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To my family
and my friends and co-workers

at the Astronomical Institute of the University of Bern





Preface of Volume II

This is the second of the two volumes entitled Methods of Celestial Mechanics:
Application to Planetary System, Geodynamics and Satellite Geodesy. It
consists of Part II: Applications and Part III: Program System.

Part II focuses on applications of astrodynamics. The developments are based
on lecture notes about Celestial Mechanics of the planetary system and of
artificial satellites, and about the rotation of Earth and Moon. The lectures
were intended for diploma students of astronomy, physics, mathematics, and
geography at the University of Bern in their first three academic years. In
view of the broad and inhomogeneous audience, the lectures had to be self-
consistent and based on simple, generally known physical and mathematical
facts and concepts.

Earth rotation (Chapter 2), satellite motion (Chapter 3) and the development
of the planetary system (Chapter 4) are the constituents of Part II. The three
chapters should be viewed as applications of the theoretical developments in
Chapter I- 3. It is recommended to briefly review the corresponding sections
of this introductory chapter before studying one of the three application chap-
ters. Volume I also should be consulted whenever subtleties of the equations
of motion are in the focus of interest. The mathematical foundations of the
developments in this second Volume are (of course) those of Volume I. It
should be nevertheless possible to get a good overview of the three applica-
tions of astrodynamics without consulting Volume I too often – provided one
is ready to accept the underlying equations of motion and the mathematical
tools used as known (“black boxes”).

Part III gives an overview of the program system accompanying and illus-
trating this work. The algorithms are those developed in Chapter I- 7. The
program system is meant to illustrate the mathematical concepts, but also to
introduce the three central topics rotation of Earth and Moon, satellite mo-
tion, and evolution of the planetary system. The three programs ERDROT,
SATORB and PLASYS are, from the design point of view, key elements for
a thorough understanding of the three topics. They are in particular helpful
to develop a proper understanding of the order of magnitude of the effects
considered.
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This Volume is accompanied by a Compact Disk (CD) containing the com-
puter programs as executable modules for Personal Computers (PC). The
program system is easy to install and to use on PCs with a Windows oper-
ating system.

Prof. Leoš Mervart of the Technical University of Prague designed and wrote
the menu system accompanying the computer programs. It is in essence his
merit that the computer-programs are easy to understand and to use.

My colleague and co-worker Dr. Andreas Verdun was the design expert con-
cerning the structure and the formal appearance of this work. In addition, his
collaboration was paramount in all aspects related to his specialization, the
history of astronomy, in particular of Celestial Mechanics. He screened and
proof-read the entire manuscript. His expertise and never ending encourage-
ment was of greatest importance for the realization and completion of this
work.

This work never could have been completed without the assistance of the two
young colleagues. Their contribution is acknowledged with deep gratitude.

Prof. Paul Wild, my predecessor as director of the Astronomical Institute of
the University of Bern (AIUB), contributed in many respects to this book.
Paul Wild adapted his fabulous skill to screen Schmidt-plates for new objects
(minor planets, comets, supernovae, etc.) to the manuscript of this book
by performing an amazingly thorough proof-reading of major parts of the
manuscript. The final result is undoubtedly very much improved thanks to
his effort.

Chapter 2 (rotation of Earth and Moon) was proof-read by Claudia Urschl,
Chapter 3 (satellite motion) by Michael Meindl. The two young colleagues
are Ph.D.-candidates at our institute. Dr. Thomas Schildknecht reviewed the
chapter 4 (planetary system). Dr. Urs Hugentobler received his diploma in
theoretical physics, then joined the CCD group and wrote a Ph.D. thesis
in the field of astrometry and Celestial Mechanics. After a longer research
stay at ESOC in Darmstadt, he joined the AIUB team as head of AIUB
GPS research group. With his broad background and his sharp mind he was
perfectly suited to proof-read the entire Part II of this work.

Profs. Robert Weber from the Technical University of Vienna, Markus
Rothacher from the Technical University of Munich, and Prof. Werner Gurt-
ner, director of the Zimmerwald Observatory, also read and commented major
parts of the manuscript. Dr. Jan Kouba from the National Geodetic Survey of
Canada thoroughly read the major part of Part II. The comments by the four
distinguished colleagues are very much appreciated. A final proof-reading of
the entire manuscript was performed by Ms Edith Stöveken and Ms Claudia
Urschl.

The editing and reviewing process of a treatise of this extent is a crucial
aspect, at times even a nightmare. The reviewing work was a considerable
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addition to the normal professional duties of the colleagues mentioned above
and to those of the author. It is my sincere desire to thank my friends and
colleagues for their assistance. I can only promise to assist them in a similar
way, should they decide to achieve something similar. I cannot recommend
this to anybody, on the other hand: My sabbatical leave from the University
of Bern in spring and summer 2001 and the following two years were in
essence sacrificed to the purpose of writing and completing this two volume
work.

The author hopes that the two volumes will be helpful to and stimulating
for students and researchers – which in turn would help him to forget the
“(blood), sweat and tears” accompanying the creative act.

Bern, February 2004 Gerhard Beutler
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Applications





1. Volume II in Overview

The work Celestial Mechanics: Theory and Applications consists of two vol-
umes and three parts. This is Volume II, containing Parts II Applications and
III Program System. Three key applications are discussed in the applications
part, eight programs are described in Part III, Program System, which is used
throughout the two volumes of this work.

1.1 Review of Volume I

Chapter I- 2 of Volume I briefly reviews the development of classical Celes-
tial Mechanics, but also the developments related to the motion of artificial
satellites.

In Chapter I- 3 the equations of motion were derived for three types of prob-
lems, namely

• the classical N -body problem with point masses in general and our plane-
tary system in particular,

• the N -body problem with extended mass distributions in general and the
three body problem Earth-Moon-Sun in particular, and

• the motion of an artificial Earth satellite,

which are considered in detail in this Volume.

In Chapter I- 4 the classical two- and three-body problems were developed and
the extensions required for the relativistic treatment of these problems were
specified. The definition of the classical orbital elements and the concepts of
osculating and mean orbital elements will be assumed known in this Volume.

The variational equations, i.e., the differential equations for the partial deriva-
tives of a particular solution of the equations of motion w.r.t. one of the pa-
rameters defining the initial (or boundary) values or the force field acting on
the celestial body considered, were derived in Chapter I- 5. The solutions of
the variational equations have to be known when determining the orbit of
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a celestial body or when studying the stability of a trajectory. Variational
equations will be needed in particular in Chapter 4 of this Volume.

In Chapter I- 6 we derived differential equations for the osculating orbital
elements. The set of the six first order differential equations for the six os-
culating elements (per point mass considered) is mathematically equivalent
to the set of three second order differential equations for the Cartesian co-
ordinates of the same body. The advantage of using the equations for the
elements resides in the fact that they may be solved approximately. In this
Volume the technique is used to interpret the osculating (and mean) elements
emerging from the numerical solution of satellite orbits.

Numerical analysis, in particular the numerical solution of ordinary differen-
tial equations, was reviewed in Chapter I- 7. Starting from the most general
problem, that of numerically solving a non-linear system of ordinary differen-
tial equations of order n ≥ 1, algorithms for solving linear equations and for
evaluating definite integrals (numerical quadrature) were developed. The so-
called collocation methods were found to be very fruitful from the theoretical
and from the practitioner’s point of view. A collocation method provides an
approximating function of the true solution, allowing it to compute (approx-
imations of) the solution vector (and its derivatives) for any epoch contained
within the integration interval. Multistep methods, but also the famous Gaus-
sian methods for numerical quadrature, were recognized as special cases of
collocation methods. Numerical integration techniques are the basis of the
computer programs ERDROT, SATORB, and PLASYS accompanying the
three main applications to be dealt with below. Not reviewing Chapter I- 7
before studying one of the chapters of Part II just implies that numerical
integration is used as a “black box”.

Orbit determination and parameter estimation is the concluding chapter of
Volume I. As a matter of fact, this topic contains aspects of both, theory and
application. Chapter I- 8 makes the distinction between first orbit determi-
nation (a non-linear parameter estimation problem) and orbit (parameter)
improvement, which may be dealt with by linearizing and iteratively improv-
ing the orbits. In satellite geodesy orbit determination (improvement) often
cannot be separated from the determination of other parameters. Many of the
results discussed in Chapter 2 originally stem from such general parameter
estimation processes.

1.2 Part II: Applications

Rotation of Earth and Moon. Chapter 2 deals with all aspects of the N-
body problem Earth-Moon-Sun-planets. All developments and analyses are
based on the corresponding equations of motion developed in Chapter I- 3; the
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illustrations, on the other hand, are based almost exclusively on the computer
program ERDROT (see section 1.3).

In order to fully appreciate the general characteristics of Earth (and lunar)
rotation, it is necessary to understand the orbital motion of the Moon in the
first place. This is why the orbital motion of the Moon is analyzed before
discussing the rotation of Earth and Moon.

The main properties of the rotation of Earth and Moon are reviewed after-
wards under the assumption that both celestial bodies are rigid. Whereas the
characteristics of Earth rotation are well known, the rotational properties of
the Moon are usually only vaguely known outside a very limited group of
specialists. Despite the fact that the structure of the equations is the same
in both cases, there are noteworthy differences, some of which are discussed
in this chapter. The analysis pattern is the same for the two bodies: The mo-
tions of the rotation axis in the body-fixed system and in the inertial system
are established by computer simulations (where it is possible to selectively
“turn off” the torques exerted by the respective perturbing bodies); the sim-
ulation results are then explained by approximate analytical solutions of the
equations of motion. The simulations and the approximate analytic solutions
are compared to the real motion of the Earth’s and Moon’s rotation poles.
Many, but not all aspects are explained by the rigid-body approximation.

This insight logically leads to the discussion of the rotation of a non-rigid
Earth. This discussion immediately leads in turn to very recent, current and
possible future research topics. Initially, the “proofs” for the non-rigidity of
the Earth are provided. This summary is based mainly on the Earth rotation
series available from the IERS (International Earth Rotation and Reference
Systems Service) and from space geodetic analysis centers. Many aspects of
Earth rotation may be explained by assuming the Earth to consist of one solid
elastic body, which is slightly deformed by “external” forces. Only three of
these forces need to be considered: (1) the centrifugal force due to the rotation
of the Earth about its figure axis, (2) the differential centrifugal force due
to the rotation of the Earth about an axis slightly differing from this figure
axis, and (3) the tidal forces exerted by Sun and Moon (and planets). The
resulting, time-dependent deformations of the Earth are small, which is why
in a good approximation they may be derived from Hooke’s law of elasticity.

The elastic Earth model brings us one step closer to the actual rotation of the
Earth: The difference between the Chandler and the Euler period as well as
the observed bi-monthly and monthly LOD (Length of Day) variations can
be explained now.

The elastic Earth model does not yet explain all features of the observed
Earth rotation series. There are, e.g., strong annual and semi-annual varia-
tions in the real LOD series, which may not be attributed to the deformations
of the solid Earth. Peculiar features also exist in the polar motion series. They
are observed with space geodetic techniques because the observatories are at-
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tached to the solid Earth and therefore describe the rotation of this body (and
not of the body formed by the solid Earth, the atmosphere and the oceans).
Fortunately, meteorologists and oceanographers are capable of deriving the
angular momentum of the atmosphere from their measurements: by compar-
ing the series of AAM (Atmospheric Angular Momentum) emerging from the
meteorological global pressure, temperature, and wind fields with the corre-
sponding angular momentum time series of the solid Earth emerging from
space geodesy, the “unexplained” features in the space geodetic observation
series of Earth rotation are nowadays interpreted by the exchange of angular
momentum between solid Earth, atmosphere and oceans – implying that the
sum of the angular momenta of the solid Earth and of atmosphere and oceans
is nearly constant.

Even after having modelled the Earth as a solid elastic body, partly covered
by oceans and surrounded by the atmosphere, it is not yet possible to explain
all features of the monitored Earth rotation. Decadal and secular motions in
the observed Earth rotation series still await explanation. The explanation of
these effects requires even more complex, multi-layer Earth-models, as, e.g.,
illustrated by Figure 2.55. The development of these complex Earth models
is out of the scope of an introductory text. Fortunately, most of their features
can already be seen in the simplest generalization, usually referred to as the
Poincaré Earth model, consisting of a rigid mantle and a fluid core (see Fig-
ure 2.56). It is in particular possible to explain the terms FCN (Free Core
Nutation) and NDFW (Nearly-Diurnal Free Wobble). The mathematical
deliberations associated with the Poincaré model indicate the degree of com-
plexity associated with the more advanced Earth models. It is expected that
such models will be capable of interpreting the as yet unexplained features
in the Earth rotation series – provided that Earth rotation is continuously
monitored over very long time spans (centuries).

Artificial Earth Satellites. Chapter 3 deals with the orbital motion of
artificial Earth satellites. Most illustrations of this chapter stem from program
SATORB, which allows it (among other) to generate series of osculating
and/or mean elements associated with particular satellite trajectories.

The perturbations of the orbits due to the oblate Earth, more precisely the
perturbations due to the term C20 of the harmonic expansion of Earth’s po-
tential, are discussed first. The pattern of perturbations at first sight seems
rather similar to the perturbations due to a third body: No long-period or
secular perturbations in the semi-major axis and in the eccentricity, sec-
ular perturbations in the right ascension of the ascending node Ω and in
the argument ω of perigee. There are, however, remarkable peculiarities of
a certain practical relevance. The secular rates of the elements Ω (right as-
cension of ascending node) and ω (argument of perigee) are functions of the
satellite’s inclination i w.r.t. the Earth’s equatorial plane. The perturbation
patterns allow it to establish either sun-synchronous orbital planes or orbits
with perigees residing in pre-defined latitudes φ ≤ ±i.
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The orbital characteristics are established by simulation techniques (using
program SATORB), then explained with first-order general perturbation
methods (based on simplified perturbative forces). Higher-order perturba-
tions due to the C20-term and the influence of the higher-order terms of
the Earth’s potential (which are about three orders of magnitude smaller
than C20) are studied subsequently. The attenuating influence of the Earth’s
oblateness term C20 on the perturbations due to the higher-order terms Cik

is discussed as well.

If a satellite’s revolution period is commensurable with the sidereal revolution
period of the Earth, some of the higher-order terms of Earth’s potential may
produce resonant perturbations, the amplitudes of which may become or-
ders of magnitude larger than ordinary higher-order perturbations. Resonant
perturbations are typically of very long periods (years to decades), and the
amplitudes may dominate even those caused by the oblateness. Two types of
resonances are discussed in more detail, the (1:1)-resonance of geostationary
satellites and the (2:1)-resonance of GPS-satellites. In both cases the practi-
cal implications are considerable. In the case of GPS-satellites the problem
is introduced by a heuristic study, due to my colleague Dr. Urs Hugento-
bler, which allows it to understand the key aspects of the problem without
mathematical developments.

The rest of the chapter is devoted to the discussion of non-gravitational forces,
in particular of drag and of solar radiation pressure. As usual in our treat-
ment, the perturbation characteristics are first illustrated by computer sim-
ulations, then understood by first-order perturbation methods. Atmospheric
drag causes a secular reduction of the semi-major axis (leading eventually
to the decay of the satellite orbit) and a secular decrease of the eccentric-
ity (rendering the decaying orbit more and more circular). Solar radiation
pressure is (almost) a conservative force (the aspect is addressed explicitly),
which (almost) excludes secular perturbations in the semi-major axis. Strong
and long-period perturbations occur in the eccentricity, where the period is
defined by the periodically changing position of the Sun w.r.t. the satellite’s
orbital plane.

The essential forces (and the corresponding perturbations) acting on (suffered
by) high- and low-orbiting satellites are reviewed at the end of the chapter.

Evolution of the Planetary System. The application part concludes with
Chapter 4 pretentiously entitled Evolution of the Planetary System. Three
major issues are considered: (a) the orbital development of the outer system
from Jupiter to Pluto over a time period of two million years (the past million
years and the next million years – what makes sure that the illustrations in
this chapter will not be outdated in the near future, (b) the orbital develop-
ment of the complete system (with the exception of the “dwarfs” Mercury
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and Pluto), where only the development of the inner system from Venus to
Mars is considered in detail, and (c) the orbital development of minor planets
(mainly of those in the classical asteroid belt between Mars and Jupiter).

The illustrations have three sources, namely (a) computer simulations with
program PLASYS, allowing it to numerically integrate any selection of plan-
ets of our planetary system with the inclusion of one body of negligible mass
(e.g., a minor planet or a comet) with a user-defined set of initial orbital ele-
ments (definition in Chapter I- 2), (b) orbital elements obtained through the
MPC (Minor Planet Center) in Cambridge, Mass., and (c) spectral analyses
of the series of orbital elements (and functions thereof) performed by our
program FOURIER.

By far the greatest part of the (mechanical) energy and the angular momen-
tum of our planetary system is contained in the outer system. Jupiter and
Saturn are the most massive planets in this subsystem. Computer simula-
tions over relatively short time-spans (of 2000 years) and over the full span
of two million years clearly show that even when including the entire outer
system the development of the orbital elements of the two giant planets is
dominated by the exchange of energy and angular momentum between them.
The simulations and the associated spectra reveal much more information.

Venus and Earth are the two dominating masses of the inner system. They
exchange energy and angular momentum (documented by the coupling be-
tween certain orbital elements) very much like Jupiter and Saturn in the
outer system. They are strongly perturbed by the planets of the outer sys-
tem (by Jupiter in particular). An analysis of the long-term development of
the Earth’s orbital elements (over half a million years) shows virtually “no
long-period structure” for the semi-major axis, whereas the eccentricity varies
between e ≈ 0 and e ≈ 0.5 (exactly like the orbital eccentricity of Venus).

Such variations might have an impact on the Earth’s climate (annual vari-
ation of the “solar constant”, potential asymmetry between summer- and
winter-half-year). The eccentricity is, by the way, approaching a minimum
around the year 35′000 A.D., which does not “promise” too much climate-
relevant “action” in the near future – at least not from the astronomical
point of view. The idea that the Earth’s dramatic climatic changes in the
past (ice-ages and warm periods) might at least in part be explained by the
Earth’s orbital motion is due to Milankovitch. Whether or not this correla-
tion is significant cannot be firmly decided (at least not in this book). The
long-term changes of the orbital characteristics (of the eccentricity, but also
of the inclination of the Earth’s orbital plane w.r.t. the so-called invariable
plane) are, however, real, noteworthy and of respectable sizes.

Osculating orbital elements of more than 100′000 minor planets are available
through the MPC. This data set is inspected to gain some insight into the
motion of these celestial objects at present. The classical belt of minor planets
is located between Mars and Jupiter. Many objects belonging to the so-called
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Edgeworth-Kuiper belt are already known, today. Nevertheless, the emphasis
in Chapter 4 is put on the classical belt of asteroids and on the explanation
of (some aspects of) its structure. The histogram 4.43 of semi-major axes (or
of the associated revolution periods) indicates that the Kirkwood gaps must
(somehow) be explained by the commensurabilities of the revolution periods
of the minor planets and of Jupiter. After the discussion of the observational
basis, the analysis of the orbital motion of minor planets is performed in two
steps:

• In a first step the development of the orbital elements of a “normal” planet
is studied. This study includes the interpretation of the (amazingly clean)
spectra of the minor planet’s mean orbital elements. These results lead to
the definition of the (well known) so-called proper elements. It is argued
that today the definition of these proper elements should in principle be
based on numerical analyses, rather than on approximate analytical the-
ories as, e.g., developed by Brouwer and Clemence [27]. A few numerical
experiments indicate, however, that the results from the two approaches
agree quite well.

• Minor planets in resonant motion are studied thereafter. The Hilda group
((3:2)-resonance) and the (3:1)-resonance are considered in particular. The
Ljapunov characteristic exponent is defined as an excellent tool to identify
chaotic motion. A very simple and practical method for its establishment
(based on the solution of one variational equation associated with the minor
planet’s orbit) is provided in program PLASYS. The tools of numerical in-
tegration of the minor planet’s orbit together with one or more variational
equations associated with it, allow it to study and to illustrate the devel-
opment of the orbital elements of minor planets in resonance zones. It is
fascinating to see that the revolutionary numerical experiments performed
by Jack Wisdom, in the 1980s, using the most advanced computer hard-
ware available at that time, nowadays may be performed with standard
PC (Personal Computer) equipment.

1.3 Part III: Program System

The program system, all the procedures, and all the data files necessary
to install and to use it on PC-platforms or workstations equipped with a
WINDOWS operating system are contained on the CDs accompanying both
volumes of this work. The system consists of eight programs, which will be
briefly characterized below. Detailed program and output descriptions are
available in Part III, consisting of Chapters 5 to 11.

The program system is operated with the help of a menu-system. Figure 1.1
shows a typical panel – actually the panel after having activated the program
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system Celestial Mechanics and then the program PLASYS. The top line of
each panel contains the buttons with the program names and the help-key
offer real-time information when composing a problem.

Fig. 1.1. Primary menu for program system Celestial Mechanics, PLASYS

The names of input- and output-files may be defined or altered in these panels
and input options may be set or changed. By selecting � Next Panel �
(bottom line), the next option/input panel of the same program are activated.
If all options and file definitions are meeting the user’s requirements, the
program is activated by selecting � Save and Run � . For CPU (Central
Processing Unit) intensive programs, the program informs the user about the
remaining estimated CPU-requirements (in %).

The most recent general program output (containing statistical information
concerning the corresponding program run and other characteristics) may be
inspected by pressing the button � Last Output � . With the exception of
LEOKIN all programs allow it to visualize some of the more specific output
files using a specially developed graphical tool compatible with the menu-
system. The output files may of course also be plotted by the program user
with any graphical tool he is acquainted with. All the figures of this book
illustrating computer output were, e.g., produced with the so-called “gnu”-
graphics package. The gnu-version used here is also contained on the CD. The
programs included in the package “Celestial Mechanics” are (in the sequence
of the top line of panel 1.1):

1. NUMINT is used in the first place to demonstrate or test the mutual
benefits and/or deficiencies of different methods for numerical integra-
tion. Only two kinds of problems may be addressed, however: either the
motion of a minor planet in the gravitational field of Sun and Jupiter
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(where the orbits of the latter two bodies are assumed to be circular) or
the motion of a satellite in the field of an oblate Earth (only the terms
C00 and C20 of the Earth’s potential are assumed to be different from
zero).

The mass of Jupiter or the term C20 may be set to zero (in the respective
program options), in which case a pure two-body problem is solved.

When the orbit of a “minor planet” is integrated, this actually corre-
sponds to a particular solution of the problème restreint. In this program
mode it is also possible to generate the well known surfaces of zero ve-
locity (Hill surfaces), as they are shown in Chapter I- 4.

2. LINEAR is a test program to demonstrate the power of collocation
methods to solve linear initial- or boundary-value problems. The pro-
gram user may select only a limited number of problems. He may test the
impact of defining the collocation epochs in three different ways (equidis-
tant, in the roots of the Legendre and the Chebyshev polynomials, re-
spectively).

3. SATORB may either be used as a tool to generate satellite ephemerides
(in which case the program user has to specify the initial osculating
elements), or as an orbit determination tool using either astrometric
positions of satellites or space debris as observations or positions (and
possibly position differences) as pseudo-observations. In the latter case
SATORB is an ideal instrument to determine a purely dynamical or a
reduced-dynamics orbit of a LEO. It may also be used to analyze the
GPS and GLONASS ephemerides routinely produced by the IGS (Inter-
national GPS Service).

The orbit model can be defined by the user, who may, e.g.,

• select the degree and the order for the development of the Earth’s
gravity potential,

• decide whether or not to include relativistic corrections,

• decide whether or not to include the direct gravitational perturbations
due to the Moon and the Sun,

• define the models for drag and radiation pressure, and

• decide whether or not to include the perturbations due to the solid
Earth and ocean tides.

Unnecessary to point out that this program was extensively used to il-
lustrate Chapter 3.

When using the program for orbit determination the parameter space
(naturally) contains the initial osculating elements, a user-defined selec-
tion of dynamical parameters, and possibly so-called pseudo-stochastic
pulses (see Chapter I- 8).
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Programs ORBDET and SATORB were used to illustrate the algorithms
presented in Chapter I- 8.

4. LEOKIN may be used to generate a file with positions and position dif-
ferences of a LEO equipped with a spaceborne GPS-receiver. This output
file is subsequently used by program SATORB for LEO orbit determi-
nation. Apart from the observations in the standard RINEX (Receiver
Independent Exchange Format), the program needs to know the orbit
and clock information stemming from the IGS.

5. ORBDET allows it to determine the (first) orbits of minor planets,
comets, artificial Earth satellites, and space debris from a series of as-
trometric positions. No initial knowledge of the orbit is required, but at
least two observations must lie rather close together in time (time inter-
val between the two observations should be significantly shorter than the
revolution period of the object considered).

The most important perturbations (planetary perturbations in the case of
minor planets and comets, gravitational perturbations due to Moon, Sun,
and oblateness of the Earth (term C20) in the case of satellite motion)
are included in the final step of the orbit determination. ORBDET is the
only interactive program of the entire package.

The program writes the final estimate of the initial orbital element into
a file, which may in turn be used subsequently to define the approximate
initial orbit, when the same observations are used for orbit determination
in program SATORB.

6. ERDROT offers four principal options:

• It may be used to study Earth rotation, assuming that the geocentric
orbits of Moon and Sun are known. Optionally, the torques exerted by
Moon and Sun may be set to zero.

• It may be used to study the rotation of the Moon, assuming that the
geocentric orbits of Moon and Sun are known. Optionally, the torques
exerted by Earth and Sun may be set to zero.

• The N -body problem Sun, Earth, Moon, plus a selectable list of (other)
planets may be studied and solved.

• The program may be used to study the correlation between the angular
momenta of the solid Earth (as produced by the IGS or its institutions)
and the atmospheric angular momenta as distributed by the IERS
(International Earth Rotation and Reference Systems Service).

This program is extensively used in Chapter 2.

7. PLASYS numerically integrates (a subset of) our planetary system
starting either from initial state vectors taken over from the JPL (Jet
Propulsion Laboratory) DE200 (Development Ephemeris 200), or using
the approximation found in [72]. A minor planet with user-defined initial
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osculating elements may be included in the integration, as well. In this
case it is also possible to integrate up to six variational equations simul-
taneously with the primary equations pertaining to the minor planet.
Program PLASYS is extensively used in Chapter 4.

8. FOURIER is used to spectrally analyze data provided in tabular form
in an input file. The program is named in honour of Jean Baptiste Joseph
Fourier (1768–1830), the pioneer of harmonic analysis. In our treatment
Fourier analysis is considered as a mathematical tool, which should be
generally known. Should this assumption not be (entirely) true, the read-
ers are invited to read the theory provided in Chapter 11, where Fourier
analysis is developed starting from the method of least squares. As a
matter of fact it is possible to analyze a data set using

• either the least squares technique – in which case the spacing between
subsequent data points may be arbitrary,

• or the classical Fourier analysis, which is orders of magnitude more
efficient than least squares (but requires equal spacing between obser-
vations), and where all data points are used,

• or FFT (Fast Fourier transformation), which is in turn orders of mag-
nitude more efficient than the classical Fourier technique, but where
usually the number of data points should be a power of 2 (otherwise a
loss of data may occur).

In the FFT-mode the program user is invited to define the decomposition
level (maximum power of 2 for the decomposition), which affects the
efficiency, but minimizes (controls) loss of data. The general program
output contains the information concerning the data loss.

The program may very well be used to demonstrate the efficiency ratio of
the three techniques, which should produce identical results. FOURIER
is a pure service program.

The computer programs of Part III are used throughout the two volumes of
our work. It is considered a minimum set (“starter’s kit”) of programs that
should be available to students entering into the field of Astrodynamics, in
particular into one of the applications treated in Part II of this work. Some
of the programs, NUMINT, LINEAR, and PLASYS are also excellent tools
to study the methods of numerical integration.





2. The Rotation of Earth and Moon

2.1 Basic Facts and Observational Data

2.1.1 Characteristics of the Earth-Moon System

The facts briefly reviewed in this introductory section are taken from the
Explanatory Supplement to the Astronomical Almanac [107], from the book
Global Earth Physics: A Handbook of Physical Constants [2], from the IERS
Conventions [71], and from the textbook by W. Torge [125]. The IERS con-
ventions were used (wherever possible) for the numerical values in Table 2.1.
The reference is specified in the last column. If no reference is specified, the
numerical value was calculated using other values of the table.
The equations of motion for the generalized three-body-problem Earth-Moon-
Sun were derived in section I- 3.3. In order to produce particular solutions of
the equations of motion (I- 3.118) describing the geocentric motion of Sun and
Moon and of the equations (I- 3.124) together with the kinematic equations
(I- 3.68) describing the rotational motion of the Earth and the Moon, we need
to know the gravity constant G, the masses of Sun, Earth, Moon, the principal
moments of inertia of Earth and Moon, the initial conditions (geocentric
position- and velocity-vectors of Sun and Moon at an initial time T0), the
angles describing the initial orientation of Earth and Moon in the inertial
space, and the initial conditions for the angular velocity vectors of Earth and
Moon.
Table 2.1 recapitulates the relevant facts. It tells that the Earth may be
viewed in good approximation as an oblate ellipsoid of rotation with the
principal moments of inertia A♁, B♁, and C♁, where A♁ ≈ B♁ and C♁ > A♁.
The Moon is oblate, as well, but its oblateness is less pronounced. Also,
the two moments of inertia A� and B� differ significantly and invalidate
the assumption of rotational symmetry. In section 2.2 we will see that this
difference is the essential condition for the orbital and rotational periods of
the Moon to be identical.
The orbital characteristics of the Moon are closely related to the precession
and nutation of the Earth’s rotation axis. This is why the essential charac-
teristics of the lunar orbital motion will be discussed in the dedicated section
2.2.1.
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Table 2.1. Facts associated with the three-body problem Earth-Moon-Sun

Quantity Value Unit Ref.

Mass of the Sun m� 1.9891 · 1030 kg [107]
Radius of the Sun 6.96 · 108 m [107]
Gravity constant G 6.67259 · 10−11 m3kg−1s−2 [107]
Speed of light c 299792458 m s−1 [107]

m� : (M + m�) 328900.55 – [107]
Mass of the Earth M 5.9737 · 1024 kg –
Geocentric gravity constant GM 398.6004418 · 1012 m3s−2 [71]
Mean distance Earth-Sun a� 14959787066 km [107]
Flattening factor 1/f 298.25642 – [71]
Equatorial radius a♁ 6378136.6 m [71]
Polar radius b♁ = a♁(1 − f) 6356751.9 m –
Rate of rotation ω♁ 7.292115 · 10−5 rad s−1 [71]
Length of sidereal day 0.9972697 days –

23.934472 hours –
Dynamical flattening (C♁ − A♁)/A♁ 1/305.45 – [125]
Dyn. form factor J2 = (C♁ − A♁)/a2♁M 1082.6359 · 10−6 – [125]
Maximum moment of inertia C♁ 0.3307007 · Ma2♁ m2kg [2]
(Axis ≈ rotation axis)
Moment of inertia B♁ 0.3296181 · Ma2♁ m2kg [2]
(Geogr. long. of axis at λ =14.9285◦)
Minimum moment of inertia A♁ 0.3296108 · Ma2♁ m2kg [2]

(A♁+B♁)/2 0.3296144 · Ma2♁ m2kg –
Obliquity ε of ecliptic J2000.0 23.43928108 ◦ [107]
Prec. period around pole of ecliptic ≈ 26500 years –
Love number h2 ≈ 0.6 – [125]
Love number l2 ≈ 0.08 – [125]
Love number k2 ≈ 0.3 – [125]

M : m� 81.300588 – [107]
Mass of the Moon m� 7.3483 · 1022 kg [107]
Radius of the Moon R� 1738 km [107]
Semi-major axis of lunar orbit a� ≈ 384400 km [107]
Secular increase ≈ 3.8 m/century [2]
Mean eccentricity of lunar orbit 0.05490 – [107]
Mean inclination of lunar orbit 5.145396 ◦ [107]
w.r.t. ecliptic
Rev.period of lunar node in ecliptic 18.61 years [107]
Mean sidereal revolution period 27.32166 days [107]
Mean sidereal rotation period 27.32166 days [107]
Inclination ε� of rotation axis 1.542417 ◦ [107]
w.r.t. ecliptic normal
Inclination of axis w.r.t. lunar 6.683 ◦ [107]
orbital plane
β = (C�− A�)/B� 6.313 · 10−4 – [107]
γ = (B�− A�)/C� 2.278 · 10−4 – [107]
Maximum moment of inertia C� 0.39350 · m�R2� m2kg [2]
(Axis ≈ rotation axis)
Moment of inertia B� 0.39334 · m�R2� m2kg [2]

Minimum moment of inertia A� 0.39325 · m�R2� m2kg [2]
(Axis on lunar equator facing Earth)
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In section I- 3.3 it was pointed out that in principle the differential equa-
tions for the orbital and rotational motion are coupled and should be solved
together. The coupling is weak, on the other hand, and excellent approxima-
tions for Earth and Moon rotation may be also be obtained by assuming the
orbits of Sun and Moon to be known and by assuming the Moon as a point
mass when studying Earth rotation (and the Earth as a point mass when
studying lunar rotation). The orbital motion may in these cases be taken
from independent sources, e.g., from the JPL (Jet Propulsion Laboratory)
DE200 (Development Ephemerides 200) [111] or even from [72], if a crude
approximation is believed to be sufficient.

Subsequently we will often use the terms Earth rotation parameters, length
of day, etc. It seems therefore appropriate to define these terms more pre-
cisely here: We will use the term ERP (Earth Rotation Parameters) for the
parameters describing

• the position of the Earth’s figure axis (or Tissérand axes for a non-rigid
Earth, named after Félix Tissérand (1845–1896) ) in inertial space,

• the position of the Earth rotation axis ω♁ w.r.t. the Earth’s figure axis,

• the angular velocity ω♁(t) def= |ω♁| of the Earth (as a function of time), and

• and the angle Ω♁(t) (e.g., Greenwich sidereal time) describing the position
of a conventional meridian in inertial space.

Different parameter sets of ERP may be defined and are in use. Usually
precession and nutation, expressed by the angles Ψ♁ and ε♁, are associated
with the orientation of the Earth’s figure axis in inertial space. One might
also refer to these angles as EOP (Earth Orientation Parameter). In this
sense the EOP might be considered as a subset of the ERP.

The ERP in the more restricted sense (and sometimes the term ERP is used
in this sense) describe the Earth’s rotation axis w.r.t. the Earth’s figure axis
and the angular velocity ω♁(t) of Earth rotation. Usually the PM (Polar
Motion) parameters x and y (to be defined more precisely later) and the
LOD (Length of Day) are used as parameters to describe the angular velocity
vector of the Earth. The length of day is defined as

LOD(t) def=
2π

ω♁(t) . (2.1)

Often, one also uses the term ∆LOD (Excess LOD), which is defined as

∆LOD def= LOD − 86400 [ s ] . (2.2)

The sidereal time angle Θ♁(t) simply is the integral of the angular velocity
ω♁(t) over time. It emerges naturally as one of the solution components of
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the Euler or Liouville-Euler equations of Earth rotation (named after Joseph
Liouville (1809–1882) and Leonhard(1707–1783)). It is “only” used to orient
the Earth (around the figure axis) in inertial space.

Extensive use will be made of numerical solutions of the equations of mo-
tion for Earth rotation, lunar rotation, and for the general development of
the general three-body problem Earth-Moon-Sun. The computer program
ERDROT is described in detail in Chapter 9 of Part III. It allows to study
the solution of the equations of motion for

• the rotation of the Earth assuming that the geocentric orbital motions of
Sun and Moon are known,

• the rotation of the Moon assuming that the selenocentric orbital motions
of the Earth and the Sun are known, and

• the general three-body problem Earth-Moon-Sun as defined in section
I- 3.3.

Several solution methods and approximations are implemented in program
ERDROT. In all cases it is possible to take the planetary perturbations for
the orbital motions of Earth (or Sun) and Moon into account. Several approx-
imations are implemented with the goal to speed up the time of integration
in order to allow a numerical solution over several millennia.

2.1.2 Observational Basis

Three observation techniques are relevant today for the determination of the
ERP, namely

• VLBI (Very Long Baseline Interferometry),

• SLR (Satellite Laser Ranging) and LLR (Lunar Laser ranging), and

• the U.S. GPS.

The three techniques are referred to as space geodetic techniques. They all
contribute to the determination of the terrestrial reference frame and to the
monitoring of Earth rotation.

The contributions by the GPS were introduced in Chapter I- 8, in particular
the contributions to polar wobble (Figures I- 8.19 and I- 8.20) and to the
determination of the LOD (Figure I- 8.21). SLR was introduced in Chapter
I- 8, as well, and needs no further comments.

LLR as a technique is based on the same physical principles as SLR. Thanks
to the observed object, the Moon, other objectives can be addressed:

• Of the above mentioned three space geodetic techniques, only LLR con-
tributes to the monitoring of lunar rotation.
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• Thanks to the very small area to mass-ratio of A/m ≈ 1.3·10−10 (see Table
3.4 in Chapter I- 3.4), LLR provides an excellent test-field for the theories
of general relativity.

• LLR observations are also useful for the determination of UT1-UTC, i.e.,
the difference between universal time defined by Earth rotation (UT1) and
atomic clocks (UTC).

• Last, but not least, the secular increase of the Moon’s semi-major axis (see
Table 2.1) can be directly measured with LLR.

Laser ranging to the Moon is possible only because Laser reflectors were
deployed by the U.S. Apollo missions 11, 14, 15, and the Russian Lunokhod
2 mission. SLR and LLR are coordinated today by the ILRS, the International
Laser Ranging Service (see http://ilrs.gsfc.nasa.gov).

This leaves us with VLBI as the third essential space geodetic technique con-
tributing to the monitoring of Earth rotation. VLBI is indeed fundamental
for this purpose. As no optical observations to artificial satellites are made for
geodynamics purposes today, only VLBI measurements allow it to determine
all transformation parameters between the terrestrial and the celestial refer-
ence frames: VLBI observations allow it to determine the two polar wobble
components x and y, UT1-UTC, and precession in longitude and in obliquity.
From this point of view VLBI is even the central technique for monitoring
Earth rotation, because VLBI is the technique defining the official celes-
tial reference frame, the so-called ICRF (International Celestial Reference
Frame), which is the realization of the ICRS.

VLBI is a special application of radio astronomy. A global network of radio
telescopes simultaneously observes Quasars, i.e., quasi stellar radio sources.
Quasars are radio galaxies, which, due to their distance, do not show any mea-
surable proper motion. The first Quasars were discovered in the 1960s. The
absence of proper motions and their small angular diameters make Quasars
ideal objects for the definition and realization of the inertial celestial reference
system (see section I- 3.1).

Only the development of radio interferometric methods allowed to exploit
the full potential of the Quasars for the definition of the celestial reference
frame and the monitoring of Earth rotation. The measurement principle of
VLBI is illustrated by Figure 2.1, where the two radio telescopes T1 and T2

simultaneously observe one and the same Quasar. The random signals emitted
by the Quasar are recorded at T1 and T2 as a function of highly accurate
clocks (hydrogen masers are used today). By correlating the recorded signals
at T1 and T2 in time t, one eventually obtains the distance difference d of the
two stations T1 and T2 as seen from the Quasar. Figure 2.2 shows the VLBI
telescope of the Wettzell Observatory in the Bavarian Forest, Germany.

A typical VLBI observation session of one Quasar lasts for a few minutes.
The radio signals simultaneously observed by the two telescopes are recorded
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d

Earth

T1

T2

Radio
source

Fig. 2.1. Principle of VLBI, where d = c ∆t is the observed quantity

Fig. 2.2. The Wettzell VLBI-telescope

with broad bandwidth on magnetic tapes together with timing information
of very high accuracy – every VLBI telescope is equipped with a hydrogen
Maser. The two magnetic tapes are then correlated in time, and eventually the
distance difference d between the two telescopes, projected onto the direction
telescope → Quasar, is obtained with a precision of a few millimeters.

VLBI is a microwave observation technique (like GPS), which is why the mea-
sured quantity d is also influenced by tropospheric refraction. Due to the long
distances between VLBI telescopes it often occurs that observations are made
at rather large zenith distances z > 80◦, which makes tropospheric refraction
the ultimate accuracy limiting effect of the VLBI observation technique. As
in the GPS observation technique, tropospheric refraction has to be modelled
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in the analysis by introducing troposphere parameters or by treating tropo-
spheric refraction as a stochastic process. But even with this problem area,
all components of Earth rotation may be determined with VLBI on the order
of 0.1 mas (milliarcseconds) or better.

The correlation of VLBI signals is very time consuming and, together with
data transmission, the real bottleneck of this space geodetic technique. Cor-
relating one day of VLBI observations of a network of about five stations
still required in essence one day of CPU of specialized computers in 2000.
VLBI observations are today coordinated by the International VLBI Service
for Geodesy and Astrometry (IVS). For more information we refer to the
internet site http://ivscc.gsfc.nasa.gov.

Figure 2.3 shows the major corrections w.r.t. the IAU nutation model of 1980
(in milliarcseconds) revealed by the VLBI observation technique. The Figures
are based on the analysis performed by Herring [55] and others.
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Fig. 2.3. Corrections ∆ε and ∆Ψ in nutation between 1962 and 2003 in obliquity
(left) and ecliptical longitude detected by VLBI

2.2 The Rotation of a Rigid Earth and a Rigid Moon

The equations of motion for the three-body problem Earth-Moon-Sun were
derived in section I- 3.3. The geocentric orbital motion of Moon and Sun are
described by eqns. (I- 3.118) and the rotational motions of Earth and Moon
by eqns. (I- 3.124) and (I- 3.68). For very accurate investigations we need to
take the perturbations by the planets into account for modeling the geocentric
orbital motions of Sun and Moon. The torques on Earth and Moon exerted
by the planets are very small (due to the geo- and selenocentric distances to
the planets and due to the relatively small masses of these bodies) and are
neglected here.
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The rotation of the Earth and the Moon is primarily governed by the geo-
centric orbital motion of the Moon, which is why its essential orbital char-
acteristics are addressed in the next paragraph 2.2.1 before discussing the
essential properties of the rotation of the rigid bodies Earth and Moon in
sections 2.2.2 and 2.2.3, respectively.

Program ERDROT, as described in Chapter 9 of Part III is used to illustrate
the rotational and orbital motions of the Earth, Moon, Sun, and planets.

2.2.1 The Orbit of the Moon

Figures 2.4, 2.5, and 2.6 give an impression of the size and the structure
of the perturbing accelerations in radial R, along-track S, and in the out-
of-plane direction W . The perturbations are dominated by the gravitational
attraction exerted by the Sun.

Figure 2.4 shows the perturbing acceleration in the Moon’s R-system (see
Table I- 4.3) from node to node approximately in the month of August 1999,
Figure 2.5 contains the same information approximately for May 1999. The
argument of latitude u was used as independent argument in these Figures.
The W -component is about 1−2 orders of magnitude smaller than the R- and
the S-components, which have amplitudes of a few 10−5 m/s2 . These figures
have to be compared to the absolute value of the two-body acceleration,
which is of the order of G(M+m�)

a2� ≈ 2.7 · 10−3 m/s2 acting between Moon

and Earth. The perturbations are periodic with a period of one draconitic
month for the W -component, of half a draconitic month for the R- and the
S-components (the draconitic month will be defined below).
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Fig. 2.4. Perturbing accelerations R (radial), S (along-track), and W (out-of-plane)
acting on the Moon in August 1999
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Fig. 2.5. Perturbing accelerations R, S, and W acting on the Moon in May 1999

The W -component always points to the ecliptic and vanishes whenever the
Sun lies in the orbital plane of the Moon – which occurs twice per year. The
time interval between two subsequent passes of the Sun through the Moon’s
nodal line is called an eclipse year. The W -component is thus negative for
0◦ < u < 180◦ and positive for 180◦ < u < 360◦. This pattern also explains
the differences of the amplitudes of the W -component in Figures 2.4 and 2.5.
The readers of this book (at least the European ones) may remember that
a total solar eclipse could be observed in Europe on August 11, 1999. The
Sun swept through the Moon’s nodal line at this point in time, implying that
the W -component of the perturbative acceleration must have been (almost)
zero. This is confirmed by Figure 2.6 showing the annual variation of the
W -component over the entire year 1999.

The pattern of perturbations has the same structure year after year: the pe-
riodic monthly (or semimonthly) perturbations are modulated by the period
of a so-called eclipse year. Due to the difference between the tropical and the
eclipse year, the minima and maxima occur at different points in time within
each year.

We have to make the distinction between different lunar revolution periods.
Table 2.2 lists five different types of months: The length of the synodic month
differs considerably from that of the other four types. This big difference has
nothing to do with perturbations; it is rather a consequence of the fact that
the Moon has to sweep an angle of about

360◦ + 360◦
Usid

365.25
≈ 386.9◦

(where Usid is the sidereal month) in the inertial system in order to complete
one revolution w.r.t. the Sun. The synodic month governs by definition the
phases of the Moon. Sidereal, anomalistic, and draconitic months would be
identical, if the perturbations of the Sun on the Moon were “turned off”. The
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Fig. 2.6. Perturbing acceleration W in 1999

Table 2.2. Lengths of months

Month Type Length [ days ]

Synodic New Moon to New Moon 29.530589
Tropical Equinox to Equinox 27.321582
Sidereal Fixed Star to Fixed Star 27.321661
Anomalistic Perigee to Perigee 27.554551
Draconitic Node to Node 27.212220

sidereal and the tropical month only differ, because the true equinox of date
(due to precession) moves w.r.t. the inertial space.

Despite the fact that the perturbative accelerations are relatively simple
quasi-periodic functions with only two basic periods (the draconitic month
and the eclipse year), the resulting perturbations in the Moon’s orbital ele-
ments and, what is relevant in practice, in its ecliptical longitude are relatively
complicated. Thanks to the Moon’s proximity, the orbit of the Moon could
(and can) be observed rather precisely. This is true for optical observations
(where fractions of arcseconds may be achieved) and for distance measure-
ments using the technique of LLR (where the accuracy is of the order of a
few centimeters). It is therefore not amazing that the Moon’s orbital motion
posed a challenge for generations of astronomers and mathematicians.

The list of famous contributions started with the Principia [83], [84] of Sir
Isaac Newton (1643–1727). Euler, Alexis-Claude Clairaut (1713–1765), and
Jean Le Rond d’Alembert (1717–1783), considerably advanced the lunar the-
ory and the methods of analytical mechanics in the second half of the eigh-
teenth century. Lunar ephemerides produced by Johann Tobias Mayer (1723–
1762), which were based on Euler’s first lunar theory, were even recognized as
useful for navigation on sea (method of lunar distances) by the English par-
liament: In 1762 Mayer and Euler were granted with rewards (3000 English
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pounds to Mayer and 300 to Euler – showing the mutual weights assigned
at that time to practical and theoretical work – in context with the so-called
longitude act of 1714). Not too much has changed in the estimation of theo-
retical vs. practical contributions since these days! Many more contributions
were made in the eighteenth and nineteenth century by the specialists in the
field. Hill’s lunar theory was published in 1878. It was innovative in the sense
that George William Hill (1838–1914) based his series developments on a ro-
tating “variational” orbit instead of an ellipse fixed in space. Hill’s theory was
brought to perfection by Ernest William Brown (1866–1938), whose formulae
were used extensively for the production of ephemerides.

With the deployment of Laser reflectors on the surface of the Moon and with
the availability of LLR-derived distances between Earth and Moon, the ana-
lytical theories had to be abandoned for the production of lunar ephemerides
and the description of lunar rotation. The lunar ephemerides and the libra-
tion data are produced today with numerical integration. The procedure is
described, e.g., in [107] or in [111].

Let us now briefly address the perturbations in the Moon’s orbital elements.
Figure 2.7 shows that the Moon’s semi-major axis a� undergoes periodic
variations of about 3500 km with a basic period of half a month over the
considered time period of two years. Monthly and semiannual signals modu-
late this periodic signal. A spectral analysis shows that the principal period
actually is half a synodic month.
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Fig. 2.7. Semi-major axis a�− 380′000 km of lunar orbit 1981-1983
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According to Figure 2.8, documenting a time interval of two years, the eccen-
tricity of the lunar orbit varies roughly within the limits 0.025 ≤ e ≤ 0.075.
The principal period is of the order of one month (according to a spectral
analysis of 31.5 days), which is modulated by a semiannual period (more
precisely 206 days).
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Fig. 2.8. Eccentricity of the lunar orbit 1981-1983

Figures 2.9, 2.10 and 2.11 characterize the motion of the Moon’s orbital
plane w.r.t. the inertial frame J2000.0. As expected from the characteris-
tics of perturbation component W (negative for 0◦ < u < 180◦ and positive
for 180◦ < u < 360◦) and from the structure of the perturbation equations
(I- 6.88) for the orbital elements i and Ω, periodic variations in the inclina-
tion i and a regression of the node Ω with a period of about 18.6 years are
observed. The pole of the Moon’s orbital plane therefore precesses approxi-
mately on a cone around the pole of the ecliptic. This motion is illustrated by
Figure 2.11 showing the projection of the Moon’s orbital pole on the ecliptic
(J2000.0) – scaled by a factor of 180◦/π in order to show directly the angular
distance between the poles of the ecliptic and the Moon’s orbital plane.

Figure 2.12 shows that the regression of the node causes a very strong periodic
variation of the inclination angle ĩ of the Moon’s orbital plane w.r.t. the
equatorial plane.

This inclination angle ĩ varies within the limits ε− i ≤ ĩ ≤ ε+ i, i.e., approx-
imately between 23.5◦ ± 5.1◦. This variation is responsible for the principal
nutation term of 18.6 years. The torque exerted by the Moon is much larger
for time periods where ĩ ≈ 28◦ than for time periods where ĩ ≈ 18◦.
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Fig. 2.9. Ecliptical longitude of ascending node of the lunar orbit 1981-2020 in the
system J2000.0
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Fig. 2.12. Inclination of the lunar orbit 1981-2380 w.r.t. true equator of date

According to Figure 2.13 the Moon’s perigee moves prograde both, w.r.t. the
node and w.r.t. the vernal equinox (of a fixed epoch). The period of rotation
is of the order of 6.25 years for the motion w.r.t. the node, of 9.0 years for
the motion w.r.t. the equinox. The correct explanation of the motion of the
Moon’s perigee by analytical theories proved to be a challenge for analytical
theories.
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J2000.0

All the variations in the semi-major axis imply changes in the mean motion,
thus also in the Moon’s ecliptical longitude. Figure 2.14 shows the devel-
opment of the Moon’s ecliptical longitude (actually diminished by a mean
“mean anomaly” of the Moon), i.e., the quantity l̃

def= Ω +ω + v −n0 (t− t0) .
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Fig. 2.14. Ecliptical longitude of the Moon (minus mean anomaly) 1981-1982

Figure 2.15 shows the amplitude spectrum (only the ranges between 0− 400
days (top) and between 0− 40 days (bottom) are reproduced). As described
in Chapter 11 of Part III the amplitudes, like the ones in Figure 2.15, of the
spectral lines are in general underestimated based on an amplitude spectrum
of the type shown in Figure 2.15. The contributing elements of the spectrum
to such a line have to be added in a mathematically correct way – as described
in Chapter 11 of Part III. The result is contained in Table 2.3.
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Fig. 2.15. Amplitude spectrum of the ecliptical longitude of the Moon (de-trended)
using a 400-years time span

Figure 2.15 and Table 2.3 show that the spectrum is dominated by a few
prominent lines, which were discovered empirically a long time ago:

1. Equation of the Center. A term with the period of 27.6 days (anoma-
listic revolution period). It is the dominating term with an amplitude of
about 6.3◦. It is caused by the Moon’s eccentricity.

2. The Evection is the second largest term in Figure 2.15. The period is
about 31.8 days, the amplitude has a value of about 1◦. The effect was
already known to Hipparchus (180–125 B.C.). The term is caused by
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Table 2.3. Main terms of the amplitude spectrum of the lunar ecliptical longitude∗

Name Period (theor.) Period (spectrum) Amp

[ days ] [ ◦ ]

Equation of Center 2 π/n� 27.5581 6.2815

Evection 2 π
/(

2 (nω − n�) + n�
)

31.8230 1.2759

Variation 2π
/(

2 (n�− n�)
)

14.7670 0.6638

Annual Equation 2 π/(2n�) 365.2500 0.1909

4π
/(

2 (nω − n�) + n�
)

13.7830 0.2150

(n�and n� are the mean motions of the Moon and the Sun, na is the mean motion
of the Moon’s perigee)

periodic perturbations of the eccentricity e and the argument of perigee
ω. The term was at times interpreted as a disturbance of the equation of
the center.

3. Variation. It is the third largest term in Figure 2.15. It has the period
of half a synodic month and an amplitude of about 0.66◦. The variation
was discovered by Tycho Brahe (1546–1601).

4. Annual Equation. With a period of one year and an amplitude of
about 0.2◦, this term was discovered by Johannes Kepler (1571–1630). It
is barely visible in Figure 2.15 (top).

Figure 2.15 shows additional terms in the spectrum of the mean longitude.
One largest has a period of half of the period of the equation of the center
and might be considered as a modulation of this contribution. The omitted
terms are not relevant for the subsequent discussion of the Earth’s and the
Moon’s rotation. The principal perturbation characteristics of the lunar orbit
are very more extensively discussed by Danby [31] or by Moulton [77].

Let us conclude this section with a few remarks concerning solar and lunar
eclipses. Eclipses only take place if Sun, Moon, and Earth lie approximately
on a straight line. Therefore, the Moon has to lie close to its nodal line for an
eclipse to take place. Consequently, the length of the draconitic month (see
Table 2.2) is the first of essential periods to predict eclipses. Lunar eclipses
occur during full Moon, solar eclipses during new Moon, which is why the
synodic month is the second important period for eclipse predictions. As the
Moon has to be close to the node during eclipses, and as Sun, Moon, and
Earth have to be collinear, the Sun must be close to the node of the Moon
as well. This makes the eclipse year, the time interval between subsequent
passes of the Sun through the ascending node of the Moon (with a length
of about 346.7 days) the third essential period when predicting eclipses. The
following equations hold approximately:

∗
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19 eclipse years ≈ 223 synodic months
≈ 242 draconitic months
≈ 18.03 years .

This fundamental time interval of 19 eclipse years is called a Saros period.
As its name indicates the Saros period was known already in antique times.
Similar eclipses occur after one Saros period.

2.2.2 Rotation of the Rigid Earth

Free Motion. Figure 2.16 shows the projection of the Earth’s angular ve-
locity vector onto the plane orthogonal to the axis of maximum moment of
inertia (figure axis) in the Earth-fixed system (approximately the equatorial
plane) for 1981. The Figure is scaled by 206284.8 ω−1♁ in order to show the
distance between the figure and rotation axis in arcseconds. The following
initial conditions were assumed:

206264.8
ω♁F1

ω♁
= 0.2′′

206264.8
ω♁F2

ω♁
= 0.0′′ .

(2.3)

What we see in Figure 2.16 is in essence polar motion or polar wobble.
One should, however, keep in mind the conventions of PM: The classical PM
components x and y are defined as the rotation angles about the second
axis of the Earth-fixed system (x component) and the first axis of the same
system (y component) in order to achieve the transformation from the Earth-
fixed system to the system of the instantaneous rotation axis. The following
equations hold:

x = + 206264.8
ω♁F1

ω♁
y = − 206264.8

ω♁F2

ω♁ .
(2.4)

Subsequently, we will always show the angles (x,−y) which refer to a right-
hand system, but, in order to keep the descriptions short, speak of polar
wobble (or PM) despite this inconsistency.

Figure 2.16 was generated with program ERDROT (see Chapter 9 of Part III)
assuming a rigid, rotationally symmetric rigid Earth and setting the external
torques to zero. One easily sees that the rotation axis is moving on a circle
around the figure axis. This behavior will be explained rather easily below.
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Fig. 2.16. Polar wobble 1981 without torques

Before doing that, let us consider the analogue case for the orbital motion.
Equations (I- 3.118) for the centers of mass of Earth and Moon relate the
accelerations of these centers (left-hand side of the equations) to the sum of
the forces acting on all the particles of the rigid body (right-hand sides of the
same equations). If the system consists only of one body of finite extension
and mass (let us say, a very lonely Earth), the right-hand side becomes zero
and the motion is rectilinear (with constant velocity) – exactly as in the
case of an isolated point mass. This statement is also true if the original,
non-approximated equations of motion (I- 3.85) are considered.

The rotation of an isolated body of finite extensions (or the case, where the
sum of torques is always zero) may be studied as well. In section I- 3.3 we saw
that the angular momentum of a finite body is conserved, if the right-hand
sides of eqns. (I- 3.88) are zero. In the case of the Earth we may therefore
write

h♁ = h♁0 . (2.5)

The inertia tensor w.r.t. the inertial system in eqn. (I- 3.73) may be expressed
by the diagonal inertia tensor w.r.t. the Earth-fixed system and the transfor-
mation matrix T♁ between the inertial and the Earth-fixed system (see eqns.
(I- 3.77) and (I- 3.56)):

h♁I = I♁I ω♁I = T♁ I♁FTT♁ ω♁I = T♁ {I♁F ω♁F } . (2.6)
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The expression in the brackets may be written as a linear combination of
three vectors (all of which referring to the Earth-fixed system):

I♁F ω♁F =


A♁ E + (B♁ − A♁)




0 0 0
0 1 0
0 0 0


+ (C♁ − A♁)




0 0 0
0 0 0
0 0 1




ω♁F

= A♁ ω♁F + (B♁ − A♁)ω♁F2
e2♁F

+ (C♁ − A♁)ω♁F3
e3♁F

.

(2.7)

The column matrices e2♁F
and e3♁F

contain the components of the second
and third unit vectors of the Earth-fixed coordinate systems as elements.
ω♁F2

and ω♁F3
are the second and third components of the angular velocity

expressed in the Earth-fixed system. Introducing the previous expression into
eqn. (2.6) allows the establishment of the equation

h♁I = T♁
[
A♁ ω♁F + (B♁ − A♁)ω♁F2

e2♁F
+ (C♁ − A♁)ω♁F3

e3♁F

]
, (2.8)

where e2♁F
and e3♁F

are the unit vectors lying in the second and third axis
of the Earth-fixed system.

Equation (2.8) says that the angular momentum vector of the Earth may
be expressed as a linear combination of the angular velocity vector and of
two of the unit vectors defining the Earth-fixed system. An inspection of the
coefficients shows that for our application the first vector on the right-hand
side is dominant (C♁ − A♁ � A♁ and B♁ − A♁ � A♁). Apart from that
the relation is not too informative – after all, in the Euclidean space E

3 it
is always possible to express a vector as a linear combination of three other
vectors as long as the latter are not linearly dependent. Equation (2.8) is
much more interesting if rotational symmetry is assumed, i.e., if A♁ = B♁ .
Table 2.1 tells that this is the case in good approximation for the Earth. The
above relation then reads as

h♁I = T♁
[
A♁ ω♁F + (C♁ − A♁)ω♁F3

e3♁F

]

= T♁
[
C♁ ω♁F + (C♁ − A♁)ω♁F3

e3♁F
− (C♁ − A♁)ω♁F

]

= C♁ ω♁ T♁
{

eω♁F
+

C♁ − A♁
C♁
[
ω♁F3

ω♁ e3♁F
− eω♁F

]}

≈ C♁ ω♁ T♁
{

eω♁F
+

C♁ − A♁
C♁
[
e3♁F

− eω♁F

]}
,

(2.9)

where eω♁
def= ω♁

ω♁ .

Equation (2.9) tells that the angular velocity vector, the angular momentum
vector, and the figure axis of the Earth (unit vector e3♁F

of the Earth-fixed
system) always lie in one and the same plane. The last line holds, if the angle
between the figure axis e3♁F

and the angular velocity vector is small – which is
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true in the case of the Earth. Figure 2.17 illustrates the above vector equation.
It also shows that the angular momentum and angular velocity vectors are
much closer together (by a factor of (C♁ −A♁)/C♁ ≈ 1

305 , see Table2.1) than
the figure and rotation axes. The latter angle corresponds to the amplitude of
PM and is given by the initial state of the system (see developments below).

e�

eh

e3

Fig. 2.17. Angular velocity vector eω, angular momentum vector eh, and figure
axis e3 of the rotationally symmetric Earth

From eqn. (2.9) we conclude that the rotation pole moves on a circle around
the pole of figure (assuming a rotationally symmetric Earth) in the Earth-
fixed system. The precise characteristics of this motion are easily established
by setting the right-hand sides of eqns. (I- 3.124) to zero (case without exter-
nal torques):




ω̇♁1

ω̇♁2

ω̇♁3


+




+ γ♁ ω♁2 ω♁3

− γ♁ ω♁3 ω♁1

0


 = 0




ω̇�1

ω̇�2

ω̇�3


+




γ�1 ω�2 ω�3

γ�2 ω�3 ω�1

γ�3 ω�1 ω�2


 = 0 .

(2.10)

Observe that the above equations refer to the Earth fixed system. The index
F was left out in order to reduce the formalism.

In the case of the Earth we assumed rotational symmetry A♁ = B♁ , which
allowed it to eliminate the three parameters γ♁i

, i = 1, 2, 3 , in favour of only
one, namely the dynamical flattening parameter

γ♁ def=
C♁ − A♁

A♁ . (2.11)

The third of eqns. (2.10) simply states that the third component of the an-
gular velocity in the body-fixed system is constant:
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ω♁3 = ω♁0 . (2.12)

ω♁0 is the constant angular velocity of Earth rotation. It is interesting to note
that this quantity is conserved even in the presence of torques, due to the
fact that γ♁3 = 0 on the right-hand side of the equations (I- 3.124). In other
words: a rigid Earth does not show LOD changes.

Eqns. (2.12) and (2.9) even allow it to conclude that the rotation axis and the
figure axis rotate on (straight) cones around the axis of angular momentum.

Introducing the result (2.12) into the equations (2.10) leads to a system of
two linear differential equations for the first two components of the Earth’s
angular velocity vector in the Earth-fixed system

ω̇♁1 + γ♁ ω♁0 ω♁2 = 0
ω̇♁2 − γ♁ ω♁0 ω♁1 = 0 , (2.13)

which are solved by functions of the type

ω♁1(t) = ρ♁ cos(ω̃♁t + α♁0)
ω♁2(t) = ρ♁ sin(ω̃♁t + α♁0) . (2.14)

The rotation axis thus precesses prograde with constant angular velocity on a
cone around the figure axis of the Earth. The angular velocity of this motion
is uniquely a function of the angular velocity of Earth rotation and of the
flattening parameter γ♁ :

ω̃♁0 = γ♁ ω♁0 . (2.15)

The amplitude ρ♁ and the phase angle α♁0 are defined by the initial state of
the system.

The above result is remarkable: in the absence of torques the endpoint of
the angular velocity vector moves in the Earth-fixed system with constant
angular velocity ω̃♁0 = γ♁ ω♁0 on a circle with radius ρ♁ in the positive sense
of rotation around the figure axis. The period of this rotation is given by

Pe =
2 π

γ♁ ω♁0

≈ 303 days , (2.16)

which is called the Euler period of PM. The values in Table 2.1 were used to
compute the numerical value for the Euler period of PM.

This important result was first stated by Euler in his famous book [36]. The
belief in the Euler period of PM played an essential role in end of the 19th
century when PM was confirmed to be real in long time series of latitude
observations (see, e.g., [126]). Equations (2.14) explain PM in the absence of
torques as shown in Figure 2.16.
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How do figure and rotation axes of Earth move in the inertial space in the
absence of torques? Figure 2.18 gives the answer for a short time interval of
roughly one month: the three Euler angles only show periodic variation with
periods of approximately one day. The amplitudes are small: about 0.5′′ for
the Euler angles Ψ♁ and Θ♁ (Figure 2.18, top, bottom), about 0.2′′ for the
obliquity ε♁ . Let us now establish the analytical solution corresponding to
Figure 2.18.
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Fig. 2.18. Euler angles Ψ♁, ε♁ and Θ♁ (minus mean motion) at beginning of 1981
without torques

Having seen that the figure, angular momentum, and rotation axes lie (in
this order) in one plane (see Figure 2.17 and eqn. (2.9)) and that the for-
mer two axes move on cones around the angular momentum axis (because
according to eqn. (2.12) the third component of the Earth’s angular velocity
vector in the Earth-fixed system is constant), it should be relatively easy to
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establish the three Euler angles as a function of time. Equation (I- 3.68)
provides the relationship between the Earth-fixed components of the angu-
lar velocity vector and the time derivatives of the Euler angles. Introducing
eqns. (2.12) and (2.14) into Euler’s kinematic equations (I- 3.68) we obtain
the differential equations for the Euler angles:

Ψ̇♁ = − ρ♁ sin(Θ♁ + ω̃♁0t + α♁0) csc ε♁
ε̇♁ = − ρ♁ cos(Θ♁ + ω̃♁0t + α♁0)

Θ̇♁ = + ρ♁ sin(Θ♁ + ω̃♁0t + α♁0) cot ε♁ + ω♁0

(2.17)

or

sin ε♁ Ψ̇♁ = − ρ♁ sin(Θ♁ + ω̃♁0t + α♁0)
ε̇♁ = − ρ♁ cos(Θ♁ + ω̃♁0t + α♁0)

sin ε♁ Θ̇♁ = + ρ♁ sin(Θ♁ + ω̃♁0t + α♁0) cos ε♁ + ω♁0 sin ε♁ .

(2.18)

Observe that ω̃♁0 is defined by eqn. (2.15).

These equations may be solved analytically up to (and including) terms of
first order in small quantities. Let us introduce for this purpose the two
auxiliary angles ε♁h

and Θ♁h
as the polar coordinates of the vector of angular

momentum h♁ in the inertial system:

h♁ = h




− sin ε♁h
sin Θ♁h

+ sin ε♁h
cosΘ♁h

cos ε♁h


 . (2.19)

From the above developments one may conclude that ∆ε♁ def= ε♁ − ε♁h
is

a small quantity. Also, in view of the fact that the angular velocity vector
moves around the figure axis of the Earth on a small circle of radius < ρ♁ ,
the derivatives Ψ̇♁ and ε̇♁ must be small quantities as well. This allows us to
approximate the non-linear differential equations (2.18) as

sin ε♁h Ψ̇♁ = − ρ♁ sin(Θ♁ + ω̃♁0t + α♁0)
ε̇♁ = − ρ♁ cos(Θ♁ + ω̃♁0t + α♁0)

sin ε♁h Θ̇♁ = + ρ♁ sin(Θ♁ + ω̃♁0t + α♁0) cos ε♁h + ω♁0 sin ε♁h .

(2.20)

In this approximation the third equation is separated from the first two. Its
zero-order solution in terms of ρ♁ simply is

Θ♁(t) ≈ Θ♁0 + ω♁0t . (2.21)

Using this approximation on the right-hand sides of eqns. (2.20) leads to the
following equations and their first-order solution in ρ♁
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Ψ̇♁ = − ρ♁ sin
(
(1 + γ♁)ω♁0t + α♁0 + Θ♁0

)
csc ε♁h

ε̇♁ = − ρ♁ cos
(
(1 + γ♁)ω♁0t + α♁0 + Θ♁0

)

Θ̇♁ = + ρ♁ sin
(
(1 + γ♁)ω♁0t + α♁0 + Θ♁0

)
cot ε♁h + ω♁0

Ψ♁(t) = Ψ♁0 + ρ̃♁
{

cos
(
(1 + γ♁)ω♁0t + α♁0 + Θ♁0

)− cosα♁0

}
csc ε♁h

ε♁(t) = ε♁0 − ρ̃♁
{

sin
(
(1 + γ♁)ω♁0t + α♁0 + Θ♁0

)− sin α♁0

}

Θ♁(t) = Θ♁0 + ω♁0t − ρ̃♁
{

cos
(
(1 + γ♁)ω♁0t + α♁0 + Θ♁0

)− cosα♁0

}
cot ε♁h ,

(2.22)

where
ρ̃♁ =

ρ♁
(1 + γ♁)ω♁0

. (2.23)

The quantity ρ♁
ω♁0

has a simple interpretation: it is the amplitude of PM (angle

between rotation axis and figure axis), expressed in radians. Multiplying it
by the factor 180

π 3600 ≈ 206264.8 gives the amplitude of PM in arcseconds.
In the case of the Earth, the amplitude ρ̃♁ is only slightly, by a factor of

1
1+γ♁ ≈ 1 − γ♁ , smaller than the radius ρ♁ of PM. The results confirm those
of the simulation in Figure 2.18.

This result also confirms the expectations raised by Figure 2.17: the ampli-
tude of the variations of the figure axis in inertial space is the angle between
the figure axis and the axis of (conserved) angular momentum. The inter-
pretation of the results for Ψ♁(t) and ε♁(t) is thus easy: in inertial space the
figure axis rotates retrograde (in a distance of ρ̃♁) around the axis of angular
momentum. The above equation for Θ♁(t) tells that Θ♁(t) contains a periodic
component with a period slightly shorter than the sidereal day (remember
that 2π

ω♁0
is one sidereal day and that γ♁ ≈ 1

300 ). The equation for Θ♁(t) also
tells, that its angular velocity is not constant during the day but contains
small periodic variations (with an amplitude of ρ̃♁). The period

Pnd =
2 π

(1 + γ♁)ω♁0

≈ 23h55m13s (2.24)

is also called the nearly-diurnal or quasi-diurnal period of the figure axis in
inertial space (e.g., [66]). The period is close to, but not identical with the
sidereal day.

With the above results it is also possible to describe the rotation axis of the
Earth in inertial space. Figure 2.17 indicates that the amplitude of the motion
of the figure axis around the axis of angular momentum will be ρ♁0 γ♁ , thus
about a factor of 300 smaller than the amplitude of PM, and that there are
phase difference of 180◦ between the rotation and figure axes in their motion
around the axis of angular momentum.
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Separation of Rotational and Orbital Motion. If the terms propor-
tional to the principal moments of inertia are neglected in eqns. (I- 3.118), the
equations of motion for the centers of mass of Moon and Sun may be solved
separately from the equations (I- 3.124) describing the rotation of Earth and
Moon. Under this assumption, the equations for the Moon and the Earth in
eqns. (I- 3.124) (or the equations (I- 3.125) referring to the inertial system) to-
gether with the corresponding kinematic equations may be solved separately,
as well. It is thus possible to study the rotational motion of Earth and Moon
“independently”. In summary this means, that instead of a coupled system of
24 first-order differential equations (or 12 equations of the second order) we
only have to deal with one coupled system of second order with 2 ·3 equations
for the geocentric motion of the centers of mass of Moon and Sun and with
two first-order systems with 6 equations (or with two second-order systems
with 3 equations). This separation of equations considerably simplifies the
solution of the original coupled system.

Separation of the Kinematic and Dynamic Equations. Euler’s equa-
tions for the components of the angular velocity vector of either Earth or
Moon and the corresponding kinematic equations together form a coupled,
non-linear system of first-order differential equations. The right-hand sides of
eqns. (I- 3.124) or (I- 3.125) are small quantities of first order, because they
are proportional to the differences between the principal moments of inertia.
Note, that this statement is only correct for celestial bodies not departing to
much from spherical symmetry.

Under such circumstances, a system of differential equations may be solved
using the methods of perturbation theory as treated in Chapter I- 6. A good
approximation for the true solution therefore results, if on the right-hand sides
of the differential equations approximations for the dependent arguments of
the differential equations are used instead of the true values as they would
emerge from a correct solution.

Let us assume for the moment, that some approximations Ψ♁a
, ε♁a

, and Θ♁a

for Ψ♁ , ε♁ , and Θ♁ are available. In this case eqns. (I- 3.124) or (I- 3.125) may
be solved independently from the corresponding kinematic equations, and
only after having solved eqns. (I- 3.124) or (I- 3.125) one may wish to solve
the corresponding kinematic equations. Moreover, eqns. (I- 3.124) describing
the rotation of Earth and Moon are broken up into one trivial equation for
the angle ω...3 and one linear, inhomogeneous first order differential equation
system of dimension 2 in the first two components of the angular velocity
components in the Earth-fixed system. Such problems may be dealt with by
standard mathematical methods.

Forced Motion: Simulations. Before making the attempt to derive ana-
lytically the main features of the forced motion, we use program ERDROT
to illustrate PM and the motion of the Earth’s figure axis in inertial space.
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Figure 2.19 shows PM for 1981 under the influence of the torques exerted by
the Moon and the Sun. Superimposed to the free motion (with an amplitude
of 0.2′′), which was also present in Figure 2.16, we observe a small circular
motion with a slowly varying amplitude of the Earth’s rotation pole. The
period is approximately one day. The quasi-daily motion is called Oppolzer
motion in honour of the Austrian Astronomer Freiherr Ritter von Oppolzer
(1841–1886).
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Fig. 2.19. Polar wobble 1981 with torques

Figure 2.20 shows the amplitude spectrum of the two-dimensional Oppolzer
motion generated with program FOURIER (see Chapter 11 of Part III). A
data-span of forty years with a data sampling of one hour is underlying the
spectrum. As opposed to the prograde free motion of the pole, the Oppolzer
motion is retrograde (clockwise rotation). The actual motion is relatively
complex. Three terms, two of them very close to the solar day, one close
to 1.075 days, dominate the spectrum. The amplitudes are of the orde of a
few milliarcarcsecond. Figures 2.21 and 2.22 show the development of the
Euler angles Ψ♁ (approximately precession plus nutation in longitude) and ε♁
(approximately nutation in obliquity) in January 1981. The nearly-diurnal
terms, as they were already observed in Figure 2.18, are present, as well. Due
to the external torques one can see signals of longer periods and – presumably
– larger amplitudes.
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Fig. 2.20. Spectrum of the Oppolzer motion

When studying Earth rotation over years rather than days, the nearly-diurnal
terms are usually removed from the time series. In program ERDROT the
formulas (2.22) are used for that purpose. The following transformation leads
to the Euler angles Ψ̃♁, ε̃♁ and Θ̃♁, which are free from quasi-diurnal terms:

Ψ̃♁ − Ψ♁ = − 1
sin ε♁ (1 + γ♁)ω♁0

(
ω♁F1

cosΘ♁ − ω♁F2
sinΘ♁
)

ε̃♁ − ε♁ = +
1

(1 + γ♁)ω♁0

(
ω♁F1

sin Θ♁ + ω♁F2
cosΘ♁
)

Θ̃♁ − Θ♁ = +
cos ε♁

sin ε♁ (1 + γ♁)ω♁0

(
ω♁F1

cosΘ♁ − ω♁F1
sinΘ♁
)

.

(2.25)
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Fig. 2.21. Precession and nutation in longitude at beginning of 1981
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Fig. 2.22. Nutation in obliquity at beginning of 1981

Figure 2.23 shows the PM of a rigid Earth over a time interval of forty years.
The rotation pole is contained within a ring centered at the figure axis of the
Earth. The thickness of the ring is given by the maximum amplitude of the
Oppolzer motion. The Oppolzer terms are not visible, because data were only
stored every five days – a clear undersampling, if the nearly-diurnal terms
would have been of primary interest.

Figures 2.24, 2.26 and 2.27 show the development of the angles Ψ̃♁ , ε̃♁ , and
Θ̃♁ , which are related to the corresponding Euler angles by eqn. (2.25), over
a time interval of forty years. Figure 2.25 is obtained from Figure 2.24 by
removing a linear trend from the former figure. This process shows in essence,
how precession (the linear constituent of the Euler angle Ψ♁ in Figure 2.26)
is separated in astronomy from periodic variations, which are interpreted as
nutation terms.

The prominent feature in Figure 2.24 is the linear drift of about Ψ̇♁ ≈ 50.5′′.
This is the so-called constant of luni-solar precession, corresponding to a
regression of the line of equinoxes on the ecliptic. The effect was presumably
discovered by Hipparchus. When subtracting this drift we obtain in essence
the nutation in (ecliptical) longitude in Figure 2.25. The main term has a
period of about 18.6 years and has an amplitude of about ∆ε(18.6 y) ≈ 17.3′′ .

The nutation in obliquity in Figure 2.26 is dominated by the 18.6 year period,
as well. The amplitude is about ∆Ψ(18.6 y) ≈ 9.2′′ . The 18.6 year terms in
Figures 2.25 and 2.26 are caused by the regression of the node of the lunar
orbit which in turn implies the periodic variation of the inclination of the
lunar orbit w.r.t. the equator between the limits ĩ = 23.5◦±5.14◦ (see Figure
2.12).
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Fig. 2.23. Polar wobble 1981-2020 with torques
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Fig. 2.24. Precession and nutation in longitude 1981-2020 (without daily terms)

Figure 2.27 shows the development of the third Euler angle Θ♁ over forty
years – after having removed the linear drift ω♁0 (t − t0) . The resemblance
between Figures 2.27 and 2.25 is striking: When reducing Figure 2.25 by the
factor cos ε♁0 one obtains a Figure which is identical with Figure 2.27.

Apart from the 18.6 year period one may clearly observe terms with a semi-
annual period in Figures 2.25, 2.26, and 2.27. The resolution is not good
enough to detect other periods in these Figures.
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Fig. 2.25. Nutation in longitude 1981-2020 (without daily terms)
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Fig. 2.26. Nutation in obliquity 1981-2020 (without daily terms)
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Fig. 2.27. Θ♁ 1981-2020 (without daily terms)
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A spectral analysis gives more insight. In order to get a fair estimate of the
amplitudes of longer periods (in particular the 18.6 year period) we use a
time series of 1000 years with a spacing of two days between observation
epochs to produce the spectra. Table 2.4 contains the more important terms
(up to terms with amplitudes > 0.01′′) as obtained from the spectral analysis
and compares them to the terms officially used in astronomy, the IAU (1980)
model of nutation (see Explanatory Supplement [107]). Unnecessary to say
that there are many more terms in the spectra. It should be pointed out that
periods are found empirically in the spectra (this implies that the numeri-
cal value for the longer periods are not so well established in the spectra)
whereas the periods follow from the periods of the five so-called fundamental
arguments of nutation theory.

Table 2.4. Precession and nutation in longitude and obliquity

Spectral Analysis Official Values
Ψ♁ ε♁ Ψ♁ ε♁

P [ d ] Amp [ ′′ ] P [ d ] Amp [ ′′ ] P [ d ] Amp [ ′′ ] Amp [ ′′ ]

∞ 50.5731 50.41
6798.8024 17.3819 6795.6045 9.2673 6798.4 17.1996 9.2025
3397.9567 0.2097 3401.0307 0.0923 3399.2 0.2062 0.0089
365.3278 0.1099 364.9640 0.0089 365.3 0.2426 0.0054
182.6294 1.2722 182.6296 0.5509 182.6 1.3187 0.5736
177.8908 0.0104 177.8869 0.0058 177.8 0.0129 0.0070
121.7441 0.0487 121.7426 0.0211 121.7 0.0517 0.0224
31.8120 0.0149 31.8 0.0158 0.0001
27.5544 0.0677 27.6 0.0712 0.0007
27.0923 0.0114 27.1 0.0123 0.0053
13.6607 0.2044 13.6607 0.0886 13.7 0.2274 0.0977
9.1329 0.0262 9.1329 0.0113 9.1 0.0301 0.0129

It is amazing that the values obtained by our simple simulation are so close
to the official values – which were all obtained from analytical series develop-
ments. The differences are (must be) mainly due to the differences between
the rigid body and elastic models for Earth rotation, an issue to be addressed
in section 2.3.

Forced Motion: Analytical Developments. We already presented the
analytical solution of the homogeneous equations in the absence of torques.
The solution is the circular motion represented by eqns. (2.14). For the sub-
sequent developments it is preferable to write these equations in the form
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ω♁1(t) = ω♁10 cos ω̃♁t − ω♁20 sin ω̃♁t
ω♁2(t) = ω♁10 sin ω̃♁t + ω♁20 cos ω̃♁t ,

(2.26)

where

ω♁10

def= ω♁1(0)

ω♁20

def= ω♁2(0)
(2.27)

are the initial values of the solution vector at t = 0 .

It is a standard technique in mathematics to derive the solution of an inhomo-
geneous system of type (I- 3.124) by starting from the homogeneous solution
using the method of variation of constants:

ω♁1(t) = ω♁10(t) cos ω̃♁t − ω♁20(t) sin ω̃♁t
ω♁2(t) = ω♁10(t) sin ω̃♁t + ω♁20(t) cos ω̃♁t .

(2.28)

Introducing the above equations into the inhomogeneous equations (I- 3.124),
which may be written in abbreviated form as




ω̇♁1

ω̇♁2

ω̇♁3


+




+ ω̃♁ ω♁2

− ω̃♁ ω♁1

0


 = ��♁ + ��♁ def= �♁ , (2.29)

where the components of the torques ��♁ and ��♁ have been already specified
on the right-hand sides of equations (I- 3.124), leads to the following condition
equations:

ω̇♁10 = + cos ω̃♁t 
♁1 + sin ω̃♁t 
♁2

ω̇♁20 = − sin ω̃♁t 
♁1 + cos ω̃♁t 
♁2 .
(2.30)

The above equations may be solved easily by (numerical or analytical)
quadrature:

ω♁10(t) = ω♁10(0) +

t∫

0

cos ω̃♁t′ 
♁1(t
′) dt′ +

t∫

0

sin ω̃♁t′ 
♁2(t
′) dt′

ω♁20(t) = ω♁20(0) −
t∫

0

sin ω̃♁t′ 
♁1(t
′) dt′ +

t∫

0

cos ω̃♁t′ 
♁2(t
′) dt′ .

(2.31)

What remains to be done before approximately solving the above integrals
analytically is the calculation of the components 
♁i

(t′) , i = 1, 2 , in the
Earth-fixed system. Let us use the following approximations:
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• The geocentric orbits of Sun and Moon are assumed to be circles,
• The orbital planes of Sun and Moon are assumed to be the ecliptic,
• The Euler angle Ψ♁ is approximated by Ψ♁ ≈ 0 , ε♁ is approximated by

ε♁ def= ε0 ≈ 23.5◦.

With the above simplifying assumptions we will not be able to “see” the main
terms of nutation. We should, however, be able to explain the quasi-daily
Oppolzer motion (see Figure 2.19) and to calculate the precession constant
as observed in Figure 2.24. Obviously it is possible to compute separately the
torques for Sun and Moon. For the geocentric coordinates of the Moon we
obtain in the Earth-fixed system:

r� = a�R3(Θ) R1(−ε0)




cosu�
sin u�

0




= a�



+ cosΘ♁ cosu�+ sin Θ♁ sin u�cos ε0

− sinΘ♁ cosu�+ cosΘ♁ sin u�cos ε0

sin ε0 sin u�


 ,

(2.32)

where u� is the (mean and true) ecliptic longitude of the Moon (under the
simplified assumptions stated above) and a� is the radius of the Moon’s
circular orbit. Designating the Sun’s geocentric ecliptical longitude with u�
and its semi-major axis as a� the components of the solar radius vector may
be written in the Earth-fixed system as:

r� = a�




+ cosΘ♁ cosu� + sin Θ♁ sin u� cos ε0

− sin Θ♁ cosu� + cosΘ♁ sin u� cos ε0

sin ε0 sinu�


 . (2.33)

Using the representation on the right-hand side of eqns. (I- 3.124) the com-
ponents of the torques in the Earth-fixed system may be written as:

��♁ = − 3 Gm�γ♁ sin ε0

2 a3�




sin Θ♁ sin 2u�− cosΘ♁(1 − cos 2u�) cos ε0

cosΘ♁ sin 2u�+ sin Θ♁(1 − cos 2u�) cos ε0

0




≈ − 3 Gm�γ♁ sin ε0

2 a3�




− cos ε0 cosΘ♁ + cos(Θ♁ − 2u�)
+ cos ε0 sin Θ♁ − sin(Θ♁ − 2u�)

0


 . (2.34)

The approximation is relatively crude, as the term 2 sin2 ε0 ≈ 0.08 was ne-
glected. In the same approximation, the corresponding result for the torque
produced by the Sun reads as

��♁ = − 3 Gm� γ♁ sin ε0

2 a3�




− cos ε0 cosΘ♁ + cos(Θ♁ − 2u�)
+ cos ε0 sin Θ♁ − sin(Θ♁ − 2u�)

0


 . (2.35)
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If we introduce the latter two results into the equations (2.31) we obtain the
final result

ω♁10(t) = ω♁10(0) +

t∫

0

cos ω̃♁t′ 
♁1(t
′) dt′ +

t∫

0

sin ω̃♁t′ 
♁2(t
′) dt′

= ω♁10(0) +
3Gm�γ♁ sin ε0

2a3�ω∗

[
− cos ε0 sin Θ♁0 +

ω∗

ω∗ − 2n� sin(Θ♁0 − 2u�0)
]

+
3Gm�γ♁ sin ε0

2a3�ω∗

[
− cos ε0 sin Θ♁0 +

ω∗

ω∗ − 2n� sin(Θ♁0 − 2u�0)

]

− 3Gm�γ♁ sin ε0

2a3�ω∗

[
− cos ε0 sin(ω̃♁t + Θ♁) +

ω∗

ω∗ − 2n� sin(ω̃♁t + Θ♁ − 2u�)
]

− 3Gm�γ♁ sin ε0

2a3�ω∗

[
− cos ε0 sin(ω̃♁t + Θ♁) +

ω∗

ω∗ − 2n�
sin(ω̃♁t + Θ♁ − 2u�)

]

ω♁20(t) = ω♁20(0) −
t∫

0

sin ω̃♁t′ 
♁1(t
′) dt′ +

t∫

0

cos ω̃♁t′ 
♁2(t
′) dt′

= ω♁20(0) +
3Gm�γ♁ sin ε0

2a3�ω∗

[
− cos ε0 cosΘ♁0 +

ω∗

ω∗ − 2n� cos(Θ♁0 − 2u�0)
]

+
3Gm�γ♁ sin ε0

2a3�ω∗

[
− cos ε0 cosΘ♁0 +

ω∗

ω∗ − 2n�
cos(Θ♁0 − 2u�0)

]

− 3Gm�γ♁ sin ε0

2a3�ω∗

[
− cos ε0 cos(ω̃♁t + Θ♁) +

ω∗

ω∗ − 2n� cos(ω̃♁t + Θ♁ − 2u�)
]

− 3Gm�γ♁ sin ε0

2a3�ω∗

[
− cos ε0 cos(ω̃♁t + Θ♁) +

ω∗

ω∗ − 2n�
cos(ω̃♁t + Θ♁ − 2u�)

]
,

(2.36)

where ω∗ def= (1 + γ♁)ω♁0 , u0 = u(0) , u�0 = u�(0) and Θ♁0 = Θ♁(0) .

