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Preface
Often we encounter technical problems that we have to solve, to overcome somehow, or just to work
around. After having mastered the difficulty, we gladly add it to the knowledge-base in our mind, but
from a certain level of difficulty we start to make notes in one form or the other. These notes then
serve for later reference. A collection of related notes can be exploited to gain further insight in the
class of problems it describes. Last but not least one can get ambitious to fill the holes of knowledge
that an existing set of notes leaves unanswered.

Richard B. Johnson

An expert in a particular computer language is really an expert in the work-arounds necessary to use this
language to perform useful work. An ideal computer language would do exactly what it was told simply
from reading a specification. In the absence of a specification, it would ask enough questions to produce
such a specification, then it would generate the code necessary to perform the specified functions.

...

Even C has its shortcomings which have to be handled with assembly language extensions. A Master
Carpenter has many tools and is expert with most of them. If you only know how to use a hammer, every
problem begins to look like a nail. Stay away from that trap. It bytes (sic).

This is the story of sci-BOT paraphrased. It started with bits of experience gathered in our heads and
scattered e-mail correspondence. After more and more e-mails piled up, telling the same old stories,
one of the authors (lvd) decided to compile the problems and their solutions into a convenient
format. Perl’s plain old documentation, POD, was chosen for its simplicity paired with a multitude
of output formats. However, after 2000+ lines it became clear that POD was missing a feature that
would be needed as sci-BOT grows bigger: cross references. A more powerful documentation format
and the associated tools had to be found. A two week web research resulted in one clear winner:
DocBook. The downside of the necessary switch of formats was that the previous work done with
POD had to be converted into DocBook. Daytime work plus adding new material to sci-BOT plus
converting the old work into the new format is too much for a single volunteer. So, a second
idiotM-DELauthor was searched and found (cls). His ten years of experience with the TeX/LaTeX
typesetting system, his accuracy, and his intensity with which he attacks any obstacle made him the
ideal choice for this madnessM-DELproject.

1. Outline
We open up talking about some of the most common syntactic pitfalls when using Scilab inChapter
2. Finding that some of these syntax problems can be avoided with a clear programming style, the
next chapter,Chapter 3, deals with coding issues. InChapter 4we then focus on the parts of Scilab
that are not well documented, and therefore widely remain unknown spots. For many users not only
enjoy the nice user interface of Scilab, but demand high performance from the interpreter the
massiveChapter 6about performance issues covers these needs. It begins by introducing techniques
suitable at a high level like vectorization which do not require low level programming and then dives
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down into the extension of Scilab by compiled routines. This is a vast field by itself. Therefore we
have devoted a full chapter,Chapter 7, to the low level API. sci-BOT closes withChapter 8
containing remarks on compiling and debugging as well as comments on the supplied documentation
and available web pages. All of the programming snippets that belong to longer examples which do
not fit in the main text have been gathered inChapter 10, where they show up in full length.

At the end of the document we have put two appendices with the GNU Free Documentation License,
and the GNU Public License, a bibliography, and an index.

2. Other Formats of sci-BOT
sci-BOT, the Scilab Bag-of-Tricks is available as SGML, as HTML, or several “printer-ready”
versions. Check outHammersmith Consultingfor the latest release. Each variant is available in
different packing-/compression formats.

SGML source distribution. The Real Thing (tm)! These are our SGML-sources. Building sci-BOT
from source requires XML DocBook version 4.x.

data checksum

sci-bot-sgml.tar.gz sci-bot-sgml.tar.gz.md5

sci-bot-sgml.tar.bz2 sci-bot-sgml.tar.bz2.md5

sci-bot-sgml.tar.Z sci-bot-sgml.tar.Z.md5

sci-bot-sgml.zip sci-bot-sgml.zip.md5

Web collection. This is sci-BOT rendered in HTML; conveniently bundled for your offline reading
pleasure.

data checksum

sci-bot-html.tar.gz sci-bot-html.tar.gz.md5

sci-bot-html.tar.bz2 sci-bot-html.tar.bz2.md5

sci-bot-html.tar.Z sci-bot-html.tar.Z.md5

sci-bot-html.zip sci-bot-html.zip.md5

Print versions. The printable versions are formatted for DIN A4 paper and are single files. By the
way, you do not have to print them; they look great with Ghostview, too.

data checksum

sci-bot.ps.gz sci-bot.ps.gz.md5

16
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data checksum

sci-bot.ps.bz2 sci-bot.ps.bz2.md5

sci-bot.ps.Z sci-bot.ps.Z.md5

sci-bot.ps.zip sci-bot.ps.zip.md5

sci-bot.pdf.gz sci-bot.pdf.gz.md5

sci-bot.pdf.bz2 sci-bot.pdf.bz2.md5

sci-bot.pdf.Z sci-bot.pdf.Z.md5

sci-bot.pdf.zip sci-bot.pdf.zip.md5

3. Packed examples
Some of the examples in the main text and all examples in the Appendix can be obtained in a single
tar or zip -file.

data checksum

scibot-examples.tar.gz scibot-examples.tar.gz.md5

scibot-examples.tar.bz2 scibot-examples.tar.bz2.md5

scibot-examples.tar.Z scibot-examples.tar.Z.md5

scibot-examples.zip scibot-examples.zip.md5

4. Typographic conventions
This section covers the conventions used in this book. Depending on what version you are currently
reading some fonts may look the same.

Typographic Conventions

filename

This font designates the name of a file. A filename optionally includes a path.

user input

This font is used for the user’s input. This refers only to things that can be typed in at the
console.
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meta-variable

This typeface is reserved for placeholders, i.e. stuff that always is replaced with the real input.

literal piece of code

We use this font to display literal pieces of code, variables, constant as well as operators.

variable

Variables of all kinds are marked up this way.

function

Functions or procedures of all kinds are marked up this way.

command

We use this font for shell commands, but also for Scilab commands.

environment-variable

To distinguish environment variables from program variables a separate font is used.

Transcripts from actual interactions with an interpreter, which can by Scilab, bash(1), or any other
interactive program are displayed like this.

-> x = 1e22
x =

1.000E+22

-> sin(x), cos(x)
ans =

0.4626130
ans =

- 0.8865603

In examples, which show some source-code, additional comments always start with two dashes
independent of the language. JadeTeX coerces these two dashes into one longer dash, called en-dash.

#include <stdio.h>

/* The world’s most famous C-program */

int
main(void)
{

printf("Hello world!\n");
return 0; – exit code for success

}
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5. Scilab Release History

by Enrico Segre
Some details of the Scilab distribution depend on the version. Whenever the distinction between
different versions is necessary, the following identifiers will be used.

Scilab-2.4.1 (official release)

stable version

Scilab-2.5 (official release)

stable version, released December 1999

Scilab-2.5.1 (alpha version)

official unstable release as of 2000-7-21

Scilab-2.5.1 (first beta version)

unofficial release from the Saphir site; intended for an INRIA course; first spotted 2001-1-22.

Scilab-2.5.1 (second beta version)

unofficial branch from the INRIA sources as of 2001-1-10 modifications to up to and including
2001-1-18, courtesy of Stéphane Mottelet.

Scilab-2.6 (alpha version)

official unstable release

Scilab-2.6 (official release)

official version, released 2001-3-26

6. Contributions
Contributions, corrections, hints, and tips always are welcome. If you are willing to contribute a
whole section or even chapter, please take a look atChapter 9, or contact the authors.

This version of sci-BOT contains contributions from

Name E-mail Section[s]

Glen Fulford FulfordG@agresearch.cri.nz Section 5.1.8

Enrico Segre fesegre@wisemail.weizmann.ac.il Section 5, Section 4.5Section 6.2.2.7

Dave Sidlauskas dsidlauskas@worldnet.att.net Section 6.2.2.6
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Chapter 1. Introduction
“I have read your posting as of ... to the Scilab newsgroup. It was very clear. Can you make a FAQ
out of it?” Yes, we can, and here it is!

The hints, tricks, and information put together in sci-BOT come from our own experience (read:
daily struggle), problems we have solved for our colleagues, and of course questions answered on
the newsgroup. Therefore, this document is a rather loose collection of facts, and is not necessarily to
be read cover to cover.

What this document is not:

• An introduction to Scilab

There already is an excellent “Introduction to Scilab”, the Scilab User’s Guide,
SCI/doc/Intro.ps .

• A replacement for reading the documentation

IONSHO (“In Our Not So Humble Opinion”) folks who do not read the documentation get what
they deserve. Scilab’s documentation is truly great, so why not using it? To get a command’s
manual-page typehelp at the command prompt. The same is achieved in the graphical
environment with theHelp button. If the exact command name is unknown, the powerful cousin
of help, apropos jumps in. It can by used from the command line as well as from the Help Panel.

• Another FAQ list

We do not follow the simple Question-and-Answer style, instead we try to explore Scilab right to
its very end.

In the spirit of the Free Software any helpful suggestion or correction concerning this collection will
be acknowledged with the author’s name and email address. If you want to tell us of a mistake, or
want an item added, please drop the authors an email at
<lvandijk@hammersmith-consulting.com > or
<cspiel@hammersmith-consulting.com >.
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Chapter 2. Common Pitfalls

The nice thing about Scilab? It is
almost usable!

Enrico Segre

There are several peculiarities in Scilab’s way of interpreting an expression that will trip the unwary.
Some of them are a result of “compatability” to a certain commercial product of similar sounding
name (which one?), others are home grown quirks.

2.1. The Infamous Dot
In Scilab a digit in front or after the decimal point isnot enforced. This is similar to e.g. Fortran and
C, but contrary to Ada. Thus, for Scilab the following three numbers are well formed

87.492211
.32493
6857.

As an aside:

digit+ .0

digit+ .

digit+

e.g.123.0 , 123. , and123 are considered identical. The last of the three examples, a decimal point
at the end of the numeral, baffles users who want to invert a vector or matrix component-wise.

-> 1 ./ [1 2 3]
ans =

! 1. 0.5 0.3333333 !

But, hey this is correct! Then, let us squeeze out the spaces in front of the./ operator.

-> 1./ [1 2 3]
ans =

! 0.0714286 !
! 0.1428571 !
! 0.2142857 !

Oops! What happened? The last expression is not interpreted as

(1) ./ ([1 2 3])

but as
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(1.) / ([1 2 3])

where the parentheses have been introduced for clarity. This behavior is described in SCI/README,
and in theScilab FAQ.

We suggest to avoid whitespace that influences the calculation by not letting the decimal point stick
out on either side. That way expressions with numerals will always be interpreted correctly. For our
example this means

-> 1.0./ [1 2 3]
ans =
! 1. 0.5 0.3333333 !

which gives what we had in mind.

2.2. Vector Construction
The square bracket operator[ ] is a convenient means to construct vectors. There even exists an
idiom to build a matrix with brackets, which is shown inExample 2-1.

Example 2-1. Building a matrix column-by-column and row-by-row

mat = []
for i = 1:n

row = []
for j = 1:m

... – compute matrix entry
expr = ...
row = [row expr]

end
mat = [mat; row]

end

Rows are separated by semi-colons or newlines, which actually is straight forward. Columns are
separated by commas, or spaces—and here comes trouble. First, comma and space serve the same
purpose, and are interchangeable. Thus, the following expressions have the same result.

[1 2 3 4]
[1,2,3,4]
[1 2 3,4]
[ 1, 2 3 , 4 ]

Second, a space is sometimes considered a column-separating space, sometimes a intra-expression
space. This can lead to some confusion as the following three matrix definitions demonstrate. Who
gets all of them right without peeking at the answers?
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-> m1 = [1+%i -1+%i; -1+%i 1-%i]
m1 =

! 1. + i - 1. + i !
! - 1. + i 1. - i !

-> m2 = [1 +%i - 1 + %i; - 1 + %i 1 - %i]
m2 =

! 1. - 1. + 2.i !
! - 1. + i 1. - i !

-> m3 = [1 +%i -1 + %i; - 1 + %i 1 -%i]
m3 =

! 1. i - 1. + i !
! - 1. + i 1. - i !

Confusion makes the programmer susceptible to writing code she did not intend. To make the matrix
expression clear to you and to Scilab there are at least two possibilities.

1. Using no spaces in the construction of the elements of a matrix. This is e.g. demonstrated inm1

above, or

2. Putting every compound expression in parentheses, like

-> [(1 +%i) (-1 + %i); (- 1 + %i) (1 -%i)]
ans =
! 1. + i - 1. + i !
! - 1. + i 1. - i !

Both ways avoid the ambiguity.

Actually, matrices as simple as the ones shown in the examples can be arranged in a neat way. It is
discussed inSection 3.1.2. See alsoSection 3.1.1on how to improve the legibility of Scilab code by
the judicious use of whitespace.

2.3. Function head
Scilab treats the first (logical) line of a function definition, the function head, differently form any
other line in a sci-file. Any non-whitespace after the closing parenthesismustbe avoided. It is even
illegal to add a comment at the end of the function head. On the other hand it is legal to extend the
function head over more than one physical line by using “..” as long as the continuation happens
before the final parenthesis.

Here are some correct function heads:

function y = foo(x)
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function y ..
= foo(x)

function y = foo(a, b, c, d, ..
e, f, g, h)

The following examples are allillegal:

function y = foo(x) // This is foo!

function y = save_space(x); y = 1 + x

function y = bar(x) ..
y = 1 + x

See alsoSection 5.1.

2.4. Last Newline
In the Scilab versions prior to Scilab-2.6 (official release), the last line in a script or function is
ignored if the line is not terminated by a newline. (On UNI* systems the line terminator is^J , or,
written in C-style "\n ") This is emphasized at several places in the official Scilab documentation, but
it is so common to forget it especially when using emacs that we repeat it here.

emacs can be told always to add a final newline by adding(setq require-final-newline t)

to the startup-file,.emacs or .gnu-emacs . See “Learning GNU Emacs”[Cameron:1996],
Table C-8.

For function files the workaround is as simple as it is elegant. For Scilab allows a function optionally
to be terminated with theendfunction keyword. The keyword being optional it does not matter
whether the last line is completely parsed.

Another weapon against this kind of syntax flaw, and a few other pesky things, is e.g. the Perl-script
shown inExample 2-2, which fixes part of the format of a Scilab script.

Example 2-2. Canonicalization of Scilab files

use Text::Tabs;

while (<>) {
chomp; # remove newline if there is one
tr/\200-\377/ /; # map 8-bit chars to spaces
s[\s+$][]; # kill whitespace at end of line
$_ = expand $_; # convert tabs to spaces
print "$_\n"; # print adding a newline

}

26



Chapter 2. Pitfalls

2.5. Variable Lifetime And Scoping

2.5.1. Local Variable Scoping
Scilab’s visibility rule for locally defined variables follow those of block structured languages:

Variables local to a block shadow all variables of the same name not local this this block.

When we say variablev “shadows” variablev’ , we mean thatv’ is not accessible neither for
reading nor for writing. What is available for manipulation isv .

Example 2-3. Shadowing of local variables

-> deff(’y = foo(x)’, ’a = 2*x, y = a + 1’)
-> a = 1.0 // top level

a =
1.

-> foo(3.5)
ans =

8.
-> a

a =
1.

-> foo(a)
ans =

3.
-> a

a =
1.

Example 2-3demonstrates that variablea, which is local to functionfoo has no influence on
variablea in the surrounding environment. Even callingfoo with a variable nameda does not break
this rule.

As usual in block structured languages variables fromall enclosing scopes can be accessed, unless
they are shadowed.Example 2-4shows usage of variablea from an enclosing scope.

Example 2-4. Accessing variables from the enclosing scope

-> deff(’y = bar(x)’, ’y = a + 1’)
-> a = 1 // top level

a =
1.

-> bar(3.5)
ans =
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2.
-> bar(-1)

ans =
2.

-> a = 2
a =

2.
-> bar(-1)

ans =
3.

Now whatis the “enclosing scope”? It is the call stack, Scilab scopes dynamically!

Example 2-5. Dynamic Scoping

// scoping in Scilab
deff(’first_local()’, ’x = ""foo"", second()’);
deff(’first()’, ’second()’);
deff(’second()’, ’disp(x)’);

x = 1;
first_local() // prints ’foo’
first() // prints 1

Example 2-5deserves a close look. Dynamic scoping can be confusing for people used to e.g. C’s
lexically scopedauto variables.

/* lexical scoping in C */

void first_local(void);
void first(void);
void second(void);

int x = 1;

int
main(void)
{

first_local(); /* prints 1 */
first(); /* prints 1 */

return 0;
}

void first_local(void)
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{
int x = 123; /* warning: unused variable ‘x’ */
second();

}

void first(void)
{

second();
}

void second(void)
{

printf("%d\n", x);
}

Now compare this to Perl1:

# dynamical scoping with Perl’s local variables

sub first_local { local $x = ’foo’; second(); }
sub first { second(); }
sub second { print "$x\n"; }

$x = 1;
first_local(); # prints ’foo’
first(); # prints 1

Dynamic scoping is an inherently dangerous feature for it might not be obvious where a variable gets
its value.

Let us look at functions which try to change variables from an enclosing scope.

-> deff(’y = baz(x)’, ’a = 2*a, y = a + 1’)
-> a = 3 // top level

a =
3.

-> baz(1)
ans =

7.
-> baz(1)

ans =
7.

-> a
a =

3.

1. The behavior of the C example is reproduced by replacinglocal with my.
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Obviously,a is unchanged by the calls tobaz . What happens is the following:

1. A local variable nameda is created, and the contents ofa from the enclosing scope is copied
into it. Within baz the local a is changed.

2. When the thread of control leavesbaz the previous value ofa is restored.

In other words: A local variablecannotinfluence a variable of the same name in any enclosing
scope. The only ways to “export” a – possibly modified – value is either via the list of return values,
which is the preferred way, or with aglobal variable.

As strange as this may sound to programmers accustomed to languages that require an explicit
declaration of all variables, this is a necessary feature in Scilab as variables are created when they are
first written to (e.g. as in Perl and Python). If a local variable in a function would change a global
variable or local variable of the same name in another function, adding a new function to an existing
system or library became a major maintenance headache.

2.5.2. Global Variables
Theglobal attribute of a variablevar is often misunderstood. It doesnot placevar in an all
encompassing name space so that it could be accessed from everywhere without further ado. Instead,
global places the variablevar in a separate name space; separate from the interpreter’s name
space, and separate from all local functions’ name spaces. — And this is only the first half of the
story.

-> v = -1
v =

- 1.

-> global(’v’)

-> who(’global’)
ans =
v

-> clear v

-> who(’global’)
ans =
v

-> deff(’y = useglobal()’, ’y = v’)

-> useglobal()
!-error 4

undefined variable : v
at line 2 of function useglobal called by :
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useglobal()

As promised, this is only one half. After sayingglobal var , the variable lives in its new name
space, but it cannot be accessed. Doh! To work with it, we mustimport it explicitely, using the
global modifier again. Therefore, a slightly modified version ofuseglobal works.

-> deff(’y = useglobal2()’, ’global v, y = v’)

-> useglobal2()
ans =

- 1.

-> v = 1 + 2*%i
v =

1. + 2.i

-> useglobal2()
ans =

- 1.

Now what if we want to accessv from the interpreter level again? It must be imported just as it must
be imported into any function.

-> global(’v’)

-> v
v =

- 1.

-> v = 17 + 4
v =

21.

-> clear v

-> useglobal2()
ans =

21.

One last hint: global variables even survive a restart. If this is not desired,clearglobal should be
called in the user’s Scilab startup file,~/.scilab .

clearglobal()

will clear all global variables.
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2.5.3. Clearing Variables
During everyday programming it is not necessary to explicitely remove variables from the work
space. All local variables of a function die on exit from that function anyhow, and the variables in the
global name space usually do not need a special treatment.

However, there are conditions under which it is preferable to completely wipe out a variable. This
happens if one needs to avoid a pollution of the name space e.g. while working with the list of all
variables,who(’local’) . The correct command to kill the non-global variablev is

clear v

Note that there are no parentheses. The assignment

v = []

setsv to the empty matrix. It doesnot remove the variable from the workspace.

Global variables are cleared with theclearglobal function, whose syntax is the same asclear ’s
syntax.

There is no need to worry if you do not understand how and why to kill a variable. This feature is
only needed in very rare occasions.

2.6. Dangerous Range Generation
Range generation with the colon-operator “: ” (see alsoSection 6.1.3.1.1) holds ready an unpleasant
surprise that is caused by the finite precision of Scilab’s floating-point numbers.

Colon expressions are used most often with integralinitial_value , final_value , and
stride . These are the safe uses. However, all three parameters can be decimal fractions! Not all
decimal numbers have a finite representation in the binary system. For example, 0.1 has the infinite
binary representation

____
2#1.10011#E-4,

where the bar over the last four bits denotes infinite repetition of this bit pattern. Of course numbers
with an infinite binary representation must approximated by finite binary numbers. In our example
the approximation is

2#1.10011001100110011001100110011001100110011001100110011#E-4,

for Scilab uses IEEE 754 double-precision reals, which carry a 53 bit mantissa.

For a detailed analysis of the floating-point induced problems,Example 2-6rewrites a general
colon-expression as a loop.
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Example 2-6. Equivalent Representation of a Colon-Expression

v = initial_value : stride : final_value

translates into

v = []
if initial_value <= final_value

x = initial_value
while x <= final_value – note the comparison

v = [v, x]
x = x + stride – x accumulates rounding error

end
end

The approximate binary representation can influence all three parametersinitial_value ,
final_value , andstride . Furthermore, each addition ofstride to x – as shown inExample
2-6– can introduce a rounding error. To stay clean of the rounding errors, colon-expressions
involving decimal fractions are best avoided.

A possible workaround is to generate a vector with an integral-only colon-expression, and then
rescale the vector to the desired range. For example, if a vector from 1.0 to 8.0 in 0.7... (= 7/9)
increments is wanted, a save expression is(9 : 7 : 72) / 9.0 .

Another possible substitute for a fractional colon-expression is the built-in function
linspace( initial_value , final_value [, n = 100 ]) that generates a vector ofn evenly
spaced numbers starting and includinginitial_value up to and includingfinal_value . See
Section 6.1.3.1.2for a detailed discussion of this function.

The following piece of code shows that the rounding can strike in surprising ways. The vector
generated with a colon expression ranges from 1.0 to 2.0 - x in increments of 0.25. Both, 1.0 and
0.25 have exact binary representations, thus they do not introduce any rounding error, neither does
the repeated addition of 0.25 to 1.0. The upper end of the interval is decreased in increments of x =
2^i. Again, 2.0 and 2.0 - x have exact representations for the chosen values of i.

function e = eps_hi
// Return the smallest positive number E for
// which 1 + e is not equal to 1. This equals one
// ULP (unit least precision) for 1 <= |x| < 2.
x = 1.0;
while 1.0 + x ~= 1.0

e = x;
x = x / 2.0;

end;
endfunction

function y = pow2(n)
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// Return 2^n, but do not rely on the built-in
// exponentiation operator.
y = prod(2.0 * ones(1, n))

endfunction

eps = eps_hi();
for i = 0:5

printf("i = %d ", i);
disp(1.0 : 0.25 : (2.0 - eps*pow2(i)));

end

-> exec("colon.sce");
i = 0
! 1. 1.25 1.5 1.75 2. !

i = 1
! 1. 1.25 1.5 1.75 2. !

i = 2
! 1. 1.25 1.5 1.75 2. !

i = 3
! 1. 1.25 1.5 1.75 !

i = 4
! 1. 1.25 1.5 1.75 !

i = 5
! 1. 1.25 1.5 1.75 !

An upper boundary of 2.0 - 2^2*eps yields a vector of length 5, whereas 2.0 - 2^3*eps as the upper
boundary gives a vector of length 4. The conclusion is that the rounding procedure, which Scilab
imposes on the upper boundary, considers all numbers smaller than 2.0 by less than 4*eps as equal to
2.0. However, when asked directly, Scilab notices the difference as it should be:

-> 2.0 - 4*eps == 2.0
ans =

F

Conclusion: Using colon expressions with fractional parameters is not recommended andlinspace

should be used instead.
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The one and only general guideline to good programming style is: “Make it clear!” And one might
extend that to

Make it clear – first of all toyou, and then to the poor persons that take over your project (after you have
been fired, because of writing illegible code).

Every possible style feature of the language should be used to express the meaning of the code more
clearly.

3.1. Spacing and Formatting
Although often underestimated, the format, i.e. the visual layout of the source code itself can greatly
help in the understanding of the actions described therein.

3.1.1. Intra-Expression Spacing
We often run into code like this

x=a*c+(x-y)^2*b

This is not bad, especially when typed at the command line for one-time use. However, the
expression is not as clear as it could be. It can easily be improved by making the precedence levels
(see alsoSection 4.3) of the operators stand out, as e.g.

x = a*c + b*(x-y)^2

Now, the assignment is intuitively clear at first glance. We use the word “intuitive” here alert the
reader of the consequences of incorrectly formatting an expression. Then our intuition will mislead
us, as in

x = a * c+(x-y)^2*b

Ouch! This expression is evaluated differently from what it is telling us. We should call it a liar.

See alsoSection 2.2for the influence of whitespace on the evaluation of dotted operators.

3.1.2. Line Breaking
Breaking a long expression into lines can improve its readability dramatically. It is particularly
recommended for matrix definitions with the square bracket operator. See alsoSection 2.2.
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For example

m1 = [ 1+%i -1+%i; ..
-1+%i 1-%i ]

is superior to

m1 = [1+%i -1+%i; -1+%i 1-%i]

If an arithmetic expression is split into lines the operator at which the split occurs always goes onto
thenextline. Preferred break points occur right before operators of equal precedence.

d2 = fact * (a/(a+d)*(b*(1-delta) + d*delta) - d) * (P./K).^theta

for example becomes

d2 = fact * (a/(a+d)*(b*(1-delta) + d*delta) - d) ..
* (P./K).^theta

or

d2 = fact ..
* (a/(a+d)*(b*(1-delta) + d*delta) - d) ..
* (P./K).^theta

or more dramatic

d2 = fact ..
* ( ..

a / (a+d) * (b*(1-delta) + d*delta) ..
- d ..

) ..
* (P./K).^theta

3.1.3. Setting Brackets Apart
If spaces right inside parentheses or brackets of an expressions make the subexpression stand out
more clearly, they should be used. That way

B(k) = a1 * exp(-b1*P(k)/K(k) + b2*Q(k)/K(k))

becomes

B(k) = a1 * exp( -b1*P(k)/K(k) + b2*Q(k)/K(k) )
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3.1.4. Vertical Spacing
All previous formatting suggestions of this sections have been concerned with horizontal spacing,
and indentation. Vertical spacing is as important as horizontal!

As sentences belonging together go into one paragraph and paragraphs are seperated by one ore
more blank lines, Scilab statements that belong together go into one visual block and the blocks
should be seperated by single blank lines.

n = 1;
lo = 1.0 - n*2*epslo(); // lo = pred(1)
hi = 1.0 + n* epshi(); // hi = succ(1)

for k = 2 : 4
x = lo : (hi - lo)/(k - 1) : hi;
y = linspace(lo, hi, k);

disp(size(x, "c") - k);
disp(x - 1);
disp(y - 1);

end

If blank lines tear apart blocks of code within functions, it might be preferable to seperate pairs of
adjacent functions by at least two blank lines.

function y = baseconv(x, b)
// Convert decimal fraction X into a base-B number. Each
// "digit" of the result is one element in the result
// vector Y. To get a monolithic string, apply strcat to Y,
// like
// strcat(["#", baseconv(x, b), "#", string(b)])

if x >= 0
y = []

else
y = ["-"]

end
y = [y, baseconv_integral(int(abs(x)), b)]
if frac(x) == 0.0

return
end

if y == [] | y == ["-"]
y = [y, "0"]

end
y = [y, ".", baseconv_frac(frac(abs(x)), b)]

function y = baseconv_integral(x, b)
// Convert decimal integer X >= 0 into a base-B number. Each
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// "digit" of the result is one element in the result
// vector Y.

if x < 0
error("integer X (arg 1) out of range; X >= 0.")

end
if b < 2 | b > 36

error("base B (arg 2) out of range; 2 <= B <= 36.")
end

if x == 0
y = ["0"]
return

end

y = []
xv = abs(x)
while xv >= 1

r = modulo(xv, b)
if r <= 9

rs = string(r)
else

rs = code2str(r)
end
xv = int(xv / b)
y = [rs, y]

end

function y = baseconv_frac(x, b)
// Convert decimal fraction 0 < X < 1 into a base-B number. Each
// "digit" of the result is one element in the result
// vector Y.

if x <= 0 | x >= 1
error("fraction X (arg 1) out of range; 0 < X < 1.")

end
if b < 2 | b > 36

error("base B (arg 2) out of range; 2 <= B <= 36.")
end

y = []
xv = x * b
max_mant = prod(2.0 * ones(1, 52)) // 2^52
n = 1
while xv > 0 & n <= max_mant

r = int(xv)
if r <= 9

rs = string(r)
else

rs = code2str(r)
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end
xv = frac(xv) * b
y = [y, rs]
n = n * b

end

if n >= max_mant
warning("loss of precision")

end

function f = frac(x)
// Return the fractional part of X.
// int(X) + frac(X) == X for all X.

f = x - int(x)

3.2. Indentation
Heavy indentation does not hurt! No, in fact it is a great help in finding out the control flow quickly.
Let us start with a good example this time,Example 3-1.

Example 3-1. Functionwhocat

function s = whocat(cat)
// return all local variables, functions,
// etc. that are in category cat.

s = [];
nl = who(’local’);

for i = 1:size(nl, 1)
execstr( ’typ=type(’ + nl(i) + ’)’ );
if typ == cat then

s = [s; nl(i)];
end

end

The for loop, and theif branch are immediately recognizable.

There are blank lines between the logical blocks of the function. They too aid the reader’s
comprehension ofwhocat ’s inner workings. As a rule of thumb lines of code that achieve a sub-goal
of the computation should be grouped together as sentences are grouped in a paragraph.

In longer functions the indentation becomes essential for the orientation of the maintainer. Here is a
excerpt of a longer function, that would be terribly hard to understand if not massively indented.

39



Chapter 3. Style

i = 1;
j = 1;
while i <= n1 & j <= n2

while i <= n1 & j <= n2
if ~equ(lst1(i), lst2(j)), break, end
i = i + 1;
j = j + 1;

end
if i >= n1 | j >= n2, break, end

icurs = i;
while icurs <= min(n1, i+fuzz)

if equ(lst1(icurs), lst2(j)), break, end
icurs = icurs + 1;

end
if icurs <= n1 then

if equ(lst1(icurs), lst2(j)) then
// record element(s) missing from lst1
for p = i : icurs-1

this_diff = [lst1(p), string(-p)];
diff = [diff; this_diff];

end
// re-sync
i = icurs;

end
end
...

end // while

The complete listing of this function can be found inChapter 10.

The last example also shows that we are switching between several style paradigms:

• Neither the “One statement per line” rule is followed consistently,

if equ(lst1(icurs), lst2(j)), break, end

could be

if equ( lst1(icurs), lst2(j) ) then
break

end

• Nor is the intra-line spacing always consistent with the guidelines presented here:

for p = i : icurs-1

could be
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for p = i:icurs-1

The Golden Rule is that there are no golden rules... This is best known under the term “freedom”.

3.3. Single Quotes vs. Double Quotes
Single or double quotes enclose literal strings in Scilab. The opening quotes must match the closing
ones, otherwise single and double quotes can be used interchangingly.

The single quote, used as postfix operator, has the additional meaning of Hermitian (complex)
transpostion. This double use almost causes not problems, but if you want to play it extra save, using
double quotes for strings only adds clarity to your scripts.

3.4. Choice Of Control Structures
Though not recognized as that by all programmers, the flow control structures themselves are first
class indicators of the code’s workings. We consider three important cases here.

1. while vs. for ,

2. if vs.select , and

3. strict block structure vs. premature return.

3.4.1. while /for

Expressed in words afor loop tells us:

• We know exactly how many iterations we shall need before we start looping.

• Nothing in the loop body will change this.

Whereas thewhile loop says:

• We must check whether we should loop at all, and

• we have to re-check after each iteration whether we need another round-trip.

Corollary: The termination condition of awhile must be influenced in the loop’s body.

Compare the next two code snippets, the first one calculating the average value of a vector of
numbers, the second searching zeroes of a given function.

values = [1.0, 2.0, 3.0, 4.0, 5.0];
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average = 0.0;
n = size(values, ’c’); // line 3
for i = 1:n

average = average + values(i);
end;
average = average / n

From 7nbsp;3 on, we know the number of iterations,n, and we know that nothing will change that.
Thus afor loop is adequate.

deff(’[y, dy] = fun(x)’, ..
’y = -0.5 + 1.0/(1.0 + x^2), ..

dy = -2.0 * x / (y + 0.5)^2’);

x0 = 0.76;
[y, dy] = fun(x0);
while abs(y) > sqrt(%eps)

x = y/dy - x0;
x0 = x;
[y, dy] = fun(x);

end;
x

Assuming that the functionfun , and the start guessx0 are supplied by the user, we do not know how
many loops it will take for Newton’s algorithm to converge, if it does converge at all. (In the example
it does.) Here, thewhile -loop expresses this lack of a-priori knowledge.

3.4.2. if /select

The relationship betweenif andselect bears similarity towhile andfor , respectively. In a
select clause the different cases are known – and spelled out explicitely – before the thread of
control enters the construct. There is a one to one relationship between the states of theselect ing
expression and thecase branch taken. Theelse branch in aselect works exactly as theelse in
an if .

function f = fibonacci(n)
// return n-th Fibonacci number

select n
case 0 then

f = 1
case 1 then

f = 1
else

f = fibonacci(n - 1) + fibonacci(n - 2)
end
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Theselect ing expression is not restricted to scalars, vectors for example work too:

function s = shape4(m)
// classify a 2x2 matrix according to its shape

select abs(m) <= %eps
case [%t %t; ..

%t %t] then
s = ’empty’

case [%t %f; ..
%f %t] then

s = ’diagonal’
case [%f %f; ..

%t %f] then
s = ’upper triangular’

case [%t %t; ..
%f %t] then

s = ’lower triangular’
case [%f %f; ..

%f %f] then
s = dense’

else
s = ’general’

end

An if clause is more flexible than aselect clause, but at the price of being less expressive.
Whenever a whole range of values has to be covered theif clause is the only way to go, as is
demonstrated byExample 3-2.

Example 3-2. Functionmysign

function y = mysign(x)
// re-write of the sign-function, taking
// floating-point precision into account

if abs(x) < %eps
y = 0.0

elseif x >= %eps
y = 1.0

else
y = -1.0

end
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3.4.3. Strict Block Structure/Early Return
The paradigm of structured programming is: “Every block has one and only one entry point.” That is
it! Nothing is said about the number of exit points. The purists often misinterpret the paradigm,
demanding a single exit point, too. We prefer our freedom, and choose whatever we find adequate to
the problem.

Here are two different implementations of an algorithm calculating the factorial of a given integral
number.

function y = fact_block(x)
// faculty of x; block-structured version

select x
case 0 then

y = 1
case 1 then

y = 1
else

y = x * fact(x - 1)
end

The two special cases0, and1 are tested separately, and the general case is handled in theelse

branch.

function y = fact_early_ret(x)
// faculty of x; early-return version

if x >= 0 & x <= 1 then
y = 1
return

end

y = x * fact(x - 1)

This version immediately returns after having treated the special cases, leaving the general case to
the “rest” of the function. In this very short function the advantages of the early return are not
striking, however they are if many special cases are to be handled. The “rest” of the function can
then concentrate on the core of the problem without being obscured by deeply nested conditionals.

3.5. Size of a Function
There is a rule of thumb for the length of a C-function:

Linus Torvalds
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Functions should be short and sweet, and do just one thing. They should fit on one or two screenfuls of
text (the ISO/ANSI screen size is 80x24, as we all know), and do one thing and do that well.

In older versions of sci-BOT the reader found the following paragraph:

It is also true for Scilab functions with the exception that high level functions, or functions that are called
from the command line directly should be harnessed, seeSection 5.1.5. Therefore, they are usually much
longer than just two screenful. Yet, their structure decomposes quite naturally into two parts: the argument
checking, and the computation. What remains true is that a Scilab function too should do only one thing
and do that well.

