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3.1 Linear optics
R. Güther

The propagation of light and its interaction with matter is completely described by Maxwell’s
equations (1.1.4)–(1.1.7) and the material equations (1.1.8) and (1.1.9), see Chap. 1.1.

In this chapter the propagation of light in dielectric homogeneous and nonmagnetic media is
discussed. Furthermore, monochromatic waves are assumed and linear interaction. The implications
thereof for the medium are:

– Relative permittivity: εr (ε(E,H) in (1.1.8)) is a complex tensor, which in most cases depends
on the frequency only, but in special cases also on the spatial coordinate.

– Relative permeability: µr = 1 (µ(E,H) in (1.1.9)).
– Electrical charge density: ρ = 0.
– Current density: j = 0.

3.1.1 Wave equations

Maxwell’s equations together with the material equations and the above assumptions result in the
time-dependent wave equation for the electric field

∆E(r, t) − εr
c20

∂2

∂t2
E(r, t) = 0 (3.1.1)

with

c0 = 2.99792458 × 108 m/s: vacuum velocity of light,

∆ =
∂2

∂ x2 +
∂2

∂ y2 +
∂2

∂ z2 : delta operator.

An identical equation holds for the magnetic field H(r, t).
For the following discussion we assume monochromatic fields, so that

E(r, t) = E(r) ei ω t (3.1.2)

with

ω : angular temporal frequency.

The magnetic field is related to E by the corresponding Maxwell equation (1.1.7)

curlE(r) = −iω µ0H(r) . (3.1.3)

Together with the ansatz (3.1.2), for isotropic media (εr is a complex scalar) (3.1.1) results in

∆E(r) + k2
0 n̂

2 E(r) = 0 (wave equation) (3.1.4)
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74 3.1.1 Wave equations [Ref. p. 131

with

k0 = 2π/λ0 : wave number,
λ0 : wavelength in vacuum,
n̂ : complex refractive index, see (1.1.20).

For isotropic media and fields with uniform polarization the vector property of the field can be
neglected. This results in

∆E(r) + k2
0 n̂

2E(r) = 0 (Helmholtz equation). (3.1.5)

In most cases the field can be approximated by a quasiplane wave, propagating in z-direction

E = E0(r) ei(ω t−k0 n̂ z) . (3.1.6)

Remark: There are different conventions for writing the complex wave (3.1.6):

1. Electrical engineering and most books on quantum electronics:

E ∝ exp(iω t− i k0 n̂ z) ,

for example [96Yar, 86Sie, 66Kog2, 84Hau, 91Sal, 98Sve, 96Die] and this chapter, Chap. 3.1.
2. Physical optics:

E ∝ exp(i k0 n̂ z − iω t) ,

for example [99Bor, 92Lan, 75Jac, 05Hod, 98Hec, 70Col].

[94Fel] discusses both cases.
Consequences of the convention: shape of results on phases of wave propagation, diffraction, interferences,
Jones matrix, Collins integral, Gaussian beam propagation, absorption, and gain.

With∣∣∣∣∂E0

∂z

∣∣∣∣ � |k0 n̂E0|

(3.1.4) can be reduced to

∆tE0 + 2 i k0n̂
∂E0

∂ z
= 0 (Slowly Varying Envelope (SVE) equation) , (3.1.7)

with

∆t =
∂2

∂ x2 +
∂2

∂ y2 : transverse delta operator (rectangular symmetry),

see Chap. 1.1, (1.1.24a). Other names for SVE are: paraxial wave equation [86Sie], paraxial
Helmholtz equation [96Ped, 78Gra].

The analogue approximation with respect to time t instead of the spatial coordinate z is used
in ultrashort laser pulse physics [96Die, 86Sie].
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Ref. p. 131] 3.1 Linear optics 75

3.1.2 Polarization

Restriction of (3.1.2) to a plane wave along the z-axis, see Fig. 3.1.1, results in
[
Ex

Ey

]
=

[
E0x cos (ω t− kz + δx)
E0y cos (ω t− kz + δy)

]
⇒

[
E0x exp(i δx)
E0y exp(i δy)

]
exp [i (ω t− kz)] ≡ E0 J exp [i (ω t− kz)] . (3.1.8)

z

y

x

Ey

Ex

Fig. 3.1.1. Electric field of a linear polarized wave
with propagation along the z-axis.