The final solution of the inhomogeneous equations are obtained by substitut-
ing the above equations into eqn. (2.28):

ω♁1(t) = ρ♁ cos(γ♁ ω0t − α♁0)

+
3 Gm�γ♁ sin ε0

2 a3�ω∗

[
cos ε0 sin Θ♁ − ω∗

ω∗ − 2 n� sin(Θ♁ − 2 u�)
]

+
3 Gm� γ♁ sin ε0

2 a3� ω∗

[
cos ε0 sin Θ♁ − ω∗

ω∗ − 2 n�
sin(Θ♁ − 2 u�)

]



50 2. The Rotation of Earth and Moon

ω♁2(t) = ρ♁ sin(γ♁ ω0t − α♁0)

+
3 Gm�γ♁ sin ε0

2 a3�ω∗

[
cos ε0 cosΘ♁ − ω∗

ω∗ − 2 n� cos(Θ♁ − 2 u�)
]

+
3 Gm� γ♁ sin ε0

2 a3�ω∗

[
cos ε0 cosΘ♁ − 1

ω∗ − 2 n�
cos(Θ♁ − 2 u�)

]
.

(2.37)

The above equations show that under the influence of the torques exerted
by Moon and Sun the PM consists of the prograde motion with the Euler
period of about 303 days which is superposed by three retrograde nearly-
daily terms. An inspection of the brackets [. . .] shows that the amplitude of
the lunar Oppolzer contributions vary between (practically) zero and twice
the amplitude given by the pre-factor of the brackets within half a synodical
month and that the amplitude of the solar Oppolzer contribution varies with
an semiannual period between (practically) zero and twice the amplitude
given by the pre-factor of the brackets related to the solar term.

The prominent terms of the Oppolzer motion are ω0 (first terms of solar and
lunar contributions), ω0 − 2n� (second lunar term) and ω0 − 2n� (second
solar term). Table 2.5 contains the theoretical values and the values obtained
in the spectral analysis. In view of the above approximations the agreement
is more than satisfactory. The precession constant is obtained by introducing

Table 2.5. Periods and amplitudes of Oppolzer motion

Spectral Analysis Theoretical

P [ d ] Amp [ ′′ ] Ang. vel. P [ d ] Amp [ ′′ ]

−0.9973 0.0087 ω♁ −0.9973 0.0090
−1.0758 0.0066 ω♁ − 2n� −1.0758 0.0068
−1.0027 0.0029 ω♁ − 2n� −1.0027 0.0030

the solution (2.37) into Euler’s kinematic equation for the Euler angle Ψ♁ (see
eqns. (I- 3.68)):

Ψ̇♁ =
(− sin Θ♁ ω♁1 − cosΘ♁ ω♁2

)
csc ε♁ . (2.38)

Obviously, the contributions ∼ sin Θ♁ and ∼ cosΘ♁ give rise to a secular
term, the lunisolar precession:

Ψ̇♁ = − 3 Gγ♁ cos ε0

2 ω♁ (1 + γ♁)
{

m�
a3� +

m�
a3�

}
≈ −50.9′′/year . (2.39)

The value corresponds pretty well with the actual value for the lunisolar
precession constant. Mean values were used for a� and a� . Unnecessary to
say that each planet in the planetary system does correspond to the precession
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“constant” according to the pattern indicated by formula (2.39). (The semi-
major axes would have to be replaced by the mean geocentric distances of
the planets).

Observe that all quantities in eqn. (2.39), except for γ♁, are very accurately
known. Equation (2.39) may therefore be viewed as the defining equation for
γ♁ .

2.2.3 Rotation of the Moon

History. The basic properties of lunar rotation were detected empirically.
Giovanni Domenico Cassini (1625–1712) was the first to state the following
laws:

1. The Moon rotates counterclockwise (when seen from the North pole)
with constant angular velocity about a fixed axis; the sidereal rotation
period is the same as the sidereal revolution period of the Moon in its
orbit around the Earth.

2. The inclination of the Moon’s orbital plane w.r.t. the ecliptic is constant.

3. The rotation axis of the Moon, the pole of the ecliptic, and the pole of
the Moon’s orbital plane lie (in this sequence) in one and the same plane.

Cassini, for a long time director of the famous Observatoire de Paris, found
these laws towards the end of the 17th century by analyzing long series of
observations.

Free Motion. When analyzing the free rotation of the Moon one may no
longer assume rotational symmetry of the body (see lunar principal moments
of inertia, Table 2.1). Figure 2.28 illustrates the effect of lunar PM over the
time interval of 140 years (the figure was generated with program ERDROT
using the option of lunar rotation by setting the masses of both, Earth and
Sun, to zero). Initially, the rotation pole of the Moon was assumed to be
at ω�1 = 0.2′′ , ω�2 = 0.0′′ relative to the Moon’s axis of maximum mo-
ment of inertia. The resulting motion is very similar (at first sight) with the
corresponding result of the Earth’s rotation (compare Figure 2.16). A closer
inspection shows, however, that the Moon’s rotation pole is not moving on a
circle around the Moon’s axis of maximum moment of inertia, but rather on
an ellipse with an axis ratio of 4 : 5, the smaller axis pointing to the positive
ω�1 direction. Obviously the Euler period of the lunar PM is slightly longer
than 140 years.

The free motion of the rotation axis of the Moon may be easily explained
analytically: Setting in eqns. (I- 3.124) all torques to zero we may write for
the third component of the lunar angular velocity vector:

ω̇�3 + γ�3 ω�1 ω�2 ≈ ω̇�3 = 0 , (2.40)
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Fig. 2.28. Free motion of the Moon’s rotation pole over 140 years (assuming an
initial angle of 0.2′′ between rotation pole and axis of maximum moment of inertia)

because the two components ω�1 and ω�2 of PM of the Moon are small
quantities. In view of the fact that γ�3 is a small quantity as well (see Table
2.1), the approximation neglects “only” a small quantity of order 3. The
above equation is solved by

ω�3 = ω�0 = const. . (2.41)

In the absence of torques the rotation of the Moon therefore would be as
regular as that of the Earth. From eqns. (I- 3.124) we obtain the following
linear differential equation system for the Moon’s PM:

ω̇�1 + γ�1 ω�0 ω�2 = 0
ω̇�2 + γ�2 ω�0 ω�1 = 0 . (2.42)

One easily verifies that the above system is solved by

ω�1(t) = ρ�1
cos(ω̃�t + α�0)

ω�2(t) = ρ�2
sin(ω̃�t + α�0) ,

(2.43)

where
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ω̃� =
√− γ�1 γ�2 ω�0

ρ�1
=

ρ�√−γ�2

ρ�2
=

ρ�√
+γ�1

.

(2.44)

The actual amplitude ρ� and the phase angle α�0 are defined by the initial
state of the system.

The above results tell that the rotation pole of the rigid Moon moves with
constant angular velocity on an ellipse around the pole of maximum moment
of inertia – which corresponds exactly to the result observed in Figure 2.28.
The period of the free lunar PM and its constant angular velocity are uniquely
defined by the angular velocity of lunar rotation and by the three principal
moments of inertia. Using the values in Table 2.1 we obtain the following
parameters characterizing the “lunar PM”:

P� =
2 π√− γ�1 γ�2 ω�0

≈ 147 years

ρ�1

ρ�2

=

√
+γ�1

−γ�2

≈ 4
5

.
(2.45)

A firm establishment of the Moon’s free PM (in particular its period and axes)
would tell quite a lot about the satellite’s physical properties. Assuming that
the amplitude of the free lunar PM is of the order of one arcsecond (or a
fraction thereof), the detection of the free motion using observations made
from Earth is rather difficult: One arcsecond on the surface of the Moon
corresponds to an angle of about 1′′ R�

a� ≈ 0.0045′′ (where R� is the radius
of the Moon, a� its mean distance from Earth) which might be observed
from the Earth. It is therefore not amazing that the free motion of the lunar
rotation axis could not yet be firmly established – not even using the results
of Lunar Laser Ranging (it is extremely difficult to isolate a signal of a small
amplitude with a long period of about 147 years with observation series).

How do the Moon’s figure and rotation axes move in inertial space? This
motion is slightly more complicated than the corresponding motion of the
Earth, because rotational symmetry is not an adequate approximation. Eu-
ler’s kinematic equations (I- 3.68) relating the components of ω� to the Euler
angles, when applied to the Moon, provide the differential equations for the
Euler angles describing the Moon’s figure axis in inertial space:
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Ψ̇� = −{ω�1 sin Θ�+ ω�2 cosΘ�} csc ε�
ε̇� = −{ω�1 cosΘ�− ω�2 sin Θ�}
Θ̇� = + {ω�1 sin Θ�+ ω�2 cosΘ�} cot ε� + ω�0 .

(2.46)

Substituting the results (2.41) and (2.43) into the above equations leads to
the following differential equations for the Euler angles related to the Moon:

Ψ̇� = − ρ�2

{
ρ�1

ρ�2

cos ω̃�t sinΘ� + sin ω̃�t cosΘ�
}

csc ε�

ε̇� = − ρ�2

{
ρ�1

ρ�2

cos ω̃�t cosΘ�− sin ω̃�t sin Θ�
}

Θ̇� = + ρ�2

{
ρ�1

ρ�2

cos ω̃�t sinΘ� + sin ω̃�t cosΘ�
}

cot ε� + ω�0 .

(2.47)

For the sake of simplicity α�0 was set to zero, which would correspond to a
particular initial epoch.

The solution of these equations is slightly complicated by the fact that
ρ�1
ρ�2

	= 1 . Apart from that, the first order solution in ρ�2 follows the same

pattern as that of eqns. (2.18). The third equation is separated from the
first two of the above equations, provided we approximate ε� by a suitable
mean value on the right-hand side of the third of the above equations. The
zero-order solution of this third equation simply is

Θ�(t) = ω�0t . (2.48)

Using this approximation in eqns. (2.47) leads to the first-order approxima-
tions Ψ�(t) , ε�(t) , and Θ�(t) . As opposed to the corresponding equations
for the Earth, we do not only have terms with (1+

√− γ�1 γ�2 )ω�0t but also
with (1 − √− γ�1 γ�2 )ω�0t as time argument in the sin- and cos-functions.
The derivation of the exact form of the first-order solution may be left to the
interested reader.

Forced Motion: Simulations. Figure 2.29 shows the lunar PM under the
inclusion of external torques over the time interval of one year. When com-
paring this figure to the corresponding Figure 2.19 of Earth rotation one
observes significant differences: Whereas one still could see very well the free
constituent in Figure 2.19, lunar PM in Figure 2.29 is completely governed
by the forced motion. As opposed to effects of the order of fractions of arc-
seconds in Figure 2.28, we observe effects of the order of about one hundred
arcseconds and one gets the impression that there is a secular trend in the
lunar PM. The pattern also seems to be rather strange: the periodic part of
the signal shows rather abrupt changes.

Figure 2.30 which shows the two components of Figure 2.29 as a function
of time explains the strange behavior: whereas the first component of the
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Fig. 2.29. Forced motion of the Moon’s rotation pole over one year

Moon’s angular velocity vector shows a rather smooth almost secular trend,
a strong periodic signal with an amplitude of about 40′′ dominates the second
component.
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Figure 2.31 contains the same information as Figure 2.29, but over the much
longer time interval of 140 years. The figure indicates that there is no (ob-
vious) secular drift in the lunar PM. The amplitudes of the variations are
about 220′′ in the first and about 350′′ in the second component.
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Fig. 2.31. Forced motion of the Moon’s rotation pole over 140 years

The example of the rotation of a rotationally symmetric Earth has shown,
that the (third component of the) angular velocity is constant. If the rotation
axis is close to the figure axis of the body considered, this also implies that
the sidereal rotation period of the rigid body is (almost perfectly) constant.
Figure 2.32, actually illustrating the variations of the third component of the
Moon’s angular velocity vector, prove that the rotation period of the Moon
shows rather pronounced periodic variations: The rotation period varies by
±0.05%, corresponding to maximum differences about 20 minutes. The period
associated with these variations is about 2.8 years.

It is well known that

• due to the (rather small) irregularities of lunar rotation,

• due to the fact that the lunar equator is inclined by 23.5◦ ± (5.5◦ + 1.5◦)
w.r.t. Earth’s equator, and
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• due to the fact that the Moon revolves with variable velocity around the
Earth

we can observe about 58 % of the Moon’s surface from the Earth despite the
coupling of rotation and revolution periods. Figures 2.33 and 2.34 illustrate
the combined effect in a Moon-fixed coordinate system. Figure 2.33 shows
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Fig. 2.33. Lunar libration in lunar longitude
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Fig. 2.34. Lunar libration in lunar latitude

the selenocentric longitude difference of the pierce point of the line pointing
from the geo- to the selenocenter w.r.t. the Moon’s principal axis of inertia,
Figure 2.34 gives the lunar latitude difference of the same two points. The
amplitude of the variations is in both cases on the average about 6.5◦, the
reason is, however, different. The libration in longitude is mainly caused by
the Moon’s “irregular” revolution, whereas the libration in latitude is mainly
caused by the inclination of the lunar equator w.r.t. the Earth’s equator.

Note that the pierce point used in Figures 2.33 and 2.34 is in principle not
needed to describe either Earth or lunar rotation. The geocentric orbit of the
Moon and the three Euler angles of lunar rotation are needed to calculate the
angles shown in Figure 2.34. It is customary to designate the contribution
caused by the orbital motion of the Moon as optical libration, that due to
the rotational motion as physical libration. As already mentioned, optical
libration is the larger constituent. Cum grano salis one might say that Figures
2.33 and 2.34 illustrate optical libration.

It should be noted that the initial conditions for the three Euler angles Ψ�0 ,
ε�0 , and Θ�0 were set only approximately in program ERDROT by assuming
that a “mean Moon” obeys Cassini’s laws. The osculating elements of this
mean Moon are identical with the true osculating elements with the exception
of the initial eccentricity which was forced to the value of e�0

def= 0 .

Figure 2.35 shows the development of the lunar nutation angle Ψ�(t) in (eclip-
tical) longitude. The drift of 360◦/18.6 years is, as stated by Cassini’s laws,
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identical with the regression period of the lunar node in the ecliptic (see also
Figure 2.9).

Figure 2.36 shows the lunar nutation in obliquity. The variations are relatively
small (peak to peak about 0.2◦), but they show a relatively complex pattern.
A spectral analysis would reveal the relevant periods. This analysis may be
left to the reader.
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The development of the sum of nutation in longitude and the angle Θ� (re-
duced by the mean angular motion of the orbital motion) illustrates the well
known fact that rotation and revolution periods of the Moon agree on the av-
erage. The periodic variation with an amplitude of about 0.8◦ and a period of
about 2.8 years may be explained by the lunar rotation (see next paragraph).
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Fig. 2.37. Physical libration in longitude lph
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= Ψ�+ Θ�− n�0(t − t0)

Forced Motion: Analytical Developments. Considering only the torque
exerted by the Earth and neglecting small terms of second and higher order,
the equations (I- 3.124) for the rotation of the Moon read as




ω̇�1

ω̇�2

ω̇�3


+




γ�1 ω�2 ω�3

γ�2 ω�3 ω�1

0


 =

3 GM

r5�




γ�1 r�♁2 r�♁3

γ�2 r�♁3 r�♁1

γ�3 r�♁1 r�♁2


 , (2.49)

where the Earth’s coordinates on the right-hand side of the above equations
refer to the selenocentric system of the Moon’s principal axes of inertia.
Approximating the lunar orbit (the selenocentric Earth orbit) as a circle, the
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transformation from the inertial to the Moon-fixed coordinate system reads
as



r�♁1

r�♁2

r�♁3


 = r�R3(Θ�)R1(−ε�)R3(Ψ�− Ω♁)R1(−i�)




cosu♁
sin u♁

0


 , (2.50)

where Ω♁ is the ecliptical nodal longitude of the Earth’s seleonocentric orbit,
i♁ = i� is its inclination w.r.t. the ecliptic, and u♁ is its argument of latitude.
Ψ� , ε�, and Θ� are the three Euler angles of lunar rotation.

Assuming that ε� , i� and Ψ� + Θ�− (u♁ + Ω♁) may be considered as small
angles, the above transformation reduces to




r�♁1

r�♁2

r�♁3


 = r�




1
u♁ + Ω♁ − Θ�− Ψ�

(ε�+ i�) sin u♁


 . (2.51)

Note, that the second and third component of the above vector are small
quantities. Up to terms of first order in these small quantities the Earth’s
torque on the Moon therefore may be written as:

3 GM

r5�




γ�1 r�♁2 r�♁3

γ�2 r�♁3 r�♁1

γ�3 r�♁1 r�♁2


 =

3 GM

r3�




0
γ�2 (ε� + i�) sin u♁

γ�3 (u♁ + Ω♁ − Θ�− Ψ�)


 . (2.52)

Substituting eqns. (2.52) into the equations (2.49), we obtain approximate
differential equations which may (approximately) be solved analytically. In
the approximations considered, the first two of eqns. (2.49) are separated
from the third. Considering at present only the third we obtain:

ω̇�3 =
3 γ�3 GM

r3�
{
u♁ + Ω♁ − (Θ�+ Ψ�)

}
. (2.53)

Using the approximation cos ε� ≈ 1 , the angle l♁(t) def= Ω♁(t) + u♁(t) is
the selenocentric ecliptical longitude of the Earth at time t and the angle
l�I1

(t) def= Θ�(t)+Ψ�(t) is the selenocentric ecliptical longitude of the Moon’s
first axis of inertia. Both longitudes, l♁(t) and l�I1

(t), may be represented by
one and the same linear function and a residual part:

l♁(t) def= n�0(t − t0) + lopt(t)

l�I1
(t) def= n�0(t − t0) + lph(t) . (2.54)

lopt(t) is called the optical libration of the Moon, lph(t) its physical libration.
In the approximation considered the third component of the Moon’s angular
velocity vector is the sum of the angles Ψ̇� and Θ̇� :
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ω̇�3 = Ψ̈�+ Θ̈� = l̈�I1
= l̈ph . (2.55)

Using eqns. (2.54, 2.55), eqn. (2.53) may be written as:

l̈ph =
3 γ�3 GM

r3� (lopt + lph) . (2.56)

As the optical libration may be assumed known from the orbital motion,
we have obtained a second-order linear differential equation describing the
physical libration:

l̈ph +
3 γ�3 GM

r3� lph =
3 GM γ�3

r3� lopt . (2.57)

The homogeneous part of the equation is that of a pendulum. The basic
period is given by:

Pph =

√
3 γ�3 GM

r3� = n�0

√
3 γ�3 ≈ 1045 days . (2.58)

It is exactly this period which is observed in Figure 2.37.
Let us conclude this paragraph by a quick analysis of the first two of the
equations (2.49), where we only want to establish amplitude of the short-
period variation as they appear in Figures 2.29 and 2.30. For this purpose
we may skip the second term on the left-hand side and consider the two
separated differential equations:

(
ω̇�1

ω̇�2

)
= 3 γ�2 n2�0

(
0

(ε� + i�) sin u♁
)

. (2.59)

Obviously, these equations are solved by
(

ω�1(t)
ω�2(t)

)
=
(

ω�10

− 3 γ�2 n�0 (ε�+ i�) cosu♁ + const

)
, (2.60)

implying that the first component of angular momentum is constant, and
that the third component is given by a pure sinusoidal term with the period
of one draconitic month and an amplitude of

aω�2
= 206264.8 · 3 γ�2 n�0 (ε�+ i�) ≈ 45′′ . (2.61)

The above order of magnitude formulae explain the essential features of
Figures 2.29 and 2.30.

2.3 Rotation of the Non-Rigid Earth

2.3.1 Proofs for the Non-Rigidity of the Earth

The simulations performed in the previous sections illustrate that many as-
pects of Earth rotation, in particular the motion of the pole in inertial space
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(precession and nutation), are explained very well by a rigid body model.
This is the main reason why the International Astronomical Union (IAU)
switched only in 1980 from a rigid to an elastic Earth model.

There are, on the other hand, quite a few clear proofs that the Earth also
has non-rigid properties:

• The Earth’s surface is in a good approximation an equipotential surface
in its combined gravitational and rotational force field (a detailed discus-
sion will be given below). The Earth’s oblateness therefore proves that for
(almost) constant forces acting over very long time spans (millennia) the
Earth is almost an ideally elastic body.

• The existence of tectonic plates and their relative motion was postulated
in the first part of the twentieth century by Alfred Lothar Wegener (1880–
1930). His key article was published in 1915 [129]. As viewed from today
Wegener’s ideas concerning continental drift were mostly speculative. In
the age of space geodesy motions of individual observing sites, from which
plate motion or refined kinematic models for the Earth’s crust may be de-
duced, are observed “so to speak” in real time (see Figure I- 8.22). Tectonic
motions induce very slow changes of the Earth’s mass distribution. When
considering Earth rotation over time intervals not longer than a few cen-
turies we do not expect observable effects in either PM or LOD variations,
which might be attributed to tectonic motions.

• The system Earth consists of the solid Earth, the atmosphere and the
oceans. Obviously, the latter two constituents are far from rigid. The ques-
tion is, whether their contributions to the rotational behavior of the Earth
are important enough to be noticed in the observation series. The answer
to this question depends on the observational accuracy. Exchange of an-
gular momentum between the solid Earth and the atmosphere were barely
noticeable when Earth rotation was monitored with the instruments of op-
tical astrometry (except for the annual term in PM). In the age of VLBI
and GPS the correlation between the two types of angular momenta is
striking. The correlation is monitored routinely with a daily or even higher
time resolution.

• As seen from simulation and predicted from theory a rigid, rotationally
symmetric Earth would ask for the Earth’s pole to move on the surface
of the Earth on a circle around the pole of figure with a period of about
304 days (Euler period). The period is uniquely defined by the length of the
sidereal day and the dynamical flattening of the Earth. When spectrally
analyzing the actual PM (as, e.g., illustrated by Figures I- 8.19 and I- 8.20)
one obtains, however, in the low frequency domain a superposition of an
annual signal and one of about 430 days. The latter period is called the
Chandler period (named after its discoverer Seth Carlo Chandler (1846–
1913)). The annual period is mainly due to the interaction between the
atmosphere and the solid Earth. The remarkably big discrepancy between
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the Chandler and the Euler period is one of the classical (and striking)
proofs for the non-rigidity of the Earth. The difference was in part re-
sponsible for a long delay in the observational verification of the effect of
PM (see Verdun et al. [126]). Figure 2.38 shows the spectrum of the IERS
C04-pole series (obtainable through http://hpiers.obspm.fr/), which con-
tains (among other Earth rotation data) the x- and y-coordinates of the
pole and the excess LOD values at five day intervals since January 1, 1962.
Note that the Chandler wobble is actually a prograde motion – the nega-
tive sign arises because the x- and y-coordinates of the pole were analyzed
(see eqns. (2.4)).
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Fig. 2.38. Spectrum of C04 PM (two-dimensional analysis)

The spectrum differs in two aspects from the expected Euler motion of the
pole: First of all, we clearly distinguish two lines, one with a period of about
430 days, one with an annual period. As will be shown below, both periods
are due to the non-rigidity of the Earth: The annual term is (mainly)
due to exchange of angular momentum between the solid Earth and the
atmosphere; the Chandlerian motion may be explained as the generalized
PM of an elastic body (a detailed analysis will be provided below).

• The length of the sidereal day is constant for a rigid, rotationally symmet-
ric Earth. Figure I- 8.21 shows that in reality this is not the case: annual
and semiannual terms are clearly visible. Figure 2.39, which is based on
the C04-pole series of the IERS, shows that there are also longer-term
variations (of the order of decades) in these series. Figure 2.40 shows the
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Fig. 2.39. Excess LOD based on C04 series of the IERS

amplitude spectrum (up to 500 days) of the C04 LOD series. As expected
from Figures I- 8.21 and 2.39 the annual and semiannual terms are promi-
nent. It is interesting to note that monthly and bi-monthly terms show up
as well. We will see below that the latter terms are due to the luni-solar
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Fig. 2.40. Amplitude spectrum of C04 excess LOD series
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tides. As expected, and, as opposed to the spectrum of PM, there is no
clear signal near the Chandler period in the spectrum of the excess LOD
values.

2.3.2 Hooke’s Law and the Earth’s Deformations

Let us assume from now on that the Earth is an elastic body, which may be
deformed by applied forces. We neglect ocean and atmospheres in this simple
approximation, and we do not make the distinction between the different
layers of the Earth (crust, mantle, liquid outer and solid inner core). For a
perfectly elastic body the deformations are reversible, i.e., if the applied forces
disappear, the body will assume its original shape – as long as the applied
forces are “small”.

The relation between the external forces and the resulting deformations is
described by Hooke’s law in an elastic body. The original version of the law
is due to Robert Hooke (1635–1703). It simply states that the deformation
of an elastic body is proportional to the forces applied. The one-dimensional
case is illustrated in Figure 2.41. In order to formulate the one-dimensional

Fxx

Ax

x

dx

Fig. 2.41. Deformation dx of a cylindrical rod of length x and cross-section Ax

due to a force Fxx acting along x

version of the law explicitly, we have to introduce the stress as the force per
cross-section area by

σxx
def=

Fxx

Ax
(2.62)

and the resulting deformation per length unit, called strain, by

εxx
def=

dx

x
. (2.63)
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Using the notations (2.62) and (2.63) Hooke’s law simply may be written as
follows:

εxx ∝ σxx (2.64)

or
dx

x
∝ Fxx

Ax
.

Note that the strain is a dimensionless quantity, whereas the stress has the
unit of N/m2 (or Pascal), exactly like pressure.

It is a relatively straightforward task to generalize the one-dimensional ver-
sion (2.64) of Hooke’s law to three dimensions (as it will be needed below). In
the three-dimensional case we have to study the deformation of a rectangular
prism of side lengths x , y , and z (the corresponding areas are Ax = yz ,
Ay = xz , Az = xy ) due to the respective applied normal stress components
σxx

def= Fxx

Ax
, σyy

def= Fyy

Ay
, and σzz

def= Fzz

Az
. At first sight one would expect that

the law (2.64) could simply be transcribed to the components y and z by
replacing the symbol x by y and z respectively, for the deformations in the
directions y and z . The situation is, however, slightly complicated by the fact
that each longitudinal strain εxx also induces transversal strain εyy and εzz

in the directions y and z . Longitudinal and transversal strains are related by

εyy ∝ − ν εxx and εzz ∝ − ν εxx , (2.65)

where the dimensionless parameter ν, called Poisson’s ratio (in honour of
Siméon-Denis Poisson (1781–1840)), depends on the material properties of
the body. One easily verifies that ν = 0.5 for an incompressible body. The
value ν = 0 is assumed when no lateral contractions occur. Obviously, ν must
thus lie between the two values for a real body. We are now in a position to
write down Hooke’s law in three dimensions:

εxx ∝ σxx − ν σyy − ν σzz

εyy ∝ σyy − ν σzz − ν σxx

εzz ∝ σzz − ν σxx − ν σyy .
(2.66)

These equations complete our excursion into the theory of elasticity. Let us
mention in conclusion that σxx , σyy , and σzz are the diagonal elements of
the stress matrix, and that εxx , εyy , and εzz are the diagonal elements of
the resulting strain matrix. We will not need the off-diagonal elements of the
two matrices in our context. For a more complete treatment of the theory of
elasticity, as used in geodynamics, we refer to the elementary treatment [69]
or to any other standard textbook on geophysics.

In the simplest case an elastic body may thus be characterized by one pro-
portionality coefficient in Hooke’s law (2.66) and by a value for the Poisson
ratio ν.
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Subsequently, we will apply Hooke’s law to the Earth as a whole. Such a
treatment must be a gross simplification. The Earth should be treated more
correctly as a composite body, consisting (at least) of different layers (as,
e.g., specified in Figure 2.55), where each layer is governed by a specific set
of elastic parameters. Such treatments must be left to special treatments in
geophysics. For our purpose it is sufficient to assume that the elastic Earth
is governed by eqns. (2.66); we will even assume that no lateral contraction
occur, i.e., that

ν
def= 0 . (2.67)

This assumption certainly is not very realistic. It has, however, the advantage
of significantly reducing the formalism – and it is justified by the fact that the
errors due to this assumption are of second or higher order in small quantities.

The “external” forces which have to be considered in the case of an elastic
Earth model are:

• Centrifugal force due to the rotation of the Earth around its figure axis.

• Differential centrifugal force due to the fact that the Earth’s figure and
rotation axes do not coincide. Because the angle between the two axes is
the angle of PM, one usually refers to this effect as polar tides.

• Tidal deformations due to Sun and Moon. (The tidal torques due to the
planets exist as well, but they are very small and usually ignored.)

Permanent Deformation. The combined gravitational and centrifugal po-
tential W (r) of the Earth, called gravity potential in geodesy, may be written
approximately as (see (I- 3.157))

W (r, φ) = V (r, φ) + 1
2 ω2♁ r2 cos2 β

=
GM

r

{
1 +

C♁ − A♁
M r2

(
3
2

cos2 β − 1
)}

+
1
2

ω2♁ r2 cos2 β .
(2.68)

Rotational symmetry, i.e., A♁ = B♁ and I♁12 = 0 was assumed. Moreover,
it was assumed that the angular velocity vector coincides with the Earth’s
figure axis. We thus assume that the Earth rotates about the figure axis.

A particular equipotential surface of the potential (2.68) which is tangential
to the Earth at the equator is defined by

W (r, φ) def= W (a♁, 0◦) , (2.69)

where a♁ is the equatorial radius of the Earth and φ is the geocentric lati-
tude. The surface defined by the above equation is approximately that of a
flattened, rotationally symmetric ellipsoid with its semi-minor axis coinciding
with the rotation axis (the proof may be left to the reader). The polar radius
b♁ (semi-minor axis of the ellipsoid) is obtained by the condition equation
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W (b♁, 90◦) = W (a♁, 0◦) . (2.70)

This equation is approximately solved by

a♁ − b♁
a♁ =

3
2

C♁ − A♁
M a2♁

+
1
2

ω2♁ a3♁
GM

≈ 1
297.6

, (2.71)

which gives the following value for the difference between the equatorial and
polar radius of the Earth:

a♁ − b♁ ≈ 21.431 km . (2.72)

These values agree to within about 0.2% with the actual values for the geo-
metric flattening and the polar radius of the Earth, respectively. The agree-
ment proves that the Earth’s surface is in an excellent approximation an
equipotential surface of the Earth’s gravity field. This agreement indicates
in turn that the Earth reacts nearly like an ideally elastic body to constant
forces acting over millions of years.

The second term on the right-hand side of formula (2.71) may be interpreted
in terms of the fraction ξ of the centrifugal force and of the gravitational
force at the equator

ξ
def=

ω2♁ a♁
GM
a2♁

=
ω2♁ a3♁
GM

≈ 1
288.9

. (2.73)

Polar Tides. The effect of the so-called polar tides is illustrated by Figure
2.42. The polar tides are a consequence of the fact that the Earth does not
rotate about its figure axis (unit vector e3♁ in Figure 2.42) but about the
actual rotation axis (represented by the vector ω♁ in the same Figure). Due to
the differential force caused by this mismatch of axes the Earth’s surface tries
to make its surface (solid ellipsoid in Figure 2.42) an equipotential surface
(dashed line) in the gravity field of an Earth rotating about the axis ω♁ .

e3 �

�

�

Fig. 2.42. Polar tides: deformation of Earth due to its rotation
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Let us now assume that the Earth is an elastic body and explain the resulting
deformation due to the polar tides as a global application of Hooke’s law.
Let us calculate the resulting differential forces, etc. in the Earth-fixed PAI-
system. A mass element dM

def= ρ(r♁F ) dV with the geocentric coordinates r♁F
(in the rigid, rotating coordinate system) rotating with an angular velocity

ω♁F
def= ω♁F0

+




δω♁F1

δω♁F2

δω♁F3


 = ω♁F0




0
0
1


+




δω♁F1

δω♁F2

δω♁F3


 (2.74)

experiences the centrifugal force

f♁F = (ω♁F × r♁F ) × ω♁F dM = ω2♁F r♁F − (ω♁F · r♁F ) ω♁F . (2.75)

The same mass element would suffer from a centrifugal force

f♁F0
= ω2♁F3

(e3♁F
× r♁F ) × e3♁F

dM = ω2♁F0

(
r♁F − (e3♁F

· r♁F ) e3♁F

)
,

(2.76)
when rotating with angular velocity ω♁F0

around the figure axis e3♁ .

Neglecting the terms of the second and higher orders in the small quantities
δω♁Fi

, i = 1, 2, 3 , the differential centrifugal acceleration is obtained as the
difference of the above two forces

df♁F
def= f♁F − f♁F0

= ω♁F3




2 δω♁F3
r♁F1

− δω♁F1
r♁F3

2 δω♁F3
r♁F2

− δω♁F2
r♁F3− δω♁F2

r♁F2
− δω♁F1

r♁F1


 dM . (2.77)

One easily verifies that this differential force may be expressed as the gradient
of the following scalar potential:

dV = dM ω♁F3

{
δω♁F3

(
r2♁F1

+ r2♁F2

)
− r♁F3

(
δω♁F1

r♁F1
+ δω♁F2

r♁F2

)}
.

(2.78)
Hooke’s law states that the deformation suffered by an elastic body as a
consequence of an applied force is proportional to the force. Obviously this
deformation also must be inversely proportional to the mass. The displace-
ment of the mass element dM considered may therefore be written as

δr♁F
def=

k ξ

ω♁F3




2 δω♁F3
r♁F1

− δω♁F1
r♁F3

2 δω♁F3
r♁F2

− δω♁F2
r♁F3− δω♁F1

r♁F1
− δω♁F2

r♁F2


 , (2.79)

where k is a dimensionless constant and ξ is the fraction of the centrifugal
and the gravitational forces at the equator (as defined by eqn. (2.73)).

k is (one of) the well-known Love number(s) (named in honour of Augustus
Edward Hough Love (1863–1940)), providing a measure for the elasticity of
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a planet. Obviously, k = 0 corresponds to the rigid-body model of the Earth.
As we will see below, k ≈ 1 characterizes an ideally elastic Earth – which
justifies the use of the dimensionless “constant” ξ in the expression (2.79) for
the displacement of the mass element dM .

Let us now explicitly calculate the elements of the inertia tensor (I- 3.75)
in a coordinate system with its third axis lying in the figure axis of the
unperturbed body. For the minimum moment of inertia we obtain, e.g.:

A♁ def=
∫

V

ρ(r♁F )
{(

r♁F2
+ δr♁F2

)2
+
(
r♁F3

+ δr♁F3

)2}
dV , (2.80)

where the integral has to be extended over the unperturbed volume of the
Earth. Substituting the deformations (2.79) as expected by Hooke’s law, mak-
ing use of the relations (I- 3.79) and (I- 3.80), and denoting the unperturbed
moments of inertia of the Earth rotating about the figure axis by A0, B0, and
C0, one easily verifies the following relations:

A♁ = A0 + 2
k ξ δω♁F3

ω♁F3

(C0 + A0 − B0)

B♁ = B0 + 2
k ξ δω♁F3

ω♁F3

(C0 − A0 + B0)

C♁ = C0 + 4
k ξ δω♁F3

ω♁F3

C0 .

(2.81)

For a rotationally symmetric Earth one obtains in particular

A♁ = A0 + 2
k ξ δω♁F3

ω♁F3

C0

B♁ = A0 + 2
k ξ δω♁F3

ω♁F3

C0

C♁ = C0 + 4
k ξ δω♁F3

ω♁F3

C0 .

(2.82)

The deformations exerted by the polar tides also induce changes in the el-
ements I♁F13

and I♁F23
of the inertia tensor. Their computation follows the

same pattern as that of the principal moments of inertia. Using the definition
(I- 3.76) for the inertia tensor and the deformations (2.79) we obtain, e.g.:

I♁F13

def= −
∫

V

ρ(r♁F )
(
r♁F1

+ δr♁F1

)(
r♁F3

+ δr♁F3

)
dV =

k ξ δω♁F1

ω♁F3

B0 .

(2.83)
Along the same lines one obtains:
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I♁F23

def=
k ξ δω♁F2

ω♁F3

A0 . (2.84)

In conclusion, the inertia tensor, expressed in the PAI-system of the unper-
turbed body, may be written as

I♁F = I0 + δI♁F =




A0 0 0
0 B0 0
0 0 C0


+ δI♁F , (2.85)

where

δI♁F =
k ξ

ω♁F3




2 δω♁F3
(C0 + A0 − B0) 0 δω♁F1

B0

0 2 δω♁F3
(C0 − A0 + B0) δω♁F2

A0

δω♁F1
B0 δω♁F2

A0 4 δω♁F3
C0


 .

(2.86)
For a rotationally symmetric Earth one obtains in particular

δI♁F =
k ξ

ω♁F3




2 δω♁F3
C0 0 δω♁F1

A0

0 2 δω♁F3
C0 δω♁F2

A0

δω♁F1
A0 δω♁F2

A0 4 δω♁F3
C0


 . (2.87)

In order to solve the Liouville-Euler equations, we also need the first time
derivatives of the inertia tensor. Obviously, one may write (for a rotationally
symmetric Earth):

İ♁F = δİ♁F =
k ξ

ω♁F3




2 δω̇♁F3
C0 0 δω̇♁F1

A0

0 2 δω̇♁F3
C0 δω̇♁F2

A0

δω̇♁F1
A0 δω̇♁F2

A0 4 δω̇♁F3
C0


 . (2.88)

It is important to note that both, the elements of matrices δI♁F and İ♁F are
small quantities of the first order (because they are proportional to δω♁Fi

or
their time derivatives).

With the expressions for the inertia tensor and its time derivative the
Liouville-Euler equations may be set up for an elastic Earth rotating about
an axis (slightly) different from the figure axis. We assume that it is possi-
ble to realize a Tissérand system using all (space-) geodetic and geophysical
informations – not an entirely unproblematic assumption. Under these cir-
cumstances the Liouville-Euler equations may be used in the form (I- 3.137).
Neglecting all second- and higher-order terms in the small quantities δω̇♁F2

,
the individual terms may be approximated by

İ♁F ω♁F = k ξ




B0 ω̇♁F1

A0 ω̇♁F2

4 C0 ω̇♁F3


 , (2.89)
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I♁F ω̇♁F =




A0 ω̇♁F1

B0 ω̇♁F2

C0 ω̇♁F3


 , (2.90)

and

ω♁F × (I♁F ω♁F ) =




(C0 − B0 − k ξ A0) ω♁F2
ω♁F3

(A0 − C0 + k ξ B0) ω♁F1
ω♁F3

0


 . (2.91)

By introducing the above relations into the Liouville-Euler equations one
obtains (after the division of the first equation by A0, of the second by B0,
and of the third by C0) the Liouville-Euler equations for the free rotation of
the elastic Earth

(
1 + k ξ

B0

A0

)
ω̇♁F1

+ (γ♁1 − k ξ)ω♁F2
ω♁F3

= 0
(

1 + k ξ
A0

B0

)
ω̇♁F2

+ (γ♁2 + k ξ)ω♁F1
ω♁F3

= 0

ω̇♁F3
= 0 ,

(2.92)

where

γ♁1 =
C0 − B0

A0
, γ♁2 =

A0 − C0

B0
, γ♁3 =

B0 − A0

C0
(2.93)

exactly as in the case of the rigid body.

Assuming rotational symmetry one obtains the somewhat simpler relations

(1 + k ξ ) ω̇♁F1
+ γ♁
(

1 − k ξ

γ♁
)

ω♁F2
ω♁F3

= 0

(1 + k ξ ) ω̇♁F2
− γ♁
(

1 − k ξ

γ♁
)

ω♁F1
ω♁F3

= 0

ω̇♁F3
= 0 ,

(2.94)

where
γ♁ =

C0 − A0

A0
. (2.95)

The equations (2.92) and (2.94) are very closely related to the corresponding
equations of the rigid body (see eqns. (2.10)). The above equations are, as a
matter of fact, identical with the equations of the rigid body for k = 0 . The
mathematical structure of the equations for the rigid and the elastic body is
the same: The equation for the third component of the angular velocity is
separated from the equations for PM and has the trivial solution ω♁F3

(t) =
ω♁0 = const. As a consequence the first two components form a coupled
system of linear, homogeneous differential equations with constant coefficients
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which may solved with the same methods as in the case of the rigid body. For
a rotationally symmetric Earth, the free rotation of which is defined by eqns.
(2.94), the pole moves with constant angular velocity on a circle around the
pole of figure. The amplitude is given by the initial conditions, the period by

P =
2 π

γ♁ ω♁0

(
1 − k

ξ

γ♁
)−1

, (2.96)

(where 1 + k ξ ≈ 1 was used as an approximation for the coefficients of the
terms ω♁Fi

, i = 1, 2, 3 in the Liouville-Euler equations).

The term

ks
def=

γ♁
ξ

=
GM (C0 − A0)

A0 ω2♁0
a3♁

≈ 3 G (C0 − A0)
ω2

0 R5♁
≈ 0.95 , (2.97)

where R♁ is the mean radius of the Earth, often is referred to as secular Love
number. The designation is somewhat unfortunate. It may be justified by
the fact that for an ideally elastic Earth, one would expect ks

def= 1 . For a
geophysical discussion of the secular Love number ks we refer to the standard
textbook by Munk and MacDonald [78].

Formula (2.96) tells that the period P of the Chandler motion (Euler motion
for k = 0) heavily depends on the Love number k , which characterizes the
ability of the Earth’s surface to assume the form of an equipotential surface
in the actual gravity potential. For k = ks , the period becomes infinite. This
corresponds to the case of an ideally elastic Earth: The surface of the Earth
is always an ellipsoid of rotation with its semi-minor axis coinciding with the
angular velocity axis. For values 0 < k < ks the Earth’s response to forces
with periods of about one day is “too slow” to behave like an ideally elastic
body. The actual value for k may, e.g., be extracted from a spectral analysis
of PM. From the spectrum in Figure 2.38 of the IERS C04 series of PM we
find a period of about P = 435d, corresponding to a Love number k of about
k ≈ 0.3 .

The most prominent feature in the PM series in Figure 2.38 could thus be
explained as a consequence of the so-called polar tides. Figure 2.43 illustrates
the free PM over a time interval of 300 days using program ERDROT. Only
the free Earth rotation was considered and the Love number was set to the
values k = 0 , k = 0.3 , and k = 0.7 . The second value characterizes the real
situation.

Lunisolar Tides. Figure 2.44 gives a first insight into the characteristics of
the lunisolar tides: The upper part illustrates the gravitational forces acting
on a mass element in the inertial system, the lower part the resulting tidal
forces, i.e., the difference between the gravitational forces at a particular
point on the Earth surface (or in the Earth’s interior) and the gravitational
force in the geocenter. From Figure 2.44 (bottom) we expect, that the Earth
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Fig. 2.43. Free PM for Love numbers k = 0, 0.3, 0.7, over a time interval of 300
days

is elongated along the line geocenter → selenocenter. Somewhat exaggerating
one might say that the Earth assumes the shape of an American football
pointing to the Moon due to the tidal force exerted by the Moon. As will
be seen below, the deformed Earth assumes the shape of an elongated (as
opposed to oblate) ellipsoid. Note that the four points in Figure 2.44 were

Earth

Moon

Earth

Moon

Fig. 2.44. Gravitational forces (top) and tidal forces (bottom) acting on mass unit
at four points in the equatorial plane
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selected in a special way as the tidal acceleration always points into the
vertical direction. At locations between these four special cases horizontal
accelerations do occur as well.
Using equations of type (I- 3.21) (where geocentric instead of heliocentric
vectors have to be used and the constant k2 has to be replaced by Gm�)
the tidal acceleration atid due to Sun and Moon acting on a mass element
at point P with geocentric position r (on the Earth’s surface or in the Earth
interior) may be written as

atid = −Gm�
{

r − r�
| r − r� |3 +

r�
r3�
}

− Gm�

{
r − r�

| r − r� |3 +
r�
r3�

}
. (2.98)

This acceleration may be written as the gradient of a potential function

atid = ∇Vtid , (2.99)

where the tide-generating potential may be written in the form (compare
eqn. (I- 3.28))

Vtid =
Gm�

| r − r� | − Gm� r · r�
r3� +

Gm�
| r − r� | − Gm�

r · r�
r3�

. (2.100)

The tidal potential (2.100) is the sum of two terms, the tidal potential Vtid�
due to the Moon and that due to the Sun Vtid�. Let us consider only the
term due to the Moon (the tidal potential due to the Sun may be treated in
an analogous way):

Vtid� =
Gm�

| r − r� | − Gm� r · r�
r3� . (2.101)

Note that | r | � | r�| , because r is the geocentric position vector of a
point on the Earth’s surface or interior. We may therefore approximate the
first term by a series of Legendre polynomials with the cosine of the angle
between the vectors r and r� as argument

cosα
def=

r · r�
r r� . (2.102)

The procedure is analogous to that performed in section (see eqn. (3.102) in
section I- 3.3.5). The result reads as:

Vtid� = Gm�
{

1
| r − r� | −

r · r�
r3�
}

=
Gm�

r�

{
1 + (1 − 1)

r · r�
r2� − 1

2
r2

r2� +
3
2

(
r · r�

r2�
)2}

def= +
1
2

Gm�
r3� r2

{
3 cos2 α − 1

}
,

(2.103)

where the term G m�
r� was skipped in the transition from the second to the
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last line, because it does not depend on the vector r (this does of course
mean that mathematical equality is not preserved in this transition).

The deformations caused by the tide-generating potential (2.103) are best
studied in a geocentric Cartesian coordinate system with coordinates x, y and
z, the third axis of which coincides with the line geocenter → selenocenter.
From the last line of eqns. (2.103) one immediately obtains:

Vtid� =
1
2

Gm�
r3�
{
2 z2 − x2 − y2

}
, (2.104)

from where the accelerations follow as

atid� = ∇Vtid� =
Gm�

r3�




− x
− y

+ 2 z


 . (2.105)

According to Hooke’s law the deformations are proportional to the applied
accelerations. Consequently, one may write




δx
δy
δz


 =

k ξ

ω2♁0

∇Vtid� =
k ξ

ω2♁0

Gm�
r3�




− x
− y

+ 2 z


 . (2.106)

The dimensionless constant k is again the Love number. The factor ξ
ω2♁0

was

introduced for easy comparisons of lunisolar tide results with those of the
polar tides.

How do the principal moments of inertia change due to the tidal deformation
(2.106)? In order to isolate the effect we assume that the unperturbed Earth
is of spherical symmetry with three identical principal moments of inertia
(see Table 2.1):

A0 = B0 = C0 = 0.3296144 MR2♁ . (2.107)

The new principal moments of inertia A�, B� , and C� due to the lunar tides
are calculated as

A� =
∫

V

ρ(r♁F )
{
(y♁F + δy♁F )2 + (z♁F + δz♁F )2

}
dV

= A0 + 2
∫

V

ρ(r♁F ) {y♁F δy♁F + z♁F δz♁F} dV

= A0 +
k ξ

ω2♁0

Gm�
r3� {−A0 + 2 A0}

=
(

1 +
k ξ

ω2♁0

Gm�
r3�
)

A0 .

(2.108)

For symmetry reasons the same result is obtained for B� , whereas the third
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moment of inertia is smaller than A� = B�. The result may be summarized
as follows:

A� =
(

1 +
k ξ

ω2♁0

Gm�
r3�
)

A0

B� =
(

1 +
k ξ

ω2♁0

Gm�
r3�
)

A0

C� =
(

1 − 2 k ξ

ω2♁0

Gm�
r3�
)

A0 .

(2.109)

In the coordinate system used (third axis pointing into the direction geocenter
→ selenocenter) a body of mass M and principal moments of inertia A� = B�
and C� gives rise to a potential of the form (see eqn. (I- 3.157))

V�(r, α) =
GM

r
+

G

2 r3
(A�− C�)

(
3 cos2 α − 1

) def=
GM

r
+ ∆V�(r, α) ,

(2.110)
where in view of the expressions (2.109) the term A�− C� reads as

A�− C� = +
3 k ξ

ω2♁0

Gm�
r3� A0 . (2.111)

The tide-induced modification ∆V�(r, α) of the external potential of the
Earth therefore may be written as

∆V�(r, α) =
{

3 k
A0 a3♁
Mr5

}{
1
2

Gm�
r3� r2

(
3 cos2 α − 1

)}
. (2.112)

In view of the definition of the tide-generating potential (2.103) and in view
of the fact that A♁ ≈ 1

3 Ma2♁ we may further simplify the above result:

∆V�(r, α) = k
(a♁

r

)5
Vtid�(r, α) , r ≥ a♁ . (2.113)

On the sphere with radius r
def= a♁ the tide-induced external potential thus

reads as
∆V�(r, α) = k Vtid�(r, α) , r = a♁ . (2.114)

Equation (2.114) may be used as the defining relation for the Love number
k . Under these conditions we have:

0 ≤ k ≤ 1 , (2.115)

where k = 0 holds for a rigid Earth, k = 1 for an ideally elastic Earth.
According to the IERS conventions [71]

k = 0.3 , (2.116)



2.3 Rotation of the Non-Rigid Earth 79

which means that the Earth in its current state of development is far from
being a rigid, but also far from being an ideally elastic body.

In order to solve the Liouville-Euler equations (I- 3.135) we have to transform
the inertia tensor from the particular system used in eqns. (2.109) into the
rigid, rotating coordinate system to which the eqns. (I- 3.135) refer to. If we
designate with λ� and β� the longitude and latitude of the Moon for the time
t considered, the transformation between the rigid rotating system and the
system underlying eqns. (2.109) may be written as follows:




x
y
z


 = R3

(π
2

+ λ�
)

R1

(π
2
− β�
)

r♁F
def= T̃T� r♁F . (2.117)

In view of the transformation equations (I- 3.77) and eqns. (2.109) for the
inertia tensors the change of the inertia tensor due to lunar tides may be
written as:

δItid�F =
k ξ

ω2♁0

Gm�
r3� A0 T̃�




1 0 0
0 1 0
0 0 −2


 T̃T� . (2.118)

As mentioned earlier, the change of the inertia tensor due to the solar tides
may be computed in an analogous manner:

δItid�F =
k ξ

ω2♁0

Gm�
r3�

A0 T̃�




1 0 0
0 1 0
0 0 −2


 T̃T

� . (2.119)

In order to solve the Liouville-Euler equations, the expressions (2.118, 2.119)
and their time derivatives have to be taken into account when computing the
terms I and İ . In the program ERDROT the Liouville-Euler equations are
used directly in the form (I- 3.137).

In order to gain additional insight into the structure of the solution of the
Liouville-Euler equations for the elastic, rotationally symmetric Earth we also
provide an approximate version of these equations. Up to terms of first order
in the small quantities δω♁F and ω̇♁F these equations read as (compare eqns.
(2.94)):

(1 + kξ) ω̇♁F1
+ γ♁
(
1 − kξ

γ♁
)

ω♁F2
ω♁F3

= −δİtid♁F13
ω♁0

A0
+

δItid♁F23
ω2♁0

A0
+


♁F1

A0

(1 + kξ) ω̇♁F1
− γ♁
(
1 − kξ

γ♁
)

ω♁F2
ω♁F3

= −δİtid♁F23
ω♁0

A0
− δItid♁F13

ω2♁0

A0
+


♁F2

A0

ω̇♁F3
= −δİtid♁F33

ω♁0

C0
,

(2.120)

where the lunisolar torques may be dealt with exactly like in the case of
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the rigid body (see eqns. (I- 3.124)) in our approximation. The system of
equations (2.120) is an inhomogeneous, linear system of differential equations.
The underlying homogeneous part is given by eqns. (2.94) and therefore needs
no further discussion.

As opposed to the rigid body the inhomogeneous part does not only consist of
the lunisolar torques, but in addition of the terms due to the lunisolar tides.
Note in particular, that the third component of the angular velocity is no
longer constant, but that the changes of the angular velocity are proportional
to the changes of the third component of the inertia tensor in the rigid,
rotating coordinate system. The solution of the third of equations (2.120) is

ω♁F3
= ω♁F0

− δItid♁F33

C0
ω♁0

def= ω♁F0
+ δω♁F3

. (2.121)

This in turn gives rise to LOD changes of

δPtid = − δω♁F3

ω♁F0

P♁0 = +
δItid♁F33

C0
P♁0 , (2.122)

where
P♁0 =

2 π

ω♁0

(2.123)

is the LOD of a rigid Earth with principal moments of inertia A0 = B0 and
C0.

With respect to a rigid Earth one expects an increase in the LOD. In the
case of the lunar tides this increase is expected to assume the maximum
value when the Moon lies in the equatorial plane, the minimum value when
the Moon’s argument of latitude is u�±90◦. In the case of the solar tides the
maximum impact on the length of day is expected when the Sun crosses the
equatorial plane, i.e., in spring and in fall.

Figure 2.45 shows the LOD variations in milliseconds as expected for an elas-
tic Earth model with characteristics according to Table 2.1 (solid line) and
the values corresponding to the C04-values of the IERS. The latter values
are uniquely based on measurements as provided by the space geodetic tech-
niques. Obviously, the elastic Earth model explains very well the monthly
and bimonthly terms: Frequency and amplitude agree very well. It should
be mentioned that only the variation and not the general offset between the
two series should be interpreted – the LOD as emerging from our simulation
is given by the initial condition as opposed to the C04-values characterizing
the true length of day. Figure 2.46 contains the same type of information as
that of Figure 2.45, but for a time interval of five years. One clearly sees that
the actually measured values show much stronger LOD variations than those
expected from a purely elastic model of the Earth. One notices in particular
strong annual and semiannual variations. These effects will be explained in
the next paragraph.
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Fig. 2.45. LOD variations in year 2000 (elastic Earth (solid line) and according to
C04 (dotted line))
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Fig. 2.46. LOD variations 1997-2001 (elastic Earth (solid line) and according to
C04 (dotted line))
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2.3.3 Atmosphere and Oceans

Introduction. Figures of type 2.38 may have served as early proofs that the
Earth’s atmosphere, with its pronounced annual variations of temperature,
pressure, and wind, plays a key role to explain at least some of the short-
period excursions (with periods from days to months) of PM. The relation
between atmosphere and Earth rotation was firmly established in the era
of space geodesy. VLBI and satellite geodetic results did not only explain
the annual and semiannual terms in PM as a consequence of atmospheric
effects, they did also reveal the strong correlation between LOD variations
as observed, e.g., in Figures I- 8.21 and 2.39 and atmospheric variations. The
GARP (Global Atmospheric Research Program) Experiments, which were
performed in the 1980s, were instrumental to study this relationship. The
fundamental reference for investigations of this kind is due to Barnes [5].

In order to study the impact of the atmosphere on Earth rotation it is of vital
importance that meteorological observations with a high temporal and spacial
resolution are available on a global basis. Institutions coordinating this work
are the U.S. National Meteorological Center of NOAA (National Oceanic and
Atmospheric Administration), the ECMWF (European Center for Medium-
Range Weather Forecasts), the Japan Meteorological Agency, and the U.K.
Meteorological Office. Their products relevant for Earth rotation are available
through the IERS Special Bureau for Atmospheric Angular Momentum (see
[96]).

It is intuitively clear that the Ocean tides influence Earth rotation as well.
The tides are also of considerable importance in practice, e.g., for navigation
on sea. It is therefore not amazing that a considerable number of so-called tide
gauges was deployed along the coast lines world-wide. Tide gauges register
local changes of sea level height. A significant number of these tide gauges
are operational for centuries. When analyzing the data of tide gauges, it
becomes clear that the elevation ζ(λ, φ, t) of the actual sea surface above
the equipotential surface at sea level is a very complicated function of the
tide-generating potential (2.100).

Since the early days of satellite geodesy tide gauge measurements are comple-
mented by altimeter measurements. Altimeter missions allow it to establish
the sea surface topography with unprecedented spacial and temporal resolu-
tion through radar measurements establishing the radial distance between the
satellite and the sea surface. The TOPEX/Poseidon Mission and its follow-up
mission Jason should be mentioned in this context (see, e.g., [43]).

The establishment of an accurate equipotential surface (few cm accuracy is
required), the reference surface for the altimeter measurements, is one of the
most demanding problems in geodesy today. This surface is determined by
analyzing terrestrial gravity measurements, the orbits of artificial satellites,
and by dedicated gravity missions. Modern dedicated gravity missions have
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two key elements: On-board GPS receivers for precise orbit determination
(cm-accuracy) and gravity meter and gradiometer measurements to derive in
situ the first and second derivative (in space) of the gravitational potential.
Gravity meters may, e.g., be realized by “twin satellites” (where the relative
motion of two neighbored satellites is the basic observed quantity) or by sets
of accelerometers within the space vehicles. The gravity missions CHAMP,
GRACE (Gravity Recover and Climate Experiment) and GOCE (Gravity
field and steady-state Ocean Circulation Experiment) will provide the ob-
servational basis for a new equipotential surface of unprecedented accuracy.
Gravity and altimeter missions together allow it to monitor the sea surface
and the ocean currents with a very high accuracy. A variable sea surface and
ocean currents induce changes of the Earth’s tensor of inertia, leading in turn
to variations in Earth rotation.

For a rigid Earth with oceans the variations of the inertia tensor are uniquely
given by the changes of the sea surface height. For a deformable Earth so-
called ocean loading effects have to be considered in addition. Ocean loading
depresses and tilts the continents due to the ocean tides. Loading effects are
small when compared to the direct tidal effects. We will not discuss them in
this introductory text. We have to keep in mind, however, that they show up
in VLBI and satellite geodetic results.

Liouville-Euler Equations for a Rigid Earth with Atmosphere and
Oceans. The rotation of a rigid Earth surrounded by an atmosphere and
partly covered by oceans may be described by the Liouville-Euler equations
in the form (I- 3.133). The rigid rotating coordinate system may be associ-
ated with the Earth-fixed PAI-system. In view of the fact that the equations
(I- 3.133) turned out to be linear in first approximation we may study the
effect of the atmosphere and the oceans separately form the external torques
(i.e., by ignoring them). Assuming rotational symmetry for the rigid part of
the Earth, the Liouville-Euler equations for the Earth consisting of the rigid
part, atmosphere, and oceans, may be written in the form

d

dt
{I♁F ω♁ + κao} + ω♁ × {I♁F ω♁ + κao} = 0 , (2.124)

where

I♁F =




A0 0 0
0 A0 0
0 0 C0


+ δIao (2.125)

is the sum of the rigid Earth’s inertia tensor and the contribution of the
atmosphere and the oceans. According the general definition (I- 3.74) of the
inertia tensor the contribution of the atmosphere and the oceans may be
written as

δIao
def=
∫

V

ρ(rp)
(
r2
p E − rp ⊗ rp

)
dV , (2.126)
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where the integration has to be extended over the volume occupied by the
atmosphere and the oceans.

When adopting a rigid Earth model, the inner angular momentum κ♁ in eqn.
(I- 3.130) is uniquely defined by κao representing the angular momentum
vector due to the atmosphere and the oceans relative to the PAI-system:

κao =
∫

V

ρ(rp) rp × δṙ dV . (2.127)

The velocities δṙ are those of the particles p (of atmosphere and/or oceans)
relative to Earth-fixed PAI-system.

The integration has to be extended over the volume occupied by the atmo-
sphere and the oceans (the contributions of the two non-rigid constituents
will be studied separately below).

It is important to note that the atmospheric and oceanic contributions (2.126)
to the inertia tensor and to the angular momentum (2.127) may be computed
from meteorological measurements (atmospheric contribution) and ocean-
related measurements (ocean contribution). If known, they may be used as
a priori information when solving the Liouville-Euler equations. One might
then associate changes in PM and in LOD with these quantities.

When monitoring PM and LOD with space geodetic methods, one usually
faces the situation, however, that such information is not available with suffi-
cient precision in due time. Therefore, one has to introduce the current posi-
tion (and velocity) of PM and LOD as parameters in space geodetic analyses.
Usually, space geodetic estimates of these quantities are established with a
daily resolution. Long series of LOD and PM are thus available from space
geodesy with a time resolution of (at least) one day.

A posteriori, it is therefore possible to compare LOD and PM changes as
computed from meteorological and/or oceanic measurements with the cor-
responding results emerging from space geodesy. Following Barnes [5] such
comparisons are not performed directly for PM and LOD, but for the so-called
AMF (angular momentum functions). These functions may be defined quite
naturally by re-arranging the Liouville-Euler equations (2.124). As usual, the
terms of higher than the first order in small quantities are ignored. The result
simply reads as (compare with eqns. (2.10)):

ω̇♁F1
+ γ♁ ω♁0 ω♁F2

= +
1

A0

(
δI23 ω2♁0

− δİ13 ω♁0 − κ̇1 + κ2 ω♁0

)

ω̇♁F2
− γ♁ ω♁0 ω♁F1

= − 1
A0

(
δI13 ω2♁0

+ δİ23 ω♁0 + κ̇2 + κ1 ω♁0

)

ω̇♁F3
= − 1

C0

(
δİ33 ω♁0 + κ̇3

)
,

(2.128)

where the index ao was skipped to simplify the notation. Not surprisingly,
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eqns. (2.128) are a linear system of first-order differential equations. To the
approximation needed only the third column of matrix δIao needs to be known
(the other components of the tensor only give rise to second order contribu-
tions because they are multiplied with the PM components).

The third of eqns. (2.128) may be separated from the first two. Its solution
is readily obtained by

ω♁F3
= ω♁0 −

1
C0

(δI33 ω♁0 + κ3) . (2.129)

The relative change of the Earth’s angular velocity induced by the atmosphere
and the oceans is thus given by

δω♁F3

ω♁0

= − δI33 ω♁0 + κ3

ω♁0 , C0

def= −χ3 . (2.130)

χ3 is usually referred to as the axial angular momentum function. The term
seems to have been coined by Barnes [5]. Obviously, the axial angular mo-
mentum function consists of two terms, the first due to the current mass
distribution and the second due to the motion of the atmosphere relative to
the Earth-fixed system.

The actual LOD (modified by the atmosphere and the oceans) is then given
by

2 π

ω♁0 + δω♁F3

=
2 π

ω♁0

(
1 − δω♁F3

ω♁0

)
=

2 π

ω♁0

(1 + χ3) , (2.131)

implying that the excess day length ∆LOD due to the atmosphere and the
oceans may be written as

∆LOD
LOD

= χ3 , (2.132)

because Psid
def= LOD = 2 π

ω♁0
is the nominal length of the sidereal day.

Equation (2.132) tells that the relative LOD change is given by the axial
angular momentum function χ3 . Obviously, the above equation may also
be used to compute χ3 associated with LOD changes estimated from space
geodetic time series (after having subtracted the tidal contributions). As χ3

also may be computed from meteorological and/or oceanographic measure-
ments alone using eqns. (2.126) and (2.127), χ3 is perfectly suited to compare
space geodetic axial angular momentum functions with those resulting from
meteorology and/or oceanography.

In analogy to the axial angular momentum function two equatorial angular
momentum functions may be defined. The definition is somewhat arbitrary.
According to Barnes [5] the two functions are defined by
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χ1
def=

δI13 ω♁0 + κ1

ω♁0 (C0 − A0)

χ2
def=

δI23 ω♁0 + κ2

ω♁0 (C0 − A0)
.

(2.133)

With these definitions the first two of the Liouville-Euler equations may be
written as

ω̇♁F1
+ γ♁ ω♁0 ω♁F2

= + γ♁ ω2♁0

(
χ2 − χ̇1

ω♁0

)

ω̇♁F2
− γ♁ ω♁0 ω♁F1

= − γ♁ ω2♁0

(
χ1 +

χ̇♁2

ω♁0

)
.

(2.134)

Assuming that PM (i.e., the components of the angular velocity vector ω♁F
and its first derivative) has been determined as a time series using space
geodetic methods, eqns. (2.134) may be interpreted as a system of differen-
tial equations for the first two components of the angular momentum func-
tion. If the initial values are given for an (arbitrary) initial epoch, the an-
gular momentum components may be reconstructed unambiguously. It is a
straightforward procedure to show that in general

| χ1 ω♁0 | � | χ̇2 | and | χ2 ω♁0 | � | χ̇1 | (2.135)

which is why a simplified relationship between PM and the equatorial angular
momentum functions may be written as:

ω̇♁F1
+ γ♁ ω♁0 ω♁F2

≈ + γ♁ ω2♁0
χ2

ω̇♁F2
− γ♁ ω♁0 ω♁F1

≈ − γ♁ ω2♁0
χ1 .

(2.136)

Keeping in mind the relation (2.4) between the PM components and the
angular velocity components, one obtains a simplified relationship between
the equatorial angular momentum functions and the PM components:

χ2 ≈ − y +
ẋ

γ♁ ω♁0

χ1 ≈ + x +
ẏ

γ♁ ω♁0

,
(2.137)

where the PM and its first derivatives have to be measured in radian (and
radian per time unit). The above equations thus may be used to calculate
approximately the equatorial angular momentum function as a function of
the PM components.
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Earth Rotation and Atmosphere. The atmosphere-induced contribu-
tions to the inertia tensor and the inner angular momentum due to the atmo-
sphere have to be calculated now. According to the Liouville-Euler equations
(2.128) only three terms are needed, namely:

δI13 = −
∫

V

ρ(r♁F ) r♁F1
r♁F3

dV

δI23 = −
∫

V

ρ(r♁F ) r♁F2
r♁F3

dV

δI33 = +
∫

V

ρ(r♁F )
(
r2♁F1

+ r3♁F2

)
dV ,

(2.138)

where the integration has to be extended over the volume V occupied by
the atmosphere. dM = ρ(r♁F ) dV is the atmospheric mass contained in the
volume element. This is why the above terms also are referred to as mass
terms or pressure terms of the atmospheric contribution to Earth rotation.
Using the well-known relation of hydrostatic equilibrium,

dp

dr
= − g ρ , (2.139)

between pressure p and density ρ, the above volume integrals may be trans-
formed into integrals over geographical longitude λ , latitude φ , and pressure
p . The transformation matters, because global pressure fields are available
from meteorology. Using the relation

dV = r2 cosφ dλ dφ dr = − r2 cosφ

g ρ
dp dλ dφ (2.140)

we may transform the above volume integrals as follows:

δI13 = +
∫ ∫ ∫

r♁F1
r♁F3

r2 cosφ

g
dp dλ dφ

δI23 = +
∫ ∫ ∫

r♁F2
r♁F3

r2 cosφ

g
dp dλ dφ

δI33 = −
∫ ∫ ∫ (

r2♁F1
+ r2♁F2

) r2 cosφ

g
dp dλ dφ .

(2.141)

The integration over the pressure p must be extended from the Earth’s sur-
face, where the pressure is p = ps , to the upper atmosphere boundary, where
p = 0 . Adopting a spherical model for the rigid Earth with radius r = R♁ ,
making use of the fact that the atmosphere is thin (a few km), and neglecting
the dependency of the gravity constant g on height, i.e., using g

def= g♁ , where
g♁ is the gravitational acceleration at sea level, the above triple integral may
be reduced to a surface integral:
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δI13 = − R4♁
g♁
∫ ∫

ps cos2 φ sin φ cosλ dλ dφ

δI23 = − R4♁
g♁
∫ ∫

ps cos2 φ sin φ sin λ dλ dφ

δI33 = +
R4♁
g♁
∫ ∫

ps cos3 φ dλ dφ .

(2.142)

The above integrals may be solved with the methods of numerical quadrature
using the global surface pressure fields ps(λ, φ) available from meteorology.

The inner angular momentum of the atmosphere and the oceans is defined
by eqn. (2.127). Assuming a spherical Earth, using the approximation g

def= g♁
within the entire atmosphere, replacing the density by the pressure (using re-
lation (2.139)), and neglecting the contribution of the oceans, these integrals
may be transformed as follows (due to the dependence of pressure on height,
the integration over the pressure is non-trivial in this case):

κatm1 = − R3♁
g♁
∫ ∫ ∫ (

cosφ sin λ ṙ♁F3
− sin φ ṙ♁F2

)
cos2 φ dp dλ dφ

κatm2 = − R3♁
g♁
∫ ∫ ∫ (

sin φ ṙ♁F1
− cosφ cosλ ṙ♁F3

)
cos2 φ dp dλ dφ

κatm3 = − R3♁
g♁
∫ ∫ ∫ (

cosφ cosλ ṙ♁F2
− cosφ sin λ ṙ♁F1

)
cos2 φ dp dλ dφ ,

(2.143)

where the integration over p has to be performed from p = ps to p = 0 .
Obviously three-dimensional wind profiles are required to evaluate the above
integrals. This is why the above terms are also referred to as the wind terms
of the atmospheric contribution to Earth rotation.

If the integrals (2.142) and (2.143) are available from meteorology, we are
now in a position to compare the angular momentum functions as resulting
from meteorology with those emerging from space geodetic analyses for a
rigid Earth.

It turns out that the required modifications of the above formulae when re-
placing the rigid by an elastic Earth are minor. First, we have to replace eqns.
(2.137) relating the PM components with the two axial angular momentum
functions by
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χ2 ≈ − y +
ẋ

γ♁
(
1 − k ξ

γ♁
)

ω♁0

χ1 ≈ + x +
ẏ

γ♁
(
1 − k ξ

γ♁
)

ω♁0

.
(2.144)

This means in essence that the Euler period was replaced by the Chandler
period. Then, the angular momentum functions have to be replaced by the so-
called effective angular momentum functions. According to Barnes [5] these
functions are defined by

χeff1 = 1.43 · (0.7 · χp1 + χw1)
χeff2 = 1.43 · (0.7 · χp2 + χw2)
χeff3 = 0.7 · χp3 + χw3 ,

(2.145)

where the χpi , i = 1, 2, 3 , are the angular momentum functions due to the
pressure or mass term, χwi , i = 1, 2, 3 , those due to the wind term. The
different behavior of the two types of contributions is caused by the loading
effects associated with the pressure terms (i.e., due to the fact that an elastic
Earth is slightly deformed by the applied atmospheric pressure).

We are now in a position to compare the atmospheric angular momentum
functions as computed from meteorological data and the angular momentum
functions computed from PM and LOD data series as emerging from space
geodesy. We use two different data series from space geodesy and one from
the analysis of meteorological data, namely

• the series x , y , and ∆LOD of PM with a daily time resolution as estab-
lished by the CODE Analysis Center of the IGS between 1993 and early
June 2002.

• C04 PM and ∆LOD series with a time resolution of one day between
1963 and early June 2002 computed by the IERS (series available at
http://hpiers.obspm.fr).

• Reanalysis time series produced by the IERS Special Bureau for the At-
mosphere (SBA), which is a joint effort of Atmospheric and Environmental
Research, Inc. (AER) and the NCEP (U.S. National Centers for Environ-
mental Prediction) to provide atmospheric data relevant to the study of
the Earth’s variable rotation. The spacing between subsequent sets of data
is six hours. For the purpose of comparison plain daily mean values were
produced. More elaborate schemes may be found in [65].

Let us first focus on comparisons based on the GPS-derived series (which at
the time of writing this text have a length of about nine years). Figure 2.47
shows the third component of the axial angular momentum function, once
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computed with the CODE time series (solid line), once with the meteorolog-
ical series from NCEP. For specialists in the field we mention that pressure
and wind data were used; the so-called inverted barometer option was used
to take the pressure contribution into account (consult [5] or [65] for more
information). Only a mean value was removed from the two series in Figure
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Fig. 2.47. Axial angular momentum function χ3 from GPS analysis (solid line)
and from meteorological data (NCEP reanalysis)



2.3 Rotation of the Non-Rigid Earth 91

2.47 (top), whereas second-degree polynomials, fitted to the individual series,
were subtracted from the original series in Figure 2.47 (bottom).

The two series are highly correlated when considering annual or shorter period
variations. The correlation coefficient related to the top figure is r = 0.60 ,
it is r = 0.98 when analyzing Figure 2.47 (bottom). Remember, that the
correlation coefficient r between two time series xi , yi , i = 1, 2, . . . , n , is
defined by

r =

n∑
i=1

(xi − x̄)(yi − ȳ)
√

n∑
i=1

(xi − x̄)2
√

n∑
i=1

(yi − ȳ)2

def=
n∑

i=1

x̃i ỹi . (2.146)

A correlation coefficient of r = 0.98 implies that most of the short period
(annual periods or shorter) are explained by interactions between the solid
part of the Earth (to which the space geodetic observatories are attached)
and the atmosphere.

Figure 2.48 contains the amplitude spectra of the time series illustrated in
Figure 2.47. With the exception of the semiannual term the two spectra match
almost perfectly – at least in the range of periods shown. The correlation
is even somewhat higher when taking the oceanic angular momentum into
account (see [65]).
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Fig. 2.48. Amplitude spectra of CODE-derived (solid line) and NCEP-derived
χ3-series
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Figure 2.49 shows the first (top) and second (bottom) equatorial angular
momentum functions χ1 and χ2 resulting from the CODE- and the NCEP-
time series (after removing the best fitting polynomials of degree 2 from
the contributing series). The correlation is not as striking as in the case
of the axial angular momentum function χ3 . Nevertheless, the correlation
coefficients are r(χ1) = 0.59 and r(χ2) = 0.74 . The correlation between the
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Fig. 2.49. Equatorial angular momentum function χ1 (top) and χ2 (bottom) from
GPS analysis (solid line) and from meteorological data (NCEP reanalysis)
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two series is perhaps better illustrated by Figures 2.50, containing the same
type of information as in Figure 2.49 but only for the year 2001.

It is interesting to note that χ2 shows more structure than χ1 . Interpreting
χ1 and χ2 as the two components of one vector (what they actually are) one
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Fig. 2.50. Equatorial angular momentum function χ1 (top) and χ2 (bottom) in
2001 from GPS analysis (solid line) and from meteorological data (NCEP reanaly-
sis)
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obtains the spectra shown in Figure 2.51. The agreement is not too bad in
the case of the terms with an annual period. The shorter periods would need
more attention. Exactly as in the case of χ3 the tide-induced terms should
be removed before the comparison.
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Fig. 2.51. Amplitude spectra of equatorial angular momentum functions χ1 and
χ2 from GPS analysis (solid line) and from meteorological data (NCEP reanalysis)

Earth Rotation and Oceans. When studying the effects of ocean tides in
PM and LOD one may assume the generating frequencies and periods to agree
with those of the tide-generating potential. These periods may be classified
according to a scheme used by Arthur T. Doodson (1890–1968) (see [32]),
who introduced six “independent” variables. Table 2.6 defines the so-called
Doodson variables. Alternatively, the fundamental arguments of precession,
nutation (see [107]) and the Greenwich mean sidereal time, may be used.
The fundamental arguments are included in Table 2.6 as well. Both sets of
arguments are equivalent. Recently, the fundamental arguments (also called
Delaunay variables, named after Charles Eugène Delaunay (1816–1872)) were
used almost exclusively. This is why this second set will be referred to sub-
sequently.

In the frequency domain the tidal potential may be expressed as a series
of discrete tides. Table 2.7 contains the most important constituents of this
decomposition of the tide-generating potential. A more extensive list may,
e.g., be found in [76].
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Table 2.6. Doodson-variables (top) and fundamental nutation arguments (bottom)

Argument Period Definition

τ 1.03505 days Mean Lunar Time
s 27.32158 days Mean Ecliptical Longitude of Moon
h 1 year Mean Ecliptical Longitude of Sun
p 8.85 years Mean Ecliptical Longitude of Lunar Perigee
N ′ = −Ω� 18.61 years Negative Mean Longitude of Lunar Ascending Node
ps 20′940 years Mean Ecliptical Longitude of Solar Perigee

F1 = l 27.53 days Mean Anomaly of Moon
F2 = l′ 365.26 days Mean Anomaly of Sun
F3 = F 27.21 days Moon’s Argument of Latitude
F4 = D 29.53 days Moon’s Mean Elongation from the Sun
F5 = Ω 18.61 years Ecliptical Longitude of Lunar Ascending Node

F6 = Θ 23h56m Greenwich Mean Sidereal Time

Table 2.7. Leading terms of the tide-generating potential

Tide Multiple of Period V

l l′ F D Ω Θ + π [ hours ] [mm2/s2]

K1 0 0 0 0 0 1 23.93 −930
O1 0 0 2 0 2 1 25.82 +660
P1 0 0 −2 2 −2 1 24.07 +308

M2 0 0 −2 0 −2 2 12.42 +795
S2 0 0 −2 2 −2 2 12.00 +370
N2 −1 0 −2 0 −2 2 12.66 +152
K2 0 0 0 0 0 2 11.97 +101

Naturally, one expects to find the periods given in Table 2.7 in the tidally
driven variations of the Earth potential. These variations may be expressed
as follows (e.g., Gipson [46]):

∆x(t) =
n∑

j=1

(− pc
j cosφj(t) + ps

j sinφj(t)
)

∆y(t) =
n∑

j=1

(
+ ps

j sin φj(t) + pc
j cosφj(t)

)

∆UT1(t) =
n∑

j=1

(
+ uc

j cosφj(t) + us
j sin φj(t)

)
,

(2.147)

where ∆x, ∆y, and ∆UT1 are the tidal variations in the x- and y-component
of PM and in UT1, respectively. n is the number of tides considered. pc

j and
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ps
j are the cosine and sine amplitudes of the tidal variations in PM, uc

j and
us

j the corresponding amplitudes in UT1. The angle argument φj(t) denotes
a linear combination of the six following arguments:

φj(t) =
6∑

i=1

Nij Fi(t) , (2.148)

where Nij are the integer multipliers of the five fundamental nutation argu-
ments Fi (i = 1, 2, . . . , 5) , and of F6 = Θ+π . They uniquely characterize the
tide with index j . The circular frequency of tide j is given by ωj

def= dφj/dt .
The above defined use of the numbers Nij to characterize the tides follows
the convention introduced by Woolard [132].

Tidal terms with the multiplier N6 ∈ {1, 2,−1,−2} are called prograde di-
urnal (1), prograde semidiurnal (2), retrograde diurnal (−1), and retrograde
semi-diurnal tides (−2), respectively. The terms of the generating potential
are ordered in this way in Table 2.7.

In order to obtain the tidally-induced LOD variations, one has to take the
time derivative of the third of eqns. (2.147):

d

dt
(∆UT1) (t) =

n∑
j=1

ωj

(− uc
j sin φj(t) + us

j cosφj(t)
)

. (2.149)

From the daily drift values one may easily calculate the associated LOD
variations associated with the individual tide constituents. This technique
was used by Rothacher et al. [93] to estimate the parameters uc

j , us
j in the

above equation.

Figures 2.52 and 2.53 show the power spectrum of a Fourier analysis of a
CODE PM- and LOD-solution with a two hours time resolution. Only the
portions relevant for ocean tides, i.e., the diurnal and semidiurnal terms, are
reproduced here. Note, that the power associated with these terms is small
(the major contributions are at longer periods). All the periods expected from
Table 2.7 are actually found in the figures mentioned, however. The reader
is invited to identify the individual terms. As expected from the above short
excursion into theory, prograde and retrograde terms associated with the
tide constituents of Table 2.7 are found in Figure 2.53, except for the ret-
rograde diurnal terms, where essentially no signal is observed. Retrograde
diurnal terms do exist. They are, however, not observable using the technique
outlined here if “only” satellite-geodetic observations are available: the ret-
rograde diurnal terms are perfectly correlated with the nodes of the satellite
orbits.

The retrograde diurnal band of PM would contain in essence the first deriva-
tive of the nutation time series (i.e., of the motion of the Earth pole in space).
Euler’s kinematic equations (I- 3.67) or (I- 3.68) are but another form of this
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Fig. 2.52. Power spectrum of CODE LOD series with two hours time resolution
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Fig. 2.53. Power spectrum of CODE PM series with two hours time resolution

statement. It is nevertheless possible to access this information (to some ex-
tent) using the GPS: It is possible to solve for the first derivatives of nutation
in longitude and obliquity when processing the GPS data of a global network
of observatories (together with all the other parameters necessary to accom-
plish this job). Time series of such nutation drift estimates may then be used
to solve directly for the nutation parameters. We refer to Rothacher et al.
[92] for a comprehensive discussion of this technique. VLBI is of course in a
better position in this respect. This is why the nutation parameters are today
(almost uniquely) determined with this technique. We refer to Herring [55].
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The question naturally arises whether the spectral lines observed are actually
due to the ocean tides. This relationship could be firmly established in the
series of articles [93], [19], [128]. Figure 2.54 supports this interpretation, as
well: If the effects due to official IERS ocean tide model are subtracted from
the measured CODE series, there is only very little power left in the relevant
bands. The interpretation of these figures is left to the careful readers. A
similar result is obtained when comparing the subdaily results for PM. For
a complete documentation of the exploitation of the CODE high-frequency
PM series, the reader is referred to [93].
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Fig. 2.54. Power spectrum of CODE LOD series with two hours time resolution;
solid line: “normal” series, dotted line (shifted by −0.00002′′) after subtraction of
IERS Ocean tide model)

2.3.4 The Poincaré Earth Model

Composite Earth Models. So far, we treated the Earth either as a rigid
body, an elastic body, or as a rigid body surrounded by oceans and atmo-
sphere. In the latter case the Earth rotation was studied as that of a rigid
(or solid) body, allowing for “small, known” motions of the non-rigid parts
w.r.t. the rigid (solid) body expressed by a time-dependent inertia tensor and
known “inner” angular momentum of the non-rigid parts. Today’s knowledge
of the Earth’s interior in principle forbids such simplifying treatments. Figure
2.55 illustrates a more realistic model of the Earth (resembling somewhat the
layers of an onion). From the center to the surface one has to distinguish
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Fig. 2.55. Realistic Earth model

• a solid inner core,

• a liquid outer core,

• an elastic mantle,

• an elastic crust, and

• atmosphere and oceans (not shown in Figure 2.55).

With a thickness of about 30 km the crust is extremely thin. Note that all
space geodetic measurements refer to the crust, because all relevant observa-
tories are located at the outer border of this layer. The mantle is assumed to
have a thickness of about 2860 km. The boundary between the mantle and
the liquid core thus is located at a geocentric distance of about 3485 km. The
radius of the solid inner core is estimated to be about 1220 km. Most of the
knowledge of the Earth’s interior is due to seismic measurements.

More precisely, the boundary between the core and the mantle is assumed to
be an ellipsoid with rotational symmetry with a flattening of

ε♁c
=

a♁c
− b♁c

a♁c

≈ C♁c
− A♁c

C♁c

≈ 1
391

. (2.150)

a♁c
and b♁c

are the semi-major and semi-minor axes of the ellipsoid, C♁c and
A♁c are the polar (maximum) and equatorial (minimum) principal moments
of inertia of the (inner plus outer) core. Note that the estimated oblateness
of the core is significantly smaller than the value measured at the Earth’s
surface.

Subsequently we will need approximate numerical values for the mass and
the moments of inertia of the core. In this section the indices “♁c”, “♁m” and
“♁” will refer to the core, to the mantle (plus crust), and to the entire Earth,
respectively. The numerical values were taken from [76]:
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M♁c
≈ 0.37 M♁

A♁c
≈ 0.11 A♁ ≈ 9.1 · 1036 kg m2

C♁c
≈ 0.11 C♁

C♁/C♁m
≈ A♁/A♁m

≈ 1.13 .

(2.151)

The first Earth models not treating the Earth as one solid body but resem-
bling the model represented by Figure 2.55 were developed towards the end
of the 19th century. The model considered by Henri Poincaré (1854–1912) in
1910 in the famous treatment [87], consisting of a rigid mantle and a liquid
core, is illustrated by Figure 2.56. This model was subsequently generalized
to cope with the more general Earth models as represented by Figure 2.55.
The Earth model represented by Figure 2.56, which usually is referred to

Liquid Core

Rigid Mantle

Fig. 2.56. Poincaré Earth model

as Poincaré model, was already considered earlier on by Sir William Kelvin
(1824–1907), Hough and Sloudskii. The treatment by Poincaré is, however,
of exceptional conciseness and elegance, justifying the naming convention.
From now on we will uniquely deal with the Poincaré model for the Earth’s
interior. The Poincaré model treats the elastic mantle plus the crust of the
actual Earth model as a rigid mantle and the liquid plus solid core as one
liquid, incompressible core.

Obviously, the motion of the rigid mantle formally may be described by one
angular velocity vector ω♁ , which may also be considered as the angular
velocity vector of the entire Earth. The geocentric velocity of a particular
volume element of the mantle thus is uniquely given by its position vector
and the mentioned angular velocity vector:

ṙ♁m
= ω♁ × r♁m

. (2.152)

In order to describe the motion of a volume element within the liquid, in-
compressible core we have to recall two equations from hydrodynamics.
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Two Results from Hydrodynamics. Following intuition, one may assume
that the motion in a volume element within the core does not differ much
from the motion it would have, if the entire Earth were rigid. This justifies
to calculate the velocity at the location r♁c

within the core as

ṙ♁c
= ω♁ × r♁c

+ v♁c
. (2.153)

According to this definition v♁c
is the relative velocity at the given location

w.r.t. a mantle-fixed coordinate system.

The velocity ṙ♁c
w.r.t. the inertial space must satisfy the basic equations of

hydrodynamics. Moreover, the velocity component normal to the boundary
between core and mantle of the relative velocity w.r.t. the rigid mantle must
be zero at each point of the surface of this boundary (the ellipsoid character-
ized by eqn. (2.150)).

Having made the simplifying assumption of an incompressible fluid, we know
that the density of the fluid is constant within liquid core. This reduces
the equation of continuity of hydrodynamics to the requirement that the
divergence of the velocity vector is zero within the core:

∇ · ṙ♁c
= 0 . (2.154)

Equation (2.154) is linear in the components of the velocity.

The equations of motion for a fluid were first formulated by Euler in [35]. In
modern formalism (see, e.g., [67]) they read as:

∂ṙ♁c

∂t
+ (ṙ♁c

· ∇) ṙ♁c
= − ∇p

ρ
, (2.155)

where ρ is the density (constant in the case considered), p is the pressure at
the location considered.

For our purpose there is a more convenient version of the equations of motion
(2.155) containing only the velocity ṙ♁c

. If the density is constant (as assumed
above) this alternative version of the equations of motion of hydrodynamics
simply results by taking the curl of the above equation. Observing that the
curl of a gradient is always zero one obtains (after a few transformations) the
“new” equations of motion

∂

∂t
(∇ × ṙ♁c

) − ∇ × (ṙ♁c
× (∇ × ṙ♁c

)
)

= 0 . (2.156)

This concludes our excursion into the theory of hydrodynamics. Basically,
the theory of hydrodynamics asks, that the velocities in the core have to
observe the equation of continuity (2.154) and the equations of motion of
hydrodynamics (2.156).
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Parametrization of the Velocities in the Liquid Core. Poincaré came
up with an ingenious, yet simple assumption:

ṙ♁c
= ω♁ × r♁c

+ v♁c

def=




r♁c3
ω♁2 − r♁c2

ω♁3

r♁c1
ω♁3 − r♁c3

ω♁1

r♁c2
ω♁1 − r♁c1

ω♁2


+




a♁c

c♁c

r♁c3
χ♁2 −

a♁c

b♁c

r♁c2
χ♁3

b♁c

a♁c

r♁c1
χ♁3 −

b♁c

c♁c

r♁c3
χ♁1

c♁c

b♁c

r♁c2
χ♁1 −

c♁c

a♁c

r♁c1
χ♁2




.