Meanwhile, the authors have slightly changed their minds, opting for short functions throughout. All
functions should be short, no matter how much argument checking is done. If the argument checking
code bloats a function definition, the checking code must go into a separate function or even separate
functions in the case the things checked are unrelated. We follow one of the prophets of concise
programming, Martin Fowler, and recommend his book “Refactoring”[Refactoring:1999]. Of
particular interest in connection with this section are the refactorings “Decompose Conditional”
(238), “Consolidate Conditional Expression” (240), and “Replace Nested Conditional with Guard
Clauses” (250).

For more information about programming style consult “The practice of programming”
[Kernighan:1999]which is centered around C-like languages, but offers extremely valuable advice
throughout. “Programming Perl”, also known as “The Camel”,[Wall:1996]has a section called
“Efficiency” in chapter 8. It is as insightful as it is fun to read for the authors discuss the various
optimization directions. They do not hesitate to put up contradictory suggestions along the different
paths.

Conclusion of this section: Whatever makes the code’s workings more obvious to the reader is good.
In other words: “If it makes ya high, or saves you taxes, then – by any means – do it!”
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In this chapter we shed some light onto widely unknown features. Parts like the operator precedence
unconsciously are exploited in every-day programming by all of us. Others, like integer variables are
easily misused. So, read on and become a Yedi^H^H^H^HScilab master.

4.1. Keywords and Commands
The Scilab language protects only twelve words against any modification by the user. These
identifiers cannot be used as variables or function names. Any attempt to do so immediately raises an
error, which typically reads “incorrect clause”.

Table 4-1. Reserved Words

Name Description

break Force (premature) exit from afor or while

loop

case Start clause within aselect statement

do Synonym for “,” after for, while, if,

etc.

else Start alternative in anif or case statement

elseif Add a conditional branch to anif statement

end Terminatefor, if, select, and while

statements

endfunction Terminate a function definition

for Start a loop with a known number of iterations

function Start a function definition

if Start a conditional

select Start a multi-branch conditional

then Synonym for “,” after expression in if

or select

Reserved words are protected against abuse by the interpreter, commands which follow inTable 4-2
are not! Some of the commands ought to be reserved words, but they are not. Commands can be used
in contexts where variables are valid, however, the results are surprising. Therefore they should not
be used as names for variables or functions.

Table 4-2. Commands
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Name Description

abort Stop current evaluation and return to primary
command-level

apropos word Search for manual-pages whose synopsis matches
word

clear varname Remove variable (or function)varname from
workspace; see also Section 2.5.3

exit Terminate Scilab sesssion

help word Display manual page on topicword

pause Switch into pause mode (can be used multiple
times)

pwd Print the current working directory

quit Jump out of pause mode (can be used multiple
times) or quit Scilab session

resume Stop execution of a function or, in pause mode,
return from function

return Return from function

what List all Scilab reserved words

while Start a conditional iteration

who(’local’ | ’global’) List local or gobal variables in workspace; see
alsoSection 5.2.1

Some uses ofdo:

for i = 1:n do ..., end

while i < n do ..., end

if a < b do ..., else ..., end

4.2. Operator Overloading 1

Scilab bears a feature which strongly reminds one of object-oriented programming languages:
operator overloading. Yet, Scilab is not object oriented. Strictly speaking operator overloading has
nothing to do with object-oriented programming, but as it turns out overlading operators is

1. Thanks go to Bruno Pinçon for carefully proofreading this section.
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particularly useful in object-oriented languages. Overloading grafts new functionality onto an
existing function-name. Scilab accomplishes this with a special syntax similar to mangled symbol
names of a C++-compiler’s output.

The overloading of operators is described in Section 3.3 (“Definition of Operations On New Data
Types”) of in SCI/doc/Intro.ps , and information is also available throughhelp overloading .

Even if you never will overload an operator, knowing the syntax and the function codes helps when
deciphering error messages that involve overloaded operators. The following session transcript
shows what happens if you request the boolean matrixbmto be converted into a string.

-> bm = [%t, %f; %f, %f]
bm =

! T F !
! F F !

-> string(bm)
!-error 246

impossible to overload this function for given argument type(s)
undefined function %b_string

Without further knowledge the user is nothing but puzzled by “undefined function %b_string”.

4.2.1. Overloading crash course
If we drop the buzzword “Operator overloading”, which comes from the OO-camp, and call every
operator a function, we are (a) absolutely right in a mathematical sense, and (b) get a good grasp of
what is going on.Operators are simply functions written in a special syntax.In most imperative
languages (C and descendants, Pascal and descendants) functions are written in prefix notation, i.e.
the function name precedes all arguments. In the same languages operators are written in infix
notation, i.e. the operator put between the operands.

Lisp as a (functional) language which employs pure prefix syntax all functions and operators are
written before all arguments.

(+ 3.9 54.0 -4.5 74.5 -57 -56)
(setq x (list "a" -1 (- 3 10)))
(length x)

The same expressions look more or less differently in Scilab:

3.9 + 54.0 + (-4.5) + 74.5 + (-57) + (-56)
sum( [3.9 54.0 -4.5 74.5 -57 -56] ) – alternative to previous line
x = list("a", -1, (3 - 10))
length(x)

As becomes clear in the above example, operators are specially written functions, but otherwise
behave like ordinary functions.
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Overloading has been hyped since to advent of C++. A closer look reveals that even Fortran-77
endows certain intrinsics with an overloaded syntax. What the heck is overloading?To overload a
symbol means assigning another meaning to it, augmenting the existing meaning(s).Typically, the
symbol is a function name and the additional meaning is an additional function definition.

How can the language decide which definition to take? That depends on the language. The most
common scheme to determine which function definition to trigger is the analysis of theactual
function arguments. Fortran-77 provides so-called generic functions,sin is one example, which can
be called with arguments of several types and the compiler selects the routine that matches that type.

program f77ovl

implicit none

real xr, s1
double precision xd, s2
complex xc, s3

* floating point literals default to real*4 in f77
xr = 1.0
s1 = sin(xr) – compiler selects single precision routine

xd = 1.0d0
s2 = sin(xd) – compiler selects double precision routine

xc = (1.0, 0.0)
s3 = sin(xc) – compiler selects complex routine

* alternative using explicit call
s2 = dsin(xd) – user demands double precision routine
s3 = csin(xc) – user demands complex routine

end

Modern languages like e.g. C++, F9x, and Ada let the user define functions with the same name as
long as they can be uniquely identified by their argument list (C++) or argument list and return value
(Ada).

We can define threeMaximum functions. The Ada-compiler distinguishes them by their arguments
and return values.

function Maximum(X1, X2 : Float) return Float;
function Maximum(F1, F2 : Fraction) return Fraction;
function Maximum(I1, I2 : ArbitraryPrecisionInteger) re-
turn ArbitraryPrecisionInteger;

As we know from the beginning of this section, operators are functions written in a special way.
Thus it is easy to imagine that an operator can be overloaded just the way a function can. The next
Ada example shows how the addition operator can be overloaded.
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function "+"(Left, Right : Fraction) return Fraction is
begin

return – code for addition of two fractions
end "+";

If you want to learn more about overloading and class construction and object oriented (C-)
programming, we recommend Scott Myers’ books[Myers:EffCPP:1998], and
[Myers:MoreEffCPP:1996].

4.2.2. Overload syntax
In Scilab an operator gets overloaded with a new function, if we define this function having a special
name in a particular format. For unary operators the format is

function result = %optype _opcode ( argument )

whereas for binary operators except insertion and extraction it is

function result = %optype1 _opcode _optype2 ( argument1 , argument2 )

where valid operand-variable-type codes foroptype , optype1 , andoptype2 are defined in
Table 4-3andTable 4-4, and the operator-codesopcode are defined inTable 4-5. The formal
function argumentsargument , argument1 , argument2 , andresult are usual argument and
return-value names. To descibe the syntax in words: a percent-sign starts the definition followed by
the type[s] of the operands and the operator seperated by [an] underscore[s].

The syntax for overlading vector/matrix insertion

target ( index1 , index2 , ..., indexN ) = source

and vector/matrix extraction

target = source ( index1 , index2 , ..., indexN )

is a bit more convoluted as it has to account for the indices:

// insertion
function target = %targettype _i_ sourcetype ( index1 , index2 , ..., in-

dexN , source , target )
// extraction
function [ result1, result2, ..., resultM ] = %sourcetype _e( index1 , in-

dex2 , ..., indexN , source )
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Warning
The online-help of Scilab-2.5, help overloading , is incorrect in its explanation
of the argument names to insertion-overloading. It says that target is the
next-to-last, and source is the last argument. In fact the two arguments
occupy exchanged positions as we have listed them.

Note that for extraction the number of return values, M, is completely independent of the number of
index expressions, N.

Table 4-3. List of all operand type codes

Variable type Code string optype Code index

floating point scalar, vector, or
matrix

s a 1

polynomial pa 2

boolean ba 4

sparse matrix sp 5

sparse boolean matrix spb 6

Matlab® sparse matrix msp 7

matrix of integers (8, 16, or 32bit
entries)

i 8

string ca 10

uncompiled function ma 11

compiled function mc 13

function library f 14

untyped list l a 15

typed list name of the tlistb 16

matrix list ml 17

pointer ptr 128

? ip 129

Notes: a. This type code is already overloaded by Scilab itself.b. The formal code string for typed lists istl.

Two types are particularly well suited for overloading; these are the tlist and its close relative the
mlist. tlists are used by Scilab itself to define some sophisticated types like polynomials, or sparse
boolean matrices.Table 4-4summarizes all typest , in use as of version 2.5.1. As the type of a tlist is
the list’s first element, we sometimes call it, in a Lisp like manner, the head of the tlist. Note that
when working with tlists of typet , Scilab calls the predefined function for untyped lists,
%l_opcode , or %l_opcode _l until the user provides [a] replacement function[s] with the name
%t _opcode , or %t _opcode _t .
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Note: Only the first 8 characters of the name of a tlist or mlist are significant when
overloading any unary or binary operator! See also Section 4.6.1.

The first column ofTable 4-4states the name of the variable type, column two lists the tlist
identification heads, and column three holds the code number, Scilab associates with the specific
head. The type-name/type-code – not only for tlists – translation can be queried with thetypename

function.

Table 4-4. List heads used by Scilab

Variable type Code string Code index

sparse matrix sp 5

sparse boolean matrix spb 6

Matlab® sparse matrix msp 7

linear-state system lss 16

rational function, i.e. quotient of
two polynomials

r 16

hyper-matrix hm 17

? ip 129

Now that we have defined all operand type codes, we can turn to the operator type codes.

Caution
Several operators listed in Table 4-5 behave specially! Some, like equality and
inequality tests, are auto-overloaded, i.e. are available even before the user
defines her replacement function. Others cannot be overloaded at all, like
unary plus (all types), and insertion/extraction (tlists).

Warning
There is a mistake in the SCI/doc/Intro.ps concerning this operator. The
first table in Sec. 3.3, page 64 states that code b defines the row-separator “; ”.
SCI/doc/Intro.ps is wrong here, but the online help is correct in that the
row-seperator “; ” is overloaded with the code f .

Warning
The online-help of Scilab-2.5, help overloading , is incorrect, and
SCI/doc/Intro.ps is correct. u is associated with “*. ”, and x with “.* ”.
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Table 4-5. Operator type codes

Operator Code Note

.’ 0 pure transposition (no complex
conjugate)

< 1 less-than

> 2 greater-than

<= 3 less-or-equal

>= 4 greater-or-equal

~ 5 logical-not

+ a binary operator. The unary plus
is automatically overloaded for
any new type with the
identity-transformation or “do
nothing”. Unary plus cannot be
overloaded!

: b range generator

[ , ] c matrix row constructor “,”

./ d element-wise division

( ) e extraction form a matrix, likes
= v(k). The operator is

automatically defined

for new types.

Extraction from tlists

cannot be overloaded,

use mlists instead.

[ ; ] f concatenation or matrix column
construction “;”

| g logical-or

& h logical-and

( ) i insertion into a matrix, likev(k)

= s. The operator is

automatically defined

for new types. Insertion

into tlists cannot be

overloaded, use mlists

instead.

.^ j element-wise exponentiation

.*. k Kronecker multiplication
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Operator Code Note

\ l left division; solve a linear
system of equations

* m matrix multiplication

<>, ~= n unequality test. Both operators
are automatically defined for any
new type withlist

semantics, i.e.

component-wise

comparison and a boolean

return vector. Both can

be overloaded with user

functions.

== o equality test. The operator is
automatically defined for any
new type withlist

semantics, i.e.

component-wise

comparison and a boolean

return vector. It can be

overloaded with a user

function.

disp p unary operator; display results
with disp or at the

command line

^ p binary operator; matrix
exponentiation

.\ q element-wise left division

/ r right matrix division

- s unary%head_s, and binary

%head1_s_head2 operator;

see also: overloading of

unary plus %head_a.

’ t unary operator, Hermitian
(complex) transposition

*. u element-wise multiplication

/. v element-wise division

\. w element-wise right division

.* x element-wise multiplication

./. y Kronecker division
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Operator Code Note

.\. z Kronecker right division

Almost all unary built-in functions likeabs , ceil , floor , imag , int , real , round , sqrt , and
string can be overloaded, too. The syntax borrows for the syntax for unary operators. Function
names which are not already used by Scilab cannot be used for overloading.

function result = %optype _functioname ( argument )

wherefunctioname is the name of the function.

4.2.3. Overloading example

Tip: Lots of overloading functions can be found in SCI/macros/percent .

After so much theory, definitions and tables we deserve an example that demonstrates operator
overloading in action. As usual for sci-BOT the complete example can be found inSection 10.1. The
following is not production strength code, most error checks are left out.

function f = frac(p, q, reduce)
// constructor for fractions

select type(p)
case 1 then // constant

if size(p, ’*’) ~= 1 then
error(’argument p is non-scalar’)

end
p0 = p
q0 = 1

case 16 then // tlist
// copy constructor behavior
p0 = p(’num’)
q0 = p(’denom’)

else
error(’argument p has wrong type’)

end

if isdef(’q’) then // q is an optional argument
select type(q)
case 1 then // constant

if size(q, ’*’) ~= 1 then
error(’argument q is non-scalar’)

end
q0 = q0 * q

case 16 then // tlist
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// copy constructor behavior
p0 = p0 * q(’denom’)
q0 = q0 * q(’num’)

else
error(’argument q has wrong type’)

end
end

if isdef(’reduce’) then // (isdef(’reduce’) & re-
duce == %t) does not work, for

// Scilab performs a complete boolean evaluation
if reduce == %t then

[p_red, q_red] = reduce_int(p0, q0)
else

p_red = p0
q_red = q0

end
else

[p_red, q_red] = reduce_int(p0, q0) – reduce_int defined in complete example
end
f = tlist([’frac’; ’num’; ’denom’], p_red, q_red)

function s = %frac_p(f)
// display function for fractions
s = string(f)
disp(s)

//
// addition
//

function r = %frac_a_frac(f1, f2)
d1 = gcd_int(f1(’denom’), f2(’denom’))
if d1 == 1 then

r = frac(f1(’num’)*f2(’denom’) + f1(’denom’)*f2(’num’), ..
f1(’denom’)*f2(’denom’))

else
t = f1(’num’)*(f2(’denom’) / d1) + f2(’num’)*(f1(’denom’) / d1)
d2 = gcd_int(t, d1)
r = frac(t/d2, (f1(’denom’) / d1)*(f2(’denom’) / d2))

end

//
// conversion
//

function fl = frac2float(f)
// convert a fraction to a floating point number
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fl = f(’num’) / f(’denom’)

function s = %frac_string(f)
// string( frac(...) )
if f(’denom’) == 1 then

s = sprintf(’%.0f’, f(’num’))
else

s = sprintf(’%.0f/%.0f’, f(’num’), f(’denom’))
end

After loading these definitions a new type named frac exists. It can be used like this:

f = frac(2, 3);
g = frac(1, 3);
h = frac(-1, 3);
i = frac(12);

f + g
g + h
i

frac2float(h)

4.3. Operator Precedence And Associativity
Strange but true, there is no listing of the precedence and associativity of neither class of Scilab’s
operators anywhere in the documentation. So, we discuss the operator precedence and associativity
in detail.

4.3.1. Numeric Operators
Table 4-6shows the list of all numeric operators up to digraphs,2 sorted in descending order of their
precedence. An equal precedence value (column 1) means the operators are evaluated following the
given associativity (column 3).

The table has been generated with a Scilab script, i.e., we had the interpreter determine its own
precedence rules. These scripts are listed inChapter 10.

2. The trigraph operators.*. , ./. , and.\. are left out.
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Table 4-6. Arithmetic Operators

precedence operator associativity comment

21 + right unary

20 ^ right

20 .^ right

19 - right unary

8 * non

8 / left

8 .* non

8 ./ left

4 \ left

4 .\ left

1 + non binary

1 - left binary

Warning
One line begs for an additional warning, and that is the unary minus ranking at
level 19. It looses against the power operator, ^ . Therefore, -1^2 gives -1 , and
not 1. In other words Scilab sees -1^2 as -(1^2) .

The association rules follow those of standard algebra. Thus, nobody should be surprised thata^b^c

is interpreted asa^(b^c) .

4.3.2. Relational Operators
Scilab implements the usual gang of relational operators with some syntactic sugar of having two
“unequality”-operators<>, and~=. The relational operators’ precedences rank in between the
numeric and the logical operators like they do in many other modern programming languages. This
allows for a minimal use of parentheses in larger expressions like

if 2.0*n > l+1.0 | n/3.0 <= k then
...

end

which evaluates exactly the same way as

if ((2.0 * n) > (l + 1.0)) | ((n / 3.0) <= k) then
...

end
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just with much less line-noise.

4.3.3. Logical Operators
There are three logical operators:&, | , and~, meaning “and”, “or”, and “not”. The twiddle,~ has the
unique syntactic property that any number of consecutive twiddles are allowed and evaluated. But
unless you want to enter the obfuscated Scilab contest, sticking with one probably is best as e.g. 15~

