined variable : %i_x_s

The proper overloading function, integer-times-&alx_s , for the “* " operator is missing, and
this is reported as an error. If, however, the user enters
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> int16(10) * 3.2
ans =
30

in Scilab-2.5 (official release), while

> int16(10) * 3.2
ans =
-32678

in Scilab-2.5.1 (second beta version), and

->int16(10) * 3.2
ans =
4

in Scilab-2.6 (official release).

Among the numerical operatorsy™is a little more sophisticated. Mixed power operations are often
correct, they also retain the type of the integer operand for positive integer exponents, while they
give a real or complex result if the exponent is negative or non-integral. Thus,

> int16(2)7(-4)
ans =
0.0625

-> int16(4)\(1/2) —exponent is real!
ans =
2.

-> 4.0Nnt16(2)
ans =
16

-> typeof(int8(4)"int16(2))
ans =
int8

-> int16(-4)"0.5
ans =
1.225E-16 + 2.
All'is OK here? Well, not all doughnuts come out with a hole.
-> Uint16(-4)*0.5
ans =

255.99219

What about booleans? When booleans enter the game, the standard behavior in mixed real boolean
expressions is to treatt as1.0 and%f as0.0 (see als®ection 4.4.1L
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>%t + 1.0
ans =
2.

Not so with integers! Most of the time the user again runs into missing overloading functions. In
Scilab-2.5 (official release), however, the door was open to further bugs and oddities, which have
been addressed in the later versions. For instance, operations with int8’s were accepted, but the
results did depend on the order of the operands.

-> %t + int8(1)
ans =
T

->int8(1) + %t
ans =
1

->int8(1) + %f
l-error 4
undefined variable : %i_a b

Other integer types triggered undefined overload functions, reporting errors. Fortunately that is what
happens in any case from Scilab-2.5.1 (alpha version) on. Moreover, sneaking through the definition
holes of Scilab-2.5 (official release), the game went on with even stranger results, which changed
after each call. The following example was reported by Tom Bruhns

<tom_bruhns@agilent.com >,

->fl = %t + int8(0:20)
fl =
' TTTTTTTTTTTTTTTTTTTTT!

->f2 = %t + int8(0:20)
f2 =
' TTTTTTTTTTTTTTTTTTTTT!

>fl == 2
ans =

' TTTTTTTFFFFFFFFFFTFEFTEF!

Oh, maybe it was my imagination thiat == f2 did not make all “T" results ...
>fl == 2
ans =

I TTTTTTTFFFFFFFFFFFFFF!

What, not even the same answer as one lines ago? Ouch! Does this build confidence, or what?
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Upshot. Avoid mixed typed expressions like the plague, at least for the moment; avoid them harder
if you are still using Scilab-2.5 (official release). Perusedible ,int N, anduint N converters
(oriconvert ) as often as needed.

4.5.2.3.3. Mixed Type Comparisons

Up to the latest Scilab-2.6 (official release), comparisons between values of different types (doubles,
integers) are allowed. However, the results are not always consistent. This is yet another example of
mixed type expressions, now with relational operators. For instance, comparing a real scalar or
vector with a real scalar is valid.

> (1:2) > 1
ans =
T'F T

This is the standard behavior. Trying to do with integers, you enter dangerous grounds. Comparing
scalar integers of the same type is safe.

>int16(9) > int16(8)
ans =
T

>int16(9) < int16(8)
ans =
F

Sometimes even comparing different types yields correct results, as, for example,

>intl6(1:2) > int32(1)
ans =
IFT!

>int16(2) > 1
ans =
T

This would suggest that some sort of type conversion takes place before the comparison, however, up
to Scilab-2.5.1 (second beta version) this impression is wrong.

->intl6(1:2) > 1
ans =
'F F!

To put it another way, maybe this result is correct, as bolls(1) andintl6(2) appearing on

the left hand side are different from which is a double precision real value! But this latter
interpretation is inconsistent with the two examples above, which is disturbing. In Scilab-2.6 (official
release),
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->intl6(1:2) > 1

ans =

'T T

which is different, wrong, and not even amenable to the previous interpretation.

Similarly, consider the different behavior of a (meaningless) comparison of real and complex.

>%i > 1
l-error 4
undefined variable : %s 2 s

Fine! Now comparing an integer with a complex does neither produce an error, nor a correct result:

>%i > int16(1)
ans =
F

->%i < int16(1)
ans =
T

>%i == int16(0)
ans =
T

> -%i == int16(127)
ans =
T

with small differences depending on the actual Scilab version.

4.5.2.3.4. Vector-Scalar Comparison of Identical Type Integers

Here too, bugs are lurking under the surface. In principle an array can be compared to a scalar,
resulting in a boolean array of the size of the former. When doing that with integers of the same type,
the results can be wrong, in a way which strangely seems to be more related to indexing than to

comparison.

->ija = intl6(1:20);
->ija > int1l6(21)
ans =

|FFFFFFFFFFFFFFFFFFTT!

The last two entries of the boolean result are plain wrong, even though inspection proves that the
corresponding elements iaf are correct. If instead, the elementsafare explicitely referenced,

->ia(1:20) > int16(21)
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ans =
'FFFFFFFFFFFFFFFFFFFF!

the answer is correct. On the other hand, wrong results are also returned by expressions as
intl6(21) ,ia(l:$) > int16(21) andint16(21) < ia(1:20)

Upshot. It seems that the only relational expressions one can really trust areisitlemy
relop int_scalar , with identically-typed operands and explicit reference to the array elements,
orint_array relop int_array , with equally sized and identically-typed arrays.

4.5.2.3.5. System Dependence of Type int8

On GNU/Linux PPC, we found that the range of type int8 is identical to that of uint8; both assume
values from 0 to 255.

-> int8(-1)
ans =
255

However, Scilab regards the two as different types, and refuses to evaluate expressions involving
both of them.

->int8(1) + uint8(1)
l-error 4
undefined variable : %i_a_i

4.5.2.4. Integers in Bitwise Operations

To conclude with something functional: the operator’ “ &”, and “| ” can be used in integer
expressions. In this case, they act on the single bits of the representation of the integer value.

-> ~Uint16(1)
ans =
65534

> ~int16(1)
ans =
-2

>int16(1) | int16(4)
ans =
5

Bitwise and/or of two different integral types is not possible.

Bitwise operations are a bonus, when programming hardware at the register level. This is a case
often encountered in interfacing with external instruments such as data acquisition cards.
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To print integer values as hexadecimal strings, funatiee2hex exists. Though, funnilyjec2hex

is meant to accept reals as its only arguments. As previously mentioned for integer constants, no
special notation exists for hexadecimal values; the funatemhex , and its duahex2dec , are

mere formatting functions.

An alternative approach to bitwise operations, that might allow greater flexibilityithan
operations, is the following. Binary strings can be represented (wasting memory) by boolean arrays.
For example, for 8 bit strings, to fix the idea:

b8 = [%t %f %t %t %f %f %f %f] /l for 10110000
First define a suitable vector with the powers of two.
pow2 = 2/7(7:-1:0)

which is used in boolean to integer conversion

s = sum(pow2(b8))

and integer to boolean conversion

d2b = zeros(l, 8)

for i = 1:8

d2b(i) = int((s - d2b*pow2) / pow2(i))
end
b8 = d2b==1

Logical “and” and “or” operations map onto the usual logical expressions

c8 = a8 & h8
d8 = a8 | b8 Il etc.

and even bit shifts can be written clearly with vectors.

e8 = b8([2:8, 1))
f8 = b8([8, 1:7])

Such an approach has some advantages and some disadvantages. The main advantage is direct access
to a single bit, while the disadvantage is the larger memory consumption, the use of an extra array
dimension, and the need of time consuming boolean to integer conversion functions.
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4.6. Miscellaneous Unknown Spots

4.6.1. Maximum variable name length

Scilab accepts variables hames that are longer than 1024 characters, but only the first 24 characters
are significant. The identifying string oftst , ormlist can have more than 1024 characters, all

of which are significant. Theist /mlist -identifier length limit when overloading functions (see
Section 4.2.pwith the percent-syntax is 8 characters.

4.6.2. Starting scilex

For debugging purposes it is sometimes desirable to directly start the main Scilab dilarxy,
Scilab is usually launched via theilab  shell script. Both, the script and the binary live in the
SClbin directory. The script takes care of setting all environment variables, and finally fires up
scilex On the other hand, if one wants to run a debuggergsiy or ddd, or a profiler on Scilab,
then a manual invocation is the order of the day. See$désxion 8.1.2

Startingscilexdirectly is an option as long as the command-line editing goodies are not required,
and there is no need for any graphics. Actually, for minimum functionality only the environment
variable SCI must be set, then we are all set togElex A bashsequence to start Scilab
“manually” could look as shown iExample 4-1

Tip: From Enrico Segre: Under Win*, runscilab can be called from DOS prompt much as scilab
is in UNI*, e.g., runscilab -nw . The DOS output of commands invoked with unix go to the shell
window.

Example 4-1. Manually launching scilex

lydia@orion:~$ cd /site/X11R6/src/scilab

lydia@orion:/site/X11R6/src/scilab$ SCl="pwd’

lydia@orion:/site/X11R6/src/scilab$ export SCI

lydia@orion:/site/X11R6/src/scilab$ cd bin

lydia@orion:/site/X11R6/src/scilab/bin Jscilex -nw
Scilab
Scilab-2.5

Copyright (C) 1989-99 INRIA

Startup execution:
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loading initial environment

->

or shorter

lydia@orion:~$ export SCl=/site/X11R6/src/scilab
lydia@orion:~$ $SCl/bin/scilex -nw

Scilab-2.5
Copyright (C) 1989-99 INRIA

Startup execution:
loading initial environment

->

where we are assuming that Scilab is installetite/X11R6/src/scilab

4.6.3. Tuple Assignment

The most commonly used form of assignment is single variable assignment. Nonetheless, assigning
multiple values in one statement is possible (and no surprise for Perl or Python programmers).

->[x1, x2, x3] = (4, 2, 3)
X3 =
3.

Tuple assigment works as expected, performing the whole assigment operation in one single step.
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Warning

In version 2.5 the online documentation, help parents , gives the following,
wrong explanatory code:

X1, x2, ..] = (el, e2, ..) is equivalent to x1
=el,x2 =e2,..

The correct explanation is

X1, x2, ..] = (e1, e2, ..) is equivalent to first
performing %t1 = el, %t2 = e2, ..., and then x1 =
%tl, X2 = %t2, ..., where the variables %ti ,i =1, 2, ...

are invisible to the user.

To prove that tuple assigment works as promised, we swap the values of two vasialieis.

>a=1 b =2

o)
1

->[b, a] = (a, b) // swap
a =

1.

What one might expect, but what does not work is multiple assignment to parts of matrices (or lists),
i.e. the following code snipped does not work as naively expected

>v=1[0,00,a=0
\
! 0. 0. !

a

on L

->[a, v(1)] = (1, 2)
Warning: obsolete use of = instead of ==
!

l-error 41
incompatible LHS
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The obvious, but ugly workaround is using only scalar variables on the left-hand side of a aggregate
assignment, and then assigning these scalars to the appropriate matrix or list parts.

4.6.4. Dot as Member Selector

Scilab provides two different syntax constructs for the symbolic extraction/indertion of elements of a
tlist. (The extraction/insertion by index numbers follows the extraction/insertion) of elements from
matrices.) The documented syntax uses parenthesis and a selector string which has been defined for
the specific tlist.

->d = tlist(["dict", "key", "value"], "snafaz", 3.0 + 4.0*%i)
d =

d(1)
Idict key value !

d(2)
snafaz

d(3)
3.+ 4ii

->abs( d("value") )
ans =
5.

The alternative syntax uses dots “.” to seperate the name of the tlist-variable from the name of the
element, uncluttering the code.

-> -real(d.value) + imag(d.value)
ans =
1.

The advantages of the string notation are: (i) The element-names can contain whitespace. (ii)
Extraction/insertion under program control is easier.

Everything in this sub-sectionapplies to mlists, too.
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This chapter treats Scilab’s most powerful code abstraction: functions. The first s&etaion 5.1
introduces in the darkest details of user-defined functions. The second s8etition 5.2treats
libraries of user-defined functions.

5.1. Functions

Functions are Scilab’s the main feature for the abstraction of programming tasks. Thus, they deserve
a closer look.

See als®&ection 2.3

5.1.1. On(e)line Function Definitions

Scilab allows functions to be defined online, this is, at the command line, in two different forms. The
first form uses the builtin functiodeff

deff( function_head , function_body [, compile_flag 1)

wherefunction_head , function_body , andcompile_flag are character strings. Most
often these strings are given literally, for example,

deff('y = heavyside_theta(x)’, 'if x <= 0, y = 0, else y = 1, end)

If function_body contains statements that include literal strings themselves, the quotes of these
strings must be doubled, creating a hard to understand mess. This quoting disaster is avoided by
using the second form of online function definition, which uses the keyWwordon and the

syntax of function files (sci ).

function function_head , function_body , endfunction

The crucial difference betwedunction in a function file and in an online definition is that in a file
theendfunction  keyword isoptional whereas it isnandatoryin an online definition.

function a = row_avg(m), s = sum(m, ‘rows’), a = sum(s)/size(m, 'cols’), endfunction

The definition of a function with th&anction  andendfunction  keywords does not have to fit on

a single input line. It can span multiple lines as the interpreter goes into “function definition mode”
when it parsegunction . This mode resembles multi-line input in command shells and Python
(though Scilab does not change its prompt to notify the user).

-> function y = foo(x)

> y = 10 + x + 0.5*x"2
-> endfunction
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->foo(4)
ans =
13.

Both forms allow for nested function definitions — see the following sec8eation 5.1.2

5.1.2. Nested Function Definitions

Function definitions can be nested. The usual scoping rules apply. Online nested function definitions
with deff are possible, but some kind of awkward, because of the massive number of gafftes.
in function s are easy to the eye.

Example 5-1shows a function that defines four functions in its body.

Example 5-1. Functiontauc

function [t, rmin, r0] = tauc(EO, M, s, D)
/I Compute the round-

trip time t, the minimum distance rmin and the point
/I of vanishing potential for a point-

like particle with kinetic energy (at

/I r -> infinity ) EO, mass M in a Morse potential of steepness s and
/I depth D.

/I Morse potential

deff(U = Umorse(r, steepness, depth)’, ..
‘e = exp(-r * steepness); ..
U = depth*(en2 - 2*e))

/I point of vanishing potential
deff(’y = equO(x)’, 'y = Umorse(x, s, D)’

Il reflection point
deff(y = equi(x), 'y = Umorse(x, s, D) - EO)

deff(tau = integrand(x)’, ..
‘tau = sqrt( M / (2*(EO - Umorse(x, s, D))) ))

/I rationalized units...
units = 10.0e-10 / sqrt(1.380662e-23 / 1.6605655e-27)

/I calculate endpoints of definite integral
r0 = fsolve(-10.0, equ0)
rmin = fsolve(-10.0, equl)

/I evaluate definite integral
[t_unscaled, err] = intg(rmin, r0, integrand)

80



Chapter 5. User Functions

t = 2 * units * t_unscaled
endfunction

As of Scilab version 2.6, nestdahction s do not work reliably, therefore, constructs like

function foo
function bar

endfunction

endfunction

should be avoided by usindgff when definingbar . The fingerprint of nestefiinction s is
error 37, “incorrect function at line ...". The do-not-nest limitation is raisecfwe-liners where
nesting works without problems.

-> function y = foo(x), ..

> function a = bar(b), ..
-> a =10 + 2.0%*b, ..
> endfunction, ..

-> y = bar(x) / x, ..
-> endfunction

5.1.3. Functions Without Parameters or Return Value

The “Introduction to Scilab”, SQdioc/Intro.ps , solely explains functions that have one or more
parameters, and return one or more values. Yet, Scilab permits all conceivable combinations of
number of parameters and return values, including functions that have no parameters, or no return
values.

If only one value is returned the square brackets in the function definition are optional. Therefore,
the function head

function [y] = foo(x)
can be abbreviated to
function y = foo(x)

However, this is 100% pure syntactic sugar. What is much more important — and a valuable feature —
is the possibility of defining a function that returns nothing as

function ext_print(x)
printf("%f, %g", X, X)
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does. In Fortran parlanext_print ~ would be called ®UBROUTINEwWhereas Ada programmers
would term it aprocedure

Of similar importance is the definition of parameterless functions.

function t = hires_timer()
cps = 166e6
t = rdtsc() / cps

The parentheses after the function name are optional when defining the function, but not when
calling it. Therefore the declaration of the last function could have been abbrevidtedtton t
= hires_timer , but the call tadtsc could not have been written as= rdtsc / cps

For further information about the omission of parenthesis when calling a functioBestien 5.1.8

5.1.4. Named Parameters

The associations between the formal parameters of a function and its actual parameters may be
positional or named. A positional parameter association is simply an actual parameter. All the
positional parameter associations in a function call must precede all the named parameter
associations. Thus, in the function call (segplot 's definition inExample 5-2

myplot(x, y, pointtype = 4, style = ’linespoints’, linetype = 2)

the first two parameter associationsy) are positional, and the last thresy{e |, linetype ,
pointtype ) are named. Two things in the previous line of code are worth noting:

- When parameters are associated via their names the formal parameter’s position is irrelevant.

- Positional parameter associations have nothing to do with optional parameters. A named
parameter can be handled as an optional parameter as well as a positional parameter.

Calling a function with named parameters does not require any special code in the function. Function
myplot is an simple user-defined function:

Example 5-2. Function accepting named arguments
function myplot(x, y, style, linetype, pointtype)
/I checks for optional parameters would go here :)

select style
case 'lines’ then
plot2d(x, vy, linetype)
case ’'points’ then
plot2d(x, y, -pointtype)
case 'linespoints’ then
plot2d(x, y, -pointtype, '020’)
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plot2d(x, vy, linetype, '000")
end

To make the two parameteisetype , andpointtype  optional parameters, we add a check for
the existence of these parameters in the function’s, i.e. the local scdpeamnple 5-3nyplot gets
extended in this direction.

Example 5-3. Function accepting optional arguments

function myplot(x, y, style, linetype, pointtype)

if ~exists(linetype’, 'local’) — quotes around the parameter name are required
linetype = 1

end

if ~exists('pointtype’, ’local’) —’local’ excludes global variables from search
pointtype = 1

end

select style

case ’'lines’ then
plot2d(x, vy, linetype)
case ’points’ then
plot2d(x, y, -pointtype)
case 'linespoints’ then
plot2d(x, y, -pointtype, '020’)
plot2d(x, vy, linetype, '000")
end

Now myplot can be called in any of the following forms:

myplot(x, y, ’'lines’) — only positional parameters
myplot(x, y, style = ’linespoints’) — 3rd parameter is named
myplot(x, y, 'points’, 2, 3) — override defaults
myplot(x, y, linetype = 5, ..

style = ’linespoints’) —named params, one override
myplot(x, y, pointtype = 4, ..

style = ’linespoints’, .

linetype = 2) —named params where possible

5.1.5. Bulletproof Functions

If we want to write bulletproof Scilab functions, we have to take care that our functions get the right
number of arguments which are furthermore of the right type, and correct dimension. This is
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necessary because of Scilab’s dynamic nature allowing us to pass arguments of different types,
dimension, etc. to a single function.

We discuss the issues of writing robust function udiixgmple 5-4as an illustration. The complete
function definition is given irChapter 10

Example 5-4. Functioncat

function [res] = cat(macname)
/I Print definition of function 'macname’
/I if it has been loaded via a library.

[nl, nr] = argn(0); a
if nr ~= 1 then
error('Call with: cat(macro_name)’);

end
if type(macname) ~= 10 then ad
error(Expecting a string, got a ’
+ typeof(macname));
end
if size(macname, *) ~= 1 then ad
sz = size(macname);
error('Expecting a scalar, got a ’
+ sz(1) + X' + sz(2) + ' matrix’)
end
[res, err] = evstr(machame); d
if err ~= 0 then

select err

case 4 then
disp(macname + ' is undefined.’);
return;

case 25 then
disp(macname +
return;

1

is a builtin function’);

else
error('unexpected error’, err);
end // select err
end // err ~= 0

O First, we check how many actual parametes has received. The built-iargn returns the
number of left-hand side — or output — variabtés(In this example we do not make userdf.),
and the number of right-hand side — or input — values

Ensuring the correct number wiput arguments always is the first step. Otherwise we cannot
assume that even accessing a parameter is valid. The number of output values is not as critical,
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for calling a function with less output variables than specified in the function’s signature causes
the extra output values to be silently discarded.

After learning the number of actual parameters, we immediately check whether it is in the right
range. Our example simply terminates with an error if the number of arguments is incorrect.

O The next thing to address are the types of the arguments. Again we let the function fail with an
error if it does not get what it wants, but this is not the only possible way of handling these kinds
of errors.

It is conceivable that we convert from one type to another, say from numeric to string.
Furthermore, it is possible that the type of the arguments determines the algorithm chosen, a
feature normally advertised under the name “function overloading”"$ee&on 4.2

0 Finally, we examine the arguments’ structure. A function can e.g. allow scalars only, or accept
scalars and matrices. Here, we enforce a scalar. In other functions certain dimensional relations
of several input parameters must be enforced. E.g. the matrix multiplicatida is only
defined forsize( A, 'c’) == size( B, )

O Now we can start with the real work.

At first glance all this checking gizmos might seem exaggerated. To do it justice we should keep in
mind that it is only necessary if a function must work reliably in different environments. All

functions that a library exports belong to that class, because the library writer does not know how the
functions will be used in the future. Quick-and-dirty functions are a different thing, so are functions
that are never called interactively.

5.1.6. Function Variables

Functions are a data type on their own right. Therefore, they themselves can be arguments to other
functions, and they can be elements in lists.

-> deff(y = fun(x), 'if x > 0, y = sin(x); else, y = 1; end)
-> fun(%pi / 2)

ans =
1.

-> fun(-3)

ans =
- 1.

->bar = fun
bar =

[X]=bar(y) — bar is a complete copy of fun

-> typeof(bar)
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ans =
function

->deff(a = fun(u, v, w), 'a = U2 + v"2 + 2*u*rv - w"2')
Warning :redefining function: fun

-> bar(%pi / 4)"2
ans =
0.5

->fun(2, 3, 4)
ans =
9.

As the example shows, Scilab employs its usual copy-by-value semantics when assigning to
function-variables, consistent with the assignment of any other data type.

5.1.7. Functions as Parameters in Function Calls

As mentioned above, user-defined functions can be passed as parameters to (usually different)
functions. Builtin functions have to be wrapped in user-defined functions before they can be used as
parameters.

The following example defines a functional that implements a property of Dirac’s delta distribution.
-> deff’y = delta(a, foo)’, 'y = foo(a)’)

-> delta(cos)
l-error 25
bad call to primitive :cos

-> deff(’y = mycos(x)’, 'y = cos(x)’)

-> delta(0, mycos)
ans =
1.

The next example is a bit more convoluted, but also closer to the real world. We define a new
optimizer function, calledhinimize , which is based on Scilabiptim function.minimize

expects two vectors of data poingstata andydata , a vector of initial parameters ini , the
function to be minimizedunc , and an objective functionabj .

The advantage of defining separate model and objective functions is an increased flexibility as both
can be replaced at will without changing the core minimization functionimize

function [f, p_opt, g_opt] = minimize(xdata, ydata, ..
p_ini, func, obj)
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/I on-the-fly definition of the objective function
deff([f, g, ind] = _cost(p_vec, ind)’, ..
'[f_val, f grad] = func(xdata, p_vec); ..
[f, 9] = obj(f_val - ydata, f grad));

[f, p_opt, g_opt] = optim(_cost, p_ini);

minimize needs the model functidonc that returns the value and the gradient at all poinfisr a
given vector of parametefs vec . Moreover, we need the objective functiona that gives the
“cost”, as well as the direction of steepest descent in parameter space.

In the example we choose a quadratic polynomial for the medelmodel , and least squares for the
objectivelsq .

function [f, g] = my_model(x, p)
g = [ones(x), X, X.*X];
f = p@) + x*p@2) + x*p@3));

function [f, g] = Isq(diff, grad)
f = 0.5 * norm(diff)"2;
g = gl’ad’ * dlff,

Given these definitions, we can calinimize

dx = [0.0 1.0 2.0 2.5 3.0];
dy = [0.0 0.9 41 6.1 9.5];
p_ini = [0.1 -0.2 0.9];

[f_fin, p_fin, p_fingrad] = ..
minimize(dx, dy, p_ini, my_model, Isq)

xbasc(); /I clear window

plot2d(dx, dy, -1); /I plot data points ...

xv = linspace(dx(1), dx($), 50);

yv = my_model(xv, p_fin);

plot2d(xv, yv, 1, '000"; /I ... and optimized model function

5.1.8. Omitting Parentheses on Function Call
by Glen Fulford

The parentheses of any one-parameter function can be omitted, if the function accepts a string
argument. Moreover, the quotes for a literal string argument can be left out, too.

The is especially useful, when working interactively, and loading functions, or scripts. There is no
need to type until your fingers bleed by saying

-> getf(*foo.sci’)
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as the next two examples work just as well.
-> getf ‘foo.sci’

and even

-> getf foo.sci

is OK. Note that this is not only true for built-in, but also for user-defined functions.

Functionexec is an exception to the rule that a semicolon suppresses any output of the preceeding
clause, if it is invoked without parenthesis. In fastec does echo the commands it executes if used
without parenthesidespitea trailing semicolon, this is

-> exec script.sci;

with semicolon gives same results as
-> exec(’script.sci’)

without semicolon, whereas

-> exec('script.sci’);

does not echo the commands of the script file.

5.1.9. Functions in tlist sand mlist s

Currently the only composite data structures that allows for storafymcifon s are the typed list,
tist , and the matrix-like listmlist

Given the typed-list = tlist(funlist_t', 'x0’, ’x1’, ‘fun’], -0.5, 0.5, f)

wheref is e.g. defined adeff(y = f(x)', 'y = 2.0*x + 1.0") , the non-function
components are accessed as usual, i.e.,

> 1("x1")
ans =
05

->t.x0
ans =
- 05

See als®ection 4.6.4

However, function components cannot be called directly,t¢fgn")(0) ort.fun(0) . Instead,
we go on a little detour, either by callifgval or by using a dummy variable.

->feval(0, t("fun"))
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ans =

->feval(0, t.fun)
ans =
1.

> f = t("fun”); _f(0), clear _f
ans =
1.

-> f = tfun; _f(0), clear _f
ans =
1.

Both workarounds go well with argument vectors to the function. Assigning to a dummy variable is
faster than usinggval

macrovar

Themacrovar function could be called the functional cousin of #iee function. The primary
purpose ofnacrovar is to support the Scilab-to-Fortran translator, but it can be useful for other
purposes, too.

macrovar reveals five important attributes of a user function. These are the names of all

- input variables,

. output variables,

+ global variables,

- functions called, and
« local variables.

One example of an interesting usentdcrovar is an integration routine that accepts integrand
functions with an arbitrary number of arguments, i.e. over arbitrary many dimensions.

function vol = int_cube(ifun)
/I integrate ifun in an appropriate hypercube
/I ©O, .., 0), ..., (4, .., 1)

ifun_var = macrovar(ifun)
ifun_sz = size(ifun_var(1)) // names of input arguments
ifun_dim = ifun_sz(1)

for d = 1:ifun_dim

/I integrate in one dimension
end
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5.2. Libraries of sci -functions

Most users think there is no difference between loading a function immediatedgt¥ia or loading
it on-demand vidib . However, there are cases whgmf andlib produce different resuftsTo
stay clear of trouble it is useful to know what exaaibtf andlib do.