(2.157)

a♁c
, b♁c

, and c♁c
are the three semi-axes of the core ellipsoid. As these pa-

rameters are assumed known, the relative velocities v♁c
at different locations

within the core (at one and the same time) are characterized by only three
scalar quantities χ♁i

, i = 1, 2, 3 , which will be interpreted subsequently as
the components of a vector χ♁ in the inertial system. Because a♁c

≈ b♁c
≈ c♁c

for the real Earth, χ♁ may be interpreted approximately as the angular ve-
locity vector of the rotation of the core relative to the mantle.

One may easily verify that the velocity (2.157) observes the continuity equa-
tion (2.154). One may also verify that the velocity normal to the boundary
between core and mantle vanishes at each surface point of the core. This is
why we only have to make sure that eqn. (2.157) also observes the equations
of motion of hydrodynamics.

The Equations of Motion of Hydrodynamics in the Inertial System.
By introducing eqn. (2.157) into the equations of motion (2.156) of hydrody-
namics, one eventually obtains the differential equations for vector χ♁ . We
first observe that:

∇ × ṙ♁c
= 2 ω♁ +




c2♁c
+ b2♁c

b♁c
c♁c

χ♁1

a2♁c
+ c2♁c

a♁c
c♁c

χ♁2

a2♁c
+ b2♁c

a♁c
b♁c

χ♁3




def= 2 ω̃ . (2.158)

ω̃ thus in essence represents the angular velocity vector of the liquid core
w.r.t. the inertial system. This allows us to calculate the second term of
eqns. (2.156). In a first step we obtain:
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[ṙ♁c
× (∇ × ṙ♁c

)]1 = +
(

r♁c1
ω♁3 − r♁c3

ω♁1 +
b♁c

a♁c

r♁c1
χ♁3 −

b♁c

c♁c

r♁c3
χ♁1

)
2ω̃3

−
(

r♁c2
ω♁1 − r♁c1

ω♁2 +
c♁c

b♁c

r♁c2
χ♁1 −

c♁c

a♁c

r♁c1
χ♁2

)
2ω̃2

[ṙ♁c
× (∇ × ṙ♁c

)]2 = +
(

r♁c2
ω♁1 − r♁c1

ω♁2 +
c♁c

b♁c

r♁c2
χ♁1 −

c♁c

a♁c

r♁c1
χ♁2

)
2ω̃1

−
(

r♁c3
ω♁2 − r♁c2

ω♁3 +
a♁c

c♁c

r♁c3
χ♁2 −

a♁c

b♁c

r♁c2
χ♁3

)
2ω̃3

[ṙ♁c
× (∇ × ṙ♁c

)]3 = +
(

r♁c3
ω♁2 − r♁c2

ω♁3 +
a♁c

c♁c

r♁c3
χ♁2 −

a♁c

b♁c

r♁c2
χ♁3

)
2ω̃2

−
(

r♁c1
ω♁3 − r♁c3

ω♁1 +
b♁c

a♁c

r♁c1
χ♁3 −

b♁c

c♁c

r♁c3
χ♁1

)
2ω̃1 .

(2.159)

Taking the curl of this vector equation we obtain:

∇×(ṙ♁c
×(∇× ṙ♁c

)
)

= −




(
ω♁3 +

a♁c

b♁c

χ♁3

)
2ω̃2 −
(

ω♁2 +
a♁c

c♁c

χ♁2

)
2ω̃3

(
ω♁1 +

b♁c

c♁c

χ♁1

)
2ω̃3 −
(

ω♁3 +
b♁c

a♁c

χ♁3

)
2ω̃1

(
ω♁2 +

c♁c

a♁c

χ♁2

)
2ω̃1 −
(

ω♁1 +
c♁c

b♁c

χ♁1

)
2ω̃2




.

(2.160)
Introducing the expressions (2.158) and (2.160) into the equation of motion
(2.156) one obtains after few transformation steps the equations of motion of
hydrodynamics referring to the inertial system for the special motion (2.157)
within the core:

2ω̇♁1 +
c2♁c

+b2♁c

b♁c
c♁c

χ̇♁1 +
a2♁c

−b2♁c

a♁c
b♁c

ω♁2χ♁3 +
c2♁c

−a2♁c

a♁c
c♁c

ω♁3χ♁2 +
c2♁c

−b2♁c

b♁c
c♁c

χ♁2χ♁3 =0

2ω̇♁2 +
a2♁c

+c2♁c

a♁c
c♁c

χ̇♁2 +
b2♁c

−c2♁c

b♁c
c♁c

ω♁3χ♁1 +
a2♁c

−b2♁c

a♁c
b♁c

ω♁1χ♁3 +
a2♁c

−c2♁c

a♁c
c♁c

χ♁3χ♁1 =0

2ω̇♁3 +
a2♁c

+b2♁c

a♁c
b♁c

χ̇♁3 +
c2♁c

−a2♁c

a♁c
c♁c

ω♁1χ♁2 +
b2♁c

−c2♁c

b♁c
c♁c

ω♁2χ♁1 +
b2♁c

−a2♁c

a♁c
b♁c

χ♁1χ♁2 =0.

(2.161)

We may assume that these equations refer to an inertial coordinate system
coinciding with the PAI-system at the time considered.

Transformation into the Mantle-fixed System. When transforming
eqns. (2.161) into the mantle-fixed system we first have to distinguish for-
mally between the coordinates in the inertial and the mantle-fixed system
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(what we did not do till now in order not to overload the formalism). As a
matter of fact, we should have explicitly written ω♁Ii

and not only ω♁i
, etc.

in the above equations to indicate that they refer to the inertial system. Fol-
lowing the transformation pattern of section I- 3.3.4 one easily verifies that
the transformation equations for vectors ω̇ and χ̇ between the special inertial
system I introduced above and the mantle-fixed system F read as

ω̇♁I1
= ω̇♁F1

ω̇♁I2
= ω̇♁F2

ω̇♁I3
= ω̇♁F3

(2.162)

and

c2♁c
+ b2♁c

b♁c
c♁c

χ̇I1 =
c2♁c

+ b2♁c

b♁c
c♁c

χ̇♁F1
+

a2♁c
+ b2♁c

a♁c
b♁c

ω♁F2
χ♁F3

− a2♁c
+ c2♁c

a♁c
c♁c

ω♁F3
χ♁F2

a2♁c
+ c2♁c

a♁c
c♁c

χ̇I2 =
a2♁c

+ c2♁c

a♁c
c♁c

χ̇♁F2
+

b2♁c
+ c2♁c

b♁c
c♁c

ω♁F3
χ♁F1

− a2♁c
+ b2♁c

a♁c
b♁c

ω♁F1
χ♁F3

a2♁c
+ b2♁c

a♁c
b♁c

χ̇I3 =
a2♁c

+ b2♁c

a♁c
b♁c

χ̇♁F3
+

a2♁c
+ c2♁c

a♁c
c♁c

ω♁F1
χ♁F2

− b2♁c
+ c2♁c

b♁c
c♁c

ω♁F2
χ♁F1

.

(2.163)

Using this latter relation in eqns. (2.161) the equations of motion of hydro-
dynamics referring to the rotating, mantle-fixed system read as follows:

2ω̇♁F1
+

c2♁c
+b2♁c

b♁c
c♁c

χ̇♁F1
+2

a♁c

b♁c

ω♁F2
χ♁F3

−2
a♁c

c♁c

ω♁F3
χ♁F2

+
c2♁c

− b2♁c

b♁c
c♁c

χ♁F2
χ♁F3

=0

2ω̇♁F2
+

a2♁c
+c2♁c

a♁c
c♁c

χ̇♁F2
+2

b♁c

c♁c

ω♁F3
χ♁F1

−2
b♁c

a♁c

ω♁F1
χ♁F3

+
a2♁c

−c2♁c

a♁c
c♁c

χ♁F3
χ♁F1

=0

2ω̇♁F3
+

a2♁c
+b2♁c

a♁c
b♁c

χ̇♁F3
+2

c♁c

a♁c

ω♁F1
χ♁F2

−2
c♁c

b♁c

ω♁F2
χ♁F1

+
b2♁c

−a2♁c

a♁c
b♁c

χ♁F1
χ♁F2

=0.

(2.164)

In a final step the above equations of motion are transformed to replace the
semi-axes a♁c

, b♁c
, and c♁c

of the core-mantle boundary by the principal
moments of inertia of the core. Keeping in mind that the fluid in the core
was assumed to be incompressible, implying a constant density of the fluid,
we may calculate these moments simply as

A♁c
= 1

5 M♁c

(
b2♁c

+ c2♁c

)

B♁c
= 1

5 M♁c

(
a2♁c

+ c2♁c

)

C♁c
= 1

5 M♁c

(
a2♁c

+ b2♁c

)
,

(2.165)

from where one also obtains
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1
5 M♁c

(
c2♁c

− b2♁c

)
= B♁c

− C♁c

1
5 M♁c

(
a2♁c

− c2♁c

)
= C♁c

− A♁c

1
5 M♁c

(
b2♁c

− a2♁c

)
= A♁c

− B♁c

(2.166)

and

2
5 M♁c

a2♁c
= B♁c

(1 − γ♁c2
) = C♁c

(1 + γ♁c3
)

2
5 M♁c

b2♁c
= C♁c

(1 − γ♁c3
) = A♁c

(1 + γ♁c1
)

2
5 M♁c

c2♁c
= A♁c

(1 − γ♁c1
) = B♁c

(1 + γ♁c2
) .

(2.167)

These relations imply on the other hand

2
5 M♁c

b♁c
c♁c

= A♁c

√
1 − γ2♁c1

def= Ã♁c

2
5 M♁c

a♁c
c♁c

= B♁c

√
1 − γ2♁c2

def= B̃♁c

2
5 M♁c

a♁c
b♁c

= C♁c

√
1 − γ2♁c3

def= C̃♁c
,

(2.168)

where the symbols γ... are defined by

γ♁c1
=

C♁c
− B♁c

A♁c

, γ♁c2
=

A♁c
− C♁c

B♁c

, γ♁c3
=

B♁c
− A♁c

C♁c

. (2.169)

These relations allow it to write the equations (2.164) in the desired form:
The first of eqns. (2.164) is multiplied with 1

5 M♁c
b♁c

c♁c
, the second with

1
5 M♁c

a♁c
c♁c

, and the third with 1
5 M♁c

a♁c
b♁c

. Using the above definitions we
obtain

Ã♁c
ω̇♁F1

+ A♁c
χ̇♁F1

+ B̃♁c
ω♁F2

χ♁F3
− C̃♁c

ω♁F3
χ♁F2

− A♁c
γ♁c1

χ♁F2
χ♁F3

= 0

B̃♁c
ω̇♁F2

+ B♁c
χ̇♁F2

+ C̃♁c
ω♁F3

χ♁F1
− Ã♁c

ω♁F1
χ♁F3

− B♁c
γ♁c2

χ♁F3
χ♁F1

= 0

C̃♁c
ω̇♁F3

+ C♁c
χ̇♁F3

+ Ã♁c
ω♁F1

χ♁F2
− B̃♁c

ω♁F2
χ♁F1

− C♁c
γ♁c3

χ♁F1
χ♁F2

= 0 .

(2.170)

We have thus established three differential equations for six scalar unknowns
(the components of ω♁ and χ♁). The three “missing” equations are the classi-
cal equations relating the change of angular momentum to the torques acting
on the body. In the subsequent derivations we first establish these relations
separately for core and mantle, then form the sum of the two resulting equa-
tions to obtain the missing equations of the Poincaré model.
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Exchange of Angular Momentum between Core and Mantle. Having
introduced a liquid core and a rigid mantle implies that we have to allow for
an exchange of angular momentum between the two components. Equations
(I- 3.90) thus have to be generalized as follows (observe that we only need
to consider the first of eqns. (I- 3.90) for the Earth and that the index “m”
stands for the mantle in this section):

ḣ♁m
= �♁m

+ �♁cm

ḣ♁c
= �♁c

− �♁cm
,

(2.171)

where �♁m
and �♁c

stand for the external torques (caused by Sun, Moon,
planets) acting on mantle and core, respectively, whereas �♁cm

is the torque
caused by the core acting on the mantle. Let us calculate the angular mo-
menta in the PAI-system of the mantle (and the core) at the time considered:

h♁m
=
∫

V♁m

ρ♁m
(r♁m

) r♁m
× ṙ♁m

dV♁m
= I♁m

· ω♁

h♁c
=
∫

V♁c

ρ♁c
(r♁c

) r♁c
× ṙ♁c

dV♁c

= I♁c
· ω♁ +

∫

V♁c

ρ♁c
(r♁c

)




(
c♁c

b♁c

r2♁cI2
+

b♁c

c♁c

r2♁cI3

)
χ♁I1

(
a♁c

c♁c

r2♁cI3
+

c♁c

a♁c

r2♁cI1

)
χ♁I2

(
b♁c

a♁c

r2♁cI1
+

a♁c

b♁c

r2♁cI2

)
χ♁I3




dV♁c

def=




A♁c
ω♁F1

B♁c
ω♁F2

C♁c
ω♁F3


+




Ã♁c
χ♁I1

B̃♁c
χ♁I2

C̃♁c
χ♁I3


 .

(2.172)

Introducing the above expressions into eqns. (2.171) and forming the sum of
the two resulting equations leads to the following relations:

d

dt

(
A♁ ω♁F1

+ Ã♁c
χ♁I1

)
= 
♁1

d

dt

(
B♁ ω♁F2

+ B̃♁c
χ♁I2

)
= 
♁2

d

dt

(
C♁ ω♁F3

+ C̃♁c
χ♁I3

)
= 
♁3 ,

(2.173)

where the index “♁” refers to the entire Earth (core plus mantle), whereas
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the index “c” refers to the core only. As usual, the equations are transformed
into the rotating system leading to the final result:

A♁ ω̇♁F1
+ Ã♁c

χ̇♁F1
+ γ♁1A♁ ω♁F2

ω♁F3
+ C̃♁c

ω♁F2
χ♁F3

− B̃♁c
ω♁F3

χ♁F2
= 
♁1

B♁ ω̇♁F2
− B̃♁c

χ̇♁F2
+ γ♁2B♁ ω♁F1

ω♁F3
+ Ã♁c

ω♁F3
χ♁F1

− C̃♁c
ω♁F1

χ♁F3
= 
♁2

C♁ ω̇♁F3
+ C̃♁c

χ̇♁F3
+ γ♁3C♁ ω♁F1

ω♁F2
+ B̃♁c

ω♁F1
χ♁F2

− Ã♁c
ω♁F2

χ♁F1
= 
♁3 .

(2.174)

In the absence of a liquid core (i.e., for Ã♁c
= B̃♁c

= C̃♁c
= 0) the second,

forth, and fifth term are zero, and the above equations reduce to to the
classical Euler equations of the rigid-body model for the Earth.

Equations of Earth Rotation for the Poincaré Model. Equations
(2.174) and (2.170) are the defining equations of the Poincaré Earth model. If
Euler’s kinematic equations (referring to the mantle-fixed system) are added
to these equations, we obtain the complete mathematical description of the
Poincaré Earth model:

A♁ω̇♁F1
+ Ã♁c

χ̇♁F1
+ γ♁1A♁ω♁F2

ω♁F3
+ C̃♁c

ω♁F2
χ♁F3

− B̃♁c
ω♁F3

χ♁F2
= 
♁1

B♁ω̇♁F2
− B̃♁c

χ̇♁F2
+ γ♁2B♁ω♁F1

ω♁F3
+ Ã♁c

ω♁F3
χ♁F1

− C̃♁c
ω♁F1

χ♁F3
= 
♁2

C♁ω̇♁F3
+ C̃♁c

χ̇♁F3
+ γ♁3C♁ω♁F1

ω♁F2
+ B̃♁c

ω♁F1
χ♁F2

− Ã♁c
ω♁F2

χ♁F1
= 
♁3

Ã♁c
ω̇♁F1

+ A♁c
χ̇♁F1

+ B̃♁c
ω♁F2

χ♁F3
− C̃♁c

ω♁F3
χ♁F2

− A♁c
γ♁c1

χ♁F2
χ♁F3

= 0

B̃♁c
ω̇♁F2

+ B♁c
χ̇♁F2

+ C̃♁c
ω♁F3

χ♁F1
− Ã♁c

ω♁F1
χ♁F3

− B♁c
γ♁c2

χ♁F3
χ♁F1

= 0

C̃♁c
ω̇♁F3

+ C♁c
χ̇♁F3

+ Ã♁c
ω♁F1

χ♁F2
− B̃♁c

ω♁F2
χ♁F1

− C♁c
γ♁c3

χ♁F1
χ♁F2

= 0

− sin ε♁ sin Θ♁Ψ̇♁ + cosΘ♁ε̇♁ = ω♁F1

− sin ε♁ cosΘ♁Ψ̇♁ − sin Θ♁ε̇♁ = ω♁F2

cos ε♁Ψ̇♁ + Θ̇♁ = ω♁F3
.

(2.175)

Mathematically, eqns. (2.175) form a coupled system of nine first order equa-
tions for nine scalar unknowns (the components of vectors ω♁, χ♁ in the
mantle-fixed PAI-system and the three Euler angles). These equations are
implemented and used in program ERDROT, whenever the option of a liq-
uid core is selected.

For approximate analytical considerations (related to the actual Earth), the
system may be reduced considerably by retaining only small quantities up to
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the first order. If rotational symmetry is assumed, the following equations of
motion are obtained:

A♁c
χ̇♁F1

+ γ♁ A♁ ω♁F2
ω♁F3

− A♁c
ω♁F3

χ♁F2
= 
♁1

A♁ ω̇♁F2
+ A♁c

χ̇♁F2
− γ♁ A♁ ω♁F1

ω♁F3
+ A♁c

ω♁F3
χ♁F1

= 
♁2

C♁ ω̇♁F3
+ C♁c

χ̇♁F3
= 0

A♁c
ω̇♁F1

+ A♁c
χ̇♁F1

− C♁c
ω♁F3

χ♁F2
= 0

A♁c
ω̇♁F2

+ A♁c
χ̇♁F2

+ C♁c
ω♁F3

χ♁F1
= 0

C♁c
ω̇♁F3

+ C♁c
χ̇♁F3

= 0

− sin ε♁ sin Θ♁ Ψ̇♁ + cosΘ♁ ε̇♁ = ω♁F1

− sin ε♁ cosΘ♁ Ψ̇♁ − sinΘ♁ ε̇♁ = ω♁F2

cos ε♁ Ψ̇♁ + Θ̇♁ = ω♁F3
.

(2.176)

Free Motion in the Poincaré Model. The key properties of the Poincaré
model shall now be illustrated with a few simulations performed with pro-
gram ERDROT (see Chapter 9 of Part III). In a first series of tests the free
motion, i.e., the motion in the absence of the external torques due to Moon
and Sun, is studied. Figure 2.57 compares the PM of a rigid Earth with that
of a Poincaré-type Earth. The properties (masses, moments of inertia) of the
entire Earth body (core plus mantle) were assumed to be identical in both
cases. χ♁F (t0) = 0 was assumed at the initial epoch. Figure 2.57 was pro-
duced under the assumption of a spherical core-mantle boundary (γ♁ci

= 0 ,
i = 1, 2, 3 ). The mass and the moment of inertia of the core were defined
by eqn. (2.151). The main difference between the two PMs thus resides in
the assumption of a spherical liquid core and one rigid body, respectively. In
order to better distinguish the two cases, the initial conditions were chosen
to differ slightly (difference of about 10%). Figure 2.57 shows, that the PM is
considerably (about 11% (!)) faster when the Poincaré model instead of the
rigid Earth model is used.

Figure 2.58 shows the effect of the initial value of vector χ(t0) in the case of
an ellipsoidal core-mantle boundary in the Poincaré model. The initial con-
ditions used were χ(t0)

def= 0 (solid line) and χ♁1(t0)
def= 10−4 · ω♁0 , χ♁2(t0) =

χ♁3(t0) = 0 (dashed line). The integration specifications underlying this fig-
ure in essence are those of Figure 2.57. In order to improve the visibility
of the effects the radii of PM were chosen to differ by 10%. Also, the inte-
gration was only performed over about 90 days. Figure 2.58 reveals one of
the key properties of the Poincaré model, namely the existence of a NDFW
(Nearly-Diurnal Free Wobble) in the PM of the mantle. The amplitude of this
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Fig. 2.57. Free motion of pole using a rigid-body and a Poincaré model with
spherical core (over first 263 days of year 2000)

-0.05

0

0.05

0.1

0.15

0.2

0.25

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

o
2
(a

r
c
se

c
)

o1(arcsec)

 

sph ell

Fig. 2.58. Free motion of pole using Poincaré models with χ♁1 = (0, 10−4) · ω0
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wobble obviously depends heavily on the initial conditions for vector χ♁ . For
χ♁(t0) def= 0 no nearly-diurnal free wobble is observed.

Figures 2.59 and 2.60 show what might be called “polar wobble of the core
relative to the mantle” for the two initial conditions underlying Figure 2.58.
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Fig. 2.59. Free motion of the core w.r.t. the mantle for χ♁1 = 0 (over the first 92
days of year 2000)

Whereas the prominent feature of the PM of the mantle is the generalized
Euler motion with a period of about 270 days, the prominent feature of
Figures 2.59 and 2.60 is the quasi-diurnal motion, the amplitude of which in
essence is given the initial condition of vector χ♁ .

The main features in Figures 2.57 – 2.60 may be understood by analyzing
the equations of motion (2.176) in the absence of external torques: From the
third and sixth of these equations one may immediately conclude that

ω̇♁F3
= 0 ; ω♁F3

= ω♁0

χ̇♁F3
= 0 ; χ♁F3

= χ♁0 ,
(2.177)

where ω♁0 and χ♁0 are constants.

The constant value ω♁0 may be interpreted as the constant angular velocity of
Earth rotation – the Poincaré model thus does not allow for LOD variations,
exactly as the model of a rigid Earth. χ♁0 approximately characterizes the
rotation of the core w.r.t. the mantle. Obviously an arbitrary (but constant)
rotation solves the above equations. Following tradition (and common sense)
we only consider the case where the rotation rate of the core w.r.t. the inertial
space is the same as that of the mantle, i.e.,

χ♁0 = 0 . (2.178)
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Fig. 2.60. Free motion of the core w.r.t. the mantle for χ♁1 = 1 · 10−4 · ω♁0 (over
the first 92 days of year 2000)

As χ♁0 enters only in the third and sixth of eqns. (2.176), this assumption
does not affect the following considerations concerning PM and the first two
components of vector χ♁. When assuming rotational symmetry a rotation
of the core with a constant rate w.r.t. the mantle would thus not affect the
rotation of the mantle.

Introducing the result (2.177) into the first, second, forth, and fifth of eqns.
(2.176) leads to a coupled, linear, inhomogeneous differential equation system
with constant coefficients in the variables ω♁Fi

, i = 1, 2 , and χ♁Fi
, i = 1, 2 :

A♁c
χ̇♁F1

+ γ♁ A♁ ω♁0ω♁F2
− A♁c

ω♁0χ♁F2
= 
♁F1

A♁ ω̇♁F2
+ A♁c

χ̇♁F2
− γ♁ A♁ ω♁0ω♁F1

+ A♁c
ω♁0χ♁F1

= 
♁F2

A♁c
ω̇♁F1

+ A♁c
χ̇♁F1

− C♁c
ω♁0χ♁F2

= 0
A♁c

ω̇♁F2
+ A♁c

χ̇♁F2
+ C♁c

ω♁0χ♁F1
= 0 .

(2.179)

Using the abbreviation ξ = A♁c
/A♁ ≈ 0.11 and dividing the first two of eqns.

(2.179) by A♁ , the latter two by A♁c
, one obtains
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ξ χ̇♁F1
+ γ♁ ω♁0 ω♁F2

− ξ ω♁0 χ♁F2
= 
̃♁F1

ω̇♁F2
+ ξ χ̇♁F2

− γ♁ ω♁0 ω♁F1
+ ξ ω♁0 χ♁F1

= 
̃♁F2

ω̇♁F1
+ χ̇♁F1

− (1 + γ♁c
)ω♁0 χ♁F2

= 0
ω̇♁F2

+ χ̇♁F2
+ (1 + γ♁c

)ω♁0 χ♁F1
= 0 ,

(2.180)

where


̃♁1 =

♁1

A♁ ; 
̃♁2 =

♁2

A♁ . (2.181)

The structure of eqns. (2.180) becomes even simpler, when forming linear
combinations of the first and third and the second and forth, respectively.
These combinations have the purpose to eliminate either the terms χ̇... or
the terms ω̇...:

(1 − ξ) ω̇♁F1
+ γ♁ ω♁0 ω♁F2

+ ξ γ♁c
ω♁0 χ♁F2

= 
̃♁F1

(1 − ξ) ω̇♁F2
− γ♁ ω♁0 ω♁F1

− ξ γ♁c
ω♁0 χ♁F1

= 
̃♁F1

(1 − ξ) χ̇♁F1
− (1 + γ♁c

− ξ)ω♁0 χ♁F2
= − 
̃♁F1

+ γ♁ ω♁0 ω♁F2

(1 − ξ) χ̇♁F2
+ (1 + γ♁c

− ξ)ω♁0 χ♁F1
= − 
̃♁F1

− γ♁ ω♁0 ω♁F1
.

(2.182)

In order to explain the above figures, the external torques may be ignored.
Moreover, one may take advantage of the fact that the terms ξ γ♁c

ω♁0 χ...

on the left-hand sides of the first two of eqns. (2.182) are small compared to
the terms γ♁ ω♁0 ω♁F...

(because of the factor ξ on one hand and because the
quantities χ... presumably are smaller than the components of the angular
velocity vector of the mantle). This structure of eqns. (2.182) allows for an
iterative solution of the above differential equation system, by considering
the small terms as the inhomogeneous part of the linear system of differential
equations, which are computed using the approximate solution vectors of the
previous iteration step. Marking the approximated terms by ˜ one obtains:

(1 − ξ) ω̇♁F1
+ γ♁ ω♁0 ω♁F2

= − ξ γ♁c
ω♁0 χ̃♁F2

(1 − ξ) ω̇♁F2
− γ♁ ω♁0 ω♁F1

= + ξ γ♁c
ω♁0 χ̃♁F1

(1 − ξ) χ̇♁F1
− (1 − ξ + γ♁c

)ω♁0 χ♁F2
= + γ♁ ω♁0 ω♁F2

(1 − ξ) χ̇♁F2
+ (1 − ξ + γ♁c

)ω♁0 χ♁F1
= − γ♁ ω♁0 ω♁F1

.

(2.183)

The right-hand sides are set to zero in the first iteration step. This approxi-
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mation separates the first two from the second two of eqns. (2.183). In order
to emphasize the structure of the solution, the amplitudes of the prograde
motions are characterized by the symbol “+”, those of the retrograde terms
with “−”. In this approximation the solution of the first of eqns. (2.183) is:

ω♁F1
(t) = ρ+ cos

(
(1 − ξ)−1γ♁ ω♁0t + α+

)
= ρ+ cos(ω+t + α+)

ω♁F2
(t) = ρ+ sin

(
(1 − ξ)−1γ♁ ω♁0t + α+

)
= ρ+ sin(ω+t + α+)

ω+ = (1 − ξ)−1γ♁ ω♁0 .

(2.184)

In this approximation the rotation pole moves on a circle around the pole of
the figure axis with a period of

PPoinc =
2 π (1 − ξ)

γ♁ ω♁0

=
A♁m

A♁
2 π

γ♁ ω♁0

=
A♁m

A♁ PEuler ≈ 270.6 days . (2.185)

This formula explains Figure 2.57.

Using the above results in the third and fourth of eqns. (2.183) one may solve
the equations for the first two components of vector χ♁F . The system is linear
and inhomogeneous. As usual, the homogeneous system is solved first:

χ♁F1,hom = + ρ− cos
(
ω−t + α−)

χ♁F2,hom = − ρ− sin
(
ω−t + α−)

ω− =
(

1 +
γ♁c

1 − ξ

)
ω♁0 .

(2.186)

The period of the free motion of the core thus is

P♁c
=

1
1 +

γ♁c

(1−ξ)

Psid ≈ 0.9963 · Psid ≈ 0.9941 days , (2.187)

where Psid is the Earth’s rotation period, i.e., one sidereal day.

According to eqn. (2.186) the solution of the homogeneous equation governing
the motion of the core relative to the mantle is a retrograde, nearly-diurnal
circular motion. This is in essence what Figure 2.60 shows.

The solution of the inhomogeneous equation may be obtained with the
method of variation of constants. On the other hand one also sees, that a
prograde circular motion with constant angular velocity ω+ (see third of
eqns. (2.184)) solves the inhomogeneous equation:

χ♁F1,inh = − ω+

ω+ + ω− ρ+ cos(ω+t + α̃+)

χ♁F2,inh = − ω+

ω+ + ω− ρ+ sin(ω+t + α̃+) .

(2.188)

Having established the general solution of the homogeneous and a particular
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solution of the corresponding inhomogeneous equation for the core, the gen-
eral solution of the inhomogeneous solution is given by a linear combination
of the two mentioned solutions. One easily verifies that the amplitudes of this
contribution are about a factor of ω−/ω+ ≈ 300 smaller than the amplitude
of PM. In first approximation this contribution may be ignored.

The second approximation for PM is thus obtained by introducing the solu-
tion (2.186) on the right-hand sides of eqns. (2.183):

(1 − ξ) ω̇♁F1
+ γ♁ ω♁0 ω♁F2

= + ξ γ♁c
ω♁0 ρ− sin

(
ω−t + α−)

(1 − ξ) ω̇♁F2
− γ♁ ω♁0 ω♁F1

= + ξ γ♁c
ω♁0 ρ− cos

(
ω−t + α−) .

(2.189)

After division by the factor (1 − ξ) we obtain the equations:

ω̇♁F1
+ ω+ ω♁F2

= +
ξ γ♁c

ω+

γ♁ ρ− sin
(
ω−t + α−)

ω̇♁F2
+ ω+ ω♁F1

= − ξ γ♁c
ω+

γ♁ ρ− cos
(
ω−t + α−) .

(2.190)

One easily verifies that the following functions solve the equations (2.190):

ω♁F1
= − ξ γ♁c

ω+

γ♁ (ω− + ω+)
ρ− cos
(
ω−t + α−)

ω♁F2
= +

ξ γ♁c
ω+

γ♁ (ω− + ω+)
ρ− sin
(
ω−t + α−) .

(2.191)

The motion of the core relative to the mantle thus causes a retrograde, nearly-
diurnal circular motion with period (2.187) which is superimposed to the
(generalized) Eulerian motion. The amplitude of this motion is proportional
to the amplitude of the motion of the core w.r.t. the mantle. The proportion-
ality factor (see eqn. (2.191)) is, however, rather small:

ξ γ♁c
ω+

γ♁ (ω−+ ω+)
≈ 1

3047
. (2.192)

Having chosen |χ♁F | ≈ 20′′ in the example of Figure 2.58 one expects an
amplitude of about 7 mas for the retrograde nearly-diurnal motion – what is
confirmed by this figure.

Precession and Nutation in Poincaré’s Earth Model. Let us conclude
the studies related to the Poincaré model by analyzing the motion of the
rotation pole in inertial space, i.e., by considering precession and nutation.
Figures 2.61 and 2.62 show the precession plus nutation in longitude and the
nutation in obliquity for the year 2000 for a rigid Earth (solid line) and for
a Poincaré model of the Earth, which only differ by the initial value of the
vector χ♁ . The differences between Earth models are obvious: as opposed
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Fig. 2.61. Nutation in longitude for a rigid and a Poincaré Earth model with
χ♁1(t0) = (0 or 10−4) · ω♁0 for year 2000
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Fig. 2.62. Nutation in obliquity for a rigid Earth and a Poincaré Earth model with
χ♁1(t0) = (0 or 10−4) · ω♁0 for year 2000

to a purely rigid (or elastic) Earth model a periodic signal of about 350 days
with an amplitude greatly depending on the initial state of vector χ♁ shows
up for the Poincaré-type models. This periodic signal is usually called FCN
(Free Core Nutation).

Euler’s kinematic equations (eqns. 7 − 9 in the differential equation system
(2.175)) show that each spectral line visible in nutation also must show up
in the components ω♁i

, i = 1, 2 , as retrograde diurnal terms (due to the
multipliers sinΘ♁ and cosΘ♁) in the PM series. Figure 2.63, containing the
amplitude spectra of three models (rigid, Poincaré with different initial values
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for χ♁), underlines this statement. (Observe that the three spectra are slightly
offset in the two coordinate directions in order to improve the visibility of
the terms). The main difference resides in the spectral line near 0.994 days
corresponding to the 350 days free core nutation. Figure 2.63 confirms that
the amplitude of this spectral line depends heavily on the initial condition of
vector χ . It is worth noting, however, that the amplitude is rather big even
for the case χ♁1(t0) = 0 .
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Fig. 2.63. Amplitude spectrum of PM for a rigid Earth and a Poincaré model for
χ♁1 = (0 or 10−4) · ω♁0 in the retrograde diurnal band

In order to interpret Figures 2.61, 2.62, and 2.63 we have to introduce our
analytical solutions for PM into the last three of the equations (2.175), the
so-called kinematic Euler equations. Solving these equations for Ψ̇♁ , ε̇♁ , and
Θ̇♁ one obtains:

Ψ̇♁ = −
{
ω♁F1

sin Θ♁ + ω♁F2
cosΘ♁
}

csc ε♁
ε̇♁ = −

{
ω♁F1

cosΘ♁ − ω♁F2
sin Θ♁
}

Θ̇♁ = +
{
ω♁F1

sin Θ♁ + ω♁F2
cosΘ♁
}

cot ε♁ + ω♁0 .

(2.193)

To give an example we introduce the particular solution (2.191) into the
equation for ε♁ and obtain
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ε̇♁ = −
{
ω♁F1

cosΘ♁ − ω♁F2
sinΘ♁
}

= +
ξ γ♁c

ω+

γ♁ (ω−+ ω+)
ρ− cos
(
(ω−+ ω♁0) t + α̃−)

= +
ξ γ♁c

ω+

γ♁ (ω−+ ω+)
ρ− cos
(

γ♁c

1 − ξ
ω♁0t + α̃−

)
.

(2.194)

The equations are solved by

ε♁(t) = − ξ
ρ−

ω++ ω− sin
(

γ♁c

1 − ξ
ω♁0t + α̃−

)

= − ξ
ρ−

ω++ ω− sin
(

A♁
A♁m

γ♁c
ω♁0t + α̃−

)
.

(2.195)

The motion of the core thus induces in the inertial system a nutation in
obliquity with an angular frequency of

ωFCNI =
A♁
A♁m

γ♁c
ω♁0 (2.196)

corresponding to a period of

PFCNI =
A♁m

A♁
2 π

γ♁c
ω♁0

≈ 354 days . (2.197)

Furthermore we note that the amplitude of the free core nutation is approx-
imately given by the amplitude of the nearly-diurnal free wobble, reduced,
however, by the factor of ξ ≈ 0.11 .

With the advent of free core nutation, the theory of nutation has lost to
some extent the “status of complete predictability”: Whereas the coefficients
of nutation of the rigid or elastic Earth models do not depend on initial
conditions (except for the dependence on ω♁0 ), free core nutation greatly
depends on the initial condition of the vector χ♁ . This may be used as an
argument that the motion of the Earth’s rotation pole in inertial space should
be monitored exactly like PM.

Concluding Remarks Concerning Poincaré-Type Earth Models.
PM and precession plus nutation as resulting from the Poincaré model were
compared to the corresponding results using a rigid Earth model. The fol-
lowing aspects are noteworthy:

• The generalized Eulerian PM is faster by a factor of A♁/A♁m
when com-

pared to the rigid body model. Figure 2.57 illustrates the effect. This par-
ticular feature of the Poincaré model does not depend on the ellipticity of
the core-mantle boundary.
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• If the core-mantle boundary is spherical, there is no exchange of angular
momentum between core and mantle. Core and mantle rotate about in-
dependent axes, where the core axis remains fixed in inertial space. The
motion of the core relative to the boundary may not be detected by space
geodetic observations in this case.

• Angular momentum is exchanged between core and mantle, if the core-
mantle boundary is a (rigid) ellipsoid. The prominent feature in PM is a
retrograde NDFW as shown in Figure 2.58. The period is given approxi-
mately by eqn. (2.187). The corresponding spectral line may be inspected
in Figure 2.63.

• The prominent features in nutation are terms with a period of about
350 days in nutation (in longitude and obliquity) as illustrated by Figures
2.61 and 2.62. The effect is called free core nutation (FCN). The period
is given by eqn. (2.197) and the amplitude is related to the amplitude of
the motion of the core relative to the mantle (reduced by a factor of about
ξ ≈ 0.11).

• Figure 2.63 suggests that free core nutation should be “easily” detectable,
e.g., through VLBI monitoring: Even for χ♁1(t0) = 0 , an amplitude of the
order of more than 10 mas would result – an effect which is more than one
order of magnitude above the noise level of today’s observation techniques.

• Resonance: If the amplitudes of the lunisolar nutation terms as emerging
from the rigid and the Poincaré Earth model are compared, one recognizes
that the terms with periods close to that of free core nutation have slightly
larger amplitudes in the case of the Poincaré model. In the simulations
performed here the effect is measurable only for the semiannual term. Fig-
ure 2.64, showing the relevant part of the spectrum near P = 1.003 days
in Figure 2.63, illustrates the effect. For all other lines of the spectrum in
Figure 2.63 no effect can be noticed.
The observed phenomenon is due to a resonance: if a dynamical system
governed by a linear differential equation system is exited with a frequency
close to one of the Eigenfrequencies of the system (the frequency associated
with FCN resp. NDFW are Eigenfrequencies of our system), a resonant
magnification of perturbing effect may occur.
By analyzing the system equations (2.180) one might determine the ampli-
fication to be expected for the amplitudes of spectral lines in the nutation
spectra as a function of the distance from the resonance frequency.

2.4 Rotation of Earth and Moon: A Summary

In section 2.1 the essential characteristics (masses, moments of inertia, char-
acteristic rotation and revolution periods) were introduced. Table 2.1 sum-
marizes the essential quantities. The space geodetic observation techniques



2.4 Rotation of Earth and Moon: A Summary 119

0

0.0005

0.001

0.0015

0.002

0.0025

-1.004 -1.0035 -1.003 -1.0025 -1.002

ar
cs

ec

days

 

rigid chi=0 chi

Fig. 2.64. Amplitude spectrum of PM for rigid Earth and Poincaré model for
χ♁1 = (0, 10−4) · ω♁0 near the semiannual nutation term

and their impact on monitoring Earth rotation were also addressed in this
introductory section.

In section 2.2 the N -body-problem Sun, Earth, Moon, and planets was
studied under the assumption that Earth and Moon are finite rigid bodies.
All the other constituents of the N -body problem were considered as point
masses. The orbit of the Moon plays a key role for the understanding of
the rotational characteristics of Earth and Moon. This is why the orbital
characteristics of the Moon were studied in some detail in section 2.2.1. The
orbit of the Moon is in essence governed by the Earth as the central body and
the Sun as the main perturbing body. In the absence of the Sun’s gravitational
attraction, the term “month” would be unique. Table 2.2 lists the different
kinds of months, which are due to solar (and planetary) perturbations.

An analysis of the Moon’s mean orbital elements shows that there are “only”
periodic perturbations in the semi-major axis a and the eccentricity e (the
statement would have to be modified if time intervals of more than a few
hundred years would be considered). The perturbations in the inclination i
w.r.t. the plane of the ecliptic and the longitude of the Moon’s ascending
node show that the Moon’s orbital pole is precessing around the pole of the
ecliptic with a period of 18.6 years (see Figures 2.9, 2.10 and 2.11). For Earth
rotation it is important that the inclination ĩ of the Moon’s orbital plane
w.r.t. the equatorial plane changes between the limits ±5.5◦ with the period
of 18.6 years induced by the revolution of the lunar node (see Figure 2.12).
This characteristic of the Moon’s orbit leads to a periodic variation of the
mean (monthly, annual) torques exerted by the Moon on the oblate Earth.
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It explains the biggest nutation term. Figure 2.13 shows that the Moon’s
perigee is rotating rather rapidly in the inertial system and also w.r.t. the
Moon’s ascending node. A Fourier analysis of the Moon’s ecliptical longitude
(see Figures 2.14 and 2.15) nicely summarizes the classical “anomalies” (as
compared to a regular circular motion) of the Moon’s orbital motion.

Section 2.2.2 introduces the essential properties of Earth rotation. In a first
step the free motion (i.e., the motion in the absence of torques) was analyzed.
It was found that in the case of rotational symmetry the Earth’s rotational
pole would move around the pole of figure (axis of maximum moment of
inertia) on a circle with a radius defined by the initial position of the ro-
tation axis. The period, called Euler period in the case of a rigid Earth, is
a function of the length of the sidereal day and the Earth’s dynamical flat-
tening, as represented by eqn. (2.16). In the absence of external torques the
Earth’s angular momentum axis is fixed in inertial space. The rotation axis
consequently shows small periodic diurnal variations in inertial space.

If the external torques caused by Sun and Moon are taken into account, the
PM is still governed by the free motion (circular motion around the pole of
figure), but a small retrograde nearly-diurnal motion, called Oppolzer motion,
shows up (see Figure 2.19). The spectrum of this motion may be inspected
in Figure 2.20. By virtue of Euler’s kinematic equations (see, e.g., last three
equations of the system (2.175)) the Oppolzer part of PM may be interpreted
as the first time derivative of the nutation (transformed into the retrograde
diurnal band by multiplication with the factors sinΘ♁, cosΘ♁).
The motion of the rotation pole in space is governed by precession and nu-
tation (see Figures 2.24, 2.25, 2.26). The regression of the vernal equinox on
the ecliptic with a rate of about 50.4′′/y and the 18.6-year terms are the
dominating effects of the motion of the Earth’s axis in space. The motion is
of course much more complex. Table 2.4 indicates that the rigid-body model
of Earth rotation does account for precession and nutation rather well. For-
mula (2.39) shows that the term “precession constant” should be used with
care: The annual precession rate depends among other on the obliquity of
the ecliptic and the semi-major axes of the orbits of Sun and Moon – which,
due to perturbations, are not strictly constant.

Whereas precession and nutation are explained quite well by the rigid body
model, the same is not true for LOD variations: a rigid Earth with rotational
symmetry does not show any LOD variations.

Lunar rotation was studied in section 2.2.3. The principal laws were already
stated in the 17th century by Cassini. They were explained or illustrated in
this section. The pattern of the analysis was similar to that followed in the
case of Earth rotation. The principal difference of lunar rotation in compari-
son with Earth rotation resides in the fact that the assumption of rotational
symmetry does not make sense (for numerical values see Table 2.1). Exactly
as in the case of Earth rotation, the free motion (in the absence of the torques
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exerted by Earth and Sun) was studied first. The result is a generalization of
the corresponding result of Earth rotation: The Moon’s rotation pole would
move on an ellipse with the axes-ratio defined by the two smallest princi-
pal moments of inertia. The period of the lunar “Eulerian motion” would be
around 150 years. Whereas PM in the presence of torques is still governed by
the free motion in the case of the Earth, the same is not true for the Moon:
When the torques of Earth and Sun are taken into account, PM becomes
rather chaotic (see Figure 2.31), because the equivalent to the Oppolzer mo-
tion dominates lunar PM.

The first Cassini law states that the sidereal revolution and rotation periods
of the Moon are identical. The law was recognized as a consequence of gravity
stabilization: The axis of the Moon’s smallest moment of inertia always points
(approximately) to the Earth. With suitable initial conditions (which were
established by tidal friction over millions of years) the strict coupling of the
two periods was achieved.

The rotation of the non-rigid Earth was studied in section 2.3. Three models
were considered:

• an elastic Earth obeying Hooke’s law,

• a rigid Earth with atmosphere and oceans, and

• an Earth consisting of a liquid core and a rigid mantle.

We first reviewed the Earth rotation series available from the IERS. We saw
that PM is governed by the Chandler motion (period about 435 days) and by
a term with an annual period and an amplitude of about half of the amplitude
of the Chandler term. The essential part of the spectrum may be inspected in
Figure 2.38. The spectrum of the measured LOD variations (see Figure 2.40)
shows prominent annual and semiannual terms. It is important to note that
none of the mentioned characteristics are explained (even approximately) by
a rigid Earth model.

The generalizations of the classical Euler equations of motion for a rigid body
are based on the concepts already set up in section I- 3.3.7. By introducing
a rigid, rotating coordinate system and by allowing rather arbitrary (but
small) deformations of the “real Earth” w.r.t. this system, the problem could
be solved with a minimum amount of analytical work: The Liouville-Euler
equations (I- 3.133) are the generalized equations of motion. The physical
content is the same as in the case of the rigid body: The equations simply
state that the change of angular momentum is equal to the sum of the applied
external torques. The “only” differences w.r.t. the rigid body model reside in
the facts that the inertia tensor may no longer be assumed as constant and
as diagonal and that a so-called “inner angular momentum” κ♁ may show
up. When considering the model of an elastic Earth we may simplify the
equations of motion by adopting a Tissérand system with respect to which
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the inner angular momentum is always zero. The corresponding Liouville-
Euler equations are eqns. (I- 3.137).

In order to give the equations for the rotation of an elastic Earth their explicit
form, different kinds of deformations were considered in section 2.3.2. We saw
that the so-called polar tides are able to explain the transition from the Euler
to the Chandler period (see eqn. (2.96)). The lunisolar tidal deformations
explain the monthly and bimonthly terms in the LOD variations, but only
to a minor extent the annual and semiannual terms.

In section 2.3.3 the equations describing the rotation of a rigid Earth sur-
rounded by the atmosphere and the oceans were developed. It is natural to
associate the rigid rotating frame with the rigid Earth and to calculate the
angular momentum and the contributions to the inertia tensor from atmo-
sphere and/or oceans from meteorological and oceanographic observation se-
ries. Alternatively, one may in space geodetic analyses frequently (e.g., daily,
hourly) solve for the PM coordinates and LOD values. From such observa-
tion series one may compute the three angular momentum components of
the Earth consisting of a rigid body surrounded by the atmosphere and the
oceans. The variation of these series may then be compared to atmospheric
(or oceanographic) angular momentum series. The results for the third (ax-
ial) component of the Earth’s angular momentum show a striking agreement:
Figures 2.47 and 2.48 suggest that the LOD variations observed in space
geodetic analyses of Earth rotation are explained to the greatest extent by
interactions between the solid Earth and the atmosphere. The correlation
between meteorological and space geodetic measurement series in the other
two components of angular momentum is not as striking, but still rather high
(see Figures 2.50). It is an established fact, that the features in PM and LOD
mentioned initially are to a great extent explained by the Earth model of a
rigid Earth surrounded by the atmosphere and the oceans. Subdaily LOD
and PM variations could be attributed to the ocean tides.

In the last section 2.3.4 we introduced an Earth model taking into account
today’s knowledge of the Earth’s interior. It should be mentioned that the
Poincaré model is in a way a step back: the basic period of PM again is the
Euler period (even reduced by about 10%), and tidal deformations do not
exist in this model. The Poincaré model does, however, reveal the essential
properties of modern Earth models: It does show

• the nearly-diurnal free wobble (NDFW) in PM,

• the free core nutation (FCN) in nutation (both components), and

• increased nutation amplitudes for terms near the period of free core nuta-
tion.

More advanced Earth models essentially shift the periods to more realistic
values (in particular the Euler to the Chandler period).
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The motion of artificial satellites is of crucial importance in the wide field of
satellite geodesy. In this chapter we focus uniquely on the principal dynamic
properties of satellite orbits, whereas, e.g., [106] covers the entire field of
satellite geodesy.

3.1 Oblateness Perturbations

3.1.1 A Case Study

Table I- 3.1 in Chapter I- 3.4 tells that the term C20, caused by the Earth’s
oblateness, is the dominating perturbation term of the Earth’s gravitational
field. For near Earth satellites the perturbation due to C20 is about a factor
of 1000 smaller than the main term GM

r and it exceeds all other terms of the
Earth’s gravitational potential by at least a factor of 200 (in the case of C22),
in general by about a factor of 1000.
In an attempt to fix the order of magnitude of the perturbations exprienced
by a “normal” satellite, the orbit of a test satellite is integrated over the
relatively short time interval of 5 days using the program SATORB, which is
documented in Chapter 7 of Part III. The initial osculating orbital elements
of the test satellite are given in Table 3.1. The object may be viewed as a
typical LEO (Low Earth Orbiter).
The quasi-inertial geocentric reference system used in satellite geodesy is the
mean geocentric equatorial system referring to a particular epoch. The system
J2000.0 will be used throughout this Chapter. The system is called quasi-
inertial (and designated by the symbol I) because its origin is attached to the
Earth’s center of mass, which revolves on an approximately elliptical curve
around the center of mass of the Earth–Moon system; the latter center of
mass in turn revolves on an approximately elliptical orbit around the Sun.
The origin of the reference system thus follows a rather complicated trajectory
in the inertial system. The term quasi-inertial is justified, because the system
does not rotate w.r.t. a truly inertial system.
The osculating orbital elements extracted after the integration are given in
Figures 3.1 (as a function of time) over the interval of the first six hours
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Table 3.1. Osculating elements of a virtual test satellite at t0 = January 1, 2001,
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Fig. 3.1. Osculating elements of a satellite orbit in the gravitational field of the
oblate Earth (six hours)

(corresponding to about three revolutions), and over the full interval of five
days in Figures 3.2. All perturbation terms, except C20, were set to zero
in this initial example. In the transformation between the inertial and the
Earth-fixed system the polar wobble was ignored and the difference UT1–
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UTC was set to zero. The initial epoch is January 1, 2001. The (unperturbed)
revolution period is approximately two hours.

Short-periodic perturbations dominate the development of the semi-major
axis a, the eccentricity e, and the inclination i in Figure 3.1. The main period
of the perturbations in a is P/2 , half the satellite’s revolution period around
the Earth. The period of the perturbations in the eccentricity is the satellite’s
revolution period P .

The amplitudes are (alternatingly) about 3.2 km and 2 km in the case of the
semi-major axis a (which, as a matter of fact, is due to a superposition of
two periodic signals with periods P/2 and P ). The amplitudes of the periodic
perturbations are about 8 · 10−4 in the case of the eccentricity, and about
0.015◦ in the inclination i .

Over longer time spans (see Figures 3.2) the right ascension of the ascending
node and the argument of perigee are dominated by secular perturbations.
Five days seems like a rather short time interval. On the other hand, the
degree of difficulty to model an orbit grows with the number of revolutions.
For the test-satellite of Table 3.1 the time interval of five days corresponds
to 60 revolutions. For a minor planet with a typical revolution period of four
years the time interval comparable to five days in satellite geodesy would be
approximately 240 years.

Figures 3.2 show that the node rotates in the retrograde sense with an an-
gular velocity of Ω̇ ≈ −3.75◦ per day, the argument of perigee rotates in the
prograde sense w.r.t. the ascending node with an angular velocity of about
ω̇ ≈ 5.5◦ per day. As the inclination shows mainly short-periodic variations,
we may conclude that the orbital pole rotates around the polar axis of the
Earth with a period of about 96 days. The perigee performs a prograde rota-
tion w.r.t. the inertial space around the polar axis, where the angular velocity
of this rotation is given by the sum Ω̇ + ω̇ ≈ 1.75◦ per day, resulting in a
revolution period of about 206 days.

Qualitatively, Figures 3.1 and 3.2 resemble the corresponding figures of three-
body perturbations as encountered, e.g., in Chapter 4. This intuitive interpre-
tation is correct, because the equatorial bulge of the Earth may be interpreted
(in a very crude approximation) as a third body, with its mass spread out
over a circular annulus (orbital curve).

Figures 3.3 and 3.4, showing the development of the mean right ascension
Ω of the ascending node and the mean argument of perigee ω for different
values of the inclination i, indicate that the angular velocities of the precession
of the orbital plane and of the argument of perigee depend heavily on the
inclination i of the satellite. The mean elements were computed by averaging
the osculating elements over one revolution period of the satellite.

As (perhaps) expected, the regression of the node is maximum for small
inclinations i ≈ 0◦ (for i = 0◦ the angular velocity is even indefinite), for
i = 90◦ the orbital plane does not precess.
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Fig. 3.2. Osculating elements of a satellite orbit in the gravitational field of the
oblate Earth (five days)

Using program SATORB one may easily verify that the orbital pole rotates
in the prograde sense for inclinations i > 90◦. The angular velocities are
Ω̇(180◦ − i) = −Ω̇(i) for i > 90◦.

The prograde motion of the argument of perigee w.r.t. the ascending node
is maximum for small inclinations i ≈ 0◦, it comes to a standstill for an
inclination of i ≈ 63.4◦. The rotation of the perigee w.r.t. the ascending node
is retrograde for inclinations 63.4◦ < i < 116.6◦. For even bigger inclinations
the rotation of the perigee becomes prograde, again.

The angle(s) of i ≈ 63.4◦ (and of i ≈ 116.6◦), for which the perigee does
not rotate w.r.t. the ascending node, is called the critical inclination. The
attribute critical is misleading – there is nothing critical about this particular
inclination (except that denominators in higher-order perturbation theory
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might become zero). The effect of a “non-rotating” argument of perigee at
i = 63.4◦, 116.6◦ is real and exploited in practice for particular classes of
satellites (discussed later on).

3.1.2 Oblateness Perturbations in the Light
of First-Order Perturbation Theory

Perturbing Function and Equations of Motion. In section I- 3.4.2 we
derived the approximation (I- 3.157) for the Earth’s gravitational potential
(expressed in the Earth-fixed system), where we only considered the moments
up to second order (see eqns. (I- 3.155)) of the Earth’s mass distribution.
Assuming axial symmetry (A♁ = B♁), the approximation (I- 3.157) may be
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further simplified:

V (r, φ) =
GM

r
+ GM a2♁ C20

1
r3

(
3
2

sin2 φ − 1
2

)
. (3.1)

r is the absolute value of the radius vector, φ the satellite’s latitude in the
Earth-fixed equatorial system. In this approximation, the gravitational po-
tential is longitude-independent.

The coordinates in eqn. (3.1) refer to the Earth-fixed system. As the equa-
tions of motion assume their simplest form in the quasi-inertial system (no
centrifugal or coriolis terms) it would be preferable to express the Earth’s
potential in this system. In view of the rather complicated transformation
between the two systems, this leads to a rather bulky function. For order-
of-magnitude considerations it is, however, possible to considerably reduce
this transformation. The conventional transformation between the inertial
and the Earth-fixed system is given by eqn. (I- 3.56) and it is illustrated by
Figure I- 3.4. Equation (I- 3.56) may be given the form

rI = R3(−Ψ♁)R1(ε♁)R3(−Θ♁) rF
def= T♁ rF , (3.2)

where the satellite coordinates on the left-hand side refer to the inertial eclip-
tical system, on the right-hand side to the Earth-fixed equatorial system. The
inertial reference system in satellite geodesy is the equatorial system referring
to a standard epoch, which is why the transformation actually needed is

rI = R1(−εe0)R3(−Ψ♁)R1(ε♁)R3(−Θ♁) rF
def=≈ R3(−Θ♁) rF , (3.3)

where εe0 is the mean obliquity referring to the standard epoch of the equa-
torial coordinate system used. The approximation on the right-hand side is
justified by the fact, that we may always select a reference epoch of the in-
ertial coordinate system in such a way that the angle Ψ♁ ≈ 0 . This is, e.g.,
achieved by selecting the mean system of the initial epoch of the integration
(and not J2000.0) as the inertial coordinate system. Using, moreover, the
approximation ε♁ ≈ εe0 we arrive at the approximative transformation in
eqn. (3.3).

Equation (3.3) implies that approximately the transformation between the
Earth-fixed equatorial and the inertial equatorial systems is given by a rota-
tion about the common third axis of the two equatorial coordinate systems
involved.

The Earth’s potential (3.1) depends only on the absolute value r of the radius
vector of the satellite and on the elevation φ above the equatorial plane. Both,
r and φ , are invariants of the approximate transformation (3.3). Taking into
account that in the inertial plane the elevation above the equator is the
declination δ , the potential referring to the inertial equatorial system may
be simply transcribed from eqn. (3.1) as
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V (r, δ) =
GM

r
+ GM a2♁ C20

1
r3

(
3
2

sin2 δ − 1
2

)
. (3.4)

Using

sin δ =
r3

r
(3.5)

and introducing for abbreviation the constant

C̃20
def= GM a2♁ C20 , (3.6)

the potential of an oblate Earth may be written as

V (r) =
GM

r
+ C̃20

1
r3

(
3
2

r2
3

r2
− 1

2

)
def=

GM

r
+ R , (3.7)

where R is the perturbation function characterizing the motion of a satellite
in the gravitational field of an oblate planet.

The equations of motion of the satellite are obtained by taking the gradient
of the above potential

r̈ = ∇
{

GM

r
+

C̃20

r3

(
3
2

r2
3

r2
− 1

2

)}
(3.8)

or, explicitly

r̈ = +
1
r3


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
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

. (3.9)

The structure of the equations of motion is clearly visible in the representation
(3.9): For LEOs one may approximate r ≈ a♁ which results in

3
2

C̃20

r2
≈ 3

2
GM C20 =

3
2

GM
√

5 C̄20 =
3
2

GM 1082.6 · 10−6 , (3.10)

meaning that the second term in the bracket {. . .} of the equations of motion
(3.9) is of the order of 0.15% of the first, the two-body term. The numerical
value for C̄20 was taken from Table I- 3.1, and eqn. (I- 3.158) was used for
the transformation C20 =

√
5 C̄20 between the normalized and un-normalized

oblateness terms.
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A Particular Solution. We are now in a position to give a closed solution
of the equations of motion (3.9) for a special set of initial conditions. For the
motion in the equatorial plane the equations of motion are (all terms ∼ r2

3
r2

are zero)

r̈ = −GM

(
1 − 3

2
a2♁
r2

C20

)
r

r3
. (3.11)

If the initial values are defined as

r(t0) = a




cosu0

sin u0

0


 and ṙ(t0) = a ñ




− sinu0

cosu0

0


 , (3.12)

where the mean motion is computed as

ñ =

√√√√√GM

(
1 − 3

2

a2♁
a2 C20

)

a3
, (3.13)

one easily verifies that the solution of the initial value problem (3.11), (3.12)
actually is a circular motion obeying Kepler’s laws with the modified gravi-
tational constant

GM ′ def= GM

(
1 − 3

2
a2♁
a2

C20

)
. (3.14)

Observe that GM ′ > GM , because C20 has a negative value.

The initial value problem (3.11), (3.12) is not only of academic, but also
of practical interest: The orbits of geostationary satellites are solutions of
this problem, where the orbit’s radius ageo is defined through the revolution
period, which must be precisely one sidereal day for this class of satellites.
The radius ageo (in SI units) is obtained as the solution of the polynomial
equation
(

2 π

86400 · 365.25/366.25

)2
a3
geo = GM

(
1 − 3

2
a2♁

a2
geo

C20

)
. (3.15)

The equation is easily solved iteratively, by using approximate values for ageo

on the right-hand side of the above equation (a♁/ageo = 0 is good enough
for the first iteration step, and the iteration may be stopped safely after the
second step(!)).

Conservation of the Third Component of Angular Momentum and
of Energy. The solutions of eqn. (3.9) conserve the third component of the
satellites angular momentum and its energy:

1. Third Component of Angular Momentum: Using eqn. (3.9) one easily
verifies that
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r1 r̈2 − r2 r̈1 = 0 , (3.16)

implying that
r1 ṙ2 − r2 ṙ1 = h3 = const. (3.17)

This property is not restricted to the term C20 . The third component
of the angular momentum is conserved for any rotationally symmetric
potential, i.e., for each potential consisting only of zonal terms Cl0 , l =
2, 3, . . .

2. Conservation of Energy: The right-hand side of eqn. (3.9) was computed
as the gradient of a potential function:

r̈ · ṙ = ∇V · ṙ = V̇ . (3.18)

This implies immediately that the energy is conserved

1
2

ṙ2 − V = E = const. (3.19)

This property is not restricted to the term C20 of the potential, but holds
for all zonal terms.

Use of Perturbation Theory: Outline of Methods. Approximate ana-
lytical solutions of the equations of motion (3.9) may be produced by using
the perturbation theory as developed in Chapter I- 6. We may either use the
Gaussian version (I- 6.88) of the perturbation equations (named after Carl
Friedrich Gauss (1777–1855)) or Lagrange’s planetary equations (I- 6.115)
(named after Joseph Louis de Lagrange (1736–1813)) – which is of course an
obsolete terminology for our application. The two approaches may be outlined
as follow:

Method 1: When using the Gaussian version (I- 6.88) of the perturbation
equations, we have to transform the perturbing acceleration into the R-
system (see Figure I- 6.1). The result may be represented by the corre-
sponding term in eqn. (3.9) and a series of matrix multiplications:




R′

S′

W ′


 = R3(u) R1(i) R3(Ω)

3
2

C̃20

r5




r1

(
1 − 5

r2
3

r2

)

r2

(
1 − 5

r2
3

r2

)

r3

(
3 − 5

r2
3

r2

)




. (3.20)

The result, expressed as a function of the orbital elements, is:



R′

S′

W ′


 =

3
2

C̃20

r4




1 − 3
2 sin2 i + 3

2 sin2 i cos 2u
sin2 i sin 2u
sin 2i sin u


 . (3.21)
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It is an elementary task (and a good exercise) to use the representation
(3.21) for the perturbing accelerations in the Gaussian equations (I- 6.88)
with the purpose of integrating the terms “analytically”, i.e., in closed
form. This was, e.g., done in [18].

Method 2: When using the Lagrangian version (I- 6.115) of the perturbation
equations, the perturbing function R in eqn. (3.7) has to be represented as
a function of the osculating orbital elements and of time t. In rectangular
coordinates this perturbing potential was defined by eqn. (3.7). By using
the equation r3

r2 = sin2 u sin2 i and the polar equation (I- 4.16) for the
absolute value of the radius vector we obtain the expression:

R =
C̃20

r3

(
3
2

sin2 u sin2 i − 1
2

)

=
C̃20 (1 + e cos v)3

a3 (1 − e2)3

(
3
2

sin2(v + ω) sin2 i − 1
2

)
.

(3.22)

v stands for the true anomaly, ω is the argument of perigee, and u = ω+v
is the argument of latitude of the satellite.

The second method promises to be more efficient, because one only has to
represent one (instead of three) scalar function(s) as a function of the orbital
elements.

In order to solve Lagrange’s perturbation equations (I- 6.115), one has to
take the partial derivatives of function R w.r.t. the orbital elements. This
is easily possible, provided the partial derivatives of the true anomaly w.r.t.
these elements are known. These derivatives, on the other hand, had to be
calculated explicitly when deriving the solution of the variational equations
associated with the two-body motion in Chapter I- 5. Extensive use will be
made of these results.

A Simple Approximation of the Perturbing Function. Orbits with
small eccentricities are an important special case in satellite geodesy. Approx-
imations of the perturbing function up to a certain order in e are therefore
important. The simplest approximation up to terms of order 0 in e follows
from eqn. (3.22) by approximating the true anomaly v by the mean anomaly
v

def= σ = σ(t) (see definition in Table I- 4.2):

R =
C̃20

a3

(
3
2

sin2(σ + ω) sin2 i − 1
2

)
+ O(e) . (3.23)

In order to derive formula (3.23) from eqn. (3.22) we simply had to set v
def= σ

and e = 0 , implying that r = a . Observe that the perturbation equations
containing partial derivatives w.r.t. e (namely those for ω and T0) become
simpler in this approximation.
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Perturbations as a Function of the True Anomaly. The differential
equation for the argument of latitude (or of the true anomaly) (I- 4.35) was
derived in Chapter I- 3:

u̇ = v̇ =
h

r2
=

√
GM

a3 (1 − e2)3
(
1 + e cos (u − ω)

)2

=
n√

(1 − e2)3
(1 + e cos v)2 .

(3.24)

This equation may be used to replace the time t in the perturbation equations
by the true anomaly v (or by the argument of latitude u).

If I is one of the orbital elements satisfying the perturbation equation

İ = g(a, e, i, Ω, ω, T0) , (3.25)

the transformed equation reads as

dI

dv
=

dI

du
=

1
v̇

g(a, e, i, Ω, ω, σ0) =

√
(1 − e2)3

n (1 + e cos v)2
g(a, e, i, Ω, ω, σ0) .

(3.26)
The transformed equations are particularly well suited to describe short-
period perturbations as a function of the (osculating) true anomaly, or to
compute mean values of perturbations over one revolution period, i.e., to
compute secular perturbations.

The Semi-major Axis a. According to eqns. (I- 6.115) the Lagrangian
version of the perturbation equation for the semi-major axis a reads

ȧ = − 2 a2

GM

∂R

∂T0
= − 2

n2 a

∂R

∂T0
. (3.27)

Using eqn. (3.22) we obtain

∂R

∂T0
=

3
2

C̃20

p3
(1 + e cos v)2

∂v

∂T0

{
− e sin v

[
3 sin2 (v + ω) sin2 i − 1

]

+ sin 2 (v + ω) sin2 i (1 + e cos v)
}

.

(3.28)

Making use of the fact that in the two-body motion

∂u

∂T0
= − u̇ (3.29)

and that, according to eqn. (3.6), C̃20 = n2 a3 a2♁ C20 , the following equation
for the semi-major axis as a function of the true anomaly is obtained:
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da

du
= C20

3 a

(1 − e2)3
a2♁
a2

(1 + e cos v)2
{
− e sin v

[
3 sin2 (v + ω) sin2 i − 1

]

+ sin 2 (v + ω) sin2 i (1 + e cos v)
}

.

(3.30)

When considering the orbital elements on the right-hand side as constants,
i.e., when applying first-order perturbation theory, eqn. (3.30) may be solved
in closed form: The brackets (. . .)2 {. . .} are multiplied and the resulting
products of sin- and cos-terms are replaced by sin- or cos-functions of linear
combinations of the arguments v and ω, using the appropriate relations of
trigonometry. This is a slightly tedious, but straight forward task, which may
be left as an exercise to the reader. The integration may then be performed
term by term.

It is easily verified that in this first-order theory there are no secular terms
due to the Earth’s oblateness in the semi-major axis a by evaluating the
integral of the above perturbation equation over a full revolution period

2π∫

0

da

du′ du′ = 0 . (3.31)

It is interesting to note that in first-order theory there are only terms pro-
portional to ek, k = 0, 1, 2, 3. Considering only the zero-order term we obtain
the equation

da

du
= 3 C20 a

a2♁
a2

sin2 i sin 2u + O(e) , (3.32)

which may be easily integrated and results in

a(u) = − 3
2

a
a2♁
a2

C20 sin2 i cos 2u + Ca + O(e) . (3.33)

The integration constant Ca is defined by the initial condition a(u0) = a0 .
The semi-major axis reaches its minimum values for u = 0◦ and u = 180◦,
its maximum values for u = 90◦ and u = 270◦.

The main term of the oblateness perturbation thus consists of a short-period
perturbation with period P/2 , P being the satellite’s revolution period. The
amplitude is given by

Aa =
3
2

a
a2♁
a2

C20 sin2 i ≈ 2.717 km . (3.34)

The numerical value refers to our example with i = 35◦ and a = 8000 km .
This explains the order of magnitude of the perturbations in Figures 3.1 and
3.2.
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In order to explain in addition the modulation of the above amplitude, we
would have to solve the differential equation (3.30) for the higher orders in
e , as well. Observe, that the amplitude Aa of the zero-order term in the
eccentricity e is zero for orbits in the equatorial plane i = 0 .

The Node Ω and the Inclination i. According to eqn. (I- 6.115) the
Lagrangian version of the perturbation equations for the inclination and the
right ascension of the ascending node are:

di

dt
=

1
n a2
√

(1 − e2) sin i

(
cos i

∂R

∂ω
− ∂R

∂Ω

)

Ω̇ =
1

n a2
√

(1 − e2) sin i

∂R

∂i
.

(3.35)

As the perturbation function due to the Earth’s oblateness does not depend
on the right ascension of the ascending node Ω, the above perturbation equa-
tions may be written as

di

dt
=

cos i

n a2
√

(1 − e2) sin i

∂R

∂ω

Ω̇ =
1

n a2
√

(1 − e2) sin i

∂R

∂i
.

(3.36)

The partial derivatives required for the equations in i and Ω are obtained
from eqn. (3.22):

∂R

∂ω
=

3
2

C̃20

r3
sin 2u sin2 i

∂R

∂i
=

3
2

C̃20

r3
sin2(ω + v) sin 2i

=
3
4

C̃20

r3

(
1 − cos 2u

)
sin 2i .

(3.37)

With eqns. (3.37) the perturbation equations for i and Ω read as

di

dt
=

3
4

C20
n a a2♁

r3
√

1 − e2
sin 2i sin 2u

Ω̇ =
3
2

C20
n a a2♁

r3
√

1 − e2
(1 − cos 2u) cos i .

(3.38)

Using eqn. (3.26) we can easily transform the above differential equations in
time t into equations in the argument of latitude u. The result is:
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di

du
=

3
4

C20

a2♁
a2 (1 − e2)2

sin 2i sin 2u (1 + e cos v)

dΩ

du
=

3
2

C20
a2♁

a2 (1 − e2)2
(1 − cos 2u) cos i (1 + e cos v) .

(3.39)

Using the addition theorems of elementary trigonometry, the right-hand side
may be written as a sum of sin- and cos-functions of linear combinations of
the angles u and ω . In the spirit of perturbation theory of first order, the
equations may be easily solved by integrating term-by-term. It is remarkable
that this solution contains only terms of order e0 and e1. The solution up to
terms of order e0 is:

i(u) = − 3
8

a2♁
a2 (1 − e2)2

C20 sin 2i cos 2u + Ci + O(e)

Ω(u) =
3
2

a2♁
a2 (1 − e2)2

C20 cos i

(
(u − u0) − 1

2
sin 2u

)
+ CΩ + O(e) .

(3.40)

In this approximation the perturbations in inclination i are short-periodic
with period P/2 . If we include the terms of order e as well, we still ob-
tain only short-period terms. Figure 3.1 shows that the actual solution and
the approximation given by first-order theory are in very close agreement.
Considering only the main term we may state that the mean values of the
inclination i are assumed in the nodes and at maximum and minimum ele-
vations. As C20 has a negative value, the maximum values are assumed at
u = 45◦, 225◦, the minimum values at u = 315◦, 225◦. In degrees the principal
amplitude is given by

Ai =
180
π

3
8

a2♁
a2 (1 − e2)2

C20 sin 2i ≈ 0.0156◦ . (3.41)

The numerical value refers to the example specified in Table 3.1. This order
of magnitude is confirmed by Figures 3.1 and 3.2.

The equation in Ω contains a secular term. It is easy to verify, that the terms
∼ e do not contribute to the secular drift. As C20 ≈ −1.082 ·10−3, the second
of equations (3.40) predicts a linear regression of the node which is a function
of the argument of latitude. The coefficient is a function of the semi-major
axis a , the eccentricity e, and the inclination i .

By evaluating the above formula for u = u0 and u = u0 + 2π , it is easy to
compute the mean rate of change of Ω as a function of time as

¯̇Ω =
2 π

U

3
2

a2♁
a2 (1 − e2)2

C20 cos i =
3
2

√
GM a2♁

a
7
2 (1 − e2)2

C20 cos i . (3.42)

Usually, this drift is expressed in units of degrees per day:
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¯̇Ω [ ◦/day ] =
3 · 180 · 86400

2 π

√
GM

a3♁
(a♁

a

)7
2
C20 cos i = − 10.0◦ cos i

(
a
a♁
)7

2
(1 − e2)2

.

(3.43)
Formula (3.43) is very convenient to use. It tells, e.g., that the regression
of the node in the equator of LEO is approximately ¯̇Ω [ ◦/day ] = 10◦ cos i

and that this regression decreases with (a/a♁)−3.5. This implies, e.g., that
for GPS satellites with a ≈ 26500 km the regression of the node is reduced
to 0.068◦ per day. The corresponding precession period of the orbital plane
approximately is 14.5 years.

In the example of Table 3.1 with a = 8000 km, i = 35◦ and e = 0.07 we
expect a rotation of

¯̇Ω = − 3.7 [ ◦/day ] , (3.44)

which corresponds exactly to the regression of the node in Figure 3.2.

The Argument of Perigee ω. According to Lagrange’s perturbation equa-
tions (I- 6.115) the argument of perigee obeys the equation

ω̇ =
√

1 − e2

e n a2

∂R

∂e
− cos i

n a2
√

1 − e2 sin i

∂R

∂i
=

√
1 − e2

e n a2

∂R

∂e
− cos i Ω̇ . (3.45)

The second term is the projection of the regression of the node into the orbital
plane (see also Figure 3.5). Replacing the time t as independent argument by
the argument of latitude u with eqn. (3.24) we obtain the differential equation

dω

du
=

1
u̇

√
1 − e2

e n a2

∂R

∂e
− cos i

dΩ

du
. (3.46)

The partial derivative of R w.r.t. e follows from eqn. (3.22). One easily verifies
that the result, when used in the above differential equation, leads to an
expression which may be integrated in closed form.

It is also easy to verify that the only non-zero secular term is due to the
derivative of the term (1 − e2)−3 in the equation (3.22):

∂R

∂e
= 6 e

C̃20 (1 + e cos v)3

a3 (1 − e2)4

(
3
2

sin2(v + ω) sin2 i − 1
2

)
+ . . . . (3.47)

If we are only interested in the secular term, we may further simplify the
above equation by replacing sin2 u by 1

2 (1− cos2u) and by retaining only the
terms independent of v (and u):

∂R

∂e
= 3 e

C̃20

a3 (1 − e2)4

(
3
2

sin2 i − 1
)

+ . . . . (3.48)

Introducing this result into the equation (3.46) for the argument of perigee ω
(as a function of u), retaining only the constant term, and making use of the
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second of eqns (3.39) eventually gives the secular motion of the argument of
perigee:

dω

du
=

3
4

C20

a2♁
a2 (1 − e2)2

(
1 − 5 cos2 i

)
+ . . . . (3.49)

Note, that the terms + . . . not included in the above equation are of short-
periodic nature and do therefore not contribute to the secular drift.

The above expression may be used to compute the mean motion of the argu-
ment of perigee by evaluating it for u = u0 and u = u0 + 2 π and by dividing
it by the revolution period:

¯̇ω =
2 π

U

3
4

C20
a2♁

a2 (1 − e2)2
(
1 − 5 cos2 i

)
=

3
4

C20

√
GM

a3♁
1 − 5 cos2 i
(

a
a♁
)7

2
(1 − e2)2

.

(3.50)
If one furthermore multiplies the result with the length of the day, the motion
of the perigee per day is obtained as:

¯̇ω [ ◦/day ] =
3 · 180 · 86400

4 π
C20

√
GM

a3♁
1 − 5 cos2 i
(

a
a♁
)7

2
(1 − e2)2

= +
5.0◦ · (5 cos2 i − 1

)
(

a
a♁
)7

2
(1 − e2)2

.

(3.51)

For the example of Table 3.1 with a = 8000 km , i = 35◦, and e = 0.07 a
positive rotation of the perigee w.r.t. the node of

¯̇ω = + 5.4 ◦/day (3.52)

is expected, which corresponds exactly to the drift in Figure 3.2.

The perigee obviously is fixed w.r.t. the node for

cos i = ±
√

5
5

= ± 0.44721 , (3.53)

which corresponds to

i = 63.435◦ or i = 116.565◦ . (3.54)

As already mentioned, the above inclinations are called critical inclinations.

For inclinations between 0◦ < i < 63.435◦ and 116.565◦ < i < 180◦ the
perigee rotates counterclockwise (same sense of rotation as the orbital mo-
tion), for inclinations 63.435◦ < i < 116.565◦ the perigee rotates clockwise
w.r.t. the node.
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Equation for the Time T0 of Perigee Passage and the Mean Anomaly
σ(t). According to eqns. (I- 6.115) the differential equation for the time T0

of perigee passage reads as:

Ṫ0 =
2

n2 a

∂R

∂a
+

1 − e2

n2 a2 e

∂R

∂e
. (3.55)

The problem with the first term becomes obvious already when using the
approximation (3.23) for the perturbing function:

∂R

∂a
= − 3 C̃20

a4

(
3
2

sin2(σ + ω) sin2 i − 1
2

)

− C̃20 9 n (t − T0)
4 a4

sin 2(σ + ω) sin2 i ,

(3.56)

where only the terms of order e0 were retained. The same structure of the
equation for the time T0 of perigee passage results, if the correct perturbing
potential (3.22) is used instead of the approximate (3.23). For analytical
solutions the second term, which is proportional to the time argument t−T0 ,
is a nuisance. It is responsible for the short periodic terms with linearly
growing amplitude in Figure 3.2 (bottom, right) for σ0 (using the defining
relation σ0

def= n(t0 − T0) one can show that the perturbation equation for σ0

essentially is of the same structure as that for T0).

In section I- 6.7 the perturbation equation (I- 6.137) was derived for the mean
anomaly σ(t) at time t, which does no longer contain terms proportional to
the time t:

σ̇ = n − 2
n a

Ra − 1 − e2

n a2 e

∂R

∂e
, (3.57)

where Ra stands for the partial derivative of the perturbation function
R(a, e, i, Ω, ω, v(a, e, T0)), where the dependence of the true anomaly v of
the semi-major axis a is ignored.

It is interesting to further develop the differential equation for σ for the
perturbation function (3.22) associated with the oblateness. As a matter of
fact it may be reduced to:

σ̇ = n − 1 − e2

n a2 e

{
∂R

∂v

∂v

∂e
− 3 cos v

1 + e cos v
R

}
. (3.58)

The first term on the right-hand side of eqn. (3.57) is the osculating mean
motion as computed from the formulas of the two-body problem. The second
term may be written as a linear combination of trigonometric functions of v
and u and their multiples. The partial derivative of the true anomaly w.r.t.
the eccentricity e was obtained in Chapter I- 5 as

∂v

∂e
=

sin v

1 − e2
(2 + e cos v) . (3.59)
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It is important to note that the term in the brackets {. . .} on the right-hand
side of eqn. (3.58) contains a constant term ∼ e (a term depending neither
on v nor on u). Equation (3.57) may be brought into the form

σ̇ = n

{
1 − 3

4
C20

a2♁
a2

3 cos2 i − 1√
(1 − e2)3

}
+ . . . . (3.60)

The terms + . . . are all of a short-period nature. Equation (3.60) may be
viewed as the generalization of Kepler’s third law describing the motion of
a satellite about an oblate planet. One also recognizes that eqn. (3.13) is a
special case of eqn. (3.60).

The constant perturbation term vanishes for

cos i = ±
√

3
3

, (3.61)

i.e., for inclinations

i = 54.74◦ and i = 125.26◦ . (3.62)

This inclination might be designated as another “critical” inclination. This
name was, however, never used – probably because the consequences are less
obvious than in the case of the rotation of the perigee.

The angle of i = 54.74◦ is the angle between the diagonal in the cube and the
edge intersecting the diagonal in the same vertex. Observe that i = 54.74◦

is the nominal inclination of the GPS satellites w.r.t. the Earth’s equatorial
plane. In the average over the revolution period the mean motion of a GPS
satellite in the potential of an oblate Earth therefore is the same as in the
potential of a spherical Earth.

Different Kinds of Revolution Periods. There is one unique revolution
period in the two-body motion. In the case of satellite motion, the revolution
period may, e.g., be defined as the time-interval between subsequent passes
of a satellite through perigee, through apogee, or through an arbitrary, but
fixed direction in the orbital plane. This is why the distinction has to be
made between

• the anomalistic revolution period as the time interval between subsequent
passes of a satellite through perigee,

• the draconitic revolution period as the time interval between subsequent
passes of a satellite through the ascending node,

• and the sidereal revolution period as the time interval between subsequent
passes through a “fixed” inertial direction in the orbital plane.
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Equations (3.57) and (3.60) refer to the anomalistic motion. By forming the
average of the values defined by eqn. (3.60), we may compare the actual
anomalistic revolution period with the mean revolution period as it would be
expected according to Kepler’s third law:

¯̇σ = n̄ − 3
4

C20

a2♁
a2

n̄√
(1 − e2)3

(
3 cos2 i − 1

) def= n̄ + δn . (3.63)

Let us define the mean Keplerian revolution period as

Ū
def=

2 π

n̄
, (3.64)

where n̄ has to be formed as the mean value over an anomalistic period of the
terms
√

GM/a3 , a being the osculating semi-major axis. At this point it is
appropriate to provide the (approximate) difference between the mean semi-
major axis ā and the osculating semi-major axis a as assigned to a latitude
u (the formula follows directly from eqn. (3.33)):

a − ā ≈ − 3
2

a
a2♁
a2

C20 sin2 i cos 2u , (3.65)

allowing it to compute the mean semi-major axis from the osculating semi-
major axis. The formula holds for orbits with small eccentricities in the grav-
itational field of an oblate Earth.

The anomalistic revolution period is then computed as

Uω
def=

2 π
¯̇σ

=
2 π

n̄
(
1 + δn

n̄

) = Ū

{
1 +

3
4

C20
a2♁
a2

3 cos2 i − 1
a2
√

(1 − e2)3

}
, (3.66)

where terms of the order
(

δn
n̄

)2
were neglected.

The difference Uω − UΩ of the anomalistic and the draconitic period is ob-
tained by multiplying the rate (3.50) of perigee precession by the revolution
period and dividing it through the mean motion of the satellite:

Uω − UΩ =
3
4

C20

a2♁
a2 (1 − e2)2

(
1 − 5 cos2 i

)
Ū . (3.67)

By similar arguments we may also compute the difference between the sidereal
and the draconitic period. Figure 3.5 shows that per revolution the angle
∆γ = − ¯̇Ω U cos i has to be covered by the satellite in excess to one draconitic
revolution in order to arrive at “the same” inertial position within the orbital
plane: Based on these considerations the difference between the sidereal and
the draconitic period may be computed as

Us − UΩ =
∆γ

n
= − 3

2
a2♁

a2 (1 − e2)2
C20 cos2 i Ū . (3.68)
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Fig. 3.5. Draconitic and sidereal revolution period

For inclinations i < 90◦ the draconitic revolution period is always smaller
than the sidereal revolution period.

Note, that the sidereal revolution period might also be defined in a different
way as the time period between subsequent passes of the satellite through
the same right ascension (such a definition might make sense for special
applications). The resulting sidereal period would depend on the actual choice
of the right ascension. With the help of Figure 3.5 one easily verifies that the
sidereal revolution period, when using the right ascension of the ascending
node of the first pass through the node (marked with “1” in the figure) as
reference, would be computed as

Us(Ω) − UΩ =
∆γ

n cos2 i
= − 3

2
a2♁

a2 (1 − e2)2
C20 Ū , (3.69)

whereas the above formula would have to be multiplied by cos i, if the right
ascension of the point of maximum elevation (corresponding to u = 90◦)
would be selected as reference.

3.1.3 Exploitation of the Oblateness Perturbation Characteristics

The Critical Inclination. It was known well before the beginning of the
space era that certain types of orbits would be particularly interesting. Geo-
stationary satellites are, e.g., well suited for communication or for surveying
geographical areas in special longitude slots. Geostationary orbits have disad-
vantages, as well: the reception of signals is not optimum for high latitudes.
It is therefore not amazing that Russia developed and deployed satellites of
the Molnija-type. These satellites are in orbits with eccentricities e ≈ 0.72 ,
with revolution periods of half a sidereal day, corresponding to semi-major
axes of approximately a ≈ 26′550 km, and with inclinations of i ≈ 63.4◦.
The arguments of perigee are initially set to ω ≈ 270◦, which means that the
apogee (at a height above the Earth’s surface of about hapo ≈ 39360 km)
resides over the (maximum) Northern latitude of i ≈ 63.4◦ achievable with
this type of orbit. Thanks to the fact that a satellite with the inclination
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i = 63.4◦ does not suffer from perturbations in the argument of perigee ω
due to the Earth’s oblateness, it does not take much energy (fuel) to keep
the perigee in place.

Thanks to Kepler’s law of areas such a satellite spends about 8−10 hours per
revolution over the Northern hemisphere, corresponding to about 66-83% of
the revolution period.

The same principle might be used for communication purpose over the South-
ern hemisphere by using the same orbit characteristics, except that the ar-
gument of perigee would have to be set to ω = 90◦.

According to Flury [41] the Russian Tundra satellites are communication
satellites exploiting the critical inclination, as well. The revolution period is
one sidereal day in this case and the eccentricity is e ≈ 0.27. With only three
satellites of this class it is possible to cover the vast Russian high-latitude
territory.

Sun-Synchronous Satellites. For Earth observing satellites it may be use-
ful or even a requirement to have always the same (or at least similar) illu-
mination conditions of the Earth’s surface below the satellite. In order to
achieve maximum contrast it may be advisable to follow the terminator, the
light-shadow boundary on the Earth’s surface. For Sun-observing satellites
this particular orbit may be suitable as well. Orbits of this type result, if
the angle between the orbital pole direction and the vector pointing from
the Earth to the Sun does not change in time. This condition may be met
approximately if the angle between the geocentric unit vector to the Sun and
the geocentric direction to the ascending node of the satellite orbit does not
change. Such a condition can only be met in the average over one year be-
cause the Sun revolves around the Earth (formulation for satellite geodesists)
with variable angular velocity (Kepler’s second law) in the ecliptic (and not
in the equator).

In practice mean Sun-synchronous orbits may be achieved if the ascending
node is rotating in the prograde sense with an angular velocity of one revolu-
tion per year, corresponding to Ω̇ ≈ +360◦/365.2422 ≈ 0.9856◦/day in order
to compensate for the annual geocentric motion of the Sun.