are as good as one, and therefore

~~~~~~~~~~~~~~~%t

returnsF.

Table 4-7shows the complete list of Scilab’s logical, also known as boolean, operators sorted
according to decreasing precedence.

Table 4-7. Boolean Operators

operator associativity comment

~ right unary

& non

| non

4.4. Boolean Peculiarities
Scilab’s booleans are much more versatile that in most conventional programming languages. This
section explains the enhancements that makes the boolean type powerful.

4.4.1. Implicit Cast To Boolean
For the logical operators have boolean expressions as their arguments, it is time now to discuss the
implicit promotion of numeric types to boolean type, something very familiar to C, Perl, and Python
programmers. You have guessed right, the rule is: “Zero is false, everything else is true.” Here are
some examples of that rule at work:

-> %t & 0
ans =

F

-> %t & 0.1
ans =
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T

-> 6.34 | %f
ans =

T

-> 6.34 | -0.3
ans =

T

Scilab always evaluates boolean expressions completely. No operator is defined with short-circuit
evaluation semantics.

-> deff(’b = ret_false()’, ’b = %f, disp(”ret_false”)’);

-> ret_false() & ret_false()

ret_false

ret_false
ans =

F

4.4.2. Boolean Vector- or Matrix-Indices
Booleans are valid indices for vectors or matrices. Both, the host object, which is indexed, and the
index itself are used in their flattened representation (Section 6.1.2.3). A boolean%t at positioni
selects elementi from the host object;%f does nothing.

If the size of the boolean index does not match the host object’s, missing indices are implicitly
assumed to be%f. Extraneous that are%f do not produce a runtime error, only%t index values at
positions after the host object’s end.

-> a = [11, 12; 21, 22; 31, 32]
a =

! 11. 12. !
! 21. 22. !
! 31. 32. !

-> a(%t)
ans =

11.

-> a([%t, %t; %f, %t])
ans =

! 11. !
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! 31. !
! 12. !

4.5. Integers

by Enrico Segre
Integer types were introduced in Scilab-2.5 (official release); they are an important concept, but to
date their support still is incomplete and partially buggy. In many situations the use of integer
variables can provide dramatic storage improvements; moreover, large problems, for example those
occurring in image manipulation, often fit the hardware constraints when integer storage is exploited.
Thus, even though the integer types in Scilab still leave something to be desired, their use may be a
matter of necessity; and even considering that integer support is largely broken, yet, the existing
possibilities can provide workable solutions. The following section is a guide to what is available
and what is not when it comes to integer expressions.

4.5.1. Missed Opportunities
The following spots are – to our opinion – missing parts in the current implementation of integers.

4.5.1.1. No Integer Literals

Integer constants can only be defined as results of anint N function (N = 8, 16, or 32) with a real
argument. No special notation exists for integer literals as for example123# or !123 . Variables are
declared as integral when they are assigned an integer value. The integer value has to be produced
first, and this is only possible with a function.

This is inconvenient, and often also performance critical, for instance when defining large integer
arrays. The requirement of duplicate storage for passing by value and the calling overhead can be
demanding. For example,

ia = int8(modulo(1:1e6, 16))

produces the arrayia that occupies 1 MB of RAM. Even thought, the definition procedure requires
an intermediate storage of 24 MB (IEEE 754 double-precision reals have a size of 8 bytes each):
8 MB go for defining1:1e6 and 16 MB for passing by value the result tomodulo and to some other
internals ofmodulo . Scilab goes on a detour in the construction of integral variables instead of
attacking this area directly: the parser ought to recognize terminal symbols making up integral
expressions, so that no double-precision intermediate result is called into play. The pitfall lies partly
in the missing notation itself, and partly in the need to do the integer conversion only at the last step
of the evaluation, for lack of usable integer constructs (seeSection 4.5.2.1).
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4.5.1.2. No Implicit Conversion in Mixed Typed Expressions

Altogether, the introduction of integers has brought 6 new data types:

• int8,

• uint8,

• int16,

• uint16,

• int32, and

• uint32.

Scilab generally does implicit type conversions in expressions involving reals, booleans, and several
other types, butnot when at least one of the operands is an integer. Automatic conversions – for
example, the result of an addition of an int8 and an int16 becomes an int16, an int16 plus a real
makes a real, etc. – arenot implemented. In some programming languages, strong typing can be a
design decision; here, it is probably just a lack. The only automatic conversion takes place when
assigning a real value to elements of an array, which has been predefined as integral. Then, the right
hand side is silently cast to the left hand side’s type.

-> a = int8(zeros(1, 8));
-> a(2:4) = 5.3

a =
!0 5 5 5 0 0 0 0 !

In addition to the lack of automatic type conversion, a few bugs involving mixed type expressions
are exemplified below (seeSection 4.5.2.3.2).

4.5.1.3. No Integer Array Indices

Indexing of array elements is a classical use for integers. However, Scilab solely supports
double-precision, and not integer-typed indices for arrays and hyper-arrays. In many situations
juggling integer indices would be more memory efficient than dealing with double precision. The
double-precision indices finally have to be (internally) cast to integers to actually index into an array.
Consider for example

a = rand(1, 1e6)
a = a(1e6:-1:1)

The reversal of the elements of the array requires 24 MB: 8 MB for storinga, 8 MB for storing the
right hand side of the assignment, and 8 MB for storing the index expression1e6:-1:1 . If int32s
were used instead, half a megabyte could be saved.
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Indexing Done Right
If indexing were done right, it would not require any additional core. The stride of-1 magically turns your
index expression into a efficient call todcopy .

4.5.1.4. Limited Support of Integers in Functions

Only a small subset of the functions which work on reals, or of the syntactical constructs which
involve reals, can be applied to integers. Which functions support integers and which not do not, does
not follow a rule – it just looks like unfinished work. A practical account is given inSection 4.5.2.1.

4.5.1.5. Partial Support of Integer Values in Data Files

Reading and writing of integer data from and to data files is still imperfect. As for reading: in
Scilab-2.5 (official release), values retrieved withmget or read from external data files always are
rendered as double precision reals. Only afterwards they can be converted to integers. This once
more carries the disadvantage of the real (no pun intended) detour, as discussed in the previous
section. An external datafile containing many short integers might not be loadable, because the data
are expanded to double precision reals, filling the available memory, though, once reconverted to
short integers, the data would fit. From Scilab-2.5.1 (alpha version) on, functionmgeti exists, and is
well suited for integers stored in binary files, but no integer equivalent ofread yet exists.

As for the complementary operation, writing integers into a binary file, functionmput( data ,

type ) has been present before Scilab-2.5 (official release). There, however,mput accepted only real
data, even though data could be written into the file as an integer of any type, if specified. Only from
Scilab-2.5.1 (alpha version) on, it has become possible to pass integers tomput . Actually, in
Scilab-2.5.1 (alpha version) there were still a couple of bugs lying around: when integer data was
output, extensive garbage was printed, and explicit reference of the unit number was impossible. So,
in Scilab-2.5.1 (alpha version):

-> fd = mopen(’my_file’, ’wb’);
-> mput(int8(1:1000), ’s’, fd);

!-
error 201 : argument 3 should be a real or complex matrix
-> mclose(fd);

while

-> fd = mopen(’my_file’, ’wb’);
-> mput(int8(1:1000), ’s’);
-> mclose(fd);

worked, but printed a lot of output to the console, considerably slowing down the computation. Both
of these bugs are ironed out in Scilab-2.6 (official release).

In contrast,load seamlessly retrieves integer values, if the correspondingsave wrote them as such.
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4.5.2. Digest of Integer Go And No-Gos
With integers, some Scilab constructs work, some simply do not, and others apparently work, but
incorrectly, and are thus best avoided. If a useris forcedto use integers, she needs a road map to
what is viable and where to stay away from. The following considerations can help in surviving with
integer data.

4.5.2.1. Which Functions Support Integers?

Plainly, some Scilab functions work as expected with integer arguments, and some do not. In many
cases this seems a matter of lazily done homework or homework not done at all. The proper
overloading alternatives to the real constructs are missing! We cannot give any general rules, except
for these two:

1. Functions that can give a real or complex result with an integer input, for examplesqrt or
spec , in most of the cases do not accept integer types.

2. It is naive to expect any function or expression which relies on indices or index counts to work
with integer enumerators.

Table 4-8. Selected Functions and Operators ThatWork With Integers

Operator or Function Comment

“+”, “-”, “*”, “/”, “^”, and “’” their dotted cousins are also working

“ :” colon operator used as implicit or explicit indexer
of integer arrays, with real indices. For example,
i1 = int8(1:10); i1(:) is accepted.

min( ival), max(ival), matrix(ival),

hypermatrix(zval, ival),

returning integer valuesival of the same
type as their arguments; zval is
real or complex.

size real result!

eye( ival), ones(ival), zeros(ival) real result!

eye( ival), cumsum(ival), sum(ival), integer result

disp( ival) string result

fft( ival) complex result

In this section, “not work” means that Scilab complains with an error, usually about a wrong
argument type or a missing overload function.

Table 4-9. Selected Functions and Operators ThatDo Not WorkWith Integers
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Operator or Function Comment

“ :” colon operator used as binary or ternary range
generator

length( ival), mean(ival)

eye( ival1, ival2), ones(ival1,

ival2), zeros(ival1, ival2)

whereival1 and ival2 are integer
variables

sqrt( ival)

cumprod( ival), prod(ival)

ceil( ival), floor(ival), int(ival),

modulo(ival)

These are all real-to-real functions!

gsort( ival), lex_sort(ival),

sort(ival)

Sparse integer matrices are not supported at all.

4.5.2.2. Modular Integers

Unsigned integer expressionscannot overflow; in particular, no warnings are issued. The result of an
expression involving unsigned integers is always computed with respect to the modulus of the type.

-> uint8(129) + uint8(129)
ans =
2

-> int16(32769)
ans =
-32767

This is not surprising, but has to be kept in mind when doing integer calculations.

Background Information
On our days hardware, integer arithmetic is almost always done modulo 2**width , wherewidth is the
number of bits (typically 32 or 64) to represent an integer as a two’s complement. This behavior kind of
“leaks through” from the central processing unit (CPU), where neither integer overflow nor underflow
exists. The main reason for implementing modular integers is speed. Implementing integers as
range-checked type would incur a vast overhead and massively hurt performance.

However, integer divisions by integer zero are trapped, even when settingieee(2) :

-> ieee(2);
-> int8(4) / int8(0)

!-error 27
division by zero...
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Incidentally,int N(%nan) , int N(-%inf) andint N(%inf) , whereN is 8, 16, or 32 all return 0.
The same holds for alluint functions.

No overflow or underflow warning is reported either, if a longer integer is converted to a shorter one,
whereas no loss of precision ever occurs when any kind of integer is cast to a real, because real
mantissas (also known as significants) are represented by more bits – 52 to be precise – than any
Scilab integer type.

4.5.2.3. Troublesome Spots

Integer types are a nice idea, and were definitely missing to Scilab before Scilab-2.5 (official
release), but this said, we regretfully continue with our list of bugs. Unfortunately, it is not just a
matter of implemented versus unimplemented integer constructs. Even some seemingly working
constructs are problematic. Short of discouraging the use of integers types altogether, we go on
reporting some troublesome spots, hoping that they will be addressed in future releases. We point out
alternatives where appropriate.

4.5.2.3.1. Array Concatenation

In Scilab-2.5 (official release), there were serious bugs, which gave rise to wrong results even in the
simplest concatenations of integer arrays. For instance,

-> [uint16(1), uint16(2)]
ans =

!1 0 !

-> [ans, ans]
ans =

!1 0 2 0 !

Similar things happen with int8 and uint8, but not with int32 and uint32. These bugs appear to have
been corrected in subsequent versions of Scilab-2.5 (official release).

4.5.2.3.2. Mixed Type Expressions

Here, anything can happen, depending on the context and on the Scilab version. Most of the time,
overloading functions (see alsoSection 4.2) for operators that involve two different types are
undefined. Consequently, errors result from calling them. In several cases, however, wrong results
show up.

-> int16(10) .* 3.2
!-error 4

undefined variable : %i_x_s

The proper overloading function, integer-times-real%i_x_s , for the “.* ” operator is missing, and
this is reported as an error. If, however, the user enters
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-> int16(10) * 3.2
ans =
30

in Scilab-2.5 (official release), while

-> int16(10) * 3.2
ans =
-32678

in Scilab-2.5.1 (second beta version), and

-> int16(10) * 3.2
ans =
4

in Scilab-2.6 (official release).

Among the numerical operators, “^ ” is a little more sophisticated. Mixed power operations are often
correct, they also retain the type of the integer operand for positive integer exponents, while they
give a real or complex result if the exponent is negative or non-integral. Thus,

-> int16(2)^(-4)
ans =

0.0625

-> int16(4)^(1/2) – exponent is real!
ans =

2.

-> 4.0^int16(2)
ans =
16

-> typeof(int8(4)^int16(2))
ans =
int8

-> int16(-4)^0.5
ans =

1.225E-16 + 2.i

All is OK here? Well, not all doughnuts come out with a hole.

-> uint16(-4)^0.5
ans =

255.99219

What about booleans? When booleans enter the game, the standard behavior in mixed real boolean
expressions is to treat%t as1.0 and%f as0.0 (see alsoSection 4.4.1).
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-> %t + 1.0
ans =

2.

Not so with integers! Most of the time the user again runs into missing overloading functions. In
Scilab-2.5 (official release), however, the door was open to further bugs and oddities, which have
been addressed in the later versions. For instance, operations with int8’s were accepted, but the
results did depend on the order of the operands.

-> %t + int8(1)
ans =

T

-> int8(1) + %t
ans =

1

-> int8(1) + %f
!-error 4

undefined variable : %i_a_b

Other integer types triggered undefined overload functions, reporting errors. Fortunately that is what
happens in any case from Scilab-2.5.1 (alpha version) on. Moreover, sneaking through the definition
holes of Scilab-2.5 (official release), the game went on with even stranger results, which changed
after each call. The following example was reported by Tom Bruhns
<tom_bruhns@agilent.com >.

-> f1 = %t + int8(0:20)
f1 =

! T T T T T T T T T T T T T T T T T T T T T !

-> f2 = %t + int8(0:20)
f2 =

! T T T T T T T T T T T T T T T T T T T T T !

-> f1 == f2
ans =

! T T T T T T T F F F F F F F F F F T F T F !

Oh, maybe it was my imagination thatf1 == f2 did not make all “T” results ...

-> f1 == f2
ans =

! T T T T T T T F F F F F F F F F F F F F F !

What, not even the same answer as one lines ago? Ouch! Does this build confidence, or what?
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Upshot. Avoid mixed typed expressions like the plague, at least for the moment; avoid them harder
if you are still using Scilab-2.5 (official release). Peruse thedouble , int N, anduint N converters
(or iconvert ) as often as needed.

4.5.2.3.3. Mixed Type Comparisons

Up to the latest Scilab-2.6 (official release), comparisons between values of different types (doubles,
integers) are allowed. However, the results are not always consistent. This is yet another example of
mixed type expressions, now with relational operators. For instance, comparing a real scalar or
vector with a real scalar is valid.

-> (1:2) > 1
ans =

! F T !

This is the standard behavior. Trying to do with integers, you enter dangerous grounds. Comparing
scalar integers of the same type is safe.

-> int16(9) > int16(8)
ans =

T

-> int16(9) < int16(8)
ans =

F

Sometimes even comparing different types yields correct results, as, for example,

-> int16(1:2) > int32(1)
ans =

! F T !

-> int16(2) > 1
ans =

T

This would suggest that some sort of type conversion takes place before the comparison, however, up
to Scilab-2.5.1 (second beta version) this impression is wrong.

-> int16(1:2) > 1
ans =

! F F !

To put it another way, maybe this result is correct, as bothint16(1) andint16(2) appearing on
the left hand side are different from1, which is a double precision real value! But this latter
interpretation is inconsistent with the two examples above, which is disturbing. In Scilab-2.6 (official
release),
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-> int16(1:2) > 1
ans =

! T T !

which is different, wrong, and not even amenable to the previous interpretation.

Similarly, consider the different behavior of a (meaningless) comparison of real and complex.

-> %i > 1
!-error 4

undefined variable : %s_2_s

Fine! Now comparing an integer with a complex does neither produce an error, nor a correct result:

-> %i > int16(1)
ans =

F

-> %i < int16(1)
ans =

T

-> %i == int16(0)
ans =

T

-> -%i == int16(127)
ans =

T

with small differences depending on the actual Scilab version.

4.5.2.3.4. Vector-Scalar Comparison of Identical Type Integers

Here too, bugs are lurking under the surface. In principle an array can be compared to a scalar,
resulting in a boolean array of the size of the former. When doing that with integers of the same type,
the results can be wrong, in a way which strangely seems to be more related to indexing than to
comparison.

-> ia = int16(1:20);

-> ia > int16(21)
ans =

! F F F F F F F F F F F F F F F F F F T T !

The last two entries of the boolean result are plain wrong, even though inspection proves that the
corresponding elements ofia are correct. If instead, the elements ofia are explicitely referenced,

-> ia(1:20) > int16(21)
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ans =
! F F F F F F F F F F F F F F F F F F F F !

the answer is correct. On the other hand, wrong results are also returned by expressions asia(:) >

int16(21) , ia(1:$) > int16(21) andint16(21) < ia(1:20) .

Upshot. It seems that the only relational expressions one can really trust are eitherint_array

relop int_scalar , with identically-typed operands and explicit reference to the array elements,
or int_array relop int_array , with equally sized and identically-typed arrays.

4.5.2.3.5. System Dependence of Type int8

On GNU/Linux PPC, we found that the range of type int8 is identical to that of uint8; both assume
values from 0 to 255.

-> int8(-1)
ans =
255

However, Scilab regards the two as different types, and refuses to evaluate expressions involving
both of them.

-> int8(1) + uint8(1)
!-error 4

undefined variable : %i_a_i

4.5.2.4. Integers in Bitwise Operations

To conclude with something functional: the operators “~”, “ &”, and “| ” can be used in integer
expressions. In this case, they act on the single bits of the representation of the integer value.

-> ~uint16(1)
ans =
65534

-> ~int16(1)
ans =
-2

-> int16(1) | int16(4)
ans =
5

Bitwise and/or of two different integral types is not possible.

Bitwise operations are a bonus, when programming hardware at the register level. This is a case
often encountered in interfacing with external instruments such as data acquisition cards.
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To print integer values as hexadecimal strings, functiondec2hex exists. Though, funnily,dec2hex

is meant to accept reals as its only arguments. As previously mentioned for integer constants, no
special notation exists for hexadecimal values; the functiondec2hex , and its dualhex2dec , are
mere formatting functions.

An alternative approach to bitwise operations, that might allow greater flexibility thanint N

operations, is the following. Binary strings can be represented (wasting memory) by boolean arrays.
For example, for 8 bit strings, to fix the idea:

b8 = [%t %f %t %t %f %f %f %f] // for 10110000

First define a suitable vector with the powers of two.

pow2 = 2^(7:-1:0)

which is used in boolean to integer conversion

s = sum(pow2(b8))

and integer to boolean conversion

d2b = zeros(1, 8)

for i = 1:8
d2b(i) = int((s - d2b*pow2) / pow2(i))

end

b8 = d2b==1

Logical “and” and “or” operations map onto the usual logical expressions

c8 = a8 & b8
d8 = a8 | b8 // etc.

and even bit shifts can be written clearly with vectors.

e8 = b8([2:8, 1])
f8 = b8([8, 1:7])

Such an approach has some advantages and some disadvantages. The main advantage is direct access
to a single bit, while the disadvantage is the larger memory consumption, the use of an extra array
dimension, and the need of time consuming boolean to integer conversion functions.

73



Chapter 4. Unknown Spots

4.6. Miscellaneous Unknown Spots

4.6.1. Maximum variable name length
Scilab accepts variables names that are longer than 1024 characters, but only the first 24 characters
are significant. The identifying string of atlist , or mlist can have more than 1024 characters, all
of which are significant. Thetlist /mlist -identifier length limit when overloading functions (see
Section 4.2.2) with the percent-syntax is 8 characters.

4.6.2. Starting scilex
For debugging purposes it is sometimes desirable to directly start the main Scilab binary,scilex.
Scilab is usually launched via thescilab shell script. Both, the script and the binary live in the
SCI/bin directory. The script takes care of setting all environment variables, and finally fires up
scilex. On the other hand, if one wants to run a debugger, saygdb, or ddd, or a profiler on Scilab,
then a manual invocation is the order of the day. See alsoSection 8.1.2.

Startingscilexdirectly is an option as long as the command-line editing goodies are not required,
and there is no need for any graphics. Actually, for minimum functionality only the environment
variable SCI must be set, then we are all set to callscilex. A bashsequence to start Scilab
“manually” could look as shown inExample 4-1.

Tip: From Enrico Segre: Under Win*, runscilab can be called from DOS prompt much as scilab
is in UNI*, e.g., runscilab -nw . The DOS output of commands invoked with unix go to the shell
window.

Example 4-1. Manually launching scilex

lydia@orion:~$ cd /site/X11R6/src/scilab
lydia@orion:/site/X11R6/src/scilab$ SCI=‘pwd‘
lydia@orion:/site/X11R6/src/scilab$ export SCI
lydia@orion:/site/X11R6/src/scilab$ cd bin
lydia@orion:/site/X11R6/src/scilab/bin$ ./scilex -nw

===========
S c i l a b
===========

Scilab-2.5
Copyright (C) 1989-99 INRIA

Startup execution:
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loading initial environment

->

or shorter

lydia@orion:~$ export SCI=/site/X11R6/src/scilab
lydia@orion:~$ $SCI/bin/scilex -nw

===========
S c i l a b
===========

Scilab-2.5
Copyright (C) 1989-99 INRIA

Startup execution:
loading initial environment

->

where we are assuming that Scilab is installed in/site/X11R6/src/scilab .

4.6.3. Tuple Assignment
The most commonly used form of assignment is single variable assignment. Nonetheless, assigning
multiple values in one statement is possible (and no surprise for Perl or Python programmers).

-> [x1, x2, x3] = (1, 2, 3)
x3 =

3.
x2 =

2.
x1 =

1.

Tuple assigment works as expected, performing the whole assigment operation in one single step.
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Warning
In version 2.5 the online documentation, help parents , gives the following,
wrong explanatory code:

[x1, x2, ...] = (e1, e2, ...) is equivalent to x1

= e1 , x2 = e2 , ...

The correct explanation is

[x1, x2, ...] = (e1, e2, ...) is equivalent to first
performing %t1 = e1 , %t2 = e2 , ..., and then x1 =

%t1, x2 = %t2 , ..., where the variables %ti , i = 1, 2, ...
are invisible to the user.

To prove that tuple assigment works as promised, we swap the values of two variablesa andb.

-> a = 1, b = 2
a =

1.
b =

2.

-> [b, a] = (a, b) // swap
a =

2.
b =

1.

What one might expect, but what does not work is multiple assignment to parts of matrices (or lists),
i.e. the following code snipped does not work as naively expected

-> v = [0, 0, 0], a = 0
v =

! 0. 0. 0. !
a =

0.

-> [a, v(1)] = (1, 2)
Warning: obsolete use of = instead of ==

!
!-error 41

incompatible LHS
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The obvious, but ugly workaround is using only scalar variables on the left-hand side of a aggregate
assignment, and then assigning these scalars to the appropriate matrix or list parts.

4.6.4. Dot as Member Selector
Scilab provides two different syntax constructs for the symbolic extraction/indertion of elements of a
tlist. (The extraction/insertion by index numbers follows the extraction/insertion) of elements from
matrices.) The documented syntax uses parenthesis and a selector string which has been defined for
the specific tlist.

-> d = tlist(["dict", "key", "value"], "snafaz", 3.0 + 4.0*%i)
d =

d(1)
!dict key value !

d(2)
snafaz

d(3)
3. + 4.i

-> abs( d("value") )
ans =

5.

The alternative syntax uses dots “.” to seperate the name of the tlist-variable from the name of the
element, uncluttering the code.

-> -real(d.value) + imag(d.value)
ans =

1.

The advantages of the string notation are: (i) The element-names can contain whitespace. (ii)
Extraction/insertion under program control is easier.

Everything in this sub-sectionapplies to mlists, too.
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Chapter 5. User Functions
This chapter treats Scilab’s most powerful code abstraction: functions. The first section,Section 5.1,
introduces in the darkest details of user-defined functions. The second section,Section 5.2, treats
libraries of user-defined functions.

5.1. Functions
Functions are Scilab’s the main feature for the abstraction of programming tasks. Thus, they deserve
a closer look.

See alsoSection 2.3

5.1.1. On(e)line Function Definitions
Scilab allows functions to be defined online, this is, at the command line, in two different forms. The
first form uses the builtin functiondeff

deff( function_head , function_body [, compile_flag ])

wherefunction_head , function_body , andcompile_flag are character strings. Most
often these strings are given literally, for example,

deff(’y = heavyside_theta(x)’, ’if x <= 0, y = 0, else y = 1, end’)

If function_body contains statements that include literal strings themselves, the quotes of these
strings must be doubled, creating a hard to understand mess. This quoting disaster is avoided by
using the second form of online function definition, which uses the keywordfunction and the
syntax of function files (“.sci ”).

function function_head , function_body , endfunction

The crucial difference betweenfunction in a function file and in an online definition is that in a file
theendfunction keyword isoptional, whereas it ismandatoryin an online definition.

function a = row_avg(m), s = sum(m, ’rows’), a = sum(s)/size(m, ’cols’), endfunction

The definition of a function with thefunction andendfunction keywords does not have to fit on
a single input line. It can span multiple lines as the interpreter goes into “function definition mode”
when it parsesfunction . This mode resembles multi-line input in command shells and Python
(though Scilab does not change its prompt to notify the user).

-> function y = foo(x)
-> y = 1.0 + x + 0.5*x^2
-> endfunction
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-> foo(4)
ans =

13.

Both forms allow for nested function definitions – see the following section,Section 5.1.2.

5.1.2. Nested Function Definitions
Function definitions can be nested. The usual scoping rules apply. Online nested function definitions
with deff are possible, but some kind of awkward, because of the massive number of quotes.deff s
in function s are easy to the eye.

Example 5-1shows a function that defines four functions in its body.

Example 5-1. Functiontauc

function [t, rmin, r0] = tauc(E0, M, s, D)
// Compute the round-

trip time t, the minimum distance rmin and the point
// of vanishing potential for a point-

like particle with kinetic energy (at
// r -> infinity ) E0, mass M in a Morse potential of steepness s and
// depth D.

// Morse potential
deff(’U = Umorse(r, steepness, depth)’, ..

’e = exp(-r * steepness); ..
U = depth*(e^2 - 2*e)’)

// point of vanishing potential
deff(’y = equ0(x)’, ’y = Umorse(x, s, D)’)

// reflection point
deff(’y = equ1(x)’, ’y = Umorse(x, s, D) - E0’)

deff(’tau = integrand(x)’, ..
’tau = sqrt( M / (2*(E0 - Umorse(x, s, D))) )’)

// rationalized units...
units = 10.0e-10 / sqrt(1.380662e-23 / 1.6605655e-27)

// calculate endpoints of definite integral
r0 = fsolve(-10.0, equ0)
rmin = fsolve(-10.0, equ1)

// evaluate definite integral
[t_unscaled, err] = intg(rmin, r0, integrand)
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t = 2 * units * t_unscaled
endfunction

As of Scilab version 2.6, nestedfunction s do not work reliably, therefore, constructs like

function foo
function bar

...
endfunction

...
endfunction

should be avoided by usingdeff when definingbar . The fingerprint of nestedfunction s is
error 37, “incorrect function at line ...”. The do-not-nest limitation is raised forone-liners, where
nesting works without problems.

-> function y = foo(x), ..
-> function a = bar(b), ..
-> a = 1.0 + 2.0*b, ..
-> endfunction, ..
-> y = bar(x) / x, ..
-> endfunction

5.1.3. Functions Without Parameters or Return Value
The “Introduction to Scilab”, SCI/doc/Intro.ps , solely explains functions that have one or more
parameters, and return one or more values. Yet, Scilab permits all conceivable combinations of
number of parameters and return values, including functions that have no parameters, or no return
values.

If only one value is returned the square brackets in the function definition are optional. Therefore,
the function head

function [y] = foo(x)

can be abbreviated to

function y = foo(x)

However, this is 100% pure syntactic sugar. What is much more important – and a valuable feature –
is the possibility of defining a function that returns nothing as

function ext_print(x)
printf("%f, %g", x, x)
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does. In Fortran parlanceext_print would be called aSUBROUTINE, whereas Ada programmers
would term it aprocedure .

Of similar importance is the definition of parameterless functions.

function t = hires_timer()
cps = 166e6
t = rdtsc() / cps

The parentheses after the function name are optional when defining the function, but not when
calling it. Therefore the declaration of the last function could have been abbreviated tofunction t

= hires_timer , but the call tordtsc could not have been written ast = rdtsc / cps .

For further information about the omission of parenthesis when calling a function, seeSection 5.1.8.

5.1.4. Named Parameters
The associations between the formal parameters of a function and its actual parameters may be
positional or named. A positional parameter association is simply an actual parameter. All the
positional parameter associations in a function call must precede all the named parameter
associations. Thus, in the function call (seemyplot ’s definition inExample 5-2)

myplot(x, y, pointtype = 4, style = ’linespoints’, linetype = 2)

the first two parameter associations (x , y) are positional, and the last three (style , linetype ,
pointtype ) are named. Two things in the previous line of code are worth noting:

• When parameters are associated via their names the formal parameter’s position is irrelevant.

• Positional parameter associations have nothing to do with optional parameters. A named
parameter can be handled as an optional parameter as well as a positional parameter.

Calling a function with named parameters does not require any special code in the function. Function
myplot is an simple user-defined function:

Example 5-2. Function accepting named arguments

function myplot(x, y, style, linetype, pointtype)

// checks for optional parameters would go here :)

select style
case ’lines’ then

plot2d(x, y, linetype)
case ’points’ then

plot2d(x, y, -pointtype)
case ’linespoints’ then

plot2d(x, y, -pointtype, ’020’)
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plot2d(x, y, linetype, ’000’)
end

To make the two parameterslinetype , andpointtype optional parameters, we add a check for
the existence of these parameters in the function’s, i.e. the local scope. InExample 5-3myplot gets
extended in this direction.

Example 5-3. Function accepting optional arguments

function myplot(x, y, style, linetype, pointtype)

if ~exists(’linetype’, ’local’) – quotes around the parameter name are required
linetype = 1

end
if ~exists(’pointtype’, ’local’) – ’local’ excludes global variables from search

pointtype = 1
end

select style
case ’lines’ then

plot2d(x, y, linetype)
case ’points’ then

plot2d(x, y, -pointtype)
case ’linespoints’ then

plot2d(x, y, -pointtype, ’020’)
plot2d(x, y, linetype, ’000’)

end

Now myplot can be called in any of the following forms:

myplot(x, y, ’lines’) – only positional parameters
myplot(x, y, style = ’linespoints’) – 3rd parameter is named
myplot(x, y, ’points’, 2, 3) – override defaults
myplot(x, y, linetype = 5, ..

style = ’linespoints’) – named params, one override
myplot(x, y, pointtype = 4, ..

style = ’linespoints’, .
linetype = 2) – named params where possible

5.1.5. Bulletproof Functions
If we want to write bulletproof Scilab functions, we have to take care that our functions get the right
number of arguments which are furthermore of the right type, and correct dimension. This is
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necessary because of Scilab’s dynamic nature allowing us to pass arguments of different types,
dimension, etc. to a single function.

We discuss the issues of writing robust function usingExample 5-4as an illustration. The complete
function definition is given inChapter 10.

Example 5-4. Functioncat

function [res] = cat(macname)
// Print definition of function ’macname’
// if it has been loaded via a library.

[nl, nr] = argn(0); ➊

if nr ~= 1 then
error(’Call with: cat(macro_name)’);

end

if type(macname) ~= 10 then ➋

error(’Expecting a string, got a ’ ..
+ typeof(macname));

end
if size(macname, ’*’) ~= 1 then ➌

sz = size(macname);
error(’Expecting a scalar, got a ’ ..

+ sz(1) + ’x’ + sz(2) + ’ matrix’)
end

[res, err] = evstr(macname); ➍

if err ~= 0 then
select err
case 4 then

disp(macname + ’ is undefined.’);
return;

case 25 then
disp(macname + ’ is a builtin function’);
return;

else
error(’unexpected error’, err);

end // select err
end // err ~= 0

...

➊ First, we check how many actual parameterscat has received. The built-inargn returns the
number of left-hand side – or output – variablesnl (In this example we do not make use ofnl .),
and the number of right-hand side – or input – valuesnr .

Ensuring the correct number ofinput arguments always is the first step. Otherwise we cannot
assume that even accessing a parameter is valid. The number of output values is not as critical,
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for calling a function with less output variables than specified in the function’s signature causes
the extra output values to be silently discarded.

After learning the number of actual parameters, we immediately check whether it is in the right
range. Our example simply terminates with an error if the number of arguments is incorrect.

➋ The next thing to address are the types of the arguments. Again we let the function fail with an
error if it does not get what it wants, but this is not the only possible way of handling these kinds
of errors.

It is conceivable that we convert from one type to another, say from numeric to string.
Furthermore, it is possible that the type of the arguments determines the algorithm chosen, a
feature normally advertised under the name “function overloading” (seeSection 4.2).

➌ Finally, we examine the arguments’ structure. A function can e.g. allow scalars only, or accept
scalars and matrices. Here, we enforce a scalar. In other functions certain dimensional relations
of several input parameters must be enforced. E.g. the matrix multiplicationA * B is only
defined forsize( A, ’c’) == size( B, ’r’) .

➍ Now we can start with the real work.

At first glance all this checking gizmos might seem exaggerated. To do it justice we should keep in
mind that it is only necessary if a function must work reliably in different environments. All
functions that a library exports belong to that class, because the library writer does not know how the
functions will be used in the future. Quick-and-dirty functions are a different thing, so are functions
that are never called interactively.

5.1.6. Function Variables
Functions are a data type on their own right. Therefore, they themselves can be arguments to other
functions, and they can be elements in lists.

-> deff(’y = fun(x)’, ’if x > 0, y = sin(x); else, y = 1; end’)

-> fun(%pi / 2)
ans =

1.

-> fun(-3)
ans =

- 1.

-> bar = fun
bar =

[x]=bar(y) – bar is a complete copy of fun

-> typeof(bar)
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ans =
function

-> deff(’a = fun(u, v, w)’, ’a = u^2 + v^2 + 2*u*v - w^2’)
Warning :redefining function: fun

-> bar(%pi / 4)^2
ans =

0.5

-> fun(2, 3, 4)
ans =

9.

As the example shows, Scilab employs its usual copy-by-value semantics when assigning to
function-variables, consistent with the assignment of any other data type.

5.1.7. Functions as Parameters in Function Calls
As mentioned above, user-defined functions can be passed as parameters to (usually different)
functions. Builtin functions have to be wrapped in user-defined functions before they can be used as
parameters.

The following example defines a functional that implements a property of Dirac’s delta distribution.

-> deff(’y = delta(a, foo)’, ’y = foo(a)’)

-> delta(cos)
!-error 25

bad call to primitive :cos

-> deff(’y = mycos(x)’, ’y = cos(x)’)

-> delta(0, mycos)
ans =

1.

The next example is a bit more convoluted, but also closer to the real world. We define a new
optimizer function, calledminimize , which is based on Scilab’soptim function.minimize

expects two vectors of data points:xdata andydata , a vector of initial parametersp_ini , the
function to be minimizedfunc , and an objective functionalobj .

The advantage of defining separate model and objective functions is an increased flexibility as both
can be replaced at will without changing the core minimization function,minimize .

function [f, p_opt, g_opt] = minimize(xdata, ydata, ..
p_ini, func, obj)
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// on-the-fly definition of the objective function
deff(’[f, g, ind] = _cost(p_vec, ind)’, ..

’[f_val, f_grad] = func(xdata, p_vec); ..
[f, g] = obj(f_val - ydata, f_grad)’);

[f, p_opt, g_opt] = optim(_cost, p_ini);

minimize needs the model functionfunc that returns the value and the gradient at all pointsx for a
given vector of parametersp_vec . Moreover, we need the objective functionalobj that gives the
“cost”, as well as the direction of steepest descent in parameter space.

In the example we choose a quadratic polynomial for the model,my_model , and least squares for the
objectivelsq .

function [f, g] = my_model(x, p)
g = [ones(x), x, x.*x];
f = p(1) + x.*(p(2) + x*p(3));

function [f, g] = lsq(diff, grad)
f = 0.5 * norm(diff)^2;
g = grad’ * diff;

Given these definitions, we can callminimize :

dx = [0.0 1.0 2.0 2.5 3.0]’;
dy = [0.0 0.9 4.1 6.1 9.5]’;
p_ini = [0.1 -0.2 0.9]’;

[f_fin, p_fin, p_fingrad] = ..
minimize(dx, dy, p_ini, my_model, lsq)

xbasc(); // clear window
plot2d(dx, dy, -1); // plot data points ...
xv = linspace(dx(1), dx($), 50)’;
yv = my_model(xv, p_fin);
plot2d(xv, yv, 1, ’000’); // ... and optimized model function

5.1.8. Omitting Parentheses on Function Call

by Glen Fulford

The parentheses of any one-parameter function can be omitted, if the function accepts a string
argument. Moreover, the quotes for a literal string argument can be left out, too.