5.2.1. getf vs. lib

getf. getf(" filename ") immediately, i.e. whegetf is executed, loadall functions in
filename . Itis like saying: “Your functions — give them to me!” After a successfetf all
functions fromfilename  show up in the workspace. (Twho before and afterwards.)

getf is most useful during the development process, when functions are changed often. It also
works well during production runs, if the number of functions loaded from the file is not too high. To
suppress repeated loading of the same function-file, the following construct can be used:

if ~exists("myfunction”) then
getf("myfile.sci")
end

wheremyfunction  is one of the functions imyfile.sci . Do not forget the quotes around the
function’s name in the call texists !

lib. libvar = lib (" lib-directory "y 2 on the other hand does not load any function when the
lib is executed. Instead, it marks all function-names listed in thdilfildirectory /names as
available for later loading.

Note: Note that lib-directory must end with a directory separator, i.e. a “/” in UNI*.

A function fromlibvar  will be loaded when its — at that time undefined — name is first
encountered during execution. It will never be re-loaded afterwards, even if the défimirfge or

the library change. The crucial word in the next-to-last sentence is “undefined”: If the library
function’s name coincides with the name of a built-in function or an already defined user-function,
the function definition from the library withot get loaded!

1. Thanks for pointing out the problems of Scilab’s library handling in generaliBnégenlib  in particular go to
Alexander Vigoder.

2. The online documentatiohglp lib, somewhat misleadingly call&-directory alib_path |, thoughitis only a
single directory, not a path.
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The function-names ihib-directory /names must refer to compiled functions, i.ein -files, in
lib-directory . How to generatéin -files? Scilab offers three ways to convert a human
readablesci -file into compiled bin-format.

Caution

The bin-format might change from one version to the next. When switching
Scilab versions, it is advisable to delete all bin -files and regenerate them with
the newer Scilab.

- Functionsave copies an arbitrary Scilab variable or user-defined function to a file while
compiling it to binary format. Given the functidao , we can generate itsn -file interactively
with
-> foo

foo =
[yl=foo(x)

-> save("foo.bin", foo)

-> unix_w("ls -I foo.bin")
-rW-rw-r- 1 Ivandijk users 204 Nov 14 09:30 foo.bin

foo must be accessible wheave is executed, and the function’s name in the calidee is not
quoted.

- Scilab supports the (undocumentecmp command-line parameter to compilea -file into a
bin -file.

Ivandijk@hydra:~/hsc/scilab/src/minilio $ cat foo.sci

function y = foo(x)

y =1+X

Ivandijk@hydra:~/hsc/scilab/src/minilib $ scilab -comp foo.sci

generating foo.bin

Ivandijk@hydra:~/hsc/scilab/src/minilio $ Is -l foo.*
-FW-rw-r- 1 Ivandijk users 204 Nov 14 09:37 foo.bin
-rW-r-r- 1 Ivandijk users 30 Nov 8 11:45 foo.sci

This way goes very well wittvakefile s, as it implies the simple rule

# -*- makefile -*-

%.bin: %.sci
scilab -comp $<

91



Chapter 5. User Functions

« Thegenlib function, which is described further down $ection 5.2.2

The names of the files which are part of the library are collectedimes in a very simple format:
one function-name per line, e.g.:

Ivandijk@hydra:~/hsc/scilab/src/minilib $ cat names
bar

baz

foo

multi

myfun

One function per file workaround:  If a sci -file is intended to hold more than one function
which all should be equally accessible from within Scilab, the following workaround can be used,
given the operating system supports (symbolic) links.

Let us assume the multi-function sci -file is manyfun.sci . For every function funl , fun2 , ...,
create a (symbolic) link to the “main” bin -file, manyfun.bin , like

In -s manyfun.bin funl.bin
In -s manyfun.bin fun2.bin

and generate names afterwards.

The advantage of this hack is that it makes all functions from manyfun.bin  available. Its
disadvantage is that it is hard to maintain, e.qg. if functions are added to or deleted from
manyfun.sci and manyfun.bin  has to be re-compiled, it is possible that some new links must
be set up, and old links must be deleted.

There are plenty of possibilities to generatenes outside Scilab, like e.g.

# -*- makefile -*-

sci_src:=$(wildcard *.sci)
sci_bin:=$(subst .sci,.bin,$(sci_src))

names: $(sci_bin)
rm -f names

for n in $(sci_bin); do echo $$(basename $$n .bin) » names; done

or alternatively, if the shell has process substitution,

# -*- makefile -*-
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names: $(sci_bin)
sed -e 's\.bin$//' <(Is -1 *.bin) > names

However, these solutions are unsatisfactory for large numbers of filenames. The reason for this
shortcoming is the limited command-line length in most shells. In the first example make(1) expands
$(sci_bin)  to the names of abin -files, in the second the shell does. Both might overrun the

shell's command-line length limit. Therefore, a reliable solution does avoid expanding the filenames
at the command-line. The following Perl-scrifitixample 5-5demonstrates a more robust solution.

Example 5-5. Generatenames for lib : gen-names

#!/usr/bin/perl -w

# name: gen-names - generate "names" file for the use with
# Scilab’s built-in lib function
# author: L. van Dijk

# last rev.: Tue Nov 14 09:10:31 UTC 2000
# Perl ver.: 5.005_03

use strict;
use |0O::File;

unless (@ARGV) { $ARGV[0] = " }
foreach my $dir_name (@ARGV) { process_directory($dir_name) }

sub process_directory {
my $dir_name = shift;

my $names = |0::File->new("> $dir_name/names")
or die "Cannot open \'$dir_name/names\: $\n";
opendir DIR, $dir_name or die "Cannot open \'$dir_name\: $\n";
while (defined($_ = readdir DIR)) {
next unless s/\.bin$//;
print $names "$_\n";

}
closedir DIR;

gen-namesds either called without an argument, then it creatases from the bin-flenames in the
current working directory. If the argumentsden-namesare directories, they are processed in turn,
each directory getting their respectivemes file.

After all desiredsci -files have been convertedtin -files and the matchingames-file has been
written, the library is activated from the Scilab prompt:

->minilib = lib("/home/lvandijk/hsc/scilab/src/minilib/*)
minilib =

Functions files location :/home/lvandijk/hsc/scilab/src/minilib/
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baz bar foo myfun multi

libvar ,in our exampleninilib  has got a special type, library. As you can sewjlio  holds

the information about the library, namely its defining directory and all functions it exports. To lookup
the functions in a library, simply type the library variable’s name. For a reverse lookup, i.e. searching
to which library a function belongs, Scilab has thigereis  function.

-> whereis myfun
ans =
minilib

The non-mandatory naming convention for library variables suggests to afifpenid a library
variable name, e.gercentlib , fraclablib ,soundlib , xdesslib

libvar contains all necessary information about the library, and it is just an ordinary variable.
Thus, it is lost when the Scilab session is closed. To make a library definition persistent, we have to
perform two further steps:

1. Translatdibvar  into a re-loadable format. Our old friend, tkave function does that job
for us.

-> save("/home/lvandijk/hsc/scilab/src/minilib/lib", minilib)

2. Reload the library definition on every start of Scilab by placing the line

load("/home/lvandijk/hsc/scilab/src/minilib/lib™);

in the run-code file-/.scilab . See also the primary Scilab run-code file, SEléb.star

The — again non-mandatory — file naming conventiorsbwe d library variables is to call therib

5.2.2. genlib

genlib reduces the process of compiling all necessary-files, generatingames, and finally
saving the library variable to one step:

genlib(" library-variable ", lib-directory )

where the library variable names must be passed as a gfeinith  always saves
library-variable in lib-directory lib .
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5.2.3. Library Caveats

5.2.3.1. Library Files and Library Functions
Important: Scilab’s library mechanism only works well if

- every sci -file in the library contains only one function, and
- the sci -file name without extension is identical to the function name in the file.

In other words: function foo must live in file foo.sci  as a hermit.

Multiple functions per file are allowed; Scilab will not even generate a warning if a file with more

than one function is used in a library. But the user should restrict the use of this feature to helper
functions. A helper function is a function that only assists the main (not in the C-meaning) function,
the one which gives the function-file the name. Special attention should be payed to the names of
these “hobo” functions, which ride in the name of a real library function. They can cause name
clashes with other functions. To avoid these underscores, dollar signs, or sharp symbols should be
prepended to the function name, thereby faking a separate name space. This is demonstrated in the
function filemy_gamma.sci :

/I file: my_gamma.sci
function a = my_gamma(z)

if abs(z - int(z)) <= %eps and z > 0.0 then
a = $ faculty(int(z) - 1)

else
a = gamma(z)
end
endfunction
function k = $_faculty(n) — prepend "$_"
k = prod(1 : n)
endfunction

/I end file my_gamma.sci

5.2.3.2. On-Demand Loading

The on-demand loading of symbols from libraries can cause confusion (on the user’s side) when a
library symbol name clashes with the name of a “normal” variable.

Assume the library in the current directory holds the single fundtion which is defined as follows.

function y = foo(x)
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y =x + 05
endfunction

Consider a session that activates the library and defines a variable with the same name as the

function from the library.

->foolib = lib("./")
foolib =
Functions files location :./

foo

-> foo
foo =
[y]=foo(x)

-> foo(2)
ans =
25

->foo = 100
Warning :redefining function: foo

foo =
100.

-> foo
foo =
100.

->foo(2)
ans =
25

Functionfoo in libraryfoolib  and variablgoo peacefully coexist. If variabléwo is defined
before libraryfoolib  gets activated the same behavior results, only the warning message does not

appear as library functions load silently.
Clearingfoo removes the variable. If variabfeo does not exist, clearingo removes
functionfoo , but the next time symbdbo is referred to again, functioieo in library foolib
be loaded. To permanently clear function from the workspace, the association with
library foolib  must be removed firstiear foolib; clear foo . Now, functionfoo is
undefinedandits definition will not be reloaded from librarfgolib

will

5.2.4. Loading Non-Functions With lib

Thelib function is not picky in what it loads into the workspace. In the previous seditonéas
been applied to directories that contain ofilgs of compiled functionshis is “bin " files.
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However, there is no restriction at all $¢ave other entities than functions, for example variables, to
“.bin "files. In casdib finds a saved variable in a directory, it will load it into the workspace as a
local variable.

/I my_sinc(x) uses the external parameter my_sinc_n
function y = my_sinc(x), ..
if x == 0 do ..
y = my_sinc_n, ..
else ..
y = sin(my_sinc_n * x) / (my_sinc_n * x), ..
end, ..
endfunction

save("my_sinc.bin", my_sinc)
clear my_sinc

my_sinc_n = 100;
save("my_sinc_n.bin", my_sinc_n)
clear my_sinc_n

Now assume thatames in directory/tmp contains

my_sinc
my_sinc_n

Note: genlib only considers “.sci " files. To get a variable into a library, the variable has either to
be defined in a separate “.sci " file, or it manually must be save ed and its name added to names.

Then bothmy_sinc andmy_sinc_n are loaded with the followingb call and can be used in the
usual way:

->sinc_lib = lib("/tmp/")

sinc_lib =

Functions files location :/tmp/
my_sinc_n my_sinc

->my_sinc_n
my_sinc_n =
100.

->my_sinc(1.0)
ans =
- 0.0050637

->my_sinc.n = 1

Warning :redefining function: my_sinc_n
my_sinc_n =
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1.
->my_sinc(1.0)
ans =

0.8414710

The above excerpt of a session transcript shows that the value of the vamalec_n , which has
been loaded witkib is used in the call of functiomy_sinc .
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Scilab—The fastest thing from France
since Django Reinhardt.
Ch. L. Spiel

In this chapter we discuss how expressions can be written to execute more quickly while doing the
same thing. Scilab is powerful and flexible, therefore there are plenty of things one can do to speed
up function execution. On the downside there are a lot of things the can be done the wrong way,
slowing down the execution to a crawl.

In the first part of this chapte§ection 6.1we focus on high-level operations that are inherently
executed fast. The main class to name here are vectorized operations. Another class are all functions
that are constructing or manipulating vectors or matrices as a whole. The second part of this chapter,
Section 6.2deals with the extension of Scilab through compiled functions for the sake of increased
execution speed. We close with a section on how to compile Scilab itself to increase its performance
with Section 6.3

6.1. High-Level Operations

Not using vectorized operations in Scilab is the main source for suffering from a slow code. Here we
present performance comparisons between different Scilab constructs that are semantically
equivalent.

6.1.1. Vectorized Operations

The key to achieve a high speed with Scilab is to avoid the interpreter and instead make use of the
built in vectorized operations. Let us explain that with a simple example.

Say we want to calculate the standard scalar proslo¢two vectorsa andb which have the same
lengthn. Naive as we are, we start with

s =0 /I line 1
i=1 /I line 2
while i <= n /I line 3
s = s + a(i) * b(i) /I line 4
i=i+1 /I line 5
end /I line 6

Here Scilab re-interprets lines 3 to 5 in every round-trip, which in totaltimes. This results in
slow execution. The example utilizes no vectorization at all. On the other hand it uses only very little
memory memory as no vectors have to be stored.

The first step to get some vectorization is to replacenthie  with afor loop.
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s =0 /I line 1
for i = 1:n /I line 2

s = s + a(i) * b(i) /I line 3
end /I line 4

Line 2 is only interpreted once; the vector 1:n is set up and the loop body, line 3 is threaded
over it. So, only line 3 is re-evaluated in each round trip.

OK, it is time for a really fast vector operation. In the previous examples the expression in the loop
body has not been modified, but we can replace it with the element wise multiplication operator
and replace the loop with the built-tum function. (See als&ection 6.1.3.3

s = sum(a .* b)

One obvious advantage is, we have a one-liner now. Is that as good as it can get? No, the standard
scalar product is not only a built-in function it is also an operator:

s=za*b

We summarize the timing results of a P11/330 GNU/Linux-systerdhle 6-1

Table 6-1. Comparison of various vectorization levels

construct MFLOPS
while 0.005
for 0.008
* and sum 1.7
* 2.8

In other words the speed ratio is 1:1.6:330:550. Of course the numbers vary from system to system,
but the general trend is clear. The figures tell us two things:

1. Keeping the problem size the same, a vectorized operation is over a hundred times faster than
the comparable interpreter (emulated) operation.

2. In the same time Scilab executes several hundereds or thousands of vectorized operations, it can
only run a single interpreted operation.
->n=1000; timer(); for i=1:n, sqrt((i-1)*%pi/n); end; timer()
ans =
0.05

->n=100000; timer(); sqrt((1:n)*%pi/n); timer()

ans =
0.04
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The latter point is a valuable starting point for many vectorizations. This holds particularly for partial
vectorizations, where the operations under consideration cannot be replaced by a single operator or
function call. If a slow interpreted command cannot be replaced by a vectorized operator — which
would result in a speed-up of a factor of 500 say, parts of the command might be amenable to
vectorization. This partial vectorization can replace parts of the expression with vectorized
operations. The important rule is that several hundred up to thousands of vectorized operations can
be traded in for the interpreted operation to be replaced.

In the next example the matrixis treated as a collection of row-vectors. The problem is to subtract
row-vectorb from the rows ima. Obviously, this can be achieved with a loop. The faster way is to
castb into a matrix of the same shapeaand then subtract the two matrices. What seems to be a
detour — duplication the entries bf— turns out to be advantageous for performance.

a = [2.56, 2.85, 2.66; ..
3.74, 3.25, 3.21; .
4.05, 4.89, 4.49; ..
5.90, 5.94, 5.37];
b = [1.01, 1.67, 1.79];
[m, n] = size(a);

/I non-vectorized
c0 = zeros(a);
for i = Lim
cO(i, ) = a(i, ;) - b;
end
c0

/I partial vectorization
cl = a - b(ones(m, 1), 1)

->m = 1000; n = 200; a = rand(m, n); b = rand(1, n);

->timer(); cO = zeros(a); for i = 1:m, cO(, :) = a(, :) -
b; end; timer()
ans =

0.19

->timer(); c1 = a - b(ones(m, 1), :); timer()
ans =
0.07

6.1.2. Avoiding Indexing and Resizing

Accessing a single vector-element or matrix-element in a (often even nested) loop is slow.
Sometimes the loop/index construct cannot be avoided, but in many cases it can be replaced with an
equivalent vectorizable expression. Moreover, if you cannot get around indexing single elements, at
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least avoid resizing (most often: growing) the vector or matrix. Compare the following three
examples.

/I (1) insert element at non-existent position => autovivicate element
v =]
for i = 1in

v(i) =i

end

/I (2) insert into pre-sized vector
v = zeros(1, n)
for i = 1in

v(ii) =i

end
and

/I (3) append to existing vector

v =]
for i = 1:n

v = [v, i]
end

Snippet (2) is the fastest of the three. It should be used whenever the final size is known in advance,
or if the final size can be calculated in an easy way. Appending to an existing vector or matrix (3) is
almost twice as fast as forcing a new element to spring into existence by indexing (1). In the authors
opinion, snippet (3) is the clearer solution in comparison to (1) for all problems where the final
vector size cannot be determined in advance.

But again for our specific example a built-in operator exists that does the same job at lightning
speed: the range operator, colori,"which is described in detail iSection 6.1.3.1

/I (4) range generator (colon operator)
v = 1in

The speed ratio of examples (1), (2), (3) and (4) is approximately 1:20:2:4000.

In the next exampleExample 6-1the functions actually try to do something useful: they mirror a
matrix along its columns or rows. We show different implementationsiobr N that all do the
same job, but utilize more and more of Scilab’s vector power with increasing function hdex

Example 6-1. Variants of a matrix mirror function

function b = mirrorl(a, dir)
/I mirror matrix a along its
/I rows, dir = 'r' (horizontal)
/I or along its columns, dir = 'c’ (vertical)

[rows, cols] = size(a)
select dir
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case 'r' then
for j = 1 : cols
for i = 1 : rows
b(, j) = a(rows - i + 1, ))
end
end
case 'c’ then
for j = 1 : cols
for i = 1 : rows
b@, j) = a(i, cols - j + 1)
end
end
else
error("dir must be r
end

or "c™)

function b = mirror2(a, dir)
/I same as mirror 1

[rows, cols] = size(a)

b =1
select dir
case 'r' then
fori = rows : -1 : 1
b = [b; a(i, :)]
end
case 'c’ then
fori =cols :-1:1
b = [b, a(, )]
end
else
error("dir must be "r" or "c™)
end

function b = mirror3(a, dir)
/Il same as mirror 1

[rows, cols] = size(a)
select dir
case 'r' then
i=rows :-1:1
b = a(i, )
case 'c’ then
i=ocols :-1:1
b = a(, i
else
error("dir must be "r" or "c™)
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end

function b = mirror4(a, dir)
/I same as mirror 1

select dir
case 'r' then
b = a($:-1:1, 1)
case 'c’ then
b = a(, $-1:1)
else
error("dir must be "r" or "c™);
end

Besides the performance issue discussed here the functi@xaimple 6-lddemonstrate how much
expressiveness Scilab has got. The solutions look quite different, though they give the same results.
The benchmark results of all functions are plotteéigure 6-1 and an extensive discussion is found

in Section 6.2.1In brief the functions get faster from top to bottom, functioirorl is the
slowestmirror4  the fastest.

6.1.2.1. $-Constant

The last of the examplesyirror4 , introduces a new symbol, the “highest index’along a given
direction. The dollar sign isnly defined in the index expression of a matrix. Aalways is the

lowest (or first) index$ always is the highest (or last). The dollar represents a constant, but this
constant varies across the expression! More precisely it varies with each matrix dimension. Let us
make things clear by giving an example.

->m = [ 11 12 13; 21 22 23 |,

>m(2, $)
ans =
23.

>m($, $)
ans =
23.

>m(, $/2 + 1)
ans =
! 12. !
o221
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6.1.2.2. Reshaping

Reshaping a matrix in Scilab is a cheap operation. A 1000-times-1000 matrix is reshaped into a
2000-times-500, or a 250-times-4000 matrix at very little computational cost. However, keep in
mind that the time to reshape is proportional to the total size of the matrix, i.e., reshaping an
n-times-m matrix is an O(n*m) operation.

When to use reshaping? If an algorithm that requires multiple indices into a matrix can be mapped
onto an equivalent one that accesses a vector, or vice versa, it can be a benefit to work with the more
convenient representation and reshape afterwards.

Our example to illustrate this is simple, but gives you the gist of reshaping. Sorting into
lexicographical order is most easy done with a vect@morf can sort anatrix into lexicographical
order, se&ection 6.1.3.3,6ut we want to demonstrate reshaping and not the functionality of
gsort ) To get a matrix where strings of same first letters are in the same rows, weatse .

->perm3 = [cab’, 'bca’, 'acb’, 'bac’, 'cba’, 'abc’);
-> sorted_perm3 = gsort(perm3, 'c’, V),

-> matrix(sorted_perm3, 2, 3)

ans =

labc acb !

! !

lbac bca !

! !

lcab cha !

See als@ection 6.1.3.3.&boutmatrix , and the following sectior§ection 6.1.2.&bout the
flattened matrix representation.

6.1.2.3. Flattened Matrix Representation

Thes$ sign leads us to the flattened or vector-like representation of a matrix, if we rewrite the third
line of the above example to

>m(L:$) *
ans =

! 11. !
! 21. !
! 12. !
! 22. 1
! 13. !
! 23. !

1. Remember
that the colon operator returns a row-vector.
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The expression = v(:) is reshape operation, assigningitthe column-representation of For
general reshaping of matrices, seeitatrix function inSection 6.1.3.3.8

Tip: Given the vector v, the expressionv = v(:) is a very convenient idiom in a function to
force v into column (i.e. 1-times-N) form.

In general aaxmmatrix mat can be accessed in three ways:

« asaunit by sayingat,
- by referencing its elements according to their row and column muah(i , j ), or
- viaindexing into the flattened formmat (i ).

The following equivalence holds:
mat;; = mat;| ;1)

Scilab follows Fortran in its way to store matrices in column-major form. See also the discussion of
the functionmatrix in Section 6.1.3.3

6.1.3. Built-In Vector-/Matrix-Functions

Scilab provides many built-in functions that work on vectors or matrices. Knowing what functions
are available is important to avoid coding the same functionality with slow iterative expressions.

For further information about contemporary techniques of processing matrices with computers, the
classical work “Matrix Computations{Golub:1996] is recommended.

6.1.3.1. Vector Generation

There are two built-in functions and one operator to generate a row-vector of numbers.

6.1.3.1.1. Operator “ : "

This syntax of the colon operator is
initial [: increment ] : final

with a defaultincrement  of +1. To produce the equivalent piece of Scilab code, we write

X = initial
v=1[x]
while x <= final - increment
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X + increment
[v, x]

X
\'

end

wherev is the result. Note that the last element of the result always will be smaller or equal to the
valuefinal

See als@ection 2.6or a discussion of the dangers involved in using a colon-expression with
fractional parameters.

6.1.3.1.2. linspace

The syntax ofinspace is
linspace (initial , final [ length 1)

using a default o100 for length .linspace returns a row-vector wittength  entries, which
divide the intervalifitial ,final ) in equal-length sub-intervals. Both endpoints, ingial
andfinal are always included.

6.1.3.1.3. logspace

logspace works much likelinspace , and the following relation holds

logspace(init, final) = 10!nspace(init,final)

6.1.3.2. Whole Matrix Construction

All of the functions shown in this section are capable to produce arbitrary matrices including the
boundary cases of row-, and column-vectors.

6.1.3.2.1. zeros

As the name suggests this function produces a matrix filled with zeros. The two possible
instantiations are with two scalar arguments

n=2
m =5
mat = zeros(n, m)

or with one matrix argument

matl = [ 4 2; ..
4 5; ..
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35]
mat2 = zeros(matl)

The first form produces thetimesmmatrix mat made up of zeros, whereas the second builds the
matrix mat2 which has the same shapenastl, and is also consisting solely of zeros.

Single scalar argument to  zeros

In the case of a single scalar argument zeros returns a 1-times-1 matrix, the
sole element being a zero.

Furthermore, note that
zeros()

is not allowed.

To generate an empty string matrix useptystr , Section 6.1.3.2.6

6.1.3.2.2. ones

The command is functionally equivalentzeros . Instead of returning a matrix filled witho as
zeros doespnes returns a matrix filled witti.0 . The only difference is a third form which is
permitted forones , and that is calling the function without any arguments:

-> ones()
ans =
1.

6.1.3.2.3. eye

Theeye function produces a generalized identity matrix, this is a matrix with all elements

a;j; = 0 for i#3, and
a;5 = 1 for 1= ]
This command is functionally equivalenteros . The only extension is the usage without any

argument, where the result automatically takes over the dimensions of the matrix in the
subexpression it is used.

>a=[2343, 4267 8274

a =
! 2 3. 4 3. !
! 4 2. 6 7.
! 8 2. 7 4. !
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->a - 2*eye()

ans =

0. 3. 4, 3. !
14 0. 6. 7.1
! 8. 2. 5. 4. !
6.1.3.2.4. diag

Functiondiag has two different working modes depending on the shape of its argument. Given a
vectorv it constructs a diagonal matrirat from the vector, withv beingmat’s main diagonal, i.e.
mat (i, i) = v (i) for all v (i). Given an arbitrary matrixnat, diag extracts the diagonal as a
column-vector.

-> diag(2:2:8)

ans =

o2 0. 0. 0. !
! 0. 4. 0. 0.!
! 0. 0. 6. 0. !
0. 0. 0. 8. !

>m =12 3, 8; 7, 6 -6, 0, -5, -8]
m =
!

! 3. 8.
! 7. 6. - 6. !
-5 -8

The 2-argument form of thdiag function
diag(v, k)

constructs a matrix that has its diagokglositions away from the main diagonal, the diagonal being
made up fronv again. Thereforajiag(v) is the special case dfag(v, 0) . A positivek denotes
diagonals above, a negatikaliagonals below the main diagonal. As for the 1-argument form,
extraction of the&kth super-diagonal (positivie, or subdiagonal (negative is also implemented.

>diag([1 1 1 1]) + diag([2 2 2], 1) + diag([-2 -2 -2], -1)
ans =

0.
2.
1.
- 2.
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->diag(m, -1) // using the same m as above

ans =
|

! 7.
-5 1

Tip: Nesting two calls to diag is the building block for an interesting idiom to test whether a
matrix mis a diagonal matrix.
and( abs(diag(diag(m)) - m) <= %eps * abs(m) )

The inner call to diag extracts nis main diagonal, the outer call taking this column-vector and
construction a matrix out of it. The rest of the code simple checks the relative error.

6.1.3.2.5. rand

Therand function generates pseudo-random scalars and matrices. Again the function shares its two
fundamental forms witkieros . Moreover, the distribution of the numbers can be chosen from
'uniform’  which is the default, anthormal’ . The generator’s seed is set and queried with

rand('seed’, new_seed)

and

current_seed = rand('seed’)

6.1.3.2.6. emptystr

emptystr () returns an empty stringmptystr  (m n) returns armtimes+ matrix of empty strings,
and finally,emptystr (a) returns an empty matrix of strings which has the same size as

Example 6-2. Functiondeblank
function tm = deblank(sm)
/I Remove leading or trailing blanks from all strings

/I in string matrix SM.

tm = emptystr(sm)

for i = 1 : size(sm, "™")
s = sm(i)
istart = 1

while istart <= length(s)
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if part(s, istart) == " "
istart = istart + 1
else
break
end
end

istop = length(s)
while istop >= 1
if part(s, istop) == " "
istop = istop - 1
else
break
end
end

tm(i) = part(s, istart:istop)
end // for i
endfunction

Note that Scilab has a built-in function callegiipblanks which does exatly the same job than
deblank does.

To generate an empty matrix of numbers me®s , Section 6.1.3.2.1

6.1.3.3. Functions Operating on a Matrix as a Whole

Although the section title might imply that the following functions apply to matrices only, Scilab’s
understanding allows for vectors anywhere a matrix is accepted (but not vice versa).

6.1.3.3.1. find

In our opinion one of the most useful functions in the group of whole matrix functioiivglis. It
takes a boolean expression of matrices, i.e. an expression which evaluates to a boolean matrix, as
argument and in form

index = find(expr)

returns the indices of the array elements that evaluate to truegtiie.a vector. See alsBection
6.1.2.3

In the form

[rowidx, colidx] = find( expr )
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it returns the row- and column-index vectors separately. Here is a complete example:
>a=[1-4 36 210]

! 1. - 4. 3. !
6 2. 10. !