In the previous section we gave the first-order solution for the angular velocity
of the node in formula (3.43). From this formula we see that a prograde
rotation of the node is only achievable for inclinations i > 90◦. The same
formula shows furthermore that the rotation rate is in addition a function
of the semi-major axis and the eccentricity. Table 3.2 gives an impression of
the inclinations to be selected as a function of the height h above a spherical
Earth of a♁ = 6378 km for circular orbits (e def= 0). Table 3.2 shows that Sun-
synchronous LEOs are in retrograde motion and have inclinations close to
90◦. This undoubtedly is an advantage for Earth-observing satellites because
they essentially fly over the entire globe.
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Table 3.2. Sun-synchronous orbits in a height h above a spherical Earth with
a♁ =6378 km

Height h Inclination i Revolution Period U

[ km ] [ ◦ ] [min ]

400 97.03 92.6
600 97.79 96.7
800 98.61 100.9
1000 99.48 105.1
1200 100.42 109.4

More information related to the topic of Sun-synchronous orbits, in particular
for orbits with exact ground-track repeatability, may be found in [41].

3.1.4 Higher-Order Oblateness Perturbations

First-order perturbation theory due to the term C20 of the Earth’s gravi-
tational field explains short-period perturbations with periods equal to the
revolution period of the satellite and fractions thereof, and secular perturba-
tions of the right ascension of the ascending node Ω and of the argument of
perigee ω . The secular motions of the node and of the perigee induce long
periods, which are expected to play an important role in the actual motion
of the satellite.

For our initial example with the elements defined by Table 3.1 the precession
period of the node was found to be about 97 days (see Figure 3.2 and formula
(3.43)) and the rotation period of the perigee w.r.t. the node about 67 days
(see Figure 3.2 and formula (3.51)).

Figure 3.6 shows the development of the mean orbital elements a, e, i, Ω, and
ω over the time interval of two years with the initial epoch January 1, 2001.
The force field uniquely consisted of the main term and the term C20 of the
Earth’s gravitational field. The average period was taken to be 12 anomalistic
periods (about one day). Two years correspond to about 8700 revolutions of
the test satellite of Table 3.1. The transformation between the inertial and
the Earth-fixed system was handled as explained previously, i.e., the polar
wobble and the difference UT1–UTC were neglected.

Figure 3.6 shows that long-period perturbations exist in the semi-major axis
and in the eccentricity. The amplitudes are very small, however: The ob-
served amplitude in the semi-major axis is about ∆a ≈ 5 m (the differ-
ence a − 7995 km is given in units of meters), in the eccentricity it is about
∆e ≈ 6 · 10−6. The amplitudes are about a factor of 1000 smaller than the
amplitudes of the first-order perturbations in these elements. The period is
approximately 33.5 days for both, the perturbations in the semi-major axis
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a and the eccentricity e. This corresponds to half the rotation period of the
perigee.

The inclination i and the right ascension Ω of the ascending node show an
interesting characteristic: We observe periodic perturbations with a linearly
growing amplitude. The period is about 97 days, i.e., the period of the rota-
tion of the node. In order to see the interesting part in the perturbation of the
node, the secular regression of about 3.7◦ per day was removed. The linear
growth of the amplitude has nothing whatsoever to do with the oblateness
perturbations: it is caused by the fact that the orbital elements are referred to
the inertial system corresponding to mean equator and equinox of the initial
epoch. The linear growth is caused by the precession of the Earth’s pole of
figure around the pole of the ecliptic. The linear growth would “disappear”,
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146 3. Artificial Earth Satellites

if either the precession would be neglected, or if the precession of the or-
bital plane would be referred to a moving, non-inertial equatorial coordinate
system.

The linear growth of the perigee of about 5.4◦ per day was removed, as well,
in Figure 3.6. Obviously, long period perturbations also exist in the perigee.
The period and the explanation are the same as in the case of the other two
Eulerian angles.

Figure 3.6 proves that long-period perturbations due to the Earth’s oblate-
ness exist, but that the amplitudes are very small. Therefore, our initial
remark, that “long-period perturbations due to the Earth’s oblateness are
very important”, seems hardly justified. We will see in the next section, how-
ever, that these periods are most significant for the perturbations due to the
higher-order terms of the Earth’s potential.

3.2 Higher-Order Terms of the Earth Potential

Figure 3.7 compares the mean oblateness perturbations (already shown in
Figure 3.6) with the mean perturbations resulting from an integration with
identical initial conditions (those of Table 3.1), but using the Earth’s grav-
itational potential up to terms of degree and order n = m = 4 (see Table
I- 3.1).

Figure 3.7 shows that terms other than C20 cause substantial perturbations.
The offset of about 15 m in the perturbations of the semi-major axis proves
that the mean motion is significantly influenced by the higher-order terms.

A common trend was removed from the development of the node and also of
the perigee. We see that higher-order terms (actually the zonal terms Cl0)
give rise to secular perturbations, even in the same sense of rotation. The rates
are, however, much smaller: Instead of a few degrees per day we observe a
few degrees per year.

The perturbations of the mean eccentricity and of the mean argument of
perigee are quite interesting: The amplitudes of the long-period perturbations
caused by the higher-order terms are much bigger than the second-order
effects due to the term C20 . The period of 67 days is that of the rotation of the
perigee due the Earth’s oblateness. Obviously the period of the higher-order
terms is taken over from the period of the rotation of the perigee (mainly)
due to the term C20 .

Figure 3.8 gives more insight into the role of the term C20 for the higher-
order terms Clm of the Earth’s potential: It compares the perturbations in
eccentricity e and inclination i due to the full Earth potential up to degree
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Fig. 3.7. Mean elements over two years using only the oblateness term C20 (solid
lines) and using all terms up to degree and order 4 (dotted line)

and order four (these are the perturbations already shown in Figure 3.7,
dotted lines) with the perturbations which would result, if the oblateness
term C20 = 0 would be zero (and all other terms identical).

Figure 3.8 demonstrates that the oblateness attenuates the higher-order per-
turbations and reduces their periods. Due to the changing orbital geometry
(perigee and orbital plane) the higher-order perturbations are of much shorter
period (the period of the rotation of the argument of perigee) and the am-
plitudes are much smaller than they would be without the term C20 . The
perturbations with C20 = 0 almost look like secular ones in Figure 3.8. Actu-
ally, the period would be the rotation period of the perigee due to the higher
than second order zonal terms. Figure 3.8 indicates that the period would be
of the order of decades.
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Cum grano salis we may state that the Earth’s oblateness has a stabilizing
influence on the orbits of artificial satellites (at least where higher-order per-
turbations are concerned). Let us mention, that the example with C20 = 0 is
unreal.

Due to the limited space available, only few examples could be presented here.
The reader is encouraged to use program SATORB (see Chapter 7 of Part III)
for more detailed studies. It would be instructive to study the differences of
the perturbations due to the zonal, tesseral, and sectorial terms. We confine
ourselves to the study of particular tesseral and zonal terms, namely those
terms giving rise to resonance.

3.3 Resonance with Earth Rotation

The revolution period of the satellite is said to be commensurable with the
sidereal rotation period of the Earth, if a small integer number k2 of sidereal
days is equal to a small number k1 of revolution periods of the satellite:

P♁
Ps

=
k1

k2
, k1 and k2 integers . (3.70)

In analogy to commensurabilities in the planetary system, the type of com-
mensurability (3.70) may give rise to resonant perturbations. If condition
(3.70) holds, the satellite experiences (almost) the same perturbations due to
the Earth’s potential after k1 revolutions (which correspond to k2 rotations
of the Earth w.r.t. inertial space).

Equation (3.70) also tells that after one revolution the satellite experiences
the same perturbations due to the terms Clk1 of order k1 (or multiples
thereof) because after this time period the Earth has rotated by an angle
of k2

k1
· 360◦ and the terms of order k1 have a period of 1

k1
days.
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Commensurability of the satellite’s revolution period with the sidereal day
is a necessary, but not yet a sufficient condition for resonant perturbations
to occur. Resonance is only encountered, if at least one of the orbital ele-
ments shows a net non-zero accumulated perturbation due to the term con-
sidered over one revolution period. Only tesseral and sectorial terms, i.e.,
the longitude-dependent terms of the Earth’s potential may give rise to res-
onance.

Subsequently, resonances associated with geostationary satellites and with
GPS satellites will be studied in some detail. For both cases k2 = 1 , which
allows us to write condition (3.70) as

Psid

Psat
= k , (3.71)

where k = 1 for geostationary and k = 2 for GPS satellites.

3.3.1 Geostationary Satellites

Case Studies. Figure 3.9 shows the mean semi-major axes (over one anoma-
listic revolution) of two hypothetical geostationary satellites over a time in-
terval of ten years. Program SATORB (see Chapter 7 of Part III) was used
to perform the integration. The initial epoch was selected as January 1, 2001.
Only perturbations of the Earth’s gravitational field up to terms of degree
n = 2 and order m = 2 were taken into account. The satellites’ geocentric
longitudes initially were λ1 = 0◦ in one case (solid line) and λ2 = 45◦ (dotted
line) in the other case. The attempt was made to produce a geostationary
satellite in the Greenwich meridian and in a meridian over the Persian gulf.

The perturbations in a are of a very long period: Almost four years in the
first case, still about two and a half years in the second case. The amplitudes
∆a1 ≈ 32 km and ∆a2 ≈ 17.5 km are orders of magnitude bigger than other
short- or long-period perturbations in this element.

Figure 3.10 shows the development of the geocentric longitudes of the same
two test satellites over the years 2001 − 2010. The Figure proves that in
general it is not possible to deploy a truly geostationary satellite – neither
over the Greenwich meridian nor in a longitude of λ2 = 45◦. In the first case
we observe an oscillation in longitude with an amplitude of about ∆λ1 = 75◦

centered at a longitude of about λ22 = 75◦ with a period of about 1450 days,
in the second case an oscillation with an amplitude of about ∆λ2 = 30◦ with
a period of about 870 days, centered at the same longitude as in the first case,
tentatively called λ22 = 75◦. Below this “natural” or “zero” longitude will be
identified with the reference longitude of the term J22 of the Earth’s potential
(representation (I- 3.163)). The periods of the oscillations in longitude λ are
identical with the periods observed in the semi-major axis in Figure 3.9.
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It is easily possible to verify that only in the longitudes λ22 ≈ 75◦ (meridian
over the Indian ocean) and λ22 ≈ 255◦ (meridian over Galapagos) stable
geostationary satellites may be deployed. Deployment of a 24-hours satellite
at an arbitrary longitude λ will result in oscillations in longitude with an
amplitude of ∆λ = |λ− λ22| or ∆λ = |λ− λ22 − 180◦| – whatever is smaller.

Geostationary Satellites Viewed by Perturbation Theory. In order
to explain the perturbations experienced by a geostationary satellite, we first
have to represent the relevant part of the perturbation function as a function
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of the satellite’s orbital elements. It is easily verified that the perturbations
in Figures 3.9 and 3.10 are due to the terms C22 and S22 of the Earth’s
potential. Using the representation (I- 3.163) the perturbation function may
be written as:

R(r, φ, λ) = − 3 GM a2♁
r3

J22 cos2 φ cos 2(λ − λ22) , (3.72)

where the associated Legendre function P 2
2 (sin φ) was set to P 2

2 (sin φ) =
3 cos2 φ and where, according to Table I- 3.1 and eqns. (I- 3.162), the numer-
ical values for J22 and λ22 are:

J22 = 0.181553 · 10−5

λ22 = 75.0709◦ .
(3.73)

Subsequently, we will confine ourselves to the discussion of circular orbits in
the equatorial plane. In this approximation the perturbation function (3.72)
may be represented as a function of the orbital elements:

R(a, ω̃, T0) = − 3 GM a2♁ J22

a3
cos 2 (ω̃ + σ − Θ − λ22) , (3.74)

where Θ(t) ≈ Θ̇(t−t0)+Θ0 is Greenwich sidereal time, ω̃ the right ascension
of the perigee, and σ = n(t − t0) + σ0 the mean anomaly. The satellites
longitude at t0 , λ0

def= λ(t0) , thus may be written as λ0
def= ω̃ + σ0 − Θ0 .

The simplified transformation equation (3.3) allows it therefore to write the
longitude λ(t) as

λ(t) = ω̃ + σ − Θ ≈ ω̃ + σ0 − Θ0 + (n− Θ̇)(t− t0) = λ0 + (n− Θ̇)(t− t0) .
(3.75)

According to eqn. (I- 6.115) the differential equation for the semi-major axis
reads as

ȧ = − 2
n2 a

∂R

∂T0
=

12 GM a2♁ J22

n a4
sin 2 (ω̃ + σ − Θ − λ22)

≈ 12 GM a2♁ J22

n a4
sin 2 (λ0 − λ22) ,

(3.76)

where the latter transformation made use of the fact that in our application
n(t − t0) ≈ Θ̇(t − t0) . This equation holds exactly when applying first-order
perturbation theory. It shows that first-order perturbation theory breaks
down when resonance perturbations are considered. The first-order solution
of the above differential equation simply is a linear function of time:

a(t) = a0 + (t − t0)
12 GM a2♁ J22

n a4
sin 2 (λ0 − λ22) . (3.77)
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The solution is, by the way, not bad in the vicinity of the epoch t0 : It is the
approximation by the Taylor series truncated after the terms of the first order
in time t. Figure 3.9 shows that the solution is acceptable for time intervals
up to a few months. The solution is also correct for a geostationary satellite
deployed at λ = λ22 = 75.0709◦ (where the solution simply is a(t) = a0).

But solutions based on first-order perturbation theory will never be able to
reveal the period of a resonant motion. Even an approximate solution of
the above differential equation for the semi-major axis requires to take the
time-dependence of the mean motion in the sin-argument in the differential
equation (3.76) into account. It is not acceptable to use the approximation
in the second line of eqn. (3.76).

So, in some sense, we failed to explain the resonant motion of a geostation-
ary satellite using first-order perturbation theory. On the other hand, it is
intuitively clear that the motion in longitude λ of a geostationary satellite is
closely related to the motion of a pendulum with its rest-position at λ = λ22 .
Let us further pursue this aspect.

For that purpose we take the first time derivative of the above equation (3.75)
for the geocentric longitude of a geostationary satellite and obtain

λ̇ = ˙̃ω + σ̇ − Θ̇ ≈ n − Θ̇ . (3.78)

The latter equation holds because we only consider circular orbits in the
equatorial plane for which there are no out-of-plane perturbation components.
By taking the second time derivative of the longitude λ we eventually obtain

λ̈ = σ̈ = ṅ = − 3 n

2 a
ȧ , (3.79)

where the derivative of the angular velocity of Earth rotation and the second
derivatives of ω and Ω were assumed to be zero – an assumption which is
amply justified for our order-of-magnitude considerations.

Replacing ȧ in the above equation by eqn. (3.76) gives a simple differential
equation for the longitude of the satellite:

λ̈ = − 18 GM a2♁ J22

a5
sin 2 (λ − λ22) . (3.80)

Introducing the auxiliary variable

x
def= 2 (λ − λ22) (3.81)

into the above differential equation reduces this equation to the standard
equation for the mathematical pendulum:

ẍ = −
(

6 n a♁
√

J22

a

)2
sinx

def= − ν2
0 sin x . (3.82)
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Using the numerical values

n = 6.300 [ rad/day ]
a♁
a

= 0.15

J22 = 1.8155 · 10−6 ,

(3.83)

the angular velocity in eqn. (3.82) is

ν0 =
6 n a♁

√
J22

a
= 7.640 · 10−3 [ rad/day ] , (3.84)

and the corresponding period is

P =
2 π

ν0
= 823 [ days ] . (3.85)

For small amplitudes we may use the approximation sinx ≈ x . The differen-
tial equation then assumes the form

ẍ
def= − ν2

0 x , (3.86)

which is solved by a cos-function with angular frequency ν0 and period
P = 823 days. The correct solution of eqn. (3.82) involves elliptical integrals
(see, e.g., [1], pp. 589ff). For arbitrary amplitudes the period is approximated
by the following series:

P =
2 π

ν0
K(α) =

2 π

ν0

{
1 +
(

1
2

)
α +
(

1 · 3
2 · 4
)2

α2 +
(

1 · 3 · 5
2 · 4 · 6

)2
α3 + . . .

}
,

(3.87)
where

α = sin2 ∆λ . (3.88)

∆λ is the amplitude of the solution.

Long-Term Development of the Orbital Poles of Geostationary
Satellites. Figure 3.11 shows the projection on the equatorial plane of the
mean orbital pole of a geostationary satellite moving in the gravitational field
of the Earth (potential complete up to terms of degree and order n = m = 4),
the Moon, and the Sun over a time interval of 60 years. The projection of the
components of the unit vector normal to the orbital plane were multiplied by
180◦

π in order to visualize (approximately) the angle between the orbital pole
and the equatorial pole.

The orbital pole precesses counterclockwise around an axis which lies be-
tween the pole of the Earth and the pole of the ecliptic, about 7.4◦ away
from the pole of the Earth. The angle between the orbital pole and the axis
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Fig. 3.11. Projection of the orbital pole of a geostationary satellite moving in the
gravitational field of Earth (complete up to terms of degree and order n = m = 4),
Moon, and Sun over 60 years

mentioned is (always) about 7.4◦. The period is about 52 years. Very simi-
lar results are obtained for other examples of geostationary satellites (for all
initial conditions leading to geostationary orbits).

The result may be understood as follows: If the Earth were spherically sym-
metric, and if both, Sun and Moon would have their orbits in the ecliptic, the
orbital pole of a geostationary satellite would have to precess around the pole
of the ecliptic. The angle between the orbital pole and the pole of the ecliptic
would be the obliquity of the ecliptic ε ≈ 23.5◦. This is exactly the effect
observed initially: The orbital plane is moving rapidly away from the equato-
rial plane. If we would “switch off” the gravitational attractions by Sun and
Moon and “switch on” the term J22 after a while, the satellite’s orbital plane
would have to precess around the polar axis of the Earth, the angle being
given by the angle i between the two poles at the time of switching off the
gravitational attractions by Sun and Moon.

In reality we observe a superposition of three precessional motions, namely
(1) precession around the Earth’s rotation axis, mainly caused by the oblate-
ness, (2) precession around the pole of the ecliptic due to the gravitational
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attraction of the Sun, and (3) precession around the pole of the Moon’s or-
bital plane due to the gravitational attraction exerted by the Moon. It is
remarkable that in a fair approximation the resulting motion may be under-
stood as the motion around a single axis with an almost constant angular
velocity.

The plane normal to the pole of the resulting precessional motion is the gen-
eralized Laplace plane (named in honour of Pierre Simon de Laplace (1749–
1827)) of the particular three-body problem oblate Earth, Sun, Moon. It is
interesting to note that Laplace treated a similar problem in order to describe
the orbital motion of Japetus in the gravitational field of the oblate Saturn
and the Sun.

The general problem of the precession of orbital planes for artificial Earth
satellites is extensively treated in [3]. It is remarkable that this general treat-
ment appeared only few years after the launch of the first artificial satellites.

Figure 3.12 shows that the theoretical expectations are confirmed by obser-
vation: The figure contains the orbital poles of all known active and passive
(space debris) geostationary satellites in 1996 as collected by the ESA. That
the right-hand side of the precession cone is more densely populated than the
left-hand side is due to the fact that the first geostationary satellites were
only deployed towards mid 1960s and that they could leave the equatorial
plane only after the discontinuation of orbital manoeuvres. Unfortunately it
is not difficult to predict that after about the year 2050 the entire precession
cone associated with geostationary satellites will be fully populated. For more
information the reader is referred to [57].

5˚

10˚

15˚

20˚

180˚

270˚

0˚

330˚

300˚
240˚

210˚

ecl. pole

vernal equinox

Fig. 3.12. Orbital poles of (formerly) geostationary satellites and debris in 1996
(according to ESA)
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3.3.2 GPS Satellites

Heuristic Analysis. GPS satellites have revolution periods of half a sidereal
day. They are in deep (2:1)-resonance with Earth rotation. Potentially, every
term Jik of order k = 2, 4, 6, . . . , i ≤ k may give rise to resonance. GPS
satellites are in orbital planes with inclinations of i ≈ 55◦. The six orbital
planes of the constellation are separated by 60◦ on the equator. Currently (in
summer 2001) there are 28 active GPS satellites available.

Not all the terms mentioned actually give rise to strong resonance pertur-
bations. There is an easy way, due to Urs Hugentobler [57], to gain insight
into the manifestation of resonant perturbation terms for the orbits of GPS
satellites. We follow this approach to introduce the problem.

Figures 3.13 should be viewed as a Mercator-projection of the Earth (the
horizontal axis reflecting the longitude over an interval of 360◦, the vertical
axis the latitude between ±90◦).

22 32

42 44

Fig. 3.13. Perturbation of GPS orbits due to the terms J22 , J32 , J42 , and J44

Instead of continents and oceans the four maps show those regions of the
Earth, where the perturbation functions related to the terms J22 , J32 , J42 ,
and J44 ((top, left), (top, right), (bottom, left), (bottom, right)) are positive
(white areas) and negative (shaded areas). The maps are arranged in such a
way that their left boundaries coincide with boundaries of white and shaded
areas.

Each map shows in addition the sub-satellite-track of a GPS satellite over
one entire day (the “Earth-fixed revolution period” of GPS satellites is one
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sidereal day). Each track starts at the North-West corner of the map (and
returns to that point one day later). These special sub-satellite tracks promise
maximum perturbation effects.

Let us now assume that the orbits are circular (a condition closely met by
the orbits of GPS satellites). Under this assumption the maps corresponding
to the terms J22 and J42 in Figure 3.13 let us expect that the accumulated
effect in one of the orbital elements, in particular in the semi-major axis a, is
zero after one (sidereal) revolution: For each sub-satellite point in the North-
ern hemisphere we find a corresponding point in the Southern hemisphere,
where the potential term has the same absolute value, but opposite sign. This
must give rise to perturbing accelerations of the same size, but pointing into
opposite directions in a coordinate system following the trajectory (e.g., first
axis along-track, second cross-track in the orbital plane, third out-of-plane).
Two examples for corresponding points, related to the epochs (t0, t0+6h) and
(t0 + 12h, t0 + 18h) are contained in each of the maps. The maps correspond-
ing to the terms J32 and J44 let us expect, on the other hand, that there is
a accumulated effect over one entire revolution: Related to each point in the
Northern hemisphere we find a point in the Southern hemisphere generating
identical perturbing accelerations in the coordinate system accompanying the
satellite.

Figure 3.13 also tells that the accumulated perturbation effect significantly
depends on the initial longitude of the sub-satellite track. If we shift, e.g.,
the orbit in the figure corresponding to the term J32 by 90◦ to the East
(corresponding to half a sidereal revolution) w.r.t. the map, the accumulated
effect over one revolution is again non-zero, but of opposite sign. If the track
is shifted only by 45◦ (corresponding to a quarter of a sidereal revolution)
the accumulated effect is zero already after half a revolution (thus also over
one entire revolution). This longitude-dependence has an important conse-
quence: GPS satellites situated in one and the same orbital plane, but equally
spaced in the argument of latitude will produce significantly different reso-
nance effects. This behavior is in particular a nuisance where the semi-major
axis a and (as a consequence thereof) the argument of latitude is concerned.
Frequent orbit manoeuvres (about one per year and satellite) are required
to maintain a reasonable spacing between the satellites in the same orbital
planes.

The maps of Figure 3.13 let us expect that the term J32 is the dominating
resonance term, that J44 is the next-important term (attenuated by the factor
a♁
a ≈ 0.24 w.r.t. the term J32), and that the other two terms will “only” gen-

erate resonances proportional to the eccentricity e (or higher powers thereof).

Case Studies. In order to gain insight into the order of magnitude of the
perturbations due to resonance (and mainly due to the term J32) we inte-
grate the orbits of seven GPS-like satellites situated in one and the same
orbital plane. The geocentric longitude of the ascending node was set to



158 3. Artificial Earth Satellites

λ32 = 72.8117◦, the reference longitude of the term J32 . The orbital ele-
ments of these satellites are given in Table 3.3. The terms up to degree and

Table 3.3. Osculating elements at t0 = January 1, 2001, 0h for seven GPS-like
satellites

Element Value Element Value

P 0.5d (sid) e 0.001
i 55◦ Ω + Θ0 72.8117◦

ω k · 30◦ σ(t0) 0◦

k = 0, 1, . . . , 6

order n = m = 4 were taken into account for the integration. With the initial
elements in Table 3.3 we make sure that the seven initial orbits (essentially)
only differ in the initial argument of latitude, which varies from 0◦ to 180◦.
According to our heuristic treatment, the range from 180◦ to 360◦ would
generate perturbations with the same absolute value, but of different sign as
the corresponding orbits in the range between 0◦ to 180◦.

The mean perturbations of the semi-major axes a for the seven test objects
may be found in Figure 3.14, where the averaging period was two sidereal
revolutions. Figure 3.14 must be interpreted with some care, because not
only the resonance terms J22 , J32 , J42 , J44 contribute to the perturbations.
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Fig. 3.14. Mean semi-major axes of seven GPS satellites
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A more detailed investigation based on program SATORB (see Chapter 7 of
Part III) would, however, show, that in essence the perturbations in Figure
3.14 are due to the resonance terms, and mainly to the term J32 .

Figure 3.14 shows long-period perturbations with periods ranging between
about eight years to fifteen years and amplitudes ranging between 1–5 km .
Long periods are associated with big amplitudes, a typical characteristic of
resonance phenomena. Observe that all test objects share one and the same
orbital plane, and that the remarkably different perturbation characteristics
are only due to one initial element, namely the argument of perigee ω (which,
for orbits with small eccentricities, is equivalent to different initial arguments
of latitude).

The long-period changes in the semi-major axes cause long-period changes
in the mean motion of the satellites via Kepler’s third law. The order of
magnitude of the effect may be established as follows: A change of the element
a induces the following change in the mean motion:

∆n = − 3
2

n

a
∆a .

Using degrees (◦), days, and kilometers as units we obtain (the mean motion
per day of GPS satellites in these units is n ≈ 720◦/day):

∆n [ ◦/day ] ≈ − 1.5 · 720
26560

∆a ,

where ∆a has to be supplied in km. Multiplying this value by 365.25 gives
the offset in the mean motion in degrees per year:

∆n [ ◦/year ] ≈ −14.85 ∆a ,

where ∆a has to be provided in km.

The resulting effect in the mean anomaly is

∆l [ ◦ ] =
∫

∆n(t′) dt′ .

In order to assess the order of magnitude we approximate n(t) by a pure
sin-function:

∆n = ∆n0 sin
(

2 π

P
t

)
= −14.85 ∆a0 sin

(
2 π

P
t

)
,

where P is the period of the variations in a(t) and n(t) and ∆a0 is the
amplitude associated with ∆n0 .

This allows us to derive the following formula for the oscillations in the mean
anomaly:
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∆l [ ◦ ] =
∫

∆n(t′) dt′ =
∆n0 P

2 π
cos
(

2 π

P
t

)
def= ∆l0 cos

(
2π

P
t

)
.

For GPS satellites we obtain:

∆l0 [ ◦ ] =
14.85
2 π

P ∆a = 2.36 · P ∆a . (3.89)

Using the typical values P = 8 years and ∆a = 5 km we obtain ∆l0 [ ◦ ] ≈ 97◦.
It is thus clear that the maintenance of a reasonable distribution of GPS
satellites in one and the same orbital plane requires frequent manoeuvring of
satellites. This remark is confirmed by Figure 3.15 where the mean axis of one
particular GPS satellite (PRN14) is shown over the time interval 1992−1995.
The discontinuities of the order of about 2.7 km have nothing to do with
the natural development of the semi-major axis of this satellite orbit, but
with manoeuvres (an along-track thrust of a few seconds duration). The
discontinuity thus might be seen as a consequence of “Celestial Mechanics of
the second kind”.

26558.5
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26561.0

26561.5

26562.0

1992.5 1993.0 1993.5 1994.0 1994.5 1995.0 1995.5 1996.0

km

Year

a

Fig. 3.15. Mean semi-major axis of GPS satellite PRN14

Resonance perturbations do not only occur in the semi-major axis. Figure
3.16 shows the eccentricities of the seven integrations associated with the
initial elements in Table 3.3.

All eccentricities were originally very close to zero. Due to resonant pertur-
bations the satellites start developing considerably larger eccentricities than
the original mean eccentricity of about e ≈ 0.001 . It would be fascinating
to study the development of eccentricities over hundreds of years with the
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Fig. 3.16. Mean eccentricities of seven GPS satellites in one orbital plane

goal of deciding whether or not there is a chaotic component in the motion
of resonant satellites.

Figure 3.17 shows the development of the inclinations i. The common part
of the perturbations in the inclinations has nothing to do with resonance. It
is a consequence of the continued use of one and the same inertial reference
system (J2000.0) to describe the orbital elements. This common trend would
disappear if the elements were referred to the mean (or true) systems of date.
Apart from this common effect there are significant differences between the
seven inclinations which are due to resonance. When analyzing the mean el-
ements of the GPS constellation, one can very well see that the constellation
slightly degenerates as a function of time: The distribution of the eccentrici-
ties and the inclinations is much broader today than it was shortly after the
deployment.

Figure 3.18 documents that resonance is a function of the revolution period,
therefore of the semi-major axis: The perturbation in the semi-major axis
corresponding to ω = 0◦ of Table 3.3 is compared to the perturbation of a
hypothetical satellite with a revolution period of half a synodic day (0.5· 366.25

365.25
sidereal days).

The semi-major axis is only about 47 km bigger than the semi-major axis of
a GPS satellite (this value was subtracted in Figure 3.18). 47 km correspond
to a change of about 0.2% in the semi-major axis. This small change dramat-
ically reduces the length of the period and of the amplitude of the resonant
perturbation.
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In summary we may state that the deep 2:1 resonance of the GPS with
Earth rotation poses a few unnecessary problems for the maintenance of the
system. This aspect is much better taken care of in the case of the GLONASS
(Global Navigation Satellite System), the Russian counterpart of the GPS.
The revolution period is 11h15.8m, which is far away from the 2:1 resonance.

Resonances Viewed by Perturbation Theory. We will now apply first-
order perturbation theory to the deep (2:1)-resonance with Earth rotation.
We consider in particular the perturbations due to the terms J22 and J32 . We
will base our developments on circular orbits. In this approximation the per-
turbation functions associated with the two terms may be written as follows
(see eqn. (I- 3.163) and/or (3.72)):

R22 = − 3 GM a2♁ J22

a3
cos2 φ cos 2(λ − λ22)

R32 = − 15 GM a3♁ J32

a4
sinφ cos2 φ cos 2(λ − λ32) .

(3.90)

The simplified transformation between the inertial and the Earth-fixed sys-
tem (neglecting polar wobble, precession, and nutation) allows it to replace
the spherical coordinates λ and φ in the Earth-fixed system by the corre-
sponding quantities α and δ (right ascension and declination) in the inertial
system:

λ = α − Θ

φ = δ ,
(3.91)

where Θ is Greenwich sidereal time. The perturbation functions may now be
related to the inertial system:

R22 = J̃22 cos2 δ cos 2(α − λ̃22)
R32 = J̃32 sin δ cos2 δ cos 2(α − λ̃32) , (3.92)

where:

λ̃ik = λik + Θ

J̃22 = − 3 GM a2♁ J22

a3

J̃32 = − 15 GM a3♁ J32

a4
.

(3.93)

It is remarkable that in this approximation the third spherical coordinate, the
length r of the satellite’s position vector, does not show up in eqns. (3.92) (it
is considered as a constant r = a).
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The transformation between the orbital system and the inertial system gives
the relationship of the orbital elements and the spherical coordinates α and
δ (see eqns. (I- 4.66)):




cosα cos δ
sin α cos δ

sin δ


 = R3(−Ω) R1(−i) R3(−ω)




cos v
sin v

0




=




cosΩ cosu − cos i sin Ω sin u
sinΩ cosu + cos i cosΩ sin u

sin i sinu


 def=




A
B
C


 .

(3.94)

It is now a straight forward process to express the perturbation functions
(3.92) by the orbital elements. Let us define the auxiliary function

χik
def= cos2 δ cos 2(α − λ̃ik)

= cos2 δ
{
cos 2α cos 2λ̃ik + sin 2α sin 2λ̃ik

}

= cos2 δ
{(

cos2 α − sin2 α
)
cos 2λ̃ik + 2 sin α cosα sin 2λ̃ik

}

=
(
A2 − B2

)
cos 2λ̃ik + 2 AB sin 2λ̃ik ,

(3.95)

where the products cos δ cosα and cos δ sin α could be replaced by the first
two lines of the transformation equations (3.94), i.e., the expressions A and
B .

Using the basic theorems of trigonometry, the function may be written ex-
plicitly as a function of the orbital elements:

χik
def= cos2 δ cos 2(α − λ̃ik)

=
{

1
2 sin2 i cos 2Ω +

(
1 − 1

2 sin2 i
)

cos 2Ω cos 2u

− cos i sin 2Ω sin 2u
}

cos 2λ̃ik

+
{

1
2 sin2 i sin 2Ω +

(
1 − 1

2 sin2 i
)

sin 2Ω cos 2u

+ cos i cos 2Ω sin 2u
}

sin 2λ̃ik

= 1
2 sin2 i cos 2(λ̃ik − Ω) +

(
1 − 1

2 sin2 i
)

cos 2(λ̃ik − Ω) cos 2u

+ cos i sin 2(λ̃ik − Ω) sin 2u .

(3.96)

According to Lagrange’s perturbation equations (I- 6.115) the equations for
the semi-major axis due to the two terms of interest read as:
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ȧ22 = − 2
n2 a

∂R22

∂T0
= − 2 J̃22

n2 a

∂χ22

∂T0

ȧ32 = − 2
n2 a

∂R32

∂T0
= − 2 J̃32 sin i

n2 a

∂ (sin u χ32)
∂T0

.

(3.97)

In view of the structure of the auxiliary function χ22 provided by eqn. (3.96)
we see immediately that there are only short-period terms in the differential
equation for a22 . This result implies that there are no resonant terms of the
order e0 in the semi-major axis. This confirms our heuristic considerations.

In order to deal with the perturbations due to J32 we first have to compute
the function sinu χ32 . From eqn. (3.96) we obtain:

sin u χ32 = 1
2 sin2 i cos 2(λ̃32 − Ω) sinu

+
{
1 − 1

2 sin2 i
}

cos 2(λ̃32 − Ω) sin u cos 2u

+ cos i sin 2(λ̃32 − Ω) sin u sin 2u

= 1
4 sin2 i

{
sin
(
u − 2(λ̃32 − Ω)

)
+ . . .
}

− 1
4

{
1 − 1

2 sin2 i
}{

sin
(
u − 2(λ̃32 − Ω)

)
+ . . .
}

− 1
4 cos i
{

sin
(
u − 2(λ̃32 − Ω)

)
+ . . .
}

= 1
4

{
3
2 sin2 i − cos i − 1

}
sin
(
u − 2(λ̃32 − Ω)

)
+ . . . .

(3.98)

Because for satellites in deep (2:1)-resonance with Earth rotation

n ≈ 2 Θ̇ , (3.99)

the terms + . . . in eqn. (3.98) all are short-period terms in the sense of first-
order perturbation theory. The term retained in this equation is, on the other
hand, time-independent in first-order perturbation theory. In order to obtain
the differential equation for a32 we have to take the partial derivative of
sin u χ32 w.r.t. T0 . Using the development (3.98) we eventually obtain the
following differential equation for the semi-major axis due to the term J32 :

ȧ32 =
15 n a J32

2

(a♁
a

)3
sin i

{
3
2

sin2 i − cos i − 1
}

· cos
(
ω + σ − 2 Θ − 2(λ32 − Ω)

)
+ . . . ,

(3.100)

where we used the definition (3.93) to represent λ̃32 and replaced the argu-
ment of latitude by u = ω + σ (circular orbit). The neglected terms are of
a short-period nature. This equation is identical with the equation given by
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Hugentobler [57] where, to the best our knowledge, the resonance behavior
of GPS-like satellites was dealt with for the first time in depth.

The resonance argument for the term J32 is defined as

Ψ32
def= ω + σ − 2 Θ − 2 (λ32 − Ω) . (3.101)

By observing that its second derivative is approximately defined by (neglect-
ing the accelerations in ω, Ω, and Θ)

Ψ̈32 ≈ ṅ = − 3 n

2 a
ȧ , (3.102)

we obtain the following differential equation for this angular argument:

Ψ̈32 = − 45
4

n2
(a♁

a

)3
J32 sin i

{
3
2

sin2 i − cos i − 1
}

cosΨ32 + . . . . (3.103)

This is again (note the analogy with the case of a geostationary satellite) the
equation of a mathematical pendulum where the stable point is at Ψ32 = 90◦.
For oscillations with small amplitudes the angular frequency ν0 is defined by

ν2
0 =

45
4

n2
(a♁

a

)3
J32 sin i

∣∣∣∣
{

3
2

sin2 i − cos i − 1
}∣∣∣∣ , (3.104)

resulting in a period of

P0 =
2 π

ν0
. (3.105)

The general solution of eqn. (3.103) involves the evaluation of elliptic in-
tegrals. The resulting period is formally identical with eqn. (3.87) already
derived for geostationary satellites (of course with a different definition of
the parameter)

P =
2 π

ν0
K(α) =

2 π

ν0

{
1 +
(

1
2

)
α +
(

1 · 3
2 · 4
)2

α2 +
(

1 · 3 · 5
2 · 4 · 6

)2
α3 + . . .

}
,

(3.106)
where

α = sin2 ∆Ψ32,max . (3.107)

∆Ψ32,max is the amplitude of the solution.

Using the numerical values
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J32 = 3.7441 · 10−7

n = 12.601 [ rad/day ]
a♁
a

= 0.2401

i = 55◦ ,

(3.108)

we obtain

ν0 = 2.074 · 10−3 [ rad/day ]

P0 =
2 π

νo 365.25
= 8.30 [ years ] .

(3.109)

The comparison of these theoretical predictions with the results of the numer-
ical integrations in Figure 3.14 is in general quite good. The shortest periods
were predicted to be of the order of 8.3 years, which is confirmed by Figure
3.14. The heuristic treatment would let us expect the shortest periods and
the largest amplitudes associated with u = 0◦. This behavior is observed in
Figure 3.14 as well. We would expect, however, the period associated with
u = 90◦ (corresponding to ω = 90◦ in Table 3.3) to be substantially longer.

This reduction of the period (and the amplitude) is due to the attenuating
influence of the oblateness perturbations. If we repeat the numerical exper-
iments documented in Figure 3.14 but take into account only the term J32,
we obtain the perturbations shown in Figure 3.19. Figure 3.19 is in full agree-
ment with our theoretic expectations: The shortest perturbation periods are
of the order of 8 − 9 years and very long periods (of the order of well over
twenty years) do occur.

The similarity of Figures 3.14 and 3.19 (with the exception of the orbit with
ω = 90◦) underlines that the perturbations actually are mainly due to the
term J32 (remember that the complete potential up to terms of degree and
order n = m = 4 are used in Figure 3.14, whereas only the main term and
the term J32 were used in Figure 3.19).

There are substantial differences in the results associated with ω = 90◦, where
the largest amplitudes and the longest periods are expected: The period of
about 15 years in Figure 3.14 corresponds to a period substantially longer
than twenty years in Figure 3.19. The difference once more must be explained
by the attenuating influence of the obliquity: The perturbations that would
be of very long period and of large amplitudes are greatly reduced in both,
period and amplitude, thanks to the presence of the obliquity perturbation.

Let us mention that it is not trivial to find the semi-major axis precisely
corresponding to “the deepest” (2:1)-resonance. In the program SATORB
the perturbations due to C20 are approximately taken into account to find
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Fig. 3.19. Mean semi-major axes of seven GPS satellites (C22 = 0, terms up to
degree and order 4)

the resonant semi-major axis. But the approximations are based on first-order
perturbation theory (and actually only the terms proportional to e0 are taken
into account). In order to get a full picture of the characteristics of 2:1 for GPS
satellites one should scan through this resonance by systematically varying
the revolution period – very much in the same way as it is done to investigate
the resonant behavior of minor planets (see Chapter 4).

3.4 Perturbations due to the Earth’s Stationary
Gravitational Field in Review

In the previous three sections we discussed the orbital perturbations of an
artificial satellite due to the Earth’s stationary gravitational field. In general,
the oblateness-term C20 gives rise to orbital perturbations exceeding those
of the other terms Cnm , Snm by about three orders of magnitude. This
is (of course) a consequence of the hierarchy of the terms of the Earth’s
gravitational field (see Table I- 3.1).

The hierarchy is not necessarily seen when studying orbits with revolu-
tion periods commensurable with the sidereal day. Using the example of
geostationary satellites (1:1-commensurability) and of GPS satellites (2:1-
commensurability) we encountered perturbations (due to C22 , S22 and oth-
ers for geostationary, C32 , S32 and others for GPS satellites) exceeding the
long-period perturbations due to C20 by orders of magnitude.
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The oblateness term C20 was also seen to attenuate the perturbations due to
the other terms Cnm , Snm thanks to a relatively rapid change of the orbital
geometry (elements Ω and ω).

General perturbation methods based on first-order theory proved to give cor-
rect qualitative explanations of the orbital perturbations of artificial satellites.
First-order perturbation theory revealed “only” short-period terms (with the
revolution period P of the satellite or entire fractions thereof as periods) and
secular terms in the right ascension of the ascending node Ω, the argument
of perigee ω, and in the mean anomaly σ.

Long-period perturbations with the rotation period of these three angles show
up only in a higher-order treatment of the perturbation equations. Very small
long-period perturbations could actually be observed when integrating a test
satellite in the gravitational field of the main term and of C20 . The resulting
orbital perturbations proved to be very small (by a factor of about 1000
smaller than the first-order perturbations).

Long-period perturbations with periods due to C20 play a very important role,
however, when considering the perturbations due to terms Cnm , Snm (other
than C20 ): The drifts in Ω , ω , and σ due to C20 must be taken into account
when applying perturbation theory to the terms Cnm , Snm, otherwise the
amplitudes and periods of the perturbations due to these terms are grossly
overestimated. In this sense the term C20 has a stabilizing influence on the
orbits of artificial Earth satellites.

First-order perturbation theory in all cases provides accurate and reliable
values for the first derivative of the orbital elements. Under resonance con-
ditions (see eqn. (3.70)), i.e., if an entire number of revolution periods k1 is
contained in an entire number k2 of days, first-order theory breaks down (at
least for some of the elements) because the time dependence may be elimi-
nated (in essence) due to the occurrence of arguments of type k1 n−k2 Θ̇ = 0
in some of the trigonometric functions on the right-hand side of the pertur-
bation equations. First-order theory still gives the correct instantaneous time
derivative of these elements, but no longer the correct perturbation of the
elements over longer time intervals.

Special treatments based on the correct perturbation functions may be used
to overcome this difficulty. We outlined the solution method for two important
cases, namely the motion of a geostationary satellite in the equatorial plane
due to the resonant terms C22 , S22 and the motion of GPS satellites under
the influence of the terms C32 , S32 . In both cases, the motion of a resonant
argument can be described by the differential equation of the mathematical
pendulum. The resonant perturbations are of a very long period (up to a few
decades) with amplitudes comparable to or even greater than the amplitudes
of the short-period perturbations due to the oblateness.

Resonance is a central aspect of satellite motion. As opposed to the motion of
minor planets in the planetary system, the long-term development of artificial
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satellites is not yet well established. Numerical experiments comparable to
those conducted in the planetary system should reveal whether or not chaotic
motion plays a significant role in the development of satellite orbits over time
periods of thousands of years.

In the framework of first-order theory we found that, by replacing time t
by the argument of latitude u as an independent argument, the transformed
perturbation equations for the oblateness term C20 could be solved in closed
form in terms of elementary integrable functions. Use was made of this prop-
erty when developing the formulas for the rotation rates of the perigee, of the
right ascension of the node, and of the mean anomaly. The question, whether
this interesting property is common to other perturbation terms Cnm , Snm ,
will be addressed below.

The preceding sections were related to a few specific terms of the station-
ary gravitational field. In the following two paragraphs some of the findings
will be generalized. In paragraph 3.4.1 the perturbation function Rlm for an
arbitrary term of the Earth’s gravitational field will be developed and some
consequences of this representation will be discussed. In paragraph 3.4.2 we
will deal with the perturbation equations for the general term Rlm when
using the argument of latitude u as a general argument.

3.4.1 First-Order General Perturbation Solutions

Using the simplified transformation between the Earth-fixed and the inertial
system (φ = δ and λ = α−Θ), the general term of the development (I- 3.163)
may be written as:

Rlm(r, λ, φ) = − GM al♁
rl+1

Pm
l (sin φ)Jlm cosm(λ − λlm)

Rlm(r, α, δ) = − GM al♁ Jlm

rl+1
Pm

l (sin δ) cosm(α − Θ − λlm)

= − GM al♁ Jlm

al+1 (1 − e2)l+1
(1 + e cos v)l+1 P̃m

l (sin i sin u)

· cosm δ cosm(α − Θ − λlm)

= − GM al♁ Jlm

al+1 (1 − e2)l+1
(1 + e cos v)l+1 P̃m

l (sin i sin u)

· cosm δ
{

cosmα cosm(Θ − λlm) + sinmα sin m(Θ − λlm)
}

,

(3.110)

where Pm
l (sin i sin u) = P̃m

l (sin i sin u) cosm δ is the associated Legendre
function of degree l and order m as defined by eqn. (I- 3.151). According
to this definition P̃m

l (sin i sin u) is a polynomial of degree l − m in its argu-
ment, which either has only terms of even or of odd powers (depending on
whether l − m is even or odd).
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Well-known theorems of trigonometry (see, e.g., [25]) allow it to establish the
relations

cosmα =
(

m

0

)
cosm α −

(
m

2

)
cosm−2 α sin2 α +

(
m

4

)
cosm−4 α sin4 α − . . .

sin mα =
(

m

1

)
cosm−1 α sin α −

(
m

3

)
cosm−3 α sin3 α

+
(

m

5

)
cosm−5 α sin5 α − . . . .

(3.111)

Using these relations in eqn. (3.110) implies that its last line may be written
as a sum of terms

(cosα cos δ)i (sinα cos δ)k
.

The transformation equations (3.94) then allow it to write each of the terms
(. . .) as a function of the orbital elements and of the argument of latitude
u. This implies in turn, that eventually the entire perturbation function Rlm

of eqn. (3.110) may be written as a finite linear combination of sin- or cos-
functions of linear combinations of the angles u , Ω , ω , v , and Θ .

The representation still used today in satellite geodesy is due to Kaula. It is
based on a theoretical development given by Tissérand in 1888 [121] (!). The
form cited here is that used by Hugentobler [57]:

Rlm = − GM Jlm al♁ (1 + e cos v)l+1

al+1 (1 − e2)l+1

l∑
p=0

Flmp(i)
{

cosΨlmp , l − m even
sinΨlmp , l − m odd ,

(3.112)
where

Ψlmp = (l − 2 p)(ω + v) + m (Ω − Θ − λlm) . (3.113)

The functions Flmp(i) are called inclination functions. Up to degree and order
l = m = 4 they are, e.g., provided in [62].

The development (3.112) may be considered as the final representation of
the perturbation function when considering the perturbations of a circular
orbit. When studying the perturbations as a function of the argument u the
development (3.112) is the appropriate representation, as well (see section
3.4.2).

In order to obtain integrable functions in first-order theory when using the
time t as the independent argument we have to replace the true anomaly v in
the above equation by the mean anomaly σ . This leads to the representation
of the type (see, e.g., Kaula [62]):

Rlm = − GM al♁ Jlm

al+1

l∑
p=0

+∞∑
q=−∞

Flmp(i)Glmq(e)
{

cosΨlmpq , l − m even
sin Ψlmpq , l − m odd ,

(3.114)
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where

Ψlmpq = (l − 2 p)ω + (l − 2 p + q)σ + m (Ω − Θ − λlm) . (3.115)

Glmq(e) is the so-called eccentricity function proportional to e|q|.

The first-order perturbations due to the oblateness term C20 only generate
secular and short-period perturbations in first-order theory. First-order the-
ory, applied to an arbitrary term Jlm in equations (3.114) and (3.115), tells
that perturbations of the following kind may result:

• Short-period terms with sin- or cos-functions containing the argument u
or multiples thereof.

• Secular terms growing linearly with time.

• Long-period terms with sin- or cos-functions in the argument (l − 2 p)ω
(and no dependence on either u or Θ).

• m-daily terms due to sin- or cos-functions in the argument m Θ (and no
dependence on u).

In addition to these four types of perturbations quasi-secular terms may
result in the case of resonances, when (l−2 p+q)n−m Θ̇ ≈ 0 for some index
combinations, because eqn. (3.115) becomes (almost) time-independent in
this case.

The development (3.114) is perfectly suited for formal integration in first-
order theory. It contains only sin- or cos-terms of linear functions of time.
Its derivation is somewhat laborious. Tissérand [121] gave this derivation in
1888 which is still referred to today.

It is of course much easier to develop the above representation today (to any
order desired) by making use of readily available algebraic computer packages:
One “merely” has to represent u as a series in σ (in time) and make use of
the appropriate trigonometric relations.

3.4.2 Perturbation Equations in the Argument of Latitude u

If the argument of latitude u serves as independent argument instead of the
time t, the representation (3.112) for the perturbation function Rlm may be
used instead of the development (3.114), a circumstance promising a signifi-
cantly simpler treatment. We may now ask, whether the integration may be
performed in an elementary way in all cases – as it was the case for the term
C20.

In order to perorm the transformation of the independent argument we have
to replace the time-derivative by the derivative w.r.t. the argument of latitude
u and we have to multiply the right-hand sides of the same equations with√

(1−e2)3

n (1+e cos v)2 (see eqn. (3.26)).



3.5 Non-Gravitational Forces 173

Consequently, the resulting equations will have a pre-factor proportional to
(1 + e cos v)k , k ≥ 0 : The perturbation function (3.112) has a pre-factor
proportional to (1+ e cos v)k , k ≥ 3 for the terms of interest. Therefore, the
exponent of this pre-factor is positive or zero in the resulting perturbation
equation in u, because the exponent of the perturbation function is in the
worst case reduced by 1 when taking the required partial derivatives (see eqns.
(I- 6.115)). This allows us to state that all perturbation equations associated
with the zonal terms Rl0 , l = 2, 3, . . . may be integrated term-by-term in an
elementary way with u as independent argument.

Consequently, it is possible to give for every term Rl0 , l ≥ 2 the “true” first-
order expressions for the rotation rates of the three angles Ω, ω and σ, or to
calculate the true short-period perturbations as a function of the argument
u.

At first sight one would assume that the perturbation equations for the
tesseral and sectorial terms have the same property. Unfortunately this is
not the case, because Θ needs to be known as a function of the argument
u. Furthermore the resulting functions of u have to be brought into a form
allowing a formal integration. As we may write

Θ = Θ0 + Θ̇ (t − t0) = Θ0 +
Θ̇

n
(u − u0) + O(e) ,

it is easily possible to solve the perturbation equations with u as independent
argument related to any term Rlm , m 	= 0 to the order e0 .

A higher-order approximation in the eccentricity e requires the inclusion of
the higher-order terms in the eccentricity in the above equation for Θ . But
then the equations in u loose their elegance and simplicity and one may
equally well solve the equations with the time t as independent argument.

3.5 Non-Gravitational Forces

Non-gravitational accelerations are essential for an adequate description of
the orbits of artificial Earth satellites. The area-to-mass ratio A/m (where m
is the mass of the satellite and A the area of the projection of the satellite onto
a plane relevant for the perturbation considered) plays the role of a propor-
tionality factor when calculating the accelerations due to non-gravitational
forces.

Atmospheric drag usually is the dominating non-gravitational acceleration for
LEOs, solar radiation pressure plays that role for satellites in orbits higher
than about 2000 km above the surface of the Earth. A is the area of the
projection of the satellite onto the plane normal to the orbital velocity vector
ṙ in the case of drag, it is the area of the projection normal to the direction
Sun → satellite in the case of radiation pressure.
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Geodetic satellites (e.g., for the LAGEOS satellites) should have a minimal
area-to-mass ratio. Table 3.4 lists the A/m–ratios for four satellites including
the only natural Earth satellite.

Table 3.4. Area-to-mass ratios A/m for five Earth satellites

Satellite A/m [ m2/kg ]

Lageos 1 and 2 0.0007
Starlette 0.001

GPS(Block II) 0.02
Moon 1.3 · 10−10

The area-to-mass ratio of the oldest geodetic satellite, namely the Moon, is
by many orders of magnitude smaller (thus better suited for geodetic pur-
poses) than that of any artificial satellite – despite the fact that the attempt
was made to minimize the ratios A/m for the first three satellite types in Ta-
ble 3.4. The small A/m–ratio for the Moon explains why the Moon’s orbit,
when observed and determined with cm-accuracy, is so well suited for tests
of general relativity, for the determination of UT1–UTC, etc.

The first three satellites in Table 3.4 were designed as geodetic satellites.
Lageos 2 (launched in 1992) is, e.g., a spherical satellite with a diameter of
0.6 m, a weight of 405 kg, and 426 corner cubes inlaid in its surface (see
Figure I- 2.4). Lageos 2 is a close relative of Lageos 1 (launched in 1976). The
two Lageos satellites are in almost circular orbits about 6000 km above the
surface of the Earth, which is why atmospheric drag is virtually non-existent
and why the acceleration due to radiation pressure is small compared to most
of the gravitational accelerations (see also Tables 3.7, 3.8 at the end of this
chapter). Starlette, with a diameter of about 27 cm, is similar in construction
to the two Lageos satellites, but it is in a much lower orbit.

GPS satellites have a rather big area-to-mass ratio. Values of this order of
magnitude are typical for navigation satellites (and other bulky satellites)
equipped with big solar panels of a few m2. The mass of a GPS satellite is
about 1000 kg . As these satellites orbit the Earth in a height of more than
20000 km , drag does not need to be considered, but radiation pressure is the
central issue for precise orbit determination (to be discussed below).

Future generations of geodetic satellites will eliminate (better: greatly reduce)
the influence of non-gravitational accelerations by using onboard accelero-
meters to measure non-graviational effects, which may then be compensated
by manoeuvring the spacecraft. Accelerometers are shielded against the non-
gravitational forces by the surface of the satellite. They measure the accelera-
tions (at best) in three orthogonal directions. Naturally, these accelerometers
do not only measure the accelerations affecting the orbit (like, e.g., drag
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and radiation pressure) but also the effects due to the non-inertiality of the
satellite-fixed reference frame (i.e., centrifugal and coriolis accelerations).

When studying the effect of non-gravitational accelerations on the orbits
of satellites, one has to make the distinction between a priori models for
these effects and the a posteriori determination or improvement of model
parameters. A priori models are based on the knowledge of the properties of
the satellite (surface, mass, reflectivity, attitude, etc.) and of the properties of
the perturbing force (e.g., the density of the upper atmosphere as a function of
height). The a posteriori determination or improvement of these accelerations
often involves the determination of scaling parameters of the a priori models
and/or purely empirical parameters. We will rather focus on a priori models
in this Chapter whereas the parameter estimation aspect will be considered
in Chapter I- 8. There are many more non-gravitational effects than just
radiation pressure and drag. A complete list must include

• drag due to the electrically neutral atmosphere,

• drag due to charged particles on the satellite’s surface,

• direct radiation pressure (models of varying complexity),

• albedo radiation pressure due to the sunlight reflected or re-emitted by the
surface of the Earth,

• thermic emission of radiation by the satellite, and

• effects induced by the Earth’s magnetic field.

In the following two sections 3.6 and 3.7 we will, however, focus on atmo-
spheric drag and on radiation pressure. For a concise overview of the non-
gravitational effects listed above (and others) we refer to [74].

3.6 Atmospheric Drag

Above a height of about 50 km the density of the neutral atmosphere is suf-
ficiently low to assume laminar air currents. Assuming furthermore that the
atmosphere is co-rotating with the Earth (an assumption in essence ignoring
winds) and neglecting the thermal motion of the molecules, it is relatively
easy to calculate the transfer of linear momentum from the atmosphere to the
satellite: During a short time interval ∆t the velocity ṙ′ of the satellite rel-
ative to the particles may be assumed constant. Assuming furthermore that
all molecules and atoms encountered by the satellite’s cross section normal
to ṙ′ are absorbed by the satellite, the linear momentum lost by the satel-
lite equals the product of the volume (|ṙ′|∆t A) of the cylinder with height
ṙ′ ∆t and ground surface A with the density ρ(r) and the velocity −ṙ′ of the
molecules relative to the satellite at the current position of the satellite. The
loss of linear momentum by the satellite may thus be computed as
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∆p = − ρ(r)A ṙ′2 ∆t
ṙ′

|ṙ′| . (3.116)

The velocity change experienced during the time interval ∆t is obtained by
dividing this expression through the time interval ∆t and the mass of the
satellite m. The acceleration ad of the satellite due to drag is obtained by
the limit-process ∆t → 0 and reads as:

ad = − ρ(r)
A

m
ṙ′2 ṙ′

|ṙ′| . (3.117)

The acceleration due to drag is therefore anti-parallel to the velocity of the
satellite in the Earth-fixed system, proportional to the square of the velocity
in this system and to the area-to-mass ratio A/m .

The assumptions underlying eqn. (3.117) are not fully met in reality: Only a
fraction of the particles is actually absorbed by the satellite, the rest is re-
flected by the satellite’s surface. This circumstance complicates matters con-
siderably, because the linear momentum transferred by a reflected molecule
to the satellite is twice the projection of its linear momentum on the nor-
mal to the surface element. In order to take such effects into account we
have to know the shape and the attitude of the satellite, except for satellites
with rotational symmetry w.r.t. the velocity vector in the Earth-fixed system.
Prominent examples of this latter class of satellites are cannonball satellites
(e.g., the Lageos and Starlette satellites).

Subsequently we will only consider accelerations in the direction of the satel-
lite velocity vector and use the following model to account for drag:

ad = − C

2
ρ(r)

A

m
ṙ′2 ṙ′

|ṙ′| , (3.118)

where the coefficient is C = 2 for spherical satellites (independent of the
fraction of absorbed and reflected particles) and for satellites absorbing all
molecules hitting the satellite. In general one may assume that

2 ≤ C ≤ 2.5 . (3.119)

For the sake of completeness we mention that the velocity of the satellite
relative to the particles in the upper atmosphere at rest in the Earth-fixed
system is calculated (in non-relativistic approximation) by

ṙ′ = ṙ − ω♁ × r , (3.120)

where ω♁ is the momentary angular velocity vector of the Earth.

This leaves us with the discussion of the density ρ(r) of the upper atmosphere.
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3.6.1 Density of the Upper Atmosphere

Only with the advent of the space era it was possible to gather reliable infor-
mation about the density and composition of the Earth’s upper atmosphere
above 50 km. The information stems from analyzing the orbits of artificial
satellites and from satellite missions carrying mass spectrometers and scat-
terometers.

First reliable information was made available in the US Standard Atmo-
sphere (1976). In parallel, several versions of the CIRA (COSPAR Inter-
national Reference Atmosphere) were developed and made available in the
years 1972, 1986, and 1992. One of the more elaborate models openly avail-
able is called MSIS (Mass Spectrometer and Incoherent Scatter), identi-
fying the principal source of the data underlying the model. The version
MSISe-90 (where e stands for extended) was developed by A. E. Hedin et al.
from Nasa Goddard Space Flight Center. It is available over the internet
(http://nssdc.gsfc.nasa.gov) and documented in [50] and [51]. It may be used
as an a priori model for the density and temperature of the (constituents of
the) upper atmosphere.

MSISe-90 gives the density of the atmosphere as a function of the height
above the Earth’s surface, of the DoY (Day of Year), of the geocentric latitude
and longitude, of the time of day, and of true (local) solar time. The solar
flux F (10.7 cm) at 10.7 cm (corresponding to 2800 MHz) and the magnetic
index Ap are scaling factors of the model. When using realistic values for
these parameters, the variations due to the 11 year solar cycle are therefore
implicitly taken into account.

Figures 3.20 and 3.21 show that the solar flux F (10.7 cm) and the magnetic
index Ap are subject to significant variations of several frequencies within one
year. The two figures documenting the year 1999 stem from the series Solar-
Geophysical Data, prompt reports [28]. The MSISe-90 computer programs
allow it to specify mean values of these indicators over longer time periods or
to use recent values. We do not address such details here and confine ourselves
to present some prominent features of the upper atmosphere.

Figures 3.22-3.25 were produced using MSISe-90. They give an impression of
the many variations that should be taken into account when implementing an
a priori model for atmospheric drag. The most significant density variation
is due to the height above the surface. Locally (i.e., over a few tens of km),
this variation may be accounted for by the barometric formula

ρ(h) = ρ0 e−
h−h0

H0 , (3.121)

where ρ0 is the density at the reference height h0 and H0 is the scaling height
at h0 .
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Fig. 3.20. Solar flux F (10.7 cm) (Penticton) for 1999 in solar flux units

Fig. 3.21. Magnetic Ap-index for 1999

Figure 3.22 shows the logarithm (referring to base 10) of the density of the
atmosphere (in units of kg/m3) for March 24, 10h UT for geographical lon-
gitude 7.5◦ and latitude 45.5◦ (corresponding to a location in Switzerland).
A solar flux of F (10.7 cm) = 150 (in solar flux units) and an index of Ap = 4
were assumed. Figure 3.22 reveals, that MSISe-90 is a composed model. The
homosphere, consisting of troposphere (0− 15 km), stratosphere (15− 50 km)



3.6 Atmospheric Drag 179

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 200 400 600 800 1000

lo
g(

rh
o(

kg
/m

**
3)

)

km

Density

rho

Fig. 3.22. Density of the atmosphere profile according to MSISe-90

and mesosphere (50 − 90 km), the thermosphere (90− 400 km) and the exo-
sphere (400 −∞ km) obviously were dealt with separately.

Figure 3.22 shows that the density drops within the first 50 km by about a
factor of 1000, at a height of 100 km the density is only of the order of 10−6

of the value at sea level. Between 100 km and 200 km and between 200 km
and 1000 km the density is reduced by about a factor of ten thousand (in
each case).

Figure 3.22 shows that even for orbits with small eccentricities the density
at perigee is orders of magnitude higher than in apogee. For a satellite with
an apogee height hapo ≈ 200 km and a perigee height hper ≈ 126 km ,
corresponding to a ≈ 6541 km and e ≈ 0.006 , Figure 3.22 lets us expect
ρper
ρapo

≈ 40 . For close Earth satellites the velocity w.r.t. the rotating frame is
of the order of 6−7 km/s . Using formula (3.118) one must expect significant
accelerations due to drag up to heights of about 1000 km.

Figures 3.23 - 3.25 show the variations of the density in a height of 100 km
as a function of latitude, of the time of the day, and of the day of the year.
The longitudinal variations are not very pronounced and therefore not docu-
mented here. Four curves (corresponding to spring, summer, fall, and winter)
are given in Figures 3.23 and 3.24. Figure 3.23 shows a pronounced latitudi-
nal variation corresponding to a factor of about 3 in density. In spring and
fall the density distribution is symmetric w.r.t the equator whereas strong
asymmetries are observed in summer and winter (the seasons in Figures 3.23
- 3.25 refer to the Northern hemisphere).

Figure 3.24 documents, that daily variations of the density of the atmosphere
are significant and must be taken into account. Figure 3.25 shows the varia-
tion of the density as a function of the day of the year (for “Switzerland”).
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Fig. 3.23. Density of the atmosphere in a height of 100 km as a function of latitude
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Fig. 3.24. Daily variations of the density of the atmosphere in a height of 100 km
at mid-latitude

At a height of 100 km the density is about a factor of 2 lower in summer
than in winter. (Experience tells that, fortunately, effects of the same order
of magnitude are not observed at “normal” altitudes in Switzerland!).

3.6.2 Effect of Drag on Satellite Orbits

Equation (3.118) and the density model MSISe-90 are used in program
SATORB (see Chapter 7 of Part III) to take into account the atmospheric
drag. Parameters C and A/m of eqn. (3.118) as well as the solar flux
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Fig. 3.25. Annual variation of density in a height of 100 km above Switzerland

F (10.7 cm) and the magnetic index Ap may be defined by the program user.
In this section we confine ourselves to present and discuss a few examples
using the program SATORB.

In order to fix the ideas we model the effect of atmospheric drag for the
research satellite GPS/MET, documented by Melbourne et al. [73], which was
designed as a test satellite to use spaceborne GPS receivers for atmospheric
limb sounding. The proof-of-concept mission, deployed in 1995, was a full
success, and the concept is being used (and is going to be used) in many
LEO missions. Here, we are uniquely interested in the perturbations of the
orbit of GPS/MET by atmospheric drag. The relevant orbit and satellite
characteristics of the spacecraft are contained in Table 3.5. Nominally the
eccentricity of GPS/MET is e = 0 . Due to short-period perturbations the
eccentricity varies within the limits 0 < e < 0.002 .

Table 3.5. Characteristics of GPS/MET in 1995

Satellite/Orbit Property Numerical Value

a 7100 km
e 0.0
i 70◦

A/m 0.02

Figure 3.26 shows the effect of drag on the orbit of GPS/MET over one day,
assuming in the first case F (10.7 cm) = 150 and Ap = 4 and in the second
F (10.7 cm) = 200 and Ap = 8 . The first case corresponds to calm conditions
as they are typically encountered during the years of minimum solar activ-
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ity, the other would rather characterize an active phase (but by no means
extreme conditions) within the 11 years solar cycle. The simulation, where
all perturbation terms due to the Earth’s gravitational field were neglected,
is uniquely meant to illustrate the effect of drag. In reality the short-period
perturbations with amplitudes of few kilometers (mainly) due to the Earth’s
oblateness would be superimposed to the curve in Figure 3.26.
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Fig. 3.26. Semi-major axis of GPS/MET over one day

The semi-major axis a decreases in both cases (by about 6 m per day in
the first, by about 18 m per day in the second case). Obviously, the actual
decrease of the semi-major axis is heavily dependent on the solar activity. This
confirms the well-known fact that many more LEOs “decay” in the Earth’s
atmosphere during the years of maximum solar activity than during the years
of low activity. The solar cycle thus has the nice side-effect of “cleaning” the
atmosphere below heights of about 1000 km. The “pollution” of these lower
parts of the atmosphere by satellites and in particular space debris is not as
dangerous (seen from the long-term perspective) as that of regions like the
geostationary belt.

The behavior is not as linear as one might expect. The periodic effects are
caused by the variations of the density discussed in the previous paragraph
and by the fact that the surface of the Earth is (in good approximation) an
ellipsoid, implying that the height above surface of a circular orbital curve
is growing with latitude (and has a minimum over the equator). The charac-
teristics in Figure 3.26 are only typical for circular orbits. As soon as the ec-
centricity significantly differs from zero, the deceleration due to drag is much
more pronounced in perigee than in the other parts of the orbit. Usually a



3.6 Atmospheric Drag 183

good mathematical approximation is achieved by feigning an instantaneous
velocity change (decrease) in perigee (see discussion in next paragraph).

Figures 3.27 - 3.29 illustrate the mechanism. The initial conditions in Table
3.5 were modified by assuming an elliptical orbit with e = 0.05 instead of a
circular orbit. The consequences of this subtle change are rather dramatic:
The perigee is at a geocentric distance of rper = a (1 − e) = 6745 km cor-
responding to a height of hper = 6745 km − 6378 km = 367 km (assuming
a spherical Earth with radius a♁ ≈ 6378 km), the apogee, however, is at a
height of hapo = a (1 + e) − a♁ = 1077 km . As we see from Figure 3.22,
the density at apogee height is negligible w.r.t. the density at perigee height.
Figure 3.27, which was generated with F (10.7 cm) = 150 and Ap = 4 , should
be compared to the solid curve in Figure 3.26. The reduction of the semi-
major axis takes place almost uniquely during a short time interval centered
at the time of perigee (the integration was started in perigee). Due to the
fact that the perigee is much lower than in Figure 3.26 the mean decrease of
the semi-major axis over one day is about 275 m in Figure 3.27 instead of
about 6 m in Figure 3.26.
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Fig. 3.27. Semi-major axis of GPS/MET with e = 0.05 over one day

Figure 3.28 illustrates that the eccentricity, as the semi-major axis, decreases
as a function of time. Figures 3.27 and 3.28 are highly correlated in the sense
that the elements decrease “only” while the satellite is close to the perigee.

Figure 3.29 shows the development of the perigee a (1− e) and of the apogee
a (1 + e) . One can see that the perigee decreases only slowly (about 20 m
per day), whereas the apogee decreases at a rate of more than 500 m per
day. Obviously, atmospheric drag has the tendency to bring down the apogee
height to the perigee height.
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Fig. 3.29. Perigee and apogee of GPS/MET with e0 = 0.05 over one day

3.6.3 Theoretical Interpretation of Drag Perturbations

We will now apply the theory of perturbations of first order as developed in
Chapter I- 6 in order to describe the perturbations encountered in Figures
3.26 - 3.29. We have to use the Gaussian (and not the Lagrangian) perturba-
tion equations because atmospheric drag is a non-conservative force. In the
approximation of eqn. (3.118) atmospheric drag is anti-parallel to the velocity
vector, implying that the N ′- and W ′-components are zero (see also Figure
I- 6.1 ). The T ′ component may be simply taken over from eqn. (3.118):

T ′ = − C

2
A

m
ṙ′2 ρ(r) . (3.122)



3.6 Atmospheric Drag 185

As N ′ = W ′ = 0 , the Gaussian perturbation equations (I- 6.91) are reduced
to

ȧ =
2

n2 a
|ṙ| T ′ = − 1

n2 a
C

A

m
|ṙ|3 ρ(r)

ė =
2 (cos v + e)

|ṙ| T ′ = − (cos v + e)C
A

m
|ṙ| ρ(r) .

(3.123)

Note, that we approximated the velocity ṙ′ w.r.t. the rotating atmosphere by
the velocity ṙ of the satellite in a non-rotating Earth system for the purpose of
the subsequent discussion. For LEOs with a circular velocity in the inertial
system of about 7 km per second, this approximation introduces an error
below 10%. Unnecessary to say that the correct version of equation (3.118)
is used in program SATORB.

For orbits with small eccentricities one may furthermore simplify these equa-
tions by neglecting the terms of first order in e on the right-hand side of eqns.
(3.123):

ȧ = −C
A

m
n a2 ρ(r) + O(e)

ė = −C
A

m
n a cosσ ρ(r) + O(e) ,

(3.124)

where σ is the mean anomaly. Equation (3.124) may be used to compute the
secular change of the elements a and e for circular orbits, where it is assumed
that the density ρ(r) def= ρ(a) def= ρ0 is constant.

The eccentricity e is quickly dealt with: The perturbation is purely periodic
and the net effect over the revolution is zero. The short-period variations
would imply negative eccentricities, a somewhat nonsensical result revealing
the limitations of approximate solutions.

The net decrease of the semi-major axis per day is obtained by multiplying
the above constant drift with the number of seconds per day:

∆a/day = − 86400 n C
A

m
a2 ρ0 . (3.125)

The comparison of the result (3.125) with the results achieved by simulation
is not entirely trivial, because in the simulation underlying Figure 3.26 the
Earth’s surface was assumed to be an ellipsoid and the correct ellipsoidal
height was used to compute the height h(t) of the satellite above the surface.
As a crude guess we compute the mean height of the satellite as hmean ≈(
a − 1

2

(
a♁equ− a♁pol

)) ≈ 732.5 . The mean density at this height is ρ0 ≈
6 · 10−14 kg/m3. The decrease per day thus is expected to be

∆a/day = − 86400 · 2 · 0.02 a2 ρ0 ≈ 11 m . (3.126)
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This overestimates the actual drift by almost a factor of 2 . This is explained
by the complexity of the MSISe-90 model: The mean value of ρ(r) over one
revolution was rather ρ ≈ 3.5 ·10−14 and not ρ0 ≈ 6 ·10−14 kg/m3 as assumed
above. The resulting decrease of a per day is ∆a/day = 6.4 m which is in
excellent agreement with the result actually obtained in Figure 3.26.

The case e 	= 0 is somewhat more complicated. We treat it approximately for
orbits with small eccentricities only. We will still use formulas (3.124) (i.e., we
retain only the terms ∼ e0), but we will use the correct density corresponding
to the vicinity of the perigee.

Let us approximate the density of the atmosphere in the vicinity of the perigee
with the barometric formula (3.121), where h0 = a (1−e)− a♁ . The argument
h − h0 may then be approximated as:

h− h0 =
(
a (1− e cosσ)− a♁

) − (a (1− e)− a♁
)

= a e (1− cosσ) ≈ 1
2 a e σ2 ,
(3.127)

where σ
def= n (t − T0) is the mean anomaly. In the vicinity of the perigee the

density ρ is approximated by:

ρ = ρ0 e−
a e

2 H0
σ2 def= ρ0 e

− σ2

2 m2
0 , (3.128)

where

m0
def=

√
H0

a e
. (3.129)

Using the above approximations in the equation for the semi-major axis in
eqns. (3.124) gives

ȧ ≈ n
da

dσ
= −C

A

m
n a2 ρ0 e

− σ2

2 m2
0 . (3.130)

Cum grano salis we may now approximate the change of the semi-major axis
per revolution by:

∆a/rev = −C
A

m
a2 ρ0

+∞∫

−∞
e
− σ2

2 m2
0 dσ = −C

A

m
a2 ρ0

√
2 π m0 . (3.131)

The mean drift per day is then obtained from the above expression by mul-
tiplication with the number of revolutions per day:

∆a/day = −nrev/day

√
2 π H0

a e
C

A

m
a2 ρ0 . (3.132)

With a semi-major axis of a = 7100 km and an eccentricity of e = 0.05
we obtain a perigee height (over the equator) of about 367 km and a value
of a e = 355 km . The air density at perigee is ρ0 ≈ 9 · 10−12 kg/m3. The



3.6 Atmospheric Drag 187

scaling height H0 was taken from Figure 3.22 as H0 ≈ 54 km in the height

of the satellite’s perigee. This gives a value of m0 =
√

H0
a e ≈ 0.39 . With

nrev/day ≈ 14.5 we obtain eventually the following estimation for the drift in
Figure 3.27 using eqn. (3.132):

∆a/day = −257 m , (3.133)

which is pretty much what Figure 3.27 shows.

Let us quickly assess the order of magnitude for the development of the eccen-
tricity (second of eqns. (3.124)). Assuming again that the main contribution
to the perturbations occurs in the vicinity of the perigee (what is by the
way confirmed by Figure 3.28), we may in a very crude approximation set
cos v ≈ 1 . In this approximation we obtain the simple result (compare the
two equations (3.124)):

ė =
ȧ

a
. (3.134)

But this implies

∆e(t) ≈ ∆a(t)
a

. (3.135)

For the above example we expect therefore a drift in the eccentricity of
∆e/day = − 257

7′100′000 = −3.67 · 10−5. This is a remarkably good approxi-
mation of the minute computation shown in Figure 3.28.

In this approximation it is rather easy to predict the development of perigee
and apogee:

d
{
a (1 ± e)

}
dt

= ȧ (1 ± e) ± a ė =
{≈ + 2 ȧ apogee
≈ 0 perigee . (3.136)

These results agree very well to those of the stricter computations in Figure
3.29.

The above order-of-magnitude estimates are but crude approximations. If
one uses eqns. (3.123) instead of eqns. (3.124), much better approximations
involving Bessel functions may be provided. The reader is referred to [41] for
details.

Formulas for ∆a(t) and ∆e(t) of the kind derived in this section may be
used to estimate the lifetime of LEOs. The equation for the eccentricity may,
e.g., be used for a crude approximation to calculate the time it takes for an
elliptical orbit to become circular. Also, experience tells that an orbit is no
longer stable if the revolution period drops below U0 ≈ 87 minutes (see [41]).

It is rather difficult to predict the precise time and the geographical location of
a satellite decay. It is, however, easy to predict that the geographical location
must lie approximately in the orbital plane (at the time of the decay).
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3.7 Radiation Pressure

3.7.1 Solar Radiation and Radiation Pressure

Quantum mechanics says that each photon of frequency ν and wavelength
λ = c/ν (where c is the speed of light in vacuum) carries the energy

E = hν (3.137)

and the linear momentum

p =
hν

c
e , (3.138)

where

h = 6.62·10−34 Js is Planck’s constant (named after Max Karl Ernst Ludwig
Planck (1858–1947)) and

e is the unit vector of the propagation of the photon.

The momentum transferred per time unit onto a unit surface in a radiation
field is called radiation pressure. Radiation pressure therefore is a vectorial
quantity.

In a general radiation field it may be quite an elaborate task to calculate
the radiation pressure acting on a surface element. The underlying principle
is simple, however: We have to calculate the change ∆p = pa − pb of linear
momentum p for each of the photons hitting the surface element S (the index
b characterizes the momentum before, a that after hitting the surface). The
momentum transferred to the surface element must be ps

def= −∆p = pb−pa .
After having computed the momentum transferred by each of the photons
we simply have to compute the vectorial sum of the momenta ps .

The mechanism of momentum transfer to the surface by a single photon is
illustrated by Figure 3.30.

S

�pb

pb

pref

pa

pabs

�p

�

Fig. 3.30. Absorption and reflection of radiation by a surface element S
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According to the law of conservation of linear momentum −∆p is the momen-
tum gained by the surface element. If the photon is absorbed by the surface,
pa = 0 and the surface gains the momentum pabs = pb . If the photon is
reflected by the surface, the photon is reflected according to Snellius’ law
of reflection. The surface gains linear momentum normal to its surface with
absolute value 2 |pb | cosα = |pref | .
The primary radiation source to be considered in satellite geodesy is the
Sun. The radiation pressure due to the direct solar radiation is also referred
to as direct radiation pressure. Other sources of radiation are the Earth, which
reflects and/or re-emits the radiation received by the Sun, or to a much lesser
extent, the Moon, reflecting the solar radiation. We will mainly focus on the
direct radiation pressure, but will also briefly address the radiation pressure
due to the sunlight reflected by the Earth towards the end of this chapter.

The radiation field due to the direct solar radiation may be considered as
parallel to the direction Sun → Satellite. Consequently, the momentum trans-
ferred per second to a unit surface normal to this direction may be expressed
by the solar constant S, giving the energy flowing through this surface per
time unit at the distance of 1 AU. According to [68] the value of the so-
lar constant (which we remember (hopefully) from school as twenty Calories
(kcal) per minute and m2) is

S = 1368 Watt/m2 . (3.139)

If 100% of the radiation is absorbed, the linear momentum

p =
S

c
e (3.140)

is gained in one second by a surface element of 1 m2 normal to the direction
Sun → surface element at 1 AU. The absolute value of the vector is

|p | =
S

c
= 4.56316 · 10−6 N/m2

. (3.141)

Obviously, the surface of the cross section of the satellite normal to the di-
rection Sun → satellite and the mass m of the satellite play the same roles as
the corresponding quantities when dealing with drag. We will use the same
symbol A as in the case of drag, but point out that the interpretation is
different from the preceding section.

Assuming rotational symmetry of the satellite w.r.t. the axis Sun → satellite,
the acceleration due to the direct solar radiation may be written as:

arad =
C̃

2
A2♁

|r − r�|2
S

c

A

m

r − r�
|r − r�| , (3.142)

where
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C̃ depends on the reflective properties of the satellite surface,

r is the geocentric position vector of the satellite,

r� is the geocentric position vector of the Sun,

A♁ = 149,597,870,610 m (numerical value from [68]) is the Astronomical
Unit,

m is the mass of the satellite, and

A is the cross section of the satellite normal to the direction Sun → satellite.

Rotational symmetry w.r.t. the axis Sun → satellite naturally may not always
be assumed. Nevertheless, formula (3.142) is in practice an excellent first-
order approximation to take radiation pressure into account. If the radiation
is mainly absorbed (as it should be the case, e.g., for solar panels), formula
(3.142) is correct for satellites of arbitrary shape. Subsequently we will use
formula (3.142) to describe direct radiation pressure. More accurate radiation
pressure models will be considered in section 3.7.5.

It is remarkable that the direct radiation pressure as represented by eqn.
(3.142) practically does not depend on the height of the satellite above the
Earth’s surface, whereas atmospheric drag is exponentially decreasing with
height. This is one of the reasons why radiation pressure is the dominating
non-gravitational perturbation above heights of about 600 km .

Radiation pressure obviously is “turned off” if the radiation is blocked by an
“obstacle” between the Sun and the satellite. The Moon or the Earth may
“serve” as obstacles. The shadowing of the sunlight by the Moon is often
not considered. For precise analyses (like the ones performed by the IGS
Analysis Centers) this effect must be taken into account. Subsequently, we
will, however, only deal with the shadowing of the sunlight by the Earth.

Figure 3.31 illustrates the shadow geometry for the Earth as “obstacle”. We
assume that (a) the Earth is spherical with radius a♁, and that (b) solar
radiation is parallel in the Earth’s environment. In this case the sunlight-
shadow boundary in space is a right cylinder with radius a♁ and with its axis
on the continuation of the line Sun → Earth (lying in the plane of the figure).

Figure 3.31 may be used to compute the maximum duration of the eclipse
phase in relation to the revolution period for orbits with small eccentricities.
The longest eclipse period for a given semi-major axis a results, if the Sun lies
in the orbital plane. We may therefore assume that the plane of drawing is the
orbital plane. Consider now satellite S1 which just crosses the light-shadow
boundary. At shadow entry its geocentric position vector forms an angle of γ
with the axis of the shadow cone. At shadow exit (not shown in Figure 3.31)
its geocentric position vector will again form an angle of γ with the axis of
the shadow cylinder, and the radius vector will have covered the angle of 2 γ
in the shadow. Figure 3.31 shows that the angle γ has to be computed as:
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Fig. 3.31. Shadow geometry

γ = arcsin
a♁
a

. (3.143)

The fraction of the revolution spent in the eclipse thus is

∆tecl
P

=
2 γ

2 π
, (3.144)

where P is the satellite’s revolution period.

For GPS/MET, with a = 7100 km , the maximum duration of the eclipse
phase per revolution is ∆tecl/P ≈ 0.355 (corresponding to 35 minutes), for
a GPS satellite with a ≈ 26′500 km it is ∆tecl/P ≈ 0.077 (corresponding to
about 56 minutes), and for a geostationary satellite with a ≈ 42′164 km it is
∆tecl/P ≈ 0.048 (corresponding to 70 minutes).

Figure 3.31 and formulas (3.143) and (3.144) therefore tell that the eclipsed
parts of the orbital curve may be significant (up to almost half a revolution
period) and that they have to be taken into account.

Figure 3.31 also may be used to find, for a given semi-major axis a′, the
maximum angle β0 between the geocentric unit vector e� of the Sun and
the orbital plane for which eclipses still occur. We are free to choose the
orbital plane orthogonal to the drawing plane of Figure 3.31. Satellite S2 is
a satellite in such a plane just touching the shadow cylinder. Obviously the
angle between the orbital plane and the unit vector to the Sun observes the
equation

sin β0 =
a♁
a′ (3.145)

for a satellite touching the shadow cylinder.

The satellite actually enters the Earth’s shadow cylinder if the angle β be-
tween the orbital plane and the geocentric unit vector of the Sun is

β < β0 = arcsin
(a♁

a′
)

. (3.146)

For GPS/MET the maximum angle is β0 = 63.9◦, for a GPS satellite β0 =
13.9◦, and for a “geostationary” satellite β0 = 8.7◦.
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Whether or not eclipses occur for each revolution or only during certain
“eclipse seasons”, depends on the inclination ĩ of the orbital plane w.r.t. the
plane of the ecliptic. This inclination angle varies between the two limits:

| i − ε | ≤ ĩ ≤ | i + ε | , (3.147)

where ε ≈ 23.5◦ is the obliquity of the equatior w.r.t. the ecliptic. As the
angle β between the geocentric unit vector of the Sun e� and the orbital
plane for a given constellation is

|β | ≤ ĩ , (3.148)

we see, e.g., that eclipses always occur (independently of the actual inclination
angle ĩ) for satellites with low inclinations i w.r.t. the equator, if

i + ε < β0 . (3.149)

For a satellite like GPS/MET this would be the case for inclinations

i + ε < 63.9◦ i.e. i < 40.4◦ .

One should not conclude that a satellite for which (3.149) does not hold will
never be eclipsed: If the Sun is near the (ecliptical) node of the orbital plane,
the angle β is zero and deep eclipses will occur at least twice per year (if the
precession rate of the orbital plane is small). The frequency of these “eclipse
seasons” may be higher for LEOs, where the precession period of the node
may be a few months only.

Our discussion of the shadowing effects was based on Figure 3.31, which in
turn was based on three simplifying assumptions:

1. The Earth was assumed to be spherical, whereas in reality it is an ellipsoid
of rotational symmetry, with the two axes differing by about 21.4 km .

2. The boundary between the sunlit and the eclipsed part of space was
assumed to be a right cylinder. Due to the angular diameter of the Sun
of about 0.5◦ the shadow cylinder should be replaced by two shadow
cones, one for the umbra and one for the penumbra. Approximately, the
boundaries of the two cones are symmetric relative to the cylindrical
boundary in Figure 3.31, and inclined to the cylinder boundary by 0.25◦

(the angular radius of the Sun).

3. The Earth’s atmosphere was neglected. Refraction effects occur and
should be taken into account.

The first approximation easily may be dealt with when numerical procedures
are used to generate the orbits. The impact of the second approximation on
the orbital accuracy is often overestimated. One should be aware of the sym-
metry inherent in the problem: when adopting a cylindrical shadow boundary
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(where the radiation pressure is instantaneously “switching on/off”) instead
of taking into account the two conic boundaries (with a continuous light
↔ shadow transition between the penumbra and umbra boundaries), the
neglected accelerations before and after crossing the cylinder almost com-
pensate each other. The cylindrical approximation for the shadow boundary,
where radiation pressure is switched on or off instantaneously, is a sufficient
approximation for the true process in practice. The reader who, nevertheless,
wishes to be more familiar with penumbra effects, is referred to the refined
treatment in [75].

When taking into account radiation pressure in a procedure for numerical in-
tegration (and there is no real alternative to that) one must take care not to
introduce discontinuities at the epochs of shadow entry or exit. Advanced nu-
merical integration tools are based on the assumption of analytical functions,
where discontinuities (in the accelerations) must be avoided. Collocation al-
gorithms may “easily” cope with this problem if the following procedure is
followed:

1. From the initial position vector at the epoch ti of the current integration
step it is checked whether or not the satellite is in sunlight at time ti .

2. If the satellite is in sunlight at ti , the radiation pressure acceleration
(3.142) is switched on. Otherwise it is switched off.

3. These settings are not altered when performing the integration step in
the interval [ti, ti+1] , where ti+1 is the right interval boundary as defined
by an automatic stepsize procedure.

4. The numerical solution of the initial value problem pertaining to the
interval [ti, ti+1] is now used to check whether or not the shadow cylinder
was crossed during this interval.

5. If a crossing of the cylinder took place, let us say at the epoch t∗, the
current numerical solution is used to compute new initial conditions at
time t∗, and a new initial value problem is invoked.