Definitions:

E0 =
√
E2

0x + E2
0y ,

J =
1
E0

[
E0x exp(i δx)
E0y exp(i δy)

]
: (normalized) Jones vector ,

δx and δy : phase angles ,

⇒ : transition to the complex representation ,

ε0nc0E
2
0JJ∗/2 : light intensity [W/m2] .

Different conventions for right-hand polarization:

1. Looking against the direction of light propagation the light vector moves clockwise in the x-y-plane of
Fig. 3.1.1 ([99Bor, 91Sal, 96Ped, 98Hec, 88Kle, 87Nau]).

2. The clockwise case occurs looking with the propagation direction (right-hand screw, elementary particle
physics) ([84Yar, 88Yeh, 05Hod] and in this chapter).

Remark : J without normalization is also called Jones vector in [84Yar, 88Yeh, 90Roe, 77Azz, 86Sol],
[95Bas, Vol. II, Chap. 27].

Jones Calculus [41Jon, 97Hua, 88Yeh, 90Roe, 75Ger]:

J2 = M J1 (3.1.9)

with

J1 : Jones matrix for the initial polarization state,
M : Jones matrix describing an optical element or system,
J2 : Jones matrix of the polarization state after light has passed the element or system.

In Table 3.1.1 the characterization of the polarization states of light with the Jones vector is given,
in Table 3.1.2 the characterization of optical elements with the Jones matrix.
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Ref. p. 131] 3.1 Linear optics 77

Example 3.1.1.

M = M3 · M2 · M1 , (3.1.10)

M : Jones matrix of the system which consists of elements with the matrices M1, M2, M3. Light
passes first the element with M1 and last the element with M3.

Example 3.1.2. J1 = 1√
2

[
1
1

]
(linear 45◦-polarization), M =

[
1 0
0 ±i

]
(
{

right
left

}
quarter-wave plate),

J2 = M · J1 = 1√
2

[
1
±i

]
(
{

right
left

}
circular polarization).

Development : Any Jones vector can be developed into a superposition of two orthogonal Jones
vectors:

J = a1J1 + a2J2 (3.1.11)

with J1J
∗
2 = 0 .

Example 3.1.3. linearly polarized light = left polarized light + right polarized light .

Partially polarized light : If parts of both coefficients of the E-vector are uncorrelated, there is a
mixing of polarized and nonpolarized light. It is described by the four components of the Stokes
vector {s0, s1, s2, s3}, using 〈. . . 〉 to signify averaging by detection:

s0 =
〈
E2

x

〉
+

〈
E2

y

〉 ⇒ E 2
0x + E 2

0y , (3.1.12)

s1 =
〈
E2

x

〉 − 〈
E2

y

〉 ⇒ E 2
0x − E 2

0y , (3.1.13)

s2 = 2 〈ExEy cos [δy − δx]〉 ⇒ 2E0xE0y cos(δy − δx) , (3.1.14)
s3 = 2 〈ExEy sin [δy − δx]〉 ⇒ 2E0xE0y sin(δy − δx) (3.1.15)

with

s20 > s21 + s22 + s23 ⇒ s20 = s21 + s22 + s23 , (3.1.16)

where ⇒ means the transition from partially polarized light to completely polarized light, shown
with the terms of Fig. 3.1.1.

Meaning of the si :
s0 : power flux,√
s21 + s22 + s23/s0 : degree of polarization,√
s21 + s22/s0 : degree of linear polarization,

s3/s0 : degree of circular polarization.