->index = find( a < 5)
index =
! 1. 3. 4, 5.1

-> a(index)
ans =

-> [rowidx, colidx] = find( a < 5 )
colidx =

! 1. 2. 2. 3. !
rowidx =

! 1. 1. 2. 1. !

The expressionexpr can be arbitrarily complex. They are not at all limited to a single matrix.
>b=[123; 45 6]

2.
5.

APy

3.
6.

& abs(b) >= 4

M T ;m

->find( a < 5 & abs(b) >= 4)
ans =
4,
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Last but not leasfind is perfectly OK on the left-hand side of an assignment. So, replacing all odd
elements ira with 0 simply is

->a( find(modulo(a, 2) == 1) ) = 0
a =

! 0. - 4. 0. !

! 6. 2. 10. !

To get the number of elements that match a criterion, just aguely( idxvec , '*')  to the index
vectoridxvec of thefind operation.

6.1.3.3.2. max, min

Searching the smallest or the largest entry in a matrix are so common that Scilab has separate
functions for these tasks. We discusax only asmin behaves similarly.

To get the largest value saying
max_val = max(a)
is enough. The alternate form

->[max_val, index] = max(a)
index =
12 3. !
max_val =
10.

returns the position of the maximum element, too. The form of the index vector is the same as for
size ,i.e.[row-index , column-index ].Speaking ofize , maxhas the formsnax(mat,
'r) ,andmax(mat, 'c’) ,too.

->[max_val, rowidx] = max(b, 'r’)

rowidx =

! 2. 2. 2. !
max_val =

! 4. 5. 6. !

->[max_val, colidx] = max(b, 'c’)
colidx =

max_val =
! 3. !
! 6. !

These forms return the maximum values of each row or column along with the respective indices of
the elements’ rows or columns.
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The third way of usingnax is with more than one matrix or scalar as arguments. All the matrices
must be compatible, scalars are expanded to full matrix sizesdédenat = scal *
ones(mat) . The return matrix holds the largest elements from all argument matrices.

->max(a, b, 3)
ans =

6.1.3.3.3. and, or

Both,and andor borrow their syntax from theize function: without a second argument, or a star,
“*" as second argument the function is applied to the argument as a wholer A " applies the
function seperately to each row, yielding a row-vector as result. Accordingigra “c” applies the
function seperately to each column, yielding a column-vector as result.

The functionand returns true if all components of the argument are true. Therefore, it is related to
Fortran-9x’sall  function. Similarly functioror returns true if any component of its argument is
true, mimicking Fortran-9x’any function.

One of the fastest ways of testing whether a vector (or matrigdntains any non-zero element uses
or:or( v).As demonstrated with thii:nd  function, the arguments tind andor can take

arbitrarily complex boolean expressions. If we like to test whether all components of the weetor
[1.0 0.95 1.02] are within 10% of the value 1, we do not need a loapd( abs(v - 1.0) <

0.1) .

6.1.3.3.4. Operator “ &", Operator “ |”

The operators&”, and “| ” perform a component wise logical-and, or logical-or operation. See also
Section 4.3.3The arguments to either operator can be scalars or matrices.

6.1.3.3.5. sum, cumsum, prod , cumprod

These are the numeric cousins of the boolean functiongpaéindand . Their syntax is identical.
The “cum” functions work cumulatively, returning a vector (matrices are processing irfldtegned
representation

A fast factorial function?

function f = fact(n)

if n < 0 then
error("*fact: domain®)

end

if n == 0 then
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f=1
else
f

prod(1 : n)
end

$1000 at 4.5% over 7 years?

->1000.0 * cumprod( (1.0 + 0.045) * ones(7, 1) )
ans =

! 1045. !
! 1092.025 !
! 1141.1661 !
! 1192.5186 !
! 1246.1819 !
! 1302.2601 !
! 1360.8618 !

though1000.0 * (1.0 + 0.045)7(1:7)’ produces the same result and requires less keystrokes.

6.1.3.3.6. gsort

Warning

Do not use sort ! It is buggy in that it sometimes does not return a permutation
of the input data. Use gsort instead of sort .

Thegsort function is a versatile sorting function for vectors and matrices of real numbers or
strings. It sorts into increasing order or decreasing (default!) order, sorts a matrix’s rows or columns
separately, and can sort the rows or columns lexicographically. The outpsdrof not only is the

sorted matrixnat_sorted but also the permutation vectpermutation  that generates the

sorted matrix from the input matrix. The synopsis is

[ mat_sorted , permutation ] = gsort (mat_input , mode, direction )

wheremode can have the values shownTable 6-2 anddirection the values displayed ihable
6-3.

Table 6-2. Mode Specifiers forgsort

Specifier Action Note
g’ sort flattened matrix default
T column-by-column
'c’ row-by-row
I’ rows lexicographically notl’!
Ic’ columns lexicographically notl"!
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Table 6-3. Direction Specifiers forgsort

Specifier Action Note

ik increasing order or upgrade
d’ decreasing order or downgrade default

Let us look at some simple examples. We use a numeric matrix in the example, but a string matrix
would do as well.

-=>matl = [11 12; 21 22; 31 32]

matl =

! 11. 12. !
! 21. 22. !
! 31. 32. !

-> gsort(matl)

ans =

! 32. 21. !
! 31. 12. 1
! 22. 11. !

-> gsort(matl, 'r’)

ans =

! 31. 32. !
! 21. 22. !
! 11. 12. 1

-> gsort(matl, ’c’)

ans =

! 12. 11. !
! 22. 21. !
! 32. 31!

Applied without parametergsort  sorts the flattened (see alSection 6.1.2.Bversion, here:
mat(:) , of its argument into decreasing order. The - or'c’ -options tellgsort to sort each
column or row seperately.

Note: ' means column wise, and 'c’ means row wise!

The next example points out the difference between simple row- or column-sorting and
lexicographical sorting of columns or rows.

->mat2 = [6 72 23; 56 19 23; 66 54 21]
mat2 =

! 6. 72. 23. !

! 56. 19. 23. !
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! 66. 54. 21. !

-> gsort(mat2, 'r') // col-by-col
ans =

! 66. 72. 23. !

! 56. 54. 23. !

! 6. 19. 21. !

-> gsort(mat2, ’lc’) /I col lexico
ans =

T2 23. 6. !

! 19. 23. 56. !

! 54. 21. 66. !

-> gsort(mat2, 'c’) // row-by-row
ans =

172, 23. 6. !

! 56. 23. 19. !

! 66. 54. 21. !

-> gsort(mat2, 'lIr') // row lexico
ans =

1 66. 54, 21. !

I 56. 19. 23. !
6. 72. 23. !

Now what is the exact difference between row-by-row sorting and lexicographic row sorting? After
row-by-row sorting (in decreasing order) of artimesh matrixa the following relation holds:

ajj>aijy1 for 1<i<m and 1<j<n-—1.

In other words each row is sorted separately by interchanging its columns. After a lexicographic sort
the relation between the rows is:

a;. > ajp1,; for 1<i<m-—1

This time whole rows are compared to each other. Analogous relations hold for column sorting.

In environments not as rich as Scilgéort might be the heart of user-writtenin , max, and
median functions. All three are predefined in Scilab.

6.1.3.3.7. size

Thesize function handles all shape inquiries. It comes in four different guises. Assumingn#tat
is a scalar or matrixsize can be used as all-info-at-once function as in

[rows, cols] = size(mat)
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as row-only, or column-only function

rows = size(mat, 'r’)
cols = size(mat, 'c’)

and finally as totaling function

elements = size(mat, '*')

6.1.3.3.8. matrix

A (hyper-)matrix can be reshaped with tinatrix command. To keep things simple we
demonstratenatrix with a 6x2-matrix.

->a = [1:6; 7:12]

8. 9. 10. 11. 12. !

-> matrix(a, 3, 4)

ans =

! 1. 8. 4. 11. !
! 7. 3. 10. 6. !
! 2. 9. 5. 12. !

-> matrix(a, 4, 3)

ans =

! 1. 3. 5 !
! 7. 9. 11. !
! 2. 4. 6. !
! 8. 10. 12. !

In contrary to the Fortran-9x functicRESHAPEmatrix  neither allows padding, nor truncation of
the reshaped matrix. Put another way, fanmesn matrix a the reshaped dimensiopsandq
must obey

mn = pq

matrix works by columnwise “filling” the contents of the original matexnto an empty template
of ap-timesq matrix. (See als&ection 6.1.2.3 If this a too hard to imagine, the second way to
think of it is imagininga as a column vector of dimensions (* n)-times-1 that is broken down
column by column into @-timesg matrix. In fact this is not pure imagination as for many Scilab
matrix operations the identit(i, j) == a(i + n*(j - 1)) holds.

> a(2,4)

ans =
10.
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->a(8)
ans =
10.

Moreover, the usual vector subscripting can be used to a matrix.

->a(:)
ans =

6.1.4. Evaluation of Polynomials

Once upon a time there was a little Scilab newbie who coded an interfacedptithe routine to

make polynomial approximations easier. On the way an evaluation function for polynomials had to
be written. The author was very proud of herself because she knew the Right Thing(tm) to do in this
case namely the Horner algorithm. Actually she immediately came up with two implementations.

Example 6-3. Naive functions to evaluate a polynomial

function yv = pevall(cv, xv)

/I Evaluate polynomial given by the vector its
/I coefficients cv in ascending order, i.e.
II'ev=[pqgr] -> p+ g+ r’x*2 at all
/I points listed in vector xv and return the

/I resulting vector.

yv = cv(1) * ones(xv)
px = Xxv
for c = cv(2 : %)
YV = yv + C * px
pX = px .* xv
end
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function yv = peval2(cv, xv)
/I same as pevall

yv = cv($);

for i = length(cv)-1 : -1 : 1
yv = yv .* xv + cv(i)

end

So what is wrong with that? This code looks OK and it does the job. But from the performance
viewpoint it is not optimal! The fact that Scilab offers a separate type for polynomials has been
ignored. Even if we are forced to supply an interface with the coefficients stored in vectors the
built-in functionfreq is preferable.

Example 6-4. Less naive functions to evaluate a polynomial

function yv = peval3(cv, xv)
/I same as pevall, using horner()

p = poly(cv, 't', 'coeff)
yv = horner(p, xv)

function yv = pevald(cv, xv)
/I same as pevall, using freq()
/I The return value yv _always_ is a row-vector.

p = poly(cv, 't', 'coeff)

unity = poly(1, 't, 'coeff’)
yv = freq(p, unity, xv)

Table 6-4shows the speed ratios (each line is normalized separately) for a polynomial of degree 4
that we got on a P5/166 GNU/Linux system.

Table 6-4. Performance comparison of different polynomial evaluation routines

evaluations pevall peval2 peval3 peval4
5 3.5 4.2 1 7.0
1000 1.4 25 1 2.5

If we now decide to change our interface to take Scilab’s built-in polynomial type the evaluation with
freq can again be accelerated by a factor of more than three.
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6.2. Extending Scilab

The brute force way of getting a better performance is rewriting an existing Scilab script in a

low-level language as C, Fortran, or even assembler. This option should be chosen with care, because
the rapid prototyping facilities of Scilab are lost. On the other hand if the interface of the function

has settled, its performance is known to be crucial and it is of use in future projects then the
translation into compiled code could be be worth the time and the grief.

In the first part of this section we compare different ways of integrating an external function into
Scilab. We focus on the ease of integration versus the runtime overhead introduced. The second part
deals with writing the low-level functions themselves, especially their interfaces.

6.2.1. Comparison Of The Link Overhead

We revive our matrix mirroring example fro®ection 6.1.2

Our Fortran-77 version looks like this:

subroutine mir(n, m, a, dir, b)

* Mirror n*m-matrix a along direction prescribed
* by dir. If dir == 'c¢’ then mirror along the
* columns, i.e., vertically. Any other value for
* dir mirrors along the rows, i.e., horizontally.
* The mirrored matrix is returned in b.
*

implicit none
* ARGUMENTS

integer n, m

double precision a(n, m)
character dir*(*)
double precision b(n, m)

* LOCAL VARIABLES
integer i
* TEXT
if (dir(1:1) .eq. 'c’) then
do 100, i = 1, m
call dcopy(n, a(1, m+1-i), 1, b(1, i), 1)
100 continue
else
do 200, i =1, n
call dcopy(m, a(n+1-i, 1), n, b(i, 1), n)
200 continue
end if
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end

Thedcopy (n, X, incx ,y,incy ,)isfrom BLAS level 1, and copies double precision
elements from vectaox in increments ofncx toy, where it uses increments ioicy .

The only thing missing is the glue code between Scilabraind
function b = mirf(a, dir)

/I interface function for 'mir.f’
/I Behavior is the same as mirror()

[n, m] = size(a)
b = zeros(n, m)

if dir == 'r | dir == ’c’ then

b = fort(mir’, ..
n, 1, ", m, 2, ', a, 3, 'd’, dir, 4, 'c’, ..
‘out’, ..
[n, m], 5, 'd)
else
error('dir must be "r" or "c")
end

OK, let’s lock-and-load. We are ready to rock!

link('mir.o’, 'mir’)
getf('mirf.sci’)

The fast alternative to usirfgrt , which dynamically creates an interface to a C or Fortran function
is usingintersci, which which creates an interface suitable for static loading.

intersci can create the Fortran glue code for a C or Fortran function to make it callable form the
Scilab interpreter. The glue code is compiled (with a Fortran compiler) and linked to Snotkaisci

is described very well in the S@bc/Intro.ps . Anyhow, Example 6-5hows the description
(“.desc ) file for our current example. Finally it will supply us with a Scilab function called
mirai(a, dir)

Example 6-5. Sample interface description (‘desc ")

mirai a dir

a matrix n m

dir string 1

b matrix n m

mir n m a dir b
n integer

m integer

a double

dir char
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b double

out sequence b

We do not want to go into detail here, budiesc -file has three parts separated by blank lines: The
description of the Scilab-level function’s signature (hengai ), the same for the low-level

function (heremir ), and finally the results’ structure. The signatures resemble Fortran or K&R-style
C function definitions with the parenthesis missing. The process of pasdiwg dfile through

intersci, compiling the low-level routine and the glue code can be automBteimple 6-6a

shippet of ouMakefile.intersci shows the relevant rules.

Example 6-6. Makefile  for static Scilab interfaces via intersci

ifdef SCI

SCIDIR := $(SCI)

else

SCIDIR := /site/X11R6/src/scilab
endif

%.f.pre: %.desc
$(SCIDIR)/bin/intersci $*
mv $*.f $*.f.pre

%.f: %.f.pre
perl -pe 's#SCIDIR#$(SCIDIR)# $< > $@

%.0: %.f
$(FC) $(FFLAGS) -c $<

Running the automatically generated Fortran code through a filter (vengis necessary to fix the
linesinclude 'SCIDIR/routines/stack.h’ . After everything is compiled a single Scilab
command makes the new routine available to the user.

addinter('mirai.o’, 'mir.0’], // object files
‘mirai’, /I name of interface routine
'mirai’) /I name of new Scilab function

The first argument which almost always is a vector of strings tells Scilab the names of the object files
to load. One of them is the interface code madéritgrsci. The rest are the user routines. The

second argument specifies name of entry point into the interface routine. The third parameter is the
name the new Scilab function will carry.
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Entry point of interface function

addinter ’s second argument must be the name of the interface routine, i.e.
the one generated by intersci . Using the low-level function’s entry point here
causes Scilab to barf (of course).

Why do we go through that tedious process? After all we are in the performance section, so what we
want is speed, high speed, or even better the ultimate speed. Now, we compare all the variants in
Figure 6-1

Figure 6-1. Benchmark results for themirror  functions

PI11/550

10°

n
a
(o]
-
[
=
102 | , , - , - , - , -
10° 10t 102 10° 10* 10°
matrix elements
mirrorl row —+— mirror3 col —+— C version row —&—
mirai row —e— mirror4 col - C version col —e—
mirror3 row —— mirrorl col —e—
mirror4 row —&— mirai col —o—
Performance comparison ofirror[1-4] , mirf , mirai , and a pure C-program doing the same job

on a PIII/550 GNU/Linux box. The straight line between (20 elements, 550 MFLOPS) and
(20000 elements, 550 MFLOPS) marks the peak performance of the processor.

If we compare the performance of our three Scilab mirror routiniesrl , mirror2 , and
mirror3  together with the two incarnations of the hard-coded routiite , andmirai , we reach at
the following conclusions:

- Scilab code that makes heavy use of indexing, filkeorl , is extremely slow no matter what
problem size. Thumbs down on that one.
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Well written i.e. index-free Scilab code, likairror4 , performs well. This is especially true for
large vectors or matrices.

« The overhead of thiart -call inmirf is high; it is hard to amortize for thafort  is only
justified in situations where a significant amount of time is spent in the low-level user-routine.
Usually this will be the case for large problem sizes. Of course the cross-over point must be
determined separately in each case.

« A compiled function, integrated withddinter , is very fastmirai surpasses all other
Scilab-based implementations. For small problem sizes the little overhead in comparison to all the
other functions gives this function a factor 10 advantage, though, as the problems size increases
mirai s lead is challenged bwirror4

« Of course a carefully hand-optimized C-program outperforms anything. In this figure the plain
C-program is meant as a reference what the machine could do, if we pull all registers, or put
another way, how much processor power Scilab burns needlessly.

Conclusion: Never underestimate the power of the Emperor*H*"H"H"H"H"H"H vectorized Scilab
code.

6.2.2. Preparing And Compiling External Subroutines

In this section we will discuss the interfacing of C, C++, Fortran-77, Fortran-9x, or Ada routines
with Scilab vialink command. We restrict ourselves to the simple case of functions that expect
exactly one double precision floating point parameter and return a double precision floating point
result. Functions with that signature are required e.g. for the integration ranttine or the root
finderfsolve

Before we dive into the language specific descriptions, let us point out the main features of Fortran
we have be pay attention to when writing an interface in another language.

Function name mangling

A function named-OO(foo , or whatever capitalization is chosen) in the Fortran source can
become a different symbol in the object file. This is compiler dependent. Most often an
underscore " is prepended or appended. Sometimes the name is downcased, sometimes it is
upcased.

Tip: The nm(1) command provides easy access to the symbols in an object file.

Call-by-reference

Fortran never passes the value of a parameter, but always a pointer to the parameter.
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Arrays in column-major order

Arrays are stored so that their leftmost index varies fastest.

6.2.2.1. Fortran-77

Fortran-77 or how do you want to ruin
your day?
L. E. van Dijk

Extending Scilab with Fortran-77 is most straightforward. Scilab is writtin in that language,
remember? A Fortran-77 source for functfars could look like this:

double precision function fals(x)
double precision x

fals = sin(10.0d0 * x)

end

After compilation (e.gf77 -c fals.f ) the compiled code can be linked to Scilab and called
with the integration routine.

link(fals.o’, 'fals’);
[res, aerr, neval, info] = ..
intals(0.0, 1.0, -0.5, -0.5, ’alg’, 'fals’)

6.2.2.2. Fortran-9x

Fortran-90? Don't worry, it can't get
much worse.
Ch. L. Spiel

A bloated, but portable Fortran-90 source for a function could look like this:

function fsm(x)
implicit none
integer, parameter :: idp = kind(1.0d0)

I arguments/return value
real(kind = idp), intent(in) :: x
real(kind idp) :: fsm

I text
fsm = exp(x) / (1.0d0 + x*x)
end function fsm
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After compilation (e.gf90 -c fsm.fo0 ) the compiled code can be linked to Scilab and called
with an integration routine.

link('fsm.o’, 'fsm’);
[ires, ierr, neval] = intsm(0.0, 1.0, 'fsm’)

6.2.2.3. (ANSI-) C

A simple C function meeting our signature requirements has e.g. this shape:

#include <math.h>
#include "machine.h"

double
C2F(fgen)(const double *x)

{
if (*x > 0.0)
return 1.0 / sqrt(*x);
else
return 0.0;

}

After compilation (e.gcc -I/site/X11R6/src/scilab/routines -c fgen.c ) the
compiled code can be linked to Scilab and called with the integration routine.

link(‘fgen.o’, 'fgen’, 'c’);
[ires, ierr, neval, info] = intgen(0.0, 1.0, 'fgen’)

There are several ways to get the naming convention differences between Fortran and C right. We
show three possible solutions for the case where C uses no decoration at all and Fortran appends one
underscore.

/* (1) GNU C compiler */
double foo(const double *x) __ attribute_ ((weak, alias ("foo_")));

/* (2) good preprocessor */
#define C2F(name) name##_

I* (3) old preprocessor ;-) */
#define ANOTHERC2F(name) name/**/_

None of the above three examples is portable. Therefore, it is prudent to include
SClrroutines/machine.h , Which is automatically generated during the Scilab configuration
process and thus knosw of the name mangling. Among a lot of other macros it supplies a
C-to-Fortran name conversion macro called C2F.
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6.2.2.4. C++

A C++ source for a function could look like this:

#include <math.h>

extern "C"
{
double C2F(fgk)(const double *x);
}
double
C2F(fgk)(const double *x)
{
return 2.0 / (2.0 + sin(10.0 * M_PI * (*x)));
}
After compilation (e.gc++ -I/site/X11R6/src/scilab/routines -c fgen.c ) the

compiled code can be linked to Scilab and called with the integration routine.

link(fgk.o’, 'fgk’, 'c’);
[ires, ierr, neval, info] = ..
intgk(0.0, 1.0, 'fgk’, 0, %eps, '15-31)

SeeSection 6.2.2.3or a discussion of the C2F macro.

Further problems arise if the C++ code depends on libraries that have not been linked with Scilab. In
the following examplenyfct_ is correctly declared, but requiregrt indirectly through a call to
subfct

/' linkexx.cc
#include <complex>

extern "C" {
void myfct_(const double *re, const double *im);

}
double_complex subfct(double_complex z);

void
myfct_(const double *re, const double *im)
{
double_complex u(*re, *im);
double_complex v(subfct(u));
/I do something with v

}

double_complex
subfct(double_complex z)

{
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return 1.0 + 0.5 * sqrt(z);
}

The problem when linkingnyfct_  with Scilab is not the call tgubfct , but the missing complex
sgrt  function. A listing of the object file’s symbols shows the missing function among some
functions the (this particular version of g++) compiler silently generates dinéirt®  expansion.

lydia@orion:/home/lydia/tmp $ nm -C linkexx.o
000000bd t Letext
00000000 ? _ FRAME_BEGIN__
00000000 W complex<double> opera-
tor/<double>(complex<double> const &, double)
00000000 W complex<float> operator/<float>(complex<float> const &, float)
00000000 W complex<long double> operator/<long double>(complex<long dou-
ble> const &, long double)
0000008b T main
00000000 T myfct_
U complex<double> sqgrt<double>(complex<double> const &)
00000046 T subfct(complex<double>)

It is up to the programmer to suppifl necessary libraries — in the correct order — when linking. For
the previous example the following call would succeed (on a libc6 GNU/Linux system):

-> link("linkexx.o -Istdc++-2-libc6.1-1-2.9.0")
linking files linkcxx.o -Istdc++-2-libc6.1-1-
2.9.0 to create a shared executable
shared archive loaded

Link done

ans =

0.

In the case that the compiler documentation lacks information abouth which library defines what
symbol, thenm(1) command is the most useful tool to find out.
Additional Caveats

The inclusion of C++ modules into a project whasain() is not written in C++ call for some
additional warnings. See alSection 6.3or a caveat using compilation switches that break the ABI.

Runtime initialization

When it comes to runtime initialization of his/her code, a C++-programmer depends on the
linker as a junkie on his dealer. Either the compiler system does it — and does it right, or you
have a very very hard time ahead of you. Sidenote: The GNU linker does the Right Thing(tm)!
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S
In brief: Get them -all! If the C++ to be linked with Scilab is known to throw exceptions, all
interfaced functions of which an exception possibly could escape have to be wrapped in
C++-functions that catch these exceptions and translate them into error codes e.g. a la Lapack.
Otherwise Scilab is terminated with ahort()  call.

6.2.2.5. Ada

For GNAT/Ada the package’s interface part pulls in the Fortran interface definitions. Is the simplest
case the mathematical functions are only instantiated with theftgpele_Precsion . Ada
requires to export every function’s interface separately, as is clear from the following example.

with Interfaces.Fortran;
use Interfaces.Fortran;
with Ada.Numerics.Generic_Elementary_Functions;

package TestFun is
package Fortran_Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions(Double_Precision);
use Fortran_Elementary_Functions;

function foo(x : Double_Precision) return Double_Precision;
pragma Export(Fortran, foo);
pragma Export_Function(Internal => foo,
External => "foo_",
Mechanism => Reference,
Result_Mechanism => Value);
end TestFun;

According to the interface specification the package body looks like this:

package body TestFun is
function foo(x : Double_Precision) return Double_Precision is
begin
return exp(x) / (1.0 + x*x);
end foo;
end TestFun;

The package is compiled as usgahtmake -O2 testfun.adb

Hint: Make sure that there is a GNAT runtime librditygnat-3.12p.so . Your version number
may be different, but only the endings¢™) is critical, aslibgnat-3.12p.s0.1.7 will not make
dlopen (3) happy. From now on everything goes downhill, and the function cainkbeed almost as
usual.

link(‘testfun.o -L/site/gnat-3.12p/lib -Ignat-3.12p’, 'foo’)

Again, the path to your gnat-library and the version numbers can differ.
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In the case of several functions in the package it is preferable to rely on the extéoged (3)
mechanism, and link the package/library combo with remembering the ID of the shared library.

adacode = link(‘testfun.o -L/site/gnat-3.12p/lib -Ignat-3.12p’, 'foo’)
Linking further functions from the library happens by referencing the number of the library.
link(adacode, 'bar’)

This saves space (Scilab’s TRS) and time (to executérthe). Speaking about saving, users with a
loader e.g. GNUd, capable of incremental linking (e.g., -r , or-relocatable ) can of course

link testfun.o  with the (gnat-)library before linking everything to Scilab. To complete the
example, here comes the command-line to archive exactly this:

Id -i -0 testfun-lib.o testfun.o -L/site/gnat-3.12p/lib -lgnat-3.12p
In Scilab the arguments tmk then reduce to

link('testfun-lib.o’, 'foo’)

6.2.2.6. Visual C++
by Dave Sidlauskas

This section illustrates the calling of C/C++ routines from the Windows™ version of Scilab using
Microsoft™'’s Visual C++ compiler. The process is quite simple.

1. Use VC++ create a DLL containing the C functions.
2. In Scilab, usdink()  toload the DLL functions.
3. Usefort()  to run the functions.

In a little more detail:

1. Use VC++to create a DLL.

Start VC++, clickFILE, NEW, and selec?WIN 32 Dynamic Link-Library. Give it a name and
location and clickOK. Then selecEmpty DLL and clickFinish.

Prepare a source file and insert it into the proj€ebiect, Add To Project). Then build the
project (F7).

A sample source file is shown below. The declaratigtern "C" declspec(dllexport)

is critical. Using this, the function name is exported correctly with no name mangling. This type

of declaration is covered in the VC++ on-line documentation if you wish more details.

Also note that C files that are to be executed by a cabt¢)  are always void, returning no

value. Values are returned via pointers in the function parameter list. For example, the parameter

*out in matcpy_c is the return value for that function.
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extern "C" _declspec(dllexport) void matset_c(double *mat,
const int *nrows,
const int *row,
const int *col,
double *val);

extern "C" _declspec(dllexport) void matcpy_c(const double *in,
const int *nrow,
const int *ncol,
double *out);

/I matset

/I Set element in mat at row and col to val.

/I nrows is number of rows in mat. Shows row

/Il and col reference in a C function.