The is especially useful, when working interactively, and loading functions, or scripts. There is no
need to type until your fingers bleed by saying

-> getf(’foo.sci’)
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as the next two examples work just as well.

-> getf ’foo.sci’

and even

-> getf foo.sci

is OK. Note that this is not only true for built-in, but also for user-defined functions.

Functionexec is an exception to the rule that a semicolon suppresses any output of the preceeding
clause, if it is invoked without parenthesis. In fact,exec does echo the commands it executes if used
without parenthesisdespitea trailing semicolon, this is

-> exec script.sci;

with semicolon gives same results as

-> exec(’script.sci’)

without semicolon, whereas

-> exec(’script.sci’);

does not echo the commands of the script file.

5.1.9. Functions in tlist s and mlist s
Currently the only composite data structures that allows for storage offunction s are the typed list,
tlist , and the matrix-like list,mlist .

Given the typed-listt = tlist([’funlist_t’, ’x0’, ’x1’, ’fun’], -0.5, 0.5, f) ,
wheref is e.g. defined asdeff(’y = f(x)’, ’y = 2.0*x + 1.0’) , the non-function
components are accessed as usual, i.e.,

-> t("x1")
ans =

0.5

-> t.x0
ans =

- 0.5

See alsoSection 4.6.4.

However, function components cannot be called directly, e.g.t("fun")(0) or t.fun(0) . Instead,
we go on a little detour, either by callingfeval or by using a dummy variable.

->feval(0, t("fun"))
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ans =
1.

->feval(0, t.fun)
ans =

1.

->_f = t("fun"); _f(0), clear _f
ans =

1.

->_f = t.fun; _f(0), clear _f
ans =

1.

Both workarounds go well with argument vectors to the function. Assigning to a dummy variable is
faster than usingfeval .

5.1.10. macrovar

Themacrovar function could be called the functional cousin of thesize function. The primary
purpose ofmacrovar is to support the Scilab-to-Fortran translator, but it can be useful for other
purposes, too.

macrovar reveals five important attributes of a user function. These are the names of all

• input variables,

• output variables,

• global variables,

• functions called, and

• local variables.

One example of an interesting use ofmacrovar is an integration routine that accepts integrand
functions with an arbitrary number of arguments, i.e. over arbitrary many dimensions.

function vol = int_cube(ifun)
// integrate ifun in an appropriate hypercube
// (0, ..., 0), ..., (1, ..., 1)

ifun_var = macrovar(ifun)
ifun_sz = size(ifun_var(1)) // names of input arguments
ifun_dim = ifun_sz(1)

for d = 1:ifun_dim
// integrate in one dimension

end

89



Chapter 5. User Functions

5.2. Libraries of sci -functions
Most users think there is no difference between loading a function immediately viagetf , or loading
it on-demand vialib . However, there are cases whengetf andlib produce different results1. To
stay clear of trouble it is useful to know what exactlygetf andlib do.

5.2.1. getf vs. lib

getf. getf(" filename ") immediately, i.e. whengetf is executed, loadsall functions in
filename . It is like saying: “Your functions – give them to me!” After a successfulgetf all
functions fromfilename show up in the workspace. (Trywho before and afterwards.)

getf is most useful during the development process, when functions are changed often. It also
works well during production runs, if the number of functions loaded from the file is not too high. To
suppress repeated loading of the same function-file, the following construct can be used:

if ~exists("myfunction") then
getf("myfile.sci")

end

wheremyfunction is one of the functions inmyfile.sci . Do not forget the quotes around the
function’s name in the call toexists !

lib. libvar = lib (" lib-directory ") 2 on the other hand does not load any function when the
lib is executed. Instead, it marks all function-names listed in the filelib-directory /names as
available for later loading.

Note: Note that lib-directory must end with a directory separator, i.e. a “/” in UNI*.

A function from libvar will be loaded when its – at that time undefined – name is first
encountered during execution. It will never be re-loaded afterwards, even if the definingbin -file or
the library change. The crucial word in the next-to-last sentence is “undefined”: If the library
function’s name coincides with the name of a built-in function or an already defined user-function,
the function definition from the library willnot get loaded!

1. Thanks for pointing out the problems of Scilab’s library handling in general andlib /genlib in particular go to
Alexander Vigoder.

2. The online documentation,help lib, somewhat misleadingly callslib-directory a lib_path , though it is only a
single directory, not a path.
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The function-names inlib-directory /names must refer to compiled functions, i.e.bin -files, in
lib-directory . How to generatebin -files? Scilab offers three ways to convert a human
readablesci -file into compiled bin-format.

Caution
The bin-format might change from one version to the next. When switching
Scilab versions, it is advisable to delete all bin -files and regenerate them with
the newer Scilab.

• Functionsave copies an arbitrary Scilab variable or user-defined function to a file while
compiling it to binary format. Given the functionfoo , we can generate itsbin -file interactively
with

-> foo
foo =

[y]=foo(x)

-> save("foo.bin", foo)

-> unix_w("ls -l foo.bin")
-rw-rw-r- 1 lvandijk users 204 Nov 14 09:30 foo.bin

foo must be accessible whensave is executed, and the function’s name in the call tosave is not
quoted.

• Scilab supports the (undocumented)-comp command-line parameter to compile asci -file into a
bin -file.

lvandijk@hydra:~/hsc/scilab/src/minilib $ cat foo.sci
function y = foo(x)
y = 1 + x

lvandijk@hydra:~/hsc/scilab/src/minilib $ scilab -comp foo.sci
generating foo.bin

lvandijk@hydra:~/hsc/scilab/src/minilib $ ls -l foo.*
-rw-rw-r- 1 lvandijk users 204 Nov 14 09:37 foo.bin
-rw-r-r- 1 lvandijk users 30 Nov 8 11:45 foo.sci

This way goes very well withMakefile s, as it implies the simple rule

# -*- makefile -*-

%.bin: %.sci
scilab -comp $<
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• Thegenlib function, which is described further down inSection 5.2.2.

The names of the files which are part of the library are collected innames in a very simple format:
one function-name per line, e.g.:

lvandijk@hydra:~/hsc/scilab/src/minilib $ cat names
bar
baz
foo
multi
myfun

One function per file workaround: If a sci -file is intended to hold more than one function
which all should be equally accessible from within Scilab, the following workaround can be used,
given the operating system supports (symbolic) links.

Let us assume the multi-function sci -file is manyfun.sci . For every function fun1 , fun2 , ...,
create a (symbolic) link to the “main” bin -file, manyfun.bin , like

ln -s manyfun.bin fun1.bin
ln -s manyfun.bin fun2.bin
...

and generate names afterwards.

The advantage of this hack is that it makes all functions from manyfun.bin available. Its
disadvantage is that it is hard to maintain, e.g. if functions are added to or deleted from
manyfun.sci and manyfun.bin has to be re-compiled, it is possible that some new links must
be set up, and old links must be deleted.

There are plenty of possibilities to generatenames outside Scilab, like e.g.

# -*- makefile -*-

sci_src:=$(wildcard *.sci)
sci_bin:=$(subst .sci,.bin,$(sci_src))

names: $(sci_bin)
rm -f names
for n in $(sci_bin); do echo $$(basename $$n .bin) » names; done

or alternatively, if the shell has process substitution,

# -*- makefile -*-
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names: $(sci_bin)
sed -e ’s/\.bin$//’ <(ls -1 *.bin) > names

However, these solutions are unsatisfactory for large numbers of filenames. The reason for this
shortcoming is the limited command-line length in most shells. In the first example make(1) expands
$(sci_bin) to the names of allbin -files, in the second the shell does. Both might overrun the
shell’s command-line length limit. Therefore, a reliable solution does avoid expanding the filenames
at the command-line. The following Perl-script,Example 5-5, demonstrates a more robust solution.

Example 5-5. Generatenames for lib : gen-names

#!/usr/bin/perl -w
# name: gen-names - generate "names" file for the use with
# Scilab’s built-in lib function
# author: L. van Dijk
# last rev.: Tue Nov 14 09:10:31 UTC 2000
# Perl ver.: 5.005_03

use strict;
use IO::File;

unless (@ARGV) { $ARGV[0] = ’.’ }
foreach my $dir_name (@ARGV) { process_directory($dir_name) }

sub process_directory {
my $dir_name = shift;

my $names = IO::File->new("> $dir_name/names")
or die "Cannot open \’$dir_name/names\’: $!\n";

opendir DIR, $dir_name or die "Cannot open \’$dir_name\’: $!\n";
while (defined($_ = readdir DIR)) {

next unless s/\.bin$//;
print $names "$_\n";

}
closedir DIR;

}

gen-namesis either called without an argument, then it createsnames from the bin-filenames in the
current working directory. If the arguments togen-namesare directories, they are processed in turn,
each directory getting their respectivenames file.

After all desiredsci -files have been converted tobin -files and the matchingnames-file has been
written, the library is activated from the Scilab prompt:

-> minilib = lib("/home/lvandijk/hsc/scilab/src/minilib/")
minilib =

Functions files location :/home/lvandijk/hsc/scilab/src/minilib/
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baz bar foo myfun multi

libvar , in our exampleminilib has got a special type, library. As you can see,minilib holds
the information about the library, namely its defining directory and all functions it exports. To lookup
the functions in a library, simply type the library variable’s name. For a reverse lookup, i.e. searching
to which library a function belongs, Scilab has thewhereis function.

-> whereis myfun
ans =
minilib

The non-mandatory naming convention for library variables suggests to appendlib to a library
variable name, e.g.percentlib , fraclablib , soundlib , xdesslib .

libvar contains all necessary information about the library, and it is just an ordinary variable.
Thus, it is lost when the Scilab session is closed. To make a library definition persistent, we have to
perform two further steps:

1. Translatelibvar into a re-loadable format. Our old friend, thesave function does that job
for us.

-> save("/home/lvandijk/hsc/scilab/src/minilib/lib", minilib)

2. Reload the library definition on every start of Scilab by placing the line

load("/home/lvandijk/hsc/scilab/src/minilib/lib");

in the run-code file~/.scilab . See also the primary Scilab run-code file, SCI/scilab.star .

The – again non-mandatory – file naming convention forsave d library variables is to call themlib .

5.2.2. genlib

genlib reduces the process of compiling all necessarysci -files, generatingnames, and finally
saving the library variable to one step:

genlib(" library-variable ", lib-directory )

where the library variable names must be passed as a string.genlib always saves
library-variable in lib-directory /lib .
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5.2.3. Library Caveats

5.2.3.1. Library Files and Library Functions

Important: Scilab’s library mechanism only works well if

• every sci -file in the library contains only one function, and

• the sci -file name without extension is identical to the function name in the file.

In other words: function foo must live in file foo.sci as a hermit.

Multiple functions per file are allowed; Scilab will not even generate a warning if a file with more
than one function is used in a library. But the user should restrict the use of this feature to helper
functions. A helper function is a function that only assists the main (not in the C-meaning) function,
the one which gives the function-file the name. Special attention should be payed to the names of
these “hobo” functions, which ride in the name of a real library function. They can cause name
clashes with other functions. To avoid these underscores, dollar signs, or sharp symbols should be
prepended to the function name, thereby faking a separate name space. This is demonstrated in the
function filemy_gamma.sci :

// file: my_gamma.sci

function a = my_gamma(z)
if abs(z - int(z)) <= %eps and z > 0.0 then

a = $_faculty(int(z) - 1)
else

a = gamma(z)
end

endfunction

function k = $_faculty(n) – prepend "$_"
k = prod(1 : n)

endfunction

// end file my_gamma.sci

5.2.3.2. On-Demand Loading

The on-demand loading of symbols from libraries can cause confusion (on the user’s side) when a
library symbol name clashes with the name of a “normal” variable.

Assume the library in the current directory holds the single functionfoo , which is defined as follows.

function y = foo(x)
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y = x + 0.5
endfunction

Consider a session that activates the library and defines a variable with the same name as the
function from the library.

-> foolib = lib("./")
foolib =
Functions files location :./
foo

-> foo
foo =

[y]=foo(x)

-> foo(2)
ans =

2.5

-> foo = 100
Warning :redefining function: foo

foo =
100.

-> foo
foo =

100.

-> foo(2)
ans =

2.5

Functionfoo in library foolib and variablefoo peacefully coexist. If variablefoo is defined
before libraryfoolib gets activated the same behavior results, only the warning message does not
appear as library functions load silently.

Clearingfoo removes the variable. If variablefoo does not exist, clearingfoo removes
function foo , but the next time symbolfoo is referred to again, functionfoo in library foolib will
be loaded. To permanently clear functionfoo from the workspace, the association with
library foolib must be removed first:clear foolib; clear foo . Now, functionfoo is
undefinedand its definition will not be reloaded from libraryfoolib .

5.2.4. Loading Non-Functions With lib

The lib function is not picky in what it loads into the workspace. In the previous sectionslib has
been applied to directories that contain onlyfiles of compiled functions, this is “.bin ” files.
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However, there is no restriction at all tosave other entities than functions, for example variables, to
“ .bin ” files. In caselib finds a saved variable in a directory, it will load it into the workspace as a
local variable.

// my_sinc(x) uses the external parameter my_sinc_n
function y = my_sinc(x), ..

if x == 0 do ..
y = my_sinc_n, ..

else ..
y = sin(my_sinc_n * x) / (my_sinc_n * x), ..

end, ..
endfunction

save("my_sinc.bin", my_sinc)
clear my_sinc

my_sinc_n = 100;
save("my_sinc_n.bin", my_sinc_n)
clear my_sinc_n

Now assume thatnames in directory/tmp contains

my_sinc
my_sinc_n

Note: genlib only considers “.sci ” files. To get a variable into a library, the variable has either to
be defined in a separate “.sci ” file, or it manually must be save ed and its name added to names.

Then both,my_sinc andmy_sinc_n are loaded with the followinglib call and can be used in the
usual way:

-> sinc_lib = lib("/tmp/")
sinc_lib =
Functions files location :/tmp/
my_sinc_n my_sinc

-> my_sinc_n
my_sinc_n =

100.

-> my_sinc(1.0)
ans =

- 0.0050637

-> my_sinc_n = 1
Warning :redefining function: my_sinc_n

my_sinc_n =
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1.

-> my_sinc(1.0)
ans =

0.8414710

The above excerpt of a session transcript shows that the value of the variablemy_sinc_n , which has
been loaded withlib is used in the call of functionmy_sinc .
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Scilab—The fastest thing from France
since Django Reinhardt.

Ch. L. Spiel

In this chapter we discuss how expressions can be written to execute more quickly while doing the
same thing. Scilab is powerful and flexible, therefore there are plenty of things one can do to speed
up function execution. On the downside there are a lot of things the can be done the wrong way,
slowing down the execution to a crawl.

In the first part of this chapter,Section 6.1, we focus on high-level operations that are inherently
executed fast. The main class to name here are vectorized operations. Another class are all functions
that are constructing or manipulating vectors or matrices as a whole. The second part of this chapter,
Section 6.2, deals with the extension of Scilab through compiled functions for the sake of increased
execution speed. We close with a section on how to compile Scilab itself to increase its performance
with Section 6.3.

6.1. High-Level Operations
Not using vectorized operations in Scilab is the main source for suffering from a slow code. Here we
present performance comparisons between different Scilab constructs that are semantically
equivalent.

6.1.1. Vectorized Operations
The key to achieve a high speed with Scilab is to avoid the interpreter and instead make use of the
built in vectorized operations. Let us explain that with a simple example.

Say we want to calculate the standard scalar products of two vectorsa andb which have the same
lengthn. Naive as we are, we start with

s = 0 // line 1
i = 1 // line 2
while i <= n // line 3

s = s + a(i) * b(i) // line 4
i = i + 1 // line 5

end // line 6

Here Scilab re-interprets lines 3 to 5 in every round-trip, which in total isn times. This results in
slow execution. The example utilizes no vectorization at all. On the other hand it uses only very little
memory memory as no vectors have to be stored.

The first step to get some vectorization is to replace thewhile with a for loop.
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s = 0 // line 1
for i = 1:n // line 2

s = s + a(i) * b(i) // line 3
end // line 4

Line 2 is only interpreted once; the vectori = 1:n is set up and the loop body, line 3 is threaded
over it. So, only line 3 is re-evaluated in each round trip.

OK, it is time for a really fast vector operation. In the previous examples the expression in the loop
body has not been modified, but we can replace it with the element wise multiplication operator.* ,
and replace the loop with the built-insum function. (See alsoSection 6.1.3.3.)

s = sum(a .* b)

One obvious advantage is, we have a one-liner now. Is that as good as it can get? No, the standard
scalar product is not only a built-in function it is also an operator:

s = a * b’

We summarize the timing results of a PII/330 GNU/Linux-system inTable 6-1.

Table 6-1. Comparison of various vectorization levels

construct MFLOPS

while 0.005

for 0.008

.* and sum 1.7

* 2.8

In other words the speed ratio is 1:1.6:330:550. Of course the numbers vary from system to system,
but the general trend is clear. The figures tell us two things:

1. Keeping the problem size the same, a vectorized operation is over a hundred times faster than
the comparable interpreter (emulated) operation.

2. In the same time Scilab executes several hundereds or thousands of vectorized operations, it can
only run a single interpreted operation.

-> n=1000; timer(); for i=1:n, sqrt((i-1)*%pi/n); end; timer()
ans =

0.05

-> n=100000; timer(); sqrt((1:n)*%pi/n); timer()
ans =

0.04
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The latter point is a valuable starting point for many vectorizations. This holds particularly for partial
vectorizations, where the operations under consideration cannot be replaced by a single operator or
function call. If a slow interpreted command cannot be replaced by a vectorized operator – which
would result in a speed-up of a factor of 500 say, parts of the command might be amenable to
vectorization. This partial vectorization can replace parts of the expression with vectorized
operations. The important rule is that several hundred up to thousands of vectorized operations can
be traded in for the interpreted operation to be replaced.

In the next example the matrixa is treated as a collection of row-vectors. The problem is to subtract
row-vectorb from the rows ina. Obviously, this can be achieved with a loop. The faster way is to
castb into a matrix of the same shape asa and then subtract the two matrices. What seems to be a
detour – duplication the entries ofb – turns out to be advantageous for performance.

a = [2.56, 2.85, 2.66; ..
3.74, 3.25, 3.21; ..
4.05, 4.89, 4.49; ..
5.90, 5.94, 5.37];

b = [1.01, 1.67, 1.79];
[m, n] = size(a);

// non-vectorized
c0 = zeros(a);
for i = 1:m

c0(i, :) = a(i, :) - b;
end
c0

// partial vectorization
c1 = a - b(ones(m, 1), :)

-> m = 1000; n = 200; a = rand(m, n); b = rand(1, n);

-> timer(); c0 = zeros(a); for i = 1:m, c0(i, :) = a(i, :) -
b; end; timer()

ans =
0.19

-> timer(); c1 = a - b(ones(m, 1), :); timer()
ans =

0.07

6.1.2. Avoiding Indexing and Resizing
Accessing a single vector-element or matrix-element in a (often even nested) loop is slow.
Sometimes the loop/index construct cannot be avoided, but in many cases it can be replaced with an
equivalent vectorizable expression. Moreover, if you cannot get around indexing single elements, at

101



Chapter 6. Performance

least avoid resizing (most often: growing) the vector or matrix. Compare the following three
examples.

// (1) insert element at non-existent position => autovivicate element
v = []
for i = 1:n

v(i) = i
end

// (2) insert into pre-sized vector
v = zeros(1, n)
for i = 1:n

v(i) = i
end

and

// (3) append to existing vector
v = []
for i = 1:n

v = [v, i]
end

Snippet (2) is the fastest of the three. It should be used whenever the final size is known in advance,
or if the final size can be calculated in an easy way. Appending to an existing vector or matrix (3) is
almost twice as fast as forcing a new element to spring into existence by indexing (1). In the authors’
opinion, snippet (3) is the clearer solution in comparison to (1) for all problems where the final
vector size cannot be determined in advance.

But again for our specific example a built-in operator exists that does the same job at lightning
speed: the range operator, colon “: ”, which is described in detail inSection 6.1.3.1.

// (4) range generator (colon operator)
v = 1:n

The speed ratio of examples (1), (2), (3) and (4) is approximately 1:20:2:4000.

In the next example,Example 6-1, the functions actually try to do something useful: they mirror a
matrix along its columns or rows. We show different implementations ofmirror N that all do the
same job, but utilize more and more of Scilab’s vector power with increasing function indexN.

Example 6-1. Variants of a matrix mirror function

function b = mirror1(a, dir)
// mirror matrix a along its
// rows, dir = ’r’ (horizontal)
// or along its columns, dir = ’c’ (vertical)

[rows, cols] = size(a)
select dir
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case ’r’ then
for j = 1 : cols

for i = 1 : rows
b(i, j) = a(rows - i + 1, j)

end
end

case ’c’ then
for j = 1 : cols

for i = 1 : rows
b(i, j) = a(i, cols - j + 1)

end
end

else
error("dir must be ”r” or ”c”")

end

function b = mirror2(a, dir)
// same as mirror 1

[rows, cols] = size(a)
b = []
select dir
case ’r’ then

for i = rows : -1 : 1
b = [b; a(i, :)]

end
case ’c’ then

for i = cols : -1 : 1
b = [b, a(:, i)]

end
else

error("dir must be ”r” or ”c”")
end

function b = mirror3(a, dir)
// same as mirror 1

[rows, cols] = size(a)
select dir
case ’r’ then

i = rows : -1 : 1
b = a(i, :)

case ’c’ then
i = cols : -1 : 1
b = a(:, i)

else
error("dir must be ”r” or ”c”")
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end

function b = mirror4(a, dir)
// same as mirror 1

select dir
case ’r’ then

b = a($:-1:1, :)
case ’c’ then

b = a(:, $:-1:1)
else

error("dir must be ”r” or ”c”");
end

Besides the performance issue discussed here the functions inExample 6-1demonstrate how much
expressiveness Scilab has got. The solutions look quite different, though they give the same results.
The benchmark results of all functions are plotted inFigure 6-1, and an extensive discussion is found
in Section 6.2.1. In brief the functions get faster from top to bottom, functionmirror1 is the
slowest,mirror4 the fastest.

6.1.2.1. $-Constant

The last of the examples,mirror4 , introduces a new symbol, the “highest index”,$ along a given
direction. The dollar sign isonlydefined in the index expression of a matrix. As1 always is the
lowest (or first) index,$ always is the highest (or last). The dollar represents a constant, but this
constant varies across the expression! More precisely it varies with each matrix dimension. Let us
make things clear by giving an example.

-> m = [ 11 12 13; 21 22 23 ];

-> m(2, $)
ans =

23.

-> m($, $)
ans =

23.

-> m(:, $/2 + 1)
ans =

! 12. !
! 22. !
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6.1.2.2. Reshaping

Reshaping a matrix in Scilab is a cheap operation. A 1000-times-1000 matrix is reshaped into a
2000-times-500, or a 250-times-4000 matrix at very little computational cost. However, keep in
mind that the time to reshape is proportional to the total size of the matrix, i.e., reshaping an
n-times-m matrix is an O(n*m) operation.

When to use reshaping? If an algorithm that requires multiple indices into a matrix can be mapped
onto an equivalent one that accesses a vector, or vice versa, it can be a benefit to work with the more
convenient representation and reshape afterwards.

Our example to illustrate this is simple, but gives you the gist of reshaping. Sorting into
lexicographical order is most easy done with a vector. (gsort can sort amatrix into lexicographical
order, seeSection 6.1.3.3.6, but we want to demonstrate reshaping and not the functionality of
gsort ) To get a matrix where strings of same first letters are in the same rows, we usematrix .

-> perm3 = [’cab’, ’bca’, ’acb’, ’bac’, ’cba’, ’abc’];
-> sorted_perm3 = gsort(perm3, ’c’, ’i’);
-> matrix(sorted_perm3, 2, 3)’

ans =
!abc acb !
! !
!bac bca !
! !
!cab cba !

See alsoSection 6.1.3.3.8aboutmatrix , and the following section,Section 6.1.2.3about the
flattened matrix representation.

6.1.2.3. Flattened Matrix Representation

The$ sign leads us to the flattened or vector-like representation of a matrix, if we rewrite the third
line of the above example to

-> m(1:$) 1

ans =
! 11. !
! 21. !
! 12. !
! 22. !
! 13. !
! 23. !

1. Remember
that the colon operator returns a row-vector.
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The expressionu = v(:) is reshape operation, assigning tou the column-representation ofv . For
general reshaping of matrices, see thematrix function inSection 6.1.3.3.8.

Tip: Given the vector v , the expression v = v(:) is a very convenient idiom in a function to
force v into column (i.e. 1-times-N) form.

In general anxmmatrixmat can be accessed in three ways:

• as a unit by sayingmat ,

• by referencing its elements according to their row and column withmat (i , j ), or

• via indexing into the flattened formmat (i ).

The following equivalence holds:

��������� 	�
������ ��
�� 	����������

Scilab follows Fortran in its way to store matrices in column-major form. See also the discussion of
the functionmatrix in Section 6.1.3.3.

6.1.3. Built-In Vector-/Matrix-Functions
Scilab provides many built-in functions that work on vectors or matrices. Knowing what functions
are available is important to avoid coding the same functionality with slow iterative expressions.

For further information about contemporary techniques of processing matrices with computers, the
classical work “Matrix Computations”[Golub:1996] is recommended.

6.1.3.1. Vector Generation

There are two built-in functions and one operator to generate a row-vector of numbers.

6.1.3.1.1. Operator “ : ”

This syntax of the colon operator is

initial [ : increment ] : final

with a defaultincrement of +1. To produce the equivalent piece of Scilab code, we write

x = initial
v = [ x ]
while x <= final - increment
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x = x + increment
v = [v, x]

end

wherev is the result. Note that the last element of the result always will be smaller or equal to the
valuefinal .

See alsoSection 2.6for a discussion of the dangers involved in using a colon-expression with
fractional parameters.

6.1.3.1.2. linspace

The syntax oflinspace is

linspace ( initial , final [, length ])

using a default of100 for length . linspace returns a row-vector withlength entries, which
divide the interval (initial , final ) in equal-length sub-intervals. Both endpoints, i.e.initial
andfinal are always included.

6.1.3.1.3. logspace

logspace works much likelinspace , and the following relation holds

���������
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6.1.3.2. Whole Matrix Construction

All of the functions shown in this section are capable to produce arbitrary matrices including the
boundary cases of row-, and column-vectors.

6.1.3.2.1. zeros

As the name suggests this function produces a matrix filled with zeros. The two possible
instantiations are with two scalar arguments

n = 2
m = 5
mat = zeros(n, m)

or with one matrix argument

mat1 = [ 4 2; ..
4 5; ..
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3 5 ]
mat2 = zeros(mat1)

The first form produces then timesmmatrix mat made up of zeros, whereas the second builds the
matrix mat2 which has the same shape asmat1 , and is also consisting solely of zeros.

Single scalar argument to zeros
In the case of a single scalar argument zeros returns a 1-times-1 matrix, the
sole element being a zero.

Furthermore, note that

zeros()

is not allowed.

To generate an empty string matrix useemptystr , Section 6.1.3.2.6.

6.1.3.2.2. ones

The command is functionally equivalent tozeros . Instead of returning a matrix filled with0.0 as
zeros does,ones returns a matrix filled with1.0 . The only difference is a third form which is
permitted forones , and that is calling the function without any arguments:

-> ones()
ans =

1.

6.1.3.2.3. eye

Theeye function produces a generalized identity matrix, this is a matrix with all elements

����� ��� � 	�
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This command is functionally equivalent tozeros . The only extension is the usage without any
argument, where the result automatically takes over the dimensions of the matrix in the
subexpression it is used.

-> a=[2 3 4 3; 4 2 6 7; 8 2 7 4]
a =

! 2. 3. 4. 3. !
! 4. 2. 6. 7. !
! 8. 2. 7. 4. !
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-> a - 2*eye()
ans =

! 0. 3. 4. 3. !
! 4. 0. 6. 7. !
! 8. 2. 5. 4. !

6.1.3.2.4. diag

Functiondiag has two different working modes depending on the shape of its argument. Given a
vectorv it constructs a diagonal matrixmat from the vector, withv beingmat ’s main diagonal, i.e.
mat (i, i) = v (i) for all v (i). Given an arbitrary matrixmat , diag extracts the diagonal as a
column-vector.

-> diag(2:2:8)
ans =

! 2. 0. 0. 0. !
! 0. 4. 0. 0. !
! 0. 0. 6. 0. !
! 0. 0. 0. 8. !

-> m = [2, 3, 8; 7, 6, -6; 0, -5, -8]
m =

! 2. 3. 8. !
! 7. 6. - 6. !
! 0. - 5. - 8. !

-> diag(m)
ans =

! 2. !
! 6. !
! - 8. !

The 2-argument form of thediag function

diag(v, k)

constructs a matrix that has its diagonalk positions away from the main diagonal, the diagonal being
made up fromv again. Therefore,diag(v) is the special case ofdiag(v, 0) . A positivek denotes
diagonals above, a negativek diagonals below the main diagonal. As for the 1-argument form,
extraction of thek th super-diagonal (positivek , or subdiagonal (negativek) is also implemented.

-> diag([1 1 1 1]) + diag([2 2 2], 1) + diag([-2 -2 -2], -1)
ans =

! 1. 2. 0. 0. !
! - 2. 1. 2. 0. !
! 0. - 2. 1. 2. !
! 0. 0. - 2. 1. !
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-> diag(m, -1) // using the same m as above
ans =

! 7. !
! - 5. !

Tip: Nesting two calls to diag is the building block for an interesting idiom to test whether a
matrix m is a diagonal matrix.

and( abs(diag(diag(m)) - m) <= %eps * abs(m) )

The inner call to diag extracts m’s main diagonal, the outer call taking this column-vector and
construction a matrix out of it. The rest of the code simple checks the relative error.

6.1.3.2.5. rand

Therand function generates pseudo-random scalars and matrices. Again the function shares its two
fundamental forms withzeros . Moreover, the distribution of the numbers can be chosen from
’uniform’ which is the default, and’normal’ . The generator’s seed is set and queried with

rand(’seed’, new_seed)

and

current_seed = rand(’seed’)

6.1.3.2.6. emptystr

emptystr () returns an empty string,emptystr (m, n) returns anm-times-n matrix of empty strings,
and finally,emptystr (a) returns an empty matrix of strings which has the same size asa.

Example 6-2. Functiondeblank

function tm = deblank(sm)
// Remove leading or trailing blanks from all strings
// in string matrix SM.

tm = emptystr(sm)

for i = 1 : size(sm, "*")
s = sm(i)

istart = 1
while istart <= length(s)
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if part(s, istart) == " "
istart = istart + 1

else
break

end
end

istop = length(s)
while istop >= 1

if part(s, istop) == " "
istop = istop - 1

else
break

end
end

tm(i) = part(s, istart:istop)
end // for i

endfunction

Note that Scilab has a built-in function calledstripblanks which does exatly the same job than
deblank does.

To generate an empty matrix of numbers usezeros , Section 6.1.3.2.1.

6.1.3.3. Functions Operating on a Matrix as a Whole

Although the section title might imply that the following functions apply to matrices only, Scilab’s
understanding allows for vectors anywhere a matrix is accepted (but not vice versa).

6.1.3.3.1. find

In our opinion one of the most useful functions in the group of whole matrix functions isfind . It
takes a boolean expression of matrices, i.e. an expression which evaluates to a boolean matrix, as
argument and in form

index = find(expr)

returns the indices of the array elements that evaluate to true, i.e.%t in a vector. See alsoSection
6.1.2.3.

In the form

[rowidx, colidx] = find( expr )
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it returns the row- and column-index vectors separately. Here is a complete example:

-> a = [ 1 -4 3; 6 2 10 ]
a =

! 1. - 4. 3. !
! 6. 2. 10. !

-> index = find( a < 5 )
index =

! 1. 3. 4. 5. !

-> a(index)
ans =

! 1. !
! - 4. !
! 2. !
! 3. !

-> [rowidx, colidx] = find( a < 5 )
colidx =

! 1. 2. 2. 3. !
rowidx =

! 1. 1. 2. 1. !

The expressionsexpr can be arbitrarily complex. They are not at all limited to a single matrix.

-> b = [1 2 3; 4 5 6]
b =

! 1. 2. 3. !
! 4. 5. 6. !

-> a < 5
ans =

! T T T !
! F T F !

-> abs(b) >= 4
ans =

! F F F !
! T T T !

-> a < 5 & abs(b) >= 4
ans =

! F F F !
! F T F !

-> find( a < 5 & abs(b) >= 4 )
ans =

4.
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Last but not leastfind is perfectly OK on the left-hand side of an assignment. So, replacing all odd
elements ina with 0 simply is

-> a( find(modulo(a, 2) == 1) ) = 0
a =

! 0. - 4. 0. !
! 6. 2. 10. !

To get the number of elements that match a criterion, just applysize ( idxvec , ’*’) to the index
vectoridxvec of the find operation.

6.1.3.3.2. max, min

Searching the smallest or the largest entry in a matrix are so common that Scilab has separate
functions for these tasks. We discussmax only asmin behaves similarly.

To get the largest value saying

max_val = max(a)

is enough. The alternate form

-> [max_val, index] = max(a)
index =

! 2. 3. !
max_val =

10.

returns the position of the maximum element, too. The form of the index vector is the same as for
size , i.e. [ row-index , column-index ] . Speaking ofsize , max has the formsmax( mat ,

’r’) , andmax( mat , ’c’) , too.

-> [max_val, rowidx] = max(b, ’r’)
rowidx =

! 2. 2. 2. !
max_val =

! 4. 5. 6. !

-> [max_val, colidx] = max(b, ’c’)
colidx =

! 3. !
! 3. !

max_val =
! 3. !
! 6. !

These forms return the maximum values of each row or column along with the respective indices of
the elements’ rows or columns.
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The third way of usingmax is with more than one matrix or scalar as arguments. All the matrices
must be compatible, scalars are expanded to full matrix size, likescalmat = scal *

ones(mat) . The return matrix holds the largest elements from all argument matrices.

-> max(a, b, 3)
ans =

! 3. 3. 3. !
! 6. 5. 10. !

6.1.3.3.3. and , or

Both,and andor borrow their syntax from thesize function: without a second argument, or a star,
“ * ”, as second argument the function is applied to the argument as a whole. A1 or a “r ” applies the
function seperately to each row, yielding a row-vector as result. Accordingly a2 or a “c” applies the
function seperately to each column, yielding a column-vector as result.

The functionand returns true if all components of the argument are true. Therefore, it is related to
Fortran-9x’sall function. Similarly functionor returns true if any component of its argument is
true, mimicking Fortran-9x’sany function.

One of the fastest ways of testing whether a vector (or matrix)v contains any non-zero element uses
or : or( v ) . As demonstrated with thefind function, the arguments toand andor can take
arbitrarily complex boolean expressions. If we like to test whether all components of the vectorv =

[1.0 0.95 1.02] are within 10% of the value 1, we do not need a loop:and( abs(v - 1.0) <

0.1 ) .

6.1.3.3.4. Operator “ &”, Operator “ | ”

The operators “&”, and “| ” perform a component wise logical-and, or logical-or operation. See also
Section 4.3.3. The arguments to either operator can be scalars or matrices.

6.1.3.3.5. sum, cumsum, prod , cumprod

These are the numeric cousins of the boolean function pairor andand . Their syntax is identical.
The “cum” functions work cumulatively, returning a vector (matrices are processing in theirflattened
representation).

A fast factorial function?

function f = fact(n)

if n < 0 then
error("fact: domain")

end

if n == 0 then
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f = 1
else

f = prod(1 : n)
end

$1000 at 4.5% over 7 years?

-> 1000.0 * cumprod( (1.0 + 0.045) * ones(7, 1) )
ans =

! 1045. !
! 1092.025 !
! 1141.1661 !
! 1192.5186 !
! 1246.1819 !
! 1302.2601 !
! 1360.8618 !

though1000.0 * (1.0 + 0.045)^(1:7)’ produces the same result and requires less keystrokes.

6.1.3.3.6. gsort

Warning
Do not use sort ! It is buggy in that it sometimes does not return a permutation
of the input data. Use gsort instead of sort .

Thegsort function is a versatile sorting function for vectors and matrices of real numbers or
strings. It sorts into increasing order or decreasing (default!) order, sorts a matrix’s rows or columns
separately, and can sort the rows or columns lexicographically. The output ofgsort not only is the
sorted matrixmat_sorted but also the permutation vectorpermutation that generates the
sorted matrix from the input matrix. The synopsis is

[ mat_sorted , permutation ] = gsort ( mat_input , mode, direction )

wheremode can have the values shown inTable 6-2, anddirection the values displayed inTable
6-3.

Table 6-2. Mode Specifiers forgsort

Specifier Action Note

’g’ sort flattened matrix default

’r’ column-by-column

’c’ row-by-row

’lr’ rows lexicographically not’rl’!

’lc’ columns lexicographically not’cl’!
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Table 6-3. Direction Specifiers forgsort

Specifier Action Note

’i’ increasing order or upgrade

’d’ decreasing order or downgrade default

Let us look at some simple examples. We use a numeric matrix in the example, but a string matrix
would do as well.

-> mat1 = [11 12; 21 22; 31 32]
mat1 =

! 11. 12. !
! 21. 22. !
! 31. 32. !

-> gsort(mat1)
ans =

! 32. 21. !
! 31. 12. !
! 22. 11. !

-> gsort(mat1, ’r’)
ans =

! 31. 32. !
! 21. 22. !
! 11. 12. !

-> gsort(mat1, ’c’)
ans =

! 12. 11. !
! 22. 21. !
! 32. 31. !

Applied without parametersgsort sorts the flattened (see alsoSection 6.1.2.3) version, here:
mat(:) , of its argument into decreasing order. The’r’ - or ’c’ -options tellgsort to sort each
column or row seperately.

Note: ’r’ means column wise, and ’c’ means row wise!

The next example points out the difference between simple row- or column-sorting and
lexicographical sorting of columns or rows.

-> mat2 = [6 72 23; 56 19 23; 66 54 21]
mat2 =

! 6. 72. 23. !
! 56. 19. 23. !
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! 66. 54. 21. !

-> gsort(mat2, ’r’) // col-by-col
ans =

! 66. 72. 23. !
! 56. 54. 23. !
! 6. 19. 21. !

-> gsort(mat2, ’lc’) // col lexico
ans =

! 72. 23. 6. !
! 19. 23. 56. !
! 54. 21. 66. !

-> gsort(mat2, ’c’) // row-by-row
ans =

! 72. 23. 6. !
! 56. 23. 19. !
! 66. 54. 21. !

-> gsort(mat2, ’lr’) // row lexico
ans =

! 66. 54. 21. !
! 56. 19. 23. !
! 6. 72. 23. !

Now what is the exact difference between row-by-row sorting and lexicographic row sorting? After
row-by-row sorting (in decreasing order) of anm-times-n matrixa the following relation holds:

����� ��������� �
	���
���� ��������� ����� �������� "!#�%$

In other words each row is sorted separately by interchanging its columns. After a lexicographic sort
the relation between the rows is:

���������	����

����������� ���	�����������

This time whole rows are compared to each other. Analogous relations hold for column sorting.

In environments not as rich as Scilabgsort might be the heart of user-writtenmin , max, and
median functions. All three are predefined in Scilab.

6.1.3.3.7. size

Thesize function handles all shape inquiries. It comes in four different guises. Assuming thatmat
is a scalar or matrix,size can be used as all-info-at-once function as in

[rows, cols] = size(mat)