Mueller calculus ([75Ger, 77Azz, 90Roe, 95Bas]): extension of the Jones calculus for partial-
coherent light, where the four dimensional Stokes vector replaces the Jones vector and the real
4 × 4 Mueller matrices the complex 2 × 2 Jones matrices. The Jones calculus is usually sufficient
to describe coherent laser radiation.

Measurement of the polarization state:

– Partially polarized light : [87Nau], [76Jen, Chap. 27.6], [77Azz, Chap. 3], [61Ram, Sect. 14–25],
[95Bas, Vol. 2, Chap. 22.15], [75Ger]. Result: Stokes vector.

– Pure coherent light : see [05Hod]. There are commercial systems for this task.

Eigenstates of polarized light are those two polarization states (Jones vectors) which reproduce
themselves, multiplied with a complex factor (eigenvalue), if monochromatic light passes an optical
element or system.

Calculation: see [97Hua, 77Azz], application: decoupling of the polarization mixing during round
trips in resonators [74Jun].
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78 3.1.3 Solutions of the wave equation in free space [Ref. p. 131

3.1.3 Solutions of the wave equation in free space

Following (3.1.2), each of the wave solutions given in this section must be multiplied with the factor
ei ω t to obtain the propagating wave of (3.1.1).

3.1.3.1 Wave equation

The solutions of the wave equation (3.1.4) are vector fields.

3.1.3.1.1 Monochromatic plane wave

E = E0 exp {−i k0 n̂ er + iϕ} , (3.1.17)

H =
n̂

c0µ0
(e × E0) exp {−i k0 n̂ er + iϕ} (3.1.18)

with

r : position vector,
e : unit vector normal to the wave fronts,
k0 = 2π/λ0 : wave number,
n̂ : complex refractive index,
ϕ : phase.

For the phase velocity and the wave group velocity see Sect. 3.1.5.3.

3.1.3.1.2 Cylindrical vector wave

E = E0 ez H
(2)
0 (k0ρ) , (3.1.19)

H = i
E0

c0µ0

(
ez × ρ

ρ

)
H

(2)
1 (k0ρ) (ρ > λ) (3.1.20)

for time-harmonic electric source current density on the z-axis of a cylindrical coordinate system
with the coordinates (ρ, ϕ, z) : (radial distance, azimuthal angle, z-axis) [94Fel, Chap. 5].

H
(2)
m : mth order Hankel function of the second kind [70Abr];

the change of convention in Sect. 3.1.1 includes: H(2)
m ⇒ H

(1)
m [94Fel, p. 487];

ρ : radial position vector,
ez : unit vector along the z-axis.

3.1.3.1.3 Spherical vector wave

E = E0 · (n × p) × n · exp(−i k0 n̂ r)
r

, (3.1.21)

H =
E0

c0µ0
· (n × p) · exp(−i k0 n̂ r)

r
(r � λ0) (3.1.22)
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Ref. p. 131] 3.1 Linear optics 79

is the far field (1/r2 and higher inverse power terms � 1/r-term) of an oscillating electric dipole
([99Bor, 94Leh, 75Jac]) with

E0 : amplitude [V],
p : unit vector of the dipole moment,
n : unit vector pointing from dipole to spatial position,
r : radial distance.

3.1.3.2 Helmholtz equation

The approximative transition from the vectorial wave equation (3.1.4) to the Helmholtz equation
(3.1.5) ([99Bor]) results in scalar solutions. E is called: “field” [72Mar], “complex displacement”
or “scalar wave function” [99Bor], “disturbance” [95Bas, Vol. I].

3.1.3.2.1 Plane wave

E = E0 exp {−i k0 n̂ er + iϕ .} (3.1.23)

For the parameters see (3.1.18).

3.1.3.2.2 Cylindrical wave

E = E0H
(2)
0 (k0 n̂ ρ) (ρ > λ0) (3.1.24)

is the diverging field of a homogeneous line source [41Str, Chap. IV], [94Fel, Chap. 5]. For the
parameters see (3.1.19).