/I REMEMBER: C row or col = Scilab row or col-1.

void matset_c(double *mat,
const int *nrows,
const int *row,
const int *col,

double *val)
{
mat[*row - 1 + (*col - 1)*(*nrows)] = *val;
}
/I matcpy

/I Function to copy one matrix to another.

void matcpy_c(const double *in,
const int *nrow,
const int *ncol,
double *out)

{
int row, col;
for (col = 0; col < *ncol; col++)
for (row = 0; row < *nrow; row++)
outfrow + col*(*nrow)] = in[row + col*(*nrow)];
}

2. In Scilab, use link to load the DLL functions.
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link("path\filename.dlIl", "FunctionName", "c")

The path is wherever you told VC++ to put your output. It is usually something like
ProjectName\debug.

Link uses the Windows™oadLibrary  function to load your DLL. See the VC++ on-line
documentation for details.

. Usefort()  to execute your function.

Actually it is probably better to prepare a wrapper function to reduce the clutten@®f
Here is a sample for theatset function above.

/I Wrapper function for calling C language routine matset _c from SciLab
function mat = matset(mat, row, col, val)

m = size(mat);
mat = fort("matset_c",

mat, 1, "d",
m(1, 1), 2, "i",
row, 3, "i",
col, 4, "i",

val, 5, "d",
"out",

m, 1, "d");

endfunction

A sample Scilab session is shown below:

-> link("d:\vc\sci\debug\sci.dll", "matset_c", "c")
Linking matset_c
Link done
ans =
0.

-> getf('E:\scilab\source\ctest.scri’);
->mat = zeros(5, 5);
-> matset(mat, 3, 3, 16.71)

ans =

! 0. 0 0. 0 0. !
! 0. 0 0. 0 0. !
! 0. 0 16.71 0 0. !
! 0. 0 0. 0 0. !
! 0. 0 0. 0 0. !
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6.2.2.7. Borland C 5.01
by Enrico Segre

These are the steps for creating a DLL with functions, which is callable from Scilab, using
Borland® C 5.01 and to link them into Scilab. The process of creating fobldll  from source
foo.c , which defines functioifoo is also simple. The steps are:

1. In BCW, create a new DLL project withile/New/Project/Target_type—DLL. Some relevant
options are:

Options/Project/16bitCompiler/entry-exit_code/Windows_DLL_all_functions
Options/Project/32bitCompiler/callingConvention/C

2. To this project add filéoo.c . There is a button for that action in the icon bar.
3. Filefoo.c must contain the following code.
#define STRICT

#include <windows.h>

BOOL WINAPI DIIEntryPoint(HINSTANCE hinstdll,
DWORD fdwReason,
LPVOID IpvReserved)

return 1;

and, to define functiofoo as for example

void _export
foo(const double *a, const double *b, double *c)

{

*C = *a + *b;

}

with the keyword export in front of the function’s head. Fil&mo.c can contain more than
one exported function, as well as other functions which are not defined @iflort , and thus
are not entry points for Scilab.

4. Make the DLL §9).

In Scilab, link the function with

link(foo.dIl’, *_foo’, 'C’)
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Note the leading underscore! Execute the function ¥atty_foo’, ...) or call(’_foo’,
...) , oreven better, define a convenient wrapper function.

function foo(a, b, c)
¢ = call(_foo’,
a, 1, 'd, b, 2, 'd,
‘out’, [1, 1], 3, 'd)
endfunction

6.2.3. Pushing It Further

What? What are you doing in this section? Still not satisfied with your functions’
performance?—Sorry, but there are no conventional ways to get more out of Scilab. Tinkering with
the interface routines is not worth the effort. Some completely new approach is necessary.

6.2.3.1. Scilab as Prototyping Environment

If a problem is too tough, Scilab still can serve as a rapid prototyping environment. One sister
program of Scilab, namelylelahas been written for exactly this purpose. Prototyping with an
interpreted language is currently going through a big revival with C (and C++) developers
discovering Python.

As whenever optimization is the final goal, an extensive test suite is the base for success. So one way
to proceed could be to develop test routines and reference implementation completely in Scilab. The
next step is rewriting the routinasill in Scilab to match the signatures of for example BLAS/Lapack
routines as closely as possible. The test suite can remain untouched in this step. The final step is to
migrate the Scilab code to Fortran, C, or whatever, while making extensive use of BLAS/Lapack.
Ideally the test suite remains under Scilab and can be used to exercise the new standalone code.

6.2.3.2. Scilab to Fortran-77 Compiler
FIXME: write it!

6.3. Building an Optimized Scilab

One relatively easy way to to increase Scilab’s performance is recompiling it with a good compiler
and an optimized BLAS librafy

2. Simply linking with an optimized BLAS library generally is not enough. Patches (e.g. “fast-blas”, and “big patch”) to fix
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Our experience only suffices to explain the compilation on IA32 GNU/Linux systems. gtarer
pgccare the compilers of choice.

The following options are a good starting point for further exploration. They apply to compiling
Fortran as well as C code.

-march= arch

This option instructs gcc to generate code specifically for architearate . Among other
things it setsmcpu=arch . Furthermore, it forcesnalign-loops  , -malign-jumps
-malign-functions , and-mpreferred-stack-boundary to their optimum values for the
selected architectungithoutbraking the ABI. Therefore, it can be considered an optimization
switch.

-malign-double

For systems with an original Intef@entium® or above processor this option is an absolute
must It forces the aligment of 64 bit floating point numbers (also known as double, double
precision, and IEEE754) to a 64 bit boundary. Thoitditeaks the ABlthe gain in speed due
to avoiding the misalignment penalty on each memory access is tremendous, even on
PentiumPro® and later systems with all write back caches enabled.

Warning
-malign-double breaks the ABI!

Code using double compiled with [p]g++-2.95 and -malign-double
is known to cause segmentation faults under some circumstances.

The workhorse optimization switckQ2, activates a lot of optimizations. See node “Optimize
Options” in gcc's info file, e.g.info -f /usr/info/gcc.info.gz -n "Optimize Options"

The optimizations toggled on bp2 are well tested and do not produce excessively long text.

-funroll-all-loops

This switch increases the text size by unrolling as many loops as possible, thereby speeding
them up. YMMV.

part of this problem exist. Check odlammersmith Consulting’s Scilab patches page

3. Intel®, Pentium®, and PentiumPro® are registered trademarks of Intel Corp.
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-fschedule-insns2
Although the gcc info page states that this optimization is switched e@bythis might not

be true for all versions of gcc floating around. The switch should be particularly helpful on
machines with a relatively small number of registers and where memory load instructions take

more than one cycle.

137



Chapter 6. Performance

138



Chapter 7. Scilab Core

Aerosmith video “Love In An Elevator”, “Pump” (1989).

Good morning Mister Tyler! Going down?

We are going down all the way right to the core, the core of Scilab. Though this is the most technical
and most complex chapter, it is by no means true that writing a native Scilab function is

unmanageable by for ordinary mortals. A strict programming discipline, patience, persistence, and a
thorough knowledge of what makes up the stack-structures involved, let us overcome the difficulties.

To be able to exactly specify the interface Scilab provides for extensions, we use Ada-like syntax,
which is introduced irSection 7.1Equipped with this explanatory aid of a strongly typed language,
we proceed irBection 7.2y explaining the internal data structures like e.g. the stack. The real meat
of the chapter starts iBection 7.3with an extensive discussion of a native Scilab functions,
functionals, and dispatch tables. Closely linked to writing a native function is taking care of the
errors on a low-level (We do not mean ignoring them!), a topic that is discussetiion 7.4

The lack of a comprehensive and tabular documentation of the Scilab is taken cafecfiom 7.5
andSection 7.6which close the chapter.

7.1. Introduction To Pseudo-Ada

Instead of simply repeating the Fortran-77 and C statements that make up the Scilab stack, the API,
etc., we introduce a new language that is better suited for this job: a pseudo-form’ptaltkd

pAda from hereon, which is much more expressive. The syntax follows Ada, and the pAda types are
mapped onto Fortran-77 and C types as liste@able 7-1 Table 7-2 andTable 7-3 What might

look like an artificial complication, the introduction of new types, actually is a major simplification
(Three cheers for Ada!):

1. The name of the type now makes clear exactly what it is used for.
2. Distinct types designate distinct things, i.e. stuff that never should be mixed up.
3. The valid ranges of the sub-types are explicity mentioned in the types’ definition.

4. The description of the Fortran-77 interfacegtion 7.%and the C interfaceSection 7.§ can
be uniformly documented.

1. We apologize to all Ada programmers for the abuse of this wonderful language, but Ada’s expressiveness and clarity are
unmatched for the job we have in mind.
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Table 7-1. pAda to Fortran-77 and C type mappings — elementary types

pAda Fortran-77 C
Integer INTEGER int
Float DOUBLE PRECISION, double
REAL*8
Boolean LOGICAL n/a, substituteint, 0

meaning false,
everything else meaning

true;
Character CHARACTER char
type String is array CHARACTERY char[ N + 1]
(.. N) of Character
subtype Natural is INTEGER with the int with the restriction
Integer range restriction to to non-negative values,
0..Integer’Last non-negative values, i.e., allowed are 0, 1,

i.e., allowed are 0, 1,

Table 7-2. pAda type mappings — Scilab Fortran-77 interface

pAda Fortran-77
type ComplexFlag is ( RealVariable, INTEGER = 0, 1
ComplexVariable)
type ParameterStackAddress is new INTEGER = 1, 2,
Integer range 1..Integer’Last
type DataStackindex is new Integer INTEGER = 0, 1,

range l..Integer’Last

Table 7-3. pAda type mappings — Scilab C interface

pAda C
type AccessNatural is access all int*, pointer to modifiable integer
Natural;
type ConstAccessNatural is access const int*, pointer to read-only
constant Natural; integer
type AccessString is access all char*, pointer to modifiable
String character
type ConstAccessString is access const char*, pointer to read-only
constant String character
type TypeString is String (1 .. 1); char[2] (see also Table 7-4 )
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pAda C
subtype ParameterStackindex is int
Integer range 1..Integer’Last;
type AccessDataStackindex is access int*

DataStackindex;

7.2. Internal Data Structure

FIXME: explain the parameter stack, data stack, etc.

7.2.1. Parameter Stack And Data Stack

FIXME: follow the documantation in “Internals”.

7.2.2. Storage of Complex Matrices

Many programming languages store scalar complex variables z in Euclidean representation,

z=x+ 1y,

where x, and y are real numbers and i denotes the imaginary unit. A complex number is stored in
memory as a record.

type Complex is record
RealPart : Float;
ImagPart : Float;
end record;

Fortran chooses to store complex matrices as sequences of Complex, and almost all other
programming languages follow this convention.

declare
CpxVec : array (1 .. 10) of Complex;

Thus, the memory image @fpxVec, broken into pieces, is

— address — — contents —

addr + 0 : CpxVec(l).RealPart

addr + Float'Size : CpxVec(1).ImagPart
addr + 2*Float'Size : CpxVec(2).RealPart
addr + 3*Float’'Size : CpxVec(2).ImagPart
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addr + 4*Float'Size : CpxVec(3).RealPart
addr + 5*Float’Size : CpxVec(3).ImagPart

where addr is the start address of the complex vegpakec in memory. The obvious advantage of
this storage scheme is that it can be viewed as a vector of Complex scalars.

— address — — contents —

addr + 0: CpxVec(l)
addr + Complex'Size :  CpxVec(2)
addr + 2*Complex'Size :  CpxVec(3)

Scilab doesot follow this convection for storing complex numbers, if it did, we would not have to
write this section. Instead of storing real and imaginary parts of a complex vector in turn, Scilab
separately stores the vector of the real parts, and the vector of the imaginary parts.

Our example vecto€pxVec from above, gets stored by Scilab in the following way:

— address — — contents —

real_addr + 0 : CpxVec(l).RealPart
real_addr + Float'Size : CpxVec(2).ImagPart
real_addr + 2*Float'Size : CpxVec(3).RealPart

imag_addr + 0 : CpxVec(l).ImagPart
imag_addr + Float'Size : CpxVec(2).ImagPart
imag_addr + 2*Float'Size : CpxVec(3).ImagPart

where real_addr and imag_addr are the start addresses of the two vectors. Nothing should be
assumed of their relation; e.g. imag_addr might not point to the first memory cell after the last cell in
the vector of the real parts.

The consequence for a Scilab programmer who wants to interface routines that use the conventional
(Fortran) storage scheme for complex matrices is that she has to splice real and imaginary parts
before calling the routine, and to store them seperately after completiokxXaewple 7-Zor a
demonstration of this technique.

Example 7-Ire-implements the multiplication of two complex matricesymulin Scilab. For
conventional storage the function would be much shorter, for we couldgesenfrom BLAS to
compute the product C of two matrices A andddemmandzgemmcompute C := Alpha*A*B +
Beta*C. Alpha and Beta are scalars.

type OrientationType is new Character;
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procedure  dgemm
( OrientationA
OrientationB
M
N
K
Alpha
A
LdA
B
LdB
Beta
C
LdC

procedure  zgemm
( OrientationA
OrientationB
M
N
K
Alpha
A
LdA
B
LdB
Beta
C
LdC

out

out
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OrientationType;
OrientationType;
Natural;

Natural;

Natural;

Float;
FloatMatrix;
Natural;
FloatMatrix;
Natural;

Float;
FloatMatrix;
Natural);

OrientationType;
OrientationType;
Natural;

Natural;

Natural;
Complex;
ComplexMatrix;
Natural;
ComplexMatrix;
Natural;
Complex;
ComplexMatrix;
Natural);

subroutine wmmul(a, na, b, nb, ¢, nc, I, m, n)

call zgemm(n’, 'n’, I, n, m, 1.0d0, a, na, b, nb,

$ 0.0do, ¢, )

2. A serious Ada interface would not define OrientationType,
but introduce the two types

type RealOrientationType is (NoTranspose, Transpose);
type ComplexOrientationType is (NoTranspose, ConjugateTranspose);

to let the compiler do the type checking. The BLAS routines even accept
strings where we use OrientationType.

However, a BLAS routine is supposed to look only at the first character.

The valid strings are: “No transpose”,
“Transpose”, and “Conjugate tranpose”.
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end

But as Scilab stores real and imaginary part of a complex matrix separately, we use a Karatsuba
multiplication scheme with only three multiplications instead of the four as the naive algorithm does.
Expressed in Scilab, we have

function [cr, ci] = mul_karatsuba(ar, ai, br, bi)

/I fast multiplication of two complex numbers
/I z1 = ar + i*ai

Il z2 = br + i*bi

Il cr + i*ci z3 = z1 * z2

o+

pl = ar * br
p2 = ai * bi
cr = pl - p2

sl = ar + ai
s2 = br + bi
p3 sl * s2
ci = p3 -pl - p2

The actual implementation efmmulis a more space saving version of the above.

function [cr, ci] = mul_karatsuba_final(ar, ai, br, bi)

pl = ar * br
p2 = ai * bi
sl = ar + ai
s2 = br + bi

ci = sl *s2
ci =ci-pl-p2
cr = pl - p2

It is fairly obvious, how big the effort is, even for expressing the algorithm in Scilab. The Fortran
functionwmmulis even more convoluted because of several explicibbops.

Example 7-1. Multiplication of complex matrices

subroutine wmmul(ar, ai, na, br, bi, nb, cr, ci, nc, I, m, n)

* name :wmmulf - multiplication of two complex matrices;
* c:=a*hb

* author : L. van Dijk

* last. rev. : Sun Jan 16 22:41:27 UTC 2000

* Scilab ver.: 2.5

* compiler  : g77 version 2.95.1 19990816 (release)
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Copyright (C) 2000 Lydia van Dijk

PARAMETERS
ai,ar, bi,br, cicr: real and imaginary parts of the respective

na, nb,

matrices
nc: number of rows of resp. matrix in calling routine

I: number of rows in a and ¢
m: number of columns in a, and number of rows in b
n: number of columns in b and c

implicit
double

none
precision ar(*), ai(*), br(*), bi(*), cr(*),ci(*)

integer na, nb, nc, I, m, n
LOCAL VARIABLES
integer i, j
integer ia, ib, ic
double precision pl(l, n), p2(l, n)
double precision s1(l, m), s2(m, n)
TEXT
call dgemm(n’, 'n’, I, n, m, 1.0d0, ar, na, br, nb,
$ 0.0do, p1, 1) —pl=ar*br
call dgemm(n’, 'n’, I, n, m, 1.0d0, ai, na, bi, nb,
$ 0.0d0, p2, I) —p2=ai* hi
ia=0
do20j =1, m —sl=ar+ai
do 10 i =1, I
sl(i, j) = ar(iati) + ai(ia+i)
continue
ia = ia + na
continue
ib =0
do 40 j =1, n —s2=br+ bi
do30i=1m
s2(i, j) = br(ib+i) + bi(ib+i)
continue
ib = ib + nb
continue
call dgemm(n’, 'n’, I, n, m, 1.0d0, s1, I, s2, m,
$ 0.0d0, ci, nc) —ci=sl*s2
ic =0
do 60 j =1, n —ci=ci-pl-p2
—cr=pl-p2
do 50 i =1,
ci(ic+i) = ci(ic+i) - p1@, j) - p2@, j)
cr(ict) = p1(@, j) - p2(, j)
continue
ic = ic + nc
continue
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end

7.3. Writing Native Scilab Functions

In the following two sections we shall treat the “anatomy” of native, i.e. low-level Scilab functions.
This will confront us with all the gory details of the stack, the low-level API, and the calling
conventions. Having the “Guide for Developersiternals.ps (see alssection 8.2ready is a
good idea. Where the developer guide is at the end of its wits, a study of the source code is
appropriate, especially the file Seutines/interf/stackl.f is of interest for us.

We start out discussing simple functions3ection 7.3.1Simple in the sense that they are
self-contained and only take non-function parameters as their arguments. In the secdabeqpiart,
7.3.2 we shall consider functions that take other functions (either Scilab functions or externals) as
arguments. These functionals all rely on correctly set up deisplatch tables, which are treated in

Section 7.3.3.1

7.3.1. Simple Functions

A typical native Scilab function proceeds as follows:

1. Check the number of input and output parameters.

2. Get the “pointers” to actual input parameters; supply default values for optional parameters;
issue warnings or errors as appropriate if too many or too few parameters are supplied.

3. Allocate space for temporary variables, “workspace(s)”, etc.

4. 1t might be necessary to translate the input variables which are in Scilab format into the
appropriate format for the worker routine. This is happens for example if the worker routine
uses Fortran-77'double complex (or equivalentlycomplex*16 ) variables. Se&ection 7.2.2

for details.
5. Perform the calculations or transformations tieatlly make up the procedure.

6. As in Step4, it might be necessary to transform the results, now from the worker routine’s
format back into Scilab format.

7. If necessary, allocate space for the return value(s) on the Scilab stack, and copy result(s) to this
space.

Now that the general outline is clear, we are ready to dissect a simple funatien: . It takes
exactly one argumerat, that is a real or complemtimesn matrix. The single output parameter is a
matrix of the same shape and type as is the input matrix. The dutyhof is to transform the
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columns of the input matrix into orthonormal form; to achieve this we employ the following Lapack
functions:

type Complex is record
RealPart : Float := 0.0;
ImagPart : Float := 0.0;
end record;

type FloatVector is array (Positive range <>) of Float;

type ComplexVector is array (Positive range <>) of Complex;

type FloatMatrix is array (1..Lda, Positive range <>) of Float;
type ComplexMatrix is array (1..Lda, Positive range <>) of Complex;

procedure  dgeqrf

(M T in Natural; - number of rows of A
N 2in Natural; - number of cols of A

A 1 in out FloatMatrix; - M-by-N matrix

Lda 2in Natural; - leading dimension of A
Tau : out FloatVector; -

scalar factors of elementary reflectors

Work out FloatVector; - workspace

Lwork : in Integer; - size of workspace Work
Info : out Integer); - error indicator

procedure  dorggr

(M T in Natural; - number of rows of A
N Sin Natural; - number of cols of A
K 2 in Natural; - number of elementary reflectors
A 1 in out FloatMatrix; - M-by-N matrix
Lda sin Natural; - leading dimension of A
Tau : out FloatVector; -
scalar factors of elementary reflectors
Work out FloatVector; - workspace
Lwork : in Integer; - size of workspace Work
Info : out Integer); - error indicator

procedure  zgeqrf

(M T in Natural; - number of rows of A
N 1in Natural; - number of cols of A
A 1 in out ComplexMatrix; - M-by-N matrix
Lda 2 in Natural; - leading dimension of A
Tau : out ComplexVector; -

scalar factors of elementary reflectors
Work out ComplexVector; - workspace
Lwork : in Integer; - size of workspace Work
Info : out Integer); - error indicator

procedure  zunggr
(M T in Natural; - number of rows of A
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N 2in Natural; - number of cols of A
K T in Natural; - number of elementary reflectors
A :in out ComplexMatrix; - M-by-N matrix
Lda sin Natural; - leading dimension of A
Tau : out ComplexVector; -
scalar factors of elementary reflectors
Work out ComplexVector; - workspace
Lwork : in Integer; - size of workspace Work
Info : out Integer); - error indicator

procedure  dcopy

(N 2 in Natural; - number of elements to copy
X 2 in FloatVector; - input vector
IncX :in Integer; - input stride
Y : out FloatVector; - output vector
IncY :in Integer); - output stride

Thedgeqrf - andzgeqrf -functions compute a QR-factorization of a real or compielxy-n matrix

a, while thedorggr -, andzunggr -functions generate amby-n real or complex matrix| with
orthonormal columns, relying on the QR-factorizationdgéqrf or zgeqrf . Functiondcopy

copiesN elements (of type Float) of the vectdrin increments ofncX to the vectory using

increments ofncY on that side. For a detailed description please consult the Lapack User Guide, or
the appropriate manual pages. For the mathematics behind the operation, the reader is referred to
[Golub:1996].

Example 7-2s one of the longest examples in the running text, but do not be scared as we will
explain line-by-line and variable-by-variable what is there and why.

Example 7-2. Simple native Scilab function

subroutine ortho -
Native functions are parameterless

implicit none -
Switch into weeny mode :-)

* CONSTANTS

integer realtype

parameter (realtype = 0) — See€Table 7-
2 for type association

* LOCAL VARIABLES
character*6 fname -
name of the routine as string

logical checklhs , checkrhs , cremat , getmat — Scilab API functions

integer topk
integer n, m, mattyp

148



Chapter 7. Scilab Core

integer tausz, worksz, info
integer areadr, aimadr, badr, tauadr
integer wrkadr, rreadr, rimadr, dumadr

* EXTERNAL FUNCTIONS/SUBROUTINES
external checklhs , checkrhs , cremat , getmat — Scilab API functions
external error

external dcopy, dgeqrf, dorgqr, zgeqrf, zungqr -
LAPACK/BLAS worker subroutines

* HEADER
include '/site/X11R6/src/scilab/routines/stack.h’ — Scilab API header
* TEXT

fname = ’ortho’ -
Function name (for error messages)

topk = top -
top is defined irstack.h

rhs = max(0, rhs)

if (.not. checkrhs (fname, 1, 1)) return O
if (.not. checklhs (fname, 1, 1)) return
* fetch input parameters O
if (.not. getmat (fname, topk, top - rhs + 1,
$ mattyp, m, n, areadr, aimadr)) return

if (n* m .eq. 0) return -
Quick return on empty matrix

tausz = min(m, n) — Prescribed by man-
page
worksz = max(1, n) — ... same here
if (mattyp .eq. realtype) then
* real case
* allocate temporary variables; all are real O
if (.not. cremat (fname, top + 1, realtype, tausz, 1,
$ tauadr, dumadr)) return
if (.not. cremat (fname, top + 2, realtype, worksz, 1,
$ wrkadr, dumadr)) return
if (.not. cremat (fname, top + 3, realtype, m, n,
$ badr, dumadr)) return
* prepare worker routines’ input parameters O

call dcopy(n * m, stk(areadr), 1, stk(badr), 1)
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* call worker routines ad
call dgeqrf(m, n, stk(badr), m, stk(tauadr),
$ stk(wrkadr), worksz, info)

if (info .ne. 0) then -
Any error is considered fatal
buf = fname // ’ dgeqrf failed’
call error (999)
return
endif

call dorggr(m, n, tausz, stk(badr), m, stk(tauadr),
$ stk(wrkadr), worksz, info)
if (info .ne. 0) then -
Any error is considered fatal
buf = fname // * dorgqr failed’
call error (999)

return
endif
else
* complex case; mattyp != realtype
* allocate temporary variables,
* use two REAL*8 for one COMPLEX*16 O
if (.not. cremat (fname, top + 1, realtype, 2 * tausz, 1,
$ tauadr, dumadr)) return
if (.not. cremat (fname, top + 2, realtype, 2 * worksz, 1,
$ wrkadr, dumadr)) return
if (.not. cremat (fname, top + 3, realtype, 2 * m, 2 * n,
$ badr, dumadr)) return
* prepare worker routines’ input parameters, joining
* two REAL*8 arrays into one COMPLEX*16 array O
call dcopy(n * m, stk(areadr), 1, stk(badr), 2)
call dcopy(n * m, stk(aimadr), 1, stk(badr + 1), 2)
* call worker routines O
call zgeqgrf(m, n, stk(badr), m, stk(tauadr),
$ stk(wrkadr), worksz, info)

if (info .ne. 0) then -
Any error is considered fatal
buf = fname // * zgeqrf failed’
call error (999)
return
endif

call zunggr(m, n, tausz, stk(badr), m, stk(tauadr),
$ stk(wrkadr), worksz, info)
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if (info .ne. 0) then -
Any error is considered fatal
buf = fname // ’ zorgqr failed’
call error (999)

return
endif
endif
* get ready to exit
if ( Ihs .ge. 1) then ad
if (.not. cremat (fname, top, mattyp, m, n,
$ rreadr, rimadr)) return
if (mattyp .eq. realtype) then (10)
call dcopy(m * n, stk(badr), 1, stk(rreadr), 1)
else
call dcopy(m * n, stk(badr), 2, stk(rreadr), 1)
call dcopy(m * n, stk(badr + 1), 2, stk(rimadr), 1)
endif
endif
end

0 Check the number of input and output parameters. The task is easy as we receive one and return
exactly one parameter. This line and the next correspond tolStep

0 Getthe addresses — as mentioned in Stepf the real, and imaginary part of the matrix
passed as (only) parameteraitho . Note thatgetmat will return False if the parameter at
the given parameter stack position is not a matrix of numbers.

Functiongetmat is called with the second parametepk , holding the value of the parameter
stack pointer when the control flow enteratho . This as well as the function name passed in
fname is necessary for the cleanup and messaging in case of an error.

The only parameter we use sits on top of the parameter staakpfor rhs + 1 equalgtop in
our case.

On successful returgetmat not only sets the data stack addresseadr , andaimadr of the
real and imaginary parts, but also tells us mattyp whether the matrix is real complex, and
viam andn how large the matrix is.

The following lines directly depend on the sizes passed back form the core interface, calculating
the necessary space for two scratch arrays.

O Allocating space for the temporary variabtes , work , andb on the data stack is a realization
of Step3. The variablesau andwork are necessary because of the Lapack routines tised
copy ofa as the Lapack routinedgeqrf , andzgeqrf , modify the matrix in place, i.e. would
mangle the input variable. The temporaries are accessed the same way parameters are
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accessed: through indices into the data stack. These indicesiade , wrkadr , andbadr .
Their positions on the parameter stacki@ge + 1 ,top + 2 , andtop + 3 , respectively.

We request a purely real storage for each of the three temporary variables, the third parameter
beingreaitype = 0. Therefore, the index for the imaginary part is a dummy index, called
dumadr .

There is no “translation” to do in the real case. So Stépquite simple. The input variable — of
which we definitely know that it is real — is simply copied to the scratch space that we have
allocated on the data stack.

Note how theaddressof the matrices is passed. The idionsig( index ), whereindex has
been obtained through one of the get*-, or cre*-functions. The memnonic “stk” means data
stack.

Everything is set up correctly and initialized. We have reached St€pe worker routines can
take over now.