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as row-only, or column-only function

rows = size(mat, ’r’)
cols = size(mat, ’c’)

and finally as totaling function

elements = size(mat, ’*’)

6.1.3.3.8. matrix

A (hyper-)matrix can be reshaped with thematrix command. To keep things simple we
demonstratematrix with a 6x2-matrix.

-> a = [1:6; 7:12]
a =

! 1. 2. 3. 4. 5. 6. !
! 7. 8. 9. 10. 11. 12. !

-> matrix(a, 3, 4)
ans =

! 1. 8. 4. 11. !
! 7. 3. 10. 6. !
! 2. 9. 5. 12. !

-> matrix(a, 4, 3)
ans =

! 1. 3. 5. !
! 7. 9. 11. !
! 2. 4. 6. !
! 8. 10. 12. !

In contrary to the Fortran-9x functionRESHAPE, matrix neither allows padding, nor truncation of
the reshaped matrix. Put another way, for amtimesn matrixa the reshaped dimensionsp, andq
must obey

���������

matrix works by columnwise “filling” the contents of the original matrixa into an empty template
of ap-times-q matrix. (See alsoSection 6.1.2.3.) If this a too hard to imagine, the second way to
think of it is imagininga as a column vector of dimensions (m * n)-times-1 that is broken down
column by column into ap-times-q matrix. In fact this is not pure imagination as for many Scilab
matrix operations the identitya(i, j) == a(i + n*(j - 1)) holds.

-> a(2,4)
ans =

10.
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-> a(8)
ans =

10.

Moreover, the usual vector subscripting can be used to a matrix.

-> a(:)
ans =

! 1. !
! 7. !
! 2. !
! 8. !
! 3. !
! 9. !
! 4. !
! 10. !
! 5. !
! 11. !
! 6. !
! 12. !

6.1.4. Evaluation of Polynomials
Once upon a time there was a little Scilab newbie who coded an interface to theoptim routine to
make polynomial approximations easier. On the way an evaluation function for polynomials had to
be written. The author was very proud of herself because she knew the Right Thing(tm) to do in this
case namely the Horner algorithm. Actually she immediately came up with two implementations.

Example 6-3. Naive functions to evaluate a polynomial

function yv = peval1(cv, xv)
// Evaluate polynomial given by the vector its
// coefficients cv in ascending order, i.e.
// cv = [p q r] -> p + q*x + r*x^2 at all
// points listed in vector xv and return the
// resulting vector.

yv = cv(1) * ones(xv)
px = xv
for c = cv(2 : $)

yv = yv + c * px
px = px .* xv

end
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function yv = peval2(cv, xv)
// same as peval1

yv = cv($);
for i = length(cv)-1 : -1 : 1

yv = yv .* xv + cv(i)
end

So what is wrong with that? This code looks OK and it does the job. But from the performance
viewpoint it is not optimal! The fact that Scilab offers a separate type for polynomials has been
ignored. Even if we are forced to supply an interface with the coefficients stored in vectors the
built-in function freq is preferable.

Example 6-4. Less naive functions to evaluate a polynomial

function yv = peval3(cv, xv)
// same as peval1, using horner()

p = poly(cv, ’t’, ’coeff’)
yv = horner(p, xv)

function yv = peval4(cv, xv)
// same as peval1, using freq()
// The return value yv _always_ is a row-vector.

p = poly(cv, ’t’, ’coeff’)
unity = poly(1, ’t’, ’coeff’)
yv = freq(p, unity, xv)

Table 6-4shows the speed ratios (each line is normalized separately) for a polynomial of degree 4
that we got on a P5/166 GNU/Linux system.

Table 6-4. Performance comparison of different polynomial evaluation routines

evaluations peval1 peval2 peval3 peval4

5 3.5 4.2 1 7.0

1000 1.4 2.5 1 2.5

If we now decide to change our interface to take Scilab’s built-in polynomial type the evaluation with
freq can again be accelerated by a factor of more than three.
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6.2. Extending Scilab
The brute force way of getting a better performance is rewriting an existing Scilab script in a
low-level language as C, Fortran, or even assembler. This option should be chosen with care, because
the rapid prototyping facilities of Scilab are lost. On the other hand if the interface of the function
has settled, its performance is known to be crucial and it is of use in future projects then the
translation into compiled code could be be worth the time and the grief.

In the first part of this section we compare different ways of integrating an external function into
Scilab. We focus on the ease of integration versus the runtime overhead introduced. The second part
deals with writing the low-level functions themselves, especially their interfaces.

6.2.1. Comparison Of The Link Overhead
We revive our matrix mirroring example fromSection 6.1.2.

Our Fortran-77 version looks like this:

subroutine mir(n, m, a, dir, b)
*
* Mirror n*m-matrix a along direction prescribed
* by dir. If dir == ’c’ then mirror along the
* columns, i.e., vertically. Any other value for
* dir mirrors along the rows, i.e., horizontally.
* The mirrored matrix is returned in b.
*

implicit none

* ARGUMENTS
integer n, m
double precision a(n, m)
character dir*(*)
double precision b(n, m)

* LOCAL VARIABLES
integer i

* TEXT
if (dir(1:1) .eq. ’c’) then

do 100, i = 1, m
call dcopy(n, a(1, m+1-i), 1, b(1, i), 1)

100 continue
else

do 200, i = 1, n
call dcopy(m, a(n+1-i, 1), n, b(i, 1), n)

200 continue
end if
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end

Thedcopy (n, x , incx , y , incy , ) is from BLAS level 1, and copiesn double precision

elements from vectorx in increments ofincx to y , where it uses increments ofincy .

The only thing missing is the glue code between Scilab andmir .

function b = mirf(a, dir)
// interface function for ’mir.f’
// Behavior is the same as mirror()

[n, m] = size(a)
b = zeros(n, m)

if dir == ’r’ | dir == ’c’ then
b = fort(’mir’, ..

n, 1, ’i’, m, 2, ’i’, a, 3, ’d’, dir, 4, ’c’, ..
’out’, ..
[n, m], 5, ’d’)

else
error(’dir must be ”r” or ”c”’)

end

OK, let’s lock-and-load. We are ready to rock!

link(’mir.o’, ’mir’)
getf(’mirf.sci’)

The fast alternative to usingfort , which dynamically creates an interface to a C or Fortran function
is usingintersci, which which creates an interface suitable for static loading.

intersci can create the Fortran glue code for a C or Fortran function to make it callable form the
Scilab interpreter. The glue code is compiled (with a Fortran compiler) and linked to Scilab.intersci
is described very well in the SCI/doc/Intro.ps . Anyhow,Example 6-5shows the description
(“ .desc ”) file for our current example. Finally it will supply us with a Scilab function called
mirai(a, dir) .

Example 6-5. Sample interface description (“.desc ”)

mirai a dir
a matrix n m
dir string 1
b matrix n m

mir n m a dir b
n integer
m integer
a double
dir char
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b double

out sequence b
*

We do not want to go into detail here, but adesc -file has three parts separated by blank lines: The
description of the Scilab-level function’s signature (here:mirai ), the same for the low-level
function (here:mir ), and finally the results’ structure. The signatures resemble Fortran or K&R-style
C function definitions with the parenthesis missing. The process of passing adesc -file through
intersci, compiling the low-level routine and the glue code can be automated.Example 6-6, a
snippet of ourMakefile.intersci shows the relevant rules.

Example 6-6. Makefile for static Scilab interfaces via intersci

ifdef SCI
SCIDIR := $(SCI)
else
SCIDIR := /site/X11R6/src/scilab
endif

%.f.pre: %.desc
$(SCIDIR)/bin/intersci $*
mv $*.f $*.f.pre

%.f: %.f.pre
perl -pe ’s#SCIDIR#$(SCIDIR)#’ $< > $@

%.o: %.f
$(FC) $(FFLAGS) -c $<

Running the automatically generated Fortran code through a filter (here:perl) is necessary to fix the
lines include ’SCIDIR/routines/stack.h’ . After everything is compiled a single Scilab
command makes the new routine available to the user.

addinter([’mirai.o’, ’mir.o’], // object files
’mirai’, // name of interface routine
’mirai’) // name of new Scilab function

The first argument which almost always is a vector of strings tells Scilab the names of the object files
to load. One of them is the interface code made byintersci. The rest are the user routines. The
second argument specifies name of entry point into the interface routine. The third parameter is the
name the new Scilab function will carry.
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Entry point of interface function
addinter ’s second argument must be the name of the interface routine, i.e.
the one generated by intersci . Using the low-level function’s entry point here
causes Scilab to barf (of course).

Why do we go through that tedious process? After all we are in the performance section, so what we
want is speed, high speed, or even better the ultimate speed. Now, we compare all the variants in
Figure 6-1.

Figure 6-1. Benchmark results for themirror functions
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Performance comparison ofmirror[1-4] , mirf , mirai , and a pure C-program doing the same job
on a PIII/550 GNU/Linux box. The straight line between (20 elements, 550 MFLOPS) and
(20000 elements, 550 MFLOPS) marks the peak performance of the processor.

If we compare the performance of our three Scilab mirror routinesmirror1 , mirror2 , and
mirror3 together with the two incarnations of the hard-coded routinemirf , andmirai , we reach at
the following conclusions:

• Scilab code that makes heavy use of indexing, likemirror1 , is extremely slow no matter what
problem size. Thumbs down on that one.
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• Well written i.e. index-free Scilab code, likemirror4 , performs well. This is especially true for
large vectors or matrices.

• The overhead of thefort -call in mirf is high; it is hard to amortize for that.fort is only
justified in situations where a significant amount of time is spent in the low-level user-routine.
Usually this will be the case for large problem sizes. Of course the cross-over point must be
determined separately in each case.

• A compiled function, integrated withaddinter , is very fast.mirai surpasses all other
Scilab-based implementations. For small problem sizes the little overhead in comparison to all the
other functions gives this function a factor 10 advantage, though, as the problems size increases
mirai ’s lead is challenged bymirror4 .

• Of course a carefully hand-optimized C-program outperforms anything. In this figure the plain
C-program is meant as a reference what the machine could do, if we pull all registers, or put
another way, how much processor power Scilab burns needlessly.

Conclusion: Never underestimate the power of the Emperor^H^H^H^H^H^H^H vectorized Scilab
code.

6.2.2. Preparing And Compiling External Subroutines
In this section we will discuss the interfacing of C, C++, Fortran-77, Fortran-9x, or Ada routines
with Scilab vialink command. We restrict ourselves to the simple case of functions that expect
exactly one double precision floating point parameter and return a double precision floating point
result. Functions with that signature are required e.g. for the integration routineintg , or the root
finder fsolve .

Before we dive into the language specific descriptions, let us point out the main features of Fortran
we have be pay attention to when writing an interface in another language.

Function name mangling

A function namedFOO(foo , or whatever capitalization is chosen) in the Fortran source can
become a different symbol in the object file. This is compiler dependent. Most often an
underscore “_” is prepended or appended. Sometimes the name is downcased, sometimes it is
upcased.

Tip: The nm (1) command provides easy access to the symbols in an object file.

Call-by-reference

Fortran never passes the value of a parameter, but always a pointer to the parameter.
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Arrays in column-major order

Arrays are stored so that their leftmost index varies fastest.

6.2.2.1. Fortran-77

Fortran-77 or how do you want to ruin
your day?

L. E. van Dijk

Extending Scilab with Fortran-77 is most straightforward. Scilab is writtin in that language,
remember? A Fortran-77 source for functionfals could look like this:

double precision function fals(x)

double precision x

fals = sin(10.0d0 * x)

end

After compilation (e.g.f77 -c fals.f ) the compiled code can be linked to Scilab and called
with the integration routine.

link(’fals.o’, ’fals’);
[res, aerr, neval, info] = ..

intals(0.0, 1.0, -0.5, -0.5, ’alg’, ’fals’)

6.2.2.2. Fortran-9x

Fortran-90? Don’t worry, it can’t get
much worse.

Ch. L. Spiel

A bloated, but portable Fortran-90 source for a function could look like this:

function fsm(x)
implicit none
integer, parameter :: idp = kind(1.0d0)

! arguments/return value
real(kind = idp), intent(in) :: x
real(kind = idp) :: fsm

! text
fsm = exp(x) / (1.0d0 + x*x)

end function fsm
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After compilation (e.g.f90 -c fsm.f90 ) the compiled code can be linked to Scilab and called
with an integration routine.

link(’fsm.o’, ’fsm’);
[ires, ierr, neval] = intsm(0.0, 1.0, ’fsm’)

6.2.2.3. (ANSI-) C

A simple C function meeting our signature requirements has e.g. this shape:

#include <math.h>
#include "machine.h"

double
C2F(fgen)(const double *x)
{

if (*x > 0.0)
return 1.0 / sqrt(*x);

else
return 0.0;

}

After compilation (e.g.cc -I/site/X11R6/src/scilab/routines -c fgen.c ) the
compiled code can be linked to Scilab and called with the integration routine.

link(’fgen.o’, ’fgen’, ’c’);
[ires, ierr, neval, info] = intgen(0.0, 1.0, ’fgen’)

There are several ways to get the naming convention differences between Fortran and C right. We
show three possible solutions for the case where C uses no decoration at all and Fortran appends one
underscore.

/* (1) GNU C compiler */
double foo(const double *x) __attribute__((weak, alias ("foo_")));

/* (2) good preprocessor */
#define C2F(name) name##_

/* (3) old preprocessor ;-) */
#define ANOTHERC2F(name) name/**/_

None of the above three examples is portable. Therefore, it is prudent to include
SCI/routines/machine.h , which is automatically generated during the Scilab configuration
process and thus knosw of the name mangling. Among a lot of other macros it supplies a
C-to-Fortran name conversion macro called C2F.
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6.2.2.4. C++

A C++ source for a function could look like this:

#include <math.h>

extern "C"
{

double C2F(fgk)(const double *x);
}

double
C2F(fgk)(const double *x)
{

return 2.0 / (2.0 + sin(10.0 * M_PI * (*x)));
}

After compilation (e.g.c++ -I/site/X11R6/src/scilab/routines -c fgen.c ) the
compiled code can be linked to Scilab and called with the integration routine.

link(’fgk.o’, ’fgk’, ’c’);
[ires, ierr, neval, info] = ..

intgk(0.0, 1.0, ’fgk’, 0, %eps, ’15-31’)

SeeSection 6.2.2.3for a discussion of the C2F macro.

Further problems arise if the C++ code depends on libraries that have not been linked with Scilab. In
the following examplemyfct_ is correctly declared, but requiressqrt indirectly through a call to
subfct .

// linkcxx.cc
#include <complex>

extern "C" {
void myfct_(const double *re, const double *im);

}

double_complex subfct(double_complex z);

void
myfct_(const double *re, const double *im)
{

double_complex u(*re, *im);
double_complex v(subfct(u));
// do something with v

}

double_complex
subfct(double_complex z)
{
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return 1.0 + 0.5 * sqrt(z);
}

The problem when linkingmyfct_ with Scilab is not the call tosubfct , but the missing complex
sqrt function. A listing of the object file’s symbols shows the missing function among some
functions the (this particular version of g++) compiler silently generates due toinline expansion.

lydia@orion:/home/lydia/tmp $ nm -C linkcxx.o
000000bd t Letext
00000000 ? __FRAME_BEGIN__
00000000 W complex<double> opera-
tor/<double>(complex<double> const &, double)
00000000 W complex<float> operator/<float>(complex<float> const &, float)
00000000 W complex<long double> operator/<long double>(complex<long dou-
ble> const &, long double)
0000008b T main
00000000 T myfct_

U complex<double> sqrt<double>(complex<double> const &)
00000046 T subfct(complex<double>)

It is up to the programmer to supplyall necessary libraries – in the correct order – when linking. For
the previous example the following call would succeed (on a libc6 GNU/Linux system):

-> link("linkcxx.o -lstdc++-2-libc6.1-1-2.9.0")
linking files linkcxx.o -lstdc++-2-libc6.1-1-
2.9.0 to create a shared executable
shared archive loaded
Link done

ans =

0.

In the case that the compiler documentation lacks information abouth which library defines what
symbol, thenm(1) command is the most useful tool to find out.

Additional Caveats

The inclusion of C++ modules into a project whosemain() is not written in C++ call for some
additional warnings. See alsoSection 6.3for a caveat using compilation switches that break the ABI.

Runtime initialization

When it comes to runtime initialization of his/her code, a C++-programmer depends on the
linker as a junkie on his dealer. Either the compiler system does it – and does it right, or you
have a very very hard time ahead of you. Sidenote: The GNU linker does the Right Thing(tm)!
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exception s

In brief: Get them –all! If the C++ to be linked with Scilab is known to throw exceptions, all
interfaced functions of which an exception possibly could escape have to be wrapped in
C++-functions that catch these exceptions and translate them into error codes e.g. à la Lapack.
Otherwise Scilab is terminated with anabort() call.

6.2.2.5. Ada

For GNAT/Ada the package’s interface part pulls in the Fortran interface definitions. Is the simplest
case the mathematical functions are only instantiated with the typeDouble_Precsion . Ada
requires to export every function’s interface separately, as is clear from the following example.

with Interfaces.Fortran;
use Interfaces.Fortran;
with Ada.Numerics.Generic_Elementary_Functions;

package TestFun is
package Fortran_Elementary_Functions is new

Ada.Numerics.Generic_Elementary_Functions(Double_Precision);
use Fortran_Elementary_Functions;

function foo(x : Double_Precision) return Double_Precision;
pragma Export(Fortran, foo);
pragma Export_Function(Internal => foo,

External => "foo_",
Mechanism => Reference,
Result_Mechanism => Value);

end TestFun;

According to the interface specification the package body looks like this:

package body TestFun is
function foo(x : Double_Precision) return Double_Precision is
begin

return exp(x) / (1.0 + x*x);
end foo;

end TestFun;

The package is compiled as usualgnatmake -O2 testfun.adb .

Hint: Make sure that there is a GNAT runtime librarylibgnat-3.12p.so . Your version number
may be different, but only the ending (“so ”) is critical, aslibgnat-3.12p.so.1.7 will not make
dlopen (3) happy. From now on everything goes downhill, and the function can belink ed almost as
usual.

link(’testfun.o -L/site/gnat-3.12p/lib -lgnat-3.12p’, ’foo’)

Again, the path to your gnat-library and the version numbers can differ.

130



Chapter 6. Performance

In the case of several functions in the package it is preferable to rely on the extendeddlopen (3)
mechanism, and link the package/library combo with remembering the ID of the shared library.

adacode = link(’testfun.o -L/site/gnat-3.12p/lib -lgnat-3.12p’, ’foo’)

Linking further functions from the library happens by referencing the number of the library.

link(adacode, ’bar’)

This saves space (Scilab’s TRS) and time (to execute thelink ). Speaking about saving, users with a
loader e.g. GNUld, capable of incremental linking (e.g.-i , -r , or -relocatable ) can of course
link testfun.o with the (gnat-)library before linking everything to Scilab. To complete the
example, here comes the command-line to archive exactly this:

ld -i -o testfun-lib.o testfun.o -L/site/gnat-3.12p/lib -lgnat-3.12p

In Scilab the arguments tolink then reduce to

link(’testfun-lib.o’, ’foo’)

6.2.2.6. Visual C++

by Dave Sidlauskas

This section illustrates the calling of C/C++ routines from the Windows™ version of Scilab using
Microsoft™’s Visual C++ compiler. The process is quite simple.

1. Use VC++ create a DLL containing the C functions.

2. In Scilab, uselink() to load the DLL functions.

3. Usefort() to run the functions.

In a little more detail:

1. Use VC++ to create a DLL.

Start VC++, clickFILE, NEW, and selectWIN 32 Dynamic Link-Library. Give it a name and
location and clickOK. Then selectEmpty DLL and clickFinish.

Prepare a source file and insert it into the project (Project, Add To Project). Then build the
project (F7).

A sample source file is shown below. The declarationextern "C" declspec(dllexport)

is critical. Using this, the function name is exported correctly with no name mangling. This type
of declaration is covered in the VC++ on-line documentation if you wish more details.

Also note that C files that are to be executed by a call tofort() are always void, returning no
value. Values are returned via pointers in the function parameter list. For example, the parameter
*out in matcpy_c is the return value for that function.
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extern "C" _declspec(dllexport) void matset_c(double *mat,
const int *nrows,
const int *row,
const int *col,
double *val);

extern "C" _declspec(dllexport) void matcpy_c(const double *in,
const int *nrow,
const int *ncol,
double *out);

// matset

// Set element in mat at row and col to val.
// nrows is number of rows in mat. Shows row
// and col reference in a C function.
// REMEMBER: C row or col = Scilab row or col-1.

void matset_c(double *mat,
const int *nrows,
const int *row,
const int *col,
double *val)

{
mat[*row - 1 + (*col - 1)*(*nrows)] = *val;

}

// matcpy

// Function to copy one matrix to another.

void matcpy_c(const double *in,
const int *nrow,
const int *ncol,
double *out)

{
int row, col;

for (col = 0; col < *ncol; col++)
for (row = 0; row < *nrow; row++)

out[row + col*(*nrow)] = in[row + col*(*nrow)];

}

2. In Scilab, use link to load the DLL functions.

132



Chapter 6. Performance

link("path\filename.dll", "FunctionName", "c")

The path is wherever you told VC++ to put your output. It is usually something like
ProjectName\debug.

Link uses the Windows™LoadLibrary function to load your DLL. See the VC++ on-line
documentation for details.

3. Usefort() to execute your function.

Actually it is probably better to prepare a wrapper function to reduce the clutter offort() .
Here is a sample for thematset function above.

// Wrapper function for calling C language routine matset_c from SciLab

function mat = matset(mat, row, col, val)
m = size(mat);
mat = fort("matset_c",

mat, 1, "d",
m(1, 1), 2, "i",
row, 3, "i",
col, 4, "i",
val, 5, "d",
"out",
m, 1, "d");

endfunction

A sample Scilab session is shown below:

-> link("d:\vc\sci\debug\sci.dll", "matset_c", "c")
Linking matset_c
Link done

ans =
0.

-> getf(’E:\scilab\source\ctest.sci’);
-> mat = zeros(5, 5);
-> matset(mat, 3, 3, 16.71)

ans =
! 0. 0. 0. 0. 0. !
! 0. 0. 0. 0. 0. !
! 0. 0. 16.71 0. 0. !
! 0. 0. 0. 0. 0. !
! 0. 0. 0. 0. 0. !
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6.2.2.7. Borland C 5.01

by Enrico Segre

These are the steps for creating a DLL with functions, which is callable from Scilab, using
Borland® C 5.01 and to link them into Scilab. The process of creating DLLfoo.dll from source
foo.c , which defines functionfoo is also simple. The steps are:

1. In BCW, create a new DLL project withFile/New/Project/Target_type→DLL. Some relevant
options are:

Options/Project/16bitCompiler/entry-exit_code/Windows_DLL_all_functions
Options/Project/32bitCompiler/callingConvention/C

2. To this project add filefoo.c . There is a button for that action in the icon bar.

3. File foo.c must contain the following code.

#define STRICT
#include <windows.h>

BOOL WINAPI DllEntryPoint(HINSTANCE hinstdll,
DWORD fdwReason,
LPVOID lpvReserved)

{
return 1;

}

and, to define functionfoo as for example

void _export
foo(const double *a, const double *b, double *c)
{

*c = *a + *b;
}

with the keyword_export in front of the function’s head. Filefoo.c can contain more than
one exported function, as well as other functions which are not defined with_export , and thus
are not entry points for Scilab.

4. Make the DLL (F9).

In Scilab, link the function with

link(’foo.dll’, ’_foo’, ’C’)
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Note the leading underscore! Execute the function withfort(’_foo’, ...) or call(’_foo’,

...) , or even better, define a convenient wrapper function.

function foo(a, b, c)
c = call(’_foo’,

a, 1, ’d’, b, 2, ’d’,
’out’, [1, 1], 3, ’d’)

endfunction

6.2.3. Pushing It Further
What? What are you doing in this section? Still not satisfied with your functions’
performance?—Sorry, but there are no conventional ways to get more out of Scilab. Tinkering with
the interface routines is not worth the effort. Some completely new approach is necessary.

6.2.3.1. Scilab as Prototyping Environment

If a problem is too tough, Scilab still can serve as a rapid prototyping environment. One sister
program of Scilab, namelyTelahas been written for exactly this purpose. Prototyping with an
interpreted language is currently going through a big revival with C (and C++) developers
discovering Python.

As whenever optimization is the final goal, an extensive test suite is the base for success. So one way
to proceed could be to develop test routines and reference implementation completely in Scilab. The
next step is rewriting the routinesstill in Scilab to match the signatures of for example BLAS/Lapack
routines as closely as possible. The test suite can remain untouched in this step. The final step is to
migrate the Scilab code to Fortran, C, or whatever, while making extensive use of BLAS/Lapack.
Ideally the test suite remains under Scilab and can be used to exercise the new standalone code.

6.2.3.2. Scilab to Fortran-77 Compiler

FIXME: write it!

6.3. Building an Optimized Scilab
One relatively easy way to to increase Scilab’s performance is recompiling it with a good compiler
and an optimized BLAS library2.

2. Simply linking with an optimized BLAS library generally is not enough. Patches (e.g. “fast-blas”, and “big patch”) to fix
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Our experience only suffices to explain the compilation on IA32 GNU/Linux systems. Here,gccor
pgccare the compilers of choice.

The following options are a good starting point for further exploration. They apply to compiling
Fortran as well as C code.

-march= arch

This option instructs gcc to generate code specifically for architecturearch . Among other
things it sets-mcpu= arch . Furthermore, it forces-malign-loops , -malign-jumps ,
-malign-functions , and-mpreferred-stack-boundary to their optimum values for the
selected architecturewithoutbraking the ABI. Therefore, it can be considered an optimization
switch.

-malign-double

For systems with an original Intel®3 Pentium® or above processor this option is an absolute
must. It forces the aligment of 64 bit floating point numbers (also known as double, double
precision, and IEEE754) to a 64 bit boundary. Thoughit breaks the ABI, the gain in speed due
to avoiding the misalignment penalty on each memory access is tremendous, even on
PentiumPro® and later systems with all write back caches enabled.

Warning
-malign-double breaks the ABI!

Code using double compiled with [p]g++-2.95 and -malign-double

is known to cause segmentation faults under some circumstances.

-O2

The workhorse optimization switch,-O2 , activates a lot of optimizations. See node “Optimize
Options” in gcc’s info file, e.g.info -f /usr/info/gcc.info.gz -n "Optimize Options"

The optimizations toggled on by-O2 are well tested and do not produce excessively long text.

-funroll-all-loops

This switch increases the text size by unrolling as many loops as possible, thereby speeding
them up. YMMV.

part of this problem exist. Check outHammersmith Consulting’s Scilab patches page.

3. Intel®, Pentium®, and PentiumPro® are registered trademarks of Intel Corp.
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-fschedule-insns2

Although the gcc info page states that this optimization is switched on by-O2 , this might not
be true for all versions of gcc floating around. The switch should be particularly helpful on
machines with a relatively small number of registers and where memory load instructions take
more than one cycle.
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Chapter 7. Scilab Core
Aerosmith video “Love In An Elevator”, “Pump” (1989).

Good morning Mister Tyler! Going down?

We are going down all the way right to the core, the core of Scilab. Though this is the most technical
and most complex chapter, it is by no means true that writing a native Scilab function is
unmanageable by for ordinary mortals. A strict programming discipline, patience, persistence, and a
thorough knowledge of what makes up the stack-structures involved, let us overcome the difficulties.

To be able to exactly specify the interface Scilab provides for extensions, we use Ada-like syntax,
which is introduced inSection 7.1. Equipped with this explanatory aid of a strongly typed language,
we proceed inSection 7.2by explaining the internal data structures like e.g. the stack. The real meat
of the chapter starts inSection 7.3, with an extensive discussion of a native Scilab functions,
functionals, and dispatch tables. Closely linked to writing a native function is taking care of the
errors on a low-level (We do not mean ignoring them!), a topic that is discussed inSection 7.4.

The lack of a comprehensive and tabular documentation of the Scilab is taken care of inSection 7.5
andSection 7.6, which close the chapter.

7.1. Introduction To Pseudo-Ada
Instead of simply repeating the Fortran-77 and C statements that make up the Scilab stack, the API,
etc., we introduce a new language that is better suited for this job: a pseudo-form of Ada1, called
pAda from hereon, which is much more expressive. The syntax follows Ada, and the pAda types are
mapped onto Fortran-77 and C types as listed inTable 7-1, Table 7-2, andTable 7-3. What might
look like an artificial complication, the introduction of new types, actually is a major simplification
(Three cheers for Ada!):

1. The name of the type now makes clear exactly what it is used for.

2. Distinct types designate distinct things, i.e. stuff that never should be mixed up.

3. The valid ranges of the sub-types are explicity mentioned in the types’ definition.

4. The description of the Fortran-77 interface (Section 7.5) and the C interface (Section 7.6) can
be uniformly documented.

1. We apologize to all Ada programmers for the abuse of this wonderful language, but Ada’s expressiveness and clarity are
unmatched for the job we have in mind.
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Table 7-1. pAda to Fortran-77 and C type mappings – elementary types

pAda Fortran-77 C

Integer INTEGER int

Float DOUBLE PRECISION,

REAL*8

double

Boolean LOGICAL n/a, substitute:int, 0

meaning false,

everything else meaning

true;

Character CHARACTER char

type String is array

(1.. N) of Character

CHARACTER*N char[ N + 1]

subtype Natural is

Integer range

0..Integer’Last

INTEGER with the

restriction to

non-negative values,

i.e., allowed are 0, 1,

...

int with the restriction

to non-negative values,

i.e., allowed are 0, 1,

...

Table 7-2. pAda type mappings – Scilab Fortran-77 interface

pAda Fortran-77

type ComplexFlag is ( RealVariable,

ComplexVariable)

INTEGER = 0, 1

type ParameterStackAddress is new

Integer range 1..Integer’Last

INTEGER = 1, 2, ...

type DataStackIndex is new Integer

range 1..Integer’Last

INTEGER = 0, 1, ...

Table 7-3. pAda type mappings – Scilab C interface

pAda C

type AccessNatural is access all

Natural;

int*, pointer to modifiable integer

type ConstAccessNatural is access

constant Natural;

const int*, pointer to read-only

integer

type AccessString is access all

String

char*, pointer to modifiable

character

type ConstAccessString is access

constant String

const char*, pointer to read-only

character

type TypeString is String (1 .. 1); char[2] (see also Table 7-4 )
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pAda C

subtype ParameterStackIndex is

Integer range 1..Integer’Last;

int

type AccessDataStackIndex is access

DataStackIndex;

int*

7.2. Internal Data Structure
FIXME: explain the parameter stack, data stack, etc.

7.2.1. Parameter Stack And Data Stack
FIXME: follow the documantation in “Internals”.

7.2.2. Storage of Complex Matrices
Many programming languages store scalar complex variables z in Euclidean representation,

���������
	��

where x, and y are real numbers and i denotes the imaginary unit. A complex number is stored in
memory as a record.

type Complex is record
RealPart : Float;
ImagPart : Float;

end record;

Fortran chooses to store complex matrices as sequences of Complex, and almost all other
programming languages follow this convention.

declare
CpxVec : array (1 .. 10) of Complex;

Thus, the memory image ofCpxVec , broken into pieces, is

— address — — contents —

addr + 0 : CpxVec(1).RealPart
addr + Float’Size : CpxVec(1).ImagPart
addr + 2*Float’Size : CpxVec(2).RealPart
addr + 3*Float’Size : CpxVec(2).ImagPart
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addr + 4*Float’Size : CpxVec(3).RealPart
addr + 5*Float’Size : CpxVec(3).ImagPart
...

where addr is the start address of the complex vectorCpxVec in memory. The obvious advantage of
this storage scheme is that it can be viewed as a vector of Complex scalars.

— address — — contents —

addr + 0 : CpxVec(1)
addr + Complex’Size : CpxVec(2)
addr + 2*Complex’Size : CpxVec(3)
...

Scilab doesnot follow this convection for storing complex numbers, if it did, we would not have to
write this section. Instead of storing real and imaginary parts of a complex vector in turn, Scilab
separately stores the vector of the real parts, and the vector of the imaginary parts.

Our example vectorCpxVec from above, gets stored by Scilab in the following way:

— address — — contents —

real_addr + 0 : CpxVec(1).RealPart
real_addr + Float’Size : CpxVec(2).ImagPart
real_addr + 2*Float’Size : CpxVec(3).RealPart
...

imag_addr + 0 : CpxVec(1).ImagPart
imag_addr + Float’Size : CpxVec(2).ImagPart
imag_addr + 2*Float’Size : CpxVec(3).ImagPart
...

where real_addr and imag_addr are the start addresses of the two vectors. Nothing should be
assumed of their relation; e.g. imag_addr might not point to the first memory cell after the last cell in
the vector of the real parts.

The consequence for a Scilab programmer who wants to interface routines that use the conventional
(Fortran) storage scheme for complex matrices is that she has to splice real and imaginary parts
before calling the routine, and to store them seperately after completion. SeeExample 7-2for a
demonstration of this technique.

Example 7-1re-implements the multiplication of two complex matrices,wmmul in Scilab. For
conventional storage the function would be much shorter, for we could usezgemmfrom BLAS to
compute the product C of two matrices A and B.dgemmandzgemmcompute C := Alpha*A*B +
Beta*C. Alpha and Beta are scalars.

type OrientationType is new Character; 2
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procedure dgemm

( OrientationA : in OrientationType;
OrientationB : in OrientationType;
M : in Natural;
N : in Natural;
K : in Natural;
Alpha : in Float;
A : in FloatMatrix;
LdA : in Natural;
B : in FloatMatrix;
LdB : in Natural;
Beta : in Float;
C : out FloatMatrix;
LdC : in Natural);

procedure zgemm

( OrientationA : in OrientationType;
OrientationB : in OrientationType;
M : in Natural;
N : in Natural;
K : in Natural;
Alpha : in Complex;
A : in ComplexMatrix;
LdA : in Natural;
B : in ComplexMatrix;
LdB : in Natural;
Beta : in Complex;
C : out ComplexMatrix;
LdC : in Natural);

subroutine wmmul(a, na, b, nb, c, nc, l, m, n)

call zgemm(’n’, ’n’, l, n, m, 1.0d0, a, na, b, nb,
$ 0.0d0, c, l)

2. A serious Ada interface would not define OrientationType,
but introduce the two types

type RealOrientationType is (NoTranspose, Transpose);
type ComplexOrientationType is (NoTranspose, ConjugateTranspose);

to let the compiler do the type checking. The BLAS routines even accept
strings where we use OrientationType.
However, a BLAS routine is supposed to look only at the first character.
The valid strings are: “No transpose”,
“Transpose”, and “Conjugate tranpose”.
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end

But as Scilab stores real and imaginary part of a complex matrix separately, we use a Karatsuba
multiplication scheme with only three multiplications instead of the four as the naive algorithm does.
Expressed in Scilab, we have

function [cr, ci] = mul_karatsuba(ar, ai, br, bi)

// fast multiplication of two complex numbers
// z1 := ar + i*ai
// z2 := br + i*bi
// cr + i*ci =: z3 = z1 * z2

p1 = ar * br
p2 = ai * bi
cr = p1 - p2

s1 = ar + ai
s2 = br + bi
p3 = s1 * s2
ci = p3 - p1 - p2

The actual implementation ofwmmul is a more space saving version of the above.

function [cr, ci] = mul_karatsuba_final(ar, ai, br, bi)

p1 = ar * br
p2 = ai * bi

s1 = ar + ai
s2 = br + bi
ci = s1 * s2
ci = ci - p1 - p2
cr = p1 - p2

It is fairly obvious, how big the effort is, even for expressing the algorithm in Scilab. The Fortran
functionwmmul is even more convoluted because of several explicitdo-loops.

Example 7-1. Multiplication of complex matrices

subroutine wmmul(ar, ai, na, br, bi, nb, cr, ci, nc, l, m, n)
*
* name : wmmul.f - multiplication of two complex matrices;
* c := a * b
* author : L. van Dijk
* last. rev. : Sun Jan 16 22:41:27 UTC 2000
* Scilab ver.: 2.5
* compiler : g77 version 2.95.1 19990816 (release)
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* Copyright (C) 2000 Lydia van Dijk

* PARAMETERS
* ai,ar, bi,br, ci,cr: real and imaginary parts of the respective
* matrices
* na, nb, nc: number of rows of resp. matrix in calling routine
* l: number of rows in a and c
* m: number of columns in a, and number of rows in b
* n: number of columns in b and c

implicit none
double precision ar(*), ai(*), br(*), bi(*), cr(*),ci(*)
integer na, nb, nc, l, m, n

* LOCAL VARIABLES
integer i, j
integer ia, ib, ic
double precision p1(l, n), p2(l, n)
double precision s1(l, m), s2(m, n)

* TEXT
call dgemm(’n’, ’n’, l, n, m, 1.0d0, ar, na, br, nb,

$ 0.0d0, p1, l) – p1 = ar * br
call dgemm(’n’, ’n’, l, n, m, 1.0d0, ai, na, bi, nb,

$ 0.0d0, p2, l) – p2 = ai * bi
ia = 0
do 20 j = 1, m – s1 = ar + ai

do 10 i = 1, l
s1(i, j) = ar(ia+i) + ai(ia+i)

10 continue
ia = ia + na

20 continue
ib = 0
do 40 j = 1, n – s2 = br + bi

do 30 i = 1, m
s2(i, j) = br(ib+i) + bi(ib+i)

30 continue
ib = ib + nb

40 continue
call dgemm(’n’, ’n’, l, n, m, 1.0d0, s1, l, s2, m,

$ 0.0d0, ci, nc) – ci = s1 * s2
ic = 0
do 60 j = 1, n – ci = ci - p1 - p2

– cr = p1 - p2
do 50 i = 1, l

ci(ic+i) = ci(ic+i) - p1(i, j) - p2(i, j)
cr(ic+i) = p1(i, j) - p2(i, j)

50 continue
ic = ic + nc

60 continue
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end

7.3. Writing Native Scilab Functions
In the following two sections we shall treat the “anatomy” of native, i.e. low-level Scilab functions.
This will confront us with all the gory details of the stack, the low-level API, and the calling
conventions. Having the “Guide for Developers”,Internals.ps (see alsoSection 8.2) ready is a
good idea. Where the developer guide is at the end of its wits, a study of the source code is
appropriate, especially the file SCI/routines/interf/stack1.f is of interest for us.

We start out discussing simple functions inSection 7.3.1. Simple in the sense that they are
self-contained and only take non-function parameters as their arguments. In the second part,Section
7.3.2, we shall consider functions that take other functions (either Scilab functions or externals) as
arguments. These functionals all rely on correctly set up deisplatch tables, which are treated in
Section 7.3.3.1.

7.3.1. Simple Functions
A typical native Scilab function proceeds as follows:

1. Check the number of input and output parameters.

2. Get the “pointers” to actual input parameters; supply default values for optional parameters;
issue warnings or errors as appropriate if too many or too few parameters are supplied.

3. Allocate space for temporary variables, “workspace(s)”, etc.

4. It might be necessary to translate the input variables which are in Scilab format into the
appropriate format for the worker routine. This is happens for example if the worker routine
uses Fortran-77’sdouble complex (or equivalentlycomplex*16 ) variables. SeeSection 7.2.2
for details.

5. Perform the calculations or transformations thatreally make up the procedure.

6. As in Step4, it might be necessary to transform the results, now from the worker routine’s
format back into Scilab format.

7. If necessary, allocate space for the return value(s) on the Scilab stack, and copy result(s) to this
space.

Now that the general outline is clear, we are ready to dissect a simple function:ortho . It takes
exactly one argumenta, that is a real or complexmtimesn matrix. The single output parameter is a
matrix of the same shape and type as is the input matrix. The duty ofortho is to transform the
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columns of the input matrix into orthonormal form; to achieve this we employ the following Lapack