3.1.3.2.3 Spherical wave

E = E0 · exp(−i k0 n̂ r)
r

(r > λ0) , (3.1.25)

parameters see (3.1.21).

3.1.3.2.4 Diffraction-free beams

3.1.3.2.4.1 Diffraction-free Bessel beams

Diffraction-free Bessel beams without transversal limitation are discussed in [05Hod, 91Nie, 88Mil].

E(x, y, z) = E0 · J0(a ρ) · exp {−i cos (θB) k0z} (3.1.26)

with

E0 : amplitude vector [V/m],
J0 : zero-order Bessel function of the first kind [70Abr]; higher-order Bessel beams see [96Hal];
ρ =

√
x2 + y2 : radial distance from the z-axis,

a = k0 sin ΘB [m−1],
ΘB : convergence angle of the conus of the plane wave normal to the z-axis, see Fig. 3.1.2.
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80 3.1.3 Solutions of the wave equation in free space [Ref. p. 131

3.1.3.2.4.2 Real Bessel beams

Real Bessel beams are limited by a finite aperture D of the optical elements needed or Gaussian
beam illumination (Gaussian Bessel beams [87Gor]).

Methods of generation: axicons [85Bic] (Fig. 3.1.2), annular aperture in the focus of a lens
[87Dur, 91Nie], holographic [91Lee] or diffractive [96Don] elements. Because of finite aperture
diffraction the latter display approximately the shape of (3.1.26) with cutoff at a geometric de-
termined radius rN , which includes N maxima (Fig. 3.1.3) and different amplitude patterns in
dependence on z.
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Fig. 3.1.2. Generation of a Bessel beam with help
of an axicon A by a conus of plane-waves propaga-
tion directions.

Fig. 3.1.3. Transversal intensity structure of a
Bessel beam (∝ J2

0 (r)).

Advantage of Bessel beams: Large depth of focus 2 z0B between P1 and P2 in Fig. 3.1.2 (thin
“needle of light”) for measurement purposes.

Disadvantage: Every maximum in Fig. 3.1.3 contains in the corresponding circular ring nearly
the same power as the central peak. High power loss occurs if the central part is used only [05Hod].

3.1.3.2.4.3 Vectorial Bessel beams

Vectorial Bessel beams are discussed in [96Hal].

3.1.3.3 Solutions of the slowly varying envelope equation

Gaussian beams are solutions of the SVE-equation (3.1.7) [91Sal, 96Ped, 86Sie, 78Gra], which is
equivalent to paraxial approximation or Fresnel’s approximation, see Sect. 3.1.4.

The transition from SVE-approximated Gaussian beams towards an exact solution of the wave
equation in the non-paraxial range is given in a Lax-Wünsche series [75Lax, 79Agr, 92Wue]. For
contour plots of the relative errors in the Gaussian beam volume see [97For, 97Zen].

The vectorial field of Gaussian beams is discussed in [79Dav, 95Gou], containing a Lax-Wünsche
series; Gaussian beam in elliptical cylinder coordinates are given in [94Soi, 00Gou].
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3.1.3.3.1 Gauss-Hermite beams (rectangular symmetry)

Elliptical higher-order Gauss-Hermite beam:

Emn(x, y, z) = E0 Um(x, z) Un(y, z) exp {−i k0z} , (3.1.27)

Um(x, z) =
√

w0x

wx(z)
Hm

( √
2x

wx(z)

)
exp

{
− x2

w2
x(z)

− i
k0 x

2

2Rx(z)

}
exp {iϕm(z)} , (3.1.28)

Un(y, z) = Um ⇒ n(x ⇒ y, z) (3.1.29)

with

w0x : the 1/e2-intensity waist radius,

z0x =
πw2

0x

λ
: the Rayleigh distance (half depth of focus),

wx(z) = w0x

√
1 +

z2

z2
0

: the E00-beam 1/e2-intensity radius,

Rx(z) = z

√
1 +

z2

z2
0

: the radius of curvature of the wavefront at position z,

ϕm(z) =
( 1

2 +m
)

arctan
(

z
z0

)
: Gouy’s phase, changing sign for the transition through z = 0,

Hm

( √
2

wx(z)