In the complex case the allocation of the temporaries variables requires a bit more thought,
although it is again just Step We know that the Lapack routines need the complex
vectors/matrices in packed form. Thus, we allocatereal (double precision) vector/matrix of
twice the size each time thereby accommodating the storage requirement of complex (double
complex, or complex*16) variables. Otherwise this step proceeds as in the real case.

Because of the different handling of complex variables in Scilab and Lapack4 &epires
two calls to the copy function.

call dcopy(n * m, stk(areadr), 1, stk(badr), 2)

call dcopy(n * m, stk(aimadr), 1, stk(badr + 1), 2)

The first line says: “Copyntimesn elements from the first position of the double precision
variablestk(areadr) taking each entry (3rd parameter, read stride = 1) to the double complex
output variablestk(badr)  filling every other entry (5th parameter, write stride = 2).” The
second line does almost the same, but starts off writing at the second ektkgentr + 1)
therefore filling in the imaginary parts efk(badr) . This corresponds to Step

Again we have reached St&peverything is set up correctly and initialized. The worker
routines can take over.

If there is an output variable, we copy the results into it. Otherwise, we skip the expensive copy
operation.

(10) At this point a purely real resulstk(badr) , can simply be copied to the output parameter,

stk(rreadr)

The situation is a bit more complicated for a complex result, as we have to de-splumutie
complex result from Lapack into twaouble precision matrices. Here are the crucial lines
again:

call dcopy(m * n, stk(badr), 2, stk(rreadr), 1)
call dcopy(m * n, stk(badr + 1), 2, stk(rimadr), 1)
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The first line says: “Copyntimesn elements from the first position in the double complex result
stk(badr)  taking every other entry (3rd parameter, read stride = 2) into the double precision
output variablestk(rreadr) filling each entry (5th parameter, write stride = 1).” The second
line does almost the same, but starts off at the second elestightdr + 1) , therfore

copying the imaginary parts inkk(rimadr) . This way we are merging Stép and Stefy

into one.

7.3.2. Functionals

Func what? What are you talking about? Functionals — what is this? Glad you asked! Functions
operate on numbers or variables, which themselves are not functions. The square root function for
example is usually applied to numbers (likgrt(2) ) or more generally to variables (like: sqrt(x)

for any real x). Functionals operate on other functions. Prominent examples are differentiation

af . . f@) = f(zo)
a5 ") = A T

where f as to fulfill certain continuity requirements at the poiptintegration:

/af(a:) + Bg(x)dx = a/f(m) dz —I—ﬁ/g(a:) dz linear
flz)<g(z) forallz = /f(x) dx < /g(x) dxr monotonic

/ flz —xo)dz = / f(z)dz invariant under translation

1

ldxr = 1 normalized,
0

where again f has to fulfill certain (interesting) requirements; and Fourier transformation:

1

Ff(x))(p) == NoT:

I[f(z) exp(27zp)](p)

for suitable functionsf, and integralsL .

The question how to write native Scilab functions that take arbitrary non-function parameters as their
arguments has been discussed in the previous section. Now we focus on Scilab functions that take
other Scilab functions as their arguments. If the reader does not feel familiar with native Scilab
functions, she should reconsidgection 7.3.1
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In a similar manner as in the last section, we introduce an example. The example is taken from our
Scilab/Quadpack interface available on the web. Among others it features the inteigratdor
sufficiently smooth functions, which has the following signature:

type SimpleFunctionType is access
function(X : in Float) return Float;

procedure  dgng

( Function Sin SimpleFunctionType;
LowerlIntervalEnd 1 in Float;
HigherIntervalEnd T in Float;
EpsilonAbsolute o in Float;
EpsilonRelative T in Float;

Result : out Float;
ErrorAbsolute : out Float;
NumberOfEvaluations : out Natural;
Errorindicator : out Natural);

Here comes the complete example.

Example 7-3. Scilab functional

subroutine intsm

* name: intsm.f - Scilab/F77 interface to QUADPACK’s dgng
* author: Lydia van Dijk

* last rev.: Wed Mar 15 23:49:45 UTC 2000

* scilab ver.: 2.5

* compiler: g77-0.5.25 (Linux 2.3.49)

*

* Scilab signature:

* [res, abs_err, n_eval] = intsm(a, b, f, eps_abs, eps_rel)
*

* Return Values:

* res: value of the integral

* abs_err: estimate of the absolute error

* n_eval: number of function evaluations

*

* Arguments (mandatory):

* a: lower bound of integral

* b: upper bound of integral

* f: function to integrate with signature y = f(x),
* X, y real scalars

*

* Arguments (optional):

* eps_abs: desired absolute error; default: 0.0

* eps_rel: desired relative error; default: 1e-8
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implicit none
Switch into weeny mode :-)

include ’stack.h’

common /cintg/ namef
Name of integrand function

external bintg, fintg
gateways, se8ection 7.3.3.1
external setfintg

* LOCAL VARIABLES
character*6 namef

Name of the routine as string
character*6 fname

Name of function to be integrated
character*8 errstr

logical getexternal , getscalar
logical type, cremat
integer iadr, sadr, neval, ifail, I, idxf, idxa

integer topk, Ir, Ira, Irb, iipal, dummy
double precision epsa, epsr, a, b, val, abserr

include ’errnum.inc’
Error numbers are defined here

* STATEMENT FUNCTIONS
jadr(l) =1 +1-1
Accessor for integers on real*8 stack
sadr() = 112 + 1
Accessor for real* on integer stack

* TEXT
fname = ’intsm’
Name of this function
ift rhs .lt. 3 .or. rhs .gt. 5) then
call error (39)
return
endif
topk = top
Remember stack position

* pop optional parameters off the stack
ift rhs .eq. 5) then

if (.not. getscalar (fname, topk, top, Ir)) return

O
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epsr = stk(Ir)

top = top - 1
else

epsr = 1.0d-8 — Scilab default
endif

if ( rhs .ge. 4) then

if (.not. getscalar (fname, topk, top, Ir)) return
epsa = stk(Ir)
top = top - 1
else
epsa = 0.0dO — Scilab default
endif
* pop mandatory parameters off the stack
namef ="’ ’ — Fill name-
string with 6 spaces
type = .false.
if (.not. getexternal  (fname, topk, top, namef, type, setfintg)) a
$ return
idxf = top -
Remember stack position of function f
top = top - 1
if (.not. getscalar (fname, topk, top, Irb)) return
b = stk(Irb)
top = top - 1
if (.not. getscalar (fname, topk, top, Ira)) return
a = stk(lra)
idxa = top -
Remember stack position of argument a
top = topk + 1 — Reset stack index
* call integration routine
if (type) then O
* compiled external
call dgng(fintg, a, b, epsa, epsr, val, abserr, neval, ifail)
else O
* Scilab macro
iipal = iadr(Istk(top)) -
Start building a variable description
istk(iipal) = 1 -?
istk(iipal + 1) = iipal + 2 -?
istk(iipal + 2) = idxf -?
istk(iipal + 3) = idxa -?
Istk(top + 1) = sadr(iipal + 4) -?
call dgng(bintg, a, b, epsa, epsr, val, abserr, neval, ifail)
endif
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if (ifail .eq. 1) then O
buf = fname // ' max. number of steps reached; ’
$ /I "integral too difficult for int_sm’
call error (emaxdiv)
return
endif

if (ifail .eq. 6) then
buf = fname // ' invalid error bounds’
call error (ebounds)
return

endif

if (ifail .ne. 0) then

* catch all other errors

write(errstr, '(110)") ifail
buf = fname // . unknown error ' // errstr
call error (eunknown)

return
endif
* return values #1, and #2 (val, abserr) replace arguments #1, and
* #2 (a, b).
top = topk - rhs + 1
stk(lra) = val O
if ( lhs .ge. 2) then
top = top + 1
stk(Irb) = abserr
endif
* return value #3, neval, needs space on the stack
if ( Ihs .ge. 3) then O
top = top + 1
if (.not. cremat (fname, top, 0, 1, 1, Irb, dummy)) return

stk(Irb) = dble(neval) -
neval is int, stk() is double precision
endif

end

O Here, we do not rely on the predefined number-of-arguments checking funaimtklhsand
checkrhsbut set up out own schematsm will require three mandatory arumengs,b, f ,
and two optional onegps_abs , eps_rel , making a total of five.

O Take care of the optional parameters: fetch them from the stack, or use a default value if the
actual parameter is omitted.

0 Fetch mandatory parameters from the stack. The stack ingexs decremented with each
parameter. This is a slight variation of the code showBxample 7-2where we keep the stack
index fixed and add an appropriate offset when fetching the parameter from the stack.
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O getexternal  returns the type of the external after a successful call. An external, i.e. object
code linked to Scilab, setgpe = 1 , a macro — defined videff , orfunction — setstype =
0.

The case of an external is easy to handlgaasxternal ~ has already taken care of initializing
the address to be calldidtg . A call tosetfintg ~ accomplishes this.

O Calling a Scilab macro is much more involved as it requires to manually set up a function
activation record (“calling frame”).

FIXME: add text here.

0 The return code form the integration routitgng is checked, and errors are handled as
described irBection 7.4

O Forintsm returns a scalaandthe first argument is a mandatory scalar too, we do not need to
reserve space for the value of the integval, . The result is simply copied into the argument’s
stack position.

Almost the same holds for the second return vadisserr , though we only can use its slot if
there actually is a return variable.

0 The third return value is a scalar, but the third argument is a function, so we cannot apply our
previous technique agaicremat reserves the space foeval .

7.3.3. Library Interfaces

When finally a Fortran-77 or C function to extend Scilab has been completed, it must be registered
with the interpreter. The registration is done from the command line with funatidinter , and
happens indirectly via so called dispatch tables or “gateways” in INRIA parlance.

Dispatch tables are either set up manually, a technique that is explaiBedtion 7.3.3.1or they
are generated automatically — which is of course much easier — with furiiiidruild . The
auto-generation of gateways will be explainediection 7.3.3.2

7.3.3.1. Dispatch Tables

A dispatch table or “gateway” connects the identifiers of the extension functions (entry points of the
functions) with the names the functions will carry in the Scilab environment. For example, Scilab
must be taught that the C-functiomy_fun , is calledfuncl at the prompt.

Dispatch tables are implemented by arrays of struct GenericTable. The structure is defiieadhin
typedef int (*GatefuncH) (int nlhs, Matrix *plhs[], int nrhs, Ma-

trix *prhs[]);

typedef int (*Myinterfun) (char*, GatefuncH F);

typedef struct
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{
Myinterfun f; —interface
GatefuncH F; — function identifier
char *name; — function name in Scilab

} GenericTable;

A typical interface looks like the following piece of C-code.

#include < mex.h>

extern Gatefunc C2F(  my_fun);
— more functions can be declared here

static GenericTable Tab[] =

{
{ (Myinterfun)sci_gateway, C2F( my_fun ), "funcl" }
— more functions can be registered here
2
int
C2F(lib_my_lib ()
{
Rhs = Max(0, Rhs);
(*(Tab[Fin-1].f))(Tab[Fin - 1].name, Tab[Fin - 1].F);
return O;
}
The interface is activated at the command lineabginter(["libmylib.so",
"my_fun.so"], "lib_my_lib", ["funcl"]) , Where the square brackets could take more files
or function names. It has been assumed that the gateway has been compiled into the
file libmylib.so , and the user’s function into the fitey_fun.so . The second argument to

addinter  is the name of the dispatching function itself (as a string). The third and last parameter to
addinter lists all function names to be registered.

Important: The order of the functions to be registered must be the samabirthis is, in the C-file
and in theaddinter  call, this is, at interpreter level!

Here is another example of a gateway.

/*
* name: quadgack-gw.c - gateway for all QUADPACK
* interface routines
* author: Lydia van Dijk

* last rev.: Wed Mar 15 02:22:02 UTC 2000
* compiler: pgcc-2.95.2 19991024 (Linux 2.3.49)
*/

#include < stack-c.h > /* lives in $SCl/routines */
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typedef void (*gatef _t) (void);

extern void C2F( intals )(void);
extern void C2F(  intcau )(void);
extern void C2F( intexc )(void);
extern void C2F( intfou )(void);
extern void C2F(  intgen )(void);
extern void C2F( intgk )(void);
extern void C2F( intinf )(void);
extern void C2F(  intosc )(void);
extern void C2F( intsm )(void);

static gatef t gftab[] = {
C2F(intals ),
C2F(intcau ),
C2F(intexc ),
C2F(intfou ),
C2F(intgen ),

C2F(intgk ),
C2F(intinf ),
C2F(intosc ),
C2F(intsm )

2

int

C2F( quadpack_gw )(void)

{
(*gftab[Fin - 1])();
return O;

}

Scilab script part ...

quadpacklibs = [/site/src/netlib/quadpack/libquadpack-1.0.s0’, ..
'[site/src/netlib/quadpack/intersci/libqpif-1.0.s0’]
gateway = ’'quadpack_gw’ // name of the gateway function
interfaces = [intals’, ’intcau’, 'intexc’, 'intfou’, ..
‘intgen’, ’intgk’, intinf’, 'intosc’, ..
'intsm’]

addinter(quadpacklibs, gateway, interfaces)

The complete example can be foundSaction 10.7
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7.3.3.2. Interface Generator

The previouis section has shown that manually setting up an interface is a rather complicated
process. However, Scilab can take over most of the tedious and error-prone part. The Scilab function
that does all the magic isb_build ; it accepts four or five parameters:

ilib_build
(library_name ,
function_table ,
function_files ,
extra_libraries
[ makefile_name 1)

library_name is the name of the library. The resulting interface (shared) object file will be
library name .oorlibrary name .so.library name s an-times-2 string matrix that lists
the C- or F77-function name/Scilab function name pairs. For the remaining arguments the the
man-page.

Usually, the call talib_build is wrapped in the Scilab scriptilder.sce . However, any other
name is possible, too.

/I builder.sce

func_files = ["rot90.0";
func_table = ..

[ .
"rot90", "C2F(rot90)" ..

I3

ilib_build("librot90", func_table, func_files, []);

exit;

Note: Do not forget the exit command at the end of builder.sce if you want to use the script
non-interactively.

With the help ofilib_build a Makefile for a Scilab-extension condenses into a few simple rules as
is done in theMakefile  below.

# Makefile for Scilab extension ’'rot90’

include Makelib

.phony: all

all:: librot90.s0

161



Chapter 7. Scilab Core

.phony: test
test:: all
scilab -nw -f tester.sce | tail +12

.phony: clean
clean::
rm -f librot90.* *.lo loader.sce Makelib

.phony: distclean
distclean:: clean
rm -f *~ core

Makelib: # empty rule; "Make-
lib" is made by ilib_build() in "builder.sce"

librot90.s0: rot90.c
scilab -nw -f builder.sce | tail +12

In fact the example is so simple thatilder.sce is not even necessary, and ilie_build call
can be fed directly into Scilab.

librot90.s0: rot90.c
echo 'ilib_build("librot90", ['rot90", "C2F(rot90)"], "rot90.0", []); \
| scilab -nw -f | tail +12

Given the above filesviakefile , builder.sce , and the C-sourcet90.c  and the test
scripttester.sce , building the extension could proceed as follows.

$lIs -1
Makefile
builder.sce
rot90.c
tester.sce

$ make
Makefile:4: Makelib: No such file or directory
scilab -nw -f builder.sce | tail +12

generate a gateway file

generate a loader file

generate a Makefile: Makelib

running the makefile

$lIs -1
Makefile
Makelib
builder.sce
librot90.a
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librot90.c
librot90.la
librot90.lo
librot90.0
librot90.so0
loader.sce
rot90.c
rot90.lo
rot90.0
tester.sce

$ make test

scilab -nw -f tester.sce | tail +12
Loading shared executable ./librot90.so
shared archive loaded

Linking librot90

Interface 0 librot90

passed 18 tests.

7.4. Error Handling

We briefly discuss how to produce the three possible classes of errors: fatal, warning, and message in
Scilab.

7.4.1. Fatal Errors

To signal a fatal error condition in an interface procedure,aedk  with the appropriate code. The
codes can be looked up in Sfoutines/system/error.f

Here is a code snippet that does this.

if (ifail .eq. 2) then
call error(1232)
return

endif

If there is no suitable error message, place you own message (length <= 80 chars) in the global
variablebuf , and callerror afterwards.

Warning

The string placed in buf must not be longer than 80 characters.
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if (ier .eq. 6) then
buf = ’invalid limits’
call error(32253)
return

endif

Sideffect of callingerror : The Scilab stack is cleaned up, i.e. put back in the state it was just before
the user routine has been entered.

On the Scilab interpreter level an error terminates the evaluation of whatever is currently evaluated
(expression, file, or string), unless the trapping of errors has been modifiecthyh . See also
the interpreter functionerrclear , andiserror

7.4.2. Warnings

To signal non-fatal error conditions (also known as soft-errors, or warnings), place a negative integer
inerr2 , and callout to display the warning message. Depending on the situatietu@ may be

issued after that. The Scilab stackist cleaned up, which means all return values from the interface
routine are passed back normally. This is the solution of choice if the user can decide how to
proceed, based on the return values.

Again, here is a small piece of code for demonstration.

if (fail .eq. 1) then

err2 = -6343
call out('reached table limit’)
return

endif

On interpreter level it is now mandatory to cakrror  after a call to a routine that issues warnings
like this. In the user-level error handler the error cougstbe reset byerrclear  to allow for
further warnings to be received.

A typical way of coping with these soft-errors in the interpreter level is shoviExample 7-4

Example 7-4. Handling of warnings in Scilab

[z, n, info] = abraxas(a, b, foo, limit)
if iserror(-19) then
errclear(-19)
limit = limit / 2 /I make it easier
[z, n, info] = abraxas(a, b, foo, limit)
if iserror(-19) then
errclear(-19)
error(failed even with easy limit’);
end
end
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7.4.3. Messages

Messages are the least severe class of errors. Sometimes they are not really errors, but just additional
information that something unexpected is going on. No news is good news.

We have already seen the appropriate subroutine in actiorodt is

if (iter .gt. 1000) then
call out(’iterating excessively’)
endif

7.5. Fortran Interface to Scilab’s Core

The interface to Scilab’s core is widely undocumented. What is missing from the offical
documentation will be described in the following sections.

There are two levels of interface funcitons, a lower-level Fortran77-derived, and an interface that
resembles Scilab’s C-interface (see d@xtion 7.8. Up to Scilab-2.5 (official release) the
lower-level APl was defined in S@butines/interf/stackl.f , but from Scilab-2.5.1 (alpha
version) on it is defined in SGbutines/interf/stackl.h and

SClrroutines/interf/stackl.c . This means that the implementation has been ported from
Fortran77 to C. The higher-level APl is defined in Sailtines/interf/stack2.h and
SClroutines/interf/stack2.c

All lower-level functions expect the user-function name in the first parameter, whereas the
higher-level functions need a variable of type ParameterStackindex.

To save the reader frequent lookups in the defining files, we have compiled the most important ones
in the following sectionsquery, accesscreationof objects, andniscellaneouunctions.

7.5.1. Query

The functions in this group retrieve information about the parameters a function has been called
with, and about the properties of objects on the stack.

7.5.1.1. checkrhs
Synopsis

function CheckRhs
( SelfName :in String;
MinNumParameter : in Natural;
MaxNumParameter : in Natural)
return Boolean;
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Description
Check the number of actual parameters on the right-hand side to be in the range
MinNumParameter : MaxNumParameter . ReturnTrue ifitis in the range, otherwise raise
error 77 associated witBelfName and returrFalse .
Example
Ensure that at least 2, but not more than 5 parameters are passed to the function:
if (.not. checkrhs(fname, 2, 5)) return
We have assumed thiame is set to the function’s name.
See also

CheckLhs , Lhs, Rhs

7.5.1.2. checklhs

Synopsis
function CheckLhs
( SelfName : in String;
MinNumParameter : in Natural;
MaxNumParameter : in Natural)
return Boolean;
Description
Check the number of output variables, i.e. arguments on the right-hand side to be in the range
MinNumParameter : MaxNumParameter . ReturnTrue if it is in the range, otherwise raise
error 78 associated witBelfName and returrFalse .
Note that it is no error to supply less output parameters than the function actually returns. The
extra values are silently discarded. This is true for the case of zero output values, tamshen
gets the first output value. Thus, a function called without any output parameters is assigned an
Lhs of 1.
Example

Ensure that there are not more than 2 output parameters, when the function is called:
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if (.not. checklhs(fname, 1, 2)) return

We have assumed thimame is set to the function’s name.

See also
CheckRhs, Rhs, Lhs
7.5.1.3. Ihs
Synopsis
Lhs : Natural;
Description
The number of actual output parameters, i.e. those on the left-hand side of the assignment
operator, is stored in the global varialies . Inside a user function,hs should be used as a
constant.
See also
CheckLhs , CheckRhs, Rhs
7.5.1.4. rhs
Synopsis
Rhs : Natural;
Description
The number of actual input parameters, i.e. those on the right-hand side of the assignment
operator, is stored in the global varialfles. Inside a user function,hs should be used as a
constant.
See also

CheckRhs, CheckLhs , Lhs
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7.5.2. Access Object

The functions in this section grant the programmer access to parameters that are stored on the Scilab
stack. In general all of these functions work alike: An index to the current (i.e. as on entry of the
function) top of the parameter stack, “BasePointer”, and an index to the desired argument,
“StackPointer”, are passed to the API. On return the user gets all necessary information about the
argument like sub-type, dimension as well as the indideéspfndex” that index into the Scilab

heap. The indices act like pointers to the actual contents. This way only meta-data is passed, saving

time-consuming copy operations.

7.5.2.1. getmat

Synopsis

function GetMat

Description

Example

( SelfName s in String;

BasePointer 2in ParameterStackAddress;
StackPointer T in ParameterStackAddress;
IsComplex : out ComplexFlag;

Rows : out Natural;

Columns : out Natural;

Reallndex : out DataStackIndex;
Imaginarylndex : out DataStackindex)

return Boolean;

Retrieve the address(es) and dimensions of a real or complex matrix from the parameter stack.
TheBasePointer must be set to the parameter stack pointer’s value on entry afilieg

function. StackPointer points to the desired parameter on the parameter stack. If
successfulGetMat returnsTrue , andlsComplex , Rows, Columns , andReallndex are

valid. If IsComplex = ComplexVariable thenlmaginarylndex is valid, too. If the

parameter indexed bgtackPointer is not a matrixGetMat returnsFalse .

The output parametésComplex indicates whether the matrix on the data stack is purely real
or complex. In the first cadeeallndex points to the matrix, in the second cd®eallndex

points to the real part of matrix, arichaginarylndex points to the imaginary part. In any
caseRows andColumns are the number of rows and columns of the matrix.

Fetch the addresses of a possibly compigimesn matrix from positiontop of the parameter
stack.
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if (.not. getmat(fname, topk, top, is-
cmpx, m, n, are, aim)) return

Itis assumed thghame has been set to the function’s name, &k carries the position of
the stack on entry to the calling function.

See also
GetRMat, GetRVect , GetVect
7.5.2.2. getrmat
Synopsis
function GetRMat
( SelfName 2 in String;
BasePointer 1 in ParameterStackAddress;
StackPointer T in ParameterStackAddress;
Rows : out Natural,
Columns : out Natural;
Reallndex : out DataStackindex)
return Boolean;
Description
FunctionGetRMat works like functionGetMat , but restricts the accepted matrices to purely
real ones.
See also

GetMat , GetRVect

7.5.2.3. getrvect
Synopsis

function GetRVect

( SelfName 2in String;
BasePointer T in ParameterStackAddress;
StackPointer 1 in ParameterStackAddress;
Rows : out Natural;
Columns : out Natural;
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Reallndex : out DataStackindex)
return Boolean;

Description

FunctionGetRVect works like functionGetRMat, but restricts the accepted matrices to either
single rowed (1-time#) or single columnedN-times-1).

See also

GetVect , GetRMat

7.5.2.4. getvect

Synopsis
function GetVect
( SelfName 2 in String;
BasePointer T in ParameterStackAddress;
StackPointer 1 in ParameterStackAddress;
IsComplex : out ComplexFlag;
Rows : out Natural,
Columns : out Natural;
Reallndex : out DataStackIndex;
Imaginarylndex : out DataStackindex)
return Boolean;
Description
FunctionGetvect works like functionGetMat , but restricts the accepted matrices to either
single rowed (1-time#) or single columnedN-times-1).
See also
GetMat , GetRVect
7.5.2.5. getscalar
Synopsis

function GetScalar

( SelfName sin String;
BasePointer T in ParameterStackAddress;
StackPointer 1 in ParameterStackAddress;
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See also

BasePointer
function. StackPointer
successfulGetScalar

StackPointer

Index

return Boolean;

GetVect , GetMat

7.5.2.6. getexternal

Synopsis

type Fortranldentifier is

array (1 ..

returnsTrue , andindex
is not a scalaGetScalar

6) of Character;
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out DataStackindex)

Retrieve the address and dimensions of a real or complex scalar from the parameter stack. The
must be set to the parameter stack pointer’s value on entry afilirg

points to the desired parameter on the parameter stack. If
is valid. If the parameter indexed by
returnsrFalse .

- Fortran’s 6 char limit

- SimpleFunctionType is just an example
type SimpleFunctionType is access

function(X :

in Float) return Float;

type InstallerProcedureType is access

function
( SelfName 2in

Description

procedure(FunctionName 2in
FunctionEntryPoint : in

GetExternal

BasePointer 1 in
StackPointer 1in
FunctionName n
IsExternal
Installer

n

return Boolean;

The first three parameteg8elfName , BasePointer
the same as in the other functions, so does the return value. They explanations are not repeated
here, see e.@gection 7.5.2.1

Fortranldentifier;
SimpleFunctionType);

String;
ParameterStackAddress;
ParameterStackAddress;
out Fortranldentifier;
out Boolean;
InstallerProcedureType)

, andStackPointer  work exactly
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The fourth parameteFunctionName is the name of the function to be called. This

parameter can designate an external function, i.e. code that has been compiled seperately and
then linked to Scilab via, for exampliek , or the name of a Scilab function that has been
defined withfunction ~ ordeff . In any case it is simply the name of the function. On return
thelsExternal ~ parameter signalSrue if the function is a external angalse otherwise.

The last parameter is very special. It specifies the installation procatsiatler that
manipulates a dispatcher functi@ispatchFunction . After a call tolnstaller the
dispatcher points to the user function givenFynctionName

Note: The programmer should not issue such a call; it is already done by GetExternal

Examples of dispatcher functions, the associated hooks and dispatch tables are e.g. found in
SCliroutines/default/FTables.{h,c} . We will discuss dispatch tables 8ection
7331

Support Functions

TheGetExternal  function relies heavily on various support functions. The supporting
function have to be set up previous to the first call. Usually they are installed by the user’s
extention package unless she/he decides to (ab)use existing dispatcher tables and functions.

package ExternalSupport is
procedure InstallProcedure
(FunctionName sin Fortranldentifier;
FunctionEntryPoint : in SimpleFunctionType);
end ExternalSupport;

package body ExternalSupport is
with Ada.Characters.Latin_1;

type FunctionTableEntry is

record
FunctionName . Fortranldentifier;
FunctionAddress : SimpleFunctionType;
end record;

type FunctionTableType is
array (Positive range <>) of FunctionTableEntry;

- SimpleExample is of type SimpleFunction
function SimpleExample (X : Float) return Float;
begin

return X;
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end Hook;

FunctionTable : FunctionTableType(1 .. 2) :=

(2 => (FunctionName => "exampl",
FunctionAddress => SimpleExample 'Access),
2 => (FunctionName => (oth-

ers => Ada.Characters.Latin_1.NUL),
FunctionAddress => null));

DispatchFunction : SimpleFunctionType;

- function Hook is the hard-coded target for all
- internal calls

function Hook(X : Float) return Float;
begin

return DispatchFunction.all(X);
end Hook;

- bend hook function to point to FunctionEntryPoint

procedure InstallProcedure
(FunctionName sin Fortranldentifier;
FunctionEntryPoint : in SimpleFunctionType);
begin
DispatchFunction := SetFunction(FunctionName,
FunctionEntryPoint,
FunctionTable);
end InstallProcedure;

end ExternalSupport;

Example

For a self-contained example, seection 7.3.2

See also

FunctionalsDispatch Tables
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7.5.3. Create Object

The object creation functions are mainly used to setup temporary variables for the current procedure
or the procedures to be called; they bear a lot of resemblance with the object access functions (see
alsoSection 7.5.2 The difference is that a new object is created and therefore stack space is used.