functions:

type Complex is record
RealPart : Float := 0.0;
ImagPart : Float := 0.0;

end record;

type FloatVector is array (Positive range <>) of Float;
type ComplexVector is array (Positive range <>) of Complex;
type FloatMatrix is array (1..Lda, Positive range <>) of Float;
type ComplexMatrix is array (1..Lda, Positive range <>) of Complex;

procedure dgeqrf

( M : in Natural; - number of rows of A
N : in Natural; - number of cols of A
A : in out FloatMatrix; - M-by-N matrix
Lda : in Natural; - leading dimension of A
Tau : out FloatVector; -

scalar factors of elementary reflectors
Work : out FloatVector; - workspace
Lwork : in Integer; - size of workspace Work
Info : out Integer); - error indicator

procedure dorgqr

( M : in Natural; - number of rows of A
N : in Natural; - number of cols of A
K : in Natural; - number of elementary reflectors
A : in out FloatMatrix; - M-by-N matrix
Lda : in Natural; - leading dimension of A
Tau : out FloatVector; -

scalar factors of elementary reflectors
Work : out FloatVector; - workspace
Lwork : in Integer; - size of workspace Work
Info : out Integer); - error indicator

procedure zgeqrf

( M : in Natural; - number of rows of A
N : in Natural; - number of cols of A
A : in out ComplexMatrix; - M-by-N matrix
Lda : in Natural; - leading dimension of A
Tau : out ComplexVector; -

scalar factors of elementary reflectors
Work : out ComplexVector; - workspace
Lwork : in Integer; - size of workspace Work
Info : out Integer); - error indicator

procedure zungqr

( M : in Natural; - number of rows of A
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N : in Natural; - number of cols of A
K : in Natural; - number of elementary reflectors
A : in out ComplexMatrix; - M-by-N matrix
Lda : in Natural; - leading dimension of A
Tau : out ComplexVector; -

scalar factors of elementary reflectors
Work : out ComplexVector; - workspace
Lwork : in Integer; - size of workspace Work
Info : out Integer); - error indicator

procedure dcopy

( N : in Natural; - number of elements to copy
X : in FloatVector; - input vector
IncX : in Integer; - input stride
Y : out FloatVector; - output vector
IncY : in Integer); - output stride

Thedgeqrf - andzgeqrf -functions compute a QR-factorization of a real or complexm-by-n matrix
a, while thedorgqr -, andzungqr -functions generate anm-by-n real or complex matrixq with
orthonormal columns, relying on the QR-factorization ofdgeqrf or zgeqrf . Functiondcopy

copiesN elements (of type Float) of the vectorX in increments ofIncX to the vectorY using
increments ofIncY on that side. For a detailed description please consult the Lapack User Guide, or
the appropriate manual pages. For the mathematics behind the operation, the reader is referred to
[Golub:1996].

Example 7-2is one of the longest examples in the running text, but do not be scared as we will
explain line-by-line and variable-by-variable what is there and why.

Example 7-2. Simple native Scilab function

subroutine ortho –
Native functions are parameterless

implicit none –
Switch into weeny mode :-)

* CONSTANTS
integer realtype
parameter (realtype = 0) – SeeTable 7-

2 for type association

* LOCAL VARIABLES
character*6 fname –

name of the routine as string

logical checklhs , checkrhs , cremat , getmat – Scilab API functions

integer topk
integer n, m, mattyp
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integer tausz, worksz, info
integer areadr, aimadr, badr, tauadr
integer wrkadr, rreadr, rimadr, dumadr

* EXTERNAL FUNCTIONS/SUBROUTINES
external checklhs , checkrhs , cremat , getmat – Scilab API functions
external error

external dcopy, dgeqrf, dorgqr, zgeqrf, zungqr –
LAPACK/BLAS worker subroutines

* HEADER
include ’/site/X11R6/src/scilab/routines/stack.h’ – Scilab API header

* TEXT
fname = ’ortho’ –

Function name (for error messages)
topk = top –

top is defined instack.h

rhs = max(0, rhs )

if (.not. checkrhs (fname, 1, 1)) return ➊

if (.not. checklhs (fname, 1, 1)) return

* fetch input parameters ➋

if (.not. getmat (fname, topk, top - rhs + 1,
$ mattyp, m, n, areadr, aimadr)) return

if (n * m .eq. 0) return –
Quick return on empty matrix

tausz = min(m, n) – Prescribed by man-
page

worksz = max(1, n) – ... same here

if (mattyp .eq. realtype) then
* real case

* allocate temporary variables; all are real ➌

if (.not. cremat (fname, top + 1, realtype, tausz, 1,
$ tauadr, dumadr)) return

if (.not. cremat (fname, top + 2, realtype, worksz, 1,
$ wrkadr, dumadr)) return

if (.not. cremat (fname, top + 3, realtype, m, n,
$ badr, dumadr)) return

* prepare worker routines’ input parameters ➍

call dcopy(n * m, stk(areadr), 1, stk(badr), 1)
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* call worker routines ➎

call dgeqrf(m, n, stk(badr), m, stk(tauadr),
$ stk(wrkadr), worksz, info)

if (info .ne. 0) then –
Any error is considered fatal

buf = fname // ’ dgeqrf failed’
call error (999)
return

endif

call dorgqr(m, n, tausz, stk(badr), m, stk(tauadr),
$ stk(wrkadr), worksz, info)

if (info .ne. 0) then –
Any error is considered fatal

buf = fname // ’ dorgqr failed’
call error (999)
return

endif

else
* complex case; mattyp != realtype

* allocate temporary variables,
* use two REAL*8 for one COMPLEX*16 ➏

if (.not. cremat (fname, top + 1, realtype, 2 * tausz, 1,
$ tauadr, dumadr)) return

if (.not. cremat (fname, top + 2, realtype, 2 * worksz, 1,
$ wrkadr, dumadr)) return

if (.not. cremat (fname, top + 3, realtype, 2 * m, 2 * n,
$ badr, dumadr)) return

* prepare worker routines’ input parameters, joining
* two REAL*8 arrays into one COMPLEX*16 array ➐

call dcopy(n * m, stk(areadr), 1, stk(badr), 2)
call dcopy(n * m, stk(aimadr), 1, stk(badr + 1), 2)

* call worker routines ➑

call zgeqrf(m, n, stk(badr), m, stk(tauadr),
$ stk(wrkadr), worksz, info)

if (info .ne. 0) then –
Any error is considered fatal

buf = fname // ’ zgeqrf failed’
call error (999)
return

endif

call zungqr(m, n, tausz, stk(badr), m, stk(tauadr),
$ stk(wrkadr), worksz, info)
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if (info .ne. 0) then –
Any error is considered fatal

buf = fname // ’ zorgqr failed’
call error (999)
return

endif

endif

* get ready to exit
if ( lhs .ge. 1) then ➒

if (.not. cremat (fname, top, mattyp, m, n,
$ rreadr, rimadr)) return

if (mattyp .eq. realtype) then (10)
call dcopy(m * n, stk(badr), 1, stk(rreadr), 1)

else
call dcopy(m * n, stk(badr), 2, stk(rreadr), 1)
call dcopy(m * n, stk(badr + 1), 2, stk(rimadr), 1)

endif
endif

end

➊ Check the number of input and output parameters. The task is easy as we receive one and return
exactly one parameter. This line and the next correspond to Step1.

➋ Get the addresses – as mentioned in Step2 – of the real, and imaginary part of the matrix
passed as (only) parameter toortho . Note thatgetmat will return False if the parameter at
the given parameter stack position is not a matrix of numbers.

Functiongetmat is called with the second parameter,topk , holding the value of the parameter
stack pointer when the control flow enteredortho . This as well as the function name passed in
fname is necessary for the cleanup and messaging in case of an error.

The only parameter we use sits on top of the parameter stack fortop - rhs + 1 equalstop in
our case.

On successful returngetmat not only sets the data stack addressesareadr , andaimadr of the
real and imaginary parts, but also tells us viamattyp whether the matrix is real complex, and
via m, andn how large the matrix is.

The following lines directly depend on the sizes passed back form the core interface, calculating
the necessary space for two scratch arrays.

➌ Allocating space for the temporary variablestau , work , andb on the data stack is a realization
of Step3. The variablestau andwork are necessary because of the Lapack routines used;b is a
copy ofa as the Lapack routines,dgeqrf , andzgeqrf , modify the matrix in place, i.e. would
mangle the input variablea. The temporaries are accessed the same way parameters are
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accessed: through indices into the data stack. These indices aretauadr , wrkadr , andbadr .
Their positions on the parameter stack aretop + 1 , top + 2 , andtop + 3 , respectively.

We request a purely real storage for each of the three temporary variables, the third parameter
beingrealtype = 0. Therefore, the index for the imaginary part is a dummy index, called
dumadr .

➍ There is no “translation” to do in the real case. So Step4 is quite simple. The input variable – of
which we definitely know that it is real – is simply copied to the scratch space that we have
allocated on the data stack.

Note how theaddressof the matrices is passed. The idiom isstk( index ) , whereindex has
been obtained through one of the get*-, or cre*-functions. The memnonic “stk” means data
stack.

➎ Everything is set up correctly and initialized. We have reached Step5. The worker routines can
take over now.

➏ In the complex case the allocation of the temporaries variables requires a bit more thought,
although it is again just Step3. We know that the Lapack routines need the complex
vectors/matrices in packed form. Thus, we allocateonereal (double precision) vector/matrix of
twice the size each time thereby accommodating the storage requirement of complex (double
complex, or complex*16) variables. Otherwise this step proceeds as in the real case.

➐ Because of the different handling of complex variables in Scilab and Lapack, Step4 requires
two calls to the copy function.

call dcopy(n * m, stk(areadr), 1, stk(badr), 2)
call dcopy(n * m, stk(aimadr), 1, stk(badr + 1), 2)

The first line says: “Copymtimesn elements from the first position of the double precision
variablestk(areadr) taking each entry (3rd parameter, read stride = 1) to the double complex
output variablestk(badr) filling every other entry (5th parameter, write stride = 2).” The
second line does almost the same, but starts off writing at the second elementstk(badr + 1) ,
therefore filling in the imaginary parts ofstk(badr) . This corresponds to Step4.

➑ Again we have reached Step5; everything is set up correctly and initialized. The worker
routines can take over.

➒ If there is an output variable, we copy the results into it. Otherwise, we skip the expensive copy
operation.

(10) At this point a purely real result,stk(badr) , can simply be copied to the output parameter,
stk(rreadr) .

The situation is a bit more complicated for a complex result, as we have to de-splice thedouble

complex result from Lapack into twodouble precision matrices. Here are the crucial lines
again:

call dcopy(m * n, stk(badr), 2, stk(rreadr), 1)
call dcopy(m * n, stk(badr + 1), 2, stk(rimadr), 1)
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The first line says: “Copymtimesn elements from the first position in the double complex result
stk(badr) taking every other entry (3rd parameter, read stride = 2) into the double precision
output variablestk(rreadr) filling each entry (5th parameter, write stride = 1).” The second
line does almost the same, but starts off at the second element,stk(badr + 1) , therfore
copying the imaginary parts intostk(rimadr) . This way we are merging Step6, and Step7
into one.

7.3.2. Functionals
Func what? What are you talking about? Functionals – what is this? Glad you asked! Functions
operate on numbers or variables, which themselves are not functions. The square root function for
example is usually applied to numbers (like:sqrt(2) ) or more generally to variables (like: sqrt(x)
for any real x). Functionals operate on other functions. Prominent examples are differentiation
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, and integrals
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.

The question how to write native Scilab functions that take arbitrary non-function parameters as their
arguments has been discussed in the previous section. Now we focus on Scilab functions that take
other Scilab functions as their arguments. If the reader does not feel familiar with native Scilab
functions, she should reconsiderSection 7.3.1.
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In a similar manner as in the last section, we introduce an example. The example is taken from our
Scilab/Quadpack interface available on the web. Among others it features the integratordqng for
sufficiently smooth functions, which has the following signature:

type SimpleFunctionType is access
function(X : in Float) return Float;

procedure dqng

( Function : in SimpleFunctionType;
LowerIntervalEnd : in Float;
HigherIntervalEnd : in Float;
EpsilonAbsolute : in Float;
EpsilonRelative : in Float;
Result : out Float;
ErrorAbsolute : out Float;
NumberOfEvaluations : out Natural;
ErrorIndicator : out Natural);

Here comes the complete example.

Example 7-3. Scilab functional

subroutine intsm
*
* name: intsm.f - Scilab/F77 interface to QUADPACK’s dqng
* author: Lydia van Dijk
* last rev.: Wed Mar 15 23:49:45 UTC 2000
* scilab ver.: 2.5
* compiler: g77-0.5.25 (Linux 2.3.49)
*
* Scilab signature:
* [res, abs_err, n_eval] = intsm(a, b, f, eps_abs, eps_rel)
*
* Return Values:
* res: value of the integral
* abs_err: estimate of the absolute error
* n_eval: number of function evaluations
*
* Arguments (mandatory):
* a: lower bound of integral
* b: upper bound of integral
* f: function to integrate with signature y = f(x),
* x, y real scalars
*
* Arguments (optional):
* eps_abs: desired absolute error; default: 0.0
* eps_rel: desired relative error; default: 1e-8
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implicit none –
Switch into weeny mode :-)

include ’stack.h’

common /cintg/ namef –
Name of integrand function

external bintg, fintg –
gateways, seeSection 7.3.3.1

external setfintg

* LOCAL VARIABLES
character*6 namef –

Name of the routine as string
character*6 fname –

Name of function to be integrated
character*8 errstr

logical getexternal , getscalar
logical type, cremat

integer iadr, sadr, neval, ifail, l, idxf, idxa
integer topk, lr, lra, lrb, iipal, dummy

double precision epsa, epsr, a, b, val, abserr

include ’errnum.inc’ –
Error numbers are defined here

* STATEMENT FUNCTIONS
iadr(l) = l + l - 1 –

Accessor for integers on real*8 stack
sadr(l) = l/2 + 1 –

Accessor for real* on integer stack

* TEXT
fname = ’intsm’ –

Name of this function
if( rhs .lt. 3 .or. rhs .gt. 5) then ➊

call error (39)
return

endif
topk = top –

Remember stack position

* pop optional parameters off the stack
if( rhs .eq. 5) then ➋

if (.not. getscalar (fname, topk, top, lr)) return
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epsr = stk(lr)
top = top - 1

else
epsr = 1.0d-8 – Scilab default

endif

if ( rhs .ge. 4) then
if (.not. getscalar (fname, topk, top, lr)) return
epsa = stk(lr)
top = top - 1

else
epsa = 0.0d0 – Scilab default

endif

* pop mandatory parameters off the stack
namef = ’ ’ – Fill name-

string with 6 spaces
type = .false.
if (.not. getexternal (fname, topk, top, namef, type, setfintg)) ➌

$ return
idxf = top –

Remember stack position of function f
top = top - 1

if (.not. getscalar (fname, topk, top, lrb)) return
b = stk(lrb)
top = top - 1

if (.not. getscalar (fname, topk, top, lra)) return
a = stk(lra)
idxa = top –

Remember stack position of argument a
top = topk + 1 – Reset stack index

* call integration routine
if (type) then ➍

* compiled external
call dqng(fintg, a, b, epsa, epsr, val, abserr, neval, ifail)

else ➎

* Scilab macro
iipal = iadr(lstk(top)) –

Start building a variable description
istk(iipal) = 1 – ?
istk(iipal + 1) = iipal + 2 – ?
istk(iipal + 2) = idxf – ?
istk(iipal + 3) = idxa – ?
lstk(top + 1) = sadr(iipal + 4) – ?
call dqng(bintg, a, b, epsa, epsr, val, abserr, neval, ifail)

endif
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if (ifail .eq. 1) then ➏

buf = fname // ’: max. number of steps reached; ’
$ // ’integral too difficult for int_sm’

call error (emaxdiv)
return

endif
if (ifail .eq. 6) then

buf = fname // ’: invalid error bounds’
call error (ebounds)
return

endif
if (ifail .ne. 0) then

* catch all other errors
write(errstr, ’(I10)’) ifail
buf = fname // ’: unknown error ’ // errstr
call error (eunknown)
return

endif

* return values #1, and #2 (val, abserr) replace arguments #1, and
* #2 (a, b).

top = topk - rhs + 1
stk(lra) = val ➐

if ( lhs .ge. 2) then
top = top + 1
stk(lrb) = abserr

endif
* return value #3, neval, needs space on the stack

if ( lhs .ge. 3) then ➑

top = top + 1
if (.not. cremat (fname, top, 0, 1, 1, lrb, dummy)) return
stk(lrb) = dble(neval) –

neval is int, stk() is double precision
endif

end

➊ Here, we do not rely on the predefined number-of-arguments checking functions,checklhsand
checkrhs, but set up out own scheme.intsm will require three mandatory aruments,a, b, f ,
and two optional ones,eps_abs , eps_rel , making a total of five.

➋ Take care of the optional parameters: fetch them from the stack, or use a default value if the
actual parameter is omitted.

➌ Fetch mandatory parameters from the stack. The stack index,top is decremented with each
parameter. This is a slight variation of the code shown inExample 7-2, where we keep the stack
index fixed and add an appropriate offset when fetching the parameter from the stack.
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➍ getexternal returns the type of the external after a successful call. An external, i.e. object
code linked to Scilab, setstype = 1 , a macro – defined viadeff , or function – setstype =

0.

The case of an external is easy to handle asgetexternal has already taken care of initializing
the address to be calledfintg . A call to setfintg accomplishes this.

➎ Calling a Scilab macro is much more involved as it requires to manually set up a function
activation record (“calling frame”).

FIXME: add text here.

➏ The return code form the integration routinedqng is checked, and errors are handled as
described inSection 7.4.

➐ For intsm returns a scalarand the first argument is a mandatory scalar too, we do not need to
reserve space for the value of the integral,val . The result is simply copied into the argument’s
stack position.

Almost the same holds for the second return value,abserr , though we only can use its slot if
there actually is a return variable.

➑ The third return value is a scalar, but the third argument is a function, so we cannot apply our
previous technique again.cremat reserves the space forneval .

7.3.3. Library Interfaces
When finally a Fortran-77 or C function to extend Scilab has been completed, it must be registered
with the interpreter. The registration is done from the command line with functionaddinter , and
happens indirectly via so called dispatch tables or “gateways” in INRIA parlance.

Dispatch tables are either set up manually, a technique that is explained inSection 7.3.3.1, or they
are generated automatically – which is of course much easier – with functionilib_build . The
auto-generation of gateways will be explained inSection 7.3.3.2.

7.3.3.1. Dispatch Tables

A dispatch table or “gateway” connects the identifiers of the extension functions (entry points of the
functions) with the names the functions will carry in the Scilab environment. For example, Scilab
must be taught that the C-functionmy_fun , is calledfunc1 at the prompt.

Dispatch tables are implemented by arrays of struct GenericTable. The structure is defined inmex.h .

typedef int (*GatefuncH) (int nlhs, Matrix *plhs[], int nrhs, Ma-
trix *prhs[]);
typedef int (*Myinterfun) (char*, GatefuncH F);

typedef struct
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{
Myinterfun f; – interface
GatefuncH F; – function identifier
char *name; – function name in Scilab

} GenericTable;

A typical interface looks like the following piece of C-code.

#include < mex.h >

extern Gatefunc C2F( my_fun );
– more functions can be declared here

static GenericTable Tab[] =
{

{ (Myinterfun)sci_gateway, C2F( my_fun ), "func1" }
– more functions can be registered here

};

int
C2F( lib_my_lib )()
{

Rhs = Max(0, Rhs);
(*(Tab[Fin-1].f))(Tab[Fin - 1].name, Tab[Fin - 1].F);
return 0;

}

The interface is activated at the command line byaddinter(["libmylib.so",

"my_fun.so"], "lib_my_lib", ["func1"]) , where the square brackets could take more files
or function names. It has been assumed that the gateway has been compiled into the
file libmylib.so , and the user’s function into the filemy_fun.so . The second argument to
addinter is the name of the dispatching function itself (as a string). The third and last parameter to
addinter lists all function names to be registered.

Important:The order of the functions to be registered must be the same inTab, this is, in the C-file
and in theaddinter call, this is, at interpreter level!

Here is another example of a gateway.

/*
* name: quadqack-gw.c - gateway for all QUADPACK
* interface routines
* author: Lydia van Dijk
* last rev.: Wed Mar 15 02:22:02 UTC 2000
* compiler: pgcc-2.95.2 19991024 (Linux 2.3.49)
*/

#include < stack-c.h > /* lives in $SCI/routines */

159



Chapter 7. Scilab Core

typedef void (*gatef_t) (void);

extern void C2F( intals )(void);
extern void C2F( intcau )(void);
extern void C2F( intexc )(void);
extern void C2F( intfou )(void);
extern void C2F( intgen )(void);
extern void C2F( intgk )(void);
extern void C2F( intinf )(void);
extern void C2F( intosc )(void);
extern void C2F( intsm )(void);

static gatef_t gftab[] = {
C2F( intals ),
C2F( intcau ),
C2F( intexc ),
C2F( intfou ),
C2F( intgen ),
C2F( intgk ),
C2F( intinf ),
C2F( intosc ),
C2F( intsm )

};

int
C2F( quadpack_gw )(void)
{

(*gftab[Fin - 1])();
return 0;

}

Scilab script part ...

quadpacklibs = [’/site/src/netlib/quadpack/libquadpack-1.0.so’, ..
’/site/src/netlib/quadpack/intersci/libqpif-1.0.so’]

gateway = ’quadpack_gw’ // name of the gateway function
interfaces = [’intals’, ’intcau’, ’intexc’, ’intfou’, ..

’intgen’, ’intgk’, ’intinf’, ’intosc’, ..
’intsm’]

addinter(quadpacklibs, gateway, interfaces)

The complete example can be found inSection 10.7.
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7.3.3.2. Interface Generator

The previouis section has shown that manually setting up an interface is a rather complicated
process. However, Scilab can take over most of the tedious and error-prone part. The Scilab function
that does all the magic isilib_build ; it accepts four or five parameters:

ilib_build

( library_name ,
function_table ,
function_files ,
extra_libraries ,
[ makefile_name ])

library_name is the name of the library. The resulting interface (shared) object file will be
library_name .o or library_name .so.library_name is an-times-2 string matrix that lists
the C- or F77-function name/Scilab function name pairs. For the remaining arguments the the
man-page.

Usually, the call toilib_build is wrapped in the Scilab scriptbuilder.sce . However, any other
name is possible, too.

// builder.sce

func_files = ["rot90.o"];
func_table = ..
[ ..

"rot90", "C2F(rot90)" ..
];

ilib_build("librot90", func_table, func_files, []);

exit;

Note: Do not forget the exit command at the end of builder.sce if you want to use the script
non-interactively.

With the help ofilib_build a Makefile for a Scilab-extension condenses into a few simple rules as
is done in theMakefile below.

# Makefile for Scilab extension ’rot90’

include Makelib

.phony: all
all:: librot90.so
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.phony: test
test:: all

scilab -nw -f tester.sce | tail +12

.phony: clean
clean::

rm -f librot90.* *.lo loader.sce Makelib

.phony: distclean
distclean:: clean

rm -f *~ core

Makelib: # empty rule; "Make-
lib" is made by ilib_build() in "builder.sce"

librot90.so: rot90.c
scilab -nw -f builder.sce | tail +12

In fact the example is so simple thatbuilder.sce is not even necessary, and theilib_build call
can be fed directly into Scilab.

librot90.so: rot90.c
echo ’ilib_build("librot90", ["rot90", "C2F(rot90)"], "rot90.o", []);’ \

| scilab -nw -f | tail +12

Given the above files,Makefile , builder.sce , and the C-sourcerot90.c and the test
script tester.sce , building the extension could proceed as follows.

$ ls -1
Makefile
builder.sce
rot90.c
tester.sce

$ make
Makefile:4: Makelib: No such file or directory
scilab -nw -f builder.sce | tail +12

generate a gateway file
generate a loader file
generate a Makefile: Makelib
running the makefile

$ ls -1
Makefile
Makelib
builder.sce
librot90.a
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librot90.c
librot90.la
librot90.lo
librot90.o
librot90.so
loader.sce
rot90.c
rot90.lo
rot90.o
tester.sce

$ make test
scilab -nw -f tester.sce | tail +12
Loading shared executable ./librot90.so
shared archive loaded
Linking librot90
Interface 0 librot90

passed 18 tests.

7.4. Error Handling
We briefly discuss how to produce the three possible classes of errors: fatal, warning, and message in
Scilab.

7.4.1. Fatal Errors
To signal a fatal error condition in an interface procedure, callerror with the appropriate code. The
codes can be looked up in SCI/routines/system/error.f .

Here is a code snippet that does this.

if (ifail .eq. 2) then
call error(1232)
return

endif

If there is no suitable error message, place you own message (length <= 80 chars) in the global
variablebuf , and callerror afterwards.

Warning
The string placed in buf must not be longer than 80 characters.
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if (ier .eq. 6) then
buf = ’invalid limits’
call error(32253)
return

endif

Sideffect of callingerror : The Scilab stack is cleaned up, i.e. put back in the state it was just before
the user routine has been entered.

On the Scilab interpreter level an error terminates the evaluation of whatever is currently evaluated
(expression, file, or string), unless the trapping of errors has been modified byerrcatch . See also
the interpreter functionserrclear , andiserror .

7.4.2. Warnings
To signal non-fatal error conditions (also known as soft-errors, or warnings), place a negative integer
in err2 , and callout to display the warning message. Depending on the situation areturn may be
issued after that. The Scilab stack isnot cleaned up, which means all return values from the interface
routine are passed back normally. This is the solution of choice if the user can decide how to
proceed, based on the return values.

Again, here is a small piece of code for demonstration.

if (fail .eq. 1) then
err2 = -6343
call out(’reached table limit’)
return

endif

On interpreter level it is now mandatory to calliserror after a call to a routine that issues warnings
like this. In the user-level error handler the error codemustbe reset byerrclear to allow for
further warnings to be received.

A typical way of coping with these soft-errors in the interpreter level is shown inExample 7-4.

Example 7-4. Handling of warnings in Scilab

[z, n, info] = abraxas(a, b, foo, limit)
if iserror(-19) then

errclear(-19)
limit = limit / 2 // make it easier
[z, n, info] = abraxas(a, b, foo, limit)
if iserror(-19) then

errclear(-19)
error(failed even with easy limit’);

end
end
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7.4.3. Messages
Messages are the least severe class of errors. Sometimes they are not really errors, but just additional
information that something unexpected is going on. No news is good news.

We have already seen the appropriate subroutine in action. It isout .

if (iter .gt. 1000) then
call out(’iterating excessively’)

endif

7.5. Fortran Interface to Scilab’s Core
The interface to Scilab’s core is widely undocumented. What is missing from the offical
documentation will be described in the following sections.

There are two levels of interface funcitons, a lower-level Fortran77-derived, and an interface that
resembles Scilab’s C-interface (see alsoSection 7.6). Up to Scilab-2.5 (official release) the
lower-level API was defined in SCI/routines/interf/stack1.f , but from Scilab-2.5.1 (alpha
version) on it is defined in SCI/routines/interf/stack1.h and
SCI/routines/interf/stack1.c . This means that the implementation has been ported from
Fortran77 to C. The higher-level API is defined in SCI/routines/interf/stack2.h and
SCI/routines/interf/stack2.c .

All lower-level functions expect the user-function name in the first parameter, whereas the
higher-level functions need a variable of type ParameterStackIndex.

To save the reader frequent lookups in the defining files, we have compiled the most important ones
in the following sections:query, access, creationof objects, andmiscellaneousfunctions.

7.5.1. Query
The functions in this group retrieve information about the parameters a function has been called
with, and about the properties of objects on the stack.

7.5.1.1. checkrhs

Synopsis

function CheckRhs

( SelfName : in String;
MinNumParameter : in Natural;
MaxNumParameter : in Natural)

return Boolean;
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Description

Check the number of actual parameters on the right-hand side to be in the range
MinNumParameter : MaxNumParameter . ReturnTrue if it is in the range, otherwise raise
error 77 associated withSelfName and returnFalse .

Example

Ensure that at least 2, but not more than 5 parameters are passed to the function:

if (.not. checkrhs(fname, 2, 5)) return

We have assumed thatfname is set to the function’s name.

See also

CheckLhs , Lhs , Rhs

7.5.1.2. checklhs

Synopsis

function CheckLhs

( SelfName : in String;
MinNumParameter : in Natural;
MaxNumParameter : in Natural)

return Boolean;

Description

Check the number of output variables, i.e. arguments on the right-hand side to be in the range
MinNumParameter : MaxNumParameter . ReturnTrue if it is in the range, otherwise raise
error 78 associated withSelfName and returnFalse .

Note that it is no error to supply less output parameters than the function actually returns. The
extra values are silently discarded. This is true for the case of zero output values, too; thenans

gets the first output value. Thus, a function called without any output parameters is assigned an
Lhs of 1.

Example

Ensure that there are not more than 2 output parameters, when the function is called:
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if (.not. checklhs(fname, 1, 2)) return

We have assumed thatfname is set to the function’s name.

See also

CheckRhs , Rhs, Lhs

7.5.1.3. lhs

Synopsis

Lhs : Natural;

Description

The number of actual output parameters, i.e. those on the left-hand side of the assignment
operator, is stored in the global variableLhs . Inside a user function,Lhs should be used as a
constant.

See also

CheckLhs , CheckRhs , Rhs

7.5.1.4. rhs

Synopsis

Rhs : Natural;

Description

The number of actual input parameters, i.e. those on the right-hand side of the assignment
operator, is stored in the global variableRhs. Inside a user function,Lhs should be used as a
constant.

See also

CheckRhs , CheckLhs , Lhs
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7.5.2. Access Object
The functions in this section grant the programmer access to parameters that are stored on the Scilab
stack. In general all of these functions work alike: An index to the current (i.e. as on entry of the
function) top of the parameter stack, “BasePointer”, and an index to the desired argument,
“StackPointer”, are passed to the API. On return the user gets all necessary information about the
argument like sub-type, dimension as well as the indices, “FooIndex” that index into the Scilab
heap. The indices act like pointers to the actual contents. This way only meta-data is passed, saving
time-consuming copy operations.

7.5.2.1. getmat

Synopsis

function GetMat

( SelfName : in String;
BasePointer : in ParameterStackAddress;
StackPointer : in ParameterStackAddress;
IsComplex : out ComplexFlag;
Rows : out Natural;
Columns : out Natural;
RealIndex : out DataStackIndex;
ImaginaryIndex : out DataStackIndex)

return Boolean;

Description

Retrieve the address(es) and dimensions of a real or complex matrix from the parameter stack.
TheBasePointer must be set to the parameter stack pointer’s value on entry of thecalling
function.StackPointer points to the desired parameter on the parameter stack. If
successful,GetMat returnsTrue , andIsComplex , Rows, Columns , andRealIndex are
valid. If IsComplex = ComplexVariable thenImaginaryIndex is valid, too. If the
parameter indexed byStackPointer is not a matrixGetMat returnsFalse .

The output parameterIsComplex indicates whether the matrix on the data stack is purely real
or complex. In the first caseRealIndex points to the matrix, in the second caseRealIndex
points to the real part of matrix, andImaginaryIndex points to the imaginary part. In any
caseRows andColumns are the number of rows and columns of the matrix.

Example

Fetch the addresses of a possibly complexm-times-n matrix from positiontop of the parameter
stack.
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if (.not. getmat(fname, topk, top, is-
cmpx, m, n, are, aim)) return

It is assumed thatfname has been set to the function’s name, andtopk carries the position of
the stack on entry to the calling function.

See also

GetRMat , GetRVect , GetVect

7.5.2.2. getrmat

Synopsis

function GetRMat

( SelfName : in String;
BasePointer : in ParameterStackAddress;
StackPointer : in ParameterStackAddress;
Rows : out Natural;
Columns : out Natural;
RealIndex : out DataStackIndex)

return Boolean;

Description

FunctionGetRMat works like functionGetMat , but restricts the accepted matrices to purely
real ones.

See also

GetMat , GetRVect

7.5.2.3. getrvect

Synopsis

function GetRVect

( SelfName : in String;
BasePointer : in ParameterStackAddress;
StackPointer : in ParameterStackAddress;
Rows : out Natural;
Columns : out Natural;
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RealIndex : out DataStackIndex)
return Boolean;

Description

FunctionGetRVect works like functionGetRMat , but restricts the accepted matrices to either
single rowed (1-times-N) or single columned (N-times-1).

See also

GetVect , GetRMat

7.5.2.4. getvect

Synopsis

function GetVect

( SelfName : in String;
BasePointer : in ParameterStackAddress;
StackPointer : in ParameterStackAddress;
IsComplex : out ComplexFlag;
Rows : out Natural;
Columns : out Natural;
RealIndex : out DataStackIndex;
ImaginaryIndex : out DataStackIndex)

return Boolean;

Description

FunctionGetVect works like functionGetMat , but restricts the accepted matrices to either
single rowed (1-times-N) or single columned (N-times-1).

See also

GetMat , GetRVect

7.5.2.5. getscalar

Synopsis

function GetScalar

( SelfName : in String;
BasePointer : in ParameterStackAddress;
StackPointer : in ParameterStackAddress;
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Index : out DataStackIndex)
return Boolean;

Description

Retrieve the address and dimensions of a real or complex scalar from the parameter stack. The
BasePointer must be set to the parameter stack pointer’s value on entry of thecalling
function.StackPointer points to the desired parameter on the parameter stack. If
successful,GetScalar returnsTrue , andIndex is valid. If the parameter indexed by
StackPointer is not a scalarGetScalar returnsFalse .

See also

GetVect , GetMat

7.5.2.6. getexternal

Synopsis

type FortranIdentifier is
array (1 .. 6) of Character; - Fortran’s 6 char limit

- SimpleFunctionType is just an example
type SimpleFunctionType is access

function(X : in Float) return Float;

type InstallerProcedureType is access
procedure(FunctionName : in FortranIdentifier;

FunctionEntryPoint : in SimpleFunctionType);

function GetExternal

( SelfName : in String;
BasePointer : in ParameterStackAddress;
StackPointer : in ParameterStackAddress;
FunctionName : in out FortranIdentifier;
IsExternal : out Boolean;
Installer : in InstallerProcedureType)

return Boolean;

Description

The first three parametersSelfName , BasePointer , andStackPointer work exactly
the same as in the other functions, so does the return value. They explanations are not repeated
here, see e.g.Section 7.5.2.1.
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The fourth parameter,FunctionName is the name of the function to be called. This
parameter can designate an external function, i.e. code that has been compiled seperately and
then linked to Scilab via, for examplelink , or the name of a Scilab function that has been
defined withfunction or deff . In any case it is simply the name of the function. On return
theIsExternal parameter signalsTrue if the function is a external andFalse otherwise.

The last parameter is very special. It specifies the installation procedureInstaller that
manipulates a dispatcher functionDispatchFunction . After a call toInstaller the
dispatcher points to the user function given byFunctionName .

Note: The programmer should not issue such a call; it is already done by GetExternal .

Examples of dispatcher functions, the associated hooks and dispatch tables are e.g. found in
SCI/routines/default/FTables.{h,c} . We will discuss dispatch tables inSection
7.3.3.1.

Support Functions

TheGetExternal function relies heavily on various support functions. The supporting
function have to be set up previous to the first call. Usually they are installed by the user’s
extention package unless she/he decides to (ab)use existing dispatcher tables and functions.

package ExternalSupport is
procedure InstallProcedure

(FunctionName : in FortranIdentifier;
FunctionEntryPoint : in SimpleFunctionType);

end ExternalSupport;

package body ExternalSupport is

with Ada.Characters.Latin_1;

type FunctionTableEntry is
record

FunctionName : FortranIdentifier;
FunctionAddress : SimpleFunctionType;

end record;

type FunctionTableType is
array (Positive range <>) of FunctionTableEntry;

- SimpleExample is of type SimpleFunction
function SimpleExample (X : Float) return Float;
begin

return X;
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end Hook;

FunctionTable : FunctionTableType(1 .. 2) :=
(1 => (FunctionName => "exampl",

FunctionAddress => SimpleExample ’Access),
2 => (FunctionName => (oth-

ers => Ada.Characters.Latin_1.NUL),
FunctionAddress => null));

DispatchFunction : SimpleFunctionType;

- function Hook is the hard-coded target for all
- internal calls

function Hook(X : Float) return Float;
begin

return DispatchFunction.all(X);
end Hook;

- bend hook function to point to FunctionEntryPoint

procedure InstallProcedure

(FunctionName : in FortranIdentifier;
FunctionEntryPoint : in SimpleFunctionType);

begin
DispatchFunction := SetFunction(FunctionName,

FunctionEntryPoint,
FunctionTable);

end InstallProcedure;

end ExternalSupport;

Example

For a self-contained example, seeSection 7.3.2.

See also

Functionals, Dispatch Tables
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7.5.3. Create Object
The object creation functions are mainly used to setup temporary variables for the current procedure
or the procedures to be called; they bear a lot of resemblance with the object access functions (see
alsoSection 7.5.2). The difference is that a new object is created and therefore stack space is used.

7.5.3.1. Cremat

Synopsis

function CreMat

( SelfName : in String;
StackPointer : in ParameterStackAddress;
WantComplex : in ComplexFlag;
Rows : in Natural;
Columns : in Natural;
RealIndex : out DataStackIndex;
ImaginaryIndex : out DataStackIndex)

return Boolean;

Description

FIXME: write it

7.5.4. Miscellaneous
FIXME: Write it!

7.6. C Interface to Scilab’s Core
Analogously to the Fortran-77 section,Section 7.5, following provides a reference for the C-interface
to Scilab split into four sub-sections:query, access, creationof objects, andmiscellaneousfunctions.

All C-interface functions are introduced in SCI/routines/stack-c.h .

7.6.1. Query
The functions in this group retrieve information about the parameters a function has been called
with, and about the properties of objects on the stack.
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7.6.1.1. CheckRhs

Synopsis

function CheckRhs

( MinNumParameter : in Natural;
MaxNumParameter : in Natural)

return Integer;

Description

Check the number of actual parameters on the right-hand side to be in the range
MinNumParameter : MaxNumParameter . Return1 if it is in the range, otherwise raise error
77 associated with the name of the C-function from whichCheckRhs is called.

The semantics ofCheckRhs is slightly goofy. If the number of actual input parameters is in the
specified range,CheckRhs returns1, but it never returns0 as it raises an error in this case.
Therefore, the return value can safely be ignored, as we do in the Example.

Example

int
myfun(const char *fname)
{

/* local variables */

CheckRhs(1, 1); – check for exactly one argument

/* more code goes here */
}

See also

CheckLhs , Lhs , Rhs

7.6.1.2. CheckLhs

Synopsis

function CheckLhs

( MinNumParameter : in Natural;
MaxNumParameter : in Natural)

return Integer;
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Description

Check the number of actual parameters on the left-hand side to be in the range
MinNumParameter : MaxNumParameter . Return1 if it is in the range, otherwise raise error
78 associated with the name of the C-function from whichCheckLhs is called.

The semantics ofCheckLhs is slightly goofy. If the number of actual output parameters is in
the specified range,CheckLhs returns1, but it never returns0 as it raises an error in this case.
Therefore, the return value can safely be ignored, as we do in the Example.