6. The algorithm proceeds with step (1).

The procedure outlined above allows it to treat the radiation pressure accel-
eration without introducing any errors (apart from the rounding and approx-
imation errors associated with every numerical integration procedure). It is,
by the way, more difficult to treat the problem correctly when using multistep
methods. First-order corrections of the scheme of differences do not eliminate
higher-order terms. From our point of view only a procedure of the kind out-
lined above is capable of coping with the problem of radiation pressure in a
satisfactory way. The above procedure is implemented in program SATORB.
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3.7.2 Simulations

In order to gain insight into the orbit perturbations due to radiation pressure
we integrate the orbits of a satellite with GPS characteristics (see, e.g., Figure
I- 2.6) and of the US/French altimetry satellite TOPEX/Poseidon (see Figure
I- 2.8). The orbital and satellite characteristics (meant to be typical for two
kinds of spacecrafts) are contained in Table 3.6. In reality the area-to-mass
ratio A/m is a function of the attitude (and thus of time) for both, the GPS
and the TOPEX/Poseidon satellites. For our order-of-magnitude assessment
it is sufficient to use the values provided in Table 3.6. Figure 3.32 shows
the development of the orbital elements of a GPS-like satellite under the
influence of radiation pressure. On the left-hand side we find the osculating
elements over the time interval of one day, i.e., over two revolutions, on the
right-hand side the mean elements over one year (the averaging period being
one revolution). The characteristics of Table 3.6 were used, with e = 0.02 .
The simulation documented by Figure 3.32 is rather unrealistic because the
Earth’s gravitational field was assumed to be spherically symmetric. The
implications of this assumption will be dealt with later on.

Table 3.6. Characteristics of GPS satellites and of TOPEX/Poseidon

Characteristics GPS satellite TOPEX/Poseidon

a 26550 km 7714 km
e 0.001 − 0.020 0.001
i 55◦ 66◦

A/m 0.02 m2/kg 0.008 m2/kg

The osculating semi-major axis a shows a periodic signal of an amplitude of
about 13 m in Figure 3.32. This amplitude is very small compared to the
amplitude of the short-period oblateness perturbation or to the amplitude of
the gravitational perturbations caused by Sun and Moon. When looking at
the mean semi-major axis over one year, we see that “usually” there is no
net effect over one revolution. The two eclipse seasons of about seven weeks
duration are an exception. But even then the effect is small (of the order of a
few meters). Note, that the net effect in the semi-major axis after two eclipse
seasons is very close to zero, whereas the mean effect after one eclipse season
differs significantly from zero. This behavior is typical for the orbits of all GPS
satellites. The actual shape of the perturbation in a is highly dependent on
the date (time within the year) of the eclipse periods and on the eccentricity
and the argument of perigee. The net effect of one eclipse season is almost
zero for circular orbits (e = 0). If the initial conditions are chosen in such a
way that the dates of the eclipse seasons are symmetric relative to the time of
the solstices, the net effect of one eclipse season is to change the semi-major
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Fig. 3.32. Radiation pressure effects on the orbit of a GPS satellite over one day
(left) and over one year (right)
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axis by about four meters, an effect which will be reversed by the following
eclipse season (compare [18]). In summary we may state that the net effect
of radiation pressure on the semi-major axis is not significant.

The perturbations in the eccentricity e show a different pattern in Figure
3.32. The osculating eccentricity grows almost linearly with time over the
time interval of one day (two revolutions). The mean eccentricity has a clear
annual signal with an amplitude of about ∆e ≈ 2 · 10−4. This does not look
like a big effect, but it implies that perigee- and apogee-heights of a typical
GPS satellite will vary by about ± a ∆e ≈ ± 5 km over one year – an effect
which is notable.

The perturbations of both, inclination and right ascension of the ascending
node, are very small. Note that the step-function in the osculating inclinations
and nodes are artifacts due to the limited number of digits in the data files.
The perigee, on the other hand, shows a strong annual signal of an amplitude
of about ∆ω ≈ 0.8◦.

Figure 3.33 demonstrates that radiation pressure is an important character-
istic of GPS orbits: The mean development of the eccentricity over one year
in a rather realistic force field (Earth’s potential complete up to degree and
order n = m = 8 , gravitational attractions by Sun and Moon taken into
account) is clearly different for the orbits including the radiation pressure ac-
celeration (solid curve) and those ignoring it (dashed curve). Note, however,
that the net effect due to radiation pressure is more or less averaged out after
one year.

Figure 3.34 documents the development of the mean orbital elements for a
TOPEX-like satellite over one year due to radiation pressure. The results in
this figure should be compared to Figure 3.32: Only the main term of the
gravitational field and radiation pressure define the force field. The general
picture is similar for both types of satellites: Eccentricity and perigee are
much more affected by radiation pressure than the other elements.

It is, however, interesting to note that the perturbations of the orbital plane
(elements i and Ω) are slightly more significant and less symmetric than in the
case of GPS satellites. This is explained by the long shadow periods. There
actually was no eclipse-free period in this experiment: The right ascension of
the ascending node was defined as Ω = 0◦. Due to absence of the oblateness
term C20 the node did not precess, and the inclination of the orbital plane
w.r.t. the ecliptic was constant at the value of (̃i = 66◦ − ε ≈ 42.5◦). Using
the arguments developed in the previous paragraph, we conclude that there
actually could not be a shadow-free period under these conditions. If we
would “switch on” the oblateness perturbations, we would observe shadow-
free periods and, as a consequence, an averaging effect of the perturbations
in i and Ω – very much like in the case of GPS satellites – would take place.

When comparing the perturbations in Figures 3.32 and 3.34 we have to take
into account that, according to Table 3.6 we have A/m ≈ 0.02 for GPS-
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Fig. 3.33. Mean eccentricity in a realistic force field with and without radiation
pressure

like satellites, but only A/m ≈ 0.008 for TOPEX/Poseidon. Therefore, the
amplitudes in Figure 3.34 have to be multiplied by a factor of 2.5, in order to
compare the effect of the same perturbing acceleration on a high and a low
orbiting satellite. When comparing the perturbations in e in the two figures
we note that the ratio is more like a factor of six. This ratio and other effects
will be explained in the next section.

3.7.3 Theoretical Considerations Concerning Radiation Pressure

Following tradition we consider radiation pressure as a non-conservative force
and therefore use the Gaussian perturbation equations for explaining its ef-
fects on the orbital elements (we refer to paragraph 3.7.4 for additional re-
marks). It turns out that version (I- 6.88), based on the decomposition into
the components R′, S′, and W ′ (compare also Figure I- 6.1), is best suited
for our purpose.

Let us slightly simplify the acceleration (3.142) by replacing the direction
Sun → satellite by the unit vector pointing from the Sun to the center of the
Earth. Moreover we neglect the variations of the distance between Sun and
Earth (in view of the eccentricity of e ≈ 0.016 of the Earth’s orbit a scale
factor varying between 1 ± 0.032):

arad = − C̃

2
S

c

A

m
e� . (3.150)
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Fig. 3.34. Perturbation of the mean orbital elements of TOPEX/Poseidon due to
radiation pressure

Furthermore, we will replace the varying position of the Sun over one revo-
lution by its fixed position at the midpoint of the time interval considered.
Let us assume that the Sun’s spherical coordinates in the orbital system (ref-
erence plane = orbital plane, first axis ascending node) are the argument of
latitude u� and the elevation β� above the orbital plane (see Figure 3.35).

Figure 3.35 shows that the perturbing acceleration reads as:



R′

S′

W ′


 = − C̃

2
S

c

A

m




cosβ� cos(u − u�)
− cosβ� sin(u − u�)

sinβ�


 . (3.151)

With these assumptions the W ′-component is a constant. A closer look at
eqns. (I- 6.88) shows that in first-order there are no secular terms in the two
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elements i and Ω (replace the independent argument t by u and integrate
over one revolution). A similar analysis shows that the same is true for the
perturbations of the semi-major axis a. This leaves us with the other three
elements e, ω, and σ as the elements influenced by radiation pressure. As
an example, we focus now on the long-term behavior of the eccentricity e .
Retaining only the terms ∼ e0 we obtain the equation:

ė ≈ 1
n a

{sin v R′ + 2 cos v S′}

= − C̃

4
S

c

A

m

cosβ�
n a

{
3 sin(u� − ω) + sin(u� − 2 v − ω)

}
.

(3.152)

Equation (3.152) may be used to calculate the mean drift of the eccentricity
over one revolution as

¯̇e = − 3 C̃

4
S

c

A

m

cosβ�
na

sin(u� − ω) , (3.153)

which obviously is different from zero. The change of the eccentricity per day
is obtained by multiplying the above expression with the number of seconds
contained in a day:

∆e/day = − 3 C̃

4
S

c

A

m

sin(u� − ω) cosβ�
n a

· 86400 . (3.154)

Using the relation (n a)−1 =
√

a/µ emerging from eqn. (I- 4.41) one expects
that the drift in the eccentricity due to radiation pressure for two satellites
with the same values u� − ω and β� is

¯̇e1

¯̇e2
=
√

a1

a2

A1

m1

m2

A2
, (3.155)

i.e., the satellite with the bigger semi-major axis is expected to show the
larger perturbation due to radiation pressure. For the examples of the GPS
satellite and the TOPEX/Poseidon spacecraft we would expect a ratio
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¯̇eGPS

¯̇eTOPEX
=
√

aGPS

aTOPEX

(
A1

m1

)

GPS

(
m2

A2

)

TOPEX

=

√
26550
7714

0.02
0.008

≈ 4.65 .

(3.156)
A comparison of Figures 3.32 and 3.34 show a good agreement of theory and
experiment.

3.7.4 Radiation Pressure as a Dissipative Force

When speaking of non-gravitational forces one usually also means dissipative
forces, i.e., forces leading to a loss of energy and angular momentum of the
satellite. As the energy is in essence represented by the satellite’s semi-major
axis a, a dissipative force is expected to reduce the satellite’s semi-major axis.
Atmospheric drag is a typical example of a dissipative form.

Apparently direct radiation pressure, as represented by eqn. (3.142) or its
“strap-down” version (3.150), does not give rise to a secular reduction of
the semi-major axis. This is not amazing, because one easily verifies that
the radiation pressure acceleration (3.142) formally may be expressed as the
gradient of the following scalar perturbation function:

Rrad =
C̃ A2♁

2
S

c

A

m

1
|r − r�| . (3.157)

Milani et al. [74] even show explicitly that direct radiation pressure (under
somewhat generalized conditions) does not dissipate energy.

This conclusion, on the other hand, is based on an approximation not taking
into account the effect of light aberration, which was discovered by James
Bradley (1692–1762) around 1728. In non-relativistic approximation (which
is correct up to terms of order 1 in v/c , v being the velocity of the satellite
relative to the Sun), the unit vector along which radiation pressure acts should
actually be defined by

e′
� ≈ e� +

−ṙ� + ṙ

c
= e� +

ṙ

c
− ṙ�

c
, (3.158)

where e� is the geometric direction satellite-Sun, e′� the unit vector taking
into account light aberration, and −ṙ� + ṙ is the velocity of the satellite
w.r.t. the light source, i.e., the Sun. The difference between the correct (i.e.,
aberrated) and the conventional direction of radiation pressure consists of
a short-period component (with the satellite’s revolution period as period)
and a long-period component with an annual period. The modified model for
radiation pressure is now easily obtained from eqn. (3.142) by replacing the
unit vector Sun → satellite according to eqn (3.158):

a′
rad = − C̃

2
A2♁

|r − r�|2
S

c

A

m
e′
� ≈ arad − |arad|

c
ṙ +

|arad|
c

ṙ� . (3.159)
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The right-hand side represents the correct non-relativistic model of radiation
pressure.

From now on, we will only consider the perturbation due to the short-period
correction, because only this component leads to a significant dissipation of
energy. This means that we approximate radiation pressure as:

a′
rad

def= arad − |arad|
c

ṙ . (3.160)

In the approximation (3.160) the radiation pressure effect is the sum of the
conventional term arad and the term δarad

def= − |arad|
c ṙ which, in view of the

fact that

|arad| ≈ C̃

2
S

c

A

m
= const. (3.161)

may be viewed as a constant drag-like acceleration which inevitably must
result in a loss of energy, i.e., in a diminution of the semi-major axis a.

Assuming circular orbits one easily verifies that this effect is ∆a = −1 m per
124 years for the Lageos satellites, ∆a = −1 m per 142 years for Starlette,
and ∆a = −1 m per 1.8 years for GPS satellites using the characteristics
of Table 3.4 (see [11]). The dissipative effect is very small indeed. It should,
however, be taken into account, when discussing the secular behavior of the
semi-major axis of satellites like Lageos. For most practical applications the
model represented by eqn. (3.142) is sufficient, and one can safely say that
direct radiation pressure “almost” is a conservative force.

3.7.5 Advanced Modelling for Radiation Pressure

Apart from the discussion of the effect of light aberration in the previous
paragraph we assumed so far that radiation pressure acts along the line Sun
→ satellite and that the area-to-mass ratio A/m is constant. Both assump-
tions are only crude approximations in the case of active satellites like GPS
satellites, TOPEX/Poseidon, etc. Such satellites have a relatively complex
shape and the satellites’ attitude is dictated by their mission. Usually, the
Earth-observing sensors (altimeter antenna for TOPEX, transmission anten-
nas for GPS satellites) have to point to the center of the Earth, and the solar
panels’ axes have to be perpendicular to the unit vector Sun → satellite (to
optimize the energy absorbed by the panels).

In other words, the satellites’ orientation in inertial space, i.e., their attitude,
has to be known when developing refined models for direct radiation pressure.
In order to demonstrate the effort necessary to meet highest demands of orbit
modelling, we briefly introduce the radiation pressure models developed for
GPS satellites. Only models of this kind allow it to the International GPS
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Service (IGS) to come up with ephemerides for the entire system of GPS
satellites which are accurate to a few centimeters.

Figure I- 3.5 illustrates the body-fixed coordinate system for a GPS satellite.
The satellite’s antenna axis (the z-axis) for obvious reasons always should
point to the center of the Earth, whereas the solar panels axis (the y-axis)
always should be perpendicular to the direction Sun → satellite. The solar
panels are then rotated around the y-axis in order to be perpendicular to
the direction Sun → satellite. The nominal orientation of the z- and the
y-axis is achieved with four momentum wheels in the satellite. The correct
attitude is controlled with so-called horizon sensors (for the alignment of the
z-axis) and Sun sensors (for the alignment of the y-axis and the orientation
of the panels). A feedback loop is used to maintain the nominal attitude in
an iterative process.

The nominal orientation of a GPS satellite is illustrated by Figure 3.36.
It shows the attitude as seen from the Sun. The projection plane is the
Earth’s terminator plane (the plane containing the day/night boundary on
the Earth’s surface). Clearly, the y-axis nominally should always be parallel
to the terminator plane.

Figure 3.36 defines a Cartesian coordinate system (X, Y, Z), which has to
be distinguished from the body-fixed system in Figure I- 3.5: The Y -axis of
the new coordinate system is identical with the y-axis of the satellite-fixed
system in Figure I- 3.5. The Z-axis of the new system represents the direc-
tion Sun → satellite, and the X-axis completes the right-handed Cartesian
coordinate system. According to this definition, the X-axis also is parallel to
the terminator plane.

X t( )

Y t( )

Terminator
plane

Orbital
plane

Earth's
shadow

Fig. 3.36. Attitude of GPS satellite as seen from the Sun

The nominal attitude of the satellite, as illustrated by Figures 3.36, is
achieved only with a limited precision in practice. One has to take into ac-
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count in particular a systematic misalignment of the satellite-fixed y-axis.
Two misalignment scenarios are illustrated in Figure 3.37 (Figure taken from
[40]).

According to Figure 3.30 the linear momentum transferred to the satellite
contains a component parallel to the misaligned y-axis. The total acceleration
vector may be decomposed into the nominal Z- and Y -components. The Y -
component is very small compared to the Z-component, but it may differ
significantly from zero. In order to achieve highest accuracy, it has to be taken
into account. (Observe that the misalignment angles will be much smaller
than shown in Figure 3.37). Due to the fact that this constituent of direct
radiation pressure acts along the solar panels’ axis (which, according to Figure
I- 2.6, is the body-fixed y-axis) the effect is also called y-bias. When it was
first introduced in the 1980s, there was a subtle alternative interpretation of
this term: “Why this bias?”. Meanwhile the y-bias is well established, and
nobody remembers the above interpretation.

Fig. 3.37. Radiation pressure along the y-axis (according to Fliegel, 1992)

As a rule of thumb the y-bias is below 1% of the primary radiation pressure
acceleration. The perturbations due to the y-bias are, however, substantially
different from the effects of direct radiation pressure discussed so far (see
examples given below).

Figure 3.36 may be used as an argument for the existence of “biases” in
the two other directions, because systematic errors in the alignments (and
imperfect knowledge of reflective properties, imperfect orthogonality of axes)
must exist for all axes. A thorough analysis in [12] showed that the following
radiation pressure model is capable of absorbing most effects due to direct
solar radiation:

arad = aRock + X(t)eX + Y (t)eY + Z(t)eZ , (3.162)
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where aRock is the a priori model as documented in [40]. eX , eY , and eZ are
the unit vectors in the three orthogonal directions introduced in Figure 3.36.
According to [12] the three components are defined as

X(t) def= X0 + Xp cos(u + φX) = X0 + Xc cosu + Xs sin u

Y (t) def= Y0 + Yp cos(u + φY ) = Y0 + Yc cosu + Ys sin u

Z(t) def= Z0 + Zp cos(u + φZ) = Z0 + Zc cosu + Zs sin u ,

(3.163)

where u is the satellite’s argument of latitude. The empirical model (3.162,
3.163) is an essential improvement over the predecessor which just allowed
for a scale factor of the a priori constituent aRock and a constant y-bias.

The parameter sets (X0, Xp, φX , . . .) and (X0, Xc, Xs, . . .) are equivalent
from the mathematical point of view. From the point of view of parameter
estimation the second kind of parametrization is preferable, because the pa-
rameters (X0, Xc, Xs, . . .) occur linearly in the perturbing acceleration, thus
in the equations of motion.

In [110] the empirically established parameters of the model (3.162, 3.163)
were analyzed and led to a simpler, yet very accurate a priori model [40].

Program SATORB allows it to use the simplified radiation pressure model
based on eqn. (3.142) or the full empirical model (3.162, 3.163). It is impossi-
ble to address all the subtleties of the more advanced tool (3.163). We confine
ourselves to illustrate the effect of a constant y-bias of Y0 = 1 ·10−9 m/s2. For
an in-depth analysis we refer to [110]. The result of two simulations covering
the year 2000 is contained in Figure 3.38. The results are given for two orbits
which only differ by the initial right ascension of the ascending node. In the
first case the ascending node coincides with the vernal equinox, Ω = 0◦, in
the second case the node is given by Ω = 180◦. The perturbations of the
semi-major axis a are truly remarkable. Annual oscillations of about 55 m
and 80 m are observed. When focussing on a short time interval of a few
days, one gets the impression of a secular increase or decrease of the semi-
major axis a. Such perturbations are similar to those due to atmospheric drag
(except that the semi-major axis may also grow due to the y-bias).

The perturbation may be understood when considering the perturbation of
a circular orbit for β� = 90◦, i.e., for the case when the Sun is in the zenith
of the orbital plane. Figure 3.36 helps understanding that in this case the
y-bias is equivalent to a constant along-track acceleration (the orbit lies in
the terminator plane for β� = 90◦). The maximum elevation |β�| of the Sun
over the orbital plane is limited by the inclination angle of the orbital plane
w.r.t. the ecliptic, i.e., by β� ≤ ĩ. With the special selection of the right
ascension of the ascending node we have ĩ ≈ 55◦ − 23.5◦ = 31.5◦ for Ω ≈ 0◦

and ĩ ≈ 55◦ + 23.5◦ = 78.5◦ for Ω ≈ 180◦. These inclination angles explain
the differences of the amplitudes in the perturbations of the semi-major axis
a in Figure 3.38.
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Fig. 3.38. Mean orbital elements of two GPS-like satellites (Ω ≈ 0◦, 180◦) under
the influence of a y-bias of Y0 = 10−9 m/s2

If the Sun lies in the orbital plane, the perturbation term changes sign twice
per revolution, and there is no net effect in a over one revolution. As the
eclipse “seasons” are easily recognized in Figure 3.38, we see that actually
ȧ ≈ 0 during these time periods.

The periodic perturbations in the eccentricity e are small (but they grow
with increasing eccentricity). They correspond to drag-like perturbations.
The eclipse seasons are clearly visible in the perturbations of the eccentricity.
They take place roughly at the same times within the year in both examples,
but the duration is different. This difference is a consequence of the facts that
the nodes are separated by 180◦ and that (as mentioned) the inclinations
w.r.t. the ecliptic differ significantly.
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The perturbations of the elements i and Ω due to a constant y-bias are
very small and the net effect over one year is almost zero. The perturbations
in the argument of perigee ω are small, as well. It should be mentioned,
however, that the annual amplitudes grow when the eccentricity e of the
orbit is increased.

Hugentobler [57] discussed the possibility to estimate the resonance terms
J22 , J32 , J44, etc. using precise GPS orbits. When such analyses are based
on short time spans of observations (of a few days), it is rather difficult to
separate the perturbations due to resonance and due to a constant y-bias
because both effects generate drifts of very long periods in the semi-major
axis.

3.7.6 Albedo of the Earth

For LEOs the radiation pressure due to the sunlight reflected or re-emitted
from the Earth’s surface must be taken into account. This particular kind of
radiation pressure usually is referred to as albedo radiation pressure. Depend-
ing heavily on the actual distance of the satellite from the Earth’s surface, the
effect is considerably smaller than the direct radiation pressure. For LEOs it
may be as much as ∼ 25%.

Accurate modelling of albedo radiation pressure is rather difficult. It has to
be done by superposition of the accelerations due to all surface elements of
the Earth visible from the satellite. One has to distinguish between radiation
which is first absorbed, then re-emitted, and radiation which is reflected. The
superposition of the accelerations corresponding to the absorbed/re-emitted
part, is probably well taken into account by a radial component R′.

When taking into account the reflected part of the radiation, one has to
distinguish between specular and diffuse reflection. For diffuse reflection it
may be assumed that a surface element dσ reflects solar radiation according to
Lambert’s cosine-law (named after Johann Heinrich Lambert (1728–1777)),
i.e., the surface element has the same apparent brightness independently of
the angle relative to the surface normal. Assuming that the portion as of
the light actually reflected by the surface element is known relative to the
incoming radiation, the acceleration due to the albedo radiation stemming
from a particular surface element is easily calculated. (as is referred to as the
albedo of the surface element). The total effect just is the sum over all surface
elements of the illuminated part of the Earth. A priori models accounting for
albedo radiation are of limited value, because the differences in reflectivity
(albedo) of the surface elements are strongly variable with the geographical
region (land, sea) and with time (e.g., due to clouds).

When estimating empirical model parameters (see Chapter I- 8), such small
effects are probably absorbed by these parameters. The attempt was made
to estimate albedo-scaling parameters using precise orbits of GPS satellites
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in [12]. No clear signals related to the albedo radiation could be found in
this analysis – but it must be admitted that GPS satellites are not the ideal
objects for albedo studies. Albedo radiation pressure definitely has to be
considered when analyzing LEO-orbits.

3.8 Comparison of Perturbations
Acting on Artificial Earth Satellites

In this chapter the discussion of perturbations was confined to the station-
ary part of the Earth’s gravitational field and to the two prominent non-
gravitational perturbations, namely atmospheric drag and radiation pressure.
In this summary we include in addition the perturbations due to the gravi-
tational attraction by the Moon and the Sun and the perturbations due to
the Earth tides. Third-body perturbations will be treated in Chapter 4 and
the tides were discussed in Chapter 2.

Tables 3.7 and 3.8 give an overview of the order of magnitude of the perturb-
ing accelerations and of their impact on an orbit after one day. The integration
was performed with the program SATORB (see Chapter 7 of Part III). Table
3.7 deals with a LEO at a height of 500 km above the Earth’s surface (semi-
major axis a ≈ 6878 km). Table 3.8 deals with a GPS-like satellite, whose
inclination and eccentricity were set to i = 55◦ and e = 0.001 . The two tables
thus refer to orbits with small eccentricities. The other three elements (Ω, ω,
and T0) were all set to zero. The initial epoch was January 1, 2001, 0h UT.

The tables can only reflect orders of magnitude, but not subtleties. We have,
e.g., seen that for short time-spans the perturbation due to the y-bias depends
heavily on the initial epoch. Also, the inclination plays an important role for
most perturbations included in Tables 3.7 and 3.8. Dedicated investigations
are required for special orbit types, e.g., for inclinations i ≈ 0◦ and i ≈ 90◦,
or for resonance studies.

The tables contain the perturbation type in the first, the absolute values of
the perturbing forces in the second column. The values in the second column
were actually computed as (plain) mean values over the time interval of the
integration of one day. In addition the tables contain the values of the effect
(“error”) of the term after one day in the radial, along-track, and out-of-plane
directions. The values are computed as the difference of the perturbed and
the unperturbed orbit (referring to the initial epoch) after one day.

This way of comparing orbits is somewhat problematic, because most pertur-
bations also change the mean motion of a satellite, which in turn implies a
linearly growing difference in the mean anomaly. This is why the orbit error
after one day is given separately for the radial, along-track, and out-of-plane
direction.
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There is an alternative procedure to assess the effect of individual perturba-
tions: an ephemeris including the perturbation term is generated. Then, the
generated tabular positions are considered as pseudo-observations in an or-
bit determination process, where the term under investigation is set to zero.
This elaborate procedure gives a more realistic picture of the relevance of
particular perturbations. The major disadvantage has to be seen in the de-
pendence of the orbit effects on the arc-length. Tables of the type 3.7 and
3.8 are excellent tools for a first analysis of a perturbation problem, but they
should be complemented by procedures based on parameter estimation.

Both Tables 3.7 and 3.8 show the perturbing accelerations and the corre-
sponding impact on the orbit in decreasing order. The term C20 is the domi-
nant perturbation for both, LEOs and satellites in the height of the GPS. A
comparison of the two tables confirms that the influence of C20 decreases dra-
matically with the semi-major axis. Note, that the along-track error reflects
(more or less) the modified Kepler law of the mean motion, and that the out-
of-plane component is due to the regression of the nodes. The analytical treat-
ment of this term using first-order perturbation theory, lets us expect a reduc-
tion of the influence of the term C20 by a factor of about (aGPS/aLEO)2 ≈ 15
in the mean anomaly, and a reduction of (aGPS/aLEO)3.5 ≈ 112 in the node
– but this effect has to be scaled by aGPS/aLEO in order to get the linear
effect in the out-of-plane direction. These orders of magnitude are confirmed
by Tables 3.7 and 3.8. Atmospheric drag is the next important perturbation
after the C20-term for LEOs, whereas the gravitational attractions due to
the Moon and the Sun are in this position at GPS heights. The atmospheric
drag was computed with the values A/m = 0.02 and C = 2, typical values for
“bulky” satellites like, e.g., navigation satellites. But even when reducing this

Table 3.7. Accelerations acting on LEOs

Perturbation Acceleration Orbit Error after one Day

Radial Along Track Out of Plane
[ m/s2 ] [ m ] [ m ] [ m ]

1
r2 -Term 8.42 “∞” “∞” “∞”

Oblateness 1.5 · 10−2 60000 400000 900000
Atmospheric Drag 7.9 · 10−7 150 8900 1.5
Higher Terms of the 2.5 · 10−4 550 3400 820
Earth’s Grav. Field
Lunar Attraction 5.4 · 10−6 2 45 2
Solar Attraction 5.0 · 10−7 1 38 15
Direct Rad. Pressure 9.7 · 10−8 10 24 0
Solid Earth Tides 1.1 · 10−7 0.2 13 1
y-bias 1.0 · 10−9 0.1 4.7 0.0
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value by a factor of 20 (to obtain the typical values for cannonball satellites),
atmospheric drag still is the dominant perturbation after the effects of the
oblateness term.

The higher-order terms of the Earth’s gravitational potential are the third-
important perturbation source for LEOs. LEO orbits are therefore very well
suited for the determination of the gravitational field, provided the influence
of drag can be eliminated (using accelerometers and thrusters) or greatly
reduced (cannonball satellites). Today’s knowledge of these terms is mainly
based on the latter principle. The new gravity missions (GRACE and GOCE)
will be based on the former principle.

Table 3.8. Accelerations acting on GPS satellites

Perturbation Acceleration Orbit Error after one Day

Radial Along Track Out of Plane
[ m/s2 ] [ m ] [ m ] [ m ]

1
r2 -Term 0.57 “∞” “∞” “∞”

Oblateness 5.1 · 10−5 2750 32000 15000
Lunar Attraction 4.5 · 10−6 400 1800 30
Solar Attraction 2 · 10−6 200 1200 400
Higher Terms of the 4.2 · 10−7 60 440 10
Earth’s Grav. Field
Direct Rad. Pressure 9.7 · 10−8 75 180 5
y-bias 1.0 · 10−9 0.9 8.1 0.3
Solid Earth Tides 5.0 · 10−9 0.0 0.4 0.0
Atmospheric Drag — — — —

It is interesting to note that direct radiation pressure is much more relevant
for high-orbiting than for low-orbiting satellites – despite the fact that the
perturbing accelerations are (almost) identical. The perturbation in the ec-
centricity e is the dominating effect in the case of radiation pressure. The ex-
pected ratio for the drifts in e were found to be ¯̇eGPS/¯̇eLEO =

√
aGPS/aLEO .

In order to obtain the ratio of the effect in meters, we have to multiply the ra-
tio of drifts with the ratio of the two semi-major axes. The estimated growth
factor from a LEO satellite to a GPS satellite (with identical satellite prop-
erties) therefore is

√
a3
GPS/a3

LEO ≈ 7.6 , which is close to the value emerging
from the above tables.

Solid Earth tides and the y-bias are the least significant perturbations for
both types of satellites, but both error sources need to be taken into account
when aiming at high-accuracy orbits. LEOs are of course much more sensi-
tive to Earth tides than high-orbiting satellites. The order-of-magnitude also



210 3. Artificial Earth Satellites

shows, however, that satellite orbits are of limited use to develop detailed
tidal models.

Table 3.8 tells that orbit determination is “in principle” a simple task for
high-orbiting satellites. The influence of the high-order terms of the Earth’s
gravitational field is greatly attenuated. If there are no resonance problems
(such as those encountered for GPS satellites), orbit determination is close to
trivial for this class of satellites: only the initial state vector and, depending
on the arc-length envisaged, a few parameters related to radiation pressure
have to be determined.

Considering the fact that the current generation of GPS satellites allows it to
the IGS to establish the polar wobble components with greatest, the UT1–
UTC parameter with fair accuracy, it is not difficult to predict that a system
of drag-free GPS-like satellites would allow the determination of all these
parameters with unprecedented time resolution and an accuracy comparable
to the accuracy achieved by VLBI.



4. Evolution of the Planetary System

Three key issues, namely

• the development of the outer planetary system, in section 4.1,

• the development of the inner planetary system, in section 4.2, and

• the orbits of minor planets, in section 4.3,

are addressed in this chapter. Extensive use is made of the concept of mean
elements, which was introduced in section I- 4.3. Program PLASYS, a central
tool in this chapter, is documented in Chapter 10 of Part III.

The three topics are special cases of the N -body problem. The equations of
motion (I- 3.13) and (I- 3.18) related to the first two topics and the equations
(I- 3.21) governing the third topic were developed in section I- 3.2.

Table 4.1 shows that the total mass of all planets amounts only to about
0.15% of the planetary system’s total mass. The inclinations of the planets’
orbital planes w.r.t. the ecliptic of epoch J2000.0 are small, those of Pluto
and Mercury being somewhat larger. With the exception of the same two
bodies, all planets revolve around the Sun in orbits of small eccentricities. It
should be pointed out, however, that the numerical values, taken from [107],
are strictly valid only for the epoch J2000.0. It will be interesting to see how
representative the values for the semi-major axes, the eccentricities, and the
inclinations are over time periods of millions of years.

It makes sense to distinguish the outer planetary system, consisting of the
planets Jupiter, Saturn, Uranus, Neptune, and Pluto, from the inner system
consisting of Mercury, Venus, Earth, and Mars. The outer planetary system
contains in essence the entire planetary mass. It also contains practically the
entire energy and angular momentum of the planetary system’s point mass
model. As the revolution periods in the outer planetary system (ranging
from about 12 years for Jupiter to about 250 years for Pluto) are one to
two orders of magnitude larger than those in the inner system (ranging from
about three months for Mercury to 1.9 years for Mars), it makes sense to
study the outer planetary system separately from the inner system.

This separation is also indicated from the economical point of view, because
the stepsize in numerical integration is essentially governed by the revolution
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Table 4.1. Properties of the planetary system

Planet Axis a Ecc. e Period P Mass m−1 Incl. i

[ AU ] [ Years ] [ m−1
� ] [ deg ]

Mercury 0.39 0.206 0.24 6023600.00 7.0
Venus 0.72 0.007 0.62 408523.50 3.4
Earth 1.00 0.017 1.00 328900.55 0.0
Mars 1.52 0.093 1.88 3098710.00 1.8

Jupiter 5.20 0.048 11.86 1047.35 1.3
Saturn 9.54 0.056 29.42 3498.00 2.5
Uranus 19.19 0.046 83.75 22960.00 0.8
Neptune 30.06 0.009 163.72 19314.00 1.8
Pluto 39.53 0.249 248.02 130000000.00 17.1

period of the innermost planet (and, to some extent, by its eccentricity). This
is why the outer planetary system is studied in section 4.1 separately from
the development of the inner system in section 4.2, where the development of
the orbital elements of the Earth (actually the barycenter of the Earth-Moon
system) is studied in particular.

Table 4.1 does not contain all members of the planetary system. Comets and
minor planets have to be dealt with, as well. Their total mass is, however,
negligible compared to all planetary masses (except perhaps Pluto’s). It is
therefore fair to assume, that these celestial bodies, despite their big number,
have no significant influence on the key properties (energy, angular momen-
tum, mass) of the total system. As the orbits of many minor planets are
pretty well known today, it is, however, most exciting to study the develop-
ment of these “massless” test particles in the gravitational field of the major
bodies in the planetary system. Section 4.3 is devoted to this topic.

4.1 Development of the Outer Planetary System

The outer planetary system represents a six-body problem with the Sun as
central point mass, and the planets Jupiter, Saturn, Uranus, Neptune, and
Pluto. Subsequently, the outer system will be numerically integrated several
times with program PLASYS (Chapter 10 of Part III), using the input options
of Figures 10.3 and 10.4 (or slight variations thereof). It is a straight forward
procedure to generate tables (files) of osculating or mean elements for all or
for a selection of the celestial bodies involved. It is less trivial to interpret and
visualize the almost frightening amount of data. In this section we proceed
in three steps:

• The orbital elements of Jupiter, derived from an integration of the outer
planetary system, are considered over relatively short time intervals in the
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first step. The development of the osculating elements over a time interval
of a few revolutions is studied before discussing that of the mean elements
over a time period 2000 years.

• The outer planetary system is then integrated over a time span of two mil-
lion years (± one million years from present). The solution properties and
the results of the integration (in graphical form) are discussed. Some of the
key characteristics are made plausible as consequences of the conservation
theorems of the N -body problem.

• In the third step the results of the integration over two million years are
analyzed using the methods of spectral analysis. The associated theory and
the program used for this purpose may be found in Chapter 11 of Part III.

4.1.1 The Orbit of Jupiter Over Short Time Spans

The osculating elements of Jupiter in Figure 4.1 stem from a numerical
integration of the six-body problem including the planets Jupiter, Saturn,
Uranus, Neptune, Pluto, and the Sun. The integration was performed using
the multistep method of order 14 with a constant stepsize of h = 30 days. The
initial conditions on January 1, 2000 were taken from the JPL’s planetary
ephemerides DE200 [111].

The semi-major axis a (Figure 4.1 (top, left)) shows periodic perturbation,
with a peak roughly every 20 years. This period is in turn modulated by a
beat period of about 60 years.

The periods of approximately 20 and 60 years may be easily explained:
The perturbing effects exerted by Saturn on Jupiter are maximum when
the distance between the two planets becomes minimum, which occurs when
the ecliptical longitudes of the two planets coincide. Such encounters, called
conjunctions, between Jupiter and Saturn occur regularly with a period of
P�� def= 2 π

n�−n� =
P� P�

P�−P� ≈ 20 years (n� , n� , P� and P� are the mean side-
real motions and revolution periods of the planets Jupiter and Saturn, respec-
tively; approximate revolution periods P� and P� for the two planets may be
taken from Table 4.1). The mean interval of time between successive conjunc-
tions of a pair of planets is called their synodic period. The synodic period of
the planets Jupiter and Saturn is thus approximately 20 years. The period
of approximately 60 years is a consequence of the near-commensurability of
the revolution periods of Jupiter and Saturn (5P� ≈ 2 P� or 5 · 11.86 ≈ 59 ,
2 · 29.46 ≈ 59). This near-commensurability implies that essentially the same
relative geometry of the three bodies Sun, Jupiter, and Saturn repeats itself
every sixty years.

The osculating eccentricity e (Figure 4.1 (top, right)) is dominated by the
perturbation of 60 years period. Apart from signals with periods of 20 and 60
years, the osculating ecliptical longitude of the node Ω shows a linear growth
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Fig. 4.1. Short-period perturbations of the orbital elements of Jupiter over a time
interval of 120 years

in time, whereas the inclination i slowly decreases (middle row of Figures
4.1). Note, that on this short time scale (only about ten Jupiter and four
Saturn periods) secular cannot be separated from long-period perturbations.
The argument of perihelion ω is dominated by a signal of a period of about
60 years. The mean anomaly σ0 at epoch t0 is somewhat irregular.

In summary we may state that Jupiter’s osculating elements over short peri-
ods of time are governed by short-period perturbations. Short-period pertur-
bations have periods close to the synodical revolution periods of the planets,
of fractions and of (small integer) multiples of these periods.

Graphs of the type of Figure 4.1 might be produced for each of the planets
involved in the integration. It would be in particular interesting to study
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the correlations and particularities in the osculating elements for different
planets. This discussion will be continued in the subsequent sections.

Using the definition of mean elements according to eqn. (I- 4.71) one may
establish the development of Jupiter’s mean orbital elements over 2000 years.
The result may be inspected in Figure 4.2, where the osculating elements of
Jupiter were averaged over time intervals of five revolutions

∆t(t) def= 5 P�(t) , (4.1)

P�(t) being the (osculating) revolution period of Jupiter at time t. Note, that
only by averaging over five (or an entire multiple of five) sidereal revolutions
(corresponding to three synodical revolutions of the pair Jupiter-Saturn),
(almost) all short period effects can be eliminated.

5.2023

5.2024

5.2025

5.2026

5.2027

5.2028

5.2029

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

A
U

t(years)

a

0.048

0.0485

0.049

0.0495

0.05

0.0505

0.051

0.0515

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

t(years)

e

1.275

1.28

1.285

1.29

1.295

1.3

1.305

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

de
g

t(years)

i

100.5

101

101.5

102

102.5

103

103.5

104

104.5

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

de
g

t(years)

node

-86.6

-86.4

-86.2

-86

-85.8

-85.6

-85.4

-85.2

-85

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

de
g

t(years)

perihelion

15

15.5

16

16.5

17

17.5

18

18.5

19

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

de
g

t(years)

sigma

Fig. 4.2. Mean orbital elements of Jupiter over a time interval of 2000 years



216 4. Evolution of the Planetary System

Figure 4.2 clearly shows perturbations with a period of about 900 years in
the semi-major axis a and in the eccentricity e . This period may be explained
by the fact that the linear combination of mean motions

ñ = 5 n� − 2 n� ≈ 5 · 120.45′′ − 2 · 299.13′′ ≈ 3.99′′/day (4.2)

of Jupiter and Saturn almost vanishes. The period associated with the mean
motion ñ ≈ 3.99′′/day gives rise to a period of

P̃ ≈ 890 years . (4.3)

The periodic perturbation in a in turn causes a perturbation in the longitude
of the planet. This perturbation is called the long period (or great) inequality.
It was already observed in the 18th century in the longitudes of Jupiter and
Saturn and correctly explained for the first time by Laplace.

4.1.2 The Integration over Two Million Years in Overview

The general output file in Figure 4.3 summarizes the essential facts of the
integration of the outer planetary system over one million years. It lists the
planets involved, characterizes the averaging interval for the mean elements,
and the sampling rates used to generate the files. The integration interval
and the parameters of the numerical integration may be found in this general
output file together with the values for the first integrals, namely the total
energy and the three components of the total angular momentum.

The program output also includes the matrix of the planets’ sidereal revo-
lution periods (diagonal elements of the matrix) and the synodic revolution
periods, i.e., the time interval between two subsequent conjunctions of two
planets as seen from the Sun. The matrix will be required to interpret the
short-period perturbations.

The power of the multistep procedure is underlined by the fact that only
about 24 evaluations of the differential equations’ right hand sides had to
be performed per year. No mainframe computers are required nowadays to
integrate the outer planetary system over millions of years. Even ten to hun-
dredfold longer time spans may be considered as realistic integration periods
on PCs. The main problem is no longer the processing time, but the orga-
nization of the results. The first attempts to numerically integrate the outer
planetary system required the full computing power of the best mainframe
computers available in the second half of the 20st century.

One million years sounds impressive as an absolute number, but that time
interval is still a small fraction (about 0.02 %) of the estimated age of 4.5
billion years of the planetary system. Figure 4.4 indicates that the system is
quite stable over the time interval considered. All planets except Pluto revolve
within annuli with small inclinations w.r.t. the invariable plane (therefore
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GENERATION OF PLANETARY SYSTEM 22-JUN-01 07:59
*******************************************************************************
NUMBER OF PLANETS: 5

NAME #REV(MEAN ELE) SAMPLING FOR PLANETS-FILE
----------------------------------------------------------

JUPITER 5 1000
SATURN 2 1000
URANUS 1 1000
NEPTUNE 1 1000
PLUTO 1 1000

----------------------------------------------------------
INITIAL EPOCH: 2000 1 1.0 YEAR MONTH DAY
LENGTH (YEARS): 1000000.0 YEARS
INTEGRATION FORWARDS
INITIAL VALUES FROM JPL DE200
NEWTON-EULER EQUATIONS USED
TABULAR INTERVAL: 50.0 DAYS
SAMPLING (PRINT): 1000
INITIAL STEPSIZE: 30.0 DAYS
INTEGRATION METHOD: MULTISTEP
INTEGRATION STEP: FIXED
ORDER OF METHOD: 14
# ITERATIONS/STEP: 1

SIDEREAL AND SYNODIC REVOLUTION PERIODS (Means over 1 Myears)
-------------------------------------------------------------

JUPITER SATURN URANUS NEPTUNE PLUTO
--------------------------------------------------------------
JUPITER | 11.861 19.823 13.805 12.779 12.457
SATURN | 19.823 29.532 45.471 35.959 33.527
URANUS | 13.805 45.471 84.247 171.907 127.632
NEPTUNE | 12.779 35.959 171.907 165.212 495.557
PLUTO | 12.457 33.527 127.632 495.557 247.839

--------------------------------------------------------------

TOTAL ENERGY OF SYSTEM:-0.32180611D-07 M(SUN)*A.U.**2/DAY**2
TOTAL ANGULAR MOMENTUM COMP 1: 0.15953954D-05 M(SUN)*A.U.**2/DAY

COMP 2: 0.50749598D-06 "
COMP 3: 0.60717908D-04 "

CPU 12.413 MIN
FCT CALLS 24350105.

Fig. 4.3. General output of integration of outer planetary system over one million
years

also w.r.t. the plane of the ecliptic J2000.0). The diameters of the planetary
annuli are about 2 a , their widths about 2 a e . Figure 4.4 indicates that, with
the exception of Pluto, all eccentricities are and remain small over the time
interval considered.

Figure 4.4 should show that the perihelion of Pluto lies within Neptune’s
orbit. One might suspect that strong perturbations (eventually even colli-
sions) should occasionally occur if the time-span is long enough. Seemingly,
this is not the case. Thanks to the near-commensurability P� : P� = 3 : 2 of
Neptune’s and Pluto’s revolution periods, Pluto always manages to pass the
perihelion at times when Neptune is far away. The close encounters between
the planets always occur near Pluto’s aphelion. Also, the three-dimensional
illustration in Figure 4.4 shows, that during the entire time-span considered,
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the perihelion of Pluto is high above the plane of the ecliptic (ω oscillates
about 90◦ with a period of about four million years and an amplitude of
about 15◦).

In Chapter I- 3 the invariable or Laplacian plane was defined as the plane
perpendicular to the vector h of total angular momentum of the planetary
system (I- 3.40). It would be natural to relate planetary orbits over long time
periods to this invariable plane. Despite this insight, and following astronom-
ical tradition, we use the ecliptical system J2000.0 as the reference system
for the integration. It is, however, easy to transform the results form the
ecliptical to the “invariable system”, using the (initial) value for the angular
momentum vector h, provided in the general output file (Figure 4.3). For the
integration of the outer planetary system over one million years one finds

h ≈



0.160 · 10−5

0.507 · 10−6

0.607 · 10−4


 = h




cos(Ω̃ − π
2 ) sin ĩ

sin(Ω̃ − π
2 ) sin ĩ

cos ĩ


 = h




sin Ω̃ sin ĩ

− cos Ω̃ sin ĩ

cos ĩ


 ,

(4.4)
where

ĩ is the angle between the ecliptic pole J2000.0 and the pole of the invariable
plane, and

Ω̃ is the ecliptical longitude of the intersection of the invariable plane with
the ecliptic.

With the above equations for ĩ and Ω̃ the (constant) elements of the invariable
plane w.r.t. the system J2000.0 are computed as
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ĩ ≈ 1.58◦ and Ω̃ ≈ 107.6◦ . (4.5)

How reliable are the results stemming from the numerical integration? The
integration was performed with the multistep procedure of order 14 with
a stepsize of h = 30 days. According to the rule of thumb (I- 7.211) this
stepsize makes sense, provided the integration error is governed by the error
of the innermost planet Jupiter with an eccentricity of (at maximum) about
e = 0.05 . We will see below that this order of magnitude for the eccentricity
of Jupiter’s orbit is preserved throughout the entire time interval considered.

Figure 4.5 supports the conclusion that the accuracy of the integration is
sufficient for our purpose: The relative errors in all components of the to-
tal angular momentum vector and in the total energy are very small indeed.
(The units in Figure 4.5 are parts per billion (ppb); this implies, e.g., that the
relative error in the energy is of the order of 10−13, which seems satisfactory).
Figure 4.5 shows that the classical integrals “energy” and “total angular mo-
mentum” are almost constant (as they should be). A few tests with other
stepsizes, other integration orders, and other integration methods show, that
the integration errors are well below the level of perturbations analyzed sub-
sequently. The development of the polar moment of inertia (I- 3.48) which
was introduced as a preserved quantity in a statistical sense shows quite a
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different behavior. The polar moment of inertia oscillates between the limits

I(t) = 0.115 ± 0.007 m� AU2 , (4.6)

where the amplitudes show periodic variations of a period of about 55000
years, which will be recognized as the precession period of Saturn’s perihe-
lion w.r.t. that of Jupiter. It is interesting to inspect the variations of the
polar moment of inertia over shorter time periods, e.g., of thousand years by
performing a dedicated integration over such a short time period (and storing
the invariants at a high rate). One virtually sees all periods governing this
six-body problem in the polar moment of inertia!
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Fig. 4.6. Development of polar moment of inertia I(t) over one million years

Let us now focus on the orbital elements of the five outer planets. Figure 4.7
shows the development of the semi-major axes of Jupiter, Saturn, Uranus, and
Neptune, Figure 4.8 that of Pluto. The perturbations in Pluto’s semi-major
axis exceed those of the other four planets by one to two orders of magnitude
and show a prominent period of about 19400 years. The perturbations are
mainly due to Neptune. In view of the fact, that Pluto does not contribute
much to the system of outer planets, we do not further investigate Pluto’s
orbit. For more information concerning this topic we refer to [94] and [95]
and continue discussing the semi-major axes of the four planets in Figure 4.7.

We clearly see correlations between developments of the semi-major axes of
Jupiter and Saturn on one hand and those between Uranus and Neptune
on the other hand. The perturbations of Jupiter and Saturn basically show
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a “high-frequency” signal (actually, the signal with the period of about 900
years mentioned in the previous section). The amplitude of the perturbations
in a is modulated by a signal with a period of about 54000 years. Qualitatively
a similar behavior results for the semi-major axes of Uranus and Neptune,
but the modulation period exceeds one million years. Obviously, an integra-
tion period of one million years is no luxury to reveal the essential orbital
characteristics of the latter two planets.

Figure 4.9 shows the detailed evolution of Jupiter’s and Saturn’s semi-major
axis over the first 10000 years (starting January 1, 2000) of the integration.
A very net correlation (with correlation coefficient of −1) is observed. The
amplitudes of Saturn’s perturbations in a exceed those of Jupiter by about
one order of magnitude.
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Fig. 4.9. Semi-major axes of Jupiter and Saturn over 10000 years

The characteristics revealed by Figure 4.9 may be explained qualitatively
with the help of the law of energy conservation (I- 3.47). Taking into account
only the Sun, Jupiter and Saturn, eqn. (I- 3.47) is reduced to:

1
2

m� ẋ2
� +

1
2

m� ẋ2� +
1
2

m� ẋ2� − k2 m� m�
r� − k2 m� m�

r� − k2 m� m�
|r� − r�| = E

where the index � stands for the Sun, � for Jupiter, and � for Saturn.

Neglecting all terms proportional to m� m�, using m� = 1 , and taking the
transformation equations (I- 3.36, I- 3.37) between the inertial and heliocen-
tric system into account, we obtain the simple relation
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m�
{

1
2

ṙ2� − k2

r�
}

+ m�
{

1
2

ṙ2� − k2

r�
}

≈ E .

Using the fact that the osculating semi-major axes of Jupiter and Saturn
are defined by the astronomical version (I- 4.20) of the energy conservation
theorem of the two-body problem, the above equation may be written as

− m�
2 a� − m�

2 a� ≈ E . (4.7)

This equation implies that changes in the semi-major axes of Jupiter and
Saturn have to obey the following rule

δa� ≈ − m�
m�

a2�
a2�

δa� ≈ −11.2 δa� , (4.8)

which explains the ratio of the amplitudes seen in Figure 4.9 (not the period
of 900 years, however).

Let us now inspect the development of the orbital planes. Figures 4.10 and
4.11 show that there are considerable variations in the inclinations and in the
longitudes of the nodes (note, that in Figure 4.10 the value ĩ� def= i� − 17◦ is
drawn in order to fit all inclinations into one and the same figure). Again,
a rather strong correlation between corresponding elements of Jupiter and
Saturn is seen in Figures 4.10 and 4.11. It is in particular remarkable, that
their nodes are “only” oscillating and not precessing in the ecliptical reference
system. The perturbations in the inclinations and longitudes of the nodes of
Jupiter and Saturn are periodic with a period of about 49000 years.

The development of the orbital planes becomes much clearer, if the orbital
poles (unit vectors normal to the orbital planes) are projected onto the plane
of the ecliptic. In Figure 4.12 we see this projection for Jupiter and Saturn
(left) and for all five planets (right). Obviously, all orbital poles are precessing
retrograde (seen from the ecliptic pole) around the pole of the invariable
plane, which, according to eqn. (4.5) has the coordinates

(
x1

x2

)
=
(

sin ĩ sin Ω̃

− sin ĩ cos Ω̃

)
=
(

0.026
0.008

)
, (4.9)

which in turn corresponds closely to the center of the precession cones in
Figure 4.12. Basically, all the orbital planes of all planets precess around the
pole of the invariable plane of the system. The variations of the inclinations
w.r.t. the invariable plane are of course smaller than those w.r.t. the plane
of the ecliptic. (These facts underline the statement that, for integrations
over long time-spans, the invariable plane should serve as reference plane).
If the orbital poles of Jupiter and Saturn were time-tagged, we would see
that the projection of the pole of the invariable plane always lies between the
two orbital poles and that the three projected poles almost lie on a straight
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line. If the integration is performed including only the planets Jupiter and
Saturn (see section I- 4.5.1, Figure I- 4.14), these empirical findings are almost
perfectly true.

As in the case of the semi-major axes it is possible to explain this aspect of
the motion of the orbital planes as a consequence of a conservation law, this
time of the law of conservation of the total angular momentum (I- 3.40). If
we include only the Sun, Jupiter and Saturn, in the definition (I- 3.40), we
obtain with the same approximations as those leading to the rule (4.7) the
relation

h
def= m� x�× ẋ� + m� x� × ẋ� + m� x� × ẋ� ≈ m� r� × ṙ� + m� r� × ṙ� .

(4.10)
In the same approximation the total angular momentum associated with the
two-body motions Sun-Jupiter and Sun-Saturn may be written as

m� r� × ṙ� = h� and m� r� × ṙ� = h� , (4.11)

which allows us to say that, when neglecting terms proportional to m� m� ,
the total angular momentum h associated with the three-body motion Sun-
Jupiter-Saturn simply is the sum of the angular momenta associated with
the two-body motions Sun-Jupiter and Sun-Saturn, respectively:

h ≈ h� + h� . (4.12)

Equation (4.12) is a simplified version of eqn. (I- 4.85) leading to Jacobi’s
theorem of the nodes, which might be easily derived from the above equation
as well.
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Equation (4.12) says that (approximately) the vector h, pointing to the pole
of the invariable plane, and the orbit normals h� and h� of Jupiter’s and Sat-
urn’s orbit are coplanar. Figure 4.13 helps to reveal the relationship between
the inclination angle i�� between the orbital planes of Jupiter and Saturn,
and the inclination angles i� and i� of Jupiter’s and Saturn’s orbit w.r.t. the
invariable plane. Assuming that i�� is a small angle, we extract the following

h

h
i

i

h
x

� h

i
�

�

�

�� �
�

Fig. 4.13. Angular momentum geometry

relationships from Figure 4.13:

i�� =
x

h�
i� ≈ x

h� + h� =
h�

h� + h� i��

i� = i�� − i� ≈ h�
h� + h� i�� ,

(4.13)

which is why the ratio of the inclination angles of Jupiter’s and Saturn’s
orbits w.r.t. the invariable plane obeys the rule

i�
i� ≈ h�

h� ≈ m�
m�
√

a�
a� ≈ 2.46 . (4.14)

The latter approximation in rule (4.14) is based on the assumption of a
circular orbit, where

|h| = m |r| |ṙ| = m a a n = m k
√

a .

The rule of thumb (4.14) is pretty well confirmed by Figure 4.12. If the
integration is performed as a pure three-body problem Sun-Jupiter-Saturn,
the above rules are almost perfectly true (see also Figure I- 4.14 in section
I- 4.5.1).

The orbital planes of all planets are precessing (in retrograde sense, seen
from the ecliptic pole) around the pole of the invariable plane. In a fair
approximation the orbital poles of Jupiter and Saturn and the pole of the
invariable plane lie in one and the same plane, and the ratio of the inclination
angles of the orbits of the two planets w.r.t. the invariable plane is constant.
As the inclination angle between the orbits of Jupiter and Saturn does not
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show big perturbations, this implies that the relative geometry of the orbital
planes of Jupiter and Saturn rotates in inertial space almost like a rigid body.

Figure 4.14 shows the perturbations of the eccentricities for the five outer
planetary orbits (note that a value of e�0

def= 0.14 had to be subtracted
from Pluto’s eccentricity to fit all eccentricities into one figure). Figure 4.14
tells, e.g., that the eccentricities of all planets show periodic perturbations
of considerable amplitudes. Saturn’s orbit changes from almost circular (ec-
centricity of about e� ≈ 0.014) to an orbit of considerable eccentricity
(e� ≈ 0.085). Even the orbit of Jupiter shows significant variations within the
limits 0.03 < e� < 0.06 . By chance the eccentricities of Jupiter and Saturn
assume more or less their mean value at present (e� ≈ e� ≈ 0.048 , see Table
4.1). As in the case of the semi-major axes, a pronounced anti-correlation
(correlation coefficient ≈ −1) is evident in the eccentricities of Jupiter and
Saturn. Both planets change their eccentricities periodically with a period
of about 54000 years. If Jupiter assumes its minimum eccentricity of about
e� ≈ 0.03 , the orbit of Saturn has maximum eccentricity of e� ≈ 0.085 and

vice versa. The ratio of the amplitudes is
∆e�
∆e� ≈ 2.4.
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Fig. 4.14. Eccentricities of the outer planets over one million years

It is possible to explain the correlation between the perturbations of Jupiter’s
and Saturn’s eccentricities by the conservation laws of the three-body prob-
lem. To that end we first interpret the development of the semi-latus rectum
p

def= a (1 − e2) for Jupiter and Saturn in Figure 4.15. Afterwards, using the
laws associated with the semi-major axis a and the semi-latus rectum p , it
will be possible to derive a relationship for the eccentricity e , as well.
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Figure 4.15 shows a net correlation (with coefficient −1) of Jupiter’s and
Saturn’s semi-latus rectum. Despite the fact that the numerical values for
the semi-major axes and the semi-latus rectum (due to the small numerical
values for e < 0.1) are the same within 1 % for both planets, Jupiter and
Saturn, the amplitudes of the variations are much larger in the semi-latus
rectum p than in the semi-major axes a (compare Figures 4.9, 4.7 and 4.15).
Also, the ratio ∆a�/∆a� of the amplitudes of the perturbations in the semi-
major axes was established to be about −11 , whereas we only see a factor 5
for the semi-latus rectum p in Figure 4.15.

This different behavior is a consequence of the fact that the variations in the
axes are due to the conservation of the total energy, whereas the variations
in the semi-latus rectum are due to the conservation (of the absolute value)
of the total angular momentum vector: According to eqn. (I- 4.18), the semi-
latus rectum of the conic section is uniquely a function of |r × ṙ| .
Let us establish a theoretical relationship for the variations observed in Fig-
ure 4.15 by scalar multiplication of eqn. (4.12) with h , the total angular
momentum vector of the three-body problem:

h� · h + h� · h = h h� cos i� + h h� cos i� = h2 . (4.15)

By dividing both sides of the equation through the common factor h = |h|
we obtain the scalar relationship

h� cos i� + h� cos i� ≈ h� + h� = h , (4.16)
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where the approximation is only allowed for small inclinations i� and i� –
but this is true for Jupiter and Saturn. The above relation allows us to draw
the conclusion

δh� = − δh� , (4.17)

which essentially says that in the case of a hierarchical and almost coplanar
system the conservation of the absolute value of the angular momentum only
allows for an exchange of the two-body momenta between the “binaries”
Sun-Jupiter and Sun-Saturn.

By virtue of eqn. (I- 4.18) we have

p =
|r × ṙ|

µ
≈ h2

m2
, (4.18)

from where we easily establish the relationship

δp� = − m�
m�
√

a�
a� δp� ≈ − 4.5 δp� (4.19)

for orbits with small eccentricities. This corresponds pretty well to the re-
lationship in Figure 4.15. In view of the fact that the semi-latus rectum is
given by p = a (1 − e2) we have

δp = δa (1 − e2) − 2 a e δe ≈ −2 a e δe , (4.20)

where the latter approximation is justified by comparing Figures 4.7 and 4.15.
Equation (4.20) (and using the fact that e� ≈ e� , which is pretty well met
for the mean values of the eccentricities) allows it to provide an empirical
explanation for the correlation of the perturbations in the eccentricities of
Jupiter and Saturn in Figure 4.14:

δe� =
a�
a�

δp�
δp� δe� = − m�

m�
√

a�
a� δe� ≈ − 2.46 δe� , (4.21)

which is numerically the same relationship as for the inclination i .

Figure 4.16 shows the development of the planets’ ecliptical longitudes ω̃
def=

Ω + ω of perihelia, reflecting the rotation of the perihelia in inertial space.
With the exception of Pluto’s perihelion the perihelia of the outer planets
rotate prograde with different, approximately constant rates. For Saturn we
observe a rotation period of its perihelion of about 45500 years, for Jupiter one
of about 300000 years. This results in a synodic period of Saturn’s perihelion
w.r.t. that of Jupiter of about 54000 years. This is precisely the prominent
period observed in the perturbations of Jupiter’s and Saturn’s semi-major
axes and the eccentricities (see Figures 4.7 and 4.14). (Note: the jump in the
perihelion longitude of Uranus is an artefact, occurring when the osculating
orbit of Uranus was almost circular; it is a non-trivial affair to avoid jumps
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Fig. 4.16. Longitudes Ω + ω of the perihelia of the outer planets

in the case of almost circular orbits, when the perihelion becomes almost
indeterminate).

The development of the eccentricities (Figure 4.14) and of the longitudes of
the perihelia (Figure 4.16) may be combined to illustrate the development of
the Laplace vectors e as defined in Chapter I- 4, eqns. (I- 4.27, I- 4.32).

Figure 4.17 shows the time development of the projections of the Laplace
vector onto the ecliptic for Jupiter and Saturn (left) and for all outer planets
(right) in the conventional ecliptical coordinate system J2000.0. The figure
shows that all Laplace vectors approximately revolve in circles with slowly
varying radii around the origin.

Figures 4.7 to 4.17 give an impression of the time development of the orbital
elements of the outer planets. The system is governed by the Sun and the
two giant planets Jupiter and Saturn. Important peculiarities of Jupiter’s and
Saturn’s orbit were explained using the invariants of the hierarchical three-
body problem Sun-Jupiter-Saturn. There are of course many more fascinating
aspects in the six-body problem of the outer planetary system. The discussion
would differ from what we did here, however: In a very crude approximation
we might now consider the dynamics of the system as defined by the Sun,
Jupiter, and Saturn, and study the motion of the other planets in a predefined
field. In a way, such studies are related to the studies of the orbits of minor
planets (see section 4.3).

The numerical integration performed in this section might be viewed as a
repetition of the work [29], [30] performed by Cohen, Hubbard, and Oester-
winter in the early 1970s. At that time numerical solutions over time periods
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(right) over one million years

of millions of years were very difficult to achieve. Many more numerical ex-
periments were performed since that time. The LONGSTOP project [95],
achieved by an international consortium of scientists, is a brilliant example
for a large-scale numerical integration of the outer planetary system (cover-
ing over one hundred million years). These and other similar experiments are
very well documented in [94].

With the advent of better and faster computers numerical experiments of the
kind presented here become easier and easier. It is most important that the
results are properly visualized and that the main characteristics of the results
are properly understood. The figures and the orders of magnitude presented
in this section hopefully serve that purpose.

4.1.3 Some Results from Spectral Analysis

The time series of osculating or mean elements, of the corresponding orbital
poles, and of the Laplace vectors may be spectrally analyzed using the tools
described in Chapter 11 of Part III. A full analysis (covering all elements of
all planets) is out of the scope of this book. We focus on the semi-major axes
a and the eccentricities e of Jupiter and Saturn on one hand, and of Uranus
and Neptune on the other hand. The precession of the orbital poles and of
the Laplace vectors of the same four planets will be analyzed, as well. It will
be one of the goals to assign some of the spectral lines to the sidereal and/or
synodic periods as given by the matrix in Figure 4.3 or to multiples of these
periods.

We first address short-period effects of the order of (at maximum) few revo-
lutions, then effects of longer periods (from tens of revolutions upwards). In
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principle it would be possible to use the same data set for both, the short-
period and long-period, analysis. This would imply, however, that very long
data files would have to be stored and subsequently analyzed. This is why
a separate integration was performed for the analysis of short-period effects:
The outer planetary system was integrated over ten thousand years only, and
for each of the planets its osculating elements were stored at 100 day inter-
vals. The analysis of longer periods was performed with the data set of mean
elements discussed in the previous section.

Figures 4.18 and 4.19 show the amplitude spectra in the period range 0− 70
years of the semi-major axes and the eccentricities, respectively, for both,
Jupiter and Saturn. All of the major spectral lines in the short-period range
are contained in this interval. Obviously, the frequencies occurring in the
spectra for Jupiter and Saturn are very strongly correlated. This indicates
that all major lines are a consequence of the mutual perturbations between
the two planets. The perturbations due to Uranus and Neptune seemingly do
not have a major impact on the development of the system Jupiter–Saturn.

The above observation is supported by the fact that all major spectral lines
in Figures 4.18 and 4.19 occur at (or near) periods derived from the basic
beat frequency P�� ≈ 19.8 years. In order to recognize this observation easily
in the Figures 4.18 and 4.19, the periods 3 P�� , 3

2 P�� , P�� , 3
4 P�� , 2

5 P�� ,
1
2 P�� , 3

5 P�� , 3
8 P�� , 1

3 P�� , and 3
10 P�� are marked in the two spectra.

It is also interesting to note that the ratio of the amplitudes at two different
frequencies are different for Jupiter and Saturn: For Jupiter, the major short-
period term in the semi-major axis stems from the period P = 1

2 P�� , whereas
in the case of Saturn it stems from the P = P�� period. In the case of the
eccentricity, Jupiter shows the biggest amplitude for the period P = 3 P�� ,
whereas the P = 0.6P��-term gives the major contribution in the case of
Saturn.

Figures 4.20 and 4.21 show the amplitude spectra in the period range 0−250
years of the semi-major axes and the eccentricities, respectively, for both,
Uranus and Neptune. According to the matrix of synodic revolution periods
the synodic revolution period of Uranus and Neptune is P�� = 171.9 years.
Whereas the principal spectral lines for the pair Jupiter – Saturn all could be
derived from the synodical period P�� of that pair, the same is not true for
Uranus and Neptune: The semi-major axis of Uranus is governed by contri-
butions near the planet’s synodic revolution period w.r.t. Jupiter (13 years)
and Saturn (45.5 years). An analogue statement holds for Neptune. A mix-
ture of periods derived from the synodic period P�� = 171.9 years and of
the synodic periods w.r.t. the other planets may be seen in the case of the
spectra for the eccentricities.

Figure 4.22 shows the spectrum of Jupiter’s and Saturn’s eccentricities for
the range of periods between 0 years and 60000 years. The spectrum stems
from the analysis of the integration over one million years. It was cut at 60000
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years, because no significant contributions were observed with greater peri-
ods. The ratio of the amplitudes is (naturally) as discussed in the previous
section. In essence, spectral lines are observed around 54000 years (corre-
sponding to the strong variation of amplitudes in Figure 4.14) and at half
and one third of this period. In addition, a small peak is observed near 1000
years – corresponding to the period of the great inequality.

A similar spectrum with the same frequencies results for the semi-major axes.
Figure 4.23 shows a detailed view of that spectrum around the period of 900
years (the period of the long period inequality). As one can see, this spectral
line has a width of about 100 years and it has a remarkably fine structure. As
opposed to a line which is caused by a single period, and which has a finite
width only due to discretisation (see discussion in Chapter 11 of Part III),
this fine structure is real. More details would become visible, if longer time
series would be analyzed.
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Fig. 4.22. Amplitude spectrum of Jupiter’s and Saturn’s eccentricities

Figure 4.24 actually contains the interesting part of the amplitude spectrum
of the projections of the orbital poles of Jupiter’s and Saturn’s orbital planes.
The method of the analysis may be found in section 11.5 of Chapter 11 of Part
III. The figure documents the regression (negative sign of the frequencies) of
the nodes in the invariable plane with a period of about 49000 years. The
correlation between the motions of the nodes of the two planets comes out
crystal-clear in this figure. The ratio of the amplitudes corresponds to the
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ratio of the inclination angles of the two orbital planes w.r.t. the invariable
plane. Figure 4.25 shows the amplitude spectra of the projections of the vector
e (the Laplace vector) onto the plane of the ecliptic J2000.0 for Jupiter
and Saturn, using the methods specified in section 11.5 of Chapter 11 in
Part III. The figure documents that the spectra are highly correlated. The
motion of the two perihelia may be approximated (almost perfectly) as a
superposition of two prograde circular motions with periods of about 49000
years and 330000 years. The decisive differences are the amplitudes: The
amplitude of the 49000-years term is about 0.046 for Saturn, about 0.014 for
Jupiter, whereas the amplitude of the 330000-years term is about 0.030 for
Saturn and about 0.042 for Jupiter. These spectra illustrate the evolution of
the nodes in Figure 4.16.

Let us conclude these studies of the spectral behavior of planetary orbits
resulting from the integration over one million years with Figure 4.26. It
shows that the long-period perturbations of the pair Uranus and Neptune
are highly correlated, as well. Let us note in particular that the peak near
4300 years is the equivalent of the great inequality of Jupiter and Saturn.
This long period inequality of the planets Uranus and Neptune is due to the
near-commensurability of revolution periods of

P�
P� =

165.2
84.247

= 1.961 ≈ 2 . (4.22)
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The corresponding beat period is

P̃ =
P� P�

2 P� − P� ≈ 4243 years . (4.23)
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Fig. 4.26. Amplitude spectra of the semi-major axes of Uranus and Neptune

4.2 Development of the Inner Planetary System

In order to gain some insight into the development of the inner planetary
system around present time, two integrations of the entire planetary system
(without the planets Mercury and Pluto) were performed. The initial epoch
for both integrations was January 1, 2000. The first integration covered the
time interval of the next 250000 years (forward integration) from the initial
epoch, the other the interval of the past 250000 years (backwards integration).
Figure 4.27 contains the general output file produced by program PLASYS
for the forward integration.

The numerical integration was performed with the same multistep method
as that for the integration of the outer planetary system (compare Figure
4.3), but, due to the revolution period of Venus of only 225 days, a (constant)
stepsize of only five days (corresponding to 45 steps per revolution for Venus)
was chosen. The rule of thumb (I- 7.211) would actually ask for 77 steps per
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revolution. A relatively short integration interval and not too demanding
accuracy requirements justify this choice.

As expected, the number of function calls is about a factor of 1.5 larger than
the corresponding number for the outer planetary system (interval length
reduced by a factor of four, stepsize reduced by a factor of six). The processing
time required is still roughly by a factor of two higher than for the integration
of the outer planetary system (where the time interval is a factor of four
longer). This is caused by the circumstance that instead of integrating the
orbits of five planets we are now integrating the orbits of seven bodies.

A comparison of the total energy and the total angular momentum of the
systems integrated in Figures 4.3 and 4.27 shows clearly, that these quantities
in essence are defined by the outer planetary system.

Figure 4.27 indicates that mean elements, with averaging periods of ten rev-
olutions for each planet, were produced.

According to the matrix of sidereal and synodic periods in Figure 4.27 the
revolution periods of Venus and Earth are almost commensurable

P♁
P♀ =

1
0.615

= 1.63 ≈ 5
3

. (4.24)

Therefore, the same geometry of the triangle Sun–Earth–Venus is always
repeated after three sidereal years, corresponding to five sidereal revolutions
of Venus. According to the experience gained one might expect “long-period”
perturbations with a period of

P̃ =
P♁ P♀

5 P♀ − 3 P♁ ≈ 8.2 years . (4.25)

This particular commensurability might be studied by performing dedicated
integrations over relatively short time intervals (let us say 10000 years) and
by analyzing the resulting osculating elements stored at a relatively high rate
(let us say every 50 − 100 days).

Table 4.1 documents furthermore that Venus and Earth, with a mass ratio
of m♀/m♁ ≈ 0.8 , are the dominating masses of the inner planetary system.
Mars is almost by a factor of ten less massive than the Earth. Therefore, one
would expect that the development of the inner planetary system is governed
by the interactions between the two planets Venus and Earth.

This guess is in the first place confirmed by Figure 4.28, showing the eccen-
tricities of Venus, Earth, and Mars in the time interval

[ 250000 B.C., 250000 A.D. ] .

Mars, with a mean eccentricity and variations of about e♂ ≈ 0.09± 0.03 , at
first sight seems to develop rather independently of the two inner planets.
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GENERATION OF PLANETARY SYSTEM 05-JUL-01 15:11
*******************************************************************************

NAME #REV(MEAN ELE) SAMPLING FOR PLANETS-FILE
----------------------------------------------------------

VENUS 10 0
EARTH 10 0
MARS 10 0
...

----------------------------------------------------------
INITIAL EPOCH: 2000 1 1.0 YEAR MONTH DAY
LENGTH (YEARS): 250000.0 YEARS
INTEGRATION FORWARDS

INITIAL VALUES FROM JPL DE200
NEWTON-EULER EQUATIONS USED

TABULAR INTERVAL: 20.0 DAYS
SAMPLING (PRINT): 1000000
INITIAL STEPSIZE: 5.0 DAYS
INTEGRATION METHOD: MULTISTEP
INTEGRATION STEP: FIXED
ORDER OF METHOD: 14
# ITERATIONS/STEP: 1

SIDEREAL AND SYNODIC REVOLUTION PERIODS
---------------------------------------

VENUS EARTH MARS JUPITER SATURN URANUS NEPTUNE
----------------------------------------------------------------------------------
VENUS | 0.615 1.599 0.914 0.649 0.628 0.620 0.617
EARTH | 1.599 1.000 2.135 1.092 1.035 1.012 1.006
MARS | 0.914 2.135 1.881 2.235 2.009 1.924 1.902
JUPITER | 0.649 1.092 2.235 11.861 19.823 13.805 12.779
SATURN | 0.628 1.035 2.009 19.823 29.532 45.469 35.959
URANUS | 0.620 1.012 1.924 13.805 45.469 84.252 171.916
NEPTUNE | 0.617 1.006 1.902 12.779 35.959 171.916 165.223
----------------------------------------------------------------------------------

TOTAL ENERGY OF SYSTEM:-0.33162740D-07 M(SUN)*A.U.**2/DAY**2
TOTAL ANGULAR MOMENTUM COMP 1: 0.15974171D-05 M(SUN)*A.U.**2/DAY

COMP 2: 0.50676733D-06 "
COMP 3: 0.60812243D-04 "

CPU 25.131 MIN
FCT CALLS 36525105.

Fig. 4.27. General output of integration of planetary system over next 250000
years

The principal period of about 90000 years in its eccentricity seems to be
common to the eccentricities of Venus and Mars, as well.

The orbital eccentricities of Venus and Earth are strongly correlated. Two
strong signals can be distinguished: A common variation with a period of
about 400000 years with an amplitude of about 0.02 and a variation of a
shorter period of about 90000 years with variable amplitudes of a similar
order of magnitude (the one also showing up in the eccentricity of Mars).

Figure 4.29 shows the inclinations of the three planets w.r.t. the ecliptical
plane J2000.0. Obviously, there is a strong anti-correlation of the orbital
inclinations of Venus and Earth (reminding us of the one observed in Figure
4.10 for Jupiter and Saturn).



4.2 Development of the Inner Planetary System 241

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-250000-200000-150000-100000 -50000 0 50000 100000 150000 200000 250000

 

Years

 

Earth, B.C.
Earth, A.D

Venus, B.C.
Venus, A.D

Mars, B.C.
Mars, A.D

Fig. 4.28. Eccentricities of Venus, Earth, and Mars between -250000 BC and
+250000 AD

0

1

2

3

4

5

6

-250000 -200000 -150000 -100000 -50000 0 50000 100000 150000 200000 250000

de
g

Years

 

Earth, B.C.
Earth, A.D

Venus, B.C.
Venus, A.D

Mars, B.C.
Mars, A.D

Fig. 4.29. Orbital inclinations (J2000.0) of Venus, Earth, and Mars between -
250000 BC and +250000 AD



242 4. Evolution of the Planetary System

Both, the inclinations of Venus and Earth w.r.t. the ecliptic J2000.0, show
periodic variations with amplitudes up to about four degrees in the time
interval of half a million years around present time. The period of these
variations is of the order of 70000 years.

In Figure 4.30 the ecliptical longitudes Ω of the nodes of the orbital planes
of Venus, Earth, and Mars may be inspected. The nodes rotate prograde
in the ecliptical system (as opposed to Jupiter’s and Saturn’s node, which
“only” oscillate in this system). Obviously the rotation rates for the nodes of
Venus and Earth are the same over long time periods, whereas Mars’s node
is rotating about 2-3 times faster.
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Fig. 4.30. Orbital nodes (J2000.0) of Venus, Earth, and Mars between -250000
BC and +250000 AD

Figures 4.31 and 4.32 give much better insight into the actual motion of
the orbital planes of Earth, Venus and Mars. Obviously the orbital poles
perform in good approximation a precession around the pole of the invariable
plane (the coordinates of which are defined in sufficient approximation by
eqn. (4.9)). The radius of the precessional motion shows strong periodic time
variations.

Figures 4.31 and 4.32 should be compared to Figure 4.12. Obviously, the
poles of the three orbital planes rotate (in the average over long time periods)
in good approximation around the pole of the invariable plane. Clearly, the
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variations of the “circles” of the orbital poles around the pole of the invariable
plane is much larger than in the case of the outer planets.

In section 4.1 Figure 4.12 could be explained as a consequence of the conser-
vation of the total angular momentum vector of the system. Is it possible to
explain Figures 4.31 and 4.32 along the same lines? The answer is definitely
“yes”. If the outer planets are “turned off” (in the simulation), the resulting
precessions of the orbital planes are much better defined: As in Figure 4.12,
the orbit normals would precess in well-defined rings around the pole of the
invariable plane.

In this simplified version all the statements and rules of thumb, which were
established for the pair of planets Jupiter and Saturn may be transcribed to
the dominating pair of planets of the inner planetary system, namely Venus
and Earth. The pronounced slow variation of the radius of the precession
cone is a consequence of the perturbations by the outer planetary system, by
Jupiter in particular.

Let us mention one peculiarity of the orbit of Mars. Figures 4.32 and 4.29
show a significant difference in the behavior for the backward and forward
integration: whereas Mars’s inclination w.r.t. the ecliptic (or w.r.t. the invari-
able plane) was rather small (0◦−3◦) during the years B.C., these inclinations
will increase significantly over the next 300000 years (up to about 6◦). This
change of the inclination is periodic with a very long period, however. The
integration interval interval of half a million years is not sufficiently long
to derive a reliable estimate of this period. More insight into the nature of
Mars’s inclination will be gained by studying the spectrum of the orbital pole
of Mars (a topic addressed below).

Figures 4.33 and 4.34 illustrate the motion of the Laplace vectors in the
plane of the ecliptic. We observe a prograde motion of all three vectors of
the inner planets. The motions seem to be rather complex. The spectra will
reveal, however, that these seemingly complex motions may be interpreted
as a superposition of only two periodic, prograde circular motions.

Let us now further refine the discussion of the development of the inner
planetary system using spectral analysis as a tool. Figure 4.35 shows the
spectra of the semi-major axes of the Earth and Venus generated with the
entire data set between 250000 B.C. and 250000 A.D.

The first remarkable aspect of the spectra is that there are no significant
contributions with periods > 250 years. This is also the reason why the
time development of the semi-major axes was not illustrated by a figure.
The second remarkable aspect of the spectra in Figure 4.35 is the scale. The
amplitudes are of the order of a few 10−7 AU . Note, that mean elements
(averaged over ten periods for both planets) were analyzed in Figures 4.35.
If oscillating elements were studied, much larger terms would occur. Figure
4.35 is actually good news for the development of life on Earth: No climatic
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changes due to long-period variations of the inner planets’ semi-major axes
have to be expected.

Figure 4.36 shows the amplitude spectra associated with the projection on
the plane of the ecliptic of the orbital poles of Venus, Earth and Mars. Despite
the limited resolution – which might be improved by extending the integra-
tion interval – one clearly sees that the three spectra are of a similar and
simple structure: There is a strong contribution with a period of about 70000
years. The negative sign expresses the fact that the circular motion with the
amplitudes of 0.026 , 0.031 , and 0.033 , corresponding to inclinations of 1.5◦,
1.8◦, and 1.9◦, takes place in the retrograde (clockwise) sense of revolution. It
corresponds to the well known linear regression of the nodes in Figure 4.30.

A term of shorter period, of about 50000 years, is barely visible in the spec-
trum of Venus, it clearly shows up in the spectrum of the Earth, it is promi-
nent for the spectrum related to Mars. This spectral line is caused by Jupiter’s
perturbations. It explains the strange motion of the orbital pole of Mars in
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Figure 4.32 as the superposition of the two circular motions with periods of
P7 = 70000 and at P5 = 50000 years. The beat period of the two signals is

P̃ =
P7 P5

P7 − P5
≈ 175000 years . (4.26)

This also explains Mars’s seemingly different behavior in the B.C. and A.D.
time spans. The ratio of the amplitudes in minimum and maximum are ex-
pected to be

i♂max

i♂min

=
0.033 + 0.014
0.033 − 0.013

≈ 2.4 , (4.27)

a value which underestimates the actually observed ratio in Figure 4.32. A
better resolution of the spectrum would improve the situation.

The amplitude spectra for the projections of the Laplace vectors on the eclip-
tic are illustrated by Figure 4.37. The spectrum for Mars is clearly the sim-
plest one. It is dominated by one spectral line with a period of about 70000
years and an amplitude of about 0.08 - in other words, this single line contains
almost the entire power of the spectrum.

In view of Figure 4.33 it is not surprising that the spectra for Venus and
Earth are more complex. Apart from the line around 70000 years, caused by
the perturbations of the big outer planets, we observe a strong contribution
around 170000 years. It must be mentioned, however, that the time series



248 4. Evolution of the Planetary System

0

0.005

0.01

0.015

0.02

0.025

0 50000 100000 150000 200000 250000 300000

 

Years

 

l(Earth) l(Venus)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 50000 100000 150000 200000 250000 300000

 

Years

 

l(Mars)
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Mars on the ecliptic J2000.0

analyzed is too short (or it is not dense enough) to give a good resolution for
such long periods (remember that the time series covers “only” an interval of
half a million years). The principal characteristics in Figure 4.33 are, however,
quite well explained by the superposition of the two prominent prograde
circular motions in the spectra in Figure 4.37.

The above spectra show that the character of a motion is often easier to
understand, if a physical phenomenon is studied in the frequency domain
(period domain) and not in the time domain.

Let us conclude this section by a few remarks concerning the relations be-
tween the long-term evolution of the Earth’s orbital elements and the Earth’s
climate.

In the first half of the 20th century Milutin Milankovitch (1879–1958) tried to
explain long-term climatic variations on Earth, glaciation periods (“ice ages”)
in particular, by long-period variations of the (mean) orbital elements of the
Earth. There is strong geological evidence, that quite a few of these glaciation
periods (interrupted by warmer periods) occurred within the previous, let us
say, 1–2 million years. Today, the time development of the Earth’s orbital
elements may be established quite well by numerical methods of the kind
used here, or by advanced analytical theories, or by a combination of both.

The knowledge of the long-term behavior of these elements was very incom-
plete at Milankovitch’s life-time (the best source of information at that time
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probably was the work of Simon Newcomb (1835–1909) condensed in his Ta-
bles of the Planets). Milankovitch’s theory was very deductive in nature, and
it was conducted in the time domain. Most of his conclusions are no longer
supported by modern protagonists of this fascinating interdisciplinary field
of science. Modern theories analyze the frequency domain of the climate his-
tory and the development of the Earth’s orbital elements, and correlate the
spectra of the two seemingly independent quantities. These correlations are
interesting, and, at least at first sight, they seem to be quite convincing. Pro-
tagonists of this revival of Milankovitch’s attempt to explain the ice ages by
Celestial Mechanics are A. L. Berger and J. Imbrie. For more information we
refer to their oeuvre, e.g., to [8], [6], [7], and [60].

4.3 Minor Planets

4.3.1 Observational Basis

More than 100000 so-called minor planets or asteroids are known today. Most
of these objects have semi-major axes of 1.52 < a ≤ 5.20 AU, i.e., between
those of Mars and Jupiter. This does not characterize the “true” population,
because for an observer on Earth (or in the Earth-near space) the apparent
magnitude of these objects is a function of their geocentric distance. The
observation of minor planets is internationally coordinated, and the compu-
tation of orbits is performed at the MPC (Minor Planet Center) (60 Garden
St., Cambridge MA 02138 USA) of the IAU.

The MPC offers many services. Among others, it maintains and updates
the file “MPCORB.DAT”, and makes it electronically available at its web-
site (ftp://cfa-ftp.harvard.edu/pub/MPCORB/MPCORB.DAT). According
to the file header, MPCORB.DAT contains “published orbital elements for all
numbered and unnumbered multi-opposition minor planets for which it is pos-
sible to make reasonable predictions. It also includes published elements for
recent one-opposition minor planets and is intended to be complete through
the last issued Daily Orbit Update MPEC”.

For a member of an institute contributing to the data base of the MPC, it
is a pleasure to reproduce here the statement contained in the header of the
file “MPCORB.DAT”: “The work of the individual astrometric observers,
without whom none of the work of the MPC would be possible, is gratefully
acknowledged.” The review of the observational material in this section is
based on the same work.

Figure 4.38 shows the projection of all minor planets positions on the plane of
the ecliptic J2000.0 as of July 1, 2001. The figure is based on the MPC’s file
MPCORB.DAT dated March 4, 2001. In order to facilitate the orientation,
the (osculating) orbital curves of the planets (Earth, Mars,) Jupiter, Saturn,
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Uranus, and Neptune are also drawn in Figure 4.38, and the planetary po-
sitions on July 1, 2001 are marked, as well. The positions were computed
using the osculating orbital elements published in the file “MPCORB.DAT”
without taking perturbations into account.

There is a clear concentration of the known minor planets between the orbits
of Mars and Jupiter. An outer belt, called Kuiper-belt or Edgeworth-Kuiper-
belt, mainly beyond the orbit of Saturn, is clearly visible as well (named after
the discoverers Kenneth Edgeworth (1880–1972) and Gerard Peter Kuiper
(1905–1973). Objects in this outer belt were only detected in the second half
of the twentieth century. The first one, Chiron, as already mentioned in the in-
troductory chapter, was detected by Charles T. Kowal in 1977. One should be
aware of the fact, that due to the difficulty to observe the faint and very slowly
moving objects in the outer belt, Figure 4.38 does not even approximately re-
flect the actual number and distribution of these objects. Most of the members
of the Edgeworth-Kuiper belt have orbits outside Neptune’s trajectory. This
is why these objects are also referred to as TNO (Trans-Neptunian Objects).

Figure 4.39 shows the “classical” minor planets in a rectangular window of
±6 AU centered at the Sun. The orbits of Earth, Mars and Jupiter, their
positions and that of the Sun as of July 1, 2001 are also marked in Figure 4.39.

Figure 4.39 illustrates the concentration of minor planets in the asteroid belt
between Mars and Jupiter. With the remarkable exception of two groups
of minor planets at a heliocentric distance of about 5.2 AU (Jupiter’s dis-
tance from the Sun), and separated from Jupiter by the heliocentric angle of
about 60◦ ± 30◦, the zones between heliocentric distances 4 < r < 5 AU and
1.5 < r < 2 are almost empty compared to the density in the other parts of
the belt. It is safe to state that these “zones of avoidance” were created by
the gravitational effects of Jupiter and Mars over long time periods.