7.5.3.1. Cremat

Synopsis
function CreMat

( SelfName Sin String;
StackPointer 2in ParameterStackAddress;
WantComplex Sin ComplexFlag;
Rows o in Natural;
Columns sin Natural;
Reallndex : out DataStackindex;
Imaginarylndex : out DataStackindex)
return Boolean;

Description

FIXME: write it

7.5.4. Miscellaneous
FIXME: Write it!

7.6. C Interface to Scilab’s Core

Analogously to the Fortran-77 sectiddection 7.5following provides a reference for the C-interface
to Scilab split into four sub-sectionguery, accesscreationof objects, andniscellaneouunctions.

All C-interface functions are introduced in Sfdltines/stack-c.h

7.6.1. Query

The functions in this group retrieve information about the parameters a function has been called
with, and about the properties of objects on the stack.
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7.6.1.1. CheckRhs

Synopsis
function CheckRhs
(MinNumParameter : in Natural;
MaxNumParameter : in Natural)
return Integer;
Description
Check the number of actual parameters on the right-hand side to be in the range
MinNumParameter : MaxNumParameter . Returnl if it is in the range, otherwise raise error
77 associated with the name of the C-function from widtleckRhs is called.
The semantics atheckRhs is slightly goofy. If the number of actual input parameters is in the
specified rangeCheckRhs returnsl, but it never returng as it raises an error in this case.
Therefore, the return value can safely be ignored, as we do in the Example.
Example
int
myfun(const char *fname)
{
[* local variables */
CheckRhs(1, 1); — check for exactly one argument
/* more code goes here */
}
See also
CheckLhs , Lhs, Rhs
7.6.1.2. CheckLhs
Synopsis

function CheckLhs
(MinNumParameter : in Natural;
MaxNumParameter : in Natural)
return Integer;
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Description
Check the number of actual parameters on the left-hand side to be in the range
MinNumParameter : MaxNumParameter . Returnl if it is in the range, otherwise raise error
78 associated with the name of the C-function from wit@tleckLhs is called.
The semantics afheckLhs is slightly goofy. If the number of actual output parameters is in
the specified range&heckLhs returnsi, but it never return$ as it raises an error in this case.
Therefore, the return value can safely be ignored, as we do in the Example.
Note that a seemingly empty left-hand side as in
-> ones(2,3)
ans =
. 1. 1. !
! 1 1. 1.!
implies the variablans , and accordingly the number of left-hand side parameters in this case is
1.
Example
int
myfun(const char *fname)
{
/* local variables */
CheckLhs(1, 1); _
allow a maximum of one return value
/* more code goes here */
}
See also
CheckRhs, Lhs, Rhs
7.6.1.3. Lhs
Synopsis

function Lhs : Natural;
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Description
The number of actual output parameters, i.e. those on the left-hand side of the assignment
operator, is available throudlhs .

Note that a seemingly empty left-hand side as in

->ones(2,3)
ans =

implies the variablans, and accordingly the number of left-hand side parametéss, in this
caseis 1.

See also
CheckLhs , CheckRhs, Rhs

7.6.1.4. Rhs
Synopsis

function Rhs : Natural;
Description

The number of actual input parameters, i.e. those on the right-hand side of the assignment
operator, is available througths.

See also
CheckRhs, CheckLhs , Lhs
7.6.1.5. GetType
Synopsis

function GetType
(ParameterNumber : in ParameterStackindex )

return  TypeCode;
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Description
Inquire the Scilab type code of argumétdarameterNumber . The type codes are the same
as returned byype . The first parameter has index 1. Sixble 4-3for a complete listing of all
available type codes.
Example
int
vandermonde(const char *fname)
{
[* local variables */
CheckRhs(1, 1) ; — assert one argument
if (GetType(1) != 1) { — test for a float
Scierror (814, "%s: expecting floating point entity”, fname);
return 1;
}
/* more code goes here */
}
See also

GetRhsVar

7.6.2. Access Object

The following functions allow for the access of the Scilab data stack, and the mapping of C-pointers
to and from stack indices.

Please remember that variables of type ParameterStackAddress, within the user function, point to
uniquestack positions. Thus, after the calls

GetRhsVar(1, "d", &rowsl, &colsl, &idx1);
CreateVar(1, "d", &rows2, &cols2, &idx2); /* Ouch! */

stk(idxl)  andstk(idx2)  point to the same memory location. Sometimes — if and only if the
“old” variable is not accessed anymore — this is desired.

The type of a variable on the stack, whether it is the actual type of an argument passed in, or the
requested type of a local variable, is defined with a string of length 1, the TypeString. All valid type
strings a compiled iable 7-4

Table 7-4. TypeString Identifiers
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TypeString C or Scilab type

string

single precision complextruct complex {
float re, im; } (see also Section
722 )

double
float

int

list

void*
reference?
tlist

double precision complextruct
double_complex { double re, im; }
(see also  Section 7.2.2 )

7.6.2.1. GetRhsVar

Synopsis

procedure  GetRhsVar

Description

( ParameterNumber : in ParameterStackindex ;
VariableType Sin TypeString ;

Rows : out AccessNatural;

Columns : out AccessNatural;
StackindexPtr : out AccessDataStackindex );

Return size and Scilab-stack address of function argument nupalbeameterNumber . The
argument must have typéariableType . SeeTable 7-4for valid type-strings.

On succesRows andColumns hold the dimensions of the parameter (twice a one for a
scalar) andstackindexPtr points to the index of start address of the parameter on the
Scilab staclstk .

GetRhsVar performs weak type checking with respecMariableType . If VariableType

= "d" and a (double) complex is passed to the functiaerror is raised! Integers, strings, etc.

do raise an error in this case. Therefore, the type of an argument always should be inquired with
GetType before callingGetRhsVar .
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Example
int
vandermonde(const char *fname)
{
int rows, cols, vec_idx;
double *input_vec;
/* more code */
GetRhsVar(1, — get first argument
"d", — expect double
&rows, — number of rows
&cols, — number of columns
&vec_idx); — stack index
if (rows != 1 && cols I= 1) {
Scierror (815, "%s: expecting vector", fname);
return 1;
}
input_vec = stk(vec_idx); — convert index to pointer
/* more code */
}
See also

GetType , GetMatrixptr ~ , LhsVar

7.6.2.2. GetMatrixptr

Synopsis
procedure  GetMatrixptr
(
)i
Description
FIXME: Write it!
Example
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See also

7.6.2.3. GetMatrixDims

Synopsis

procedure  GetMatrixDims

(
);

Description
FIXME: Write it!

Example

See also

7.6.2.4. GetRhsCVar

Synopsis

procedure  GetRhsCVar

(
);

Description
FIXME: Write it!

Example

See also
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7.6.2.5. GetListRhsVar

Synopsis

procedure  GetlListRhsVar

(
);
Description
FIXME: Write it!
Example
See also

7.6.2.6. GetListRhsCVar

Synopsis

procedure  GetListRhsCVar

(
)i
Description
FIXME: Write it!
Example
See also

7.6.2.7. GetFuncPtr

Synopsis
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procedure  GetFuncPtr

(
)i
Description
FIXME: Write it!
Example
See also

7.6.2.8. LhsVvar
Synopsis

Lhsvar : array ( ParameterStackindex ) of ParameterStackindex

Description

LhsVar is an array of the return values of a function. Assigningtevar (N) means
assigning to return-value numbidr The values put intbhsvar are the numbers of local
variables, which have previously been created @ittatevVar or GetRhsVar .

Example

int
vandermonde(const char *fname)
{

int rows, cols, vec_idx;

int n, vdm_idx;

double *input_vec;

double *vdm_matrix;

/* some code here */

GetRhsVar (1, —argument 1 at stack position 1
"
&rows,
&cols,
&vec_idx);
input_vec = stk(vec_idx);
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n = (rows > cols) ? rows : cols;

* allocate matrix */
CreateVar (2, — local variable 1 at stack position 2
",
&n,
&n,
&vdm_idx);

/* compute Vandermonde matrix */

Lhsvar(l) = 2; — stack position 2 goes to return-
value 1
return O;

The lineLhsvar(l) = 2; requires further explanation. The left-hand side of the assignment
specifies the first element in the array of all return values of the function. The right hand side of
the assignment denotes the first local variable (createdGrititevar in the example) within

the function. It has stack index 2, because this is the first free stack position after all parameters

(here: 1).

CreateVar , CheckLhs Lhs

7.6.3. Create Object

Synopsis

The functions in the create group of the core interface allocate new Scilab variables on the Scilab
data stack, which are accessed through their index on the parameter stack.

7.6.3.1. CreateVar

procedure  CreateVar

( VariableNumber T in ParameterStackindex ;
VariableType o in TypeString

Rows 2 in AccessNatural;

Cols s in AccessNatural;

StackIindex : out AccessDataStackindex );
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Create a new local Scilab variable on the Scilab stack. The variable is later accessed with its
“handle”, VariableNumber . The type of the variable is selected witlariableType . See
Table 7-4for a complete listing of all type strings. The size of the new scalar, vector, or matrix
is determined byrows, andCols . Scalars hav®ows := 1; Cols = 1

On return theCreateVar  setsStacklndex  to the element in the data stastk that points to
the start address of the newly created variable.

vandermonde(const char *fname)

{

See also

int vdm_idx;
const int n = 4;
double *vdm_matrix;

/* some code here */

CreateVar(2, — first local variable
"d", — double precision
&n, — N rows
&n, —n columns
&vdm_idx); —index into stack
vdm_matrix = stk(vdm_idx); — convert to pointer

/* more code here */

LhsVvar

7.6.3.2. CreateVarFromPtr

Synopsis

procedure  CreateVarFromPtr

(
);
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FIXME: Write it!
Example
See also

FreePtr

7.6.3.3. FreePtr

Synopsis

procedure  FreePtr

(
);
Description
FIXME: Write it!
Example
See also
CreateVarFromPtr

7.6.3.4. CreateCVar

Synopsis

procedure  CreateCVar

(
);

Description
FIXME: Write it!

Chapter 7. Scilab Core
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7.6.3.5. CreateCVarFromPtr

Synopsis

procedure  CreateCVarFromPtr

(
);

Description
FIXME: Write it!

See also

7.6.3.6. CreateData

Synopsis

procedure  CreateData

(
);

Description
FIXME: Write it!

See also

7.6.3.7. CreateListCVarFromPtr

Synopsis

procedure  CreateListCVarFromPtr

(

Chapter 7. Scilab Core
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Description
FIXME: Write it!

See also

7.6.3.8. CreateListVarFromPtr

Synopsis

procedure  CreateListVarFromPtr

(
);

Description
FIXME: Write it!

See also

7.6.3.9. Createlist

Synopsis
procedure  Createlist
(
)i
Description
FIXME: Write it!
See also

Chapter 7. Scilab Core
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7.6.3.10. WriteMatrix

Synopsis
procedure  WriteMatrix
(ScilabVariableName : in String;
Rows : in ConstAccessNatural;
Cols : in ConstAccessNatural;
Carray : in ConstAccessAny);
Description
FIXME: Write it!
send array CJ[] to Scilab as variable C; see: intexl4c.c
Example
See also
7.6.3.11. WriteString
Synopsis
procedure  WriteString
(ScilabVariableName : in ConstAccessString;
CstringLength : in ConstAccessNatural;
Cstring : in ConstAccessString);
Description
FIXME: Write it!
create the Scilab variable Str from str; see: intex16c.c
Example

Chapter 7. Scilab Core
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See also

7.6.4. Miscellaneous

The dreaded miscellaneous... All functions that do not fit in any of the above categories go here.

7.6.4.1. Scierror

Synopsis
procedure  Scierror
( ErrorNumber : Natural;
FormatString : String;
FunctionName : String);
Description
Raise erroErrorNumber , associated with the errors mess&gematString , which is
preceeded by the function’s (the one we are currently in) naometionName .
Example
int
hrtimer(const char *fname)
{
/* code left out here */
if (t< 0.0) {
Scierror(5771, "%s: internal error\n", fname);
return 1;
}
/* code left out here */
}
7.6.4.2. PExecSciFunction
Synopsis
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procedure  PExecSciFunction

(
);
Description
FIXME: Write it!
From the example file: Executes the Scilab function (f) pointed to by sci_f. We provide a rhs =
2 and expect Ihs = 1; PExecSciFunction(5, &sci_f, &lhs, &rhs, "ArgFex", ex17cenv);
Example
See also

intexl7c.c

7.6.4.3. ReadString

Synopsis
procedure  ReadString
( Identifier o in ConstAccessString;
CstringLength :in out AccessNatural;
Cstring : out AccessString);
Description
Form the example file: We search a Scilab object named Mystr check that it is a string and store
the string in str. strl is used on entry to give the maximum number of characters which can be
stored in str. After the call strl contains the number of copied characters.
Example
See also

intex15c.c
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7.6.4.4. SciFunction

Synopsis

procedure  SciFunction

(
);
Description
FIXME: Write it!
execute the function; SciFunction(&ibegin, &If, &mlhs, &mrhs);
Example
See also

intex8c.c

7.6.4.5. SciString
Synopsis

procedure  SciString

(
);
Description
FIXME: Write it!
eval()? exec()? SciString(&ibegin, name, &milhs, &mrhs);
Example
See also

intex7.c.c ,intexllc.c ,intex12c.c
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We are done with our tour through Scilab, but we are not done with sci-BOT! A few things outside
the Scilab application have to be mentioned. First, the sheer size of the sources requires some tools
to handle it efficiently. We address this topicSection 8.1Moreover, we should not forget that

Scilab is shipped with a lot of helpful documentati@ection 8.2jives an overview of this part of

the documentation. We wrap up the chapter v@ddttion 8.3a small collection of hyper links

connected to Scilab

8.1. Coping With Scilab

Scilab is a large package — no doubt about that. The source for version 2.5 comprises of more than
48 MB, and builds to over 88 MB on an IA32 GNU/Linux system.

8.1.1. Distribution Size

We use several tools to cope with Scilab’s size and complexity. The most important ones are
introduced in the following section.

8.1.1.1. CVS

CVS is one of the most commonly used version control systems. A set of source files (which can be
binary) is put under revision control by “checking it in”. The important difference to an older version
control system, RCS is the notion of a module which refers to the complete set of sources. Usually
the set consists of a whole directory tree, as e.g. all Scilab sources.

Also check out Pascal Molli'snformation and FAQon CVS. In larger development environments
CVS with its relaxed rules might not be the adequate tool. In these cssgiscould be used.

8.1.1.2. locate
Thelocatg(1) command is the fast brother of tlied(1) command. More preciseligcateaccesses
a precomputed database of filenames (usuadiylib/locatedb ; for its structure see

locatedb (5)). The database is generatedupdatedb(1) with afind / -print and then
processed for faster access.

We have found a local filename database very useful for the work with large projects. Therefore, we
have set up two aliases that create and access a project-specific list of filenames.

alias upd="updatedb -output=./.locatedb -localpaths=.
alias loc="locate -database=./.locatedb’

Theupd sequence is typically run after a CVS checkout, add, or remove in the directory SCI.
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We runloc whenever we are looking for a file in the Scilab distribution. This is much faster than
runningfind every time, especially when working with a slow file server. The only inconvenience
remaining is thatoc must be executed in the directory where the database resides, here: SCI.
However this is more than compensated by the factlttatte does a substring search, i.e. given the
filenamefpat it returns all file- and directory names matching the regulat expressifpat .* .

If we want to scan the complete database and postprocess the output with our tools-of-choice,
issuing doc . and piping the output through the desired filters does the job.

8.1.1.3. Glimpse

What theupdatedbylocate pair is for filenames thglimpseindexglimpsepair is for file contents.
glimpseindex1) generates a database that is accessed by the ugginyise(1). So,

glimpse pattern

corresponds to the non-database backed command, namely a reguepieser a set of directories
like

find . -print | xargs grep pattern

assuming that the database has been generated’fagkdain the fast version is so helpful that we
have defined two aliases.

alias glidx='if test -f .glimpse_index; then
glimpseindex -H . -0 -f -B ;
else
glimpseindex -H . -0 -B ;
fi’
alias gl="glimpse -H

The first aliasglidx, is oneline. It has been broken into several lines only to make its workings clear;
namely if an index file already exists it is updatefd pption), otherwise it is generated from scratch.

Like ourlocatealiases everything is happening in the current directory which meanglithat
should be called from SCI.

Glimpse is not part of most of the standard GNU/Linux distributions (at leasSn&E and RedHat
, the ones we checked). The University of Arizona currently hostGhmpse home pageand
Glimpse can also be downloaded froBCO’s software archivewhich is mirrored bySunsite UK

8.1.2. Bug Hunting

In preparation of this document (lvd), and in our daily work (cls) we have found it very useful to
have more than one Scilab. What? More than one running process? — No, more than one binary of
scilex ! In fact three different versions all come in handy depending on the task:
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scilex binaries

Code optimized for execution speed
The common name is “production quality code”, but Scilab is so far away from production
guality that we shall not use that term.

Thisscilex is built with all compiler optimizations enabled. Furthermore all compiler
switches and options are specifically tuned for the machine the code will run on in the future
(seeSection 6.3 Maximum performance is the only goal and no attempt is made to retain any

debugging information.

Debugging Code
Thisscilex is not optimized, instead it carries complete debug information. Thus, it is ideally

suited for interactive debugging sessions, and single-line tracing.

Profiling Code
The third variant is a profiling version atilex

Profiling is the first step of any tuning. Furhtermore, during our work with and on Scilab we
have found it very helpful to be able to answer the notorious question: “Where is it buring the
cycles?” Profiling — done right — is much faster than timing individual “suspects”, although

analyzing the profiler output requires some skill.

. Itis not optimized for speed either.

See als®&ection 4.6.2

8.2. Local Documents

Following documents come with every source distribution of Scilab. They live in the directory

SCldoc .

Standard Documentation

Comm.ps — Communication Toolbox
Description of geci an interactive communication manager.

Whenever Scilab is started with tBeilab-script in fact geci takes over and stastdglexas a
process on the local machine. geci is not limited to local processes; remote machines can be

accessed transparently.
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Comm.ps describes the commands available from within Scilab to communicate with other
applications via geci. Moreover it elaborates how to write C-applications that communicate
with Scilab via geci and the associated library.

— Guide for Developers

Internals.ps is the terse breakdown of the innermost core of scilex. It contains descriptions
of the most holy variables liketk , the stack structure, and the internal variable representation.

The last third treats interfacing user routines with the core and consists mostly of scarcely
documented Fortran program listings.

This is a document intended for gurus, and certainly not suited for casual reading.

Intro.ps  — Users Guide

This is not a must-read this is more, it is a must-print-and-store-near-the-computer. The “Intro”
is muchmore than just an introduction to Scilab.

The chapter breakdown is as follows:

« Introduction,

- Data Types,

« Programming,
« Basic Primitives,
« Graphics, and
« Interfacing.

The appendices cover a Demo Session, System Interconnection, and a brief section about
converting Scilab code to Fortran-77 code.

Most interesting for beginners is the chapter “Introduction”. Combining it with browsing over
“Data Types” and “Graphics” a novice should be all set for her/his first steps.

The advanced user will want to come back the “Data Types” regularly and also study
“Programming” in detail. Any chapter but “Interfacing” should be understandable at that skill
level. It is no shame to come back to the Intro over and over again as Scilab is rich in data types
and graphics commands.

Far beyond the introductory stuff the chapter on “Interfacing C or Fortran routines” wraps up
the Intro. The topics treated here are for the aspiring Scilab master. Dynamic and static
extensions are discussed in depth. The companion program intersci for automatic
Fortran77-interface generation is treated in detalil.
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Lmi.ps — LMI-Optimization Toolbox

FIXME: someone please write it!

Manual.ps — Reference Manual

TheManual.ps is an automatically generated compilation of all Scilab user-variables and
user-commands. It is a compilation in the truest sense of the word as all the help texts available
online through thénelp-command are catenated to one huge (over 700 pages) file.

Metanet.ps — Graphs and Networks Toolbox

FIXME: someone please write it!

Scicos.ps — Dynamic System Builder And Simulator Toolbox

FIXME: someone please write it!

Signal.ps — Signal Processing

FIXME: someone please write it!

8.3. Hyperlinks

Here are a few links that are useful in connection with Scilab.

Links

INRIA official Scilab pages

« Scilab Home page

« Parallel Scilab Home page
. Scilab FAQ

« Scilab FTP Site

Pages Of Scilab Enthusiasts (alphabetically)

- Stéphane Mottelet’s Scilab page
- Jesus Olivan’s Scilab pagiocuses on signal processing in medicine.
« Bruno Pin¢on’s Scilab pagéeaturing a nice French introduction to Scilab.

- Enrico Segre’s page
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Alexander Vigoder’s Scilab pagémainly scilab-mode for emacs)
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“You're the voice” by John Farnham

We have the chance, to turn the pages over
We can write what we want to write
We got to make ends meet before we get much older

These notes should help contributers to adapt their writing to the format fo sci-BOT. The first part,
Section 9.1treats stylistic problems, the secois#ction 9.2technical matter.

9.1. Writing Style

We do not require a contributor to follow Strunk and White's, “The Elements of Style”
[Strunk:1979] though it is not a bad idea for any author to study this classical book on writing well.
Instead here is some general and simple advice for writing. The following list is an edited excerpt
from the author instructions of the American Institute of Physics.

Be clear
Consider the beauty and efficiency of simple declarative sentences as the perfect medium for
communicating complex information. Avoid long sentences in which the meaning may be
obscured by complicated or unclear construction.

Be concise
Avoid vague and inexact usage. Be as qualitative as the subject matter permits. Avoid idle
words; make every word count.

Be complete

Do not assume that your reader has all the background information that you have on the subject
matter. Make sure your argument is complete, logical, and continuous.
Put yourself constantly in the place of the reader

Be rigorously self-critical as you review your first drafts, and ask yourself: “Is there any way in
which this passage could be misunderstood by someone reading it for the first time?”

Some very good hints come from an article of George D. Gopen and Judith A.[Sepan:1990]

1. Follow a grammatical subject as soon as possible with its verb.

2. Place in the “stress position” the new information you want the reader to emphasize.
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3. Place the person or thing whose “story” a sentence is telling at the beginning of the sentence, in
the topic position.

4. Place appropriate “old information” (material already stated in the discourse) in the topic
position for linkage backward and contextualization forward.

5. Articulate the action of every clause or sentence in its verb.

6. In general, provide context for your reader before asking that reader to consider anything new.

7. In general, try to ensure that the relative emphases of the substance coincide with the relative
expectations for emphasis raised by the structure.

Always bear in mind that sci-BOT is a DocBook document, which means that

i. itis stored in machine readable format,
ii. its HTML output is viewed online with a multitude of different browsers, and
iii. its PostScript® or PDF output will be printed on paper with black-and-white printers.

Itemi enables the author to make extensive use of cross-referentefs( ), preferably in both
directions. Furthermore, authors should make heavy use of the automatic index generation
(<indexentry> ). <xref> s can go everywhere in the running text, bistdexentry> s should only

go intochapter orsection N elements even if this separates the indexed term form the index entry.

The different output media, as mentioned in itérandiii, require that all included graphics are
provided in at least two formats, one suitable for online viewing and the other for high resolution
(assume at least 720 dpi) monochrome printouts.

FIXMEs. Probably has seen several almost empty sections marked with “FIXME” and some
comment following it. These markers arg@odthing. They remind the author[s] that the discussion
is still incomplete, but the missing part has been identified and sits already in the right section. On
the other hand, a “FIXME” tells the reader that the author is aware of a gap in the flow of
information, and is probably working on it.

9.2. Technicalities

9.2.1. DocBook

sci-BOT is written in xml-DocBook. Any aspiring author should get a copy of Norman Walsh and
Leonard Muellner’s, “DocBook: The Definitive Guide”. S¢@/alsh:1999]for full bibliographical
details. An online version of the book is available at DocBook-Online, and an archive of
DocBook-Online is provided, too.

Furthermore, we recommend Nik Clayton’s “FreeBSD Documentation Project Primer for New
Contributors”. It gives a gentle introduction to the whole business of using DocBook, and moreover,
elaborates on semantical and stylistic issues.
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9.2.1.1. Guidelines

« The preferred text width is 79 characters.
« Tabulator characters are forbidden; always use spaces.
« CDATAsections are forbidden.

« The use of double quotes frara or similar elements is deprecated; us@te or blockquote
instead.

- All id attributes are made of the charactets (lowercase only)p-9, and the dash.

- For the following elements identifiers are mandatehapter , sectl , sect2 , ...sect6 ,
indexterm , example , figure , biblioentry ,andco.

- ldentifiers are made up of lowercase alphanumeric characters and dashes. If an element carries an
identifier, the identifier must have a prefix. The prefix is separated from the rest of the identifier
with a dash.

tag prefix
<chapter> chap
<sectl>, <sect2>, ..., <sect6> sect
<titleabbrev> chsh or sesh for <chapter> or

<sect> N. In general: the first two
letters from the prefix plus “sh”.

<indexterm> idx
<biblioentry> bib
<equation>, <informalequation> eq
<table>, <informaltable> tab
<figure>, <informalfigure> fig
<example> ex
<co> co
<listitem> item

9.2.1.2. Indentation style

Our indentation style mostly follows the common SGML/XML DocBook indentation, with few
exceptions:

« The principal indentation is 4 characters, not 2.

- Sectioning tags likechapter> , <sectl> , <sect2> , ..., or<sect6> , do not increase the
indentation level; they always start at column 1;
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- <para> is never formatted inline, but as block with the appropriate indentation.

. <title> ,<entry> , and<term> change their inlining character depending on the length of the
contained text. As long as the tag and the contained text fit in one line, the tags are formatted
inline, otherwise they go on lines by themselves and the contents is indented.

9.2.2. Tables

We prefer tables to be formatted according to DIN 55301. Some formatting systems might not be
able to produce a fully compliant output, as well as some output formats are incapable of
representing a correctly formatted table. Therefore, we do not only show the SGML-source code,
Example 9-1to mark up a table, followed by the rendered talkhle 9-1 but also a correctly
rendered onerigure 9-1 which was produced by LaTeX.

The DIN 55301 takes about ten pages, explaining the construction of a table in detail; most
important for sci-BOT are the following rules:

« Top and bottom of the table header are framed, but never are the header’s left or right sides.
- Logical lines in the table header are separated by rules.

- Inthe header different columns within one logical line are separated with vertical rules. The
width of a column must be less or equal the width of the column above it.

- Entries in the header are centered horizontatig vertically.

« The table body lackanyrule.