)
: the Hermite polynomial of order m [70Abr],

H0(ξ) = 1 , H1(ξ) = 2 ξ , H2(ξ) = 4 ξ2 −2 , H3(ξ) = 8 ξ3 −12 ξ , H4(ξ) = 16 ξ4 −48 ξ2 +12 , . . . ,

∞∫
−∞

d ξ

{
exp

(−ξ2/2)√√
πm! 2m

Hm(ξ)

}{
exp

(−ξ2/2)√√
πn! 2n

Hn(ξ)

}
= δmn ,

δmn =
{

1 for m = n
0 for m �= n

}
(orthogonality relation) . (3.1.30)

Example 3.1.4. Rotational symmetrical Gaussian fundamental mode (Gaussian beam):

Specialization of (3.1.27): m = n = 0 , w0x = w0y = w0 , r =
√
x2 + y2 .

E00(r, z) = E0
w0

w(z)
exp

{
− r2

w2(z)
− i

kr2

2R(z)

}
exp

{
i
1
2

arctan
z

z0

}
exp {−i kz} , (3.1.31)

w(z) = w0

√
1 +

z2

z2
0
, R(z) = z

√
1 +

z2
0

z2 .

Properties of E00 (fundamental mode): The shape of the Gaussian E00-beam is depicted in
Fig. 3.1.4. Parameters of E00 in Fig. 3.1.4 are:

C : curves with constant amplitude decrease as E(r, z) = E(0, z)/e
or constant intensity decrease as I(r, z) = I(0, z)/e2 ,

P : phase fronts with radius of curvature R(z) ,
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Fig. 3.1.4. Shape of the Gaussian E00-beam.
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Fig. 3.1.5. (a) Cross section of a Gaussian beam perpendicular to the z-axis. (b) Power transmitted by
a circular aperture with the relative radius r/w in a cross section.

Table 3.1.3. Characteristic points in Fig. 3.1.5.

Point in
Fig. 3.1.5a, b

Relative abscissa
r/w

Relative intensity,
Fig. 3.1.5a

Relative transmission,
Fig. 3.1.5b

Characterization

P1 0.588 0.5 0.5 FWHM a

P2 1 0.135 0.865 1/e2-int. b

P3 1.57 0.01 0.99 trunc. c

P4 2.3 0.001 0.999 trunc. d

a Full width half maximum/2.
b 1/e2-intensity or 1/e-amplitude.
c Diffraction of E00-beam by circular aperture ⇒ 17 % intensity ripple [86Sie, p. 667].
d Diffraction of E00-beam by circular aperture ⇒ 1 % intensity ripple [86Sie, p. 667]

(no essential effect of truncation).

w0 : beam waist,
z0 : Rayleigh distance, half of the confocal parameter b = 2z0 (similarly to depth of focus in

usual optics), that z-value, where the cross section πw2
R = 2πw2

0 of the Gaussian beam
has doubled in comparison with the waist,

Θ0 = λ/(πw0) : 1/e2-intensity divergence angle toward the asymptotes A.

In Fig. 3.1.5a the cross section of a Gaussian beam perpendicular to the z-axis is given, in
Fig. 3.1.5b the power transmitted by a circular aperture with the relative radius r/w in a cross
section. Characteristic points in Fig. 3.1.5 are listed in Table 3.1.3.