Figure 4.40 shows the projection of the osculating aphelia on July 1, 2001 on
the plane of the ecliptic of all objects in Figure 4.38. The projection of the
osculating planetary aphelia and the circles with the radii of the projected
planetary aphelia of the major planets should help to interpret the figure,
which is oriented to have Jupiter’s osculating perihelion on the positive x-
axis. In this scale one can only distinguish two rings, one between Mars
and Jupiter (which seems to be structured as well) and one with a radius
comparable to Pluto’s heliocentric aphelion distance.

The structure of the distribution of the aphelia of minor planets between Mars
and Jupiter is better visible in Figure 4.41. We observe a ring-like structure
and a clear asymmetry w.r.t. Jupiter’s perihelion, which lies on the positive
(horizontal) x-axis of Figure 4.41. This implies that Jupiter’s aphelion lies on
the negative x-axis. The aphelia of the minor planets seem to be concentrated
near Jupiter’s aphelion, as well.

The histogram of aphelia in Figure 4.42 confirms this observation. There is a
clear preference of the minor planets to have their aphelia close to Jupiter’s
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Fig. 4.38. Minor planets and planets Jupiter – Pluto (indicated by “+”) on July
1, 2001 (from the MPC)

aphelion. There are about three times as many minor planets with aphelia
near Jupiter’s aphelion as near Jupiter’s perihelion. This preference minimizes
the perturbations during the times of closest approach between a minor planet
and Jupiter: If the aphelion of Jupiter agrees with the minor planet’s aphelion,
the minimum distance ∆min between the two bodies varies within the limits

∆min = a�− a ± (a� e� − a e) , (4.28)

under the assumption that the two orbits are elliptic and coplanar. Under
the same assumption this minimum distance varies between the limits

∆min = a�− a ± (a� e� + a e) , (4.29)

if the perihelion of one body coincides with the aphelion of the other body.
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Fig. 4.39. Minor planets and Sun, Earth, Mars, Jupiter (indicated by “+”) on
July 1, 2001 (from the MPC)

Figure 4.42 shows that minor planets try to avoid the more violent perturbing
situation. Figure 4.43 gives still more insight into the structure of the asteroid
belt. The histogram of the semi-major axes (given as a function of the semi-
major axis (top) and as a function of the revolution period (bottom)) shows
the number of minor planets per ∆a = 0.002 AU .

The first histogram shows that there are only very few minor planets with
semi-major axes a > 3.3 AU , corresponding to a revolution period of U =
1
2 P� , P� being Jupiter’s revolution period. There are only two small groups
of asteroids, one at a ≈ 4 AU corresponding to P� : P ≈ 3 : 2 and one
at a ≈ 5.2 AU corresponding to P� : P ≈ 1 , which could find a “modus
vivendi” with Jupiter. The former group of asteroids is called the the Hilda
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Fig. 4.40. Aphelia of the minor planets in 2001 in an ecliptical coordinate system
with Jupiter’s perihelion on the positive x-axis, aphelia of planets indicated by “+”
(from the MPC)

group, named after one of its members. The latter group, very well visible in
Figure 4.39, is called the Trojan group, or simply the Trojans, because the
minor planets in this group are named after heroes of the Trojan war (the
minor planets named after Greek and Trojan heroes are, by the way, with
few exceptions (prisoners?) separated by Jupiter).

Figure 4.39 and the histogram 4.43 prove that the stationary triangular so-
lutions of the planetary problème restreint Sun-Jupiter-minor planet, which
was discussed in section I- 4.5.2 actually exist in reality and that the orbits
associated with them are highly stable.
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Fig. 4.41. Aphelia of the minor planets in 2001 in an ecliptical coordinate system
with Jupiter’s perihelion on the positive x-axis, aphelia of planets indicated by “+”
(from the MPC)

The histograms 4.43 reveal other interesting characteristics: Apart from the
groups mentioned there are gaps in the distribution of minor planets, the most
remarkable ones being at a ≈ 2 AU , corresponding to P� : P ≈ 4 : 1 , at
a ≈ 2.5 AU , corresponding to P� : P ≈ 3 : 1 , and at a ≈ 2.8 , corresponding
to P� : P ≈ 5 : 2 . The gap at P� : P ≈ 2 : 1 is also called the Hecuba
gap after a minor planet very close to that gap (osculating semi-major axis
a = 3.2387771 AU on April 1, 2001).

The data set of about 104000 minor planets available today through the
MPC and used in Figure 4.43 makes it crystal-clear that the gaps in the
distribution, but also the mentioned clusters (Hilda, Trojans) correspond to
revolution periods which are commensurable with Jupiter’s revolution period,
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Fig. 4.43. Histogram of the minor planets as a function of the semi-major axes
(top) and of the revolution periods (in units of Jupiter’s revolution period)
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i.e., for which
P

P� ≈ k1

k2
,

where k1 and k2 are small integer numbers.

From samples of 88 minor planets known in 1866 and 146 in 1875, the Amer-
ican astronomer Daniel Kirkwood (1814–1895) concluded that there are gaps
and “clusters”, and he postulated their correlation with commensurabilities of
the minor planets’ and Jupiter’s revolution periods. This certainly is a proud
achievement requiring a fair portion of imagination. (Readers not agreeing
with this statement are invited to randomly draw a sample of 100 minor
planets in the data set “MPCORB.DAT” and to produce the histogram cor-
responding to Figure 4.43). In honour of Kirkwood, the gaps in the histograms
in Figure 4.43 are called Kirkwood gaps.

The aspect of commensurability will be further addressed below. The simple
and obvious question, whether the gaps may be uniquely explained through
gravitational perturbations exerted by Jupiter (and possibly other planets),
is not a trivial one to answer.

The osculating semi-major axes and the inclinations w.r.t. the invariable
plane were plotted in Figure 4.44. The figure shows that there are clusters,
called families, of asteroids in the a, i-plane. The best-known families are
named in Figure 4.44. It would be preferable to use not the osculating el-
ements but another type of elements (more representative over long time
intervals), the so-called proper elements (see section 4.3.3).

When analyzing the elements of the known minor planets around 1918, the
Japanese astronomer Kiyotsugu Hirayama (1874–1943) [56] identified and
named some of these families, and he postulated the common origin of their
members. As a matter of fact, Figure 4.44 may be very well explained by
a fragmentation of larger bodies. If the fragmentation took place by colli-
sions in the asteroid belt with moderate relative velocities, one may assume
that the orbital elements of all fragments originally were very close to the
elements of the proto-planetoid before fragmentation. Perturbations rather
rapidly destroy the similarity of the elements Ω , ω , and σ0 of the fragments
and leave the elements a , i , and e for an identification of the families. Not
all the groups visible in Figure 4.44 may be explained by fragmentation. The
existence of the Hilda group and of the Trojans may be explained as a con-
sequence of an “ordinary” orbit development. A more complete treatment of
the topic of families of minor planets may be found in [42] and in [80].

Figure 4.45 shows the projection of the orbital poles (unit vectors normal
to the orbital plane) on the plane of the ecliptic J2000.0. Rings are clearly
visible. These rings seem to be (close to) concentric with the projection of
the pole of the invariable plane with coordinates (x, y) = (0.026, 0.008) . This
fact supports the existence of families: One would expect the orbital poles of
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Fig. 4.44. Inclinations of the orbits of the minor planets as a function of the
semi-major axes

the fragments to perform a precession in a concentric ring about the pole of
the invariable plane.

Figure 4.46 gives the histogram of inclinations (w.r.t. the invariable plane)
in the range 0◦ ≤ i ≤ 30◦. The ring structure, already observed in Figure
4.45, is clearly seen in this histogram as well. It is interesting that the mean
inclination is not near imean ≈ 0◦, but rather imean ≈ 5◦. (Note, that the
inclinations w.r.t. the invariable plane are shown in Figure 4.46).

The histogram of eccentricities in Figure 4.47 also shows that the distribution
of eccentricities is rather broad. In view of the fact that the major planets all
have orbits with small eccentricities, it is surprising that the mean eccentricity
is somewhere close to emean ≈ 0.15 . Admittedly, it would be better to use
mean elements in Figure 4.47. The main findings would, however, be the
same.

4.3.2 Development of an “Ordinary” Minor Planet

In order to gain some insight into the development of the orbital elements
of a presumably ”ordinary” minor planet, objects with a revolution period
P = 0.385 P� were integrated over a time period of one million years, starting
from the initial epoch t0 = Jan 1, 2000. The integration was performed with
program PLASYS (see Chapter 10 of Part III), using a multistep method of
order 14 with a stepsize of 30 days.
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Fig. 4.45. Orbital poles of the minor planets (from the MPC)

Figure 4.48 shows the mean semi-major axes (the osculating elements were
averaged over ten revolution periods) of four such bodies lying in the invari-
able plane (inclination i = 1.58◦, longitude of the ascending node Ω = 107.6◦,
see eqn. (4.5)). The osculating eccentricities were chosen to be e = 0 in all
four cases, and the time of perihelion passage was set to zero, i.e., made
to coincide with Jupiter’s time of perihelion. The four simulations differed
by the initial position within the orbit, which was defined by the eclipti-
cal longitude of the perihelion (w.r.t. Jupiter’s perihelion). It was set to
ω̃ = ω̃� + (0◦, 90◦, 180◦, 270◦), where ω̃ = Ω + ω and ω̃� = Ω� + ω� are
the ecliptical longitudes of the perihelia of the minor planet and Jupiter, re-
spectively. Figure 4.48 shows that the mean values and the amplitudes of the
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Fig. 4.46. Histogram of minor planets’ inclinations w.r.t. invariable plane
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Fig. 4.47. Histogram of minor planets’ osculating eccentricities
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Fig. 4.48. Mean semi-major axes over one million years of four test particles
with osculating semi-major axis a0 = 2.752 AU (P = 0.385 P�) and osculating
eccentricity e0 = 0 on Jan 1, 2000; osculating longitudes of perihelia (ω̃ − ω̃�)0 =
0◦, 90◦, 180◦, 270◦
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periodic variations are functions of the initial angle ω̃. The differences and
the variations are small, however. With a semi-major axis of a ≈ 2.752 AU,
corresponding to a revolution period U = 0.385 P� ≈ 4.57 years, our test
objects really are “ordinary” objects.

Figure 4.49, showing the development of the mean eccentricities of the same
four test objects as in Figure 4.48, is more interesting. Despite the fact that
all eccentricities were initially zero, the mean eccentricities show rather large
periodic variations within the limits 0.0 < e < 0.085 . Similar patterns result
for all four cases.
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Fig. 4.49. Mean eccentricities over one million years of four minor planets with os-
culating semi-major axis a0 = 2.752 AU (P = 0.385 P�) and osculating eccentricity
e0 = 0 on Jan 1, 2000; longitudes of perihelia (ω̃ − ω̃�)0 = 0◦, 90◦, 180◦, 270◦

Figures 4.50 and 4.51 show the development of the same orbital elements a
and e as in Figures 4.48 and 4.49, the difference residing in the initial value of
the osculating eccentricity, which was set to e0 = 0.1 for all four simulations.

Figure 4.50 shows that the amplitudes of the periodic variations in a are much
larger than in Figure 4.48 (but with amplitudes of about ∆a ≈ 0.001 AU they
are still small).

Figure 4.51 shows periodic variations in the mean eccentricity of comparable
amplitudes as in Figure 4.49, but the mean values differ substantially for
the four cases (the mean values are approximately ē0 ≈ 0.067 , ē90 ≈ 0.117 ,
ē180 ≈ 0.141 , ē270 ≈ 0.106). For the case ω̃ = ω̃� + 180◦ the mean eccen-
tricities reach periodically values up to e ≈ 0.18 . For the test particle with
ω̃ = ω̃� + 180◦ the perturbations during the closest approach between the
test object and Jupiter are initially a minimum, where the minimum distance
is ∆min = a�− a − a� e� − a e , whereas this minimum distance initially is
only ∆min = a�− a − a� e� + a e , if ω̃ = ω̃� .
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Fig. 4.50. Mean semi-major axes over one million years of four minor planets
with osculating semi-major axis a0 = 2.752 AU (P = 0.385 P�) and osculating
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Fig. 4.51. Mean eccentricities over one million years of four minor planets with
osculating semi-major axis a0 = 2.752 AU (P = 0.385,̧P�) and osculating eccen-
tricity e0 = 0.1 on Jan 1, 2000; osculating longitudes of perihelia (ω̃ − ω̃�)0 =
0◦, 90◦, 180◦, 270◦

Figure 4.52 shows the projection of the Laplace vectors e (see eqn. (I- 4.27))
for the eight simulations (e = 0.0, 0.1 , ω̃ = ω̃� + 0◦, 90◦, 180◦, 270◦). The
Laplace vectors rotate (in the prograde direction of rotation) around the
origin (x0, y0) = (0, 0) . The Laplace vectors e are contained in (almost)
circular annuli with widths of about ∆e ≈ 0.060−0.085 , and they are centered
at (e cos ω̃, e sin ω̃) ≈ (0, 0) in the average over long time intervals. Figures
4.52 only give a general impression of the actual motion of the Laplace vectors.
Spectral analysis will provide more insight.

Figure 4.53 shows the development of the projections of the orbital poles on
the ecliptic over one million years for two test particles with initial osculating
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Fig. 4.52. Laplace vectors over one million years of eight minor planets with ini-
tial osculating semi-major axis a0 = 2.752 AU (P = 0.385 P�) and osculating
eccentricity e0 = 0.0 , 0.10 on Jan 1, 2000; longitudes of perihelia (ω̃ − ω̃�)0 =
0◦, 90◦, 180◦, 270◦

eccentricities e = 0 (and ω̃ = ω̃�) and inclinations of ĩ = 0◦, 10◦ w.r.t. the
invariable plane.

The projected vectors were multiplied by 180◦/π , in order to see (approxi-
mately) the inclination angle in Figure 4.53. The orbital poles move in circular
annuli with radii ī ≈ i and with diameters ∆i ≈ 0.5 − 1◦ around the pole of
the invariable plane (see eqn. (4.5)).

Figure 4.54 superimposes the spectra for the orbital poles of the two pro-
jected vectors in Figure 4.53. When compared to the spectra of i and Ω (not
reproduced here), the spectra in Figure 4.54 are amazingly simple. They are
dominated by two spectral lines at periods of −(22100− 24300) and −50000
years (the sign indicating that the rotation is retrograde).
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The spectral line near −24000 is different in the amplitude and the precise
value of the period for the two examples, whereas amplitude and period of
the spectral line near −50000 years are almost identical. These empirical
findings may be confirmed by additional tests starting from different initial
inclinations: The resulting spectra of the projected orbital poles in essence
only differ by the amplitude and somewhat by the period of the spectral line
near −24000 years. The zero-order term of the harmonic series development
resides (as expected) almost ideally in the projection of the invariable plane
on the ecliptic.

Figure 4.55 shows the spectra (of the projections on the plane of the ecliptic)
of the Laplace vectors e in the range of periods 0 < P < 600000 years con-
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Fig. 4.56. Spectrum of the projections of eight Laplace vectors on the ecliptic.
Range of periods P = [0, 60000] years. Osculating semi-major axes a0 = 2.752 AU
(P = 0.385 P�), osculating eccentricities e0 = 0.0 , 0.1 , osculating inclinations i =
0◦, ω̃ − ω̃� = 0◦, 90◦, 180◦, 270◦, on Jan 1, 2000

taining all significant contributions. The top figure corresponds to the initial
osculating eccentricity e = 0 , the bottom figure to the initial eccentricity
e = 0.1 .

The similarity of all eight spectra is striking: There are only three major
spectral lines with periods of about 20800 years, 45000 years, and 330000
years, where the latter value is not well defined, due to the fact that the length
of the analyzed time series is only about three times the longest period. The
retrograde part of the spectrum is not reproduced, because there is no signal
in this part. Figures 4.56 and 4.57, giving details of the same spectrum as in
Figure 4.55 in the period ranges 0 − 60000 years and 15000 − 25000 years,
show that, in analogy to the findings related to the spectra of the orbital
poles, the changes in the initial conditions are only reflected by one of the
three spectral lines, namely by the one with a period near 20800 years.

Whereas the line near ± 20000 years (mainly) may be attributed to the initial
conditions (initial eccentricity and inclination), the other lines in the spectra
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Fig. 4.57. Spectrum of the projections of eight Laplace vectors on the eclip-
tic. Range of periods P = [15000, 25000] years. Osculating semi-major axes
a0 = 2.752 AU (P = 0.385 P�), osculating eccentricity e0 = 0.0 , 0.1 , osculating
inclinations i = 0◦, ω̃ − ω̃� = 0◦, 90◦, 180◦, 270◦, on Jan 1, 2000

of the projected orbital poles and Laplace vectors are due to the perturbations
by the planets Jupiter and Saturn (and to a much lesser extent by the other
planets).

This statement is illustrated by Figures 4.58 and 4.59 containing the spectra
of the orbital poles and the Laplace vectors of the planets Jupiter and Saturn
(top spectra) and of the minor planet.

In order to improve the resolution of the spectral lines, the two figures are
based on a numerical integration of the outer planetary system over ten
million years (without Pluto, but including the test particle with revolution
period P = 0.385 P� , e = 0.1 , i = 10◦, ω̃ = ω̃�). The program run took, by
the way, about three hours of processing time on the PC used and produced
element files of about 40 Mbytes per file for Jupiter, Saturn, and the test
particle (the elements of the other planets were not saved).

The period of about −50000 years in Figure 4.58 corresponds very pre-
cisely to the eigenfrequency f6 = 25.73355′′/year of the secular perturba-
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Fig. 4.58. Spectrum of the projections of the orbital poles of Jupiter and Saturn
(top) and minor planet (bottom) on the ecliptic. Range of periods [−60000, 0] years.
Osculating semi-major axis a0 = 2.752 AU (P = 0.385 P�), osculating eccentricity
e0 = 0.1 , osculating inclination i = 10◦, ω̃ − ω̃� = 0◦ on Jan 1, 2000

tion theory by Brouwer and Clemence [27], the periods of about 50000 and
300000 years in Figure 4.59 correspond very precisely to the eigenfrequencies
g6 = 27.77406′′/year and g5 = 4.29591′′/year of this theory.

Figure 4.60 shows an overlay of the spectral lines (detailed view of the ampli-
tude spectra), which is defined by the initial conditions, for the projections
of the orbital poles and the Laplace vectors.

In order to facilitate the comparison of the orbital poles and the Laplace vec-
tors, the absolute value of the period was used as an independent argument.
Figure 4.60 shows, that the (absolute values of the) periods roughly agree
(within about 20%), but that it is somewhat keen to state that the periods
are identical.
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1, 2000
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Fig. 4.60. Spectral line (as a function of the initial conditions) of the pro-
jections of the Laplace vectors and of the orbital poles for five test objects
((e, i)=(0,0),(0,10),(0,0),(0,10),(0.1,10)). Absolute value of the periods used as in-
dependent argument
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4.3.3 Proper Elements of Minor Planets

The empirical findings of the spectral analyses of the projections of the orbital
poles and the Laplace vectors on the ecliptical plane may be summarized as
follows:

• The spectra corresponding to the projections of the two vectors h/h (or-
bital pole) and e (Laplace vector) on the ecliptic are composed of only a
few sizable spectral lines.

• The spectra of the orbital poles contain (practically) only retrograde con-
tributions.

• The spectra of the Laplace vectors contain (practically) only prograde con-
tributions.

• In both cases, only the amplitude (and, to a lesser extent, the period) of
one spectral line (in the example the period P is in the range 21000−25000
years) changes, if the initial (osculating) elements e and ω̃ are changed.

• The absolute values of the periods P for the line depending on the initial
conditions are of the same order of magnitude for the orbital poles and the
Laplace vectors – but they are not identical.

These empirical findings have to be compared to the key results of the theory
of secular perturbations as it was originally developed by Lagrange, addressed
by many eminent contributors to Celestial Mechanics, and eventually brought
by Brouwer and Clemence (see [27]) into the form still used today.

In secular perturbation theory all periodic terms containing the (rapidly vary-
ing) mean anomalies of the perturbing and of the perturbed body are ignored.
It is customary in this theory to use the notation

h
def= e cos(Ω + ω) (= q1)

k
def= e sin(Ω + ω) (= q2)

p
def= tan i sinΩ (= h1)

q
def= tan i cosΩ (= −h2) ,

(4.30)

where the terms in parentheses (. . .) refer to the notation used throughout
this book.

Applied to minor planets, Brouwer and Clemence in [27] give the solutions:
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h = ν sin(g t + β) + h0

k = ν cos(g t + β) + k0

p = µ sin(− g t + γ) + p0

q = µ cos(− g t + γ) + q0 ,

(4.31)

where the angular velocity g is a function of the minor planet’s semi-major
axis a only; h0 and k0 are slowly varying functions of time (functions of the
principal planets’ secular variations).

The amplitudes ν and µ mainly depend on the initial values. They are called
proper eccentricity and proper inclination of the minor planet (where the
inclination was approximated by tan i ≈ i). The term proper element is justi-
fied because in the framework of secular perturbation theory, only the proper
elements ν and µ (and the proper elements corresponding to the longitude of
the node and of the perihelion) are affected by the initial conditions.

The results of this secular perturbation theory are approximations. The com-
parison with numerical results is amazingly good for the forced part of the
spectrum. (The eigenfrequencies encountered here (and mentioned above) are
those associated with the pair of planets Jupiter and Saturn). The periods
extracted from the simulations correspond on the sub-percent level to the
frequencies predicted by the secular theory. The agreement is less convincing
when comparing the periods of the spectral line associated with the proper
elements of the minor planet. The dependence on the inclination is not pre-
dicted by the secular theory. Also, the identity of (the absolute values of) the
periods of the Laplace and orbital pole vectors is not well met in practice.

According to Brouwer and Clemence [27]: “. . . From our knowledge of the
general behavior of such developments, we would expect that a rigorous treat-
ment of the problem would give results differing from the approximate ones
by considerably less than fifty percent, but there is no mathematical proof of it
. . . ”. In view of this statement the agreement between theory and numerical
tests must be considered as excellent.

When approaching the problem not with analytical, but with numerical meth-
ods, one would simply identify the proper eccentricity ν and proper inclina-
tion µ as the amplitude of the spectral line associated with the initial condi-
tions. The terms h0 , k0 , p0 , and q0 at the initial epoch t0 might be computed
as the superposition of all terms (at t = t0) of the harmonic series not related
to the vector considered (either the Laplacian vector or the orbit normal).
Observe that the mean values of the p0 and q0 must vanish over long time
periods, whereas the mean values of h0 and k0 over very long time intervals
coincide with the first two components of the projection of the unit vector
normal to the invariable plane on the ecliptic.
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The definition of the proper elements ν and µ proposed here differs slightly
from the classical definition as it is in use today. We refer to [80] for an
overview of the classical theory of proper elements.

4.3.4 Resonance and Chaotic Motion

Commensurability and Resonance. If the ratio of the revolution periods
P� and P of Jupiter and a minor planet (or another planet) is a quotient of
small (positive) integers k1 and k2 , i.e., if

P�
P

=
n

n� =
k1

k2
, (4.32)

the revolution periods P� and P of the two celestial bodies (or their mean
motions n� and n) are said to be commensurable.

Without the planetary perturbations the solution of the three-body problem
Jupiter–Sun–minor planet would be periodic with period

Pres = k1 P = k2 P� . (4.33)

In general, the perturbations due to the planets are small compared to the
main term (due to the Sun), implying that the perturbing forces acting on
the minor planet are (almost) periodic, or quasi-periodic, with period Pres .

Commensurability may give rise to resonance, i.e., to orbit perturbations
which are orders of magnitude greater than under normal circumstances (i.e.,
if the revolution periods are not commensurable). This is why the period Pres

also is referred to as resonance period.

Two bodies of the planetary system are said to be in conjunction (as seen
from the Sun), if their heliocentric ecliptical longitudes are the same. In the
two-body approximation the minor planet’s synodic revolution period Psyn ,
the time interval between subsequent conjunctions of the minor planet and
Jupiter, may be expressed as:

Psyn =
2 π

n − n� =
P P�

P� − P
. (4.34)

Therefore, if the condition (4.32) holds, the resonance period must be an
integer multiple of the synodic revolution period:

Pres = (k1 − k2)Psyn . (4.35)

For commensurabilities of type 2 : 1 , 3 : 2 , 4 : 3 , etc., the synodic revolution
period and the resonance period (4.33) are identical.

The broad scope of this book does not allow it to address resonant motion in
detail. The tools developed in the previous Chapters, in particular the numer-
ical solution methods outlined in Chapter I- 7 and the variational equations
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presented in Chapter I- 5, are, on the other hand, ideal for studying resonant
motion in the planetary system. This is documented by the pioneer work of
Wisdom in the early 1980s, e.g., in [130] and [131], who used a combination
of numerical and analytical methods, and who had, last but not least, the
best computer equipment for that particular purpose available at that time.
Today, a comparable performance may be expected from any (reasonable)
commercially available PC. Many other significant contributions to the field
cannot be dealt with here. The reader is referred to [80] for a comprehensive
discussion and overview.

Some important properties of the minor planets’ resonant motion shall now
be discussed using the numerical tools developed in this work. We will proceed
in three steps:

• In the next paragraph technical problems related to the solution of the
equations of motion and the associated variational equations in the special
case of resonant motion will be addressed.

• The methods to distinguish between quasi-periodic (regular) and chaotic
solutions of the equations of motion are introduced afterwards.

• Numerical experiments related to the (3:2)- and (3:1) resonance zones il-
lustrate the problems.

Primary and Variational Equations of Resonant Motion. The equa-
tions of motion of a minor planet are the same whether or not a resonance
condition of type (4.32) holds. The general structure of the equations is re-
flected by eqns. (I- 5.57). If a resonance condition holds (approximately),
the solution characteristics, when integrating over thousands of years, may
change substantially. The development of the eccentricity is, in particular,
close to unpredictable. It may very well happen that an orbit with a small
eccentricity of e < 0.1 develops into an orbit with eccentricities e > 0.3 . This
in essence rules out all numerical solution methods which are based on con-
stant stepsizes. Automatic stepsize control is a requirement when analyzing
resonant motion. This is why the collocation method with stepsize control
(see section I- 7.5.5) has to be used throughout this section for numerical
experiments.

The variational equations (I- 5.58) associated with the equations of motion
(I- 5.57) have already been established in Chapter I- 5. Subsequently, we will
only be interested in the variational equations for the initial orbital elements,
which is why only the homogeneous part of eqns. (I- 5.58) has to be consid-
ered. What was said for the associated primary equations (I- 5.57) also holds
for the variational equations: the mathematical structure of these equations
is the same whether or not condition (4.32) holds. If this condition holds,
the characteristics of the particular solution may, however, lead to serious
numerical problems, because the absolute value of such a solution may grow
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exponentially. Fortunately, this problem can be easily dealt with by observing
that the solution of the two initial value problems

z̈1 = A0 z1

z1(ti) = z10

ż1(ti) = z11

(4.36)

and

z̈2 = A0 z2

z2(ti) = λz10

ż2(ti) = λz11

(4.37)

are simply related by
z2(t) = λz1(t) . (4.38)

It is thus easily possible to normalize the variational equations for each inte-
gration step, e.g., by asking the absolute value of the initial value to meet the
condition |z(ti)| = 1 . Instead of solving the original initial value problem, one
may simply solve the normalized version. In order to reconstruct the original
initial value problem (referred to the initial epoch t0), one only has to keep
track of the (natural or other) logarithm of the product of all normalization
constants (which is the sum of logarithms of all these constants). Program
PLASYS follows the procedure outlined above, if the collocation method is
used.

In program PLASYS the variational equations associated with the equations
of motion of the minor planet w.r.t. (one or more of) its osculating elements
at the initial epoch are solved simultaneously with the primary equations
(the original equations of motion). In view of the facts that the variational
equations are linear and that, locally, a good analytical approximation is
available (using the two-body approximation for the equations of motion),
this procedure is not very efficient. It is, however, the simplest method to
implement.

Let us use the notation

I ∈ {a0, e0, i0, Ω0, ω̃0, u0}

zI(t)
def=
(

∂r

∂I

)
(t) , (4.39)

introduced in Chapter I- 5 to characterize the partial derivatives of the orbit
w.r.t. its initial osculating elements referring to t0. So far, we either used the
time T0 of perihelion passage or the mean anomaly σ0 at t0 as the sixth ele-
ment. As indicated above, the argument of latitude u0

def= ω0+v0 is used here,
instead. This particular element has the advantage to avoid quasi-singularities
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associated with orbits of small ecentricities. It is (obviously) a function of the
classical elements.

The function zI(t)∆I describes the effect on the reference orbit (the consid-
ered minor planet’s orbit) at time t caused by a small (infinitesimal) change
∆I in the orbital element I, provided the numerical values of all other initial
osculating elements are identical with those of the reference trajectory. Ob-
viously, the solutions zI(t) of the variational equations (I- 5.58) are very well
suited to study the stability of a particular orbit w.r.t. small changes in the
initial conditions.

Deterministic Chaos. A dynamical system is said to be chaotic (one also
speaks of a deterministic chaos), if the absolute value of (one of) the solu-
tion(s) (4.39) of the variational equations (I- 5.58) grows exponentially with
time t. Alternatively, the system is called regular or quasi-periodic. In the
former case, a tiny change in the corresponding initial value causes dramatic
changes of the celestial body’s position vectors after a long time period.

Let us introduce the γI(t)-function of the partial derivative (4.39) as the
following scalar function of time:

γI(t)
def=

ln |zI(t)|
t − t0

. (4.40)

This γI(t)-function related to the osculating element I is well suited to charac-
terize the stability of the solution w.r.t. small changes in the particular initial
osculating element I. It would be nice (and logical) to call this γI(t)-function
the Ljapunov function, in honour of Alexander Michailovich Ljapunov (1857–
1918). Unfortunately, the term has a different meaning in the theory of dy-
namical systems, which is why we stick to the not very inspiring term of
γI(t)-function.

Let us assume, e.g., that the solution of the variational equation w.r.t. the
osculating element I asymptotically behaves as

|zI(t)| = f(t) + λ0 eγ (t−t0) ,

where the function f(t) ≥ 0 may be any function with a less than exponential
growth in time t . In the above formula γ is a positive constant, which should
not be confused with the function γI(t) . We will, however, associate it now
with the asymptotic behavior of the function γI(t) .

Under the assumptions specified the asymptotic behavior of the γI(t)-
function for t → ∞ must be that of a constant, which is called the maximum
Ljapunov characteristic exponent or simply the Ljapunov characteristic ex-
ponent :

γ
def= lim

t→∞

(
ln |zI(t)|

t − t0

)
. (4.41)
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If we integrate over sufficiently long time spans, the Ljapunov characteristic
exponent will become visible as the asymptotic value of the γI(t)-function
(4.40).

If the function |zI(t)| actually is a superposition of more than one exponential
function, we are only able to see the constituent with the maximum exponent.
This explains the attribute “maximum” in the expression maximum Ljapunov
characteristic exponent.

The Ljapunov time is defined as the inverse of the Ljapunov characteristic
exponent:

Tγ
def=

1
γ

. (4.42)

For |t − t0| < Tγ , the exponential growth of the solution of the variational
equation will be barely visible; for t = 10 Tγ , an initial separation of two
trajectories will have grown by a factor of e10 ≈ 22000 , i.e., the exponential
part of the error is in general the dominating feature (the precise behav-
ior depends on the properties of the other constituent f(t) of the function
|zI | ). The Ljapunov time is a good indicator for the time-span over which
deterministic predictions of a particular trajectory are reliable.

The definition (4.41) of the Ljapunov characteristic exponent and the defini-
tion (4.42) of the Ljapunov time are consistent with that adopted by Wisdom
(see, e.g., [130]). According to the above developments we have to distinguish
between six different γI(t)-functions and exponents γ for the six osculating
elements referring to the initial epoch t0 . In practice, the distinction becomes
immaterial, because the six solutions zI(t) are solutions of one and the same
linear system of variational equations, but with different initial values. The
dynamic behavior of the system is, however, governed by the structure of
the system, and not by the initial values. This is why we can use simply the
variational equation corresponding to one of the elements, if we only want
to describe the general properties of a dynamical system. This was why we
used only one symbol γ to characterize the maximum Ljapunov exponent.
From now on we will also skip the index “I” for the function γI(t) and simply
write γ(t) . (Remark: the structure of the functions zI(t) has not yet been
studied in detail over time intervals of millions of years; such studies might
add considerable knowledge to the development of resonant orbits.)

The concepts outlined above, taken from the theory of dynamical systems,
will be used below to characterize some of the properties of the motion of mi-
nor planets in or near the commensurability zones visible in Figure 4.43. De-
spite the fact that we are only studying resonant motion of the minor planet
w.r.t. Jupiter, all the outer planets are included in the numerical experiments
with program PLASYS. As already mentioned the collocation method with
automatic stepsize control is used for all numerical experiments.

The Hilda Group. A few numerical tests with orbits of semi-major axes
greater than a ≈ 3.5 (minor planets beyond the Hecuba gap with P� : P ≈ 2)
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show that such orbits in general change dramatically in short time spans
(thousands of years to a few hundred thousand years). According to Figure
4.43 there are only two exceptions to this rule, namely the Hilda group and
the Trojans. The Trojans have already been dealt with in the context of the
problème restreint in section I- 4.5.2. Here we focus on Hilda-type objects.
The Hilda group (see Figure 4.43) is a small group of minor planets with
orbital periods P related to the orbital period P� of Jupiter by

P� : P ≈ 3 : 2 corresponding to a ≈ 4 AU . (4.43)

Before performing some realistic experiments with Hilda-like objects, it makes
sense to calculate two orbits in the environment of the problème restreint.
Program NUMINT was used for this purpose. Two orbits with P� : P

def= 3 : 2
were integrated over a time interval of 10000 years. Both orbits have identical
initial osculating elements (eccentricity e = 0.1 , Ω = i = 0◦, perihelion
passing time T0 = t0) except for the longitude of perihelion ω, which was
selected to be parallel to the heliocentric vector r�(t0) at the initial epoch
t0 in the first case, and antiparallel in the second case. This means that the
conjunctions originally took place while the test particle was at perihelion
(first case) or at aphelion (second case).
The result of the simulations (in the system rotating with the system Sun-
Jupiter, marked with “+” on the x-axis of the coordinate system) is contained
in Figures 4.61. The first set of initial conditions (left picture, corresponding
to initial conjunctions in perihelion) obviously leads to a pseudo-periodic
motion, whereas the second setup leads to a rather chaotic motion. Observe,
however, that the test particle is constrained (essentially) by the Hill surfaces
of zero velocity in both cases. One expects that this condition (conjunctions
originally taking place near the perihelion of the test object) also should be
met under more general conditions.
Two types of Hilda-like orbits, both with P� : P = 3 : 2 , and an initial
(osculating) eccentricity of e = 0.1 , are numerically integrated in the force
field of the Sun and the outer planets Jupiter to Pluto in order to introduce
the general problem. As opposed to the problème restreint, Jupiter’s orbit is
elliptical and all of its orbital elements are functions of time. Both types of
orbits initially were assumed to be inclined by 5◦ w.r.t. the invariable plane.
The osculating inclination and longitude of node were chosen according to
eqn. (4.5) as i = 6.58◦ and Ω = 170.6◦. The orbit types differ only in the
relative orientation of the perihelia of the test object and of Jupiter. The
two types of orbits, namely identical heliocentric longitudes of perihelia, i.e.,
ω̃ = ω̃� (case 1) and difference between heliocentric longitudes of perihelia of
Jupiter and test object, i.e., ω̃ = ω̃�+180◦ (case 2), are studied subsequently.
Individual orbits do moreover differ by the initial position of the test particle
within its orbit (which may, e.g., be expressed by its true anomaly v).
Let us now consider two individual orbits. In the first case we assume that
ω̃ = ω̃� and that the test particle is at aphelion while Jupiter passes perihelion
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Fig. 4.61. Two Hilda-like objects over a time interval of 10000 years. Conjunctions
initially near Hilda object’s perihelion (left), near its aphelion (right)

(i.e., v�(t0)0◦ and v(t0) = 180◦, v� and v standing for the true anomaly of the
Jupiter and the test particle’s orbit, respectively). This means that initially
the conjunctions take place while both, Jupiter and the test particle, are close
to their perihelia. Based on the experiences gained with the problème restreint
one would therefore expect a quasi-periodic motion of the test object. Observe
that the initial true anomaly v(t0) might have been defined in such a way
that the conjunctions take place at Jupiter’s aphelion and the Hilda object’s
perihelion (this is achieved by selecting v(t0) = 270◦).

For the second individual orbit the perihelia of Jupiter and of the test particle
are selected in opposite directions as seen from the Sun, i.e., ω̃ = ω̃� + 180◦.
Furthermore, the test object and Jupiter are assumed to cross their perihelia
at the initial epoch t0. Under these circumstances the conjunctions – at least
initially – take place under the “worst” possible conditions, Jupiter being
at perihelion while the test particle is at aphelion. From the experiences
gained with the problème restreint one expects a rather chaotic motion in this
case. As compared to the problème restreint, the situation is aggravated by
Jupiter’s orbital eccentricity. Observe that it is also possible to select the test
object’s initial anomaly v(t0) in such a way that the conjunctions (initially)
take place at the minor planet’s perihelion and Jupiter’s aphelion (promising
the “mildest” possible perturbations during the conjunction). This would be
achieved by setting v(t0) = 90◦.

Figure 4.62 illustrates the initial positions (Jupiter J(t0) and the Hilda object
H(t0)) and the (approximate location of the) first conjunction between the
two celestial bodies for the two individual orbits considered subsequently.
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J t( )0
H t( )0
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Fig. 4.62. Initial orientation of the perihelia of Jupiter and the test object, initial
positions, and first conjunction (↔) of the two bodies (position of the Sun marked
by a square)

Figure 4.63 gives an overview of Jupiter’s and the test particle’s positions
during the experiment (this time in the inertial system). The first experiment
(Figure 4.63 (left)) lasts for the scheduled one million years and no signs of
significant orbital changes can be seen. The positions of Jupiter and of the
minor planet are contained in two comparatively thin, well defined annuli,
the widths being defined in essence by 2 e� a� and 2 a e , respectively.

The second experiment (right) came to a close after a relatively short time
span – after somewhat less than 200000 years the test particle had a very
close encounter with Jupiter (perhaps even resulting in a crash on the giant
planet) after quite a few previous close encounters with the planet (these
encounters are documented in the general program output file). Whereas the
Jupiter positions are contained – as already stated– in a rather thin annulus
around the Sun, the test particle occupies a rather extended area in this
particular view of the ecliptic. As opposed to the motion governed by the
problème restreint (compare Figure 4.61) the test object’s positions are not
confined by a Hill surface. One can imagine that the semi-major axis and the
eccentricity must have been heavily perturbed in the short “life-time” of the
test particle.
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Fig. 4.63. Orbital positions of two Hilda-type objects, with initial orientation of the
perihelia ω̃ = ω̃� and v(t0) = 180◦ (left, case 1, over one million years)), and with
the perihelion of the minor planet opposite to Jupiter’s perihelion and v(t0) = 0◦

(right, case 2) (about 200000 years)

The pseudo-periodic solution obviously corresponds to the case of (initially)
identical perihelia and conjunctions (initially) near the test object’s peri-
helion, whereas the unstable solution corresponds to the case of (initially)
opposite perihelia (as seen from the Sun) and (initial) conjunctions near the
test object’s aphelion.

Figure 4.64 gives an overview of the development of the semi-major axes
(left) and the eccentricities (right) of the test particle for the first (top) and
the second (bottom) individual orbit. The outcome of the two experiments
hardly can be more different: Loosely speaking, one sees an extremely chaotic
behavior in the case ω̃ = ω̃� + 180◦ and (initial) conjunctions near the test
object’s aphelion and a pseudo-periodic behavior in the case ω̃ = ω̃� and
(initial) conjunctions near the test object’s perihelion.

In the first case the semi-major axis varies over one million years only within
the range of a few percent, the eccentricity between the limits of about
0.02 ≤ e ≤ 0.15 . In the second case the semi-major axis and the eccen-
tricity change dramatically in a relatively short time period. Quite a few
close encounters between Jupiter and test particle were also documented in
the general output file. The eccentricity reaches values of about emax ≈ 0.7 ,
the semi-major axis varies between about 3.2 and 20 AU (!). This explains
the large scatter in the distribution of the test particle’s positions.

The remarks concerning the stability of the two orbit types is confirmed by
Figure 4.65, which shows the γ(t)-functions as a function of time t . The
γ(t)-functions were calculated with the variational equation w.r.t. the initial
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osculating semi-major axis a0. Only one value of the solution of the variational
equations was stored per about 410 years.

Whereas a maximum Ljapunov characteristic exponent of γ ≈ 0.015 , corre-
sponding to a Ljapunov time of Tγ ≈ 67 years, is observed in the second case,
no chaotic behavior can be detected in the first case. A short Ljapunov time of
Tγ = 67 years implies that already after 20000 years a small error of ∆a in the
semi-major axis will create effects of the order of e20000/67 ∆a ≈ 4.4 ·10129 ∆a
in the solution. As in numerical integration small errors of the order of 10−15

may and will occur at any integration step, and as these errors are magnified
(or reduced) with the factor dictated by the variational equations, one would
need more than 110 digits to perform a meaningful integration – even over
such a short time interval! This also means that the solution discussed above
and represented, e.g., in Figure 4.64 (bottom), should not be understood as a
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deterministic solution, but as the realization of an initial value problem of a
stochastic differential equation system. The solution was actually generated
with a collocation method of order q = 12 using automatic stepsize control
allowing for a maximum local error of 1.0 · 10−16 AU/day.

If, e.g., the integration order, or the numerical value of the error criterion, or
the initial conditions, are only slightly modified, a very different realization
of the same stochastic differential equation system may result. Figure 4.66
illustrates this effect by showing the development of the semi-major axis
and the eccentricity of the unstable solution shown in Figure 4.64 (right)
and the development of the same quantities for a solution based on identical
initial conditions, the same integration method, but using a numerical value
of 0.99 · 10−16 instead of 1.0 · 10−16 AU/day to control the local errors in the
velocity components. In this second solution the crash on Jupiter does occur
already after about 50000 years, and even before, after an initial phase of a
few hundred years, the two solutions differ substantially!
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Fig. 4.66. Semi-major axes (left) and eccentricities (right) of two Hilda-type ob-
jects with perihelia opposite to Jupiter’s perihelion using different integration error
criteria

It was mentioned initially that for both initial orientations of the perihelia
(see Figure 4.63) the initial true anomaly v(t0) of the test object may be
selected in such a way that the initial conjunctions take place either at the
test object’s perihelion or aphelion. It is of course even possible to find an
initial orbital position v(t0) of the test object to let the initial conjunctions
take place near any chosen value vc of the true anomaly v of the test object.
When performing experiments of this kind (with either case 1 or case 2 of
the initial orientation of the orbital planes) one realizes that a regular motion
results if the initial conjunctions take place near the test object’s perihelion
and that a chaotic motion results when the initial conjunctions take place
near the test object’s aphelion. These findings are the same as in the case of
the problème restreint.

Figure 4.67 shows the γ(t)-functions for six individual orbits, three per case
of the initial orientation of the orbital plane, where the initial conditions were
selected to let the initial conjunctions take place at vc = (0◦, 90◦, 180◦).



282 4. Evolution of the Planetary System

1e-006

1e-005

0.0001

0.001

0.01

0.1

0.1 1 10 100 1000

g
a
m

m
a

kYears

conj at 0 conj at 180 conj at 90

1e-006

1e-005

0.0001

0.001

0.01

0.1

0.1 1 10 100 1000

g
a
m

m
a

kYears

conj at 0 conj at 180 conj at -90

Fig. 4.67. γ(t)-function of three Hilda-type with conjunctions at v(t0) =
(0◦,±90◦, 180◦). Longitudes of perihelia initially identical (left), opposite of Sun
(right)

When the conjunctions initially take place near the test object’s perihelion
there is no sign of of a chaotic behavior in the time interval considered. Also,
when the conjunctions initially take place near the test object’s aphelion, a
finite asymptotic value γ for γ(t) results, indicating a chaotic motion. The
asymptotic value of γ(t) is larger for case 2 (perihelia initially opposite of the
Sun), which is plausible because the distances between Jupiter and the test
object are smaller during the conjunctions in this case. The orbits, where the
initial conjunctions take place at anomaly values of v ≈ ± 90◦, indicate that
the regularity zone is rather small.

Figure 4.68 shows the development of the longitudes of perihelia in the six
cases documented in Figure 4.67. The perihelia rotate (in the retrograde
sense) relatively rapidly in those cases leading to a pseudo-periodic motion,
whereas the rotation of the perihelia is rather slow when a chaotic behavior
is observed. The rotation of the test object’s aphelion is synchronized with
the rotation of Jupiter’s perihelion under these circumstances.
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Fig. 4.68. Longitudes of perihelia of three Hilda-type objects with conjunctions at
v(t0) = (0◦,±90◦, 180◦). Longitudes of perihelia initially identical (left), opposite
of Sun (right)
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Figure 4.69 (left), the histogram of conjunctions as a function of the test
objects’ true anomaly, gives more information. In both cases there is a pro-
nounced preference to avoid the test objects’ aphelion for conjunctions. For
the initial orientation ω̃ = ω̃�+180◦ and v(t0) ≈ 90◦ (which leads to “mildest
possible” conjunctions), the test particle even manages to let all conjunc-
tions take place near its perihelion. Figure 4.69 (right) also shows that for
the regular case there is a clear preference to avoid Jupiter’s perihelion for
conjunctions.
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Fig. 4.69. Histogram of conjunctions, as a function of the minor planet’s true
anomaly (left), and as a function of the minor planet’s aphelion w.r.t. Jupiter’s
perihelion (right); initial conjunctions near minor planet’s perihelion

The above simulations let us expect that the perihelia of the real Hilda objects
follow more or less the pattern of Figures 4.69. This hypothesis is confirmed
by Figures 4.70, which shows the histograms of the conjunctions of all Hilda
objects closest to the osculation epoch contained in the file MPCORB.DAT
dated March 4, 2001, which was retrieved from the MPC homepage. Figure
4.70 (left) illustrates the distribution of the actual conjunctions as a function
of the minor planets’ true anomalies of the 419 Hilda objects found in the
file MPCORB.DAT. Obviously the surviving Hilda objects follow the expec-
tations rather closely. The preference to let the conjunctions take place near
Jupiter’s aphelion is also confirmed by Figure 4.70 (based on the real data).
The histograms have a resolution of 5◦.

More information about the dynamical properties of the Hilda-group of as-
teroids may be found in [104] and [105]. Comparative studies of the Hilda
group with the Hecuba gap (the (2:1)-commensurability of the revolution of
test objects with that of Jupiter) may be found in [39].

The (3:1)-Commensurability. Wisdom studied the (3:1)-commensurabili-
ty with analytical and numerical experiments. He showed (see, e.g., [130] and
[131]) that a large chaotic zone is associated with this commensurability. His
work was a breakthrough in the way of interpreting simulation-type results:
Whereas previous attempts to explain the gaps directly interpreted the per-
turbations in the semi-major axes, Wisdom considered the perturbations in
all orbital elements for that purpose. Figures of type 4.43 seemingly asked
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Fig. 4.70. Histogram of conjunctions of real Hilda objects, as a function of the
minor planet’s true anomaly (left), and as a function of the minor planet’s aphelion
w.r.t. Jupiter’s perihelion (right)

for the classical way of interpreting the simulations, but Wisdom’s numerical
experiments showed that the perturbations in the eccentricities e are far more
spectacular than those in the semi-major axes a. Even when starting with
osculating (better: proper) eccentricities of the order e ≈ 0 , the eccentricities
e(t) eventually assume rather high values, in particular values e ≥ 0.3 , which
make asteroids in or near the (3:1)-commensurability Mars orbit-crossing.
This in turn allows for a “brute force” explanation, a collision with (or heavy
perturbations by) Mars, to eliminate the resonant minor planets – obviously
a very efficient way to generate gaps.

This pioneer work shall now be illustrated with a few numerical experiments
using numerical tools, by studying the evolution of a few trajectories in or
near the (3:1)-commensurability zone.

In the subsequent experiments the revolution periods of the test particles
were varied according to the following scheme:

Pi
def=
(

1
3 + i · 0.001

)
, i = −7,−6, . . . , +7 . (4.44)

Using the value of P� = 11.86 years (Table 4.1) this implies that the oscu-
lating semi-major axes at the initial epoch t0 were
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P = 0.3263̄P� ; a = 2.465
P = 0.3273̄P� ; a = 2.470
P = 0.3283̄P� ; a = 2.475
P = 0.3293̄P� ; a = 2.480
P = 0.3303̄P� ; a = 2.485
P = 0.3313̄P� ; a = 2.490
P = 0.3323̄P� ; a = 2.495
P = 0.3333̄P� ; a = 2.500
P = 0.3343̄P� ; a = 2.505
P = 0.3353̄P� ; a = 2.510
P = 0.3363̄P� ; a = 2.515
P = 0.3373̄P� ; a = 2.520
P = 0.3383̄P� ; a = 2.525
P = 0.3393̄P� ; a = 2.530
P = 0.3403̄P� ; a = 2.535

(4.45)

With this selection of test orbits we expect to scan through the commensu-
rability in steps of about 0.005 AU .

The osculating eccentricity was initially set to e = 0.1 , the initial inclinations
i and the longitudes Ω of the ascending node (w.r.t. the ecliptic J2000.0) were
defined as

Ω = 107.6◦

i = 6.58◦ ,
(4.46)

i.e., all test particles have an initial inclination of i = 5◦ w.r.t. the invariable
plane, and the node initially lies in the intersection of the invariable plane
with the ecliptic J2000.0 (see eqn. (4.5)).

The solutions were generated with a collocation method of order q = 12 with
automatic stepsize control. The tolerance in the components of the velocity
vector was set to 10−16 AU/d .

Two series of solutions were produced: In the first series, hereafter called
Series A, the perihelia of the test particles were initially opposite to Jupiter’s
perihelion, in the second series, hereafter called Series B, the two perihelia
longitudes were initially identical:

ω̃(Series A) = ω̃� + 180◦

ω̃(Series B) = ω̃� .
(4.47)

The time of perihelion passage of the test particles was defined to agree
initially with that of Jupiter in both series:

T0
def= T�0 . (4.48)

With this definition of the longitudes of perihelia and of the associated times
of perihelia passage, the conjunctions initially take place either while both
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celestial bodies are in their perihelia or aphelia in Series B. For series A the
conjunctions initially take place at distances of approximately ± 90◦ from
the perihelia (or aphelia) of the two planets. Figure 4.71 illustrates the initial
positions T (t0) and J(t0) of the test particle and of Jupiter, respectively, and
the initial conjunction geometries (↔).

J t( )0
T t( )0

Series A

J t( )0

T t( )0

Series B

Fig. 4.71. Initial orientation of perihelia of Jupiter and test object, initial positions,
and first conjunction (↔) of the two bodies (position of the Sun marked by a square)
for the experiments in (3:1)-commensurability

Violent instabilities of the kind encountered in the experiments with Hilda-
type objects (with Ljapunov-times of the order of one century) do not occur
in the case of the (3:1)-commensurability. The key difference between the two
series A and B becomes apparent in Figure 4.72, showing the projection of
the Laplace vectors onto the plane of the ecliptic for the two first solutions
of series A and B (with P =

(
1
3 − 0.007

)
P� ≈ 0.326333 P�).

The examples used in Figure 4.72 are obviously not yet in deep, but in shallow
(3:1)-resonance. We see essentially the same behavior as in the case of an
“ordinary” minor planet. This statement is confirmed by the spectra of the
motion of the Laplace vector and in Figure 4.73: Only three strong spectral
lines are observed. In analogy to the interpretation of Figure 4.59 two lines
(centered at periods of about 45000 and 350000 years) may be associated with
Jupiter perturbations, the one near 31000 years with the proper eccentricity.
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Fig. 4.72. Projection of the Laplace vectors of two test particles in (3:1)-resonance
with Jupiter over one million years (P = 0.3263̄ P�). Series A (left), series B (right)
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Fig. 4.73. Spectra of the projection of the Laplace vectors of two test particles in
shallow (3:1)-resonance with Jupiter over one million years (P = 0.32633̄ P�)

The main difference between the two data sets thus consists of the power of
the spectral line associated with the proper eccentricity. From Figure 4.72
and Figure 4.73 the mean eccentricities over long times are seen to be

ē(Series A) ≈ 0.13
ē(Series B) ≈ 0.07 .

(4.49)

These mean values over the longest possible time span should be defined as
the proper eccentricities of the test particles.

The development of the mean semi-major axes over one million years of the
two test series is illustrated by Figure 4.74. The differences between the test
particles in deep and shallow resonance are truly remarkable: Whereas the
variations are constrained to a few thousands of an AU for objects in shallow
resonance, variations up to 0.05 − 0.07 AU are observed in deep resonance.
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Fig. 4.74. Mean semi-major axes of test particles in (3:1)-resonance with Jupiter
over one million years. Series A (left), Series B (right)

According to eqns. (4.45) the test particles were originally equally distributed
in the interval [ a−7, a+7 ] ≈ [ 2.465, 2.535 ] . This distribution is preserved
(more or less) only near the upper and lower limits of the resonance zone.
Figures 4.74 illustrate that the minor planets try to avoid the zone of deep
resonance, which would support the statistical argument to explain the partic-
ular Kirkwood gap. The gap created is, however, much too narrow to explain
the actual distribution of the minor planets’ semi-major axes (see Figures
4.43).

Figures 4.75 illustrate the development of the mean eccentricities for test
series A. The first five members of the series are in the top row, the last four
in the bottom row. The figures on the left-hand side cover the entire time
span of one million years, the figures on the right-hand side only a time slot
of 100000 years.

A clear distinction can be made between the test particles in shallow res-
onance and those in deep resonance: Whereas the test objects in shallow
resonance show more or less regular periodic variations within the lim-
its 0.08 < e < 0.16 , irregular variations with maximum values of up to
emax ≈ 0.7 are seen for the test particles in deep resonance. From Figure 4.75
one may conclude that particles in deep (3:1)-resonance are characterized,
at least temporarily, by orbits of eccentricities of the order e ≥ 0.3 . This
fact implies that the perihelia of such orbits are at heliocentric distances of
r = a (1 − e) = 1.75 AU , which may come close to the orbit of Mars. Or-
bits with an eccentricity of e = 0.6 have their perihelia in the vicinity of the
Earth’s orbital curve.

Similar statements may be made for the test Series B (Figure 4.76), where
the zone of deep resonance is somewhat narrower, which might indicate that
the size of resonance zone is a function of the (proper) eccentricity.

Figures 4.75 and 4.76 prove that asteroids in deep (3:1)-resonance may pen-
etrate deeply into the inner planetary system. Wisdom [130] proposes that
all asteroids in the (3:1)-commensurability which develop eccentricities of
the order e ≥ 0.3 are removed by the planets of the inner planetary system.
When adopting this hypothesis one obtains a good agreement of the observed
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Fig. 4.75. Eccentricities of test particles in (3:1)-resonance with
Jupiter over one million years (left), over 100000 years (right). Ob-
jects with P = (0.326, 0.328, 0.330, 0.331, 0.332) P� in top, objects with
P = (0.333, 0.334, 0.335, 0.336) P� in bottom row; Series A
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Fig. 4.76. Eccentricities of test particles in (3:1)-resonance with Jupiter over one
million years (left), over 100000 years (right), Series B

histogram of minor planets (see Figure 4.43) and the results of Monte-Carlo
type simulations of test particles in the (3:1)-commensurability of the kind
performed here.

Figures 4.77 indicate that the chaotic aspects are not confined to the semi-
major axis and the eccentricity, but that they are visible in the development of
the orbital poles, as well. Only four examples are given in Figure 4.77. With
P = 0.32633 P� (top, left), P = 0.33133 P� (top, right), P = 0.33333 P�
(bottom, left), and P = 0.33633 P� (bottom, right) in essence the entire
chaotic zone of test series A is spanned. The curve for P = 0.34033 P� would
be (almost) undistinguishable from the first one (P = 0.32633 P� (top, left)).
In deep resonance we see excursions of the orbital pole of the order of 15◦,
i.e., about three times the value expected for the regular case (top, left).
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Fig. 4.77. Projection of the orbital poles of the test particles in (3:1)-resonance
with Jupiter on the ecliptic over one million years; Series A

Figure 4.78 shows the development of the Laplace vectors for the same four
test particles. The results in Figure 4.78 are consistent with those of Fig-
ure 4.77: The first curve (top, left) corresponds to what we expect from an
ordinary minor planet, whereas the other three curves, corresponding to the
zone of deep resonance, seem to be chaotic in nature.

For both, Figures 4.77 and 4.78, we might produce the corresponding spectra.
As both spectra show in essence the same features, only the spectra associated
with the Laplace vectors are reproduced in Figure 4.79.

Eight amplitude spectra are shown in Figure 4.79. In order to improve the
visibility, two spectra with the same initial osculating revolution period P are
given per sub-figure, one corresponding to test series A, the other to test series
B. The spectra associated with P = 0.326 P� are given in the top row (these
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Fig. 4.78. Projection of the Laplace vectors of test particles in (3:1)-resonance
with Jupiter on the ecliptic over one million years. Initially, perihelia opposed to
Jupiter’s perihelion (series A)

spectra are identical with those in Figure 4.73), those with P = 0.331 P� in
the second, with P = 0.333 P� in the third, and with P = 0.336 P� in the
last row. The first column of Figures 4.79 shows the spectra in the range
[0, 600000] years, the right column in the range [0, 60000] years.

It is striking that in Figure 4.79 the simple pattern of three spectral lines,
one associated with the proper elements, two with the Jupiter perturbations,
completely disappears for the test particles in deep resonance. The spectral
line corresponding to the proper element becomes much weaker, or even dis-
appears completely. The lines corresponding to the Jupiter perturbations are
always visible in deep resonance, in most cases they are even much enhanced
compared to the case of shallow resonance.
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Fig. 4.79. Spectra of the projection of the Laplace vectors on the ecliptic of eight
test particles in (3:1)-resonance with Jupiter (P = 0.32633 P�, P = 0.33133 P�,
P = 0.33333 P�, and P = 0.33633 P�), one from test series A and B per picture;
left column: over 600000 years, right column: over 60000 years

From such experiments one may conclude that the “three spectral line model”
is in essence correct for all minor planets between Mars and Jupiter, except
for objects in deep resonance. The top and bottom row (only in the case of
series B) of Figure 4.79 illustrate this fact. It is interesting to keep track of
the location of the line associated with the proper elements.

Only the prograde part of the spectrum was provided in Figure 4.79. This
is fully justified for the spectra corresponding to orbits in shallow resonance,
because there is no significant power in this part of the spectrum. It cannot
be justified for the spectra corresponding to deep resonance. Figure 4.80
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underlines this statement. In order to facilitate the comparison, all spectra

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-600 -500 -400 -300 -200 -100 0

e

kYears

326_A 326_B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600

e

kYears

326_A 326_B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-600 -500 -400 -300 -200 -100 0

e

kYears

331_A 331_B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600

e

kYears

331_A 331_B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-600 -500 -400 -300 -200 -100 0

e

kYears

333_A 333_B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600

e

kYears

333_A 333_B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-600 -500 -400 -300 -200 -100 0

e

kYears

336_A 336_B

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600

e

kYears

336_A 336_B

Fig. 4.80. Retrograde (left) and prograde (right) part of the spectra of the
projection of the Laplace vectors on the ecliptic of eight test particles in (3:1)-
resonance with Jupiter (P = 0.32633 P�, P = 0.33133 P�, P = 0.33333 P�, and
P = 0.33633 P�), one from test series A and B per picture

in Figure 4.80 are reproduced in the same scale. The figures nicely document
that the only common features are the lines with periods near 45000 and
350000 years. Apart from that the spectra are typical for a non-periodic,
random motion of the Laplace vectors.

Figures 4.81 and 4.82 show the γ(t)-functions associated with test series A
and B in the logarithmic representation. (In order to improve the visibility,
not all of the members of the two series were included.)
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Fig. 4.81. γ(t)-function over one million years for test particles in or near the
(3:1)-resonance. Initially, the perihelia were opposed to Jupiter’s perihelion (series
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Fig. 4.82. γ(t)-function over one million of test particles in (3:1)-resonance. Ini-
tially, the perihelia were aligned with Jupiter’s perihelion (series B)
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In essence we may distinguish two regimes in Figures 4.81 and 4.82, one
corresponding to the regular motion, with

lim
t→∞ γ(t) → 0 ,

and one corresponding to chaotic motion, where

lim
t→∞ γ(t) = γ

with a finite value γ > 0 for the Ljapunov characteristic exponent γ . Typical
values for the maximum Ljapunov characteristic exponent γ in the (3:1)-
resonance vary between the limits

0.0001 < γ < 0.0002 , (4.50)

corresponding to Ljapunov times of about 5000 to 10000 years.

Figures 4.81 and 4.82 should be interpreted cautiously: we are only able to
safely detect chaotic components with Ljapunov times 1/γ < ∆Tint , where
∆Tint is the length of the integration interval. The cases classified as non-
chaotic might very well show a chaotic behavior with Ljapunov characteristic
exponents around γ ≈ 10−7, corresponding to Ljapunov times of about Tγ ≈
10 million years, which still is a short time-span compared to the age of the
planetary system.

Let us complete the experiments related to the (3:1)-commensurability with
the histograms of the location of the aphelia w.r.t. Jupiter’s perihelion and
of the true anomaly of the test particles at the moment of a conjunction, in
Figure 4.83, which shows that for all examples in both test series A and B
there is a clear preference for aligning the perihelia of the test particles with
that of Jupiter. This alignment is much better developed for test objects in
deep resonance. The bottom figure (left), for the initial revolution period of
P = 0.333 P� with the corresponding objects from test series A, test series B,
and one object with an initial osculating longitude of perihelion ω̃ = ω̃� +90◦

(with label “333 C”), nicely demonstrates this behavior.

The right column of figures shows that there is a clear preference for the
conjunctions to take place midway between perihelia and aphelia, i.e., to avoid
the line of apsides for conjunctions. This preference is much more pronounced
for orbits in deep resonance than for the other orbits.

4.3.5 Summary and Concluding Remarks

The observational basis concerning the orbits of minor planets in the plane-
tary system was reviewed in section 4.3.1 with the help of the archive of the
MPC. Today one has to distinguish two belts of minor planets, the classical
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Fig. 4.83. Histogram of the aphelia of test particles (at conjunctions) w.r.t. per-
ihelion of Jupiter (left column), and of the true anomalies at conjunctions (right
column); series A in top row, series B in middle row, example for P = 0.3333̄ P� in
bottom row

belt between Mars and Jupiter and the Edgeworth-Kuiper belt with aphe-
lia in the region of Pluto’s aphelion. Despite the fact that the observational
basis for the objects in the outer belt is steadily growing and is already now
considerable, we were essentially concerned with the classical belt of minor
planets between Mars and Jupiter in this section.

Quite a few structural elements can be extracted from the data base of the
MPC:

• The Kirkwood gaps and groups of planetoids are clearly seen in the his-
togram of the semi-major axes (or of the associated revolution periods) in
Figure 4.43.

• A ring structure becomes visible in Figure 4.41 of the osculating aphelia of
the minor planets. As a celestial body with an eccentric orbit (according to
Kepler’s law) spends more time near the aphelion (than near perihelion),
this ring structure would become visible in a figure of the time averages
(over one revolution) of the minor planets’ positions.
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• A clear asymmetry of aphelia, already apparent in Figure 4.41, is confirmed
by the histogram 4.42.

• Figure 4.44 reveals more of the structure of the belt of minor planets. In
the (a, i)-plane so-called families of minor planets, presumably of common
origin, can be identified. Such families were first described and named by
Hirayama after members of the families in 1918 [56].

• Figure 4.45 showing a ring structure of the projections of the osculating
orbital poles on the ecliptic also supports the existence of groups of minor
planets of common origin – provided the orbital poles of the fragments of a
collision remain in the same precession cone of the “mother planetoid”. This
ring structure is also clearly reflected by the histogram 4.46 of inclinations
w.r.t. the invariable plane.

• The histogram of eccentricities 4.47 does not show a clear structure. It is
interesting, however, that, as opposed to the eccentricities of the major
planets (see Table 4.1), the mean values for the eccentricities are not close
to e = 0 . (Admittedly, it would be preferable to produce a histogram of
mean or proper eccentricities, but the main characteristics would remain
the same).

In sections 4.3.2, 4.3.3 and 4.3.4 some of the observed peculiarities of the
minor planets’ orbits and of their distribution between Mars and Jupiter
were addressed form the theoretical point of view. The essential elements of
the analysis were:

• Consequent use of the tool of numerical integration in program PLASYS
(see documentation in Chapter 10 of Part III).

• Analysis of mean orbital elements and of functions thereof, to reveal essen-
tial characteristics of the orbits and their evolution in time.

• Generation of spectra of the series of mean elements (and functions thereof)
to extract the essential periods and amplitudes of the mean orbital ele-
ments.

• Solution of the variational equations associated with (one or some of) the
osculating elements at the initial epoch, to further characterize the orbit,
in particular to distinguish between regular and chaotic motion.

The analysis was performed in two steps: We first looked at “one million
years in the life of an ordinary minor planet” (in sections 4.3.2 and 4.3.3)
then we focused on minor planets in resonant motion with Jupiter (in section
4.3.4), in particular on the (3:2)- and (3:1)-commensurabilities, as prominent
representatives of a group of asteroids and a the Kirkwood gaps.

The key findings of the analysis of the orbits of “ordinary” minor planets
were:
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• The mean semi-major axes are remarkably stable (see Figures 4.48 and
4.50).

• The mean eccentricities are rather stable, as well (no secular terms or
terms with very long periods). The amplitudes of the periodic variations
are, however, considerable (of the order of several hundredths, see Figures
4.49 and 4.51). The amplitudes of these periodic variations are (mainly) a
function of the semi-major axis. This explains the shape of the histogram
4.47 of osculating eccentricities of real minor planets.

• A change of the initial osculating eccentricity does not affect the amplitude
of the long-period variations of the eccentricities, but the mean value of
the eccentricity (see Figures 4.49 and 4.51).

• The orbital poles precess in the retrograde sense about the pole of the
invariable plane (see Figure 4.53). The angle of the orbital pole w.r.t. the
pole of the invariable plane is in essence given by the initial inclination
w.r.t. the invariable plane.

• The inclination also shows long-period variations of the order of up to
about one degree. The stability of the mean inclinations (Figure 4.53) very
strongly supports Hirayama’s arguments in [56] concerning the common
origin of families of minor planets.

• The spectra of the projections of the Laplace vectors and of the orbital poles
onto the ecliptic reveal that the motion of these vectors may be represented
as the linear combination of three circular motions, corresponding to the
three dominant spectral lines. The amplitude of only one spectral line may
be altered by the initial conditions. It makes thus sense to consider the
amplitude of this spectral line as the proper eccentricity or the proper
inclination, respectively.

• The zero-order term of the harmonic series describing the motion of the or-
bital poles in all cases agrees very well with the projection of the pole of the
invariable plane, whereas the zero-order term, when spectrally analyzing
the Laplace vectors, in general has the value (0, 0).

• The proper elements emerging from numerical methods correspond quite
well to the proper elements of the theory of secular perturbations as formu-
lated by Brouwer and Clemence in [27]. There are, however, also important
differences (due to the non-modelled inclination dependence, differences of
the frequencies for proper inclination and proper eccentricity, etc. in the
theory by Brouwer and Clemence).

• In view of the availability of fast computers and of the differences seen
between the classical secular theory and the numerical results, it would
make sense to complement the analytical theory of secular perturbations
with a numerical analogue.

In the analysis of the motion of minor planets in resonant motion we intro-
duced the variational equations as an essential tool to distinguish between
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regular and chaotic motion. It is much simpler to use the solution of the vari-
ational equations as indicators of stability than to actually integrate two dif-
ferent orbits. All problems associated with the exponential growth of the dif-
ference between trajectories may be handled very easily when using this tech-
nique (see Chapter I- 5). All problems associated with the “re-normalization”
may be avoided when using the variational equation approach. The compu-
tation of the maximum Ljapunow characteristic exponent γ becomes a very
inexpensive tool which should accompany each numerical test.

Only few experiments related to the resonant motion of minor planets could
be performed in section 4.3.4. We were nevertheless able to identify stable
and chaotic solutions associated with the (3:2)-commensurability (the Hilda
group) and with the (3:1)-commensurability.

The analysis of the spectra of the orbital poles and of the Laplace vectors
with the tools of spectral analysis gives additional insight into resonant mo-
tion. A clear distinction can be made between the spectra of regular motion
(in shallow resonance) and of chaotic motion (in deep resonance). Whereas
the regular case is very closely related to the case of an ordinary minor planet
(with three dominating spectral lines, one associated with the initial values,
two with Jupiter), the spectra are completely different in the case of chaotic
motion: There is little or no power left in the line associated with the ini-
tial values, whereas the other two lines become far more important. Also, as
expected for spectra corresponding to a random motion, a multitude of ad-
ditional lines show up in the “resonant” spectra. No consistent pattern could
be seen for these additional lines. One might make an attempt to classify the
spectra corresponding to resonant motion. Some aspects (like the strength
of the lines associated with the two lines attributed to Jupiter and Saturn,
and dis- and reappearance of the line corresponding to the proper elements)
might be good indicators for a classification. It might be more difficult to
find a meaningful way to characterize the “chaotic lines” of the spectrum.

It is remarkable that the key results of pioneer work, such as, e.g., performed
by Wisdom in the early 1980s, may nowadays be reproduced with few nu-
merical experiments without too much analytical or numerical work. One
should keep in mind, however, that a complete statistical treatment of a
commensurability or even of the entire belt of minor planets requires much
more systematic work. Advanced analyses of this kind do not fit within the
scope of this book. The methods developed in this section would, however,
be ideally suited for further investigations in this fascinating field of science.
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Program System





5. The Program System CelestialMechanics

5.1 Computer Programs

The two volumes of this work offer a thorough overview of the theory of mod-
ern computational Celestial Mechanics. The author is, however, convinced
that, apart from the theoretical background, a “hands-on” introduction to a
broad variety of applications is of equal importance. Solving practical tasks
in the field of Celestial Mechanics means using (and sometimes even de-
veloping) efficient numerical algorithms and computer programs. The close
relation between theory and applications, realized by means of specially de-
veloped computer routines, is a (if not the) central aspect of this book; the
computer programs represent an integral part of this compendium of Celes-
tial Mechanics. The program should help to better understand the theory,
stimulate experiments and (perhaps) give additional pleasure when reading
and digesting the main body of the book.

Several aspects matter in connection with computer program systems. In the
field of science mathematical correctness, numerical stability and the effi-
ciency of the algorithms are the key issues. The development of a scientific
program system is a rather lengthy process, where usually “old” and reli-
able pieces of software are reused and incorporated into a new systems. This
approach may “ruin” the technical level of the programs (from the point of
view of computer science and of professional program developers) and their
user-friendliness.

Eight computer programs accompanying this book were written by the au-
thor, who made extensive use of routines written by a team of the Astronom-
ical Institute, University of Bern. Some of the routines (quite a lot of them,
actually) stem from the so-called Bernese GPS Software [58], a program sys-
tem designed for the processing of data of the Global Positioning System.
The Bernese GPS Software is sold as a source code package. It would have
been desirable to follow the same approach here. Time and resource limita-
tions excluded this approach. The program system described in Part III is
“only” available in the form of executable programs.

Computer programs accompanying a book should have a certain level of
user-friendliness – comprising the actual usage of the programs as well as
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the installation of the system on a given computer platform. Prof. Leoš Mer-
vart from the Technical University of Prague, who wrote his Ph.-D. thesis
at the Astronomical Institute of the University of Bern, is an experienced
designer of scientific software systems. He already developed the user surface
of the latest version of the Bernese GPS Software. The entire design of the
program system’s user interface including the incorporation of the accom-
panying programs into a user-friendly environment were performed by Leoš
Mervart. The graphical user interface has been developed using the Qt library
(see http://www.trolltech.com). A brief description of this menu system
is provided in the following sections.

5.2 Menu System

The first impression of the graphical user interface of CelestialMechanics is
obtained by studying Figure 5.1 showing the primary menu of CelestialMe-
chanics. The menu system allows the user to

• prepare the input options,

• start the programs,

• browse the output files,

• graphically display some of the more important results, and

• consult the help panels (in the HTML-format) “in real time”, while prepar-
ing a program run. Figure 5.2 shows the start of the help file available with
the primary menu shown in Figure 5.1.

Fig. 5.1. Graphical user interface of system CelestialMechanics
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The control elements (menus, buttons, “editable” fields, checkboxes etc.) are
standard. It is assumed that Microsoft-Windows users feel familiar with these
elements.

Fig. 5.2. Primary help panel of the system CelestialMechanics

5.2.1 Installation

The program system CelestialMechanics is distributed on a CD and can be
installed on any computer with an operating system from the Microsoft
Win32 family (Windows 95, 98, 2000, NT, and XP). There are no special
requirements considering the hardware. The programs themselves take ap-
proximately 11.8 Mb of the disk space. One has to keep in mind, however,
that the program output files may become very large. Some of the programs
perform very CPU-intensive tasks. The integration of the planetary motion
over millions of years may, e.g., result in a rather long program run. Machines
equipped with Pentium IV processors should, however, not experience major
difficulties related to the performance of the system.
The installation is initiated by clicking the setup program icon on a CD.
The user must say where the system shall be installed. The default location
is C:\CelestialMechanics. According to the location specified the setup
program sets the environment variable %CM% that contains the name of the
CelestialMechanics’s root directory (i.e., C:\CelestialMechanics per de-
fault). Then the setup program copies all the necessary files and creates the
following directory structure:
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%CM%\BIN
\GEN
\HLP
\INP
\SKL
\NUMINT
\LINEAR
\ORBDET
\SATORB
\LEOKIN
\ERDROT
\PLASYS
\FOURIER

There are eight program-specific directories where the programs look for data
and store results. Some of these directories contain further subdirectories.
Apart from that, there are five general directories:

BIN contains the executable files of the eight accompanying programs and
the CelestialMechanics menu system itself.

GEN contains various files for general use and of general interest (Earth ori-
entation parameters, constants, etc.).

HLP contains the on-line help files (in HTML format) that can be displayed
directly from within the menu, and

INP contains nine input files of the programs and the file CM_MENU.INP, where
the configuration of the CelestialMechanics menu system is stored. The
input files are ASCII files that may be viewed in any text editor. We do
not recommend you, however, to edit these files unless you exactly know
what you do. Corrupted input files may cause a malfunctioning of the
entire program system.

SKL contains a copy of the subdirectory INP. Used to restore initial parameter
settings.

5.2.2 Running a Program

After selecting an appropriate menu item (e.g., Fourier→Run program) using
the computer-mouse or (alternatively) pressing the combination Alt-f-r on
the keyboard, the menu system allows it to edit the input options of the
program. Figure 5.3 shows Panel FOURIER 1, the first panel displayed, when
starting to prepare a program run.

For each program, the options are contained in one or more input panels.
Each program panel contains the name of the program and a panel number
in the title line. In addition there may be some comments characterizing
the principal purpose of the panel. The panels are presented in the order of
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Fig. 5.3. Program FOURIER - panel FOURIER 1

increasing panel numbers. Depending on the options selected, some numbers
may not show up. Usually one number, e.g., “3” characterizes one panel. Panel
numbers like “3a” and “3b” do also occur, in which case they characterize
similar tasks in different program options. The user may browse through
the panels using the Next Panel, Prev Panel buttons (or the corresponding
shortcuts Ctrl-n and Ctrl-p) as often as required or wished. The options
are specified by means of the following control elements:

- Editable fields are used, e.g., for specifying output file names.

- Editable fields with a selection button (e.g., the field “General Constants”
in Figure 5.3) are used primarily for specifying input file names. After press-
ing the selection button a standard open-file dialog appears that allows the
user to select an existing file.

- Checkboxes are used if the corresponding options require the simple yes/no
answer.

- So-called “comboboxes” and “spinboxes” are used if the option has to be
selected from a given set of alternatives or from a given range of values.
An example is provided in the last line of panel FOURIER 1 in Figure 5.3,
where one of the three analysis strategies has to be selected.

The menu system guides the user by reporting some invalid options (e.g., non-
existing input files, missing output file names, etc.). Some options are only
meaningful in connection with a particular setting of other options. These
may be set “inactive” in certain panels if their value is irrelevant under the
given circumstances.
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After specifying all options the user may start the program by pressing the
Save and Run button (shortcut Ctrl-r). The options are stored into the
corresponding program input file and the program is started. An alternative
to that is just to save the edited options for later use by pressing the Save
button.

Programs run as console applications in separate windows containing in gen-
eral information concerning their progress. One of the programs (ORBDET)
requires even the user’s interaction during runtime – it is the only interactive
program of the system.

If the console window disappears, the program was terminated. At that time
the user may look at the program output by pressing the Last Output button
(shortcut Ctrl-o). All output (log) files are accessible through the corre-
sponding menu items Browse Output, as well. The log files are ASCII files
and they are stored in the corresponding program-specific directory (or its
OUT subdirectory).

5.2.3 Visualizing the Results

Visualization of results is a very important step of data analysis. In the
CelestialMechanics system there are two ways of visualizing results. The first
way is provided in the menu system in the Display Results menu item related
to the program used. An example of such a plot is given in Figure 5.4. It was
produced by program FOURIER, after having spectrally analyzed the data
set ”c04 62 03.txt”, which is provided as a startup example in the FOURIER
subdirectory of the menu system. The figure is available (in color) in the
primary on-line help panel. When activating the figure, one obtains initially
the full spectrum (except, if a range of periods was specified). Figure 5.4,
containing only a small (but interesting) portion of the entire spectrum, may
then be generated by making use of the “zoom-option”. Alternatively, one
may specify a range (either in period or in frequency) in the corresponding
panel. This method is preferable, if one would like to have precise interval
boundaries, like e.g., I = [300, 500], as in Figure 5.4.

The described way of visualizing results is very user-friendly. The authors of
the CelestialMechanics program system tried to give the user the opportunity
to display the most interesting and the most important results without the
need to know anything about the structure of the output files and their
formats. However, this part of the menu system has two limitations: (1)
The plot facilities are programmed only for few typical examples. (2) The
graphical tool may become rather slow when dealing with large data sets. The
advanced users are therefore encouraged to use their own plotting programs to
meet their own, perhaps more special, requirements. This is possible because
the output files of all the programs are formatted (ASCII) files (as opposed to
binary) and because the file content is described in detail in the subsequent
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Fig. 5.4. Plot example: Prominent spectral lines in the polar motion data series
(C04 pole of the IERS)

chapters of Part III. The on-line help panels contain, moreover, examples for
most of the input and out data sets.

Most figures contained in the two volumes of this work on Celestial Mechanics
were prepared with the Gnuplot utility (see http://www.gnuplot.info for more
information). Gnuplot is a freeware software package, which may be installed
from the internet.

The latest news concerning this software system are available under the URL
http://www.aiub.unibe.ch/CelestialMechanics





6. The Computer-Programs NUMINT

and LINEAR

NUMINT and LINEAR are test programs for numerical integration.
NUMINT allows it in addition to generate the Hill surfaces of zero veloc-
ity of the problème restreint. Both programs are extensively used in Chap-
ter I- 7 to illustrate the performance of numerical integration algorithms.
NUMINT numerically solves the non-linear equations of motion associated
with satellite and minor planet orbits, LINEAR solves a limited set of typi-
cal linear differential equations and of systems of linear differential equations
using special collocation methods exploiting the linearity of the systems.

6.1 Program NUMINT

The Panel NUMINT 1 in Figure 6.1 contains primary selections of the pro-
gram NUMINT. The program may be used for

• integrating the orbit of an artificial satellite in the gravitation field of the
Earth composed of the main term and the term C20 (see section I- 3.4.1),

• integrating the orbit of a minor planet in the gravitation field of the
problème restreint (see section I- 4.5.2), and for

• the generation of files allowing it to “draw” the Hill surfaces of zero velocity
in the framework of the problème restreint (see section I- 4.5.2).

The program may be used to extract rather detailed CPU timing information.
If the CPU time spent in the subroutines calculating the right-hand sides of
the differential equations is measured each time this subroutine is called, this
may (on certain platforms) significantly reduce the efficiency of the integra-
tion. It is therefore possible to by-pass this detailed timing procedure (last
input line in Panel NUMINT 1, shown in Figure 6.1) and to measure only
the total CPU time, instead.
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Fig. 6.1. Primary menu of program NUMINT

6.1.1 The Use of Program NUMINT for Numerical Integration

Panel 1 in Figure 6.1 shows that four types of algorithms suitable for nu-
merically solving initial value problems associated with non-linear ordinary
differential equations systems are implemented in program NUMINT, namely

• Runge-Kutta methods (see section I- 7.4.4),

• extrapolation methods (see section I- 7.4.5),

• collocation methods (see sections I- 7.4.1 and I- 7.5),

• multistep methods (see sections I- 7.4.2 and I- 7.5.6).

The solution method and the problem type may be selected in Panel
NUMINT 1 in Figure 6.1

For all methods, except for the Runge-Kutta methods, the order of the
method (equivalent to the order of the approximating truncated Taylor series
development) may be defined within reasonable limits by the program user.
The Runge-Kutta methods of the orders 4, 7 and 8 are available in program
NUMINT.

For all methods, except for the multistep method, the stepsize h may be
either selected as fixed or defined automatically by the program using certain
error criteria. The error control is comparatively refined in the case of the
collocation method, whereas rudimentary methods are underlying the Runge-
Kutta and the extrapolation methods. For these methods better criteria may
be found, e.g., in [88].

The menu system associated with program NUMINT is relatively straight
forward. It does not make sense to reproduce here all the panels for all the
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methods implemented. We confine ourselves to provide and discuss the panels
associated with the extrapolation method when applied to the integration of
the problème restreint and assume that the program user will find his/her
way through the panels for the other options.

Panel NUMINT 2 in Figure 6.2 is common to all integration methods. The
program makes use of the constant-file (residing in the “GEN-subdirectory
of the directory “CelestialMechanics). The content of the ASCII-file may be
inspected, but should not be altered by the program user. Not counting the
error file (which, when left blank, is identical with the general output file),
three output files are generated in this program mode: the general output
file with general information and statistics (timing information and number
of function calls, etc.), the file with the osculating elements (relative to the
initial osculating elements), and the file containing the position vectors and
the differences of the numerically integrated orbit w.r.t. the initial two-body
orbit. The contents of the file with the osculating elements may be viewed
directly in the menu-system. The intersections of the Hill surfaces with the
coordinate planes may also viewed in the menu-system. The contents of the
*.osc- and the *.res-files may, of course, also be used to generate figures with
the gnuplot package (see http://www.gnuplot.info for more information).

Fig. 6.2. Input- and output-files in program NUMINT

The *.osc-file contains the time argument in the first column, the differences
of the osculating elements a(t), e(t), i(t), Ω(t), ω(t), and σ0(t) (the mean
anomaly at the initial epoch t0) w.r.t. the corresponding initial osculating
elements (referring to the initial epoch t0) in the columns 2−7 and the angle
∆σ(t) def= n (t − T0(t))−n0 (t − T0(t0)) in column 8 (T0 is the pericenter pass-
ing time). Columns 9 − 11 contain the differences in radial (R), along-track
(S), and out-of-plane directions (W ) of the numerically integrated solutions
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at time t w.r.t. the two-body orbit (elements referring to t0) referring to the
same time t. When the perturbations are set to zero, these columns contain
the integration errors in the three directions. Column 12 contains the step-
size h (only of interest when this parameter is adjusted automatically in the
program).

The *.res file contains the time argument in the first column and the corre-
sponding three Cartesian coordinates in the columns 2 − 4. The underlying
coordinate system is either the inertial system (where the fundamental plane
is either the orbital plane of the two finite bodies when a minor planet is con-
sidered or the equatorial plane when a satellite is considered) or the rotating
coordinate system of the problème restreint (in the case of a minor planet)
or the equatorial, Earth-fixed system (in the case of a satellite orbit). The
coordinate system is defined in Panel NUMINT 6 in Figure 6.6. The columns
5 − 7 of the *.res file contain the position differences (in the coordinate sys-
tems described above) of the numerically integrated orbit w.r.t. the two-body
orbit with elements referring to the initial epoch t0.

Panel NUMINT 3 in Figure 6.3 is only displayed if the orbit of a minor
planet is integrated (or if the primary option HILL Zero V was chosen). In
the case of integrating the orbit of a minor planet the program computes the
Jacobi-constant (I- 4.109) associated with the orbit to be integrated using
eqn. (I- 4.110) and it produces the files containing the information for the
Hill surfaces. Three options related to the Hill surfaces may be selected:

Fig. 6.3. Definition of Hill surfaces
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• none: No Hill-related files are generated,

• 2-d : the intersections of the Hill surfaces with the coordinate planes are
generated and stored in three files, and

• 3-d : the intersections of the Hill surfaces with the selected coordinate planes
and the corresponding parallel planes are calculated and stored into one
file.

The latter option is used to produce three-dimensional representations of the
Hill-surfaces (examples were included in section I- 4.5.2).

Either no (option none), one (option 3-d), or three (option 2-d) Hill-file(s)
may thus be generated when a particular problème restreint is solved. In
addition the program generates one file containing the coordinates of the two
finite bodies in the rotating system and the coordinates of the five stationary
solutions associated with the particular problème restreint considered.

The first two lines in the file called “Lagrange” Panlel NUMINT 3 in Figure
6.3 correspond to the two finite point masses in the rotating system (only the
first column, specifying the corresponding x-coordinates is relevant). Lines
3−7 correspond to the five stationary solutions, where column 3 corresponds
to the x-, column 4 to the y-coordinate. The somewhat peculiar format is
optimized for using the gnuplot -package.

When using option 2-d the files HILL XY, HILL XZ, and HILL YZ con-
tain only two columns (the (x, y)-, (x, z)- and the (y, z)-coordinates) of the
intersections of the Hill-surfaces with the corresponding coordinate planes.
When using option 3-d, the first Hill-file contains three columns, where the
columns correspond to x-, y- and z-coordinates of the intersections of the
Hill-surfaces with the coordinate planes and parallel planes to these coordi-
nate planes. The file may, e.g., be visualized with the gnuplot command splot
”hill xyz” u 1:2:3 w d (assuming that the first of the Hill-files was named
accordingly).