Note that a seemingly empty left-hand side as in

-> ones(2,3)
ans =

! 1. 1. 1. !
! 1. 1. 1. !

implies the variableans , and accordingly the number of left-hand side parameters in this case is
1.

Example

int
myfun(const char *fname)
{

/* local variables */

CheckLhs(1, 1); –
allow a maximum of one return value

/* more code goes here */
}

See also

CheckRhs , Lhs , Rhs

7.6.1.3. Lhs

Synopsis

function Lhs : Natural;
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Description

The number of actual output parameters, i.e. those on the left-hand side of the assignment
operator, is available throughLhs .

Note that a seemingly empty left-hand side as in

-> ones(2,3)
ans =

! 1. 1. 1. !
! 1. 1. 1. !

implies the variableans , and accordingly the number of left-hand side parameters,Lhs , in this
case is 1.

See also

CheckLhs , CheckRhs , Rhs

7.6.1.4. Rhs

Synopsis

function Rhs : Natural;

Description

The number of actual input parameters, i.e. those on the right-hand side of the assignment
operator, is available throughRhs.

See also

CheckRhs , CheckLhs , Lhs

7.6.1.5. GetType

Synopsis

function GetType

( ParameterNumber : in ParameterStackIndex )
return TypeCode ;
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Description

Inquire the Scilab type code of argumentParameterNumber . The type codes are the same
as returned bytype . The first parameter has index 1. SeeTable 4-3for a complete listing of all
available type codes.

Example

int
vandermonde(const char *fname)
{

/* local variables */

CheckRhs(1, 1) ; – assert one argument
if (GetType(1) != 1) { – test for a float

Scierror (814, "%s: expecting floating point entity", fname);
return 1;

}

/* more code goes here */
}

See also

GetRhsVar

7.6.2. Access Object
The following functions allow for the access of the Scilab data stack, and the mapping of C-pointers
to and from stack indices.

Please remember that variables of type ParameterStackAddress, within the user function, point to
uniquestack positions. Thus, after the calls

GetRhsVar(1, "d", &rows1, &cols1, &idx1);
CreateVar(1, "d", &rows2, &cols2, &idx2); /* Ouch! */

stk(idx1) andstk(idx2) point to the same memory location. Sometimes – if and only if the
“old” variable is not accessed anymore – this is desired.

The type of a variable on the stack, whether it is the actual type of an argument passed in, or the
requested type of a local variable, is defined with a string of length 1, the TypeString. All valid type
strings a compiled inTable 7-4.

Table 7-4. TypeString Identifiers
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TypeString C or Scilab type

S string

c single precision complex,struct complex {

float re, im; } (see also Section

7.2.2 )

d double

f float

i int

l list

p void*

r reference?

t tlist

z double precision complex,struct

double_complex { double re, im; }

(see also Section 7.2.2 )

7.6.2.1. GetRhsVar

Synopsis

procedure GetRhsVar

( ParameterNumber : in ParameterStackIndex ;
VariableType : in TypeString ;
Rows : out AccessNatural;
Columns : out AccessNatural;
StackIndexPtr : out AccessDataStackIndex );

Description

Return size and Scilab-stack address of function argument numberParameterNumber . The
argument must have typeVariableType . SeeTable 7-4for valid type-strings.

On successRows andColumns hold the dimensions of the parameter (twice a one for a
scalar) andStackIndexPtr points to the index of start address of the parameter on the
Scilab stackstk .

GetRhsVar performs weak type checking with respect toVariableType . If VariableType

= "d" and a (double) complex is passed to the function,noerror is raised! Integers, strings, etc.
do raise an error in this case. Therefore, the type of an argument always should be inquired with
GetType before callingGetRhsVar .
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Example

int
vandermonde(const char *fname)
{

int rows, cols, vec_idx;
double *input_vec;

/* more code */

GetRhsVar(1, – get first argument
"d", – expect double
&rows, – number of rows
&cols, – number of columns
&vec_idx); – stack index

if (rows != 1 && cols != 1) {
Scierror (815, "%s: expecting vector", fname);
return 1;

}
input_vec = stk(vec_idx); – convert index to pointer

/* more code */
}

See also

GetType , GetMatrixptr , LhsVar

7.6.2.2. GetMatrixptr

Synopsis

procedure GetMatrixptr

(
);

Description

FIXME: Write it!

Example

...
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See also

...

7.6.2.3. GetMatrixDims

Synopsis

procedure GetMatrixDims

(
);

Description

FIXME: Write it!

Example

...

See also

...

7.6.2.4. GetRhsCVar

Synopsis

procedure GetRhsCVar

(
);

Description

FIXME: Write it!

Example

...

See also

...

181



Chapter 7. Scilab Core

7.6.2.5. GetListRhsVar

Synopsis

procedure GetListRhsVar

(
);

Description

FIXME: Write it!

Example

...

See also

...

7.6.2.6. GetListRhsCVar

Synopsis

procedure GetListRhsCVar

(
);

Description

FIXME: Write it!

Example

...

See also

...

7.6.2.7. GetFuncPtr

Synopsis
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procedure GetFuncPtr

(
);

Description

FIXME: Write it!

Example

...

See also

...

7.6.2.8. LhsVar

Synopsis

LhsVar : array ( ParameterStackIndex ) of ParameterStackIndex ;

Description

LhsVar is an array of the return values of a function. Assigning toLhsVar ( N) means
assigning to return-value numberN. The values put intoLhsVar are the numbers of local
variables, which have previously been created withCreateVar or GetRhsVar .

Example

int
vandermonde(const char *fname)
{

int rows, cols, vec_idx;
int n, vdm_idx;
double *input_vec;
double *vdm_matrix;

/* some code here */

GetRhsVar (1, – argument 1 at stack position 1
"d",
&rows,
&cols,
&vec_idx);

input_vec = stk(vec_idx);

183



Chapter 7. Scilab Core

n = (rows > cols) ? rows : cols;

/* allocate matrix */
CreateVar (2, – local variable 1 at stack position 2

"d",
&n,
&n,
&vdm_idx);

/* compute Vandermonde matrix */

LhsVar(1) = 2; – stack position 2 goes to return-
value 1
return 0;

}

The lineLhsVar(1) = 2; requires further explanation. The left-hand side of the assignment
specifies the first element in the array of all return values of the function. The right hand side of
the assignment denotes the first local variable (created withCreateVar in the example) within
the function. It has stack index 2, because this is the first free stack position after all parameters
(here: 1).

See also

CreateVar , CheckLhs Lhs

7.6.3. Create Object
The functions in the create group of the core interface allocate new Scilab variables on the Scilab
data stack, which are accessed through their index on the parameter stack.

7.6.3.1. CreateVar

Synopsis

procedure CreateVar

( VariableNumber : in ParameterStackIndex ;
VariableType : in TypeString ;
Rows : in AccessNatural;
Cols : in AccessNatural;
StackIndex : out AccessDataStackIndex );
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Description

Create a new local Scilab variable on the Scilab stack. The variable is later accessed with its
“handle”,VariableNumber . The type of the variable is selected withVariableType . See
Table 7-4for a complete listing of all type strings. The size of the new scalar, vector, or matrix
is determined byRows, andCols . Scalars haveRows := 1; Cols := 1 .

On return theCreateVar setsStackIndex to the element in the data stackstk that points to
the start address of the newly created variable.

Example

int
vandermonde(const char *fname)
{

int vdm_idx;
const int n = 4;
double *vdm_matrix;

/* some code here */

CreateVar(2, – first local variable
"d", – double precision
&n, – n rows
&n, – n columns
&vdm_idx); – index into stack

vdm_matrix = stk(vdm_idx); – convert to pointer

/* more code here */
}

See also

LhsVar

7.6.3.2. CreateVarFromPtr

Synopsis

procedure CreateVarFromPtr

(
);
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Description

FIXME: Write it!

Example

...

See also

FreePtr

7.6.3.3. FreePtr

Synopsis

procedure FreePtr

(
);

Description

FIXME: Write it!

Example

...

See also

CreateVarFromPtr

7.6.3.4. CreateCVar

Synopsis

procedure CreateCVar

(
);

Description

FIXME: Write it!
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See also

...

7.6.3.5. CreateCVarFromPtr

Synopsis

procedure CreateCVarFromPtr

(
);

Description

FIXME: Write it!

See also

...

7.6.3.6. CreateData

Synopsis

procedure CreateData

(
);

Description

FIXME: Write it!

See also

...

7.6.3.7. CreateListCVarFromPtr

Synopsis

procedure CreateListCVarFromPtr

(
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);

Description

FIXME: Write it!

See also

...

7.6.3.8. CreateListVarFromPtr

Synopsis

procedure CreateListVarFromPtr

(
);

Description

FIXME: Write it!

See also

...

7.6.3.9. Createlist

Synopsis

procedure Createlist

(
);

Description

FIXME: Write it!

See also

...
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7.6.3.10. WriteMatrix

Synopsis

procedure WriteMatrix

(ScilabVariableName : in String;
Rows : in ConstAccessNatural;
Cols : in ConstAccessNatural;
Carray : in ConstAccessAny);

Description

FIXME: Write it!

send array C[] to Scilab as variable C; see: intex14c.c

Example

...

See also

...

7.6.3.11. WriteString

Synopsis

procedure WriteString

(ScilabVariableName : in ConstAccessString;
CstringLength : in ConstAccessNatural;
Cstring : in ConstAccessString);

Description

FIXME: Write it!

create the Scilab variable Str from str; see: intex16c.c

Example

...
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See also

...

7.6.4. Miscellaneous
The dreaded miscellaneous... All functions that do not fit in any of the above categories go here.

7.6.4.1. Scierror

Synopsis

procedure Scierror

( ErrorNumber : Natural;
FormatString : String;
FunctionName : String);

Description

Raise errorErrorNumber , associated with the errors messageFormatString , which is
preceeded by the function’s (the one we are currently in) nameFunctionName .

Example

int
hrtimer(const char *fname)
{

/* code left out here */

if (t < 0.0) {
Scierror(5771, "%s: internal error\n", fname);
return 1;

}

/* code left out here */
}

7.6.4.2. PExecSciFunction

Synopsis
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procedure PExecSciFunction

(
);

Description

FIXME: Write it!

From the example file: Executes the Scilab function (f) pointed to by sci_f. We provide a rhs =
2 and expect lhs = 1; PExecSciFunction(5, &sci_f, &lhs, &rhs, "ArgFex", ex17cenv);

Example

See also

intex17c.c ...

7.6.4.3. ReadString

Synopsis

procedure ReadString

( Identifier : in ConstAccessString;
CstringLength : in out AccessNatural;
Cstring : out AccessString);

Description

Form the example file: We search a Scilab object named Mystr check that it is a string and store
the string in str. strl is used on entry to give the maximum number of characters which can be
stored in str. After the call strl contains the number of copied characters.

Example

See also

intex15c.c ...
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7.6.4.4. SciFunction

Synopsis

procedure SciFunction

(
);

Description

FIXME: Write it!

execute the function; SciFunction(&ibegin, &lf, &mlhs, &mrhs);

Example

See also

intex8c.c ...

7.6.4.5. SciString

Synopsis

procedure SciString

(
);

Description

FIXME: Write it!

eval()? exec()? SciString(&ibegin, name, &mlhs, &mrhs);

Example

See also

intex7.c.c , intex11c.c , intex12c.c ...
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We are done with our tour through Scilab, but we are not done with sci-BOT! A few things outside
the Scilab application have to be mentioned. First, the sheer size of the sources requires some tools
to handle it efficiently. We address this topic inSection 8.1. Moreover, we should not forget that
Scilab is shipped with a lot of helpful documentation.Section 8.2gives an overview of this part of
the documentation. We wrap up the chapter withSection 8.3, a small collection of hyper links
connected to Scilab

8.1. Coping With Scilab
Scilab is a large package – no doubt about that. The source for version 2.5 comprises of more than
48 MB, and builds to over 88 MB on an IA32 GNU/Linux system.

8.1.1. Distribution Size
We use several tools to cope with Scilab’s size and complexity. The most important ones are
introduced in the following section.

8.1.1.1. CVS

CVS is one of the most commonly used version control systems. A set of source files (which can be
binary) is put under revision control by “checking it in”. The important difference to an older version
control system, RCS is the notion of a module which refers to the complete set of sources. Usually
the set consists of a whole directory tree, as e.g. all Scilab sources.

Also check out Pascal Molli’sinformation and FAQon CVS. In larger development environments
CVS with its relaxed rules might not be the adequate tool. In these casesAegiscould be used.

8.1.1.2. locate

The locate(1) command is the fast brother of thefind(1) command. More precisely,locateaccesses
a precomputed database of filenames (usually/var/lib/locatedb ; for its structure see
locatedb (5)). The database is generated byupdatedb(1) with a find / -print and then
processed for faster access.

We have found a local filename database very useful for the work with large projects. Therefore, we
have set up two aliases that create and access a project-specific list of filenames.

alias upd=’updatedb -output=./.locatedb -localpaths=.’
alias loc=’locate -database=./.locatedb’

Theupd sequence is typically run after a CVS checkout, add, or remove in the directory SCI.
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We runloc whenever we are looking for a file in the Scilab distribution. This is much faster than
runningfind every time, especially when working with a slow file server. The only inconvenience
remaining is thatloc must be executed in the directory where the database resides, here: SCI.
However this is more than compensated by the fact thatlocatedoes a substring search, i.e. given the
filenamefpat it returns all file- and directory names matching the regulat expression.* fpat .* .

If we want to scan the complete database and postprocess the output with our tools-of-choice,
issuing aloc . and piping the output through the desired filters does the job.

8.1.1.3. Glimpse

What theupdatedb/locatepair is for filenames theglimpseindex/glimpsepair is for file contents.
glimpseindex(1) generates a database that is accessed by the user viaglimpse(1). So,

glimpse pattern

corresponds to the non-database backed command, namely a recursivegrep over a set of directories
like

find . -print | xargs grep pattern

assuming that the database has been generated for “. ”. Again the fast version is so helpful that we
have defined two aliases.

alias glidx=’if test -f .glimpse_index; then
glimpseindex -H . -o -f -B .;

else
glimpseindex -H . -o -B .;

fi’
alias gl=’glimpse -H .’

The first alias,glidx, is oneline. It has been broken into several lines only to make its workings clear;
namely if an index file already exists it is updated (-f option), otherwise it is generated from scratch.

Like our locatealiases everything is happening in the current directory which means thatglidx
should be called from SCI.

Glimpse is not part of most of the standard GNU/Linux distributions (at least notSuSE, and RedHat
, the ones we checked). The University of Arizona currently hosts theGlimpse home page, and
Glimpse can also be downloaded fromSCO’s software archive, which is mirrored bySunsite UK.

8.1.2. Bug Hunting
In preparation of this document (lvd), and in our daily work (cls) we have found it very useful to
have more than one Scilab. What? More than one running process? – No, more than one binary of
scilex ! In fact three different versions all come in handy depending on the task:

194



Chapter 8. Further Information

scilex binaries

Code optimized for execution speed

The common name is “production quality code”, but Scilab is so far away from production
quality that we shall not use that term.

This scilex is built with all compiler optimizations enabled. Furthermore all compiler
switches and options are specifically tuned for the machine the code will run on in the future
(seeSection 6.3). Maximum performance is the only goal and no attempt is made to retain any
debugging information.

Debugging Code

This scilex is not optimized, instead it carries complete debug information. Thus, it is ideally
suited for interactive debugging sessions, and single-line tracing.

Profiling Code

The third variant is a profiling version ofscilex . It is not optimized for speed either.

Profiling is the first step of any tuning. Furhtermore, during our work with and on Scilab we
have found it very helpful to be able to answer the notorious question: “Where is it buring the
cycles?” Profiling – done right – is much faster than timing individual “suspects”, although
analyzing the profiler output requires some skill.

See alsoSection 4.6.2.

8.2. Local Documents
Following documents come with every source distribution of Scilab. They live in the directory
SCI/doc .

Standard Documentation

Comm.ps – Communication Toolbox

Description of geci an interactive communication manager.

Whenever Scilab is started with thescilab-script in fact geci takes over and startsscilexas a
process on the local machine. geci is not limited to local processes; remote machines can be
accessed transparently.
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Comm.ps describes the commands available from within Scilab to communicate with other
applications via geci. Moreover it elaborates how to write C-applications that communicate
with Scilab via geci and the associated library.

Internals.ps – Guide for Developers

Internals.ps is the terse breakdown of the innermost core of scilex. It contains descriptions
of the most holy variables likestk , the stack structure, and the internal variable representation.

The last third treats interfacing user routines with the core and consists mostly of scarcely
documented Fortran program listings.

This is a document intended for gurus, and certainly not suited for casual reading.

Intro.ps – Users Guide

This is not a must-read this is more, it is a must-print-and-store-near-the-computer. The “Intro”
is muchmore than just an introduction to Scilab.

The chapter breakdown is as follows:

• Introduction,

• Data Types,

• Programming,

• Basic Primitives,

• Graphics, and

• Interfacing.

The appendices cover a Demo Session, System Interconnection, and a brief section about
converting Scilab code to Fortran-77 code.

Most interesting for beginners is the chapter “Introduction”. Combining it with browsing over
“Data Types” and “Graphics” a novice should be all set for her/his first steps.

The advanced user will want to come back the “Data Types” regularly and also study
“Programming” in detail. Any chapter but “Interfacing” should be understandable at that skill
level. It is no shame to come back to the Intro over and over again as Scilab is rich in data types
and graphics commands.

Far beyond the introductory stuff the chapter on “Interfacing C or Fortran routines” wraps up
the Intro. The topics treated here are for the aspiring Scilab master. Dynamic and static
extensions are discussed in depth. The companion program intersci for automatic
Fortran77-interface generation is treated in detail.
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Lmi.ps – LMI-Optimization Toolbox

FIXME: someone please write it!

Manual.ps – Reference Manual

TheManual.ps is an automatically generated compilation of all Scilab user-variables and
user-commands. It is a compilation in the truest sense of the word as all the help texts available
online through thehelp-command are catenated to one huge (over 700 pages) file.

Metanet.ps – Graphs and Networks Toolbox

FIXME: someone please write it!

Scicos.ps – Dynamic System Builder And Simulator Toolbox

FIXME: someone please write it!

Signal.ps – Signal Processing

FIXME: someone please write it!

8.3. Hyperlinks
Here are a few links that are useful in connection with Scilab.

Links

INRIA official Scilab pages

• Scilab Home page

• Parallel Scilab Home page

• Scilab FAQ

• Scilab FTP Site

Pages Of Scilab Enthusiasts (alphabetically)

• Stéphane Mottelet’s Scilab page

• Jesus Oliván’s Scilab pagefocuses on signal processing in medicine.

• Bruno Pinçon’s Scilab pagefeaturing a nice French introduction to Scilab.

• Enrico Segre’s page
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• Alexander Vigoder’s Scilab page(mainly scilab-mode for emacs)
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Chapter 9. Notes for Contributers
“You’re the voice” by John Farnham

We have the chance, to turn the pages over
We can write what we want to write
We got to make ends meet before we get much older

These notes should help contributers to adapt their writing to the format fo sci-BOT. The first part,
Section 9.1, treats stylistic problems, the second,Section 9.2, technical matter.

9.1. Writing Style
We do not require a contributor to follow Strunk and White’s, “The Elements of Style”
[Strunk:1979], though it is not a bad idea for any author to study this classical book on writing well.
Instead here is some general and simple advice for writing. The following list is an edited excerpt
from the author instructions of the American Institute of Physics.

Be clear

Consider the beauty and efficiency of simple declarative sentences as the perfect medium for
communicating complex information. Avoid long sentences in which the meaning may be
obscured by complicated or unclear construction.

Be concise

Avoid vague and inexact usage. Be as qualitative as the subject matter permits. Avoid idle
words; make every word count.

Be complete

Do not assume that your reader has all the background information that you have on the subject
matter. Make sure your argument is complete, logical, and continuous.

Put yourself constantly in the place of the reader

Be rigorously self-critical as you review your first drafts, and ask yourself: “Is there any way in
which this passage could be misunderstood by someone reading it for the first time?”

Some very good hints come from an article of George D. Gopen and Judith A. Swan[Gopen:1990]:

1. Follow a grammatical subject as soon as possible with its verb.

2. Place in the “stress position” the new information you want the reader to emphasize.
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3. Place the person or thing whose “story” a sentence is telling at the beginning of the sentence, in
the topic position.

4. Place appropriate “old information” (material already stated in the discourse) in the topic
position for linkage backward and contextualization forward.

5. Articulate the action of every clause or sentence in its verb.

6. In general, provide context for your reader before asking that reader to consider anything new.

7. In general, try to ensure that the relative emphases of the substance coincide with the relative
expectations for emphasis raised by the structure.

Always bear in mind that sci-BOT is a DocBook document, which means that

i. it is stored in machine readable format,

ii. its HTML output is viewed online with a multitude of different browsers, and

iii. its PostScript® or PDF output will be printed on paper with black-and-white printers.

Item i enables the author to make extensive use of cross-references (<xref> ), preferably in both
directions. Furthermore, authors should make heavy use of the automatic index generation
(<indexentry> ). <xref> s can go everywhere in the running text, but<indexentry> s should only
go intochapter or section N elements even if this separates the indexed term form the index entry.

The different output media, as mentioned in itemii andiii , require that all included graphics are
provided in at least two formats, one suitable for online viewing and the other for high resolution
(assume at least 720 dpi) monochrome printouts.

FIXMEs. Probably has seen several almost empty sections marked with “FIXME” and some
comment following it. These markers are agoodthing. They remind the author[s] that the discussion
is still incomplete, but the missing part has been identified and sits already in the right section. On
the other hand, a “FIXME” tells the reader that the author is aware of a gap in the flow of
information, and is probably working on it.

9.2. Technicalities

9.2.1. DocBook
sci-BOT is written in xml-DocBook. Any aspiring author should get a copy of Norman Walsh and
Leonard Muellner’s, “DocBook: The Definitive Guide”. See,[Walsh:1999]for full bibliographical
details. An online version of the book is available at DocBook-Online, and an archive of
DocBook-Online is provided, too.

Furthermore, we recommend Nik Clayton’s “FreeBSD Documentation Project Primer for New
Contributors”. It gives a gentle introduction to the whole business of using DocBook, and moreover,
elaborates on semantical and stylistic issues.
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9.2.1.1. Guidelines

• The preferred text width is 79 characters.

• Tabulator characters are forbidden; always use spaces.

• CDATAsections are forbidden.

• The use of double quotes inpara or similar elements is deprecated; usequote or blockquote

instead.

• All id attributes are made of the charactersa-z (lowercase only),0-9, and the dash- .

• For the following elements identifiers are mandatory:chapter , sect1 , sect2 , ... sect6 ,
indexterm , example , figure , biblioentry , andco .

• Identifiers are made up of lowercase alphanumeric characters and dashes. If an element carries an
identifier, the identifier must have a prefix. The prefix is separated from the rest of the identifier
with a dash.

tag prefix

<chapter> chap

<sect1>, <sect2>, ..., <sect6> sect

<titleabbrev> chsh or sesh for <chapter> or

<sect> N. In general: the first two

letters from the prefix plus “sh”.

<indexterm> idx

<biblioentry> bib

<equation>, <informalequation> eq

<table>, <informaltable> tab

<figure>, <informalfigure> fig

<example> ex

<co> co

<listitem> item

9.2.1.2. Indentation style

Our indentation style mostly follows the common SGML/XML DocBook indentation, with few
exceptions:

• The principal indentation is 4 characters, not 2.

• Sectioning tags like<chapter> , <sect1> , <sect2> , ..., or<sect6> , do not increase the
indentation level; they always start at column 1;
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• <para> is never formatted inline, but as block with the appropriate indentation.

• <title> , <entry> , and<term> change their inlining character depending on the length of the
contained text. As long as the tag and the contained text fit in one line, the tags are formatted
inline, otherwise they go on lines by themselves and the contents is indented.

9.2.2. Tables
We prefer tables to be formatted according to DIN 55301. Some formatting systems might not be
able to produce a fully compliant output, as well as some output formats are incapable of
representing a correctly formatted table. Therefore, we do not only show the SGML-source code,
Example 9-1, to mark up a table, followed by the rendered table,Table 9-1, but also a correctly
rendered one,Figure 9-1, which was produced by LaTeX.

The DIN 55301 takes about ten pages, explaining the construction of a table in detail; most
important for sci-BOT are the following rules:

• Top and bottom of the table header are framed, but never are the header’s left or right sides.

• Logical lines in the table header are separated by rules.

• In the header different columns within one logical line are separated with vertical rules. The
width of a column must be less or equal the width of the column above it.

• Entries in the header are centered horizontallyandvertically.

• The table body lacksanyrule.

Example 9-1. SGML-code for a DIN compliant table

<table id = "tab-table-din55301" frame = "top">
<title>DocBook approximation of a DIN conforming table</title>

<tgroup cols = "12">
<colspec colname = "col-pid" align = "right"></colspec>
<colspec colname = "col-usr" align = "left"></colspec>
...
<colspec colname = "col-cmd" align = "left"></colspec>

<spanspec spanname = "sp-id" namest = "col-pid" nameend = "col-
usr"

align = "center" colsep = "1"></spanspec>
<spanspec spanname = "sp-sched" namest = "col-pri" nameend = "col-

ni"
align = "center" colsep = "1"></spanspec>

...

<thead>
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<row>
<entry spanname = "sp-id">Identification</entry>
<entry spanname = "sp-sched">Scheduling</entry>
<entry spanname = "sp-mem">Memory</entry>
<entry align = "center" colsep = "1"

morerows = "1" valign = "middle">Stat</entry>
<entry spanname = "sp-res">Resources</entry>
<entry align = "center" colsep = "1"

morerows = "1" valign = "middle">Command</entry>
</row>

<row>
<entry align = "center" colsep = "1">PID</entry>
<entry align = "center" colsep = "1">User</entry>
...
<entry align = "center" colsep = "1">Share</entry>
<!- space occupied by "Stat" ->
<entry align = "center" colsep = "1">%CPU</entry>
<entry align = "center" colsep = "1">%Mem</entry>
<entry align = "center" colsep = "1">Time</entry>
<!- space occupied by "Command" ->

</row>
</thead>

<tbody>
<row>

<entry>737</entry>
<entry>root</entry>
...
<entry>X</entry>

</row>
...

</tbody>
</tgroup>

</table>

Table 9-1. DocBook approximation of a DIN conforming table

Identification Scheduling Memory Stat Resources Com-
mand

PID User Pri Ni Size RSS Share %CPU %Mem Time

737 root 15 0 56644 55M 1556 S 0.9 22.1 0:07 X
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Identification Scheduling Memory Stat Resources Com-
mand

PID User Pri Ni Size RSS Share %CPU %Mem Time

1675 cspiel 13 0 1752 1752 1424 S 0.5 0.6 0:00 xis-
dnload

1973 lvandijk 14 0 1176 1176 988 R 0.5 0.4 0:00 top

2 root 10 0 0 0 0 SW 0.1 0.0 0:00 kswapd

1656 cspiel 10 0 1356 1356 1108 S 0.1 0.5 0:00 bbsload

1764 lvandijk 18 0 6380 6380 3112 S 0.1 2.4 0:09 emacs

Figure 9-1. Table formatted according to DIN 55301
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The output of thetop(1) command formatted according to DIN 55301.

9.2.3. Examples
Examples within the main text, should be as short as possible, retaining their completeness. If an
author likes to give the complete version of an example, she is encouraged to do so by including it in
the Appendix.<xref> s should be added in the main text and in the Appendix to allow for easy
moving between the example’s abridged and the full version.

Particularly interesting code can go into the Appendix, without having a short equivalent in the
running text. No cross-references are necessary in this case.

If the Scilab source of an example is to be included in the filescibot-examples , its listing must be
marked up in a special way.

• <programlisting> mustcontain the two attributesrole , andid .
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• role must bescilab .

• id must end in.sci . Theid will be the filename of the example when stored in the archive.

Hints for preparing examples. Our policy forbids the use ofCDATAmarked sections in sci-BOT.
Therefore, all examples are contained in<programlisting> elements, where the usual DocBook
formatting rules are active.

• Relational operators containing “<”; or “>”; must be written as&lt; , or &gt; respectively. Note
that this also holds for digraph operators like “<=”, and “>=”, or anything else – think of
comments – that contain “<”; or “>”.

• Logical and, “&”, must be written as&amp; .

• Additional comments to the code should be wrapped in<lineannotation> elements. These
will be stripped off when generatingscibot-examples .

9.2.4. Graphics
The inclusion of graphics is a relatively labor intensive job, despite the use of a publishing system
that does well support graphics. (The future is so bright, we’ve gotta wear shades.) So, use it
sparingly.

Graphics are wrapped in<mediaobject> s. Graphics must always be supplied in at least
Encapsulated PostScript® and in Portable Network Graphics (png) formats. Providing additional
formats is up to the author, however gif-encoded images are excluded from sci-BOT because of
copyright issues. A<textobject> holding the textual description of the image is as mandatory as
an image caption. A complete definition looks like this:

Example 9-2. Inclusion of graphics

<mediaobject>
<imageobject>

<imagedata fileref = "graphic.eps" format = "EPS"></imagedata>
</imageobject>

<imageobject>
<imagedata fileref = "graphic.png" format = "PNG"></imagedata>

</imageobject>

<textobject>
<!- textual description of the image ->
<phrase>...</phrase>

</textobject>

<caption>
<para>

...
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</para>
</caption>

</mediaobject>

In the example we have assumed that there are two graphics files namedgraphic.eps , and
graphic.png . If the author wants an image or set of images go into the List of Figures, the whole
<mediaobject> can be wrapped in<figure> .

9.2.5. Mathematics
In the current version of sci-BOT, the use of MathML is not allowed, but as soon as a wider variety
of browsers will support MathML, it will be recommended. At present, the only mathematical
notation which can be encoded directly in DocBook are superscripts (<superscript> ), and
subscripts (<subscript> ). All “higher” mathematics is encoded with LaTeX as described below.

Equations are treated as graphics (seeSection 9.2.4), where the filenames of the graphics files have a
special meaning, thetextobject has a special format, and thecaption is missing.

The textobject must contain exactly onephrase element with attributerole having the value
“ formula ”, and the attributeid being the LaTeX-filename of the formula.

Example 9-3. Inclusion of mathematics

<informalequation id = "eq-diff">
<mediaobject>

<imageobject>
<imagedata fileref = "eq-diff.eps" format = "EPS"></imagedata>

</imageobject>

<imageobject>
<imagedata fileref = "eq-diff.png" format = "PNG"></imagedata>

</imageobject>

<textobject>
<phrase role = "formula" id = "eq-diff.tex">

\[
\frac{df}{dx}(x_0) :=
\lim_{x \rightarrow x_0} \frac{f(x) - f(x_0)}{x -

x_0},
\]

</phrase>
</textobject>

</mediaobject>
</informalequation>
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Whenever a formula is set up like this, the build system automatically converts the LaTeX formula in
thephrase to the required eps and png files.

9.2.6. Index terms
Index term start tags<indexterm> can carry arole attribute that further specifies which kind of
term gets indexed. Marking up<indexterm> ’s this way isnot required. Currently only Texinfo can
handle theserole attributes.

Attribute Value Index Class Candidate Elements

c A concept index listing concepts
that are discussed.

various

f A function index listing
functions.

funcsynopsis, function

v A variables index listing
variables.

classname, constant,

structfield, structname,

symbol, token, type,

varname

k A keystroke index listing
keyboard and mouse commands.

accel, action,

guibutton, guiicon,

guilabel, guimenu,

guimenuitem, guisubmenu,

keycap, keycode,

keycombo, keysym,

menuchoice, mousebutton,

shortcut

p A program index listing names of
programs.

application, command
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Chapter 10. Complete Examples
Welcome to our attic! Following the style of the bag-of-tricks, the examples gathered here are an
unsorted collection of hacks that has piled up over the years. A few functions are used or discussed
in the earlier section, but were truncated to emphasized the important parts. Here you only find
complete versions. All programs in this Appendix are available in a sigletar or zip file; see
Section 3for details.

These example programs are free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License at the end of this document for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.

10.1. frac.sci

frac.sci implements a rather complete class of fractions which are based on floating point
numbers.

// name: frac.sci - a class of fractions implemented
// with operator overloading

//
// The names ’gcd’, ’lcm’, and ’qr’ are already occupied
// by Scilab, so we had to invent new ones. ;-)
//

function w = gcd_int(u, v)
// gcd of _positive_ u and v! See e.g.: Knuth, vol2, p337
while v ~= 0

r = modulo(u, v)
u = v
v = r

end
w = u

function [p_red, q_red] = reduce_int(p, q)
// reduce fraction p/q and return reduced fraction p_red/q_red as vector
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if q == 0, error(’not a fraction’), end
r = gcd_int(abs(p), abs(q))
if q < 0 then

r = -r // force positive denominator
end
[p_red, q_red] = (p/r, q/r)

function assert_int(p)
if type(p) ~= 1 | p ~= int(p) | imag(p) ~= 0 then

error(’assertion failed: non-integral or non-real p = ’ + string(p))
end

function f = frac(p, q, reduce)
// constructor for fractions
//
// p is the numerator, q is the denominator. If q is
// omitted, 1 is assumed. The boolean reduce controls whether
// p/q will be reduced. If reduce is omitted or %t the p/q
// will be reduced.
//
// frac(int, int, bool = %t): /* constructor */
// frac(2, 6) -> 1/3
// frac(2) -> 2/1 which is displayed as 2
// frac(2, 6, %t) -> 1/3
// frac(2, 6, %f) -> 2/6
//
// frac(frac, frac, bool = %t): /* copy constructor */
// f = frac(1, 3);
// frac(f) -> 1/3
// frac(f, f) -> 1
// frac(1, f) -> 3

select type(p)
case 1 then // constant

if size(p, ’*’) ~= 1 then
error(’argument p is non-scalar’)

end
p0 = p
q0 = 1

case 16 then // tlist
// copy constructor behavior
p0 = p(’num’)
q0 = p(’denom’)

else
error(’argument p has wrong type’)

end
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if exists(’q’, ’local’) then // q is an optional argument
select type(q)
case 1 then // constant

if size(q, ’*’) ~= 1 then
error(’argument q is non-scalar’)

end
q0 = q0 * q

case 16 then // tlist
// copy constructor behavior
p0 = p0 * q(’denom’)
q0 = q0 * q(’num’)

else
error(’argument q has wrong type’)

end
end

// ensure that arguments match
assert_int(p0)
assert_int(q0)

if exists(’reduce’, ’local’) then // (isdef(’reduce’) & re-
duce == %t) does not work, for

// Scilab performs a complete boolean evaluation
if reduce == %t then

[p_red, q_red] = reduce_int(p0, q0)
else

p_red = p0
q_red = q0

end
else

[p_red, q_red] = reduce_int(p0, q0)
end
f = tlist([’frac’; ’num’; ’denom’], p_red, q_red)

function s = %frac_p(f)
// display function for fractions
s = string(f)
disp(s)

//
// comparison
//

function b = %frac_o_frac(f1, f2)
b = f1(’num’) == f2(’num’) & f1(’denom’) == f2(’denom’)
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function b = %frac_n_frac(f1, f2)
b = ~%frac_o_frac(f1, f2)

function b = %frac_o_s(f, s)
assert_int(s)
b = %frac_o_frac(f, frac(s))

function b = %s_o_frac(s, f)
assert_int(s)
b = %frac_o_s(f, s)

function b = %frac_n_s(f, s)
assert_int(s)
b = ~%frac_n_frac(f, frac(s))

function b = %s_n_frac(s, f)
assert_int(s)
b = %frac_n_s(f, s)

function b = %frac_1_frac(f1, f2)
b = f1(’num’)*f2(’denom’) < f1(’denom’)*f2(’num’)

function b = %frac_2_frac(f1, f2)
b = f1(’num’)*f2(’denom’) > f1(’denom’)*f2(’num’)

function b = %frac_3_frac(f1, f2)
// <=
b = %frac_1_frac(f1, f2) | %frac_o_frac(f1, f2)

function b = %frac_4_frac(f1, f2)
// >=
b = %frac_2_frac(f1, f2) | %frac_o_frac(f1, f2)

function b = %frac_1_s(f, s)
assert_int(s)
b = %frac_1_frac(f, frac(s))

function b = %s_1_frac(s, f)
assert_int(s)
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b = %frac_1_frac(frac(s), f)

function b = %frac_2_s(f, s)
assert_int(s)
b = %frac_2_frac(f, frac(s))

function b = %s_2_frac(s, f)
assert_int(s)
b = %frac_2_frac(frac(s), f)

function b = %frac_3_s(f, s)
assert_int(s)
b = %frac_3_frac(f, frac(s))

function b = %s_3_frac(s, f)
assert_int(s)
b = %frac_3_frac(frac(s), f)

function b = %frac_4_s(f, s)
assert_int(s)
b = %frac_4_frac(f, frac(s))

function b = %s_4_frac(s, f)
assert_int(s)
b = %frac_4_frac(frac(s), f)

//
// addition/subtraction
//

function r = %frac_a_frac(f1, f2)
d1 = gcd_int(f1(’denom’), f2(’denom’))
if d1 == 1 then

r = frac(f1(’num’)*f2(’denom’) + f1(’denom’)*f2(’num’), ..
f1(’denom’)*f2(’denom’))

else
t = f1(’num’)*(f2(’denom’) / d1) + f2(’num’)*(f1(’denom’) / d1)
d2 = gcd_int(t, d1)
r = frac(t/d2, (f1(’denom’) / d1)*(f2(’denom’) / d2))

end
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function r = %frac_s_frac(f1, f2)
d1 = gcd_int(f1(’denom’), f2(’denom’))
if d1 == 1 then

r = frac(f1(’num’)*f2(’denom’) - f1(’denom’)*f2(’num’), ..
f1(’denom’)*f2(’denom’))

else
t = f1(’num’)*(f2(’denom’) / d1) - f2(’num’)*(f1(’denom’) / d1)
d2 = gcd_int(t, d1)
r = frac(t/d2, (f1(’denom’) / d1)*(f2(’denom’) / d2))

end

function r = %frac_s(f)
r = frac(-f(’num’), f(’denom’), %f) // do not reduce here

function r = %frac_a_s(f, s)
assert_int(s)
r = f + frac(s)

function r = %s_a_frac(s, f)
assert_int(s)
r = %frac_a_s(f, s)

function r = %frac_s_s(f, s)
assert_int(s)
r = f - frac(s)

function r = %s_s_frac(s, f)
assert_int(s)
r = frac(s) - f

//
// multiplication, division, power
//

function r = %frac_m_frac(f1, f2)
r = frac(f1(’num’)*f2(’num’), f1(’denom’)*f2(’denom’))

function r = %frac_r_frac(f1, f2)
r = frac(f1(’num’)*f2(’denom’), f1(’denom’)*f2(’num’))

function r = %frac_m_s(f, s)
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assert_int(s)
r = frac(f(’num’)*s, f(’denom’))

function r = %s_m_frac(s, f)
assert_int(s)
r = %frac_m_s(f, s)

function r = %frac_r_s(f, s)
assert_int(s)
r = frac(f(’num’), f(’denom’)*s)