Astigmatic and general astigmatic generalizations of the elliptical Gaussian beam: see Sect. 3.1.7.
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Ref. p. 131] 3.1 Linear optics 83

3.1.3.3.2 Gauss-Laguerre beams (circular symmetry)

Elp(r, ψ, z) = E0 exp {−i [kz − ϕlp(z)]} w0

w(z)

(√
2 r

w(z)

)l

Ll
p

(
2 r2

w2(z)

)

× exp
{

− r2

w2(z)
− i

k x2

2R(z)

}{
cos (lψ)
sin (lψ) (3.1.32)

with

z : propagation direction,

r, ϕ : polar coordinates in the plane ⊥ z-axis,

z0 =
πw2

0

λ
: the Rayleigh distance (half depth of focus),

w(z) = w0

√
1 +

(
z

z0

)2

: the E00-beam 1/e2-intensity radius,

R(z) = z

{
1 +

(z0
z

)2
}

: the radius of curvature of the wavefront at position z,

ϕlp = (2p+ l + 1) arctan
(
z

z0

)
: Gouy’s phase,

Ll
p : Laguerre polynomial of degree p and order l [70Abr]:

Ll
0(ξ) = 1 , Ll

1(ξ) = (l + 1) − ξ , Ll
2(ξ) =

(l + 1)(l + 2)
2

− (l + 2) ξ − 1
2
ξ2 ,

Ll
3(ξ) =

(l + 3)(l + 2)(l + 1)
6

− (l + 3)(l + 2)
2

ξ +
(l + 3)

2
ξ2 − 1

6
ξ3 . . . ,

∞∫
0

d ξ ξl exp(−ξ)Ll
p(ξ)L

l
q(ξ) = δpq

(l + p)!
p!

(orthogonality relation) , (3.1.33)

p! : the factorial p.

– Two degenerate mode patterns are formed by the cos- and sin-terms in (3.1.32).
– l = p = 0 means the rotational symmetrical Gaussian beam E00.
– The symmetry determines what system of Gauss-Laguerre polynomials or Gauss-Hermite poly-

nomials is more appropriate for a wave field development.

3.1.3.3.3 Cross-sectional shapes of the Gaussian modes

In Fig. 3.1.6 intensity distributions of Gauss-Hermite modes Emn are given (rectangular symmetry),
in Fig. 3.1.7 intensity distributions of Gauss-Laguerre modes Epl (circular symmetry).
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Rectangular symmetry (Gauss-Hermite modes)

00 10 30

01 11 31

03 13 33

y x

Fig. 3.1.6. Intensity distributions of Gauss-Hermite modes Emn. The two digits at each distribution are
m and n.

Circular symmetry (Gauss-Laguerre modes)

00 10 30

01 11 31

03 13 33

Fig. 3.1.7. Intensity distributions of Gauss-Laguerre modes Epl. The two digits at each distribution are
p and l. .

3.1.4 Diffraction

Diffraction of light by aperture rims or amplitude and phase modifications inside the aperture:

– Solutions of Maxwell’s equations taking into account the material properties of the aperture:

– special cases: exact solutions [99Bor, 86Sta],
– mostly: numerical solutions.

– Starting with a field near the aperture with reasonable assumptions for this field or its mea-
surement: large variety of methods for different ranges of validity [99Bor, 86Sta, 61Hoe].
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3.1.4.1 Vector theory of diffraction

– Vectorial generalization of Kirchhoff’s theory: Given E and H in an aperture ⇒ E and H in
the volume by Stratton-Chu Green’s function representation [23Kot, 41Str, 86Sol, 91Ish].

– Two-dimensional problem and meridional incidence of light [61Hoe]: Separation of the polar-
izations E parallel and E perpendicular to the plane of incidence for half plane [99Bor], slit
[99Bor], gratings [80Pet], and volume gratings [69Kog, 81Sol, 81Rus].

3.1.4.2 Scalar diffraction theory

Two sources of scalar diffraction theory are:

– Transition from vectorial theory to scalar theory: [99Bor, 86Sol]. The information about the
polarization is lost.

– Mathematical formulation and generalization of Huygens’ principle: Each point on a wavefront
may be regarded as a source of secondary waves, and the position of the wavefront at a later
time is determined by the envelope of these secondary waves.

In Table 3.1.4 diffraction formulae with fields given near the diffraction aperture are listed. Fig-
ures 3.1.8 and 3.1.9 are related to Table 3.1.4.