Panel 4 in Figure 6.4 allows it to refine the definition of the problem type.
The panel is only active if either the option MINOR planet or satellite was
selected in Panel NUMINT 1 of Figure 6.1. Depending on this selection either
the first three or the latter three defining constants may be altered. The values
supplied on the CD correspond to the Sun-Jupiter problème restreint and to
the Earth. The panel also allows it to neglect the perturbations (internally
either the mass of planet or the term C20 are set to zero).

Panel NUMINT 5, shown in Figure 6.5, allows it to define the initial orbital
elements. Depending on the selection of the problem type in Panel NUMINT
1 in Figure 6.1 the semi-major axis is defined either directly as such (satellite)
or via the revolution period in units of the revolution period of the planet
with finite mass (minor planet).

Panel NUMINT 6 in Figure 6.6 serves to select the algorithm-independent
specifications of the numerical integration, namely the length of the integra-
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Fig. 6.4. Fine-tuning of the problem type

Fig. 6.5. Selection of the initial orbit

tion interval, the (initial) stepsize h and the sampling rate for the output
files. Also, one may select the type of the coordinate system for the *.res
file: either the rotating system (in the sense described above) or the inertial
system may be chosen.

The algorithm-dependent integration specifications for the extrapolation
method are defined in panels of the kind shown in Figure 6.7. They are num-
bered NUMINT 7a, 7b, 7c, or 7d, depending on the integration method. Only
the order of the method (even orders between 2 and 16) may be defined in the
example shown in Panel NUMINT 7d, characterizing extrapolation methods
(see section I- 7.4.5). A constant stepsize was chosen in the example. If the
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Fig. 6.6. Numerical integration: Algorithm-independent quantities

Fig. 6.7. Numerical integration: Algorithm-dependent quantities for extrapolation
method

stepsize is to be automatically defined by the program, the maximum allowed
error in the velocity must be specified in addition.

Panel NUMINT 7a in Figure 6.8 shows the menu corresponding to panel
NUMINT 7d in Figure 6.7 for the collocation method. There are many more
options available in this case – indicating that collocation is viewed by the
author as a central method for orbital motion. The following sub-methods
may be selected under the first option “Method”:
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Fig. 6.8. Numerical integration: Algorithm-dependent quantities for collocation
method

1. COLLOC ORDER 1 : Collocation method with fixed stepsize, where the
second-order differential equation system is decomposed into a first-order
system (see eqns. (I- 7.7) and (I- 7.9)).

2. COLLOC ORDER 2 : Collocation method with fixed stepsize, where the
second-order differential equation system is integrated directly.

3. ENCKE : Encke’s equations (I- 6.4) for the differential motion w.r.t. an
unperturbed two-body orbit are integrated using a collocation method
with a fixed stepsize.

4. COLLOC ORDER 2 ERR CNTL: Collocation method with automatic
stepsize selection, where the second-order differential equation system is
integrated directly.

5. ENCKE ERR CNTL: Encke’s equations (I- 6.4) for the differential mo-
tion w.r.t. an unperturbed two-body orbit are integrated using a collo-
cation method with automatic stepsize selection.

As usual, the order q of the collocation method may be chosen (between the
limits 2 ≤ q ≤ 14). With the option “new initialization after . . . ” one may
enforce not to make use of the approximative solution of the previous inte-
gration step. The integration method becomes rather inefficient in this case,
the result, however, may become slightly better. For the initial subinterval
one may select the order of the system to increase the integration order (from
initially q = 1 or q = 2) by 2 or only 1 order per iteration step. The number
of iteration steps (after the initial subinterval) is chosen in the next input
line. When integrating Encke’s equations one must define the number nencke

of integration steps after which a new reference orbit has to be selected (the
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instantaneous osculating two-body orbit is chosen). A value between 1 and
40 may be chosen for nencke.

For the methods with constant stepsize one may also decide not to use the
approximating function over the entire subinterval, but to define the new
initial values within this subinterval. Only reductions of 25%, 50% and 75%
may be selected. The accuracy of the solution improves when the stepsize is
reduced, but the efficiency is reduced, as well.

If a method with automatic error control is selected one has to define the
maximum allowed errors in velocity. The on-line help panel offers hints and
tps in this context. For more information concerning automatic stepsize con-
trol we refer to section I- 7.5.5.

6.1.2 The Use of Program NUMINT to Generate Hill Surfaces

With each orbit integrated (in the case of the problème restreint) the cor-
responding value of the reduced Jacobi constant is provided in the general
output file. Also, files containing the intersections of the Hill surface with
the coordinate planes (or with parallel planes) may be generated (see Panel
NUMINT 3 in Figure 6.3 and the discussion associated with it). Program
NUMINT allows it also, however, to generate the same files without actu-
ally performing an integration. The program option is invoked by selecting
the primary option HILL ZERO V in Panel NUMINT 1, reproduced in 6.1.
In this case, after having defined the options in the panels NUMINT 2 and
NUMINT 3 (in Figures 6.2 and 6.3), additional options have to be defined
in Panel NUMINT 3(cont) shown in Figure 6.9. If the two-dimensional Hill
surface option was selected in Panel NUMINT 3 in Figure 6.3, up to five dif-
ferent reduced Jacobi constants may be selected in Panel NUMINT 3(cont)
of Figure 6.9. The intersections with the coordinate planes may then be in-
spected using the “Display Results” option of program NUMINT or they
may be drawn with the gnuplot-package (see http://www.gnuplot.info for
more information). The on-line help file of program NUMINT contains the
figure corresponding to the selection in Panel NUMINT 3(cont).

The numerical values in Panel NUMINT 3(cont) of Figure 6.9 correspond to
Figure I- 4.16 (left column). The right column of the same figure was produced
using the masses m1 = 1 and m2 = 1/1047.35 (see Table 4.1) to characterize
the three-body problem Sun-Jupiter-minor planet.

If the “3-d” version is selected in Panel NUMINT 3 in Figure 6.3. Only
one Jacobi-constant may be specified in this case, because otherwise the re-
sulting figure would be “too busy”. Consequently, only one (the first) Jacobi-
constant may then be specified. Figure 6.10 shows two examples for the three-
dimensional representation of the Hill surfaces, for J = 4.0 and J = 2.5 . The
mass ratio is the same as that underlying Figures I- 4.16 (left). The exam-
ple 6.10 (left) correspond to the innermost case in the example of Figure
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Fig. 6.9. Generation of several Hill surfaces of zero velocity

J*=4.0

 

 

J*=2.5

 

 

Fig. 6.10. Three-dimensional view of Hill’s surfaces of zero velocity for m0 =
0.75 m�, m1 = 0.25 m�, a01 = 5.2 AU and J = 4.0 (left), J = 2.5 (right)

I- 4.16 (top, left). The test body is either constrained to the spheroidal re-
gions around the bodies m0 and m1 or outside the cylindrical regions in
Figure 6.10 (left). The test body may be move everywhere in Figure 6.10
(right) except within the bowl-shaped areas.
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6.2 Program LINEAR

Panel LINEAR 1 in Figure 6.11 shows the primary menu of program LIN-
EAR. The program allows it to solve the nine linear problems discussed in
section I- 7.6.6.

Fig. 6.11. Primary menu of program LINEAR

In Panel LINEAR 2 in Figure 6.12 the integration and output specifications
are defined. This panel is problem-independent. The integration order may
be selected between the limits 2 ≤ q ≤ 30 . The left interval boundary for
the integration is assumed to be known, the right interval boundary may be
selected (minor differences concerning these assumptions are automatically
taken care of). The number of output points (file “Bessel” specified in the
Panel LINEAR 1 6.11) should not exceed 2000 for the graphical display
associated with the menu system to work rapidly. The last option to be set
in this panel concerns the definition of the collocation epochs. The three
options (EQUIDISTANT, CHEBYSHEV and LEGENDRE) are discussed in
section I- 7.6.

Depending on the problem type, a third panel may follow. In the case of the
Bessel functions the pointer (index) of these functions may be defined in the
third panel.

Figure 6.13 shows the result of numerically solving Bessel’s differential equa-
tion in the interval [0,10] using a collocation procedure of order q = 30 , when
selecting the collocation epochs as the roots of the Legendre polynomial of
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Fig. 6.12. Selection of integration specifications (Bessel functions)

Fig. 6.13. Bessel function of pointer “0” in interval [0,10] with integration error

degree q = 30. The figure is obtained by using the “Display Results” option of
program LINEAR. The scale for the function is given at the left ordinate, the
scale for the integration error at the right one. The performance is impressive!



7. The Computer-Programs SATORB

and LEOKIN

7.1 Program SATORB

Program SATORB may be used to generate satellite orbits or to deter-
mine the orbits of satellites using (a) tabular satellite positions as pseudo-
observations or (b) astrometric positions as real observations. More precisely
the following problems may be solved:

1. Generation of satellite ephemerides using a wide variety of models.

2. Orbit determination using tabular positions or position differences as
pseudo-observations. Two concrete problems may be addressed:

a) Orbit determination for GPS or GLONASS satellites using satellite
positions in the SP3-format (or a special tabular format used in the
Bernese GPS Software (see [58])) as pseudo-observations. No a priori
information concerning the orbits other than the tabular positions is
required to solve this task.

b) Orbit improvement for LEOs using satellite positions (and possibly
position differences) as pseudo-observations. The positions and posi-
tion differences stem from program LEOKIN (see section 7.2).

3. Orbit determination using astrometric positions following the use of pro-
gram ORBDET (option “satellites”). Approximate osculating elements
referring to the initial epoch are required in addition to the astrometric
positions. The information stems from the program ORBDET.

Panel SATORB 1 in Figure 7.1 shows the primary menu of the program. The
concrete program option is selected in the first input field. The three problem
types are addressed in the next three paragraphs.

The following input files have to be defined in program SATORB:

• The file with constants shared by all programs of the package.

• The file with different geodetic datum definitions, which was already de-
scribed in Chapter 8 (content see Figure 8.3).
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Fig. 7.1. Primary menu panel of program SATORB

• A file containing the erp-parameters. The file may be retrieved from the ad-
dress of the CODE analysis center http://www.aiub.unibe.ch/download/
BSWUSER/GEN/ under the file name BULLET A.ERP. An example is
provided in the subdirectory /GEN of the directory “CelestialMechanics”
on the CD accompanying this book.

• A file containing the coefficients of the gravity field. Two examples (JGM3
and GEMT3) are contained in the subdirectory /GEN of the CD.

• A file with the coefficients of the UTCSR Ocean tide model (based on the
Schwiderski model). The model is described and referenced in the IERS
conventions [70].

• The JPL development ephemerides DE200 [111] are read from the binary
file “de200.eph” in the same subdirectory. The file covers the time interval
between 1981 and 2025. Other DE-files might be attached to the program
to cover other time periods.

• The satellite information file is only needed when processing GPS positions.
The file is described in [58].

7.1.1 Generation of Satellite Ephemerides

The initial epoch, the length of the integration interval, and the initial oscu-
lating elements a (semi-major axis), e (eccentricity), i (inclination w.r.t. the
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Fig. 7.2. Integration interval and initial osculating elements for ephemeris gener-
ation using SATORB

equatorial plane J2000.0), Ω (node), ω (argument of perigee), T0 (time of
perigee passage in seconds relative to the initial epoch) are selected in Panel
SATORB 2a of Figure 7.2 presented to the program user when invoking the
option “EPHEMERIS”. The semi-major axis a may be defined either directly
or via the revolution period (expressed in sidereal days). The latter option is
in particular useful when studying resonance problems. One may either de-
fine the initial right ascension of the ascending node Ω or, alternatively, the
initial geographical longitude of the ascending node. Again, the latter option
is useful when studying resonance problems.

In Panel SATORB 3a (Figure 7.3) the output file names for the osculating
or mean elements and the tabular positions must be defined. Moreover the
averaging process for forming the mean elements is defined here (observe that
the unperturbed initial revolution period is used for this purpose). For long
integration intervals it may be advisable or even necessary to replace the
correct computation (based on the file *.erp selected in the previous panel)
of the transformation between the inertial and the Earth-fixed system by an
approximation, where the polar motion and the Earth’s variable rotation rate
is neglected.

The “*.ELE”-file defined in Panel SATORB 3a (Figure 7.3) may be consid-
ered as the principal result file when generating ephemerides with program
SATORB. It contains the modified Julian date in the first column and the
corresponding osculating or mean elements a(t), e(t), i(t), Ω(t), ω(t) and
σ0(t) in columns 2 – 7.
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Fig. 7.3. Names of files with osculating or mean elements and tabular positions in
SATORB; definition of mean elements and of transformation between inertial and
Earth-fixed systems

The “*.TAB”-file, defined in Panel SATORB 3a (Figure 7.3), as well, may
prove to be rather useful for particular purposes. It contains, as a function of
the modified Julian date (MJD) in the first column, the Earth-fixed geocen-
tric, equatorial coordinates X(t), Y (t), and Z(t) of the satellite in columns 2,
3 and 4, the differences in radial, along-track, and out-of-plane directions of
the true orbit w.r.t. the osculating Keplerian orbit (defined by the osculating
elements at the initial epoch t0) in columns 5, 6 and 7, and the perturbing
accelerations (in m/s2) in radial, along-track, and out-of-plane directions in
columns 8, 9, and 10. The argument of latitude u is provided in the eleventh
and last column. The file may, e.g., be used to produce figures of the sub-
satellite track (radial projection of the satellite’s radius vector on the Earth’s
surface).

The force model (for all of the three principal options in Panel SATORB 1
(Figure 7.1)) is selected in Panel SATORB 4 (Figure 7.4). The upper limits
for degree n and order m are defined first. Observe that m ≤ n . In the case
m < n all terms Cik = 0 and Sik = 0 for k > m . This option may, e.g., be
used to study the impact of the zonal terms of the Earth’s gravity field on
the orbit of the satellite.

One may then decide to take the direct gravitational attractions exerted
by the Sun and Moon into account or not. The tidal attraction and the
“perturbations” due to the theory of relativity may be activated as well.

The remaining force model constituents are of non-gravitational origin. One
may use a simple direct radiation pressure model or alternatively the ROCK-
IV model for GPS satellites (the option may, however, only be activated
when determining the orbits of GPS satellites) and a drag force. An albedo
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Fig. 7.4. Force model definition in SATORB

acceleration may be activated as well (a mean reflectivity of the Earth of
0.3 is adopted in this case). If either the simple radiation pressure model or
the drag was selected, Panel SATORB 4(cont) (Figure 7.5), where the area-
to-mass ratios and related information for the two surface forces have to be
defined, is produced as well. The models implemented are simple: Constant
(but possibly different) area-to-mass ratios and values for the coefficients C
may be specified for radiation pressure and drag. In the latter case one may
also define the values for the solar flux and for the planetary magnetic index.
We refer to Chapter 3.5 for an explanation of these terms.

Fig. 7.5. Parameters of surface forces in SATORB
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The selection of input options is completed in Panel SATORB 5 (Figure 7.6),
where the integration specifications have to be provided. The integration in
SATORB is performed with the collocation method with automatic stepsize
control. The values in Panel SATORB 5 (Figure 7.6) make sense for LEOs.
For GPS-type satellites or for geostationary satellites an initial stepsize of
about one hour (3600 s) would be more appropriate. No harm would be done
by choosing a shorter initial stepsize.

Fig. 7.6. Integration parameters

7.1.2 Determination of Orbits Using Astrometric Positions

This option is selected in the first input line of the primary Panel SATORB
1 (Figure 7.1). The program user then has to define in addition to the op-
tions and files already discussed above the file containing the residuals in the
second-last input line of this panel. A so-called standard orbit file (definition
see [58]) may be written as well – in which case a name has to specified
for this file. Apart from these two additional input options the handling of
Panel SATORB 1 (Figure 7.1) is the same as that in the previous section.
The example in Panel SATORB 2c (Figure 7.7) stems from processing the
observations of MeteoSat 7 (COSPAR number 97049B00, see Chapter I- 8).
The element input file is that written by program ORBDET (see Chapter 8).
These input parameters are necessary because SATORB (under this option)
is a pure orbit improvement program.

The standard orbit represents the determined orbit piecewise by polynomials
of a certain degree. The polynomial degree, the lengths of the sub-intervals
(governed by one and the same set of polynomials) and the length to be
covered by the entire standard orbit have to be defined in Panel 7.8. The
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Fig. 7.7. Input files (observations, station coordinates, a priori elements)

Fig. 7.8. Definition of standard orbits

panel is only activated, if the decision was made to generate a standard orbit
(in Panel SATORB 3c, Figure 7.1). Observe that the standard orbit will cover
at least the time interval containing the observations. The standard orbit file
is reserved to the expert user of the program.

The orbit force model has to be defined in Panel SATORB 4 (Figure 7.4). As
opposed to the example shown in that panel, the ROCK-IV model may not
be selected (it is not assumed that GPS satellites are observed optically). The
albedo radiation pressure model is also deactivated in this option – in view of
the limited accuracy of astrometric positions this seems to be justified. When
either a (simple) radiation pressure model or a drag model were selected
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in Panel SATORB 4 (Figure 7.4), Panel SATORB 4(cont) (Figure 7.5) is
presented to define the parameters for these surface forces (an example for
this panel was given in the previous section).

Exactly as in the case of ephemeris generation the integration parameters for
solving the equations of motion, also called primary equations in this context,
have to be defined in Panel SATORB 5 (Figure 7.6).

When processing astrometric positions, one has to solve a parameter estima-
tion program with orbit parameters as unknowns. This implies that systems
of variational equations have to be solved in addition to the equations of
motion (primary equations). Program SATORB solves the variational equa-
tions associated with the initial osculating elements simultaneously with the
equations of motion. The solutions of the variational equations accompanying
the so-called pseudo-stochastic parameters may be formed as linear combi-
nations of the solutions associated with these six initial osculating elements
(see section I- 8.5.4).

The variational equations referring to the dynamical parameters are solved in-
dependently, after the solution of the primary equations, using the techniques
of numerical quadrature. The theory behind this technique was presented in
section I- 5.2, the theory of numerical quadrature in section I- 7.6. The ad-
vantage of this separation of integration procedures resides in the efficiency
of the procedures of numerical quadrature. Typically intervals of about 0.5
to 1 revolution may be chosen. Also, much higher integration orders (up to
about thirty) may be selected for this purpose. The integration specifications
for solving the variational equations (for the dynamical parameters) are de-
fined in Panel SATORB 6 (Figure 7.9). Observe that the sub-interval length
is about half a revolution period. In this panel one also defines the num-
ber of iteration steps. One may also decide to screen the observations using
the standard 3 σ criterion (σ being the rms a posteriori of the observation),
where observations with bigger residuals (in absolute value) are not used for
the adjustment. It is prudent to apply this criterion only after a few iteration
steps (otherwise observations might be left out because of the poor quality
of initial orbit parameters – stemming from program ORBDET in this case).

The orbit parameters other than the initial osculating elements (which are
estimated under all circumstances) are defined in Panel SATORB 7 (Figure
7.10). The following parameters may be introduced and estimated in program
SATORB:

• Initial osculating elements (selected automatically).

• Any combination of the nine radiation pressure model parameters (3.163)
(where the X−, Y −, Z− decomposition of perturbing forces has to be
selected in the first input field of Panel SATORB 7, Figure 7.10).



7.1 Program SATORB 331

Fig. 7.9. Solving the variational equations for dynamical parameters, define iter-
ative orbit improvement process

Fig. 7.10. Parametrization of the Orbit
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• Any combination of nine empirical parameters (constant, once per revo-
lution) using the R−, S−, W− decomposition of the perturbing forces in
the first input field of panel SATORB 7, Figure 7.10).

• Scaling parameter of the simple radiation pressure model (where, for ob-
vious reasons, this orbit model has to be selected in panel SATORB 4,
Figure 7.4).

• Pseudo-stochastic pulses (instantaneous velocity changes in predetermined
directions at predetermined epochs) as explained in section I- 8.5.4.

In the example documented by the panels SATORB 2c (Figure 7.7) and
SATORB 7 (Figure 7.10) only seven parameters, namely the six initial oscu-
lating elements and the scaling parameter for the simple radiation pressure
model (a constant force acting along the line Sun → satellite) were estimated.

The resulting parameters for this program run may be inspected in Table
7.1, which should be compared to Table I- 8.14, documenting a similar run
based on the same 155 astrometric observations. The difference resides in
the selection of a constant acceleration in the direction Sun → satellite in the
case of Table I- 8.14, whereas a scaling parameter for the the simple radiation
pressure model was estimated in the alternative case. Obviously, the product
C (Q/m) = 2 ·0.02 (see Panel SATORB 4(cont), Figure 7.5) had to be scaled
a factor of ≈ 0.707 . From the point of view of the representation of the
observations the two program runs are identical.

Observe that the osculating elements in Tables I- 8.14 and 7.1 differ consid-
erably. This is due to the fact that the osculation epoch are not identical in

Table 7.1. Orbital elements of MeteoSat 7 (97049B00), and residuals w.r.t. the
best-fitting perturbed orbit (155 observations in 11 days, January 2 - 13, 2002)

ORBIT DETERMINATION FOR OBJECT 97049B00 DATE: 20-FEB-03 TIME: 05:11

----------------------------------------------------------------------------

ORBIT DETERMINATION USING *.OBS-FILES FOR 1 SATELLITE(S)

**********************************************************

SATELLITE 1 ARC = 1

FROM (MJD) = 52276.778

TO (MJD) = 52287.792

# OBS-EPOCHS = 155

# ITERATIONS = 8

-----------------------------------------

ORBITAL ELEMENTS AND THEIR RMS ERRORS

***************************************************

OSCULATION EPOCH = 52276.7777778 MJD

SEMIMAJOR AXIS = 42167155.460 M +- 0.187 M

REV. PERIOD U = 1436.221 MIN

ECCENTRICITY = 0.0002640861 --- +-0.0000000673

INCLINATION = 0.1441911 DEG +- 0.000007362

R.A. OF NODE = 5.9132629 DEG +- 0.002311448

ARG OF PERIGEE = -72.3902282 DEG +- 0.045008633

ARG OF LAT AT T0 = 16.7096479 DEG +- 0.002310933

***************************************************

NUMBER OF DYNAMICAL PARAMETERS : 1

********************************************************

PARAMETER = DRP VALUE =0.707106D+00 +-0.738183D-02

********************************************************

SAT 1 : RMS= 0.21" # OBS = 310 # PARMS = 7 BETA= -22.74 GRAD
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both cases. The osculation epoch t0 is adjusted in the case a standard orbit
is produced: The osculation epoch is set to t0

def= int(t1) + k hstd, where t1 is
the first observation epoch, k the biggest integer for which T0 ≤ t1 , and hstd

the tabular interval of the standard orbit. If no standard orbit is produced,
the osculation epoch is defined as t0

def= t1 .

The residuals (in right ascension and declination) are contained in the general
output file, but they are also available in the SATORB.RES. The five columns
contain the following information:

1. Observation time in the modified Julian date (MJD).

2. Number of astrometric positions.

3. Residuals in right ascension α cos δ in arcseconds.

4. Residuals in declination δ in arcseconds.

5. Mark ’*’, if an observation was not used in the adjustment.

No header is written. The file may be easily used to plot the residuals.

7.1.3 Determination of GPS and GLONASS Orbits

The program SATORB may be used as an orbit determination program using
tabular satellite positions as pseudo-observations. It is in particular possible
to analyze one or several precise orbit files of GPS (and/or GLONASS) satel-
lites produced by one of the IGS Analysis Centers or by the IGS Analysis
Coordinator in the SP3-format. One IGS precise orbit file contains (in gen-
eral) 96 tabular positions per day at 15-minutes intervals for each active GPS
satellite. The tabular positions of one or several contiguous precise orbit files
may be analyzed in the same SATORB program run; one particular or all
available satellites may be selected for analysis.

After having defined the appropriate primary option (“ORBIT DET (PSEU-
DO OBS)”), the Panel SATORB 2b (Figure 7.11) serves to select in the first
input field GPS and/or GLONASS satellites for analysis. The alternative
“LEO”, used for processing tabular positions and/or position differences as
established by program LEOKIN, will be dealt with in the concluding section.
Three file formats (SP3, TAB, PPD) are supported for the input tabular
positions. The SP3-format is, as already mentioned, the official IGS format
for providing positions (and clock information) of the GPS satellites in the
Earth-fixed coordinate system. TAB-files contain the satellite positions in
the inertial coordinate system in a format supported by the Bernese GPS
Software [59]. The PPD-format (Positions and Position Differences) may only
be selected when processing LEO-positions (see section 7.3). The value for
the a priori rms error of the observed satellite position is “only” used to
define the correct constraints when solving for pseudo-stochastic pulses. The
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Fig. 7.11. Selection of pseudo-observations

rather pessimistic value for SP3-orbits of 0.1 m was selected above. Either
one satellite (to be defined by its PRN number) or all satellites (as in the
example of panel SATORB 2b, Figure 7.11) may be selected in the fourth
input field of Panel SATORB 2b (Figure 7.11).

The pre-selection “cod*” for the SP3-files (“*” serves as a wild card) in-
dicates, that only precise files produced by the code processing center will
be presented for inclusion in the list of Figure 7.12, which is activated by
pressing the button “PRE” in Panel SATORB 2b (Figure 7.11). The files are
assumed to be available in the sub-directory “/LEOKIN/ORB”. After having
selected one, several, or all COD*-files available, COD* will be replaced by
“SELECTED” in the corresponding input field of panel SATORB 2b (Fig-
ure 7.11). For subsequent runs this input selection must only be altered, if
a different set of files shall be analyzed. In the example documented by the
list in Figure 7.12 the seven official CODE files of the GPS week 1151 (Jan
27, 2002 - Feb 02, 2002) were selected. Observe that the corresponding file
“COD11517.ERP” was selected to describe the transformation between the
ITRF and the inertial reference frame J2000.0 (as opposed to the setting in
Panel SATORB 1, Figure 7.1).

The force field model is defined in Panel SATORB 4 (Figure 7.4). The option
ROCKIV may bow be activated, where the input file “SATELLIT”, defined
in Panel SATORB 1 (Figure 7.1), is required to obtain the necessary infor-
mation for the ROCK-IV radiation pressure acceleration. One may either
use the ROCK-IV or the simple model (or none) to take radiation pressure
into account – but not both. Air drag and albedo radiation pressure are not
available when analyzing GPS orbits.
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Fig. 7.12. Selection of SP3-files

The integration characteristics are defined in panels SATORB 2c (Figure 7.8)
and SATORB 7 (Figure 7.9). It makes sense here to ask the program to set
up a new arc after a long gap: if no observations are available for a particular
satellite for a time period longer than (let us say) four hours (240 minutes),
the observations before and after the gap are assumed to lie in two different
arcs. This assumption makes sense, because a long gap often indicates that
a satellite manoeuvre took place within the gap. It would also be possible to
set up automatically new arcs after certain time periods. The two options to
define new arcs are active in this program option.

When analyzing one week of GPS positions it makes sense to solve for all
parameters of the Bernese radiation pressure model. An analysis of this kind
was actually performed in [12] and led to the creation of the Bernese radiation
pressure model. Panel SATORB 7 (Figure 7.13) indicates how such long arcs
may (should) be parametrized: On top of the six initial osculating elements
the nine parameters of the Bernese model are selected, implying that each
orbital arc is modelled by fifteen free parameters.

Program SATORB produces a summary table for the entire program run in
the general output file. Table 7.2 contains the result for the example prepared
in the above panels. The table shows the mean rms errors per coordinate of
the orbital positions for all active GPS satellites in January 2002 using the
initial osculating elements and the nine parameters in eqn. (3.163) as orbit
parameters. Data of one week (GPS week 1151, corresponding to January 27
– February 2, 2002) were used in the orbit determination process. In the case
of satellites 15 and 17 long data gaps occurred, which led to a splitting of the
one week arc into two shorter arcs (one of one day and one of five days).
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Fig. 7.13. Parametrization of long GPS arcs

Let us mention that Table 7.2 also shows the elevation β of the Sun above the
orbital plane, the right ascension Ω of the ascending node of the orbital plane.
A flag “*” is set to indicate that the sunlight is eclipsed (as seen from the
satellite) by the Earth for some time during the saellite’s revolution around
the Earth.

The residuals are stored in the file defined in Panel SATORB 1 (Figure 7.1).
The eight columns in the *.RES file contain the following information (in the
program options processing tabular satellite information):

• Column 1: Time in days relative to the first observation epoch.

• Column 2: Argument of latitude.

• Columns 3 – 5: Residuals (in meters) in Cartesian coordinates in the in-
ertial system.

• Columns 6 – 8: Residuals (in meters) in radial (R), along-track (S) and
out of plane (W ) directions.

Generally, the rms errors a posteriori per satellite coordinate (column 5 of
Table 7.2) are of the order of few centimeters. This orbital consistency is
typical for “well-behaving” satellites. Because the satellite positions are not
real measurements, but derived from a particular solution of the equations
of motion, the residuals of these rectangular orbit positions w.r.t. the best-
fitting orbit are not randomly distributed. Figure 7.14 (top) shows a typical
example.

In contrast to this normal case, the orbital fit for certain satellites may be
much worse (showing rms values of more than, let us say, 10 cm). Figure 7.14
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Fig. 7.14. Residuals of long arc orbit fit for SV N09 (top), SV N02 (middle),
SV N02 including stochastic pulses (bottom)
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Table 7.2. Long-Arc Analysis of GPS-Week 1151 (Jan 27, 2002 - Feb 02, 2002) of
CODE/IGS Orbits

PRN Arc no np rms [ cm ] β Ω Shadow

1 1 2016 15 2.3 19.8 87.5
2 1 2016 15 24.4 −66.2 201.6
3 1 2016 15 5.0 −47.4 263.4
4 1 2016 15 2.7 4.0 327.7 *
5 1 2016 15 3.5 −67.0 202.8
6 1 2016 15 3.6 −45.4 266.1
7 1 2016 15 4.8 −46.7 264.4
8 1 2016 15 5.1 −25.7 148.1
9 1 2016 15 2.6 −23.2 144.9
10 1 2016 15 2.1 36.2 26.5
11 1 2016 15 2.8 −0.8 322.9 *
13 1 2016 15 3.5 20.7 86.4
14 1 2016 15 4.0 20.7 86.1
15 1 288 15 1.0 6.1 330.4 *
15 2 1440 15 8.6 4.8 330.3 *
17 1 288 15 0.7 7.8 332.7 *
17 2 1440 15 160.5 6.6 332.6 *
18 1 2016 15 2.6 35.7 29.1
20 1 2016 15 2.5 35.2 26.1
21 1 2016 15 95.1 36.2 26.8
22 1 2016 15 4.6 −66.6 202.4
23 1 2016 15 3.7 36.9 29.3
24 1 2016 15 8.2 5.0 328.8 *
25 1 2016 15 2.9 −21.2 142.4
26 1 2016 15 2.8 20.5 86.6
27 1 2016 15 2.1 −22.3 143.8
28 1 2016 15 3.3 −69.9 206.4
29 1 2016 15 99.0 21.4 84.9
30 1 2016 15 2.9 −68.4 204.9
31 1 2016 15 3.8 −46.7 264.4

2 1 2016 93 4.7 −66.2 201.6

(middle) shows the residuals of the orbital fit for satellite SV N02. Instead of
showing typical orbit errors well below a 10 cm limit as in the above example,
maximum residuals of up to almost one meter occur for SV N02. Observe,
that there are no big “jumps” in the residuals.

Obviously, it does not make sense to represent the entire arc by one set of
only 15 orbit parameters under such circumstances. Considering the facts
that (1) the orbits of all but a few satellites may be very well represented
by deterministic orbits characterized by only few parameters and that (2) all
satellites are more or less identical in construction, one may safely conclude
that the reason for bad behavior is related to satellite manoeuvres and/or to
errors related to attitude control.
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One radical method of curing such problems is to break up the original arc
into shorter arcs. This well known method usually is referred to as short
arc method. One should be aware of the fact, however, that through such a
procedure the number of parameters is multiplied by the number of arcs gen-
erated – a fact which considerably weakens the solutions. Also, an old Latin
proverb says natura not facit saltus : It is thus preferable to allow from time
to time for instantaneous velocity changes δvi in pre-defined directions. The
program user has the option in program SATORB to introduce such instan-
taneous velocity changes, called pseudo-stochastic pulses at regular intervals.
He may set up pulses either in the radial, the along-track, or the out-of-plane
directions (or any combination of the three options).

In addition, these velocity changes may be constrained to “reasonable” values
by introducing artificial observations of the velocity changes with a weight
proportional to σ−2(δvi) , where σ(δvi) is the user-specified rms-scatter (root
of variance) of the pulse.

The last row in Table 7.2 shows the success of setting up pseudo-stochastic
pulses every six hours in radial, along-track and out of plane directions (with
σ(δvi) = 2 cm/s ) for satellite SV N02. By comparing the rms-values for
satellite SV N02 with and without pseudo-stochastic pulses in Table 7.2 we
can see that the orbit representation was improved by a factor of about 5 –
at the price of increasing the number of orbit parameters from 15 to 93 (most
of them constrained, however). The corresponding input Panel SATORB 8
(Figure 7.15) is activated by selecting the corresponding (last) option in panel
SATORB 7 (Figure 7.13). The estimated pulses may be written into a file
(in the example of Panel SATORB 8, Figure 7.15 called “prn 2.pls”), which
is stored in the subdirectory “OUT” of the directory “SATORB”. The file
contains the MJD in the first column, the corresponding argument of latitude

Fig. 7.15. Definition of pseudo-stochastic pulses
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in the second column, and the pulses (in units of m/s) in the third, fourth,
and fifth columns for the radial (R), along-track (S), and out-of-plane (W )
pulses, respectively.

An analysis very similar to that described above is performed every week
by the IGS Analysis Coordinator. The analysis corresponding to Table 7.2
performed by the IGS Coordinator is contained in the IGS Report No. 9034
(available under http://igscb.jpl.nasa.gov/). For a description of the IGS pro-
cedures we refer to [13]. Additional references are provided in the IGS Report
No. 9034.

7.2 Kinematic LEO Orbits: Program LEOKIN

Program LEOKIN may be used to determine a so-called kinematic orbit of a
LEO using the observations of a spaceborne GPS receiver. A kinematic orbit
is nothing but a series of satellite positions, an ephemeris of the satellite’s
center of mass, which was established (almost) without making use of the
equations of motion. In essence only the GPS code and phase measurements
were used to determine the satellite ephemeris. The satellite positions may
then be used to determine a so-called reduced-dynamics orbit by using the
tabular positions as pseudo-observations in an orbit determination process
in program SATORB. The procedure is very similar to the ones described in
section 7.1. The peculiarities of analyzing LEO positions will be dealt with
in the concluding section 7.3.

Program LEOKIN was developed by Heike Bock in context with her Ph.D.
thesis written at the University of Bern [24]. The version described here is
a strap-down version of this original LEOKIN program. The primary menu
of LEOKIN is contained in panel LEOKIN 1 (Figure 7.16). The “usual”
input files required for GPS processing have to be defined first. The only
files that really has to be adapted when processing a particular LEO data
set is the file with the Earth rotation parameters (BULLET A.ERP), the
most recent version of which may be retrieved from the internet address
http://www.aiub.unibe.ch/download/ BSWUSER/GEN/. One may also re-
trieve the “satellite problem file” SAT 200x.CRX and the most recent satel-
lite definition file “SATELLIT” from the same address. The file “*.CRX”
may also be left blank – in which case the program does not automatically
exclude satellites which were set “bad” by the CODE Analysis Center during
processing. If a name is set blank, the menu system generates a warning,
which may be ignored. Experts may use this file to exclude bad satellites
themselves.

Program LEOKIN does – at least initially – not require a priori informa-
tion concerning the LEO orbit. LEOKIN may, however, make use of an ap-
proximate a priori orbit in the (very important) step of pre-processing the
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Fig. 7.16. Primary menu of program LEOKIN

GPS observations. The a priori orbit information must be made available to
LEOKIN in a special binary format, the so-called standard orbit format of
the Bernese GPS software [58]. The file is generated by the SATORB pro-
gram. In a first analysis of the LEO GPS data of a particular RINEX-file it
is thus not possible to select an a priori LEO orbit.

The LEO/GPS data set to be processed is selected in Panel LEOKIN 2 (Fig-
ure 7.17) together with the corresponding precise ephemerides file of the GPS
satellites (first two input items in the panel). The program needs the GPS
observations of the spaceborne GPS receivers in the so-called RINEX-format.
The observation files are made available through the IGS in this format. The
data sets (the LEO/GPS RINEX file and the precise ephemerides file) used
below as examples were retrieved from the CDDIS (Crustal Dynamics Data
Information System, internet address ftp://cddisa.gsfc.nasa.gov/pub/gps).
The IGS precise ephemerides files contain the satellite positions and the corre-
sponding satellite clock corrections at 15-minutes intervals. LEOKIN assumes
that both, the positions (velocities, accelerations, etc.) and the clock correc-
tions of the GPS satellites may be computed with cm-accuracy (3 cm corre-
sponding to about 0.1 ns for the clock corrections) for any LEO/GPS observa-
tion epoch. Whereas it is no problem to interpolate the satellite ephemerides
to any epoch covered by the SP3-file (internally, a polynomial of degree q = 10
is used for the purpose), the interpolation of the clock correction is problem-
atic: The characteristics of the GPS quartz oscillators would require precise
clock estimates at, let us say, 30 second intervals in order to justify neglecting
the stochastic part of the clock correction terms. Such clock information will
most likely become routinely available in the near future through the IGS and
its Analysis Centers. One may of course use anyway the clock information
contained in the precise ephemerides files – the drawback resides in a signif-
icant reduction of the achievable orbital accuracy (more information will be
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Fig. 7.17. Observations and LEO selection, GPS orbits and clocks

provided below). When using the satellite clocks from the SP3-files one has
the advantage that no additional GPS clock information is needed. In this
case the clock corrections found in the SP3-files are linearly interpolated to
the observation epochs. If the decision is made not to use the SP3-clocks, a
special clock correction file has to be supplied (see Panel LEOKIN 3, Figure
7.18).

The LEOKIN positions refer to the satellite’s center of mass, the raw mea-
surements refer, however, to the antenna phase center. This implies that,
internally, the transformation between the two reference points has to be
performed for each measurement epoch. This implies in turn that we have to
know the attitude of the satellite in inertial space as a function of time and the
antenna phase center coordinates w.r.t. the center of mass in a body-fixed
coordinate system. The latter information is contained for some satellites
(CHAMP, SAC-C, etc.) in the “SATELLIT” file. The three Cartesian co-
ordinates are DX = flight − direction (it is assumed that the DX-axis is
always parallel to the velocity vector), DZ = vector satellite → geocenter,
and DY (completing the right-handed Cartesian system DX, DY, DZ). This
definition already defines the satellite’s attitude. If the satellite one wishes
to process is not available in the list provided in Panel LEOKIN 2 (Figure
7.17), “OTHER” has to be selected in the input line “LEO Name”. In this
case, a name has to be provided in the line “New Name in Satellite File”
and the file “SATELLIT” with the corresponding antenna coordinate infor-
mation has to be updated. If one is satisfied with a modest accuracy or if the
coordinates are not known, DX = DY = DZ = 0 may be entered in the line
corresponding to the new LEO.

In Panel LEOKIN 3 (Figure 7.18) one has to provide a high-rate satel-
lite clock file (only a better resolution than that of 15 minutes provided
in the SP3-files makes sense) if the SP3 clock information is not used.
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Fig. 7.18. Satellite clock input file and output files

Clock files with a 5 minutes time resolution are available at the address
http://www.aiub.unibe.ch/download/BSWUSER/ORB/ under the name
CODYYDDD.CLK, YY standing for the last two digits of the year, DDD
for the day of the year.

Program LEOKIN generates a general output file and an error file (which are
identical when the latter name is left blank) plus three files (with extension
“PRE”, “TAB” and “PPD”, respectively) containing (in essence the same)
orbit information in three different formats. The coordinates in the first file
refer to the Earth-fixed system, the second and third contain the same infor-
mation in the inertial system (derived from the Earth-fixed coordinates using
the Earth rotation parameters in the corresponding file of Panel LEOKIN 1,
Figure 7.16). The coordinates refer to the center of mass in the PRE- and
TAB-files, to the antenna phase center in the PPD-file.

The PPD-file (Position and Position Differences) contain the “raw” position
estimates based on the LEO/GPS code observations and the position differ-
ences between subsequent epochs as obtained by analyzing the GPS phase
observations (see section I- 8.5.4 for details). The file should be viewed as
some kind of a protocol of the position and position difference estimating
process. The results of the first kind are referred to as measurement type 1,
those of the second kind with 2 in column 1 of the PPD file. The measure-
ment epoch is given in the second column of the file for position estimates, in
columns 2 and 3 for position difference estimates. Observe that the reference
epoch (MJD=. . . ) in the file header has to be added to give the measurement
epochs in the modified Julian date. The solution vectors (referring to the in-
ertial system) are then provided in columns 4 to 6, the estimated rms-error
of the observations in column 7. The (rather optimistic) rms-errors computed
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by LEOKIN are of the order of about half a meter for the position estimates,
of the order of a few millimeters for position difference estimates. Column 8
contains a flag which is set to 0, if everything seemed to be satisfactory. For
position estimates column 9 contains the sum of the satellite numbers used.
A change in this columns indicates a change of the GPS constellation. The
protocol is completed by the number of satellites used and the corresponding
satellite numbers.

In principle the measurement epochs are equally spaced. In the example used
above (CHAMP on day 69 of year 2002) the spacing between epochs is 10 s.
For various reasons (bad satellites, data downloading periods from the LEO
to a ground station, etc.) it may be that no solution could be generated for
certain epochs. These epochs simply do not show up in the PPD- and TAB-
files, a record 0, 0, 0, 999999.999999 is written for the corresponding epoch in
the PRE-file. The zeros correspond to the coordinates, the 999. . . to the LEO
clock corrections.

Apart from the reference point (antenna phase center for the PPD-file and
center of mass for the TAB-file) identical results are obtained in the PPD-
and TAB-files when processing only code, but no phase observations. (In this
case no estimates of type 2 are available in the PPD-file).

If satellite positions and position differences were estimated, the results in
the TAB- and the PRE-file differ substantially from the raw results in the
PPD-file: The positions in the former two files are obtained by a least-squares
combination of all available positions and position differences (over all epochs)
with the goal to obtain a series of positions. In the adjustment process the esti-
mated position differences are assumed to be much more accurate (by a factor
of 100) than the positions. The result consists, so-to-speak, of code-derived
positions smoothed by the position differences emerging from the GPS phase
analysis. The procedure is very efficient because the normal equation sys-
tem associated with this combination is tri-diagonal and may be solved using
efficient procedures described, e.g., in [88]. One LEOKIN run dealing with
10-s measurements of one entire day should take less than half a minute on
a modern PC.

Panel LEOKIN 4 (Figure 7.19) contains general GPS-processing options and
options used for the processing of the code observations. Based on the above
assumptions concerning the attitude of the satellite, the LEO’s GPS antenna
used for precise orbit determination is pointing into the satellite’s zenith
direction (i.e., it lies in the line geocenter → satellite). It is not possible for a
GPS-receiver situated on the surface of the Earth to gather GPS observations
below the horizon. For spaceborne GPS receivers this is, however, possible.
For LEOs, observations down to about 116◦ are possible. The GPS antennas
are, on the other hand, not ideal for acquiring such low elevation observations.
Two options are feasible to cope with this problem: One may define a cutoff
angle for observations exceeding a certain zenith distance. This may be done
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Fig. 7.19. General processing and code processing options

in the second input line of Panel LEOKIN 4 (Figure 7.19). One may, however,
also follow the strategy to use all observations, but to impose a weighting
scheme to the observations, which decreases the contribution of low-elevation
observations in the adjustment process. In LEOKIN the observations are
weighted proportional to cos2 z, when a cut-off zenith distance of zmax ≤
90◦ was used proportional to cos2(0.75 · z) for maximum zenith distances of
zmax > 90◦.

The observations may be sampled in the next line: In the example processed
above 10-s data were available and all were used. Specifying 30 s in the
input line “Spacing between Observations” has the consequence that only
every third observation is actually used. Only code observations or code and
phase observation may be used (the latter, however, only if an a priori LEO
orbit was made available in Panel LEOKIN 1, Figure 7.16). The next in-
put line (“Apply . . . ”) allows you to disregard the satellite-specific antenna
phase center coordinates – LEO center of mass and antenna phase center are
assumed to coincide, when selecting “NO” in this line. The option is only
recommended for test purposes.

All spaceborne GPS receivers are (hopefully) dual-band receivers providing
L1- and L2-observations. (This version of) LEOKIN assumes that dual-band
observations are available and it automatically forms and processes the so-
called ionosphere-free linear combination L3 of the actual code and phase
observations on L1 and L2. Residual ionospheric refraction effects are thus
eliminated. LEOKIN makes a plausibility check of the code observations.
It refuses to analyze a particular code observation if the difference (in m)
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between the original L1- and L2- observations exceed a certain limit. This
limit is specified in the first input line of the code-specific input options block.

LEOKIN performs a classical point positioning for each measurement epoch.
If the number of available satellites exceeds ns = 4 , an estimate for the rms
error of a measurement may be performed. A single point positioning result
is not accepted, if the rms error exceeds the value specified in the line “Max.
Error tolerated for PP”. When an a priori LEO orbit is available, a special
data screening step is invoked; the step is based on the terms “observed-
computed”. The value specified for “RMS of CODE Observations” is used
to decide whether or not an observation may be included. A majority voting
procedure is used for this purpose. Eventually one may reject solutions when
too few GPS satellites are available (last code-specific input option).

Panel LEOKIN 5 (Figure 7.20) is only shown if both, code and phase ob-
servations, were selected for processing. First of all, the minimum number of
satellites available for position difference processing may be specified here. A
minimum of four are (of course) required, because four unknowns (the three
coordinates of the position difference vector and the the clock difference) have
to be determined. The value of four may actually be recommended, because
the tests performed prior to the actual adjustment are rather rigorous.

Fig. 7.20. Phase processing options

Analogously as in the case of code observations, the ionosphere-free linear
combination L3 of the phase difference observations is processed iby LEOKIN.
A first plausibility check limits the plain difference (in meters) of the original
L1- and L2- phase differences (the third input line of Panel LEOKIN 4, Figure
7.19). Values around 0.5 m are appropriate for 10 s data. The strongest a
priori check is performed (as in the case of the code processing) on the terms
“observed-computed (o-c)”. If a good a priori orbit is available the terms
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“o-c” should be virtually free of errors due the satellite positions. One may
therefore mark observations which are outside a 3 · rms interval centered
around the mean value of the observations considered as good. The rms used
for this purpose is specified in input line four of Panel LEOKIN 5 (Figure
7.20). If more than four satellites are available (after having performed the
above test) the estimated rms error of the phase difference solution may be
used as a further, final quality indicator for the position difference estimation.
If this rms error exceeds the 2 − 3 cm level the result should be considered
with caution.

The last parameter to be defined only concerns the combination of positions
and of position differences in program LEOKIN. If only a short series of un-
interrupted phase differences is available, the smoothing effect is insignificant
and the result should not be used. The last input line in Panel LEOKIN 5
(Figure 7.20) limits the minimum number of contiguous phase differences per
“arc”. By reducing this number to below a value of, let us say, 20, one runs
the risk that positions with a much lesser quality are contained in these files.
The positions and position differences eliminated by this procedure are still
available in the PPD-file.

7.3 Dynamic and Reduced Dynamics LEO Orbits
Using Program SATORB

The content of the three output files *.TAB, *.SP3, and *.PPD, as generated
by program LEOKIN, may be used as pseudo-observations in the program
SATORB (where only one file type may be used at the time). The program
will generate the best possible particular solution of the equations of motion
using the parametrization already introduced in section 7.1 (more specifically
in the subsection 7.1.3). It is thus only necessary to address the peculiarities
of program SATORB when using LEO-data.

Panel SATORB 1 (Figure 7.1) is first presented to the user. The main option
“ORBIT DET (PSEUDO OBS)” has to be selected for LEO orbit determi-
nation. The standard orbit file (last input line) must be generated, if one
wishes to run program LEOKIN subsequently using an a priori orbit (last
two input lines of Panel LEOKIN 1, Figure 7.16).

The residuals of the positions in the TAB-, PRE- or PPD-files w.r.t. the
(reduced-) dynamic orbit established by SATORB are written into the file
with extension “RES”, the format of which was already given in section 7.1.3.

In Panel SATORB 2b (Figure 7.21) (compare with Panel SATORB 2b, Figure
7.11) one has to select the “LEO”-option in the first input line. The three
file types (TAB, SP3, PPD, second input line) may be used. When analyzing
TAB- or SP3-files, which were established by program LEOKIN using only
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Fig. 7.21. Satellite type, input file type, and file names

GPS code observations, one should use an rms a priori of about 1 m; if the files
established by program LEOKIN were based on code and phase observations,
one should rather select a value of 0.10 m.

In the example of Panel SATORB 2b (Figure 7.21) the PPD file type was
selected. In this case positions and position differences are available for orbit
determination, which is why the additional Panel SATORB 3b(cont) (Figure
7.22) has to be considered (if alternatively either the SP3- or TAB-file was
selected, this panel is skipped by the menu system). In the first input field

Fig. 7.22. Options for processing positions and position differences
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the name of the file containing the residuals of the position differences has to
be defined. The file format is identical with the residuals file of the satellite
positions. The program user may then define the accuracy ratio of code and
phase observations. If zero-values are specified, the accuracy ratio is derived
from the rms values available in the PPD-file (i.e., the ratio is defined indi-
vidually for each epoch). In order to avoid “unreasonable” values, minimum
values for the two rms errors may be provided (if the rms values in the PPD-
file are smaller then these values, the file values are replaced by the minimum
values).

Independently on the input file type one may generate up to two more output
files, a PRE-file and/or a TAB-file. The file names and the spacing between
observations are defined in this panel. The characteristics of the standard
orbit file, namely the degree q and the subinterval length h, are defined here.
For orbits with a small eccentricity, the interval length should be of the order
of 1/50 of the revolution period.

The panels following Panel SATORB 3b(cont) (Figure 7.23) presented to the
user when processing LEO data are identical with those associated with the
GPS/GLONASS processing. The force model naturally has to be adapted
to the LEO case. It is in particular important to select a high degree and
order gravity field in panel SATORB 4 (Figure 7.4) – degree and order 70, as
provided in the JGM3 model may be considered as a minimum. One should
use the relativistic version of the equations of motion, take the direct grav-
itational perturbations by Sun and Moon into account, and apply the tidal
effects. The nonconservative forces (atmospheric drag and radiation pressure)
are naturally of greatest importance to model the orbit of a LEO. It is in gen-
eral not too difficult to develop an appropriate model for radiation pressure

Fig. 7.23. Definition of up to three output orbit files
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(based on the knowledge of the satellite surface and its reflective properties,
its attitude, and the solar constant). It is, on the other hand, not trivial to
specify good a priori models for atmospheric drag. One might, e.g., use the
MSIS-models [51] and solve for scaling parameters associated with the two
key input quantities (solar flux and planetary index). Such “exercises” un-
doubtedly make sense when dealing routinely (for a few years) with precise
orbit determination for a particular satellite. If the only interest resides in
an accurate representation of the orbit established via the spaceborne GPS
receiver, these a priori models do not matter too much: modelling deficiencies
will be (almost perfectly) absorbed or at least greatly reduced by the stochas-
tic parameters, which have to be set up anyway (see remarks below). In the
tests performed at the end of this section no a priori models were introduced
for radiation pressure and for drag.

The definition of the integration characteristics for solving the equations of
motion in Panel SATORB 5 (Figure 7.6) is not critical: An integration order
of about q = 10 and an initial step size h of about one minute (about 1%
of the revolution period) are appropriate. The integration procedure used in
SATORB is the collocation method adjusting the stepsize automatically. The
accuracy limit specified for the velocity promises a relative local accuracy of
about 10−10 – which is amply sufficient for a total LEO arc length of about
one day. The variational equations are dealt with separately. The charac-
teristics for their solution are defined in Panel SATORB 6 (Figure 7.9). An
integration order of q ≈ 20− 30 and a stepsize h between a quarter and half
a revolution period (30 − 45 minute for LEOs) are appropriate.

The iterative orbit determination process is also specified in this panel.
SATORB does not use a priori orbit information when analyzing LEO or-
bits. The a priori orbit of the first iteration step is obtained by solving a
boundary value problem using those two position estimates at the beginning
of the file, which are separated by (about) the selected stepsize h. If, e.g., an
initial stepsize of 60 s was specified (as recommended above), the first and
seventh position estimate are used for the purpose (assuming that no data
points were missing). Independently of the number of stochastic parameters
set up, these parameters are only solved for after the third iteration step –
avoiding numerical problems to the extent possible. The pseudo-observations
may be screened for outliers using a 3 ·σ criterion. Screening is recommended
when dealing with real LEO data. In order to avoid numerical problems it is,
however, also recommended to apply screening only in the last few iterations
steps. In view of all these considerations, it is wise to use a rather high num-
ber of iteration steps in SATORB. Values between 6 and 8 are recommended.
It is not recommended to set up new arcs when analyzing LEO data.

The orbit parametrization is defined in panel SATORB 7 (Figure 7.10). When
analyzing LEO data the R, S, W decomposition is usually selected, and all
nine deterministic parameters are set up in the deterministic part. In addition
one usually has to introduce stochastic parameters in R, S, and W directions.
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When processing tabular positions (obtained by LEOKIN) based only on
code observations, it makes sense to set up one set of stochastic parameters
(about) every 30 minutes. If the pseudo-observations are based on code and
phase observations, one set of these parameters should be set up every 5 to
10 minutes. The velocity changes should be constrained to about 20 mm/s .

Results of orbit determination procedures for LEOs were presented in section
I- 8.5.4. We complement these results using the GPS measurements of the
CHAMP POD receiver of day 69 (10 March) of the year 2002. We focus
in particular on the impact of the GPS clock information. The results are
summarized in Table 7.3. Three kinds of GPS satellite clock corrections were
used:

• The clock corrections contained in the CODE SP3-files (at 15 minute in-
tervals).

• The clock corrections contained in the file COD02069.CLK. The clock cor-
rections in this file, established routinely by the CODE Analysis Center,
are provided at five minutes intervals.

• The clock corrections contained in the file COD02069x.CLK are given at
30 s intervals. They are produced for special research purposes.

It should be mentioned that the clock corrections contained in the three files
are of the same accuracy. The only difference is the sampling rate.

The rms error of a particular orbit in Table 7.3 stems from a translation (three
unknown parameters) between the tabular positions of this orbit and the

Table 7.3. LEO orbit quality using LEOKIN and SATORB with different GPS
clock estimates

Solution Code Phase Orbit Clocks Program RMS [ m ]

C1 Y N N 30 s LEOKIN 1.80
C2 Y N N 30 s SATORB 0.40
P1 Y Y C2 30 s LEOKIN 0.09
P2 Y Y C2 30 s SATORB 0.08
PL Y Y P2 30 s LEOKIN 0.03
PS Y Y P2 30 s SATORB —

C1a Y N N 5 m LEOKIN 1.80
C2a Y N N 5 m SATORB 0.41
P1a Y Y C2a 5 m LEOKIN 0.11
P2a Y Y C2a 5 m SATORB 0.11

C1b Y N N SP3 LEOKIN 3.69
C2b Y N N SP3 SATORB 1.56
P1b Y Y C2b SP3 LEOKIN 0.42
P2b Y Y C2b SP3 SATORB 0.41
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tabular positions of the (probably) best possible orbit, labelled PS, that can
be produced for this experiment using the programs LEOKIN and SATORB.
The orbit PS was obtained by

• first using program LEOKIN to establish the kinematic orbit C1 with only
code observations and no a priori orbit,

• then by using the C1 SP3 positions in program SATORB to establish
the standard orbit C2 (parametrization: initial osculating elements, the
nine deterministic parameters of Panel SATORB 7 (Figure 7.10) using
the R, S, W decomposition, and three pseudo-stochastic pulses every 30
minutes in the same directions),

• then by using code and phase observations in program LEOKIN to estab-
lish the kinematic orbit P1 making use of the a priori orbit C2,

• then by using the P1 SP3 positions in program SATORB to establish
the orbit P2 (parametrization: initial osculating elements, the nine deter-
ministic parameters of panel SATORB 7 (Figure 7.10) using the R, S, W
decomposition, and three pseudo-stochastic pulses every 10 minutes in the
same directions),

• then by using code and phase observations in program LEOKIN to es-
tablish the kinematic orbit PL making use of the a priori orbit P2, and
eventually

• by using the PL SP3 positions in program SATORB to establish the or-
bit PS (parametrization: initial osculating elements, the nine deterministic
parameters of Panel SATORB 7 (Figure 7.10) using the R, S, W decompo-
sition, three pseudo-stochastic pulses every 10 minutes in the same direc-
tions).

A comparison of the PS- and PL-orbits with a reduced-dynamics orbit estab-
lished with the Bernese GPS software indicates that the PS-and PL-orbits
are good to about 5 cm rms per coordinate.

The results in Table 7.3 speak a clear language. The better the time resolution
of the GPS clock correction, the better the resulting orbit:

• The orbit that can be achieved using only code observations without screen-
ing the code observations with the help of an a priori orbit is of the order
of one to two meters rms.

• Substantially better code-only orbits can be achieved if the C1 orbit is
used in LEOKIN to screen the code observations. The quality of the orbit
corresponding to C2 (but having used the a priori orbit C2 in LEOKIN)
is of the order of 30 cm rms (not documented in Table 7.3).

• It is interesting to note that the accuracies of the P1- (a purely kinematic
orbit) and the P2-orbits are of the same order of magnitude (of the order
of 10 cm when compared to orbit PS). When compared to each other, the
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corresponding rms is about 3 cm, indicating that the parametrization used
in SATORB to generate the orbits P2 and PS is adequate.

• The accuracy achieved when using five minute clock corrections (orbits
C1a, C2a, P1a, and P2a) is surprisingly good. It is, in essence, possible
to obtain sub-decimeter LEO orbits with the routinely available IGS clock
and orbit information!

• The clock information contained in the SP3-files is (as mentioned) accurate,
but obviously the linear interpolation between the 15 minute intervals se-
riously affects the results (see orbits C1b, C2b, P1a, P2b). Despite the fact
that sub-meter accuracies is obtainable using this very convenient infor-
mation, it cannot be recommended for “serious” LEO orbit determination.

Results of the kind achieved with the IGS standard products (precise SP3-
orbits and five minute GPS clock corrections) are sufficient for many applica-
tions in practice. If even higher accuracy (of the order of one cm) or a higher
productivity is required, it is unavoidable to use one of the well-established
scientific GPS packages, which generate kinematic and/or reduced-dynamics
orbits by the direct and correct use of all GPS observables.





8. The Computer-Program ORBDET

8.1 Introduction

Program ORBDET may be used to determine the orbits of minor bodies in
the planetary system and the orbits of artificial Earth satellites and of space
debris. ORBDET is the only interactive program of the program package. Its
primary menu is reproduced in Panel ORBDET 1 (Figure 8.1). The program
user first has to decide whether to determine the orbit of an object in the
planetary system or in the Earth-near space. The algorithms used for the two
purposes are identical. They are explained in detail in Chapter I- 8.

General input and output files are defined after this primary selection. The
file with constants (CONST), contained in the subdirectory GEN of the pro-
gram system, is used throughout this program. The file DE200 contains the

Fig. 8.1. Primary menu of program ORBDET
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coordinates of Sun, Moon and planets for the time interval between 1981 and
2025 as computed from the JPL ephemerides [111]. Files for other time inter-
vals might be generated as well (see [111] for more details). Depending on the
application (“M PLANET” or “SATELLITE” in the first input field) either
the files “ET.DAT” (with the values “Ephemeris Time - Universal Time”)
and “OBS MPL” or the files “OBS SAT” and “DATUM” are required as
input files.

The file containing the station coordinates of astronomical sites observ-
ing minor planets and comets is partly reproduced in Table 8.1. The file
“obs mpl.crd”, containing the essential information for some of these ob-
servatories, is contained in the subdirectory ORBDET/STA of the directory
CelestialMechanics. The format of the coordinate file is that defined and used
by the MPC (60 Garden St., Cambridge MA 02138 USA) of the IAU. The
ASCII-file may be easily edited to contain more or other observing sites.

The station code (three ASCII characters, first column) is used to identify the
observatories (of minor planets etc.). Observations of more than one station
may be analyzed in one and the same program run of ORBDET – provided
the coordinates of the observing sites are contained in the file of Table 8.1.
The geocentric coordinates of the stations are provided for each observing
site in units of degrees for the geocentric longitude (LONG) and in units of
equator radii for the Z-coordinate (column headed ”sin”) and for the length√

X2 + Y 2 of the projection of the geocentric station vector onto the equa-
torial plane (column headed ”cos”). The file ET.DAT (not reproduced here),
containing the final and predicted values for “Ephemeris Time - Universal
Time” for the time interval 1965 - 2008, is contained as well in the subdirec-
tory ORBDET/STA of the program system. This file must be updated from
time to time (information in the Astronomical Ephemerides and Nautical
Almanachs). It may be updated easily, as well.

Table 8.2 contains the coordinates of sites observing Earth satellites and space
debris (the reproduced format is slightly reduced). The coordinates refer to
a geodetic datum characterized in the third line of the file 8.2 (the ITRF97

Table 8.1. Coordinates of astronomical sites monitoring minor planets and comets

List of Observatory Codes
Observatory code, longitude and parallax constants
Code Long. cos sin Name
000 0.0000 0.62411 +0.77873 Greenwich
003 3.90 0.725 +0.687 Montpellier
004 1.4625 0.72520 +0.68627 Toulouse
009 7.4417 0.6838 +0.7272 Berne-Uecht
026 7.4648 0.68489 +0.72640 Berne-Zimmerwald
... ...... ....... ........ ................
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is used in the example of Table 8.2). The geodetic datum is defined by the
reference ellipsoid (parameters: equatorial radius AE, flattening F, scale SC,
the offsets w.r.t. the geocenter, and the rotations w.r.t. the “best possible”
geocentric, Earth-fixed system). The file “DATUM”, containing a wide selec-
tion of (local) geodetic datums, is provided in the GEN-subdirectory of the
program system; the file is partly reproduced in Table 8.3 in the format of the
Bernese GPS software [58]. Only the offsets and the rotations are used by the
program ORBDET. If a satellite orbit shall be analyzed, a file containing the
so-called Earth rotation parameters (see Chapter 2) is required as well. The
file “rap all.erp” (not reproduced here) is contained in the GEN subdirectory
of the program system. The most recent version for this file may be retrieved
from the CODE Analysis Center of the IGS (www.aiub.unibe.ch).

Table 8.2. Coordinates of astronomical sites monitoring satellites

ITRF93 EPOCH 1993.0: ITRF97 23-DEC-94
------------------------------------------------------------------
LOCAL GEODETIC DATUM: ITRF97 EPOCH: 1996-06-15 0:00:00

NUM STATION NAME X (M) Y (M) Z (M)

000 Geocenter 0.0000 0.0000 0.0000
001 Zimmerwald 4331283.5610 567549.6610 4633140.0410
002 Herstmonceux 4033463.7650 23662.4200 4924305.1230
003 FGAN/TIRA 4023953.5500 503304.4900 4906853.3200
004 Grasse 4581691.7070 556159.4690 4389359.4530
005 Graz 4194426.5920 1162693.9740 4647246.6000
009 Dresden/Guensber 3900310.0000 963194.6000 4936741.5000
010 Tenerife/Teide 5390281.0000 -1597891.0000 3007078.0000
011 Gibraltar 5136160.9640 -480717.0460 3738636.3880
580 Graz BMK 4194439.6000 1162718.4000 4647224.5000
754 Matera 4641990.2430 1393042.3920 4133231.9160
759 Wetzell 4075582.5020 931837.2700 4801559.9090
999 Herstmonceux2 4033464.336 23671.341 4924297.653

The names of the general output file and of the file with error messages
have to be provided in the last two input fields of the primary menu panel
ORBDET 1 (Figure 8.1). The general output file contains the results (the
orbital elements), but also a summary of the interactive orbit determination
session.

Program ORBDET does not require the knowledge and makes no use of
approximate orbital elements that might be known a priori. This is why a
first orbit has to be determined initially. The method has to be specified as the
first input item in Panel ORBDET 2 (Figure 8.2) of program ORBDET. Two
methods, namely the determination of a circular orbit and the determination
of a general two-body orbit, based on the formulation as a boundary value
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Table 8.3. Definition of Geodetic Datum

LOCAL GEODETIC DATA FOR BERNESE GPS SOFTWARE VERSION 4.2
--------------------------------------------------------
DATUM ELLIPSOID SHIFTS (M) ROTATIONS (")

ITRF97 AE = 6378137.000 DX = 0.0000 RX = 0.0000
1/F= 298.2572221 DY = 0.0000 RY = 0.0000
SC = 0.00000D+00 DZ = 0.0000 RZ = 0.0000

......... ................ ................ ..............
CH - 1903 AE = 6377397.200 DX = 679.0000 RX = 0.0000

1/F= 299.1528000 DY = -2.0000 RY = 0.0000
SC = 0.00000D+00 DZ = 404.0000 RZ = 0.0000

PZ - 90 AE = 6378137.000 DX = 0.0000 RX = 0.0000
1/F= 298.2572236 DY = 0.0000 RY = 0.0000
SC = 0.00000D+00 DZ = 0.0000 RZ = -0.3345

Fig. 8.2. Selection of object and orbit determination method

problem, may be selected. The theory for the determination of a circular
orbit was presented in section I- 8.3.1, the theory of the orbit determination
as a boundary value problem was developed in sections I- 8.3.2 and I- 8.3.3.
In the next input option (“Analytical/Numerical Orbit”) one may decide to
represent the orbit either analytically (using the procedure outlined in section
I- 8.3.2) or numerically as the solution of a local boundary value problem (see
I- 7.5.2). Both methods work equally well. They are of course not active, if a
circular orbit shall be determined. Under the same circumstances (boundary
value problem) you may also look for acceptable parabolic orbits. For some
applications you may not be interested in parabolic orbits, which is why the
option may be selected or switched off.
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The name of the file containing the astrometric positions has to be specified
as the fourth input item in Panel ORBDET 2 (Figure 8.2). In the example
of Panel ORBDET 2 a file named gtoobj 7 containing 23 observations of a
(non-catalogued) object in a geostationary transfer orbit was selected. The
observations were made in September 2002 with the ESA 1-m telescope in
Teneriffe. The search strategy and the observatory are described by [100].

The first three lines of the observation file “gtoobj 7.obs” are reproduced
in Table 8.4. The observation files have to be located in the subdirectory
ORBDET/OBS of the program system. Each line may, e.g., be read by the
FORTRAN statement

READ(LFN001,5010,END=1010)STNAME,OBJCHAR,XMJD,RA,DE
5010 FORMAT(1X,A16,1X,A35,F17.9,F13.9,F13.8),

where STNAME and OBJCHAR, the name of the observing station and the
characterization of the object, are character variables. XMJD, the Modified
Julian Date (MJD), RA (right ascension) and DE (declination) of the ob-
ject are REAL*8 variables. The unit for the modified Julian date MJD is
days. The right ascension is specified in the form “hh.mmssxxxxx”, where
“hh” stands for hours, “mm” for minutes, “ss” for seconds, and “xx. . . ”
for fractions of seconds. The declination has to be provided in the form
“dd.mmssxxx”, where “dd” stands for degrees (◦), “mm” for arcminutes (′)
and “ss” for arcseconds (′′), “xx. . . ” are fractions of arcseconds. It is assumed
that the observations refer to the system J2000.0.

Table 8.4. Observation file of a space debris object

Tenerife/Teide geo-0004:sv1-20020908-S-6-1B 52525.960917109 0.43026812 -11.5626736
Tenerife/Teide geo-0004:sv1-20020908-S-6-1B 52525.961657776 0.43372378 -11.5557413
Tenerife/Teide geo-0004:sv1-20020908-S-6-1B 52525.962398748 0.44117492 -11.5527736
...

The observations of a minor planet or comet may be provided in two different
formats. The first is illustrated in Table 8.5. The format is (more or less) self-
explanatory. Observe that the observations may be provided in the system
J2000.0 or in the system of its predecessor, the Bessel system B1950.0. The
system is defined by the index in the column 30 (with title “X”). If the index
is either blank or “1”, the observations are assumed to refer to the system
B1950.0, if it is “2”, to the system J2000.0. Different observations in the same
observation file may refer to different systems. This flexibility is required if
“old” and more recent observations shall be combined. Before determining
an orbit, all observations are transformed into the system J2000.0 and the
resulting orbital elements refer to this latter system, as well. All observations
to be used in one and the same orbit determination process have to reside in
one file.
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Table 8.5. Observation file of Comet Panther

NAME: PANTHER REF.:

UT EQUINOX: 1950.0
JJJJ MM DD.DDDDD X HH MM SS.SSS VDD MM SS.SS STA

1980 12 27.76076 1 18 47 55.60 39 22 27.5 026
1980 12 28.40625 1 18 48 14.47 39 32 01.3 026
1980 12 28.72986 1 18 48 24.52 39 36 55.2 026
1980 12 29.42986 1 18 48 45.24 39 47 40.5 026
1980 12 30.95234 1 18 49 32.25 40 11 53.0 026
1980 12 31.06597 1 18 49 35.87 40 13 52.4 026
1980 12 31.74792 1 18 49 57.37 40 24 53.0 026
1981 01 8.22194 1 18 54 10.61 42 44 30.3 026
1981 01 23.77500 1 19 04 20.58 49 25 27.3 026
1981 01 28.77222 1 19 07 59.99 52 11 39.3 026
1981 04 9.06250 1 07 59 31.09 59 29 06.4 026

The observations may also be provided in the format defined and used by
the MPC. The format is not reproduced here. An example is provided in the
help panel of the program.

The next three file names to be specified in Panel ORBDET 2 (Figure 8.2)
refer to specific output files. The “*.ele”-file contains the estimated elements.
If a satellite orbit was estimated, the resulting elements file may be used
as an input file by the program SATORB, where the information is used
to initialize an orbit improvement process with a sophisticated force field
(much more complex than the force model available in program ORBDET;
for details see Chapter 7).

The “*.res file” contains the observation number in the first column, the time
(MJD in the case of minor planets and comets, seconds relative to the first
observation epoch in the case of satellite observations) in the second column,
the residuals in α · cos δ and in δ (in units of arcseconds) in the third and
fourth column. The fifth column is left blank, except for observations which
were marked during the orbit determination process. A mark in this column
indicates that the corresponding observation was not used to determine the
orbit relative to which the residuals have been calculated. The last three
columns contain the right ascension and declination (both in degrees) and
the topocentric distance of the object at observation time (in AU for minor
planets and comets, in meters for artificial Earth satellites). The residuals
refer to the last orbit improvement step, performed in program ORBDET.
The “*.res” may be visualized by the menu function “display results”.

The output file “*.tab” specified in Panel ORBDET 2 (Figure 8.2) contains
the essential information related to the first orbit determination step. If a
circular orbit was determined initially, the file contains only three relevant
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columns, where the record number is contained in the first, the assumed value
a for the semi-major axis in the second, and the difference in the argument
of latitude B(a) def= ∆ug(a) − ∆ud(a) for the two observations selected in the
third column. If the solution was sought in the form of a boundary value prob-
lem, the first column contains the record number, the second the topocentric
distance ∆b1 corresponding to the first boundary epoch, and the third con-
tains the value log(σ(∆b1)), the logarithm of the estimated rms a posteriori.
In addition, the semi-latus rectum p and the eccentricity e of the conic section
associated with the assumed value ∆b1 are provided in the columns four and
five.

The third and last panel shown to the program user depends on whether the
orbit of a minor planet (or comet) or of a satellite (or a space debris) has to be
determined. In the case of a satellite orbit, the force model for the concluding
orbit improvement step has to be defined in panel ORBDET 3b (Figure 8.3),
in the case of a minor planet, the force model for the orbit improvement step
has to be specified in the Panel ORBDET 3a (Figure 8.4).

Fig. 8.3. Orbit model for satellite orbits

The force models for the final orbit improvement step thus are comparatively
simple in program ORBDET. Only the Earth’s oblateness and the gravita-
tional attraction exercised by Sun and Moon may be taken into account for
satellite orbits, whereas the gravitational attractions exercised by the planets
(their positions are approximated by the formulae provided by Meeus [72])
may be taken into account for orbits in the planetary system.

In the following two sections the two orbit determination procedures (bound-
ary value problem and circular orbit) are dealt with separately using the
observations in the file “gtoobj 7.obs”.
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Fig. 8.4. Orbit model for planetary orbits

8.2 Orbit Determination as a Boundary Value Problem

Subsequently we will establish an orbit for a satellite-like object (a space
debris particle). The main switch in Panel ORBDET 1 (Figure 8.1) was thus
set to “SATELLITE”. The force field to be used for the concluding orbit
improvement process was defined as shown in Panel ORBDET 3b (Figure
8.3). “BOUNDARY VALUE” was selected as the orbit determination method
in Panel ORBDET 2 (Figure 8.2).

The program user then obtains the list of observations as shown in Figure 8.5.
Based on this list the decision has to be taken, which observations to include
into the first orbit determination process. It is recommended to include only
observations stemming from a relatively short time interval (shorter than the
expected revolution period). Observations from different observatories may
be used here. In the example of Figure 8.5 all 23 observations stemming
from the ESA 1-m telescope on Teneriffe were selected for the first orbit
determination process. Observe that observations which are not selected here,
may be included later on, in the orbit improvement step. The program user
then has to specify the two boundary epochs. In the example of Figure 8.5
the epochs 1 and 23 were chosen. It is recommended to select two boundary
epochs which are relatively close together. One can, e.g., easily verify that in
the above example almost any other selection (e.g., 1 and 5) would work, as
well.

The program then proposes to perform a search over the topocentric distance
∆b1 associated with the first boundary epoch. The initial (250 km) and the
final (70000 km) search value for ∆b1 are proposed together with the mesh
size (250 km). The proposed search pattern should be adequate for most cases
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Fig. 8.5. List of observations, selection of observations and of boundary epochs

(except perhaps for the determination of very low orbits, where one should
reduce the mesh size). If the program user agrees with the specified search
pattern (or after the redefinition of this pattern), Figure 8.6 is generated
(where only the last few lines of this table are included in this figure).

A similar search table is proposed when determining the orbits of minor plan-
ets, comets, etc. The provided search table is, however, optimized for “ordi-
nary” celestial bodies. When dealing, e.g., with objects in the Edgeworth-
Kuiper belt, this table should be adapted to include large topocentric dis-
tances. This may be done, when no satisfactory solution was found within the
range of the proposed search table. When dealing with NEAs, it is sometimes
necessary to reduce the search range and to refine the table spacing.

The table at the top of Figure 8.6 gives the estimated rms error σ(∆b1), the
semi-latus rectum p (in meters), and the eccentricity e associated with each
topocentric distance ∆b1 (and the corresponding best possible value for the
topocentric distance ∆b2 resulting from a parameter estimation process using
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Fig. 8.6. RMS values, semi-latus rectum, and eccentricity as a function of geocen-
tric distance; selection of solution

the observations specified in the first interactive input selection in Figure
8.5). If acceptable (relative) minima were found, a table with these minima
is provided and the program user may select one of them to initialize the
subsequent orbit improvement process. In the example of Figure 8.6 only one
minimum was found; obviously this minimum was selected. Subsequently, an
orbit improvement process with the inclusion of perturbations (based on the
force model of Panel ORBDET 3b 8.3) was invoked. It is now possible to
include all observations by using the option “RESET ALL MARKS”. Use
was made of this option – with no effect because in this example all available
observations were already used for the initial orbit determination. In general
it is recommended not to use other observations than those already used for
initial orbit determination at this stage – the orbit improvement process may
be repeated later on with more observations.

The program then displays the list of residuals (for all observations, those
used and those marked). Based on this list the program user may decide
to repeat the orbit determination process after having marked a few obser-
vations. Individual observations may be marked by typing the observation
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number and pressing <enter>, a sequence of observations from n1 to n2 by
typing n1 0 n2 and then pressing <enter>. The orbit improvement process
is repeated until no further changes are detected by the program, in which
case the program is terminated.

The program user may then inspect and review the essential steps of the
orbit determination session in the general output file. The tables displayed
in real time and contained in Figures 8.5 and 8.6 may be reviewed in this
file. Moreover, the detailed results (orbital elements and residuals) are con-
tained in this file for each orbit determination and orbit improvement step.
For each orbit improvement step the estimated elements and the correspond-
ing mean errors are provided. Table 8.6 is a small extraction from the general
output file “orbdet.out” containing the final result. More examples may be
found in Chapter I- 8. The program system allows it to display the func-
tion log(B(∆b1)) by using the option “display results” associated with the
menu-button “ORBDET”. Figure 8.7 shows the result after having decided
to display (the logarithm of) the function “B-values”. The figure is drawn
with the use of the file “*.tab” produced by the program ORBDET. The
orbit determination process obviously had exactly one solution. Instead of
producing a graph of the function log(B(∆b1))

def= log(σ(∆b1)) it is also possi-
ble to visualize the semi-latus rectum p or the eccentricity e associated with
the topocentric distances ∆b1 (see Figures I- 8.7 and I- 8.8).

The option “display results” provided for program ORBDET also allows it
to inspect the residuals as a function of time. Figure 8.8 illustrates a typical
result.

The files “*.tab” and “*.res” produced by the program ORBDET may of
course also be used by any plot-package. Figure 8.9 shows, as an example,
two curves log(σ(∆b1)) for the example used here, once including all observa-
tions (and using the first and last observation epochs as boundary epochs),

Table 8.6. Orbit elements for the previously unknown object geo-004

ORBIT DETERMINATION FOR OBJECT gtoobj_07:sv1-20020908-S-6-1B
-------------------------------------------------------------
# OBS = 23

RMS = 0.27 "
TIME INTERVAL = 5176.506 SEC
P = 11656870.286381 +/- 3303.218992 M
A = 23819403.495614 +/- 2604.819940 M
E = 0.7145729612 +/- 0.0000595942
I = 6.6971388 +/- 0.0005283 (DEG)
NODE = 82.3293036 +/- 0.0032306 (DEG)
PER = -248.1323982 +/- 0.0024953 (DEG)
TPER = -14061.4252978 +/- 3.0547606 SEC
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Fig. 8.7. Logarithm of RMS values σ(∆b1) as a function of geocentric distances
∆b1

Fig. 8.8. Logarithm of RMS values log(σ(∆b1)) as a function of geocentric distances
∆b1
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once using only observations 1 to 5 with the observation epochs 1 and 5 as
boundary epochs. The example clearly shows that the length of the observa-
tion interval (and, to a lesser extent, the number of observations) plays an
essential role for determining a robust orbit.
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Fig. 8.9. Function log(σ(∆b1)) using 23 astrometric positions of a GTO-object

within 1h26m (solid line) or 5 positions within 4m (dotted line)

8.3 Determination of a Circular Orbit

It is not really a wise decision to determine a circular orbit if more than two
observations are available (except, perhaps, if the observations are contained
in a very short time interval). The statement is particularly true for the
example of the object “gtoobj 7”, which moves around the Earth in an orbit
with an eccentricity e ≈ 0.7 (see Table 8.6).

Let us make the attempt, anyway. It does not make sense to include the
initial dialogue for the determination of a circular orbit, because the pattern
of Figure 8.5 is followed more or less when determining a circular orbit: The
observation epochs to be used for the determination of a circular orbit have to
be selected instead of the boundary epoch and the search pattern is proposed
for the semi-major axis a and not for the topocentric distance. Let us assume
that we made the decision to determine the orbit with observations 1 and 5.
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The determination of a circular orbit is a rather risky business. It may well
be that no suitable orbit is found – in particular if the eccentricity e of the
true orbit is rather high (as in our case).

Despite these negative remarks a circular orbit actually was found, the result
of which is reproduced in Table 8.7. The table should be compared to Table
8.6 containing the result of the orbit improvement step. The residuals for
the first and fifth observation are zero (as they should). Also, the residuals
of observations 2, 3, and 4 are reasonably small. If only observations 1 to
5 were available, one could believe that the circular orbit is close to reality.
Table 8.7 illustrates the difficulty to determine a good orbit from observations
contained in a very short time-span. That the circular orbit is no longer
an acceptable approximation if observations from a substantial part of the
object’s revolution period are available, is illustrated by Table 8.8, where the
first and last observation of the file “gtoobj 7.obs” were used to determine a
circular orbit. The insufficiency of the orbit model is now apparent.

Let us return to the discussion of the results in Table 8.7. The comparison
with Table 8.6 containing the “true” results show that the determination of
the orbital plane was more or less successful (differences of only a few degrees
w.r.t. the truth). The semi-major axis a seems to be, however, unacceptably
wrong: instead of a value of a ≈ 23819 km (see Table 8.6) a value of about
a ≈ 62000 km is obtained. Observe that the estimate does not improve by

Table 8.7. Circular orbit for the previously unknown object gtoobj 07 when using
observations 1 and 5

ORBIT DETERMINATION FOR OBJECT gtoobj_07:sv1-20020908-S-6-1B
-------------------------------------------------------------

RESIDUALS IN ARCSECONDS ELEMENTS
----------------------- --------
I RA DE
1 0.00 0.00 A = 62210896.6
2 0.94 0.38 E = 0.000000
3 1.12 0.87 I = 9.287203
4 0.81 0.75 NODE = 73.566100
5 0.00 0.00 PER = 0.000000
6 -519.65 -429.57 * TPER = 28864.319
7 -528.07 -438.91 *
8 -536.92 -448.65 *
..
15 -989.69 -1229.10 *
16 -994.37 -1243.79 *
..
22 -1018.25 -1338.20 *
23 -1022.02 -1354.25 *

*** SR BNIMPP: BIG CORRECTIONS IN ITER-STEP 1
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Table 8.8. Circular orbit for the previously unknown object gtoobj 07 when using
observations 1 and 5

ORBIT DETERMINATION FOR OBJECT gtoobj_07:sv1-20020908-S-6-1B
-------------------------------------------------------------

RESIDUALS IN ARCSECONDS ELEMENTS
----------------------- --------
I RA DE
1 0.00 0.00 A = 63300002.4
2 13.89 16.72 E = 0.000000
3 27.01 33.56 I = 8.849607
4 39.63 49.79 NODE = 83.445883
5 51.76 65.43 PER = 0.000000
6 63.93 329.14 TPER = 33891.208
7 61.62 327.95
8 58.87 326.36
9 56.16 324.97
10 54.05 323.32
11 51.71 321.77
12 48.83 320.00
13 46.56 318.07
14 43.90 316.66
15 -15.53 59.26
16 -14.23 52.80
17 -12.69 45.47
18 -10.48 38.02
19 -9.53 30.19
20 -7.31 22.77
21 -4.81 15.39
22 -2.21 7.81
23 0.00 0.00

*** SR BNIMPP: BIG CORRECTIONS IN ITER-STEP 1

increasing the length of the time interval between the two observation epochs
used for the determination of a circular epoch.

It is close to a miracle that the orbit improvement process converges with
an a priori orbit of such a bad quality. The last line of Tables 8.7 and 8.8
documents that this is also the opinion of program ORBDET: Unusually big
increments of the estimated parameters were encountered in the first step of
the orbit improvement (they were, as a matter of fact, automatically reduced
to a “reasonable” size by the program).

The result a ≈ 63000 km for geostationary transfer orbits when determining
a circular orbit with observations near the apogee may be explained easily by
taking into account that the actual velocity v of an object with eccentricity
e near the apogee is defined by (compare eqn. (I- 4.20):
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v2 = GM

{
2

a (1 + e)
− 1

a

}
=

GM

a

1 − e

1 + e
, (8.1)

and that the apogee is in the geostationary belt at a(1+e) ≈ 41000 km . The
proof that ∆ug − ∆ud

def= 0 leads to a ≈ 63000 km under such circumstances
may be left to the reader!



9. The Computer-Program ERDROT

As indicated by the primary panel ERDROT 1 (Figure 9.1) the program
ERDROT may be used for the following four tasks:

1. Solve Euler’s equations (I- 3.124) of Earth rotation, assuming that the
geocentric orbits of Moon and Sun are known (given by the JPL ephemer-
ides or by approximate formulas).

2. Solve Euler’s equations (I- 3.124) of lunar rotation, assuming that the geo-
centric orbits of Moon and Sun are known (given by the JPL ephemerides
or by approximate formulas).

3. Solve the three-body problem Earth-Moon-Sun according to the theory
developed in section I- 3.3 assuming that Earth and Moon are rigid bod-
ies.

4. Study the correlation between Earth rotation parameters as established
by space geodetic methods (e.g., IGS, IERS) and atmospheric angular
momenta (AAM), as established by the IERS Special Bureau for the
Atmosphere (SBA).

Fig. 9.1. Primary menu of program ERDROT
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In the first case (Earth rotation), the Earth may be assumed to be either rigid
or elastic (see eqns. (2.120) in section 2.3), or to consist of a rigid mantle and
a liquid core (Poincaré model, see eqns. (2.175) in section 2.3.4).

Option 4 (correlation) does not involve simulations, but the analysis of real
data. The theory behind this application is contained in section 2.3.3. The
four program options will now be dealt with separately.

9.1 Earth Rotation

Panel ERDROT 2 (Figure 9.2) shows that up to three input files are required
to run the program. The first file is the general file with program constants
(contained in the GEN-subdirectory of the program system and used for
practically all programs of the system). The second input file contains the
Earth rotation parameters as retrieved from the address of the CODE analy-
sis center http://www.aiub.unibe.ch/download/BSWUSER/GEN/ under the
file name BULLET A.ERP. The file is only required if the third program op-
tion (N BODY PROBLEM) is activated. The third input file contains the
JPL ephemerides in a binary version. If this input file is left blank, the pro-
gram uses approximate ephemerides for Sun, Moon and planets (where re-
quired). When using the file DE200.EPH for pure Earth or Moon rotation
studies (first two options)) the applications have to lie within the time interval
between 1981 and 2025. When using the N -body option, the file DE200.EPH
is only used to define the initial values, implying that the initial epoch has
to lie within the mentioned time interval.

Fig. 9.2. Output files of program ERDROT (option Earth rotation)
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There are at maximum three output files to be specified in Panel ERDROT
2 (Figure 9.2). The general output file echoes the general program character-
istics and contains in addition the statistical information like the CPU time
required for running the program. The error messages are written into the
same file, unless the second output file name is not left blank.

The third output file contains the Earth rotation parameters. The columns
contain the following information:

1. Time in the format to be selected in Panel ERDROT 6 (Figure 9.6).

2. x-coordinate x
def= ω1

ω3
· 206264.8 of the pole.

3. -y-coordinate −y
def= ω2

ω3
· 206264.8 of the pole.