function r = %s_r_frac(s, f)
assert_int(s)
r = frac(f(’denom’)*s, f(’num’))

function r = %frac_p_s(f, s)
assert_int(s)
r = frac(f(’num’)^s, f(’denom’)^s)

function r = %frac_abs(f)
r = frac(abs(f(’num’)), f(’denom’), %f)

//
// conversion
//

function fl = frac2float(f)
// convert a fraction to a floating point number
fl = f(’num’) / f(’denom’)

function s = %frac_string(f)
// string( frac(...) )
if f(’denom’) == 1 then

s = sprintf(’%.0f’, f(’num’))
else

s = sprintf(’%.0f/%.0f’, f(’num’), f(’denom’))
end

//
// continued fraction functions (and their helper functions)
// See: Knuth, vol2, p356-359
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//

function f = cfe2frac(cfe)
// *private function*
// convert the continued fraction expansion CFE to a floating point num-
ber F
// (recursive implementation)
select length(cfe)
case 0 then

f = frac(0, 1, %f)
case 1 then

f = frac(1, cfe(1), %f)
else

q = cfe2frac( cfe(2:$) )
f = 1 / (frac(cfe(1), 1, %f) + q)

end

function f = cfe2frac_it(cfe)
// *private function*
// convert the continued fraction expansion CFE to a floating point num-
ber F
// (iterative implementation)
if cfe == [] then

f = frac(0, 1, %f)
else

f = frac(1, cfe($), %f)
for x = cfe($-1 : -1 : 1)

f = 1 / (f + x)
end

end

function cfe = contfrac(fl, eps)
// *private function*
// continued fraction expansion of floating point number FL with a
// maximum error of EPS.
// CAUTION: contfrac() only accepts numbers in the range 0 <= fl < 1!
if fl < 0 | fl >= 1, error(’fl out of range’), end

if ~isdef(’eps’), eps = sqrt(%eps), end

guard = 100 // maximum length of expansion
i = 0

cfe = []
if fl == 0, return, end
x = fl
while abs(1 - frac2float(cfe2frac(cfe))/fl) > eps & i < guard
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a = round(1 / x)
cfe = [cfe a]
x = 1/x - a
i = i + 1

end
if i == guard then

warning(’could not achieve precision after ’ ..
+ string(guard) + ’ iterations’)

end

function f = float2frac(fl, eps)
// convert the floating point number FL to the fraction F
// with a maximum relative error of EPS
intpart = floor(fl) // floor([3.33 -3.33]) -> [3 -4]
f = intpart + cfe2frac( contfrac(fl - intpart, eps) )

testfrac.sci provides a simple tast-frame for the class of fractions describes above.

// name: testfrac.sci - test fractions class

getf(’frac.sci’);

f = frac(2, 3);
g = frac(1, 3);
h = frac(-1, 3);
i = frac(5, 3);

//
// each of the following tests should give %t
//

frac(0) == 0
frac(1) == 1
frac(-1) == -1
frac(0, 1) == 0
frac(1, 1) == 1
frac(2, 2) == 1

f + g == 1
g + h == 0
f - (g - h) == 0

1 + f == i
f + 1 == i
1 - f == g
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f - 1 == h

-g == h

3 * f == 2
f * 3 == 2

f / g == 2
f / 2 == g
2 / f == 3

9 * g^2 - 1 == 0

g < f
f > g
g <= f
f >= g
f < 1
f > 0
f <= 1
g >= 0

abs(g) == g
abs(h) == g

//
// continued fraction expansion
//

frac(8, 29) == cfe2frac([3 1 1 1 2]) // recursive implementation
frac(8, 29) == cfe2frac_it([3 1 1 1 2]) // iterative implementation

n = 10

// 0 <= x < 1 in this test
x = 1/%pi;
timer();
for d = 1:n

eps = 10^(-d);
c = contfrac(x, eps);
f = cfe2frac(c);
fl = frac2float(f);
delta = abs( x - fl );
if delta <= eps, passed = ’T’; else passed = ’F’; end;
printf(’%10.g %20.16g %c’, eps, delta, passed);

end
printf(’time: %f’, timer());
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// x should be larger than 1 or less than 0 in this test
x = %pi;
timer();
for d = 1:n

eps = 10^(-d);
fl = frac2float( float2frac(x, eps) );
delta = abs( x - fl );
if delta <= eps, passed = ’T’; else passed = ’F’; end;
printf(’%10.g %20.16g %c’, eps, delta, passed);

end
printf(’time: %f’, timer());

x = -(1 + sqrt(5)) / 2;
timer();
for d = 1:n

eps = 10^(-d);
fl = frac2float( float2frac(x, eps) );
delta = abs( x - fl );
if delta <= eps, passed = ’T’; else passed = ’F’; end;
printf(’%10.g %20.16g %c’, eps, delta, passed);

end
printf(’time: %f’, timer());

//
// Some power series
//

// geometric series
z = frac(1, 3);
for n = 1:20

s = frac(1);
q = z;
for i = 1 : n-1

s = s + q;
q = q * z;

end
rhs = (1 - z^n) / (1 - z);
if s == rhs, passed = ’T’; else passed = ’F’; end;
disp(string(n) + ’: ’ + string(rhs) + ’ ’ + passed);

end;

// exponential sums
limit = 1e-8

s = frac(1);
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q = frac(1, 2);
while frac2float(abs(s - 2)) > limit

s = s + q;
q = q / 2;

end;
if frac2float(abs(s - 2)) <= limit, disp(%t); else disp(%f); end;

s = frac(1);
q = frac(1, 2);
sgn = -1;
while frac2float(abs(s - frac(2, 3))) > limit

s = s + q * sgn;
sgn = -sgn;
q = q / 2;

end;
if frac2float(abs(s - frac(2, 3))), disp(%t); else disp(%f); end;

10.2. benchmark.sci

This example shows a benchmark function that tries hard to do better than others. In the first step the
timer resolution is determined. Next the function under test is executed in a loop and the time taken
is estimated. This time in turn is used for the final test. The number of loop iterations is chosen
according to the preliminary test. Finally, the median of the timings is returned.

function res = calibrate(max_len, n_avg, log_inc)
// determine the resolution of Scilab’s built-in timer
// Return vector with measured timer resolution(s)

[nl, nr] = argn()
if nr <= 2, log_inc = 1.1, end
if nr <= 1, n_avg = 31, end
if nr == 0, max_len = 100000, end

r = []
n = 1
while n <= max_len

//disp(n)
tv = []
iter = 0:n
for k = 1:n_avg

timer()
for i = iter, end
t = timer()
tv = [tv; t]

end
tv = sort(tv)
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r = [r; [n, tv($/2 + 1)]]
n = log_inc * n

end

// xbasc(); plot2d(r(:,1), r(:,2), -1)

delta = [r(:, 2); r($, 2)] - [r(1, 2); r(:, 2)]
idx = find(delta > %eps)
res = delta(idx)

function tpl = benchmark()
// return the time for one loop round trip

verbose = %t
min_test = 10 // minimum multiple of the timer

// resolution to run coarse test
std_test = 200 // as min_test but for real test
n_avg = 31 // number of samples to calculate median
log_inc = 2.0 // logarithmic increment in coarse test

// inquire timer properties
disp(’+++ calibrating timer’)
resol = calibrate()
if size(resol, ’*’) <= 2 then

error(’calibration failed’)
end
if resol(1) ~= resol(2) then

warning(’calibration botched; proceeding anyway...’)
end
t_resol = resol(1);
if verbose

disp(’timer resolution is ’ + string(t_resol) + ’s’)
end

// rough estimate of time
disp(’+++ calibrating test’)
np = 1
timer()
my_expensive_test()
t = timer()
while t < min_test * t_resol

//disp(np, t, min_test * t_resol)
np = log_inc * np
timer()
for i = 1:np

my_expensive_test()
end
t = timer()

end
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if verbose then
disp(’coarse, ’ + string(np) + ’ round trips in ’

+ string(t) + ’s’)
end
if np == 1 then

warning(’slow procedure under test - time may be excessive’)
end

// run real test
disp(’+++ running test’)
tc = t / np
ne = ceil(std_test * t_resol / tc)
if verbose then

disp(’fine, test will take about ’
+ string(ceil(tc * ne * n_avg)) + ’s’)

end

r = []
for k = 1:n_avg

timer()
for i = 1:ne

my_expensive_test()
end
t = timer()
r = [r; t]

end
if verbose then

disp(’fine, ’ + string(ne) + ’ round trips in ’
+ string(t) + ’s’)

end

// get median and return
r = sort(r)
//disp(r)
tpl = r($/2 + 1) / ne

function my_expensive_test()
exact = -2.5432596188;
z = abs( exact - intg(0, 2 * %pi, f) )

function y = my_cheap_test(x)
y = x

10.3. listdiff.sci

listdiff returns the differences of two vectors in the style of thediff (1) command. It is a funny
example of doing something completely non-numerical with Scilab.
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function diff = listdiff(lst1, lst2, equ)
// listdiff() implements a diff(1) like Scilab-function
// for vectors.
// The caller can supply a boolean equ(x, y) function
// that will be used in all comparisons, otherwise
// operator ’==’ is used.
//
// RETURN VALUE
// 2-column vector describing the differences.
// Column 1 contains the element and column 2
// the element’s index. A ’+’ in front of the
// index means: ’Extra element in lst2’, a ’-’
// means missing element in lst1.
//
// AUTHOR
// Christoph L. Spiel
//
// Copyright 1999, 2000 by Christoph Spiel
// listdiff is free software distributed under the terms
// of the GNU General Public License, version 2.
//!

[nl, nr] = argn(0);
select nr
case 0 then

error(’Too few arguments. Got 0, require 2 or 3.’);
case 1 then

error(’Too few arguments. Got 1, require 2 or 3.’);
case 2 then

deff(’b = equ(s1, s2)’, ’b = s1 == s2’);
case 3 then

// caller supplied equ()
if type(equ) ~= 13 then

error(’Function expected, got a ’ + typeof(equ) + ’.’);
end

else
error(’Too many arguments. Got ’ + string(nr) + ’ require 2 or 3.’);

end

if type(lst1) ~= 1 & type(lst2) ~= 1 then
// none of the lists is empty
if type(lst1) ~= type(lst2) then

error(’Both lists must be of the same type, or be empty.’);
end

end

fuzz = 10;

diff = [];
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n1 = size(lst1, 1);
n2 = size(lst2, 1);

// special cases

if n1 == 0 & n2 == 0, return, end

if n1 == 0 then
p = 1 : n2;
diff = [lst2, ’+’ + string(p’)];
return;

end

if n2 == 0 then
p = 1 : n1;
diff = [lst1, string(-p’)];
return;

end

// general case (neither list is empty)

i = 1;
j = 1;
while i <= n1 & j <= n2

while i <= n1 & j <= n2
if ~equ(lst1(i), lst2(j)), break, end
i = i + 1;
j = j + 1;

end
if i >= n1 | j >= n2, break, end

icurs = i;
while icurs <= min(n1, i+fuzz)

if equ(lst1(icurs), lst2(j)), break, end
icurs = icurs + 1;

end
if icurs <= n1 then

if equ(lst1(icurs), lst2(j)) then
// record element(s) missing from lst1
for p = i : icurs-1

this_diff = [lst1(p), string(-p)];
diff = [diff; this_diff];

end
// re-sync
i = icurs;

end
end
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jcurs = j;
while jcurs <= min(n2, j+fuzz)

if equ(lst1(i), lst2(jcurs)), break, end
jcurs = jcurs + 1;

end
if jcurs <= n2 then

if equ(lst1(i), lst2(jcurs)) then
// record extra element(s) in lst2
for p = j : jcurs-1

this_diff = [lst2(p), ’+’ + string(p)];
diff = [diff; this_diff];

end
// re-sync
j = jcurs;

end
end

end

10.4. whatis.sci

whatis.sci defineswhatis , a function that lists all information of a variable a user can access.

function rv = whatis(name_arr)
// NAME
// whatis - listing of variables in extended format
//
// CALLING SEQUENCE
// whatis()
// whatis(name_arr)
//
// PARAMETER
// name_arr : array of variables names
//
// DESCRIPTION
// whatis returns a column-vector with the names,
// types, and sizes of all local variables
// (first form), or only of the variables whose
// names (as strings!) are given in the matrix
// name_arr (second form).
//
// EXAMPLES
// whatis()
// whatis(’my_mat’)
// whatis([’foo’ ’bar’ ’baz’; ’foobar ’morefoo’ ’foobaz’])
//
// SEE ALSO
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// who, whos
//
// AUTHORS
// Enrico Segre, Lydia van Dijk
//
// Copyright 1999, 2000 by Enrico Segre and Lydia van Dijk.
// whatis is free software distributed under the terms
// of the GNU General Public License, version 2.
//!

// LAST REVISION
// lvd, Fri Dec 3 01:01:45 UTC 1999

// TO DO/TO FIX
//
// - Accepting a regexp as an argument would be nice. This in turn
// leads to complete boolean expressions doing the variable selection
// resembling what the UNI* find utility does. Example:
// All vars ending in a ’v’ that are complex and larger than
// 1000 words.
// - The behavior with undefined variables is unsatisfactory.

[nl, nr] = argn(0);
clear nl;
if nr == 0 then

// no arguments -> take all variables like whos() does
clear nr;
name_arr = sort(who(’get’));

end
clear nr;

if type(name_arr) ~= 10 then
error(’Expecting a string or an array of strings, got a ’ ..

+ typeof(name_arr) + ’!’);
return;

end

[namev, memv] = who(’get’); // get memory usage of all local vars

// define isreal() for hypermatrices
deff(’b = %hm_isreal(hm)’, ..

’if size(hm, ”*”) == 0 then b = %t; ..
else ..

b = isreal(hm(1)); ..
end’);

deff(’b = hm_isbool(hm)’, ..
’if size(hm, ”*”) == 0 then ..
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b = %t; ..
else ..

b = type(hm(1)) == 4; ..
end’);

deff(’b = hm_isstring(hm)’, ..
’if size(hm, ”*”) == 0 then ..

b = %t; ..
else ..

b = type(hm(1)) == 10; ..
end’);

deff(’b = hm_isint(hm)’, ..
’if size(hm, ”*”) == 0 then ..

b = %t; ..
else ..

b = type(hm(1)) == 8; ..
end’);

rv = [];
for name = matrix(name_arr, 1, size(name_arr, ’*’)) do

if isdef(name) then
clear var;
var = evstr(name); // convert var’s name back into var
//
// type classification
//
ty = type(var); // type number
select ty // type 16 and 17 are not recognized
case 16 then // by the function typeof()

tgenp = %f; // we know the tlist’s type for these
lab = var(1); // vector of labels
select lab(1) // 1st label defines the type
case ’ar’ then

tnam = ’ARMAX process’;
case ’des’ then

tnam = ’descriptor system’;
case ’linpro’ then

tnam = ’linear programming data’;
case ’lss’ then

tnam = ’linear system’;
case ’r’ then

tnam = ’rational’;
case ’scs_tree’ then

tnam = ’SCICOS navigator data’;
case ’xxx’ then

tnam= ’SCICOS menu data’;
else

tnam = ’generic tlist ’ + lab(1);
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tgenp = %t;
end // select lab(1)

case 17 then
tnam = ’hypermatrix’;

else
tnam = typeof(var); // type name, a string

end // select ty
if ty==1 | ty==2 | ty==5 | ty==17 then

// boolean, string, integral, real, or complex,
// possibly sparse matrix or hypermatrix (yuck!)
if hm_isbool(var) then

tnam = ’boolean ’ + tnam;
elseif hm_isstring(var) then

tnam = ’string ’ + tnam;
elseif hm_isint(var) then

tnam = ’int ’ + tnam;
else

if isreal(var) then
tnam = ’real ’ + tnam;

else
tnam = ’complex ’ + tnam;

end
end

end
tmp = name + ’: ’;
//
// size determination
//
if ty==1 | ty==2 | ty==4 | ty==5 | ty==8 | ty==10 | ty==17 then

// any kind of matrix
sz = size(var); // var’s dimensions
tmp = tmp + string(sz(1));
for j = 2:length(sz)

tmp = tmp + ’x’ + string(sz(j));
end
tmp = tmp + ’ ’;

elseif ty==16
// user-defined aka generic tlist
if tgenp then

tmp = tmp + string(size(var(1), ’*’)) + ’ element ’;
end

else
// function, library, or other non-atomic object

end
//
// memory usage
//
i = find(namev == evstr(’name’)); // index of var’s entry
tmp = tmp + tnam + ’, ’ + string(memv(i)) + ’ words’;
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else
tmp = ”” + name + ”’ is not defined’;
warning(’variable ’ + tmp);

end
rv = [rv; tmp];

end

10.5. Auto-Determination of Precedence and
Associativity

assoc.sci , prec.sci , andparser.sci are the scripts that determine the precedence and the
associativity of the arithmetic Scilab operators. The results are used inSection 4.3.

10.5.1. assoc.sci

function a = assoc(oper, typ)
// Return the associativity a of
// operator oper which accepts type typ.
// oper can be a matrix of operators.
//
// typ can be ’n’ for numeric, or ’b’ for boolean.
// If typ is omitted, numeric is assumed.

[nl, nr] = argn()
if nr == 1 then

typ = ’n’
end

select typ
case ’n’ then

args = string([1.1 1.2 1.5])
deff(’b = equal(x, y)’, ’b = abs(x - y) < 1.2*%eps’)

case ’b’ then
args = string([’%f’ ’%t’ ’%f’])
deff(’b = equal(x, y)’, ’b = x == y’)

else
error(’unknown type ’ + typ)

end

a = []
for op = oper

expr = ’[’ + args(1) + op
+ args(2) + op + args(3) + ’,’ ..
+ ’(’ + args(1) + op + args(2) + ’)’
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+ op + args(3) + ’,’ ..
+ args(1) + op + ’(’ + args(2)
+ op + args(3) + ’)]’

//disp(expr)
r = evstr(expr)
//disp(r)

if equal(r(2), r(3)) then
a = [a ’non’]

elseif equal(r(1), r(2)) then
a = [a ’left’]

elseif equal(r(1), r(3)) then
a = [a ’right’]

else
error(’could not determine associativity’)

end
end

10.5.2. prec.sci

function p = prec(op1, op2)
// determine the relative precedence of operator op1 vs op2
// If operator op1 has a higher precedence than op2 then p = -1.
// In the opposite case p = 1. If both have the same precedence
// level p = 0

args = string([1.1 1.2 1.5])
deff(’b = equal(x, y)’, ’b = abs(x - y) < 1.2*%eps’)

expr = ..
’[’ ..

+ args(1) + op1 + args(2) + op2 + args(3) + ’,’ ..
+ ’(’ + args(1) + op1 + args(2) + ’)’ + op2 + args(3) + ’,’ ..
+ args(1) + op1 + ’(’ + args(2) + op2 + args(3) ..

+ ’)]’

//disp(expr)
r = evstr(expr)
//disp(r)

if equal(r(2), r(3)) then
p = 0

elseif equal(r(1), r(2)) then
p = -1

elseif equal(r(1), r(3)) then
p = 1

else
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error(’could not determine precedence level’)
end

function p = prec1(uop, op)
// determine what relative precedence the unary operator uop has
// with respect to operator op. The return values are like those
// of prec()

args = string([1.1 1.2])
//args = string([(1.1+0.9*%i) (1.2-0.8*%i)])
deff(’b = equal(x, y)’, ’b = abs(x - y) < 1.2*%eps’)

expr = ’[’ + uop + args(1) + op + args(2) + ’,’ ..
+ ’(’ + uop + args(1) + ’)’ + op + args(2) + ’]’

//disp(expr)
r = evstr(expr)
//disp(r)

if equal(r(1), r(2)) then
p = -1

else
p = 1

end

function p = lprec(op1, op2)
// determine relative precedence of the
// logical operators op1 and op2

v = [’%f’ ’%t’]
for i = 1:2

for j = 1:2
for k = 1:2

args = string([v(i) v(j) v(k)])
expr = ’[’ ..

+ args(1) + op1 + args(2) + op2 + args(3) + ’,’ ..
+ ’(’ + args(1) + op1 + args(2) + ’)’ ..
+ op2 + args(3) + ’,’ ..
+ args(1) + op1 + ’(’ + args(2) + op2 + args(3) + ’)]’

//disp(expr)
r = evstr(expr)
//disp(r)

if r(2) == r(3) then
p = 0

elseif r(1) == r(2) then
p = -1
return
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elseif r(1) == r(3) then
p = 1
return

else
error(’could not determine precedence level’)

end
end

end
end

10.5.3. parser.sci

// determine properties of Scilab’s parser:
// associativity and precedence level of operators

getf(’assoc.sci’);
getf(’prec.sci’);

numop1 = [’+’ ’-’];
numop2 = [’+’ ’-’ ’*’ ’/’ ’\’ ’^’ ’.*’ ’./’ ’.\’ ’.^’];
logop1 = [’~’];
logop2 = [’&’ ’|’];

// inquire associativity
an = assoc(numop2, ’n’);
ab = assoc(logop2, ’b’);

// figure out the relative precedence of binary numeric operators
pm2 = [];
for i = numop2

row = [];
for j = numop2

row = [row prec(i, j)];
end
pm2 = [pm2; row];

end
[lev, idx] = sort( sum(pm2, ’r’) );
lev = lev - min(lev) + 1; // minimum := 1

nop2 = numop2;
for op = numop1 // mark binary oparators that have a unary twin

patch = find(op == nop2);
nop2(patch) = op + ’/2’;

end

relp2 = [string(lev); nop2(idx); an(idx)]’;
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relp1 = [];
for i = numop1

row = [];
for j = numop2

row = [row, prec1(i, j)];
end
hop = numop2(find(row > 0.5)); // operators with higher precedence
minhop = 0;
for op = hop

minhop = max( minhop, find(relp2(:, 2) == op) );
end
// now minhop is the index of the lowest precedence binary operator
// that has a higher precedence than the unary operator i, or 0 if
// there is none
if minhop == 0

uop = evstr(relp2(1, 1)) + 1;
else

uop = evstr(relp2(minhop, 1)) - 1;
end
relp1 = [relp1; [string(uop), i+’/1’, ’right’]];

end
//relp1

// Merge unary operators into matrix of binary operators
relp = [relp1; relp2];
[dummy, idx] = sort(evstr(relp(:, 1)));
relp(idx, :)

10.6. cat.sci

cat.sci defines the functioncat which prints the source of a macro (function) if it is available.
The argument-, type-, and size-checking part is used inExample 5-4.

function [res] = cat(macname)
// Print definition of function ’macname’
// if it has been loaded via a library.

// AUTHOR
// Lydia van Dijk
//
// Copyright 1999, 2000 by Lydia van Dijk.
// cat is free software distributed under the terms
// of the GNU General Public License, version 2.

[nl, nr] = argn(0);
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if nr ~= 1 then
error(’Call with: cat(macro_name)’);

end
if type(macname) ~= 10 then

error(’Expecting a string, got a ’ + typeof(macname));
end
if size(macname, ’*’) ~= 1 then

sz = size(macname);
error(’Expecting a scalar, got a ’ ..

+ sz(1) + ’x’ + sz(2) + ’ matrix’)
end

[res, err] = evstr(macname);
if err ~= 0 then

select err
case 4 then

disp(macname + ’ is undefined.’);
return;

case 25 then
disp(macname + ’ is a builtin function’);
return;

else
error(’unexpected error’, err);

end // select err
end // err ~= 0

name = whereis(macname);
//disp(’name = <’ + name + ’>’);
if name == [] then

disp(macname + ’ is defined, but its definition is unaccessible’);
clear ans;
return;

end

cont = string(evstr(name)); // path (1) and contents (2..$) of library
fpath = cont(1);
if part(fpath, 1:4) == ’SCI/’ then

fpath = SCI + ’/’ + part(fpath, 5:length(fpath));
end
fname = fpath + macname + ’.sci’;

[fh, err] = file(’open’, fname, ’old’);
if err ~= 0 then

error(’Could not open file ’ + fname, err);
end
text = read(fh, -1, 1, ’(a)’);
file(’close’, fh);
write(%io(2), text);
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10.7. quadpack.sci

Here is the complete example fromSection 7.3.3.1. Functionquadpack loads, unloads, or queries
the load status of a Scilab extension. In this case the extension is the famous QuadPack library.

The foremost goal in the design ofquadpack was user friendliness. Therefore, we condensed the
function’s interface to its minimum, providing only three different actions:

load

Link library and glue code with Scilab; do nothing if the library/glue code already has been
linked. Return the actual linkage status afterwards.

unload

Unload library and glue code; do nothing if the library/glue code was not linked with Scilab
before. Return the actual linkage status afterwards.

query

Do nothing, but return the actual linkage status.

Additional goodies are thatquadpack defaults to actionquery if the function’s argument is
omitted, that the case of the argument does not matter, and that a minimal prefix of the argument is
enough to select the right action.

function state = quadpack(action)
// name: quadpack.sci - load/unload QUADPACK or query
// the load-status
// author: Lydia van Dijk
// last rev.: Sat Mar 18 19:23:58 UTC 2000
// Scilab ver.: 2.5

// The variable ’quadpacklibs’ is the *only* one that needs
// adjustment on a per-system basis. It is safe to leave
// all the other stuff untouched.

quadpacklibs = [’/site/src/netlib/quadpack/libquadpack-1.0.so’, ..
’/site/src/netlib/quadpack/intersci/libqpif-1.0.so’]

//
// No user servicable parts below this line.
//

gateway = ’quadpack_gw’ // name of the gateway function

// The order of the interface names in
// interfaces *MUST* be the same
// as in qptab in file ’quadpack-gw.c’!
interfaces = [’intals’, ’intcau’, ’intexc’, ’intfou’, ..
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’intgen’, ’intgk’, ’intinf’, ’intosc’, ..
’intsm’]

[lhs, rhs] = argn()
if rhs == 0 then

action = ’query’ – Default if no args
end

if rhs >= 2 then
error(’Too many arguments; expecting 0 or 1’)

end
if type(action) ~= 10 then // 10 means string

error(’Expecting a string in argument 1’)
end
if size(action, ’*’) ~= 1 then

error(’Expecting a scalar in argument 1’)
end

action = code2str( abs(str2code(action)) ) – Convert to lowercase
[state, number] = c_link(gateway)

if strindex(’query’, action) == 1 then – Check prefex
// do nothing

elseif strindex(’load’, action) == 1 then
if state == %t then

disp(’already loaded; no action taken’)
return

end
addinter(quadpacklibs, gateway, interfaces)

elseif strindex(’unload’, action) == 1 then
if state == %f then

disp(’not loaded; no action taken’)
return

end
ulink(number)

else
error(’Expecting ”query”, ”load” or ”unload” in arg 1’)

end
state = c_link(gateway) – Always return actual status
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Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330
Boston, MA 02111-1307
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document “free” in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
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subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup has been designed to
thwart or discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.
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3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies.
The front cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
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D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section entitled “History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself, or
if the original publisher of the version it refers to gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
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you or by arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original
documents, forming one section entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a
Modified Version of the Document, provided no compilation copyright is claimed for the
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compilation. Such a compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be
placed on covers that surround only the Document within the aggregate. Otherwise they must appear
on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the original English version of this License.
In case of a disagreement between the translation and the original English version of this License,
the original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. SeeGNU Copyleft.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation.
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Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330
Boston, MA 02111-1307
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software–to make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to
ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.
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The precise terms and conditions for copying, distribution and modification follow.

GNU General Public License

Terms And Conditions For Copying, Distribution And
Modification

0. APPLICABILITY 1

This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or
a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. VERBATIM COPYING
You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

1. The titles of the sections have been added by the authors. They do not occur in the original GNU
General Public License. Everything else has been copied in verbatim.
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2. MODIFICATIONS
You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. DISTRIBUTION
You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a. Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,
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b. Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source along
with the object code.

4. TERMINATION
You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. ACCEPTANCE
You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based
on it.
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6. REDISTRIBUTION
Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7. CONSEQUENCES
If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system and a licensee cannot impose
that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. LIMITATIONS
If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.
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9. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. AGGREGATION WITH INDEPENDENT WORKS
If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. NO WARRANTY
BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. LIABILITY
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM

248



Appendix B. GNU General Public License

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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(See overload, operator, &amp;)
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(See overload, operator, &gt;=)
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(See overload, operator, &lt;)
<>
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(See overload, operator, ’)
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(See overload, operator, ( ))
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(See overload, operator, *)
*.

(See overload, operator, *.)
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(See overload, operator, +)
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(See overload, operator, -)
.

(See dot, decimal)
.’

(See overload, operator, .’)
.*

(See overload, operator, .*)
.*.

(See overload, operator, .*.)
./

(See overload, operator, ./)
./ operator

(See division, element wise)

(See multiplication, element wise)

./.

(See overload, operator, ./.)

.\

(See overload, operator, .\)

.\.

(See overload, operator, .\.)

.^

(See overload, operator, .^)

/

(See overload, operator, /)

/.

(See overload, operator, /.)

:

(See overload, operator, :)

: operator,106

danger with fractional reals,32

==

(See overload, operator, ==)

geci ,195

[ , ]

(See overload, operator, [ , ])

[ ; ]

(See overload, operator, [ ; ])

[ ] operator

(See vector, construction)

\

(See overload, operator, \)

\.

(See overload, operator, \.)

^

(See overload, operator, ^)

|

(See overload, operator, |)

| operator

(See &amp; operator)

~

(See overload, operator, ~)

~=

(See overload, operator, ~=)
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abort

command

(See command, abort)
Ada

pseudo

(See pseudo Ada)
Ada extensions

(See subroutines, external, Ada)
Aerosmith,139

apropos

command

(See command, apropos)
apropos-command

(See command, apropos)
arguments

named

(See parameters, named)
positional

(See parameters, positional)
array ordering

Fortran-77,126

assigment

tuple,75

associativity

(See operator, precedence and
associativity)

B
benchmark

mirror functions ,124

boolean

used as index,61

Borland C extensions

(See subroutines, external, Borland
C)

break

keyword

(See keyword, break)

C
C extensions

(See subroutines, external, C)
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(See subroutines, external, C++)
calling convention

by-reference,125

canonicalization of Scilab scripts,26
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(See keyword, case)
clear

(See command, clear)
command

(See command, clear)
clearglobal

(See command, clearglobal)
clearing global variables

(See variable, clearing global)
clearing local variables

(See variable, clearing local)
clearing variables

(See variable, clearing)
code

operand type,52

operator,53

column-major ordering

(See array ordering, Fortran-77)
command

abort,47

apropos,21 , 47

clear,32 , 47

clearglobal,31

exit, 47
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pwd,47

quit, 47
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return,47

what,47

while, 47
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Commands,47

common pitfalls

(See pitfalls)
compile sci-files,91

control structures

block structure,44

choice of,41

early return,44

for, 41

if, 42

select,42

while, 41

conventions, typographic,17

CVS,193

D
Debugging

Scilab,194

desc-file

(See file, interface description)
Dirac distribution,86

dispatch tables,158

division

element wise,23

do

keyword

(See keyword, do)
DocBook,15

documentation

local,195

Comm.ps,195

Internals.ps,195

Intro.ps,195

Lmi.ps,195

Manual.ps,195

Metanet.ps,195

Scicos.ps,195

Signal.ps,195

dot

as member selector,77

decimal,23

dynamic scope

(See scope, dynamic)

E
else

keyword

(See keyword, else)
elseif

keyword

(See keyword, elseif)
emacs

add missing last newline,26

enclosing scope

(See scope, enclosing)
end

keyword

(See keyword, end)
endfunction

keyword

(See keyword, endfunction)
(See keyword, function)

environment variables

SCI,74

error

generation

API routines

(See Scilab, error handling)
evaluation

boolean,61

short-circuit

(See evaluation, boolean)
examples

assoc.sci,229

benchmark.sci,220

cat.sci,233

determination of precedence and

associativity,229

frac.sci,209

listdiff.sci, 222

parser.sci,232

prec.sci,230

quadpack.sci,235

testfrac.sci,217
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whatis.sci,225

examples, complete,209

exit

command

(See command, exit)

F
fatal error

(See Scilab, error handling, fatal
errors)

Fibonacci function,42

file

interface description,122

find

(See locate)
for

keyword

(See keyword, for)
formats, other of sci-BOT

(See sci-BOT, formats)
Fortran-77 extensions

(See subroutines, external,
Fortran-77)

Fortran-9x

equivalent functions

all

(See function, builtin, and)
(See function, builtin, matrix)

any

(See function, builtin, or)
Fortran-9x extensions

(See subroutines, external,
Fortran-9x)

function

builtin

whereis,94

Dirac

(See Dirac distribution)
exec

used without parenthesis,88

Fibonacci

(See Fibonacci function)

Fortran-77

name mangling

(See name mangling, Fortran-77
function)

getf

used without parenthesis,87

head,25

keyword

(See keyword, function)
(See keyword, function)

lib, 90

mirror and variants ,102

predefined

genlib,94

size of,44

functions,79

API

error,163

out,164, 165

as members of mlist,88

as members of tlist,88

as parameters,86

as variables,85

builtin

addinter,123

and,114

argn,84

cumprod

(See function sum)
cumsum

(See function sum)
dec2hex,72

deff, 79

diag,109

emptystr,110

error,84

exec,88

execstr,39

exists,83 , 90

eye,108

find, 111

fort, 122

freq,120

fsolve,80 , 125
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getf,90

gsort,115

hex2dec,72

horner,120

iconvert,69

intg, 80 , 125

link, 125, 130

linspace,33 , 107

load,64

logspace,107

matrix,118

max,113

mget,64

mgeti,64

min

(See function max)
modulo,62

mput,64

norm,87

ones,108

optim,86

or

(See function and)
plot2d,82 , 87

poly, 120

prod

(See function sum)
rand,110

read,64

save,64 , 91

size,84 , 117

sort

(See function gsort)
sum,100, 114

type,39 , 84

typename,53

zeros,107

bulletproof,83

call without parenthesis,87

defined online,79

gateway

(See dispatch tables)
native

(See Scilab, native functions)

nested,80

not working with integers,65

parameters

named,82

optional,83

predefined

evstr,84

linspace,87

macrovar,89

who,39

xbasc,87

safe

(See functions, bulletproof)
user defined,79

parameter less,79

without return value,79

without parameters,82

without return value,81

working with integers,65

G
gateway functions

(See dispatch tables)
genlib

(See function, genlib)
getf

(See function, getf)
Glimpse,194

global variable attribute

(See variable attribute, global)
global variables

(See variable, global)
GNU

Free Documentation License (FDL),237

General Public License (GPL),243

grep

(See Glimpse)

H
help
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command

(See command, help)
help-command

(See command, help)
hyperlinks,197

I
identifier, length,52 , 74

if

keyword

(See keyword, if)
index

boolean

(See boolean, used as index)
highest

(See $ constant)
last

(See $ constant)
indexing

avoiding,101

INRIA, 197

integers,62

array concatenation,67

as array index,63

automatic conversion,63

bitwise operations,72

arrays,73

booleans cast to,68

in dada files,64

int8 type on PPC systems,72

missing literals,62

mixed type comparisons,70

mixed type expressions,67

modular,66

raised to a power,68

vector-scalar comparison,71

interface

library

(See library, interface)
interface description file

(See file, interface description)
interface generator, automatic,161

intersci,122, 195

example Makefile,123

J
Johnson, Richard B.,15

K
keyword

break,47

case,47

do,47

else,47

elseif,47

end,47

endfunction,47 , 79

for, 47

function,47 , 79

if, 47

select,47

then,47

Keywords,47

L
ld

incremental linking,131

lexical scope

(See scope, lexical)
lib

(See function, lib)
libraries,90

library

interface,158

library (variable type)

(See type, library)
line continuation

function head,25

link overhead

(See overhead, link)
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links

(See hyperlinks)
list

extraction,77

local variable

(See variable, local)
locate,193

M
matrix

column-major form,106

construction,107

flattened representation,105

operations,111

reshape,105

shaping a

(See functions, builtin matrix)
md5sum,16

missing integer literals

(See integers, missing literals)
mlist

functions as elements of,88

multiplication

element wise,100

N
name mangling

Fortran-77 function,125

native functions

(See Scilab, native functions)
newline

missing last,26

Newton root finder,42

nm,125, 129

numbers

decimal

(See dot, decimal)

O
online function definition

(See functions, defined online)
operand

type code,52

b, 52

c, 52

f, 52

hm,53

i, 52

ip, 52

l, 52

lss,53

m, 52

mc,52

ml, 52

msp,52

p, 52

ptr, 52

r, 53

s,52

sp,52

spb,52

operation

vectorized,99

operator

’, 100

*, 100

.*, 100

./

(See division, element wise)
:, 102

code

(See code, operator)
colon

(See : operator)
overloading,48

precedence and associativity,58

logical operators,60

numeric operators,58

relational operators,59

[ ]

(See vector, construction)
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optimizing

Scilab

(See scilex, binaries, building
optimized)

overhead

link, 121

runtime,121

overload

disp,53

operator

&, 53

>, 53

>=, 53

<, 53

<>, 53

<=, 53

’, 53

( ), 53

*, 53

*., 53

+, 53

-, 53

.’, 53

.*, 53

.*., 53

./, 53

./., 53

.\, 53

.\., 53

.^, 53

/, 53

/., 53

:, 53

==, 53

[ , ], 53

[ ; ], 53

\, 53

\., 53

^, 53

|, 53

~, 53

~=, 53

overloading operators

(See operator, overloading)

P
Parallel Scilab

home page,197

parameters

named

(See functions, named parameters)
optional

(See functions, optional
parameters)

positional,82

pause

command

(See command, pause)
performance,99

building an optimized Scilab,135

extending Scilab,121

high-level operations,99

avoiding indexing,101

avoiding resizing,101

built-in vector-/matrix-functions,106

vectorized,99

pitfalls, 23

plain old documentation

(See POD)
plot2d

(See functions, builtin, plot2d)
POD (Perl’s plain old documentation),15

point, decimal

(See dot, decimal)
polynomials

evaluation of,119

precedence

(See operator, precedence and
associativity)

programming style

(See style, programming)
pseudo Ada,139

type

AccessDataStackIndex,140

AccessNatural,140

AccessString,140

Boolean,139
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Character,139

Complex,141, 147

ComplexFlag,140

ComplexMatrix,147

ComplexVector,147

ConstAccessNatural,140

ConstAccessString,140

DataStackIndex,140

Float,139

FloatMatrix,147

FloatVector,147

Integer,139

Natural,139

ParameterStackAddress,140

ParameterStackIndex,140

SimpleFunctionType,154

String,139

TypeString,140

types,140

pushing the limits,135

prototyping,135

pwd

command

(See command, pwd)

Q
quit

command

(See command, quit)
quotes

single vs. double,41

R
range

dangerous generation,32

resizing

avoiding,101

resume

command

(See command, resume)

return

command

(See command, return)
runscilab,74

runtime overhead

(See overhead, runtime)

S
save

(See function, save)
scalar product,99

SCI (environment variable),74

sci-BOT

cross referencing,200

DocBook,200, 200

FIXME, 200
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PDF,16
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FreeBSD Documentation Project Primer
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indexing,200
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API

checklhs,148

CheckLhs (C),175

checklhs (F77) ,166

checkrhs,148

CheckRhs (C),175
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CreateCVar (C),186

CreateCVarFromPtr (C),187
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CreateVar (C),184
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error,148, 154

FreePtr (C),186
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getexternal (F77) ,171
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GetListRhsCVar (C),182

GetListRhsVar (C),182

getmat,148

getmat (F77),168

GetMatrixDims (C),181

GetMatrixptr (C),180

GetRhsCVar (C),181

GetRhsVar (C),179

getrmat (F77),169

getrvect (F77 ,169

getscalar,154

getscalar (F77) ,170

GetType (C),177

getvect (F77),170

lhs,148, 154

Lhs (C),176

lhs (F77),167

LhsVar (C),183

PExecSciFunction (C),190

ReadString (C),191
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SciError (C),190
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WriteMatrix (C),189
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-comp,91
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debugging
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warnings,164
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(See variable, scoping)
Segre, Enrico,23

select

keyword

(See keyword, select)
session

restart

persistent global variables,31

sorting

lexicographical,115

space
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(See whitespace)
spacing

emphasizing brackets,36
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indentation,39
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vertical,37

starting scilex

(See scilex, starting)
style
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formatting,35

Golden Rule,41

indentation,39

line breaks,35
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programming,35
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Torvalds, Linus,44

tuple
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(See assigment, tuple)
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operand code
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command
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