Example 9-1. SGML-code for a DIN compliant table

<table id = "tab-table-din55301" frame = "top">
<title>DocBook approximation of a DIN conforming table</title>

<tgroup cols = "12">
<colspec colname = "col-pid" align = "right"></colspec>
<colspec colname = "col-usr* align = "left"></colspec>

<colspec colname = "col-cmd" align = "left"></colspec>

<spanspec spanname = "sp-id" namest = "col-pid" nameend = "col-
usr"
align = "center" colsep = "1"></spanspec>

<spanspec spanname = "sp-sched" namest = "col-pri" nameend = "col-
ni"

align = "center" colsep = "1"></spanspec>

<thead>
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<row>
<entry spanname = "sp-id">ldentification</entry>
<entry spanname = "sp-sched">Scheduling</entry>
<entry spanname = "sp-mem">Memory</entry>
<entry align = "center" colsep = "1"
morerows = "1" valign = "middle">Stat</entry>
<entry spanname = "sp-res">Resources</entry>
<entry align = "center" colsep = "1"
morerows = "1" valign = "middle">Command</entry>

</row>

<row>
<entry align = "center" colsep = "1">PID</entry>
<entry align = "center" colsep = "1">User</entry>

<entry align = "center" colsep = "1">Share</entry>
<l- space occupied by "Stat" -
<entry align = "center" colsep = "1">%CPU</entry>
<entry align = "center" colsep = "1">%Mem</entry>
<entry align = "center" colsep = "1">Time</entry>
<l- space occupied by "Command" ->
</row>
</thead>

\

<tbody>
<row>
<entry>737</entry>
<entry>root</entry>

<entry>X</entry>
</row>

</tbody>

</tgroup>
</table>

Table 9-1. DocBook approximation of a DIN conforming table

Identification | Scheduling Memory Stat Resources Com-
mand

PID User Pri Ni Size RSS Share %CPU %Mem Time

737 root 15 0 56644 55M 1556 S 09 221 007X
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Identification | Scheduling Memory Stat Resources Com-
mand
PID User Pri Ni Size RSS Share %CPU %Mem Time
1675 cspiel 13 0 1752 1752 1424S 0.5 0.6  0:00 xis-
dnload
1973 Ivandijk 14 0 1176 1176 988 R 0.5 0.4 0:00 top
2 root 10 0 0 0 0 sw 0.1 0.0 0:00 kswapd
1656 cspiel 10 0 1356 1356 1108 S 0.1 0.5 0:00 bbsload
1764 Ivandijk 18 0 6380 6380 3112S 0.1 2.4 0:09 emacs
Figure 9-1. Table formatted according to DIN 55301
Identification | Scheduling Memory Stat Resources Command
PID [ User |Pri[ Ni Size | RSS [ Share %CPU | %Mem [ Time
737 root 15 0 56644 55M 1556 S 0.9 22.1 0:07r X
1675 cspiel 13 0 1752 1752 1424 S 0.5 0.6 0:00 xisdnload
1973 lvandijk 14 0 1176 1176 988 R 0.5 04 0:00 top
2  root 10 0 0 0 0 SW 0.1 0.0 0:00 kswapd
1656  cspiel 10 0 1356 1356 1108 S 0.1 0.5 0:00 bbsload
1764 lvandijk 18 0 6380 6380 3112 S 0.1 2.4 0:09 emacs

The output of theop(1) command formatted according to DIN 55301.

9.2.3. Examples

Examples within the main text, should be as short as possible, retaining their completeness. If an

author likes to give the complete version of an example, she is encouraged to do so by including it in

the Appendix<xref> s should be added in the main text and in the Appendix to allow for easy
moving between the example’s abridged and the full version.

Particularly interesting code can go into the Appendix, without having a short equivalent in the
running text. No cross-references are necessary in this case.

If the Scilab source of an example is to be included in thesfilleot-examples
marked up in a special way.

, its listing must be

. <programlisting> mustcontain the two attributesle , andid .
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« role must bescilab
« id mustendinsci .Theid will be the filename of the example when stored in the archive.

Hints for preparing examples. Our policy forbids the use afDATAmarked sections in sci-BOT.
Therefore, all examples are containedpmogramlisting> elements, where the usual DocBook
formatting rules are active.

- Relational operators containing “<”; or “>"; must be written&s , or&gt; respectively. Note
that this also holds for digraph operators like “<=", and “>=", or anything else — think of
comments — that contain “<”; or “>".

- Logical and, “&”, must be written a&amp;.

- Additional comments to the code should be wrappediieannotation> elements. These
will be stripped off when generatirggibot-examples

9.2.4. Graphics

The inclusion of graphics is a relatively labor intensive job, despite the use of a publishing system
that does well support graphics. (The future is so bright, we've gotta wear shades.) So, use it
sparingly.

Graphics are wrapped kmediaobject> s. Graphics must always be supplied in at least
Encapsulated PostScript® and in Portable Network Graphics (png) formats. Providing additional
formats is up to the author, however gif-encoded images are excluded from sci-BOT because of
copyright issues. Atextobject> holding the textual description of the image is as mandatory as
an image caption. A complete definition looks like this:

Example 9-2. Inclusion of graphics

<mediaobject>
<imageobject>
<imagedata fileref = "graphic.eps" format
</imageobject>

"EPS"></imagedata>

<imageobject>
<imagedata fileref = "graphic.png" format
</imageobject>

"PNG"></imagedata>

<textobject>
<!I- textual description of the image ->
<phrase>...</phrase>

</textobject>

<caption>
<para>
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</para>
</caption>
</mediaobject>

In the example we have assumed that there are two graphics files geapkid.eps , and
graphic.ong . If the author wants an image or set of images go into the List of Figures, the whole
<mediaobject> can be wrapped irfigure>

9.2.5. Mathematics

In the current version of sci-BOT, the use of MathML is not allowed, but as soon as a wider variety
of browsers will support MathML, it will be recommended. At present, the only mathematical
notation which can be encoded directly in DocBook are supersceiptpdrscript> ), and
subscripts€subscript> ). All “higher” mathematics is encoded with LaTeX as described below.

Equations are treated as graphics (Seetion 9.2.% where the filenames of the graphics files have a
special meaning, theextobject has a special format, and thaption is missing.

Thetextobject ~ must contain exactly onghrase element with attributeole having the value
“formula ", and the attributéd being the LaTeX-filename of the formula.

Example 9-3. Inclusion of mathematics

<informalequation id = "eq-diff">
<mediaobject>
<imageobject>
<imagedata fileref
</imageobject>

"eg-diff.eps" format = "EPS"></imagedata>

<imageobject>
<imagedata fileref
</imageobject>

"eg-diff.png" format = "PNG"></imagedata>

<textobject>
<phrase role = "formula" id = "eq-diff.tex">
\[
\frac{dfH{dx}(x_0) :=
\lim_{x \rightarrow x_0} \frac{f(x) - f(x_O)H{x -

\
</phrase>
</textobject>
</mediaobject>
</informalequation>
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Whenever a formula is set up like this, the build system automatically converts the LaTeX formula in
thephrase to the required eps and png files.

9.2.6. Index terms

Index term start tagsindexterm>  can carry aole attribute that further specifies which kind of
term gets indexed. Marking upndexterm> s this way isnot required. Currently only Texinfo can
handle theseole attributes.

Attribute Value Index Class Candidate Elements
c A concept index listing conceptgarious
that are discussed.
f A function index listing funcsynopsis, function
functions.
v A variables index listing classname, constant,
variables. structfield, structname,
symbol, token, type,
varname
k A keystroke index listing accel, action,

keyboard and mouse commandsibutton, guiicon,
guilabel, guimenu,
guimenuitem, guisubmenu,
keycap, keycode,
keycombo, keysym,
menuchoice, mousebutton,
shortcut

p A program index listing names afplication, command
programs.
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Chapter 10. Complete Examples

Welcome to our attic! Following the style of the bag-of-tricks, the examples gathered here are an
unsorted collection of hacks that has piled up over the years. A few functions are used or discussed
in the earlier section, but were truncated to emphasized the important parts. Here you only find
complete versions. All programs in this Appendix are available in a sigleor zip file; see

Section Jfor details.

These example programs are free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY,;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License at the end of this document for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

USA.
10.1. frac.sci
frac.sci  implements a rather complete class of fractions which are based on floating point
numbers.
/I name: frac.sci - a class of fractions implemented
I with operator overloading

1

/I The names ’gcd’, ’lcm’, and 'gr’ are already occupied
/I by Scilab, so we had to invent new ones. ;-)

I

function w = gcd_int(u, V)
/I gcd of _positive_ u and v! See e.g.. Knuth, vol2, p337

while v ~= 0
r = modulo(u, V)
u=yv
v=r

end

w =u

function [p_red, g_red] = reduce_int(p, q)
/I reduce fraction p/q and return reduced fraction p_red/q_red as vector
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if g == 0, error('not a fraction’), end
r = gcd_int(abs(p), abs(q))
if g < 0 then
r = -r // force positive denominator
end

[p_red, q_red] = (p/r, g/r)

function assert_int(p)

if type(p) ~= 1 | p ~= int(p) | imag(p) ~= O then
error(’assertion failed: non-integral or non-real p =

+ string(p))
end

function f = frac(p, g, reduce)

/I constructor for fractions

I

/I p is the numerator, gq is the denominator. If q is

/I omitted, 1 is assumed. The boolean reduce controls whether
/I p/q will be reduced. If reduce is omitted or %t the p/q

/I will be reduced.

1l

/I frac(int, int, bool = %t): /* constructor */

/I frac(2, 6) > 1/3

Il frac(2) -> 2/1 which is displayed as 2

/I frac(2, 6, %t) -> 1/3
/I frac(2, 6, %f) -> 2/6

I

/I frac(frac, frac, bool = 9%t): [* copy constructor */
/I f = frac(1, 3);

/I frac(f) > 1/3

/I frac(f, f) > 1

/I frac(1, f) > 3

select type(p)
case 1 then // constant
if size(p, ™) ~= 1 then
error('argument p is non-scalar’)

end
po = p
q0 = 1

case 16 then // tlist

/I copy constructor behavior

p0 = p(num’)

q0 = p('denom’)
else

error(argument p has wrong type’)
end
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if exists('q’, 'local’) then // q is an optional argument
select type(q)
case 1 then // constant
if size(q, *) ~= 1 then
error(argument g is non-scalar’)
end
q0 = a0 * q
case 16 then // tlist
/I copy constructor behavior
p0 = p0 * g('denom’)
q0 = q0 * g('num’)
else
error('argument g has wrong type’)
end
end

/I ensure that arguments match
assert_int(p0)
assert_int(gq0)

if exists(reduce’, ’local’) then // (isdef(’reduce’) & re-
duce == %t) does not work, for
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/I Scilab performs a complete boolean evaluation

if reduce == %t then

[p_red, q_red] = reduce_int(p0, qO)
else

p_red = p0

g_red = q0

end
else

[p_red, g_red] = reduce_int(p0, qO)
end
f = tlist(['frac’; 'num’; 'denom’], p_red, q_red)

function s = %frac_p(f)

/I display function for fractions
s = string(f)

disp(s)

I
/I comparison
I

function b = %frac_o_frac(fl, f2)
b = fiCnum’) == f2(num’) & fl(denom’) == f2('denom’)
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function b = %frac_n_frac(fl, f2)
b = ~%frac_o_frac(fl, f2)

function b = %frac_o_s(f, s)
assert_int(s)
b = %frac_o_frac(f, frac(s))

function b = %s_o_frac(s, f)
assert_int(s)
b = %frac_o_s(f, s)

function b = %frac_n_s(f, s)
assert_int(s)
b = ~%frac_n_frac(f, frac(s))

function b = %s_n_frac(s, f)
assert_int(s)
b = %frac_n_s(f, s)

function b = %frac_1_frac(fl, f2)
b = f1(num’)*f2('denom’) < f1(’denom’)*f2('num’)

function b = %frac_2_frac(fl, f2)
b = fiCnum’)*f2('denom’) > fl(’denom’)*f2('num’)

function b = %frac_3_frac(fl, f2)
Il <=
b = %frac_1_frac(fl, f2) | %frac_o_frac(fl, f2)

function b = %frac_4_frac(fl, f2)
/I >=
b = %frac_2_frac(fl, f2) | %frac_o_frac(fl, f2)

function b = %frac_1_s(f, s)
assert_int(s)
b = %frac_1_frac(f, frac(s))

function b = %s_1_frac(s, f)
assert_int(s)
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b = %frac_1_frac(frac(s), f)

function b = %frac_2_s(f, s)
assert_int(s)
b = %frac_2_frac(f, frac(s))

function b = %s_2_frac(s, f)
assert_int(s)
b = %frac_2_frac(frac(s), f)

function b = %frac_3_s(f, s)
assert_int(s)
b = %frac_3_frac(f, frac(s))

function b = %s_3_frac(s, f)
assert_int(s)
b = %frac_3_frac(frac(s), f)

function b = %frac_4_s(f, s)
assert_int(s)
b = %frac_4 frac(f, frac(s))

function b = %s_4_frac(s, f)
assert_int(s)
b = %frac_4_frac(frac(s), f)

1
/I addition/subtraction
1l

function r = %frac_a_frac(fl, f2)
dl = gcd_int(f1('denom’), f2('denom’))

if d1 == 1 then

r = frac(f1(num’)*f2('denom’) + f1('denom’)*f2('num’), ..
f1(denom’)*f2('denom’))

else
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t = fA(Cnum’)*(f2(denom’) / d1) + f2(num’)*(f1(denom’) / d1)

d2 = ged_int(t, d1)

r = frac(t/d2, (f1('denom’) / d1)*(f2(denom’) / d2))

end

213



Chapter 10. Complete Examples

function r = %frac_s_frac(fl, f2)
dl = gcd_int(fl('denom’), f2('denom’))
if d1 == 1 then
r = frac(fL(num’)*f2(denom’) - fl('denom’)*f2('num’), ..

f1(denom’)*f2('denom’))
else
t = f1Cnum’)*(f2(denom’) / d1) - f2('num’)*(f1(denom’) / d1)
d2 = ged_int(t, d1)
r = frac(t/d2, (f1(denom’) / d1)*(f2(denom’) / d2))
end

function r = %frac_s(f)
r = frac(-fCnum’), f(denom’), %f) // do not reduce here

function r = %frac_a_s(f, s)
assert_int(s)
r = f + frac(s)

function r = %s_a_frac(s, f)
assert_int(s)
r = %frac_a_s(f, s)

function r = %frac_s_s(f, s)
assert_int(s)
r = f - frac(s)

function r = %s_s_frac(s, f)
assert_int(s)
r = frac(s) - f

1

/I multiplication, division, power

1

function r = %frac_m_frac(fl, f2)

r = frac(fL(num’)*f2(num’), f1(denom’)*f2('denom’))

function r = %frac_r_frac(fl, f2)
r = frac(fL('num’)*f2('denom’), f1('denom’)*f2('num’))

function r = %frac_m_s(f, s)
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assert_int(s)
r = frac(fCnum’)*s, f(denom’))

function r = %s_m_frac(s, f)
assert_int(s)
r = %frac_m_s(f, s)

function r = %frac_r_s(f, s)
assert_int(s)
r = frac(fCnum’), f(denom’)*s)

function r = %s_r_frac(s, f)
assert_int(s)
r = frac(f(denom’)*s, f('num’))

function r = %frac_p_s(f, s)
assert_int(s)
r = frac(fCnum’)"s, f('denom’)"s)

function r = %frac_abs(f)
r = frac(abs(fCnum’)), f('denom’), %f)

1l
/I conversion
1l

function fl = frac2float(f)
/I convert a fraction to a floating point number
fl = fCnum’) / f(denom’)

function s = %frac_string(f)
/I string( frac(...) )
if fC(denom’) == 1 then
s = sprintf('%.0f, f(Cnum’))
else
s = sprintf('%.0f/%.0f, f(num’), f(denom’))
end

I
/I continued fraction functions (and their helper functions)
/I See: Knuth, vol2, p356-359
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1

function f = cfe2frac(cfe)
/I *private function*
/I convert the continued fraction expansion CFE to a floating point num-
ber F
/I (recursive implementation)
select length(cfe)
case 0 then
f = frac(0, 1, %f)
case 1 then
f = frac(1, cfe(l), %f)
else
g = cfe2frac( cfe(2:$) )
f = 1/ (frac(cfe(l), 1, %f) + q)
end

function f = cfe2frac_it(cfe)
/I *private function*
/I convert the continued fraction expansion CFE to a floating point num-
ber F
/I (iterative implementation)
if cfe == [] then
f = frac(0, 1, %f)

else
f = frac(1, cfe($), %f)
for x = cfe($-1 : -1 : 1)
f=1/(@F+x
end
end

function cfe = contfrac(fl, eps)

/I *private function*

/I continued fraction expansion of floating point number FL with a

/I maximum error of EPS.

/I CAUTION: contfrac() only accepts numbers in the range 0 <= fl < 1!
if <0 ] fl >= 1, error(fl out of range’), end

if ~isdef(’'eps’), eps = sqrt(%eps), end

guard = 100 // maximum length of expansion
i=0

cfe =[]

if fl == 0, return, end

x = fl

while abs(1 - frac2float(cfe2frac(cfe))/fl) > eps & i < guard
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a = round(1l / x)
cfe = [cfe a]

X =1/x - a
i=i+1
end
if i == guard then
warning('could not achieve precision after ’
+ string(guard) + ' iterations’)
end

function f = float2frac(fl, eps)

/I convert the floating point number FL to the fraction F
/I with a maximum relative error of EPS

intpart = floor(fl) /I floor([3.33 -3.33]) -> [3 -4]
f = intpart + cfe2frac( contfrac(fl - intpart, eps) )

testfrac.sci provides a simple tast-frame for the class of fractions describes above.

/I name: testfrac.sci - test fractions class

getf('frac.sci’);

f = frac(2, 3);
g = frac(1, 3);
h = frac(-1, 3);
i = frac(b, 3);
1

/I each of the following tests should give %t
I

frac(0) == 0
frac(1) == 1
frac(-1) == -1
frac(0, 1) ==
frac(1, 1) ==
frac(2, 2) ==
f+g==1
g+ h==
f-(@-h ==
1+ f==i
f+1==I
1-f==9g
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f-1==
-g == h
3*f==2
f*3==2
flg==2
fl2==g
2/f==23

f>0
f<=1
g>=0

abs(g) == ¢
abs(h) ==

1
/I continued fraction expansion
1

frac(8, 29) == cfe2frac([3 1 1 1 2]) // recursive implementation
frac(8, 29) == cfe2frac_it([3 1 1 1 2]) /I iterative implementation

n =10

/I 0 <= x < 1 in this test
x = 1/%pi;
timer();
for d = 1:n
eps = 107(-d);
c = contfrac(x, eps);
f = cfe2frac(c);
fl = frac2float(f);
delta = abs( x - fl );
if delta <= eps, passed = 'T’; else passed = 'F’; end;
printf('%10.9 %20.169g %c’, eps, delta, passed);
end
printf(Ctime: %f’, timer());

1
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/I x should be larger than 1 or less than 0 in this test

X = %pi;

timer();

for d = 1:n
eps = 107(-d);
fl = frac2float( float2frac(x, eps) );
delta = abs( x - fl );

if delta <= eps, passed = 'T’; else passed = 'F’; end;
%c’, eps, delta, passed);

printf('%10.9 %20.169
end

printf(time: %f, timer());

x = -1 + sqrt() / 2;

timer();

for d = 1:n
eps = 107(-d);
fl = frac2float( float2frac(x, eps) );
delta = abs( x - fl );

if delta <= eps, passed = 'T’; else passed = 'F’; end;
%c’, eps, delta, passed);

printf('%10.9 %20.169g
end

printf(time: %f’, timer());

I
/I Some power series
i

/I geometric series

z = frac(1, 3);
for n = 1:20
s = frac(1);
q =1z
fori =1:n1
S =8+
q=9q"*z
end

rths = (1 - zn) / (1 - 2);

if s == rhs, passed = 'T’; else passed =

disp(string(n) + ': ' + string(rhs) +

end;

/I exponential sums
limit = 1e-8

s = frac(l);

'F'; end;

" + passed);
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g = frac(1, 2);
while frac2float(abs(s - 2)) > limit
s =8 +q
qg=q/2
end;
if frac2float(abs(s - 2)) <= limit, disp(%t); else disp(%f); end;

s = frac(l);
g = frac(1, 2);
sgn = -1,

while frac2float(abs(s - frac(2, 3))) > limit
S =s + (g * sgn;
sgn = -sgn;
q=9q/2
end;
if frac2float(abs(s - frac(2, 3))), disp(%t); else disp(%f); end;

10.2. benchmark.sci

This example shows a benchmark function that tries hard to do better than others. In the first step the
timer resolution is determined. Next the function under test is executed in a loop and the time taken
is estimated. This time in turn is used for the final test. The number of loop iterations is chosen
according to the preliminary test. Finally, the median of the timings is returned.

function res = calibrate(max_len, n_avg, log_inc)
/I determine the resolution of Scilab’s built-in timer
/I Return vector with measured timer resolution(s)

[nl, nr] = argn()

if nr <= 2, log_inc = 1.1, end

if nr <= 1, n_avg = 31, end

if nr == 0, max_len = 100000, end

N

r=1

n=1
while n <= max_len
/ldisp(n)
tv = []
iter = O:n
for k = 1l:n_avg
timer()
for i = iter, end
t = timer()
tv = Jtv; {]
end
tv = sort(tv)
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r=1r; [n, tv($/2 + 1)]]
n = log_inc * n
end

/I xbasc(); plot2d(r(:,1), r(:,2), -1)

delta = [r(:, 2); r($, 2)] - [r(1, 2); r(;, 2)]
idx = find(delta > %eps)
res = delta(idx)

function tpl = benchmark()
/I return the time for one loop round trip

verbose = %t
min_test = 10 // minimum multiple of the timer
/I resolution to run coarse test
std_test = 200 // as min_test but for real test
n_avg = 31 /I number of samples to calculate median
log_inc = 2.0 // logarithmic increment in coarse test

/I inquire timer properties
disp('+++ calibrating timer’)
resol = calibrate()
if size(resol, *") <= 2 then
error('calibration failed’)
end
if resol(1) ~= resol(2) then
warning('calibration botched; proceeding anyway...")
end
t_resol = resol(1);
if verbose
disp(’timer resolution is

+ string(t_resol) + 's’)
end

/I rough estimate of time

disp('+++ calibrating test’)

np =1

timer()

my_expensive_test()

t = timer()

while t < min_test * t_resol
/ldisp(np, t, min_test * t resol)
np = log_inc * np
timer()
for i = Llinp

my_expensive_test()

end
t = timer()

end
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if verbose then
disp(coarse, ' + string(np) +
+ string(t) + 's")

round trips in

end
if np == 1 then

warning('slow procedure under test - time may be excessive’)
end

/I run real test
disp('+++ running test’)
tc =t/ np
ne = ceil(std_test * t_resol / tc)
if verbose then
disp(‘fine, test will take about
+ string(ceil(tc * ne * n_avg)) + 'S’

)

end

r=1[
for k = 1:n_avg
timer()
for i = line
my_expensive_test()
end
t = timer()
r=1rf
end
if verbose then
disp(‘fine, * + string(ne) + ' round trips in ’
+ string(t) + 's’)
end

/I get median and return
r = sort(r)

//disp(r)

tpl = r($/2 + 1) / ne

function my_expensive_test()
exact = -2.5432596188;
z = abs( exact - intg(0, 2 * %pi, f) )

function y = my_cheap_test(x)
y =X

10.3. listdiff.sci

listdiff returns the differences of two vectors in the style ofdife(1) command. It is a funny
example of doing something completely non-numerical with Scilab.
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function diff = listdiff(Istl, Ist2, equ)

/I listdiff() implements a diff(1) like Scilab-function
/I for vectors.

/I The caller can supply a boolean equ(x, y) function
/I that will be used in all comparisons, otherwise
/I operator '==" is used.

I

/I RETURN VALUE

/I 2-column vector describing the differences.

/I Column 1 contains the element and column 2
/I the element's index. A '+ in front of the

1! index means: 'Extra element in Ist2’, a -

/I means missing element in Istl.

1

/I AUTHOR

/I Christoph L. Spiel

I

/I Copyright 1999, 2000 by Christoph Spiel

1 listdiff is free software distributed under the terms
/I of the GNU General Public License, version 2.
N

[nl, nr] = argn(0);
select nr
case 0 then
error(Too few arguments. Got 0, require 2 or 3.));

case 1 then

error('Too few arguments. Got 1, require 2 or 3.);
case 2 then

deff(b = equ(sl, s2)’, 'b = sl == s2’);
case 3 then

/I caller supplied equ()
if type(equ) ~= 13 then
error(Function expected, got a ' + typeof(equ) + .');
end
else
error(Too many arguments. Got ' + string(nr) + ' require 2 or 3.);
end

if type(lstl) ~= 1 & type(Ist2) ~= 1 then
/I none of the lists is empty
if type(lstl) ~= type(Ist2) then
error('Both lists must be of the same type, or be empty.”);

end
end
fuzz = 10;
diff = [];
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nl
n2

size(Istl, 1);
size(Ist2, 1);

/I special cases
if n1 == 0 & n2 == 0, return, end

if n1 == 0 then

p=1:nz
diff = [Ist2, '+ + string(p))];
return;

end

if n2 == 0 then

p=1:nl
diff = [Ist1, string(-p)];
return;

end

/I general case (neither list is empty)

i =1
=1
while i <= nl & j <= n2
while i <= nl & j <= n2
if ~equ(lstl(i), Ist2(j)), break, end
=i+ 1
=i+
end
if i >= nl | j >= n2, break, end

icurs = i;
while icurs <= min(nl, i+fuzz)
if equ(istl(icurs), Ist2(j)), break, end
icurs = icurs + 1;
end
if icurs <= nl then
if equ(lstl(icurs), Ist2(j)) then
/I record element(s) missing from Istl
for p = i : icurs-1
this_diff = [Istl(p), string(-p)];
diff = [diff; this_diff];
end
I/l re-sync
i = icurs;
end
end
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jeurs = j;
while jecurs <= min(n2, j+fuzz)
if equ(stl(i), Ist2(jcurs)), break, end
jeurs = jeurs + 1;
end
if jcurs <= n2 then
if equ(lstl(i), Ist2(jcurs)) then
/I record extra element(s) in Ist2
for p = j : jeurs-1
this_diff = [Ist2(p), '+ + string(p)];
diff = [diff; this_diff];
end
I/l re-sync
j = jeurs;
end
end
end

10.4. whatis.sci

whatis.sci defineswhatis , a function that lists all information of a variable a user can access.

function rv = whatis(name_arr)

/I NAME

/I whatis - listing of variables in extended format
I

/I CALLING SEQUENCE

/I whatis()

/I whatis(name_arr)

1

/I PARAMETER
/I name_arr : array of variables names

/I DESCRIPTION

1l whatis returns a column-vector with the names,
/I types, and sizes of all local variables

/I (first form), or only of the variables whose

/I names (as strings!) are given in the matrix

/I name_arr (second form).

I
/I EXAMPLES
/I whatis()

/I whatis('my_mat’)

/I whatis(['foo’ 'bar’ ’baz’; 'foobar 'morefoo’ 'foobaz’])
I

/I SEE ALSO
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1 who, whos

1

/I AUTHORS

/I Enrico Segre, Lydia van Dijk
1

/I Copyright 1999, 2000 by Enrico Segre and Lydia van Dijk.
Il whatis is free software distributed under the terms

1l of the GNU General Public License, version 2.

n

/I LAST REVISION
/I vd, Fri Dec 3 01:01:45 UTC 1999

/I TO DOI/TO FIX

1

/I - Accepting a regexp as an argument would be nice. This in turn
/I leads to complete boolean expressions doing the variable selection
/I resembling what the UNI* find utility does. Example:

/I All vars ending in a 'v' that are complex and larger than

/I 1000 words.

/I - The behavior with undefined variables is unsatisfactory.