Remarks on the formulae of Table 3.1.4:

(3.1.37): Approximation of (3.1.34): Huygens’ principle with an additional directional factor (Fres-
nel).

(3.1.38): Approximation of (3.1.36): Huygens’ principle with a modified directional factor.

(3.1.39): Fresnel’s approximation (= paraxial approximation). The approximation conditions from
(3.1.34) to (3.1.39) resp. (3.1.40) are explained in [96For, 86Sta, 87Ree].

Fresnel’s approximation: The condition NF(a/d)2/4 � 1 [91Sal] is valid for sharp-edged aper-
tures A, but it is weakened for the transmission of Gaussian-beam-like fields [86Sie, p. 635] or
Gaussian-like soft apertures. Fresnel’s approximation describes the propagation of the field from
plane z = 0 to plane z = z. This transformation can be cascaded to describe complex systems and
is an often used tool in paraxial propagation of radiation (Sect. 3.1.4.5.2).

Opaque  screen

Normal
vector n

Diffracted  field
( , , )E x y z

y

x

b

z

A

y ’

x’

r0
rSP

pi

S x’ y ’( , , 0 )

P x y z( , , )d dx ’ y ’

a
z = 0

Fig. 3.1.8. Diffraction at an apertureA with source
terms E(x ′, y ′, 0) and/or ∂

∂z
E(x ′, y ′, z)

∣∣
z=0, re-

spectively, and a or b the maximum radial distances
of source S or image point P , respectively. pi sym-
bolizes different plane waves for (3.1.41)–(3.1.43).
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Fig. 3.1.9. (a) Spatial frequencies of a plane wave with propagation direction Θx with respect to the
plane x = 0 (and Θy analogously) are fx and fy with Θx = sin−1(λfx) ≈ λfx and Θy = sin−1(λfy) ≈ λfy

(≈: paraxial approximation). (b) Generation of the far field in the focal plane of a lens: The Fourier
transformation (d = f) is changed by an additional phase term for d �= f with d: distance, f : focal length.

(3.1.40): Fraunhofer’s approximation

– Fresnel number :

NF = a2/λz . (3.1.46)

– Validity of Fraunhofer’s approximation: NF � 1 .
p �= 1 (parabolic phase): the intensity of diffracted light is the square of the modulus of the
Fourier transform of E(x, y, 0) only.

– Additional condition with second Fresnel number NF ′ = b2/λz � 1 :
E(x, y, z) is the Fourier transform of E(x, y, 0) in dependence on the spatial frequencies
fx ≈ (x/z)/λ ≈ Θx/λ and fy ≈ (y/z)/λ ≈ Θy/λ .

– Different conventions on the spatial Fourier transform F (fx) of a spatial distribution f(x) :

– The convention of the plane-wave structure exp(i kx− iω t) is connected with the determi-
nation of F (fx) by

F (fx) =

∞∫
−∞

dx f(x) e−i 2π fxx

[68Goo, 68Pap, 78Loh, 78Gas, 93Sto, 05Hod].
– The plane-wave structure exp(iω t− i kx) can be combined with

F (fx) =

∞∫
−∞

dx f(x) ei 2π fxx

[71Col, 73Men, 92Lug], but

F (fx) =

∞∫
−∞

dx f(x) e−i 2π fxx

is defined also in [88Kle, 91Sal, 95Wil, 96Ped].
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– Different approximations in (3.1.37) and (3.1.38):

rSP ≈ r0 +
2xξ − ξ2 + 2yη − η2

2r0

[99Bor, 68Pap, 78Gra] with r0 from Fig. 3.1.8 versus

rSP ≈ z +
2xx ′ − x ′2 + 2yy ′ − y ′2

2z

(references on lasers: [86Sie, 05Hod], optoelectronics: [68Goo, 72Mar, 91Sal]) for grating diffrac-
tion: The sine of the diffraction angle sin Θx = x/r0 is derived from principle and not by a
postpositive reasoning of the paraxial range x/z = tan Θx ≈ sinΘx. x/z should be “translated”
into sin Θx for better approximation.