4. Excessive day length in milliseconds.

5. Precession Ψ(t) in longitude.

6. Nutation in longitude (∆Ψ(t)) reduced by a precession with a rate of
−50.387784′′ per year.

7. Nutation ∆ε in obliquity (minus mean obliquity J2000.0).

8. Sidereal time at Greenwich Θ(t) reduced by initial value and the rate
specified in Panel ERDROT 4a (Figure 9.4).

9. χ1(t), first component of vector χ(t) characterizing the motion of the
liquid core w.r.t. the rigid mantle.

10. χ2(t), second component of vector χ(t) characterizing the motion of the
liquid core w.r.t. the rigid mantle.

11. χ3(t), third component of vector χ(t) characterizing the motion of the
liquid core w.r.t. the rigid mantle.

The information was written using the following (FORTRAN) format:

FORMAT(F15.8,2F12.6,3F12.4,F15.3,5F15.6),

Each output file *.res contains a header consisting of eight lines, including
the date and the time of its generation (for identification), and a title char-
acterizing each column. The last three columns are only written, if a liquid
core was included.

Panel ERDROT 3 (Figure 9.3) shows the value of the constant of gravitation
used in the program (without giving you the chance to change it) and it
defines the mass ratios m♁ : m� and m� : m♁. The values provided on the
CD are “the true values”, but one may change them within reasonable limits.
When producing so-called “free solutions” (the two options at the bottom of
Panel ERDROT 3, Figure 9.3), the corresponding mass ratios are set to zero
(and the values masked with shades in this panel, retaining, however, the
values for later use).
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Fig. 9.3. Definition of parameters (part 1) in program ERDROT (option Earth
rotation)

Panel ERDROT 4 (Figure 9.4) offers even more modelling options. The mass
of the Earth may, e.g., be redefined (via the GM -value and the fixed value of
G in the previous panel). Then, the angular velocity referring to the initial
epoch has to be specified (the value is given in radian per second). The next
three input lines are reserved for the definition of the values γ♁i

as defined
by eqns. (I- 3.123). The values provided on the CD are those corresponding
to a realistic, rotationally symmetric Earth. Other experiments with other
values or models are easily set up. Eventually, one may decide to introduce a

Fig. 9.4. Definition of parameters (part 2) in program ERDROT (option Earth
rotation)
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liquid core (in which case the Panel ERDROT 4a(cont) (Figure 9.7), discussed
towards the end of this section, will allow it to refine the model even further).
Observe that as soon as a liquid core is introduced, the value for k2 will be
automatically set to k2 = 0 (and the corresponding value shaded in the
panel).

The value 0 ≤ k2 ≤ 1 allows it to continuously switch from a completely rigid
(k2 = 0) to an ideally elastic Earth (k2 = 1).

In Panel 5 (Figure 9.5) the numerical integration is set up (a collocation pro-
cedure of fixed stepsize is used), the integration interval, the initial conditions
for polar motion, and the output interval are defined. Please observe that the
file “*.res” may become very long if the integration interval is long and the
output data rate high.

Fig. 9.5. Simulation and integration characteristics in program ERDROT (option
Earth rotation)

The last panel allows it to define the time scale in column 1 of the file *.erp.
The time may be provided either in days (relative to the first epoch), in
the modified Julian day (MJD) or in years (and fractions thereof). One may
decide to either include or exclude the quasi-daily terms (see eqns. (2.25)) in
nutation and sidereal time.

Panel 4a(cont) (Figur 9.7) is only activated if a Poincaré-type model for the
Earth was activated in Panel ERDROT 4a (Figure 9.4). In this case the
moments of inertia associated with the liquid core (in units of the Earth’s
total first moment of inertia A), the elipticity of the core-mantle boundary,
and the initial values for vector χ must be specified. The values proposed on
the CD are the realistic values of eqns. (2.151).
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Fig. 9.6. Output characteristics in program ERDROT (option Earth rotation)

Fig. 9.7. Parameters of a Poincaé model in program ERDROT (option Earth
rotation)

9.2 Rotation of the Moon

The rotation of the Moon may be studied by selecting the second option
(MOON ROTATION) in Panel ERDROT 1 (Figure 9.1). The next panel
is very similar to that presented in the case of Earth rotation: In Panel
ERDROT 2 (Figure 9.2) one has to select the name for the file with the lunar
rotation results (and the corresponding file for Earth rotation is shaded). The
file format and content will be provided at the end of this section. Exactly
like in the case of Earth rotation one has to select the mass ratios in Panel
ERDROT 3 (Figure 9.3). For obvious reasons one does not have the option,
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Fig. 9.8. Definition of parameters in program ERDROT (option lunar rotation)

however, to exclude the Moon! The key characteristics of lunar rotation are
now specified in Panel ERDROT 4b (Figure 9.8). Here, the decision is made
whether or not to include the Earth as a torque-generating body. If the Sun
was excluded in the previous panel and the Earth here, studies of the free
rotation of the Moon are invoked. Observe that in the case of lunar rotation
only the rigid body model may be used.

The initial angular velocity of the Moon may be defined subsequently. The
value provided on the CD corresponds to that contained in Table 2.1 (in
radians/second), leading to the well-known coupling of the Moon’s periods
of rotation and revolution. The initial position of the Moon’s rotation axis is
specified in the Moon’s PAI-system. The last three input lines are reserved
for the definition of the Moon’s three principal moments of inertia. Again,
the values of Table 2.1 are provided on the CD.

Panel ERDROT 5 (Figure 9.5) is almost identical as in the case of Earth
rotation, the exception being the last three lines of the input panel which are
blocked (reserved for Earth rotation). When defining the integration charac-
teristics, much longer stepsize are possible than in the case of Earth rotation.
h = 24 hours is about appropriate when using a collocation method of order
q ≈ 12. The time scale may be defined as in the case of Earth rotation (see
Panel ERDROT 6, Figure 9.6).

The file “*.res” of lunar rotation, defined in Panel ERDROT 2 (Figure 9.2),
contains the following parameters:

1. Time in the format selected in Panel ERDROT 6 (Figure 9.6).

2. x-coordinate x
def= ω1

ω3
· 206264.8 of pole in the Moon’s PAI-system.

3. -y-coordinate −y
def= ω2

ω3
· 206264.8 of pole in the Moon’s PAI-system.
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4. Relative length of month (length of month divided by initial revolution
period).

5. Lunar precession Ψ(t) in longitude.

6. Lunar nutation ε(t) in obliquity.

7. Lunar “sidereal time” Θ(t) reduced by initial value and the initial lunar
rotation rate.

8. Angle Θ(t) − n0 (t − t0) − Ψ(t) .

9. Libration in lunar longitude.

10. Libration in lunar latitude.

The information was written using the following (FORTRAN) format:

FORMAT(F15.8,5F16.5,F15.5,5F15.5)

Each output file *.res contains a header consisting of eight lines, including
the date and the time of its generation (for identification) and a title charac-
terizing each column.

9.3 The N -Body Problem Earth-Moon-Sun-Planets

When the option “N-BODY-PROBLEM” (Panel ERDROT 1, Figure 9.1) is
selected, the three-body problem Earth-Moon-Sun is numerically integrated
together with a user-defined number of planets. The planets may be selected
in Panel ERDROT 4b(cont) (Figure 9.9). If no planet is selected in this panel,
the pure three-body problem, as discussed in section I- 3.3, is treated. Earth
and Moon are considered as bodies of finite size, whereas all other planets
assumed to be point masses. The system is a coupled second-order differential
equation system with d = 3 · (np +1)+2 · 3 (np being the number of planets)
equations. Three equations have to be set up for each center of mass of the
planets and the Moon, and there are three second-order equations for each
set of Euler angles for Earth and Moon (as introduced in section I- 3.3.6).

In this mode the program ERDROT may be viewed as a generalization of
program PLASYS, because it includes the orbital motion of the Earth’s only
natural satellite, and because it takes the rotational motion of Earth and
Moon into account. As opposed to the treatment in program PLASYS, rel-
ativistic effects are not considered here – except for the Moon. The Earth’s
oblateness is also taken into account for the center of mass motion of the
Moon. This option of ERDROT may, however, also be viewed as a gener-
alization of the options “EARTH ROTATION” and “MOON ROTATION”
(see Panel ERDROT 1, Figure 9.1) in the same program – except for the fact
that Earth and Moon are assumed to be rigid in this mode.
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The multistep integration method (see sections I- 7.4.2 and I- 7.5.6) is used to
solve the generalized N -body problem. This is undoubtedly the best choice
under the circumstances given (no highly eccentric orbits, no big variations
in the rotational motions).

After having selected the N -body mode in Panel ERDROT 1 (Figure 9.1)
the output names for both, the files containing the information concerning
Earth and Moon rotation, have to be defined in Panel ERDROT 2 (Figure
9.2). Note that the file DE200.EPH must be provided for the definition of the
initial state vector of the centers of mass of Sun, Moon and planets. The rigid-
body characteristics of Earth and Moon are then defined in Panels ERDROT
4a (Figure 9.4) and ERDROT 4b (Figure 9.8). The planet list (including
for obvious reasons the Earth) may then be completed in Panel ERDROT
4b(cont) (Figure 9.9). Note that only the perturbations of the planets in
this list acting on the centers of mass (but not on the torques influencing
the rotational motion) are taken into account. In the same panel one also
must specify the name of the output file containing the orbital elements of
the Moon. It is possible to store the osculating elements (specify 0 in the
second input field) or mean elements, averaged over an integer number of
lunar revolutions. The columns of the file with the lunar elements contain
the following information:

1. Time in days elapsed since the starting epoch.

2. Semi-major axis a (in meters, relative to a value specified in the header)
of the lunar orbit.

Fig. 9.9. Selection of planets for N-body option in program ERDROT
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3. Numerical eccentricity e of the lunar orbit.

4. Inclination i (in degrees) of the lunar orbit w.r.t. the ecliptic J2000.0.

5. Longitude Ω (in degrees) of the ascending node of the lunar orbit w.r.t.
the ecliptic J2000.0.

6. Distance ω (in degrees) of lunar perigee from the ascending node (ac-
cording to the above definition).

7. Angle Ω + ω + v − Θ̇m (t − t0) .

The initial epoch, the length of the integration interval, as well as the initial
position of the rotation pole in the Earth-fixed system is selected in Panel
ERDROT 5 (Figure 9.5). Note that in this program option the integration
order, the step size and the sampling of the output data may not be defined
in this panel. This is actually performed in Panel ERDROT 5(cont) (Figure
9.10). The panel shows that the generalized N -body problem may be solved
either in a straight forward, correct way, or in an approximative, much more
rapid way. The straight forward way must be rather inefficient, because the
constant stepsize h is dictated by the shortest period in the system, which is
the period of Earth rotation, namely one sidereal day. With the experiences
gained in Chapter I- 7 one would guess that the stepsize for a multistep
procedure of the order 8 ≤ q ≤ 14 should be of the order of 0.001 days, i.e.,
of the order 15 minutes. It is a pity to integrate the equations of motion for

Fig. 9.10. Integration specification in program ERDROT (option N-BODY-
PROBLEM)
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the planets, where stepsizes of the order of several days would be appropriate,
with this ridiculously short stepsize, as well. The rapid solution version of the
three-body therefore problem therefore solves the integrations of motion in
three steps:

Step 1: The planetary N -body problem including the point masses of the
Sun, the center of mass Earth-Moon, and the centers of mass of
the planets selected in Panel ERDROT 4b(cont) (Figure 9.9) are
solved using the initial conditions taken from the JPL Development
Ephemeris DE-200 [111]. A stepsize h1 ≈ 3 days and a conventional
multistep procedure of a user-defined order (q = 12 may be recom-
mended for the purpose, if Venus is the innermost planet included).

Step 2: Each of the above integration steps is covered with an integer number
n1 of integration steps for solving the equations of motion of the
Moon (and the Eulerian equations for the rotation of the Moon)
using a multistep procedure of the same order as in Step 1. As the
Moon’s revolution period is about ten times shorter than that of
Venus, n1 ≈ 10 should be bout appropriate (see Panel ERDROT
5(cont), Figure 9.10). The initial conditions for the orbital motion
were taken from [111]. “Plausible values” are taken for the initial
values for the rotation of the Moon: It is assumed that the axis of
the Moon’s axis of minimum inertia is pointing precisely from the
seleno- to the geocenter at the initial epoch. The geocentric positions
of the Sun and the planets are taken from the integration in Step 1,
the correction from the Earth-Moon barycenter to the geocenter is
performed using the results of the integration in Step 2. A linear
approximation for the three Eulerian angles Ψ♁ , ε♁ , and Θ♁ (as they
emerge from the solution of the Eulerian equations for the rotation
of the Earth in Step 3 ) is used to compute the orientation of the
Earth in inertial space.

Step 3: After each integration step of type Step 2 the differential equations
for the rotation of the Earth are solved in a user-defined number n2

of steps per Step 2 using a multistep procedure of a user specified
order q2 . As the rotation period of the Earth is about 30 smaller
than the revolution period of the Moon, a value of about n2 ≈ 30
seems appropriate.

The above approximations imply that the relative motion of Earth and Moon
about their barycenter are not taken into account for the integration in Step
1, and that only linear predictions (over a very short time interval) of the
integration in Step 3 are used in the integration in Step 3. In view of the weak
coupling between the respective equations, this approximation is perfectly
justified.
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The advantage of using the approximative instead of the correct solution of
the entire system (which is also implemented in program ERDROT) is a
significant gain in integration velocity. The integration over an interval of
one thousand years takes less than 9.4 minutes using a 1.2 GHz PC. In this
rapid integration mode, whereas more than 26 minutes would be required,
when integrating the equations rigorously with a stepsize of 15 minutes and
an integration order of q = 8 . By using the rapid option, one therefore gains
a factor of about 6 in computation time.

The content of the files with the results related to the rotation of Earth
and Moon is slightly different from that documented, when using the op-
tions “EARTH ROTATION” and “MOON ROTATION” in Panel ERDROT
1 (Figure 9.1). The first eight columns in the file containing the Earth ro-
tation data are identical with those already mentioned under the option
“EARTH ROTATION”. The last three columns are replaced by:

9. True obliquity ε(t) of the equatorial plane.

10. Node Ω♁ of the Earth’s orbit in the true equatorial system at time t.

11. Inclination i♁(t) of the “true” Earth’s orbit w.r.t. the ecliptic of system
J2000.0.

The first ten columns in the file containing the lunar rotation data are iden-
tical with those documented in the preceding section. Column 11 contains
in addition the inclination i♁eq of the lunar orbit w.r.t. the equatorial plane.
This option was used to produce Figure 2.12.

9.4 Space Geodetic and Atmospheric Aspects
of Earth Rotation

Panel ERDROT 2(cont) (Figure 9.11) shows the principal panel when using
the option “ERP AAM” of program ERDROT in Panel ERDROT 1 (Figure
9.1). As opposed to the other three options, which serve to solve the equa-
tions of motion of Earth and/or lunar rotation (possibly together with the
equations of motion for the centers of mass of these bodies), real data are
analyzed when activating option “ERP AAM”. Earth rotation parameters
(in particular x-, y-coordinates of the pole, LOD produced by the IERS or
by the CODE Analysis Center of the IGS (both input formats are supported)
are analyzed. The format of the ERP input file (IERS or CODE) is selected
at the top of Panel ERDROT 2 (cont) (Figure 9.11). If no AAM-files are
included, the program generates only one output file (apart from the gen-
eral output file), namely that containing the Earth rotation parameters in
a format which may be easily analyzed by program FOURIER to generate
spectra. This option is in particular useful, when using the IERS input for-
mat, because the presence of non-numerical characters prevents the direct
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Fig. 9.11. Options of program ERDROT (option ERP AAM)

use of this file by program FOURIER. The output file (in the example of
Panel ERDROT 2(cont), Figure 9.11, the file “EOP IERS.OUT”) contains
in essence the same information as the selected input file, except for the fact
that the tidal terms up to periods of one year may be eliminated from the
LOD-data. It is also possible to remove the a priori known sub-daily terms
(using the Ray-model) from the original polar motion results. This option
only makes sense, however, if polar motion of a higher than daily time reso-
lution is analyzed.

From the Earth rotation parameters one may calculate the three components
of the Earth’s angular momentum vector. This is only done when selecting the
corresponding program option in the second input field (Use AAM-Files). The
program calculates the so-called angular momentum (AM) functions from
the Earth rotation parameters, then it correlates these AM functions with
the atmospheric angular momentum (AAM) functions provided by the IERS
Special Bureau for the Atmosphere (SBA). The general output file contains
the correlation coefficients (defined according to formula 2.146) for the three
momentum functions. Figure 9.12 shows an example of the output generated
by program ERDROT, when using the option “ERP AAM”. The essential
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ANALYSIS OF ERP FILES AND AAM-FILES
DATE: 02-FEB-03 TIME: 06:04
*******************************************************************
NUMBER OF DATA POINTS : 3836
FIRST EPOCH : 1991 12 1.00000 (MJD= 48591.00000)
LAST EPOCH : 2002 6 1.00000 (MJD= 52426.00000)
PRESSURE DATA (IB) AND WIND DATA USED
TIDAL CONTRIBUTION TO LOD (PERIODS < 366 DAYS) WERE REMOVED IN ERPS

CORRELATION COEFFICIENTS
************************
FIRST COMPONENT OF AAM/ERP DERIVED AM: 0.596
SECOND COMPONENT OF AAM/ERP DERIVED AM: 0.733
THIRD COMPONENT OF AAM/ERP DERIVED AM: 0.983

CPU FOR RUN: 2.374 MINUTES

Fig. 9.12. General output of program ERDROT (option ERP AAM)

characteristics of the program run, in particular the correlation coefficients
for the three AM/AAM function components, are contained in the output
file.

Apart from the reformatted (and, depending on the option, slightly reduced)
ERP-file the program generates two other output files, when using the AAM-
option, namely (1) the file containing the angular momentum functions (from
space geodesy and from IERS Special Bureau for the Atmosphere (SBA)) and
(2) the file allowing it to draw the correlation diagrams of the three compo-
nents. The former file contains the time in two different formats in columns
one and two (modified Julian date in the first, year in the second column).
Columns 3-5 contain the three components of the space geodesy derived AM
functions, columns 6-8 the three components of the AAM functions. This
file may be easily used by program FOURIER to generate spectra of the six
AM-functions. The latter file contains the the time in the same two formats
as the former file in columns two. Columns 3 and 4, 5 and 6, 7 and 8 contain
the normalized “residuals” x̃i, ỹi (see eqn. (2.146)) of the correlation pro-
cess for the first, second, and third components of the AM/AAM functions,
respectively.

Several program options may be defined in Panel ERDROT 2(cont) (Figure
9.11): A time window may be set by specifying the start and end time of the
series. If these borders are outside the data interval covered by the series, they
are automatically adjusted. The actual limits are provided in the output file
(see Figure 9.12). The tabular interval of the ERP- and the AAM-files usually
do not agree. (In the above example daily values of polar motion data were
analyzed, whereas four AAM-values are available per day). The two series
thus must be synchronized by specifying the tabular interval. Moreover, it
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makes sense to smooth the series using the values within a window around
the selected tabular times. It was already mentioned that the tidal and the
sub-daily polar motion terms may be removed from the LOD-values using the
Ray-model contained in the IERS conventions [71]. In addition it makes often
sense to remove the low frequency part of the spectrum by subtracting the
best-fitting polynomial from the time series. This was actually done in the
example of Panel 2(cont) (Figure 9.11) by removing polynomials of degree
five in the angular momentum series. Last, but not least, it is possible to
select “only” particular constituents of the contributions to the AAM series.
One can either use only the pressure- or the wind-terms, the combination of
both, and the combination of both, assuming that the ocean surface reacts
like an “inverted barometer” on atmospheric pressure. We refer to [96] or to
the IERS homepage for more information concerning these options.





10. The Computer-Program PLASYS

Program PLASYS allows it to repeat and considerably extend all investiga-
tions presented in Chapter 4. The program was developed as a demonstration
tool for lectures in classical Celestial Mechanics, but it may also be used for
many research tasks.

PLASYS is based on the integration techniques developed in Chapter I- 7.
Two integration methods, namely collocation and multistep, may be used.
The planetary system is configured by the program user, where all nine plan-
ets (or a subset thereof) and one minor planet (object of negligible mass) may
be included. The starting conditions are either taken from the JPL’s plane-
tary ephemerides DE-200 (see [107] and [111]) or from approximate orbital
elements as published by Jan Meeus [72].

Panel PLASYS 1 (Figure 10.1) shows the primary panel of Program PLASYS.
Two files, an ASCII file containing constants and one containing the planets’
ephemerides, are required to run the program. The constants file is shared
by all programs of the package. It has to reside in the subdirectory “GEN”
of the directory “CelestialMechanics”. The file may be browsed but should
not be altered by the program user (unless he/she actually wants to use
different constants). The JPL development ephemerides DE200 are read from
the binary file “de200.eph” in the same subdirectory. The file covers the time
interval between 1981 and 2025. Other DE-files might be attached to the
program to cover other time periods. We refer to [111] for more information.
The program PLASYS uses the JPL ephemerides uniquely to define the initial
position and velocity vectors of the planets selected.

The names of four general output files are defined in the panel shown in Panel
PLASYS 1 (Figure 10.1). The first file is the general output file, reflecting
essential characteristics and statistical information of the program run. Fig-
ure 4.3 is an example related to the generation of the outer planetary system.
The file has the extension “OUT” and is automatically stored into the sub-
directory “PLASYS/OUT” of the directory “CelestialMechanics”. The file
with the extension “ERR” contains the error messages and warnings. If the
field for the file name is left blank (as in Panel PLASYS 1, Figure 10.1) the
error messages and warnings (if any) are written into the log-file “*.out”.
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Fig. 10.1. Primary menu of program PLASYS

The file with extension “INV” contains the errors of the invariants of the
N -body problem and the stepsizes h(t). Seven columns are stored in the
file. The first column lists the time in years, columns 2-4 contain the relative
errors of the total angular momentum components (in units of 10−9, parts per
billion). The relative error in parts per billion of the energy E may be found
in column 5. The initial value of the energy and of the three components of
the total angular momentum vector are given in the general output file (see,
e.g., Figure 4.3).

According to the developments in section I- 3.2.2 of Chapter I- 3 (see eqns.
(I- 3.40) and (I- 3.47)) the invariants are first integrals, and their variation in
the course of the integration should be zero. In particular, no deterministic
trend should be visible, when numerically integrating the N -body problem. It
is therefore recommended to check the invariant file after long integrations.
Column 6 contains the time development of the polar moment of inertia
(I- 3.48) for the N -body problem considered. The polar moment of inertia
is conserved only in a statistical sense, as an average over long time spans.
When inspecting this column, no trend should be visible, but rather strong
(quasi-)periodic variations have to be expected. Figure 4.5 illustrates the
development of the “true” invariants of the N -body problem, Figure 4.6 that
of the polar moment of inertia when integrating the outer planetary system.
Column 7 of the “*.INV”-file contains the stepsize (this information is only
of interest, if the integration was performed with automatic stepsize control).

The planetary positions for all planets included in the integration are written
into the file “*.POS”. The time argument is contained in the first column,
the components of the planets (in the system J2000.0) in columns 2,3, and
4. This file may be used to visualize the geometry of the N -body problem
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integrated (see, e.g., Figure 4.4). The last entry in Panel PLASYS 1 (Figure
10.1) allows it to define or modify the names of the planet-specific output.
If this field is left blank, the panel in Panel PLASYS 3(cont) (Figure 10.2)
is not presented and previously defined files are overwritten. Panel PLASYS
3(cont) (Figure 10.2) shows that program PLASYS will in the maximum
integrate all nine planets and one minor planet. Only the files corresponding
to the celestial bodies included in the integration may be altered in Panel
PLASYS 3(cont) (Figure 10.2) corresponding to the integration of the outer
planetary system.

Fig. 10.2. Definition of planet-specific output files in program PLASYS

The structure of the planet-specific files was already explained in Chapter
I- 7 for tests based on the two-body problem: the differences of the osculating
elements referring to t and t0 in columns 2-7 are listed as functions of the time
t ; in addition the difference of the arguments of latitude δu of the numerically
integrated w.r.t. the initial orbit is given in column 8.

In all other cases, these files contain eleven columns, where

• column 1 contains the time argument in years,

• columns 2 to 6 the orbital elements a, e, i, Ω, ω (either osculating or mean
elements, see section I- 4.3); The semi-major axis a is given in AU, the
eccentricity is dimensionless, the units for all other elements are degrees,

• column 7 contains ∆σ(t) def=
(
n(t) − n(t0)

)
(t − t0) + σ0(t) ,

• columns 8 and 9 contain the first two components (in the plane of the
ecliptic J2000.0) of the unit vector eh normal to the orbital plane, and
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• columns 10 and 11 the first two components (in the plane of the ecliptic
J2000.0) of the Laplacian vector (of length e), pointing to the pericenter.

All output files may be graphically visualized in the primary menu. This
way of inspecting the output files is, however, in general based on a heavy
sampling of the files’ content (due to storage and CPU limitations). The
other way of vizualising these files is to use the gnu-plot graphics package
(see http://www.gnuplot.info for more information). No (heavy) restrictions
concerning the number of data points exist for this way of visualizing the
results.

In Panel PLASYS 2 (Figure 10.3) one first has to decide whether the ini-
tial state vectors for the specific application shall be based on the JPL
ephemerides [111] – this is recommended for all applications with initial
epochs within the interval I = [1981, 2025]. If the first input field is left
blank, the initial conditions are based on the approximations provided by
[72]. There are no restrictions concerning the initial epoch if the latter option
is selected.

Fig. 10.3. Defining initial epoch and integration-specific input in PLASYS

The length of the integration interval has to be specified in years. If a negative
value is supplied here, the integration is performed in reverse time direction
(backward integration). The options referring to the numerical integration
technique already were explained in Chapter I- 7, which is why only the last
two input items have to be mentioned. The input line “tabular interval for
output files” defines the epochs ti, for which the orbital elements, the planets’
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positions, and the invariants are calculated:

ti
def= t0 ± (i − 1)∆t , i = 1, 2, . . . , (10.1)

where the negative sign holds for backward integration. ∆t must be a positive
number.

In Panel PLASYS 3 (Figure 10.4) the N -body problem is configured. The
integration may be based on the Newton-Euler equations developed in Chap-
ter I- 3 (option “NEWTON-EULER”), on the relativistic counterpart repre-
sented by eqns. (I- 3.186) (option “RELATIVISTIC”), or on the approximate
relativistic equations (option “RELATIVISTIC(APPROX)”) based on the
equations (I- 3.190). The integration of official ephemerides is performed to-
day in the correct ppn-approximation (i.e., using option “RELATIVISTIC”).
One should be aware of the fact that the integration is considerably (by a
factor of 3-4) slowed down if the correct relativistic version of the equations
of motion is used. Most investigations are therefore based on the Newton-
Euler formulation or on the approximate relativistic version. If the option
“RELATIVISTIC(APPROX))” is used, the integration efficiency suffers only
marginally. Some results based on the correct ppn-formulation may be found
in section I- 3.5.

Fig. 10.4. Configuration of the N-body problem in program PLASYS

The N -body problem is configured by selecting the first input fields (“click”
on field behind planets’ names). In Panel PLASYS 3 (Figure 10.4) the planets
Jupiter, Saturn, Uranus, Neptune, and Pluto were included. As already men-
tioned, one planet-specific file is generated for each of the selected planets.
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In the column “number of revolutions for mean elements” one may enforce
to store the osculating elements (by selecting “0” for the number of revolu-
tions), or mean elements as mean values of all osculating elements over an
entire (positive) number of sidereal (osculating) revolutions. More about the
issue osculating vs. mean elements may be found in section I- 4.3. In the third
(and last) planet-specific input field the sampling rate for storing the planet’s
positions in the file “*.POS” is defined. A sampling rate of 1000 was specified
in Panel PLASYS 3 (Figure 10.4). As the stepsize of the integration was 30
days, one position was stored every 30000 day (i.e., about one position was
stored per 82 years). Defining a high sampling rate reduces the size of the file
with planetary positions.

If a minor planet is included in the integration, its elements have to be defined
in Panel PLASYS 5 (Figure 10.5). In order to ease the study of resonances,
each of the planets may be chosen as the reference planet w.r.t. which the
orbital elements of the minor planet are referred. The semi-major axis a
is defined via the revolution period of the reference planet, the perihelion
and time of perihelion passage refer to the corresponding quantities of the
reference planet, as well.

Fig. 10.5. Orbital elements for minor planet

The program user may generate a histogram of conjunctions of the mi-
nor planet with the reference planet by selecting the corresponding option
(Histogram of Conjunctions). The file with the histogram contains three
columns and 360 lines. The first column just contains the numbers (angles)



10. The Computer-Program PLASYS 393

i − 0.5 , i = 1, 2, . . . , 360 . The second column contains in row i the number
of conjunctions, which took place in the interval (i − 1) [ ◦ ] ≤ v i [ ◦ ] of the
mean anomaly v, the third the number of conjunctions taking place at a lon-
gitude difference (i − 1) [ ◦ ] < ∆w i [ ◦ ] of the minor planet w.r.t. Jupiter’s
perihelion. Figure 4.83 was generated using these histogram files.

If a minor planet is included in the integration, a selection of the variational
equations (referring to the osculating elements at t0) may be integrated simul-
taneously with the equations of motion. If the option “Variational Equations”
is selected in Panel PLASYS 5 (Figure 10.5), Panel PLASYS 6 (Figure 10.6)
is presented to the program user. One may select a sampling rate indicating
that the solution of variational equations is only stored for every n-th output
time interval defined in Panel PLASYS 3(cont) (Figure 10.2). One may in-
clude between one and six variational equations. The output file containing
the solutions of the variational equations contains 1 + 5 nv columns, where
nv is the number of variational equations included. The time argument is
in the first column. The first of the five columns referring to one particular
variational equation refer to the element number (sequence as given in Panel
PLASYS 6, Figure 10.6), the second to fourth of these columns are the man-
tissa of the three Cartesian components of ∂r

∂I (t), the fifth is the exponent
(base e).

Fig. 10.6. Integration of variational equations





11. Elements of Spectral Analysis

and the Computer-Program FOURIER

When analyzing the orbital and/or rotational motions of planets and satel-
lites one usually has to deal with (quasi-)periodic processes. Examples are
the development of osculating or mean elements of planets, minor planets,
satellites, etc. over long time periods or long time series of empirically deter-
mined polar motion of the Earth. It is therefore often important to represent
a function as a (finite) series of periodic functions. If sine and cosine func-
tions of a basic frequency (and of multiples thereof) are used for this purpose,
the resulting development is also referred to as Fourier series. The expres-
sions “harmonic analysis”, “Fourier analysis”, “spectral analysis” are used as
synonyms to characterize the methods.

If a function is given by a finite time series of discrete function values, the
attribute “discrete” is used to characterize the analysis. Naturally, we focus
uniquely on discrete Fourier analysis. The primary goal of discrete Fourier
analysis may be defined as the determination of the coefficients of the Fourier
series. The set of these coefficients may be called the Fourier transformed of
the original series. Therefore, the term FT (Fourier Transformation) is also
used as a synonym for Fourier analysis.

Fourier analysis is developed here as a topic in parameter estimation theory,
starting from LSQ (Least Squares) adjustment. The reader is assumed with
the basic properties of LSQ (some facts from this theory are reviewed, but
not derived, in section 11.2).

Usually, discrete Fourier analysis is based on data series with equal spacing
(of the independent argument) between subsequent data points. Moreover,
all data points are assumed to be of the same accuracy. The two assumptions
let the normal equation matrix become diagonal and the result of the LSQ
adjustment is reduced to the simple formulas attributed to Fourier.

Today, FFT (Fast Fourier Transformation) is used almost as a synonym for
Fourier analysis. FFT is nothing but a very efficient method to calculate the
coefficients of the series of harmonic functions, i.e., to perform a FT. FFT
became an openly available technique in applied science with the availability
of fast computers in the second half of the twentieth century (based on fun-
damental contributions by J. W. Cooley and J. W. Tukey, G. C. Danielson,
and C. Lanczos). Some of the underlying ideas are much older, however. For
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more information concerning the development of FFT the reader is referred
to [88].

The three techniques for discrete spectral analysis considered in this chapter
and implemented in program FOURIER are

• LSQ analysis for general discrete time series,

• the classical FT for time series with equal spacing between data points,
and

• the FFT with user-defined optimization levels for an efficient treatment of
long time series.

The program FOURIER was developed as a demonstration tool for introduc-
tory courses into applied spectral analysis.

After the statement of the problem in section 11.1 the three techniques are
developed in the sections 11.2, 11.3, and 11.4 in the order of decreasing gen-
erality and mathematical purity and in the order of increasing efficiency.

In section 11.5 we consider the important special case of two Cartesian com-
ponents x(t) and y(t) of a two-dimensional vector. Section 11.6 eventually
gives an overview of the capabilities of program FOURIER.

11.1 Statement of the Problem

Let us assume that the real function f(t) is given by the discrete values

f ′
k

def= f(tk) , k = 1, 2, . . . , N (11.1)

at N different epochs tk .

Let us define the fundamental period P as

P
def= |tN − t1| (11.2)

and the corresponding fundamental angular frequency ω by

ω
def=

2π

P
. (11.3)

The function f(t) is then approximated in the interval I
def= [t1, tN ] by a

truncated Fourier series

f(t) = a0 +
m∑

i=1

(ai cos(iωt) + bi sin(iωt)) , (11.4)

where it is assumed that
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2 m + 1 ≤ N . (11.5)

The coefficients ai , bi are the Fourier coefficients of the representation (11.4).

If the number of parameters and the number of data points are equal,

2 m + 1 = N , (11.6)

the approximating function (11.4) must assume the function values f ′
k at the

corresponding epochs tk and we may write

f ′
k = a0 +

m∑
i=1

(ai cos(iωtk) + bi sin(iωtk)) , k = 1, 2, . . . , 2 m + 1 . (11.7)

The main problem of discrete Fourier analysis “only” consists of determining
the coefficients ai , bi as efficiently as possible. If assumption (11.5) holds, it
must be possible to determine the coefficients ai and bi with a least squares
adjustment, using the function values (11.1) as pseudo-observations.

As a side issue (in our context (!)) we mention that under quite general
conditions (Dirichlet conditions) each periodic function f(t) with period P
may be represented by a converging infinite series, the Fourier series

f(t) = a0 +
∞∑

i=1

(ai cos(iωt) + bi sin(iωt)) . (11.8)

Arbitrary, non-periodic functions may be analyzed as well. One should, how-
ever, keep in mind that in this case it is implicitly assumed that f(t + jP ) =
f(t) for any integer j. The approximation of f(t) by the right-hand side of
eqns. (11.4) or (11.8) therefore cannot be used outside the interval I in the
case of non-periodic functions.

11.2 Harmonic Analysis Using Least Squares Techniques

In the spirit of least-squares adjustment, N observation equations for the
unknown coefficients ai and bi are set up by substituting in eqn. (11.1) the
function values f(tk) by eqn. (11.4) and by introducing the residual vk to
account for the fact the function value f ′

k and its approximation by eqn.
(11.4) may be different:

a0 +
m∑

i=1

(ai cos(iωtk) + bi sin(iωtk)) − f ′
k = vk , k = 1, 2, . . . , N . (11.9)

By defining the row matrices p , f ′ , and v as
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pT = (a0, a1, . . . , am, b1, b2, . . . , bm)
f ′T = (f ′

1, f
′
2, . . . , f

′
N )

vT = (v1, v2, . . . , vN ) ,
(11.10)

the system (11.9) of observation equations may be written in matrix form

Ap − f ′ = v , (11.11)

where the elements of the first design matrix are defined by

Ak,1 = 1
Ak,i+1 = cos(iωtk) , i = 1, 2, . . . , m

Ak,m+1+i = sin(iωtk) , i = 1, 2, . . . , m

k = 1, 2, . . . , N ≥ 2 m + 1 .

(11.12)

The method of least-squares asks that the sum of the squares of the residuals
becomes a minimum:

N∑
k=1

v2
k = min . (11.13)

If the function values f ′
k are the values of a function generated, e.g., by

numerical integration, it is fair to assume that all function values are of equal
accuracy.

If, on the other hand, the function values f ′
k stem from a parameter estima-

tion process, the values f ′
k may be of different accuracy. Let us assume that

estimates σk , k = 1, 2, . . . , N , are available for the mean errors of the values
f ′

k . In this case one should replace the minimum principle (11.13) by

N∑
k=1

(
vk

σk

)2
def=

N∑
k=1

wk v2
k = min , (11.14)

where obviously wk
def= 1/σ2

k . In LSQ adjustment theory wk is called the
weight of observation k .

The principle (11.13) or (11.14) leads to one condition equation per parameter
by demanding the partial derivatives of the function on the left-hand side of
these equations w.r.t. this parameter to be zero. As the sum (11.13) or (11.14)
are quadratic functions of the 2 m + 1 parameters pi , i = 1, 2, . . . , 2 m + 1 ,
the minimum principle leads to 2 m+1 linear equations for the determination
of the parameters. These linear equations are called normal equations. In the
case of the minimum principle (11.13) the normal eqution system assumes
the form
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ATAp = AT f ′ , (11.15)

which is a linear, regular system of dimension d = 2 m + 1 .

With the notations

N = ATA

b = AT f ′

Q = N−1

(11.16)

its solution may be written in the form

p = Q b . (11.17)

The a posteriori value for the mean error mi of the parameters pi is given by

mi = m0

√
Qii , i = 1, 2, . . . , 2 m + 1 , (11.18)

where the mean error m0 of the individual observation is computed as

m0 =

√
vT v

N − (2 m + 1)
=

√
f ′T f ′ − bT p

N − (2 m + 1)
. (11.19)

The mean error a posteriori can only be computed if the number of obser-
vations N exceeds the number of parametes, i.e., if N > 2 m + 1 . An error
assessment may also be made for N = 2 m+1 , provided we know an a priori
value σ0 for m0 . In this case formula (11.18) has to be replaced by

mi = σ0

√
Qii . (11.20)

If the minimum principle (11.13) is replaced by the principle (11.14), the re-
sulting equations are only slightly more complicated. By defining the diagonal
weight matrix as

P = σ2
0




σ−2
1 0 0 . . . 0 0

0 σ−2
2 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 0 0 . . . σ−2
2m 0

0 0 0 . . . 0 σ−2
N




, (11.21)

the normal equation system assumes the form

ATPAp = AT Pf ′, (11.22)
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The notations

N = ATPA

b = ATPf ′

Q = N−1

(11.23)

allow it to write the solution in the form (11.17) and the mean errors mi

a posteriori of the parameters in the form (11.18). The mean error m0 of
the observation of unit weight has to be computed according to the modified
formula

m0 =

√
vTPv

N − (2 m + 1)
=

√
f ′TPf ′ − bT p

N − (2 m + 1)
. (11.24)

If a time series with an arbitrary distribution of epochs tk and possibly with
epoch-dependent weights σk has to be analyzed, the LSQ method for the de-
termination of the Fourier-coefficients ai and bi leads to eqns. of type (11.17)
with a regular and symmetric, but otherwise arbitrary matrix Q = N−1.
As the procedure includes the inversion of a symmetric matrix of dimension
d = 2 m+1, and as the processing time required associated with matrix inver-
sion grows proportional to d3, the LSQ method becomes almost prohibitive
for m > 10000 .

A more efficient procedure results if the data points tk are equally spaced,
and if, moreover, all observations are of the same accuracy.

11.3 Classical Discrete Fourier Analysis

Assuming a unit weight matrix P = E (see eqn. (11.1)), the elements of the
normal equation matrix N are defined by (see eqns. (11.11), (11.12), and
(11.16)):

Ni+1,l+1 =
N∑

k=1

cos(iωtk) cos(lωtk) , i = 0, 1, . . . , m , l = 0, 1, . . . , m

Ni+m+1,l+m+1 =
N∑

k=1

sin(iωtk) sin(lωtk) , i = 1, 2, . . . , m , l = 1, 2, . . . , m

Ni+1,l+m+1 =
N∑

k=1

cos(iωtk) sin(lωtk) , i = 0, 1, . . . , m , l = 1, 2, . . . , m .

(11.25)
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Let the epochs tk be defined by

h =
P

2 m + 1
tk =
(
k − 1

2

)
h , k = 1, 2, . . . , 2 m + 1

f ′
k = f(tk) .

(11.26)

Using the trigonometric relations

cos(iωtk) cos(lωtk) = 1
2

{
+ cos
(
(i + l)ωtk

)
+ cos
(
(i − l)ωtk

)}

sin(iωtk) sin(lωtk) = 1
2

{− cos
(
(i + l)ωtk

)
+ cos
(
(i − l)ωtk

)}

cos(iωtk) sin(lωtk) = 1
2

{
+ sin
(
(i + l)ωtk

)− sin
(
(i − l)ωtk

)} (11.27)

we obtain:

Ni+1, l+1 = 1
2

N∑
k=1

{
+ cos
(
(i + l)ωtk

)
+ cos
(
(i − l)ωtk

)}
,

i = 0, 1, . . . , m , l = 0, 1, . . . , m

Ni+m+1, l+m+1 = 1
2

N∑
k=1

{− cos
(
(i + l)ωtk

)
+ cos
(
(i − l)ωtk

)}
,

i = 1, 2, . . . , m , l = 1, 2, . . . , m

Ni+1, l+m+1 = 1
2

N∑
k=1

{
+ sin
(
(i + l)ωtk

)− sin
(
(i − l)ωtk

)}
,

i = 0, 1, . . . , m , l = 1, 2, . . . , m .

(11.28)

One easily verifies that in eqns. (11.28) only the terms with i = l are different
from zero. The matrix N is therefore diagonal

N =
N

2




2 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1




. (11.29)

This makes the inversion of matrix N a trivial, processing time and space-
saving process:
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Q = N−1 =
1
N




1 0 0 . . . 0 0
0 2 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 2 0
0 0 0 . . . 0 2




. (11.30)

In view of eqns. (11.16) the Fourier coefficients may be given explicitely

a0 =
1
N

N∑
k=1

f ′
k

ai =
2
N

N∑
k=1

cos(iωtk) f ′
k , i = 1, 2, . . . , m

bi =
2
N

N∑
k=1

sin(iωtk) f ′
k , i = 1, 2, . . . , m .

(11.31)

These equations, contained in any textbook of spectral analysis, are at-
tributed to Fourier.

With Personal Computers available nowadays, problems with m ≈ 5000 may
be easily solved within a few minutes. If time series with tens of thousands
of epochs must be analyzed, the direct use of eqns. (11.31) again becomes
prohibitive. For such cases, the methods of FFT, to be discussed in the next
section, are the appropriate tool. One has to be aware of the fact, however,
that not only time, but also the memory to store the coefficients resp. the
data points becomes an important issue.

11.3.1 Amplitude Spectra and Power Spectra

The representation (11.4) for the approximating function is ideally suited for
the determination of the amplitudes ai and bi, because the resulting obser-
vation equations (11.9) are linear in the unknowns. For interpreting the data
it is usually preferable to combine the sin- and cos-terms into one cos-term.
This is possible by introducing a new amplitude ãi and a phase angle φi for
each term

f(t) = a0 +
∞∑

i=1

ãi cos(iωt − φi) , (11.32)

where
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ãi =
√

a2
i + b2

i

cosφi =
ai√

a2
i + b2

i

sin φi =
bi√

a2
i + b2

i

i = 0, 1, . . . , m .

(11.33)

The amplitudes ãi are very well suited to characterize the signal with the
angular frequencies iω, whereas the phase angle φi is usually only of interest,
if the approximating function (11.32) has to be used subsequently.

If the amplitudes ãi , i = 0, 1, . . .m , are represented as a function of the
angular frequencies iω or of the corresponding periods 2 π/iω , the resulting
graph is called an amplitude spectrum.

Often, one is not interested in the amplitudes of a harmonic series, but in the
relative distribution of the “energy” in a given spectrum. It is a well known
fact in physics (optics) that the energy associated with a sin (cos) wave is
proportional to the square of the amplitude of the signal. This explains that

ei =
ã2

i

et
, where et =

m∑
i=0

ã2
i . (11.34)

are defined as the so-called power spectral densities at frequency iω . et is the
total power contained in a spectrum.

If the power spectral densities are displayed as a function of the frequencies or
the corresponding periods, the resulting graph is called the power spectrum.

11.4 Fast Fourier Analysis

The only goal of this section consists of finding an efficient algorithm for the
computation of the Fourier coefficients defined by eqns. (11.31). With the
understanding that b0

def= 0 we may slightly re-arrange these equations:
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ai =
κi

N

N∑
k=1

cos(iωtk) f ′
k , i = 0, 1, 2, . . . , n

bi =
2
N

N∑
k=1

sin(iωtk) f ′
k , i = 0, 1, 2, . . . , n

κ0 = 1 ,

κi = 2 , for i = 1, 2, . . . ,
N − 1

2
def= n .

(11.35)

Compared to a general LSQ algorithm, the computation of the Fourier co-
efficients with eqn. (11.35) is already orders of magnitude more efficient by
avoiding a matrix inversion and laborious matrix multiplications. Note, that
the order n = (N − 1)/2 has to be interpreted as the maximum integer con-
tained in (N−1)/2 . n is the maximum order of the harmonic series achievable
with a time series of N epochs.

In order to further optimize the computation of the Fourier coefficients ex-
plicit use has to be made of the definition (11.26) for the epochs tk . Further-
more we make use of the relation

ω =
2 π

P
=

2 π

N h
, where h = ti+1 − ti (11.36)

is the spacing between subsequent observation epochs.

This allows us to re-write eqns. (11.35) as

ai =
κi

N

N∑
k=1

cos
(

i (k − 1 + 1
2 )

N
2π

)
f ′

k

bi =
2
N

N∑
k=1

sin
(

i (k − 1 + 1
2 )

N
2π

)
f ′

k

i = 1, 2, . . . , n .

(11.37)

Using the well-known addition theorems of trigonometry the computation of
the Fourier coefficients may be further modified
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ai = +
κi

N
cos
(

i

N
π

) N∑
k=1

cos
(

i (k − 1)
N

2π

)
f ′

k

− κi

N
sin
(

i

N
π

) N∑
k=1

sin
(

i (k − 1)
N

2π

)
f ′

k

bi = +
2
N

cos
(

i

N
π

) N∑
k=1

sin
(

i (k − 1)
N

2π

)
f ′

k

+
2
N

sin
(

i

N
π

) N∑
k=1

cos
(

i (k − 1)
N

2π

)
f ′

k .

(11.38)

Introducing the auxiliary coefficients

AiN =
N∑

k=1

cos
(

i (k − 1)
N

2π

)
f ′

k

BiN =
N∑

k=1

sin
(

i (k − 1)
N

2π

)
f ′

k ,

(11.39)

we may write the original unknowns as

ai =
κi

N
cos
(

i

N
π

)
AiN − κi

N
sin
(

i

N
π

)
BiN

bi =
2
N

cos
(

i

N
π

)
BiN +

2
N

sin
(

i

N
π

)
BiN .

(11.40)

From now on we only have to deal with the computation of the auxiliary
coefficients AiN , BiN , where the index N indicates that N values of the
function f(t) are required for the computation.

It is possible to further optimize the computation if

N = 2 M (11.41)

is an even number. This allows us to split up the right-hand sides of eqns.
(11.39) into two partial sums, each with the same number M of terms:

AiN =
M∑

k=1

cos
(

2 i (k − 1)
N

2π

)
f ′
2k−1 +

M∑
k=1

cos
(

i (2 k − 1)
N

2π

)
f ′
2k

BiN =
M∑

k=1

sin
(

2 i (k − 1)
N

2π

)
f ′
2k−1 +

M∑
k=1

sin
(

i (2 k − 1)
N

2π

)
f ′
2k .

(11.42)

In order to have the same arguments in all sums of the sin- and cos-functions
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in all partial sums, we again make use of the addition theorems of trigonom-
etry and obtain

M∑
k=1

cos
(

i (2 k − 1)
N

2π

)
f ′
2k = + cos

(
i

N
2π

) M∑
k=1

cos
(

2 i (k − 1)
N

2π

)
f ′
2k

− sin
(

i

N
2π

) M∑
k=1

sin
(

2 i (k − 1)
N

2π

)
f ′
2k

M∑
k=1

sin
(

i (2 k − 1)
N

2π

)
f ′
2k = + cos

(
i

N
2π

) M∑
k=1

sin
(

2 i (k − 1)
N

2π

)
f ′
2k

+ sin
(

i

N
2π

) M∑
k=1

cos
(

2 i (k − 1)
N

2π

)
f ′
2k .

(11.43)

Considering eqn (11.41) and substituting eqn. (11.43) into the formula (11.42)
leads to the basic recursion formula for the computation of the Fourier coef-
ficients:

AiN = AiMo + cos
(

i

M
π

)
AiMe − sin

(
i

M
π

)
BiMe

BiN = BiMo + cos
(

i

M
π

)
BiMe + sin

(
i

M
π

)
AiMe

i = 0, 1, . . . , n =
N

2
− 1 .

(11.44)

The indices “e” and “o” were used on the right-hand sides of the recursion
formula (11.44) to indicate that the corresponding coefficients were computed
with the M = N/2 even and odd function values f ′

k , respectively. Note,
that the right-hand sides of eqns. (11.44) are linear combinations of the four
auxiliary coefficients AiMo , BiMo , AiMe , BiMe , which in turn have to be
computed as sums with M terms each.

Equations (11.44) are the equivalent to the Lemma by Danielson and Lanczos
of the complex Fourier analysis (see, e.g., [88]).

What is won by computing the terms AiN and BiN using the recursion for-
mula (11.44) instead of the “direct” formula (11.42)? For each index i we have
replaced the computation of two sums of type (11.39) consisting of N = 2 M
terms by the computation of four sums of the same type but only with half
the number M = N/2 of terms. As the processing time for each of the sums
is proportional to M2, we gain in essence a factor of 2 in processing time by
using the recursion formula (11.44) instead of the direct formula!
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If M is an even number as well, the same recursion formula may be used
again on the next lower level. The best performance is achieved, if N = 2n.
For N = 215 = 32768 we may therefore expect a reduction of processing time
by about four orders of magnitude! This just may be the difference between
a solvable and unsolvable problem for the practitioner.

The drawback of FFT lies in the assumption that the number of data points
must be a power of two. There are several more or less quick, but “dirty”
ways to cope with this problem. If the actual number of epochs in a time
series may be written as

N + x = 2n , (11.45)

where n is the minimum exponent for which 2n > N , it is possible to fill in
the missing (last) x epochs with zeroes. This method is referred to as “zero
padding”. Alternatively, one may skip x data points and reduce series to
Ñ

def= 2n−1 points – but the result might be an inappropriate loss of data (in
the worst case close to a factor of 2).

This is why in the program FOURIER (see section 11.6) we let the pro-
gram user select the number of times the recursion formula (11.44) has to be
applied. In program FOURIER, the length of the series is written as

N
def= m · 2n + x , (11.46)

and the user is allowed to choose n . For n = 10 one looses at maximum
x = 2n − 1 ≈ 1000 . For n = 8 this number is reduced by a factor of four.
For n = 10 the procedure is still about a factor of 1000 more rapid than a
classical Fourier analysis of the same time series.

Let us conclude this section by the remark that the coefficients on the right-
hand sides of eqn. (11.44) for the indices i = M/2 + i′ , i′ = 0, 1, . . . , M/2 ,
may be computed very efficiently together with the coefficients with indices
i′ = 0, 1, . . . , M/2 . For

i =
M

2
+ i′ , i′ = 0, 1, . . . ,

M

2
− 1 , (11.47)

eqn. (11.39) may be modified in the following way:

AiMo =
M∑

k=1

cos
(

i (k − 1)
M

2π

)
f ′
2k−1

=
M∑

k=1

cos
(

(k − 1)π +
i′ (k − 1)

M
2π

)
f ′
2k−1

=
M∑

k=1

(−1)k−1 cos
(

i′ (k − 1)
M

2π

)
f ′
2k−1

(11.48)
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BiMo =
M∑

k=1

sin
(

i (k − 1)
M

2π

)
f ′
2k−1

=
M∑

k=1

sin
(

(k − 1)π +
i′ (k − 1)

M
2π

)
f ′
2k−1

=
M∑

k=1

(−1)k−1 sin
(

i′ (k − 1)
M

2π

)
f ′
2k−1 .

(11.49)

By an analogue transformation we obtain

AiMe =
M∑

k=1

(−1)k−1 cos
(

i′ (k − 1)
M

2π

)
f ′
2k

BiMe =
M∑

k=1

(−1)k−1 sin
(

i′ (k − 1)
M

2π

)
f ′
2k .

(11.50)

If the terms with even and odd indices k are summed up separately in these
equations, the number of operations to compute AiN is practically reduced
by a factor of two, compared to the direct computation of the expressions
AiN .

11.5 Prograde and Retrograde Motions of Vectors

So far, only scalar functions were spectrally analyzed. On the other hand we
know, that many (if not most) objects of interest in Celestial Mechanics are
vectors. How are vectors treated in spectral analysis?

In practice the answer to this question is frighteningly simple: The Cartesian
components of a vector are separately and independently subject to spectral
analysis. Only the formal aspect, whether the representations (11.4) for the
coordinates is the best possible, remains to be considered.

Before addressing this formal point, an aspect of mathematical purity (and
of bad conscience) must be considered: The simple answer given above lacks
of mathematical correctness, if there were mathematical correlations between
the vector components pertaining to the individual epochs. Let us, e.g., as-
sume that x(t) and y(t) are two components of a vector and that the time
series

ti , x′
i , y′

i , i = 1, 2, . . . , N = 2n + 1 , (11.51)

was the result of N independent parameter estimation processes. The polar
motion series, as established by modern space geodetic methods (see Chapter
3), may serve as an example.
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Usually, the estimates xi and yi pertaining to one and the same epoch ti are
not independent, but correlated by the variance-covariance matrix associated
with the estimated quantities xi and yi :

cov(x′
i, y

′
i) = m2

0 Qi , (11.52)

where the symmetric 2 × 2 matrix Qi , as the inverse of a normal equation
matrix in a least squares estimation, is fully populated.
It is possible to handle this problem correctly from the mathematical point
of view: The time series (11.51) are considered as observations in one least
squares parameter estimation process, where the 2 (2 n+1) Fourier coefficients
of the x- and y-components are estimated together. The weight matrix P
associated with this process will, however, not be diagonal, but block-diagonal
with the matrices (11.52) as non-zero blocks.

The resulting parameter estimation process is a generalization of the least-
squares approach to spectral analysis, outlined in section 11.2, to more than
one dimension. The procedure is straight forward, but in most cases close to
unpracticable. This is the “justification” that in spectral analysis the corre-
lations between the components of a vectorial time series are generally (and
graciously) ignored.
After having addressed this aspect of mathematical correctness and of bad
conscience, we return to the simple (and solvable) aspects of life: Is the rep-
resentation (11.4) the best possible for vector components?
Let x(t) and y(t) be two Cartesian components of a vector which were spec-
trally analyzed independently, using one of the techniques discussed in the
previous sections. The results are assumed to be available in the following
form (compare eqns. (11.4)):

x(t) = ax0 +
n∑

i=1

(
axi cos(iωt) + bxi sin(iωt)

)

y(t) = ay0 +
n∑

i=1

(
ayi cos(iωt) + byi sin(iωt)

)
.

(11.53)

Equations (11.53) in principle fully describe the motion of the vector

ρ(t) def=
(

x(t)
y(t)

)
(11.54)

in the (x, y)-plane as a function of time t .
The motion of the vector defined by eqns. (11.53) may, however, also be
represented as a superposition of pure circular motions

ρ(t) =
(

ax0

ay0

)
+

n∑
i=1

{
ρpi

(
cos (iωt − φpi)
sin (iωt− φpi)

)
+ ρri

(
cos (−iωt − φri)
sin (−iωt− φri)

)}
.

(11.55)
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Obviously, for each frequency there may be a counterclockwise motion (posi-
tive sense of rotation) with radius ρpi with the (constant) angular velocity iω
and a clock-wise motion (negative sense of rotation) with radius ρri and an-
gular velocity −iω . The counterclockwise motion is called prograde motion,
the clockwise motion retrograde motion.

The result (11.55) is a general one and it is interesting: An arbitrary motion
of a vector in E

2 may be written as a superposition of circular motions. Cum
grano salis this may be viewed as a revival (and generalization) of the old
epicycle theory.

The representations (11.53) and (11.53) are equivalent from the mathematic
point of view (the formal proof is sketched below). The representation (11.55)
gives, however, much better insight into the actual motion of the vector, if
this motion is of a periodic or quasi-periodic nature. Usually it is possible to
recognize easily the key characteristics of the motion, in particular if there is
a hierarchy in the terms.

The radius ρpi of the prograde motion, the radius ρri of the retrograde motion,
and the corresponding phase angles φpi and φri are defined by the equations

ρpi = 1
2

√
(axi + byi)2 + (ayi − bxi)2

ρri = 1
2

√
(ayi + bxi)2 + (axi − byi)2

φpi = arctan
(−(ayi − bxi)

axi + byi

)

φri = arctan
(−(ayi + bxi)

axi − byi

)
.

(11.56)

The relations (11.56) are easily verified by using the addition theorems of
trigonometry in eqns. (11.55). The resulting equations are of the same struc-
ture as eqns. (11.53). The results (11.56) are then obtained by comparing the
coefficients of the terms cos iω and sin iω in both equations.

11.6 The Computer Program FOURIER

11.6.1 General Characterization

Program FOURIER produces spectra of time series contained in one input
file. One or more spectra may be produced in one program run. If two time
series are declared as the x- and y-components of one vector, the spectrum of
the vector is also provided in the form (11.55). The program produces either
power spectra or amplitude spectra.
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Panel FOURIER 1 (Figure 11.1) shows the primary menu of program
FOURIER. The file with the constants is the same for all program package.
The input file containing the time series to be analyzed has to be defined
in the second input field of the primary menu. Observe that the complete
path has to be provided in order to avoid copying output files from one sub-
directory (e.g., from /NUMINT/ORB in the example of Panel FOURIER 1
to /FOURIER). One file only may be analyzed in one program run. The
program produces

• one general output file (two examples, to be discussed below are given in
Figures 11.7 and 11.8),

• a file with error messages (if the field is left blank, the messages are written
into the general output file), and

• a file with the spectra.

Fig. 11.1. Primary menu of program FOURIER

The third output file contains the main result, the spectra for the time series
analyzed. It is a table with the frequency in column 1, the corresponding pe-
riod in column 2, and either the amplitudes ãi or the power spectral densities
ei in the columns 3 to 2+ns (ns being the number of spectra analyzed). One
column per spectrum is produced. Usually, this output file is long and should
be inspected using the graphical capabilities of the menu system.

The last two input items in Panel FOURIER 1 (Figure 11.1) concern the type
of the spectrum (power or amplitude spectra) and the analysis method (LSQ,
FT, FFT). FT needs no further input characterizing the method, LSQ and
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FFT requires additional information (in Panels FOURIER 4a, 4b, Figures
11.5, 11.6, respectively). The corresponding panels (commented below) are
only presented, if one of the two techniques was selected.

In Panel FOURIER 2 (Figure 11.2) the structure of the input data and the
pre-processing of data are defined. Depending on the origin, the input file may
contain header records, which must be skipped. Also, one may wish to sample
the input data series. If a sampling rate of “1” is specified, every record is
used in the analysis, if one of “10” is selected, only every tenth record is used
in the analysis – which drastically reduces the length of the data series, but
also the resolution of the spectrum. If the data set to be analyzed exceeds the
maximum length, an error message is issued and processing is terminated.
The maximum number of data records, which can used by the program, is
defined in the file /INP/FOURIER.INP, by the variable MAXVAL (in the
fist non-blank line of this file). It is set to MAXVAL=700000 on the CD.
Should a PC not have enough memory to run program FOURIER, this value
should be reduced. If (even) longer data series should be analyzed (and if the
PC has enough memory), MAXVAL may be increased. One furthermore has
to specify the column number with the independent argument.

Fig. 11.2. Structure and data handling in program FOURIER

The next decision concerns the interpretation of the individual spectra: Shall
the spectra be analyzed separately or shall two spectra be interpreted as the
x- and y-components of a two-dimensional vector (in the sense of section
11.5)?

The two last input items in Panel FOURIER 2 (Figure 11.2) concern the pre-
processing of data: It may be wise to remove an offset, a drift, or even a poly-
nomial of degree 2 from the input data set before subjecting them to spectral
analysis. This procedure is, e.g., recommended if time series like UT1−UTC
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(difference of UT defined by the rotation of the Earth and by atomic clocks,
respectively) or time series of perihelia are analyzed. An unremoved drift
would generate many spectral lines, possibly hiding the lines of physical in-
terest. It is are also possible to define a time window within which the data
are accepted. If this option is selected, one more panel is presented, where the
left and right boundary of the window are defined (not documented here).

Panel FOURIER 3a (Figure 11.3) is only activated, if single spectra (no pro-
grade/retrograde motion) shall be produced. The number of spectra and the
column number with the first spectrum have to be defined here. At maximum
four spectra can be analyzed in the same program run.

Fig. 11.3. Structure and data handling for single spectra for program FOURIER

When analyzing the spectra independently, one may ask for a list of the
prominent spectral lines assuming that the lines are due to one frequency
(of infinitesimal width). The program looks for relative maxima of the cal-
culated amplitudes. The program then creates an artificial spectral line by
superposing 2 n + 1 lines centered around these maxima.

The procedure is the following: Let us assume that im is the index corre-
sponding to such a maximum. The Fourier term with index i

def= im + ∆i
contributes as follows to the combined line:

ai cos(iωt) + bi sin(iωt) = + {+ ai cos(∆iωt) + bi sin(∆iωt)} cos(imωt)
+ {− ai sin(∆iωt) + bi cos(∆iωt)} sin(imωt) .

(11.57)

It is thus possible to write the 2 n + 1 terms around the frequency imω as
a linear combination of sin(imωt) and cos(imωt) . For a particular time τ
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the resulting line amplitude simply is the square root of the coefficients of
the sine- and the cosine-terms. The above formula shows, however, that the
coefficients are time-dependent (with only low frequencies). Therefore, the
amplitude of the resulting line is calculated in program FOURIER as the
mean value of the resulting amplitudes over the time interval of the entire
series.

The number n of contributing frequencies on both sides of the maximum
frequency imω must be defined in Panel FOURIER 3. Normally, one is only
interested in lines above a certain threshold amplitude. Therefore, this quan-
tity must be provided in the same panel.

Panel FOURIER 3b (Figure 11.4) is activated if the “Prograde and Retro-
grade . . . ” option in Panel FOURIER 2 was selected. The column numbers
corresponding to the x- and y-components have to defined and the name of
the output file containing the spectrum in the form (11.55) has to be spec-
ified here. The latter file is produced in addition to the output files defined
in Panel FOURIER (Figure 11.1). For the retrograde part of the spectrum
the angular frequencies and the corresponding periods are negative in this
output file.

Fig. 11.4. Structure and data handling (cont) for vectors in program FOURIER

If the “Fast Fourier” option is chosen in Panel FOURIER 1 (Figure 11.1),
the depth of the strategy has to be selected in the panel shown in Panel
FOURIER 4b (Figure 11.5). This strategy depth is given by the number of
times n the recursion formula (11.44) is used. For n = 14, as in the example
of Panel FOURIER 4b (Figure 11.5), the algorithm should be by about a
factor of 214 ≈ 16000 faster than a classical Fourier analysis, and fewer than
about 16000 data points are lost. The actual number of points lost is given
in the general output file. In the example (discussed below) x = 6160 data
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Fig. 11.5. Option for FFT in program FOURIER

points out of about 212000 had to be skipped (see Figure 11.7). If this number
of lost data records is unacceptable, the strategy depth (represented by the
number n) has to be lowered, if a more rapid processing is required, n has to
be increased. If one wishes to perform the “classical” FFT with the maximum
number of applications of the recursion formula (11.44), a very high value for
n, e.g., n = 50 (which would correspond to about 1015 data records), can
be specified. The program will then automatically reduce n to the maximum
number possible for the length of the input data.

If LSQ is selected in Panel FOURIER 1 (Figure 11.1), Panel FOURIER 4a
(Figure 11.6) is presented. The epochs may be distributed arbitrarily when

Fig. 11.6. Options for LSQ in program FOURIER
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using LSQ and epoch-specific weights may be taken into account for each
observation (the weights have to be provided in the input file in columns to
be specified here). The number ns of the sine-terms (which is equal to the
number of cosine-terms minus 1) has to be provided in this panel, as well. If
too high a value is selected, the program automatically reduces this number
to the maximum number allowed, which is “only” 600. If more than 1200
records are in the input data set, LSQ is therefore not capable of performing
a complete FT. It does only determine the 600 leading terms of the Fourier
series.

It is not possible to get a high spectral resolution with LSQ, because a square
matrix of the (approximate) dimension (2ns) × (2ns) has to be set up and
inverted. This reduces the number of feasible terms to about one thousand,
whereas the number of terms may be as high as about 250000 for the other
two options. The processing times also provides a strong argument against
using this option (see next section).

Let us now briefly browse through an example of general output file in Figure
11.7 corresponding to the application of the FFT. The technicalities of the
processing (like the number of data points skipped, the processing time, the
number of data points, the number of spectra produced) may be found in
the general output. The names of the input and output files are included
for reference. If the offsets and trends were removed from the data sets, the
corresponding values may be found here.

SPECTRAL ANALYSIS USING FAST FOURIER TRANSFORM
DATE: 15-OCT-03 TIME: 09:34
************************************************************
FOR FFT: NUMBER OF EPOCHS L = 2**( 14) * M + X

M : NUMBER OF POINTS FOR LOW-LEVEL FTs: 13
X : NUMBER OF DATA POINTS SKIPPED: 6160

INPUT FILE : ${CM}\numint\orb\pos.tab
OUTPUT FILE (SPECTRA) : ${CM}\FOURIER\twobody.OUT
OUTPUT FILE (PRO/RETRO) : ${CM}\FOURIER\twodody_xy.OUT

NUMBER OF SPECTRA ANALYZED : 2
NUMBER OF OBSERVATIONS : 212992
SAMPLING FOR INPUT DATA : 1

SPECTRUM TYPE : AMPLITUDE SPECTRUM
FIRST EPOCH IN FILE : 51910.00000
LAST EPOCH IN FILE : 5376685.00000

DATA SET 1 A0 =-0.74985740D+00 TOTAL POWER= 0.66868529D+01
DATA SET 2 A0 = 0.11448009D-03 TOTAL POWER= 0.59995669D+01

TOTAL POWER OF COMBINED (X,Y)-SERIES = 0.63432099D+01
PSD OF ZERO ORDER TERM = 0.44321892D-01
CPU FOR RUN: 0.140 MINUTES

Fig. 11.7. General output of program FOURIER (pro- and retrograde motion)
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It is important that the zero-order terms a0 are included for all series ana-
lyzed: The other amplitudes ãi , i = 1, 2, . . . , 2 n+1 , (and ρpi , ρri) are given
in the output file with the spectra. The zero-order term is not contained in
those files, because the corresponding period would be infinite P0 = 2 π/0 ·ω .

If the series are analyzed separately, the output file contains in addition a list
of spectral terms (if there were any above the limit specified). The relevant
part of the output may be inspected in Figure 11.8.

SPECTRAL ANALYSIS USING FAST FOURIER TRANSFORM
DATE: 15-OCT-03 TIME: 13:14
*******************************************************************************
FOR FFT: NUMBER OF EPOCHS L = 2**( 14) * M + X

M : NUMBER OF POINTS FOR LOW-LEVEL FTs: 13
X : NUMBER OF DATA POINTS SKIPPED: 6160

..................................................

Spectra Lines for Spectrum 1 with Amplitudes ge 0.1000D-01
-------------------------------------------------------------
Line OMEGA PERIOD AMPLITUDE

1 0.43519687D-02 1443.7570 2.3321
2 0.87043415D-02 721.8450 0.2118
3 0.13056481D-01 481.2311 0.0347

Spectra Lines for Spectrum 2 with Amplitudes ge 0.1000D-01
-------------------------------------------------------------
Line OMEGA PERIOD AMPLITUDE

1 0.43519687D-02 1443.7570 2.3079
2 0.87043267D-02 721.8462 0.2099
3 0.13056344D-01 481.2362 0.0341

Fig. 11.8. General output of program FOURIER (analysis of two separate spectra)

11.6.2 Examples

The following example shall illustrate some of the technicalities of generating
amplitude (or power) spectra. Let us analyze a series of (x,y)-coordinates of
a two-body orbit in the ecliptic. Using program NUMINT (see Chapter 6),
the orbit of a “minor planet” with inclination i = 0◦, a revolution period
of P

def= P�/3 years (corresponding to a semi-major axis a ≈ 2.502 AU),
and an eccentricity e = 0.2 was integrated over a time period of 15000 years
(corresponding to about 3800 revolutions). One set of (x, y)−coordinates was
stored every 25 days. The entire time series consists of 219152 pairs of (x, y)-
coordinates.

A small fraction of the entire amplitude spectrum is reproduced in Figure
11.9. The retrograde part of the spectrum is not reproduced because it is
virtually empty. The dominating spectral line is, as expected, centered at
the body’s revolution period P ≈ 1443.7 days (corresponding to 3.95 years).
If a circular orbit would have been analyzed, one would expect exactly one



418 11. Elements of Spectral Analysis and the Computer-Program FOURIER

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

 

Years

amp

Fig. 11.9. Amplitude spectrum of two-body motion for periods 0 < P < 5 Years
(e = 0.2)

spectral line with an amplitude equal to the semi-major axis of a ≈ 2.502 AU
centered at the revolution period. The same amplitude is expected for eccen-
tric orbits, as well. The reason for the significant deviation from the expected
amplitude value of a ≈ 2.502 will be addressed below.

Apart from the dominating line we see lines centered at periods corresponding
to one half, one third, etc. of the body’s revolution period. This result has
to be expected. Using Kepler’s equation E = σ + e sin E , which may be
approximated up to terms of order one in e by

E ≈ σ + e sin σ , (11.58)

one easily verifies that (to the same approximation)

x = a (cosE − e) ≈ a

(
−3 e

2
+ cosσ +

e

2
cos 2σ

)

y = a
√

1 − e2 sinE ≈ a
(
sin σ +

e

2
sin 2σ
)

.
(11.59)

These equations show that for an elliptic orbit with its major-axis on the
x-axis the elliptical motion up to order 1 in the eccentricity e may be ap-
proximated by two circular, prograde motions. The main circle has the radius
ρ = a of the semi-major axis, and the center lies on the negative x-axis with
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coordinates (x, y) = a
(− 3 e

2 , 0
)

. In the coordinate system centered at the
focus of the ellipse, the center of the primary circle is halfway between the
center of the ellipse and the “empty focus”. The secondary circle has a ra-
dius of ρ2 = a e . The center of the secondary circle is identical with the
current location on the primary circle. The angular velocity in the secondary
circle is twice the velocity in the primary circle. The attributes primary and
secondary are justified by the radii of the circles. The output reproduced in
Figure 11.7 shows that the program at least estimates the correct orders of
magnitudes for the radii of these circles. Qualitatively, the finding (11.59) are
confirmed in Figure 11.9 – but we should try to explain, why the amplitudes
are somewhat too small.

Figure 11.10 helps to explain the effect. The solid line is a detailed view of
the spectral line at P = 3.95 . . . years. As one can see, the peak is not as
sharp as Figure 11.9 suggests. The spectral line has a finite width, and one
can see that (at least) three frequencies (epochs) significantly contribute to
that line. The result would have been different, if we would have selected
the interval [t1, tN ] as an entire number of revolution periods: The revolution
period P would have been one of the grid points of the spectrum, and the
entire power (amplitude) would have been attributed to period P . This would
have created a wrong impression, however: In a long time series one generally
does not know the location of all spectral lines and it is just not achievable
in practice to have the centers of all lines coincide with grid points.

The problem encountered here is a general one. Therefore the program
FOURIER offers the possibility to calculate the theoretical amplitude of
a spectral line, assuming that this line is actually due to one frequency of
“infinitesimal” width. The method was developed previously.

The dashed curve in Figure 11.10 illustrates that the line width is greatly
reduced by increasing the number of grid point per time unit: The dashed
curve corresponds to a data set covering a time interval of 150000 years
(instead of 15000 years) and to a data spacing of 100 instead of 25 days.
The spectral line is (as expected) much narrower and the peak amplitude is
approaching the value of a = 2.5 AU as expected by formula 11.59. The exact
location of the line and the exact amplitude could be reconstructed from the
amplitudes and the phases associated with the grid point near the spectral
line.

Figures 11.11 and 11.12 are those parts of the power spectrum corresponding
to the parts of the amplitude spectra shown in Figures 11.9 and 11.10. Figure
11.11 gives the impression that almost the entire power is contained in one
sharp line. Figure 11.12 shows (naturally) again that the finite width of the
line must be taken into account. It is allowed to add up the power spectral
densities of the individual contributors (the phase angles do not matter in
this case). If this is done, one ends up with a power density of about 0.95
which can be attributed to the line at P ≈ 3.9528 years. One easily sees



420 11. Elements of Spectral Analysis and the Computer-Program FOURIER

0

0.5

1

1.5

2

2.5

3.95 3.9505 3.951 3.9515 3.952 3.9525 3.953 3.9535 3.954 3.9545 3.955

 

Years

amp amp_10

Fig. 11.10. Amplitude spectrum of two-body motion for periods 3.95 < P < 3.96
years (e = 0.2)
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Fig. 11.11. Power spectrum of two-body motion for periods 0 < P < 5 years
(e = 0.2)



11.6 The Computer Program FOURIER 421

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3.95 3.9505 3.951 3.9515 3.952 3.9525 3.953 3.9535 3.954 3.9545 3.955

 

Years

pow pow_10

Fig. 11.12. Power spectrum of two-body motion for periods 3.95 < P < 3.96 years
(e = 0.2)

that the other lines at P/2, P/3 only give marginal contributions. Where
is the missing power (the sum over all power spectral densities must be 1)?
The general output file in Figure 11.7 gives the answer: It is contained in
the zero-order term! (The PSD of the zero order term was determined to be
0.04).

Table 11.1 gives an overview of the performance of the three methods for
spectral analysis in program FOURIER. The same input data set is used
for all experiments. Two independent spectra were derived for the x- and
y-components of the heliocentric position vector of the test particle, and the
associated spectrum in the (x, y)-plane was generated in each program run.
The independent parameters are

N , the number of epochs analyzed (varied with the data sampling option),

np, the number of parameters (sum of the number of sin- and cos-terms),
and, in the case of the FFT,

n, the number of times the recursion formula (11.44) is used.

The performance may be judged on the basis of the processing time (CPU)
and x, the number of data points skipped.

For the FT and the FFT, the first two parameters are identical, i.e., N = np .
The latter two parameters only matter for the FFT. From Table 11.1 the
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Table 11.1. Performance of three methods for spectral analysis

Method N np n x CPU [ s ]

LSQ 2739 1199 – – 617.658
LSQ 5478 1199 – – 1124.197
LSQ 10957 1199 – – 2138.375

LSQ 10957 301 – – 132.611
LSQ 10957 601 – – 528.019
LSQ 10957 1199 – – 2138.375

FT 10957 10957 – – 59.025
FT 21915 21915 – – 246.775
FT 43830 43830 – – 983.024

FFT 16384 16384 14 11009 2.303
FFT 49152 49152 14 5635 3.054
FFT 98304 98304 14 11241 4.537
FFT 212992 212992 14 6159 9.764

FFT 219136 219136 7 15 221.589
FFT 219136 219136 8 15 112.492
FFT 219136 219136 9 15 57.833
FFT 219136 219136 10 15 42.451
FFT 219136 219136 11 15 34.289
FFT 217988 217988 12 2063 20.820
FFT 212992 212992 13 6159 13.499
FFT 212992 212992 14 6159 9.764
FFT 196608 196608 15 22543 7.541
FFT 196608 196608 16 22543 6.710
FFT 131072 131072 17 88079 4.987

following conclusions may be drawn:

• The performance differs by orders of magnitude for the three methods.
Clearly, FFT will be given the preference wherever possible. Exceptions
may make sense

– if the length of the time series does not exceed a few tens of thousands
of data points, and if (for one reason or another) one wants to be sure
that all data points are used,

– if a time series with arbitrarily spaced epochs has to be analyzed.

• The processing time for the LSQ method grows roughly linearly with the
length N of the series and quadratically with the number np of parameters.
If a conventional spectral analysis is performed using LSQ, the number of
parameters is equal to the length of the series, np = N , which is why the
processing time grows with N3. The price for being able to use epoch-
specific weights is exorbitant.

• For the classical Fourier analysis, the processing time grows roughly
quadratically with the length of the series, i.e., ∼ N2. If only few spectra
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have to be analyzed, and if N < 20000, the method is a valuable choice. It
makes sure that all data in the input data set were used.

• The performance of the FFT method is truly remarkable. When varying
the length of the series with a constant n, the growth of processing time is
“close to linear”. Actually, a law of type N ln N results (see, e.g., [88]).

• In section 11.4 we argued that a factor of 2 in processing time should be
gained with each application of the recursion formula (11.44). Table 11.1
tells that this law is a good approximation for n < 8. Afterwards the gain
is not as pronounced. This is actually good news: By lowering n from an
originally high order, one looses not too much efficiency.

• Table 11.1 supports the argument to produce time series with a length
of N = 2n. Selecting the n in Table 11.1 accordingly results in the best
performance. Unfortunately this advice is usually of no value because the
length of a time series usually is dictated by the experiment and not by
the mathematician’s preference.

Let us point out, that this chapter is intended to serve as a first introduction
into harmonic analysis. Many details and subtleties were not touched here.
For further reading (e.g., for analyzing unevenly spaced data efficiently) we
recommend [88].
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Geodätisch-geophysikalische Arbeiten in der Schweiz, 60

111. E. M. Standish: ‘The observational basis for JPL’s DE 200, the planetary
ephemerides of the Astronomical Almanac’, Astron. Astrophys., 233, 252–271
(1990)

112. J. Stoer, R. Bulirsch: Einführung in die Numerische Mathematik, 2. Aufl.
(Springer, Berlin, Heidelberg 1976-1978), Heidelberger Taschenbücher, 105,
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By P. Léna, F. Lebrun and F. Mignard
Physics of Planetary Rings Celestial
Mechanics of Continuous Media
By A. M. Fridman and N. N. Gorkavyi
Tools of Radio Astronomy 4th Edition
By K. Rohlfs and T. L. Wilson
Astrophysical Formulae 3rd Edition
(2 volumes)
Volume I: Radiation, Gas Processes
and High Energy Astrophysics
Volume II: Space, Time, Matter
and Cosmology
By K. R. Lang
Tools of Radio Astronomy Problems and
Solutions By T. L. Wilson and S. Hüttemeister
Galaxy Formation By M. S. Longair
Astrophysical Concepts 2nd Edition
By M. Harwit
Astrometry of Fundamental Catalogues
The Evolution from Optical to Radio
Reference Frames
By H. G. Walter and O. J. Sovers
Compact Stars. Nuclear Physics, Particle
Physics and General Relativity 2nd Edition
By N. K. Glendenning
The Sun from Space By K. R. Lang
Stellar Physics (2 volumes)
Volume 1: Fundamental Concepts
and Stellar Equilibrium
By G. S. Bisnovatyi-Kogan

Stellar Physics (2 volumes)
Volume 2: Stellar Evolution and Stability
By G. S. Bisnovatyi-Kogan
Theory of Orbits (2 volumes)
Volume 1: Integrable Systems
and Non-perturbative Methods
Volume 2: Perturbative
and Geometrical Methods
By D. Boccaletti and G. Pucacco
Black Hole Gravitohydromagnetics
By B. Punsly
Stellar Structure and Evolution
By R. Kippenhahn and A. Weigert
Gravitational Lenses By P. Schneider,
J. Ehlers and E. E. Falco
Reflecting Telescope Optics (2 volumes)
Volume I: Basic Design Theory and its
Historical Development. 2nd Edition
Volume II: Manufacture, Testing, Alignment,
Modern Techniques
By R. N. Wilson
Interplanetary Dust
By E. Grün, B.Å. S. Gustafson, S. Dermott
and H. Fechtig (Eds.)
The Universe in Gamma Rays
By V. Schönfelder
Astrophysics. A New Approach 2nd Edition
By W. Kundt
Cosmic Ray Astrophysics
By R. Schlickeiser
Astrophysics of the Diffuse Universe
By M.A. Dopita and R. S. Sutherland
The Sun An Introduction. 2nd Edition
By M. Stix
Order and Chaos in Dynamical Astronomy
By G. J. Contopoulos
Astronomical Image and Data Analysis
By J.-L. Starck and F. Murtagh



ASTRONOMY AND
ASTROPHYSICS  LIBRARY

Series Editors: I. Appenzeller · G. Börner · A. Burkert · M.A. Dopita
A. Eckart · T. Encrenaz · M. Harwit · R. Kippenhahn
J. Lequeux · A. Maeder · V. Trimble

The Early Universe Facts and Fiction
4th Edition By G. Börner
The Design and Construction of Large
Optical Telescopes By P.Y. Bely
The Solar System 4th Edition
By T. Encrenaz, J.-P. Bibring, M. Blanc,
M.A. Barucci, F. Roques, Ph. Zarka
General Relativity, Astrophysics,
and Cosmology By A. K. Raychaudhuri,
S. Banerji, and A. Banerjee

Stellar Interiors Physical Principles,
Structure, and Evolution 2nd Edition
By C. J. Hansen, S. D. Kawaler, and V. Trimble
Asymptotic Giant Branch Stars
By H. J. Habing and H. Olofsson
The Interstellar Medium
By J. Lequeux
Methods of Celestial Mechanics (2 volumes)
Volume I: Physical, Mathematical, and
Numerical Principles
Volume II: Application to Planetary System,
Geodynamics and Satellite Geodesy
By G. Beutler


	START
	Help
	----------
	Preface of Volume II
	Contents
	Contents of Volume I
	Part II Applications
	1. Volume II in Overview
	1.1 Review of Volume I
	1.2 Part II: Applications
	1.3 Part III: Program System

	2. The Rotation of Earth and Moon
	2.1 Basic Facts and Observational Data
	2.1.1 Characteristics of the Earth-Moon System
	2.1.2 Observational Basis

	2.2 The Rotation of a Rigid Earth and a Rigid Moon
	2.2.1 The Orbit of the Moon
	2.2.2 Rotation of the Rigid Earth
	2.2.3 Rotation of the Moon

	2.3 Rotation of the Non-Rigid Earth
	2.3.1 Proofs for the Non-Rigidity of the Earth
	2.3.2 Hooke’s Law and the Earth’s Deformations
	2.3.3 Atmosphere and Oceans
	2.3.4 The Poincaré Earth Model

	2.4 Rotation of Earth and Moon: A Summary

	3. Artificial Earth Satellites
	3.1 Oblateness Perturbations
	3.1.1 A Case Study
	3.1.2 Oblateness Perturbations in the Light of First-Order Perturbation Theory
	3.1.3 Exploitation of the Oblateness Perturbation Characteristics
	3.1.4 Higher-Order Oblateness Perturbations

	3.2 Higher-Order Terms of the Earth Potential
	3.3 Resonance with Earth Rotation
	3.3.1 Geostationary Satellites
	3.3.2 GPS Satellites

	3.4 Perturbations due to the Earth’s Stationary Gravitational Field in Review
	3.4.1 First-Order General Perturbation Solutions
	3.4.2 Perturbation Equations in the Argument of Latitude u

	3.5 Non-Gravitational Forces
	3.6 Atmospheric Drag
	3.6.1 Density of the Upper Atmosphere
	3.6.2 Effect of Drag on Satellite Orbits
	3.6.3 Theoretical Interpretation of Drag Perturbations

	3.7 Radiation Pressure
	3.7.1 Solar Radiation and Radiation Pressure
	3.7.2 Simulations
	3.7.3 Theoretical Considerations Concerning Radiation Pressure
	3.7.4 Radiation Pressure as a Dissipative Force
	3.7.5 Advanced Modelling for Radiation Pressure
	3.7.6 Albedo of the Earth

	3.8 Comparison of Perturbations Acting on Artificial Earth Satellites

	4. Evolution of the Planetary System
	4.1 Development of the Outer Planetary System
	4.1.1 The Orbit of Jupiter Over Short Time Spans
	4.1.2 The Integration over Two Million Years in Overview
	4.1.3 Some Results from Spectral Analysis

	4.2 Development of the Inner Planetary System
	4.3 Minor Planets
	4.3.1 Observational Basis
	4.3.2 Development of an “Ordinary” Minor Planet
	4.3.3 Proper Elements of Minor Planets
	4.3.4 Resonance and Chaotic Motion
	4.3.5 Summary and Concluding Remarks



	Part III Program System
	5. The Program System CelestialMechanics
	5.1 Computer Programs
	5.2 Menu System
	5.2.1 Installation
	5.2.2 Running a Program
	5.2.3 Visualizing the Results


	6. The Computer-Programs NUMINT and LINEAR
	6.1 Program NUMINT
	6.1.1 The Use of Program NUMINT for Numerical Integration
	6.1.2 The Use of Program NUMINT to Generate Hill Surfaces

	6.2 Program LINEAR

	7. The Computer-Programs SATORB and LEOKIN
	7.1 Program SATORB
	7.1.1 Generation of Satellite Ephemerides
	7.1.2 Determination of Orbits Using Astrometric Positions
	7.1.3 Determination of GPS and GLONASS Orbits

	7.2 Kinematic LEO Orbits: Program LEOKIN
	7.3 Dynamic and Reduced Dynamics LEO Orbits Using Program SATORB

	8. The Computer-Program ORBDET
	8.1 Introduction
	8.2 Orbit Determination as a Boundary Value Problem
	8.3 Determination of a Circular Orbit

	9. The Computer-Program ERDROT
	9.1 Earth Rotation
	9.2 Rotation of the Moon
	9.3 The N-Body Problem Earth-Moon-Sun-Planets
	9.4 Space Geodetic and Atmospheric Aspects of Earth Rotation

	10. The Computer-Program PLASYS
	11. Elements of Spectral Analysis and the Computer-Program FOURIER
	11.1 Statement of the Problem
	11.2 Harmonic Analysis Using Least Squares Techniques
	11.3 Classical Discrete Fourier Analysis
	11.3.1 Amplitude Spectra and Power Spectra

	11.4 Fast Fourier Analysis
	11.5 Prograde and Retrograde Motions of Vectors
	11.6 The Computer Program FOURIER
	11.6.1 General Characterization
	11.6.2 Examples



	References
	Abbreviations and Acronyms
	Name Index
	Subject Index