[nl, nr] = argn(0);

clear nl;

if nr == 0 then
/I no arguments -> take all variables like whos() does
clear nr;
name_arr = sort(who('get));

end

clear nr;

if type(name_arr) ~= 10 then
error('Expecting a string or an array of strings, got a
+ typeof(name_arr) + ');

return;
end

[namev, memv] = who('get’); // get memory usage of all local vars

/I define isreal() for hypermatrices
deff(’b = %hm_isreal(hm)’, ..
'if size(hm, ™) == 0 then b = %t; ..
else ..
b = isreal(hm(1)); ..
end’);

deffCb = hm_isbool(hm)’, ..
'if size(hm, ™”) == 0 then ..
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b = %t; ..
else ..
b
end’);

type(hm(1)) == 4; ..

deffCb = hm_isstring(hm)’, ..
'if size(hm, ™”) == 0 then ..
b = %t; ..
else ..
b = type(hm(1)) == 10; ..
end’);

deffCb = hm_isint(hm)’, ..
'if size(hm, ™”) == 0 then ..
b = %t; ..
else ..
b = type(hm(1)) == 8; ..
end’);

v = [
for name = matrix(name_arr, 1, size(name_arr, '*)) do
if isdef(name) then

clear var;
var = evstr(hname); /I convert var's name back into var
1
/I type classification
1
ty = type(var); /I type number
select ty /I type 16 and 17 are not recognized
case 16 then /I by the function typeof()
tgenp = %f; /I we know the tlist's type for these
lab = var(1); /I vector of labels
select lab(1) /I 1st label defines the type

case 'ar’ then

tnam = 'ARMAX process’;
case 'des’ then

tham = ’descriptor system’;
case ’'linpro’ then

tham = ’linear programming data’;
case ’'Iss’ then
tham = ’linear system’;

case 'r' then

tham = ’'rational’;
case 'scs_tree’ then

tnam = 'SCICOS navigator data’;
case 'xxx' then

tnam= 'SCICOS menu data’;
else

tham = ’generic tlist * + lab(1);
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tgenp = %t;
end // select lab(1)
case 17 then
tnam = ’hypermatrix’;
else
tnam = typeof(var); /I type name, a string
end /I select ty
if ty==1 | ty==2 | ty==5 | ty==17 then
/I boolean, string, integral, real, or complex,
/I possibly sparse matrix or hypermatrix (yuck!)
if hm_isbool(var) then
tnam = ’'boolean ' + tnam;
elseif hm_isstring(var) then
tham = ’string ' + tnam;
elseif hm_isint(var) then

tnam = ’'int ' + tnam;
else
if isreal(var) then
tnam = ’'real ' + tnam;
else
tham = ’'complex ' + tnam;
end
end
end
tmp = name + @ ;
1
/I size determination
i

if ty==1 | ty==2 | ty==4 | ty==5 | ty==8 | ty==10 | ty==17 then
/I any kind of matrix
sz = size(var); /I var's dimensions
tmp = tmp + string(sz(1));
for j = 2:length(sz)
tmp = tmp + X + string(sz(j));

end
tmp = tmp + ' ;
elseif ty==16

/I user-defined aka generic tlist
if tgenp then
tmp = tmp + string(size(var(1), ™)) + ' element ’;

end
else
/I function, library, or other non-atomic object
end
I
/l memory usage
I
i = find(namev == evstr(name’)); // index of var's entry
tmp = tmp + tnam + ’, ' + string(memv(i)) + ’ words’;
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else

tmp =

"

"

+ name +

warning('variable ' + tmp);

end

rv = [rv; tmp];

end
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is not defined’;

10.5. Auto-Determination of Precedence and

Associativity

assocC.SCi

, prec.sci

, andparser.sci

are the scripts that determine the precedence and the

associativity of the arithmetic Scilab operators. The results are usgeiciion 4.3

10.5.1. assoc.sci

function a = assoc(oper, typ)

/I Return the associativity a of

/I operator oper which accepts type typ.

/I oper can be a matrix of operators.

1

/I typ can be 'n’ for numeric, or 'b’ for boolean.
/I If typ is omitted, numeric is assumed.

[nl, nr] = argn()
if nr == 1 then

typ = 'n’
end

select typ
case 'n’ then
args = string([1.1 1.2 1.5])
deff(b = equal(x, y), 'b = abs(x - y) < 1.2*%eps’)
case 'b’ then
args = string([%f" "%t '%f")
deff(b = equal(x, y)', 'b = x ==y’
else
error('unknown type ' + typ)
end

a =1
for op = oper
expr = T + args(l) + op
+ args(2) + op + args(3) + ') ..
+ (" + args(l) + op + args(2) + )
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+ op + args(3) + '/
+ args(l) + op + (" + args(2)
+ op + args(3) + )
/[disp(expr)
r = evstr(expr)
/[disp(r)

if equal(r(2), r(3)) then
a = [a 'non’]
elseif equal(r(1), r(2)) then
a = [a 'left]
elseif equal(r(1), r(3)) then
a = [a 'right’]
else
error('could not determine associativity’)
end
end

10.5.2. prec.sci

function p = prec(opl, op2)

/I determine the relative precedence of operator opl vs op2

/I If operator opl has a higher precedence than op2 then p = -1.
/I In the opposite case p = 1. If both have the same precedence
/I level p =0

args = string([1.1 1.2 1.5))
deff(’b = equal(x, y),, 'b = abs(x - y) < 1.2*%eps’)

expr = ..
T .
+ args(l) + opl + args(2) + op2 + args(3) + '/

+'(C + args(l) + opl + args(2) + ') + op2 + args(3) + ', ..
+ args(l) + opl + (" + args(2) + op2 + args(3) ..

+ )]

//disp(expr)
r = evstr(expr)
//disp(r)

if equal(r(2), r(3)) then
p=20

elseif equal(r(1), r(2)) then
p=-1

elseif equal(r(1), r(3)) then
p=1

else
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error('could not determine precedence level’)
end

function p = precl(uop, op)

/I determine what relative precedence the unary operator uop has
/I with respect to operator op. The return values are like those
/I of prec()

args = string([1.1 1.2])
/largs = string([(1.1+0.9*%i) (1.2-0.8*%:i)])
deff(’b = equal(x, y),, 'b = abs(x - y) < 1.2*%eps’)
expr = [ + uop + args(l) + op + args(2) + ')
+'C + uop + args(l) + ) + op + args(2) + T

//disp(expr)
r = evstr(expr)
//disp(r)

if equal(r(1), r(2)) then
p=-1

else
p=1

function p = lprec(opl, op2)
/I determine relative precedence of the
/I logical operators opl and op2

v = [%F %t]

for i = 1:2
for j = 1:2
for k = 1:2
args = string([v(@i) v() v(k)])
expr = T ..

1

+ args(l) + opl + args(2) + op2 + args(3) + ',
' + args(l) + opl + args(2) + ') ..

op2 + args(3) + ')

args(l) + opl + ' + args(2) + op2 + args(3) + )]

+ + +

//disp(expr)
r = evstr(expr)
//disp(r)

if r(2) == r(3) then
p=20

elseif r(1) == r(2) then
p=-1
return
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elseif r(1) == r(3) then
p=1
return

else
error('could not determine precedence level’)

end

end
end
end

10.5.3. parser.sci

/I determine properties of Scilab’s parser:
/I associativity and precedence level of operators

getf('assoc.sci’);
getf('prec.sci’);

numopl = [+ -7,

numop2 = [+ ' f v o w py OAT
logopl = [~T;
logop2 = [& 'T;

/I inquire associativity
an = assoc(numop2, 'n’);
ab = assoc(logop2, 'b’);

/I figure out the relative precedence of binary numeric operators

pm2 = [];
for i = numop2
row = [];

for j = numop2

row = [row prec(i, j)];
end
pm2 = [pm2; row];

end
[lev, idx] = sort( sum(pm2, 'r’) );
lev = lev - min(lev) + 1; /I minimum = 1

nop2 = numop2;

for op = numopl // mark binary oparators that have a unary twin
patch = find(op == nop2);
nop2(patch) = op + '/2’;

end

relp2 = [string(lev); nop2(idx); an(idx)]’;
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relpl = [];
for i = numopl
row = [];
for j = numop2
row = [row, precl(i, j)I;

end
hop = numop2(find(row > 0.5)); // operators with higher precedence
minhop = O;
for op = hop
minhop = max( minhop, find(relp2(:, 2) == op) );
end

/I now minhop is the index of the lowest precedence binary operator
/I that has a higher precedence than the unary operator i, or 0 if
/I there is none
if minhop ==
uop = evstr(relp2(1, 1)) + 1;

else
uop = evstr(relp2(minhop, 1)) - 1;
end
relpl = [relpl; [string(uop), i+/1", ’rightT];
end
/lrelpl

/I Merge unary operators into matrix of binary operators
relp = [relpl; relp2];

[dummy, idx] = sort(evstr(relp(:, 1)));

relp(idx, :)

10.6. cat.sci

catsci  defines the functionat which prints the source of a macro (function) if it is available.
The argument-, type-, and size-checking part is usétkample 5-4

function [res] = cat(macname)
/I Print definition of function 'macname’
/I if it has been loaded via a library.

/I AUTHOR
/I Lydia van Dijk
1

/I Copyright 1999, 2000 by Lydia van Dijk.
I cat is free software distributed under the terms
1l of the GNU General Public License, version 2.

[nl, nr] = argn(0);
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if nr ~= 1 then
error('Call with: cat(macro_name)’);

end
if type(macname) ~= 10 then

error(Expecting a string, got a ' + typeof(macname));
end
if size(macname, *) ~= 1 then

sz = size(macname);

error('Expecting a scalar, got a ’

+ sz(1) + X + sz(2) + ' matrix)

end

[res, err] = evstr(machame);
if err ~= 0 then
select err
case 4 then
disp(macname + ' is undefined.);
return;
case 25 then
disp(macname + ' is a builtin function’);
return;
else
error(unexpected error’, err);
end // select err
end // err ~= 0

name = whereis(machame);

/ldisp('name = <’ + name + >');

if name == [] then
disp(macname + ' is defined, but its definition is unaccessible’);
clear ans;
return;

end

cont = string(evstr(name)); // path (1) and contents (2..$) of library
fpath = cont(1);
if part(fpath, 1:4) == 'SCI/’ then
fpath = SCI + /' + part(fpath, 5:length(fpath));
end
fname = fpath + macname + '.sci’;

[fh, err] = file(open’, fname, ’'old’);
if err ~= 0 then
error(Could not open file ' + fname, err);
end
text = read(fth, -1, 1, '(@)’);
file(close’, fh);
write(%io(2), text);
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10.7. quadpack.sci

Here is the complete example fraBection 7.3.3.1Functionquadpack loads, unloads, or queries
the load status of a Scilab extension. In this case the extension is the famous QuadPack library.

The foremost goal in the design gfiadpack was user friendliness. Therefore, we condensed the
function’s interface to its minimum, providing only three different actions:

load
Link library and glue code with Scilab; do nothing if the library/glue code already has been
linked. Return the actual linkage status afterwards.

unload
Unload library and glue code; do nothing if the library/glue code was not linked with Scilab
before. Return the actual linkage status afterwards.

query

Do nothing, but return the actual linkage status.

Additional goodies are thafuadpack defaults to actiomuery if the function’s argument is
omitted, that the case of the argument does not matter, and that a minimal prefix of the argument is
enough to select the right action.

function state = quadpack(action)

/I name: quadpack.sci - load/unload QUADPACK or query
1 the load-status
/I author: Lydia van Dijk

/I last rev.: Sat Mar 18 19:23:58 UTC 2000
/I Scilab ver.: 2.5

/I The variable 'quadpacklibs’ is the *only* one that needs
/I adjustment on a per-system basis. It is safe to leave
/I all the other stuff untouched.

quadpacklibs = [/site/src/netlib/quadpack/libquadpack-1.0.s0’, ..
[site/src/netlib/quadpack/intersci/libqpif-1.0.s0’]

1
/I No user servicable parts below this line.
1

gateway = ’'quadpack_gw’ // name of the gateway function
/I The order of the interface names in
/I interfaces *MUST* be the same

/Il as in gptab in file 'quadpack-gw.c’!
interfaces = ['intals’, ’intcau’, 'intexc’, 'intfou’, ..
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‘intgen’, ’intgk’, intinf’, 'intosc’, ..

‘intsm’]

[lhs, rhs] = argn()

if rhs == 0 then
action = ’'query’

end

if rhs >= 2 then

error('Too many arguments; expecting 0 or 1')

end

if type(action) ~= 10 then // 10 means string
error(Expecting a string in argument 1')

end
if size(action, ™) ~= 1 then

error('Expecting a scalar in argument 1)
end

action = code2str( abs(str2code(action)) )
[state, number] = c_link(gateway)

if strindex('query’, action) == 1 then
/I do nothing
elseif strindex(’load’, action) == 1 then

if state == %t then

disp(‘already loaded; no action taken’)

return
end

addinter(quadpacklibs, gateway, interfaces)

elseif strindex('unload’, action) == 1 then
if state == %f then

disp('not loaded; no action taken’)

return
end
ulink(number)
else

error('Expecting "query”, "load” or "unload” in arg

end
state = c_link(gateway)

Chapter 10. Complete Examples

— Default if no args

— Convert to lowercase

— Check prefex

1)

— Always return actual status
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Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330

Boston, MA 02111-1307

USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
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subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section
may hot explain any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for input

to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or

noncommercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.
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3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

239



Appendix A. GNU Free Documentation License

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license naotice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section entitled “History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
\ersion as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself, or
if the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
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you or by arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copyright is claimed for the
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compilation. Such a compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be
placed on covers that surround only the Document within the aggregate. Otherwise they must appear
on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the original English version of this License.
In case of a disagreement between the translation and the original English version of this License,
the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.&E&) Copyleft

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.
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Version 2, June 1991

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330

Boston, MA 02111-1307

USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software—to make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.
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The precise terms and conditions for copying, distribution and modification follow.

GNU General Public License

Terms And Conditions For Copying, Distribution And
Modification

0. APPLICABILITY *

This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or
a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. VERBATIM COPYING

You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

1. The titles of the sections have been added by the authors. They do not occur in the original GNU
General Public License. Everything else has been copied in verbatim.
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2. MODIFICATIONS

You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are

not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, itis not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. DISTRIBUTION

You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,
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b. Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation

of the executable. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source along
with the object code.

4. TERMINATION

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. ACCEPTANCE

You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based
onit.
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6. REDISTRIBUTION

Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7. CONSEQUENCES

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system and a licensee cannot impose
that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. LIMITATIONS

If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.
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9. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. AGGREGATION WITH INDEPENDENT WORKS

If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. LIABILITY

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM

248



Appendix B. GNU General Public License

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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(See overload, operator, &gt;=)
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(See overload, operator, ())

*

(See overload, operator, *)
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(See overload, operator, -)

(See dot, decimal)

(See overload, operator, .")

*

(See overload, operator, .*)
*

(See overload, operator, .*.)
A

(See overload, operator, ./)
./ operator

(See division, element wise)

(See multiplication, element wise)
J.
(See overload, operator, ./.)
A
(See overload, operator, .\)
A
(See overload, operator, .\.)
N

(See overload, operator, .»)
(See overload, operator, /)
(See overload, operator, /.)

(See overload, operator, :)
: operator,106
danger with fractional real82

(See overload, operator, ==)
geci,195
(]

(See overload, operator, [, ])
[]

(See overload, operator, [ ;])
[ ] operator

(See vector, construction)

(See overload, operator, \)
\.
(See overload, operator, \.)

N

(See overload, operator, ")

(See overload, operator, |)
| operator
(See &amp; operator)

(See overload, operator, ~)

(See overload, operator, ~=)
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abort
command
(See command, abort)
Ada
pseudo
(See pseudo Ada)
Ada extensions
(See subroutines, external, Ada)
Aerosmith,139
apropos
command
(See command, apropos)
apropos-command
(See command, apropos)
arguments
named
(See parameters, named)
positional
(See parameters, positional)
array ordering
Fortran-77126
assigment
tuple,75
associativity
(See operator, precedence and
associativity)

benchmark
mirror functions ,124
boolean
used as indexg1
Borland C extensions
(See subroutines, external, Borland
C)
break
keyword
(See keyword, break)

C extensions
(See subroutines, external, C)
C++ extensions
(See subroutines, external, C++)
calling convention
by-referencel25
canonicalization of Scilab script26
case
keyword
(See keyword, case)
clear
(See command, clear)
command
(See command, clear)
clearglobal
(See command, clearglobal)
clearing global variables
(See variable, clearing global)
clearing local variables
(See variable, clearing local)
clearing variables
(See variable, clearing)
code
operand type52
operator53
column-major ordering
(See array ordering, Fortran-77)
command
abort,47
apropos21, 47
clear,32, 47
clearglobal 31
exit, 47
help,21, 47
paused?
pwd, 47
quit, 47
resumed?
return,47
what,47
while, 47
who, 47, 90
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Commands47
common pitfalls

(See pitfalls)
compile sci-files91
control structures

block structure44

choice of 41

early return44

for, 41

if, 42

select42

while, 41
conventions, typographid,7
CVS,193

Debugging
Scilab,194
desc-file
(See file, interface description)
Dirac distribution,86
dispatch tablesl 58
division
element wise23
do
keyword
(See keyword, do)
DocBook,15
documentation
local, 195
Comm.ps,195
Internals.ps195
Intro.ps,195
Lmi.ps,195
Manual.ps,195
Metanet.ps195
Scicos.ps195
Signal.ps,195
dot
as member selectory
decimal,23
dynamic scope

(See scope, dynamic)

else
keyword
(See keyword, else)
elseif
keyword
(See keyword, elseif)
emacs
add missing last newlin@6
enclosing scope
(See scope, enclosing)
end
keyword
(See keyword, end)
endfunction
keyword
(See keyword, endfunction)
(See keyword, function)
environment variables
SCI, 74
error
generation
API routines

(See Scilab, error handling)

evaluation

boolean61

short-circuit

(See evaluation, boolean)

examples

assoc.sci229

benchmark.sci220

cat.sci,233

determination of precedence and

associativity229

frac.sci,209

listdiff.sci, 222

parser.sci232

prec.sci230

quadpack.sc235

testfrac.sci2l7
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whatis.sci225
examples, complet@09
exit
command
(See command, exit)

fatal error
(See Scilab, error handling, fatal
errors)
Fibonacci function42
file
interface descriptior,22
find
(See locate)
for
keyword
(See keyword, for)
formats, other of sci-BOT
(See sci-BOT, formats)
Fortran-77 extensions
(See subroutines, external,
Fortran-77)
Fortran-9x
equivalent functions
all
(See function, builtin, and)
(See function, builtin, matrix)
any
(See function, builtin, or)
Fortran-9x extensions
(See subroutines, external,
Fortran-9x)
function
builtin
whereis 94
Dirac
(See Dirac distribution)
exec
used without parenthesi88
Fibonacci
(See Fibonacci function)

Fortran-77

name mangling
(See name mangling, Fortran-77
function)

getf

used without parenthesi87

head,25
keyword

(See keyword, function)
(See keyword, function)

lib, 90
mirror and variants 102
predefined

genlib,94

size of,44
functions,79
API

error,163
out,164, 165

as members of mlisg8
as members of tlisB8
as parameter86

as variables35

builtin

addinter,123
and,114
argn,84
cumprod
(See function sum)
cumsum
(See function sum)
dec2hex;2
deff, 79
diag,109
emptystr,110
error,84
exec,38
execstr39
exists,83, 90
eye,108
find, 111
fort, 122
freq,120
fsolve,80, 125
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getf,90
gsort,115
hex2dec,/2
horner,120
iconvert,69
intg, 80, 125
link, 125, 130
linspace33, 107
load,64
logspacel07
matrix, 118
max,113
mget,64
mgeti,64
min
(See function max)
modulo,62
mput, 64
norm,87
ones,108
optim, 86
or
(See function and)
plot2d,82, 87
poly, 120
prod
(See function sum)
rand,110
read,64
save64,91
size,84, 117
sort
(See function gsort)
sum,100, 114
type,39, 84
typename53
zeros,107
bulletproof,83
call without parenthesig7
defined onliney9
gateway
(See dispatch tables)
native
(See Scilab, native functions)

nested80
not working with integerst5
parameters

named82

optional,83
predefined

evstr,84

linspace87

macrovar89

who, 39

Xxbasc,87
safe

(See functions, bulletproof)

user defined79

parameter lesg,9

without return value79
without parameters82
without return value81
working with integersg5

gateway functions
(See dispatch tables)
genlib
(See function, genlib)
getf
(See function, getf)
Glimpse,194
global variable attribute
(See variable attribute, global)
global variables
(See variable, global)
GNU
Free Documentation License (FDI237
General Public License (GPL243
grep
(See Glimpse)

help
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command
(See command, help)
help-command
(See command, help)
hyperlinks,197

identifier, length52, 74
if
keyword
(See keyword, if)
index
boolean
(See boolean, used as index)
highest
(See $ constant)
last
(See $ constant)
indexing
avoiding,101
INRIA, 197
integers62
array concatenatiors,7
as array indexg3
automatic conversiorg3
bitwise operations{2
arrays,’/3
booleans cast t&@8
in dada filesp4
int8 type on PPC systems2
missing literalsp2
mixed type comparison30
mixed type expressions;/
modular,66
raised to a poweg8
vector-scalar comparisol
interface
library
(See library, interface)
interface description file
(See file, interface description)
interface generator, automati1

intersci,122, 195
example Makefile123

Johnson, Richard B15

keyword
break,47
cased?
do,47
else 47
elseif,47
end,47
endfunction47, 79
for, 47
function,47, 79
if, 47
select47
then,47
Keywords,47

Id
incremental linking,131
lexical scope
(See scope, lexical)
lib
(See function, lib)
libraries,90
library
interface, 158
library (variable type)
(See type, library)
line continuation
function head25
link overhead
(See overhead, link)
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links
(See hyperlinks)
list
extraction,77
local variable
(See variable, local)
locate, 193

matrix

column-major form,106

construction,107

flattened representatioh05

operations111

reshapel05

shaping a

(See functions, builtin matrix)

md5sum 16
missing integer literals

(See integers, missing literals)
mlist

functions as elements 83
multiplication

element wisel00

name mangling

Fortran-77 function125
native functions

(See Scilab, native functions)
newline

missing last26
Newton root finder42
nm, 125, 129
numbers

decimal

(See dot, decimal)

online function definition
(See functions, defined online)
operand
type codeb2
b, 52
c,52
f, 52
hm,53
i, 52
ip, 52
I, 52
Iss,53
m, 52
mc,52
ml, 52
msp,52
p,52
ptr, 52
r,53
s,52
sp,52
spb,52
operation
vectorized 99
operator
’, 100
*, 100
*, 100
A
(See division, element wise)
;, 102
code
(See code, operator)
colon
(See : operator)
overloading48
precedence and associativibg
logical operators60
numeric operator§8
relational operator§9

[]
(See vector, construction)
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optimizing P

Scilab
(See scilex, binaries, building Parallel Scilab
optimized) home pagel97
overhead parameters
link, 121 named
runtime, 121 (See functions, named parameters)
overload optional
disp,53 (See functions, optional
operator parameters)
&, 53 positional,82
> 53 pause
>=,53 command
<,53 (See command, pause)
<>,53 performance99
<=,53 building an optimized Scilald,35
' 53 extending Scilabl21
5)15 533 high-level operations)9
' avoiding indexing,101
", 58 avoiding resizing101
+ 53 built-in vector-/matrix-functions]1 06
53 vectorized 99
* 5533 pitfalls, 23
* 53 plain old documentation
. ’53 (See POD)
1.,53 plot2d
\ 53 (See functions, builtin, plot2d)
\.,53 POD (Perl’s plain old documentatiori)
A 53 point, decimal
/53 (See dot, decimal)
/.53 polynomials
. 53 evaluation of119
== 53 precedence
[,] 53 (See operator, precedence and
[:] 53 associativity)
\, 53 programming style
\,,53 (See style, programming)
A 53 pseudo Adal39
|,53 type
~, 53 AccessDataStackindex40
~=,53 AccessNaturall40
overloading operators AccessString140
(See operator, overloading) Boolean,139
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Complex,141, 147
ComplexFlag140
ComplexMatrix,147
ComplexVector147
ConstAccessNatural 40
ConstAccessString,40
DataStackindexi40
Float,139
FloatMatrix,147
FloatVector, 147
Integer,139
Natural,139
ParameterStackAddresis}O
ParameterStackindex40
SimpleFunctionTypel 54
String,139
TypeString,140

types,140

pushing the limits135
prototyping,135
pwd

command

(See command, pwd)

quit
command
(See command, quit)
quotes
single vs. double41

range
dangerous generatio82
resizing
avoiding,101
resume
command
(See command, resume)

return
command
(See command, return)
runscilab,74
runtime overhead
(See overhead, runtime)

save
(See function, save)
scalar product99
SCI (environment variabley4
sci-BOT
cross referencin@00
DocBook,200, 200
FIXME, 200
formats,16
HTML, 16
PDF, 16
PS,16
SGML, 16
FreeBSD Documentation Project Primer
for New Contributors 200
indexing,200
writing style, 199
Scilab
API
checklhs 148
CheckLhs (C)175
checklhs (F77) 166
checkrhs 148
CheckRhs (C)175
checkrhs (F77) 165
CreateCVar (C)186
CreateCVarFromPtr (C}87
CreateData (CY187
Createlist (C),188
CreateListCVarFromPtr (C1,87
CreateListVarFromPtr (C)L88
CreateVar (C)184
CreateVarFromPtr (C)185
cremat,148
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cremat (F77)174
error,148, 154
FreePtr (C)186
getexternall54
getexternal (F77)171
GetFuncPtr (C)182
GetListRhsCVar (C)182
GetListRhsVar (C)182
getmat,148
getmat (F77)168
GetMatrixDims (C),181
GetMatrixptr (C),180
GetRhsCVar (C)181
GetRhsVar (C)179
getrmat (F77)169
getrvect (F77 169
getscalarl54
getscalar (F77)170
GetType (C)177
getvect (F77)170
lhs, 148, 154
Lhs (C),176
lhs (F77),167
LhsVar (C),183
PExecSciFunction (C}L90
ReadString (C)191
rhs,148, 154
Rhs (C),177
rhs (F77),167
SciError (C),190
SciFunction (C),192
SciString (C),192
WriteMatrix (C), 189
WriteString (C),189

C API,174

command-line option
-comp,91

compiler to Fortran-77135

coping with,193

core,139

debugging

(See debugging, Scilab)
(See Debugging, Scilab)
enthusiasts

Mottelet, Stéphane,97
Pincon, Bruno197
Segre, Enricol97
error handling,163
fatal errors 163
messaged,65
warnings,164
extending121
FAQ,21,24,197
Fortran API,165
FTP site, 197
further information,193
home pagel97
internal data structurd 41
complex matrices]41
data stack
(See Scilab, internal data
structure, stack)
parameter stack
(See Scilab, internal data
structure, stack)
stack,141
Introduction to Scilab (documentation) ,
21
native functions146
functionals,153
simple,146
scripts
canonicalization
(See canonicalization of Scilab
scripts)
scilab shell script74
scilex, 74
binaries, 194
building optimized 135
debugging codel 94
optimized codel194
profiling code 194
starting,74
scope
dynamic,28
enclosing27
lexical, 28
scoping
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(See variable, scoping)
Segre, Enrico23
select
keyword
(See keyword, select)
session
restart
persistent global variable31
sorting
lexicographical 115
space
white
(See whitespace)
spacing
emphasizing bracket86
in an expressiorgs
indentation 39
line breaks35
vertical,37
starting scilex
(See scilex, starting)
style
control structures41
emphasizing bracket86
formatting,35
Golden Rule41
indentation 39
line breaks35
paradigms40
programming35
quotes4l
spacing
(See style, formatting)
vertical-spacing37
subroutines
external
Ada, 130
Borland C,134
C,127
C++,128
compiling,125
Fortran-77126
Fortran-9x,126
Visual C++,131

then
keyword
(See keyword, then)
tlist
functions as elements 88
Torvalds, Linus44
tuple
assigment
(See assigment, tuple)
type
cast
implicit, 60
library, 94
operand code
(See operand, type code)
promotion
implicit
(See type, cast implicit)
typographic conventions
(See conventions, typographic)

unknown spots47

variable

clearing,32

global,31, 32

local, 32
global,30

to pass function result80
local, 29
name length

(See identifier length)

scoping

local, 27
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visibility rules
(See variable, scoping)
variable attribute
global,30
variable types
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int16,62
int32,62
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uintl6,63
uint32,63
uint8,63
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API
buf, 163
err2,164
vector
construction24
generation106
vectorized, operation
(See operation, vectorized)
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(See subroutines, external, Visual
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warnings
(See Scilab, error handling,
warnings)
what
command
(See command, what)
whereis
(See function, whereis)
while
command
(See command, while)
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(See command, who)
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