(3.1.41)–(3.1.43): Plane-wave spectrum or angular-spectrum representation (also Rayleigh-
Sommerfeld-Debye diffraction theory) [78Loh, 99Pau] is the plane-wave formulation of (3.1.34)
[78Loh, 97For]. Application: see Fourier optics [68Goo, 83Ste, 93Sto].

(3.1.44), (3.1.45): Generation of the far field in the focal plane of a lens: d �= f (object is outside
the object-side focal plane) ⇒ additional phase term p to the pure (inverse) Fourier transform
(d = f), similarly to (3.1.40).

Applications: generation of the spectrum of a function, possibility of mathematical operations
in the Fourier-space with complex filtering masks, correlation and convolution.

Another important diffraction theory

Diffraction theory after Young, Maggi, Rubinowicz [66Rub, 99Pau]: The light in point P of
Fig. 3.1.8 results from the unperturbed light and local waves, which are emitted by the edge
of the aperture A. Therefore, a line integral is to be calculated [99Pau]. There is an equivalence
with Fresnel-Kirchhoff’s theory.

3.1.4.3 Time-dependent diffraction theory

Two formulations of the time-dependent treatment of diffraction are possible:

1. A general Fresnel-Kirchhoff’s integral formula exists for time-dependent source functions in the
aperture A, see [99Bor, 99Pau].

2. Used more often now [96Die, 99Pau]: The time-dependent source functions are decomposed into
a superposition of monochromatic fields. The diffracted field is calculated for every monochro-
matic component by the stationary diffraction given above. The superposition of all diffracted
monochromatic components yields the time-dependent diffracted field.

3.1.4.4 Fraunhofer diffraction patterns

3.1.4.4.1 Rectangular aperture with dimensions 2a× 2b

In Fig. 3.1.10 the geometry of the diffraction from a rectangular aperture 2a × 2b is shown. The
x-part of the diffraction pattern in Fig. 3.1.10 is given in Fig. 3.1.11. In Table 3.1.5 the zeros and
maxima of the intensity distribution are listed.
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Fig. 3.1.10. Geometry of the diffraction from a
rectangular aperture 2a× 2b.

Fig. 3.1.11. x-part of the diffraction pattern in
Fig. 3.1.10. This is the diffraction pattern of a slit.
For more exact electromagnetic solutions of a slit
see [61Hoe, p. 266].

Table 3.1.5. Zeros and maxima of the intensity distribution.

Number n xa/λz In/I0

0 0 1
FWHM 2 × 0.221 0.5
1 0.5 0
1 0.715 0.0472
2 1 0
2 1.230 0.0168
3 1.5 0
3 1.735 0.0083
4 2 0
4 2.239 0.0050

Field distribution:

E(x, y, z) =
4 a b
iλ z

E0 exp
{

−i k
(
z +

x2 + y2

2 z

)}
sinc

{
2 π a x

λ z

}
sinc

{
2 π b y

λ z

}
(3.1.47)

with sinc(x) =
sinx
x

and E0 the electric-field amplitude .

Intensity:

I(x, y, z) = I(0, 0, z) sinc2
{

2 π a x

λ z

}
sinc2

{
2 π b y

λ z

}
. (3.1.48)

If the Fraunhofer diffraction is observed in the focal plane, z has to be replaced by f .

3.1.4.4.2 Circular aperture with radius a

The circular aperture with radius a is discussed in [61Hoe, p. 453]. In Fig. 3.1.12 diffraction by a
circular aperture is shown. In Fig. 3.1.13a the diffracted field and intensity and in Fig. 3.1.13b the
encircled energy in the diffraction plane with a circular screen are given. The zeros and maxima of
intensity for diffraction by a circular aperture are listed in Table 3.1.6.
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Fig. 3.1.12. Diffraction by a circular aperture.
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Fig. 3.1.13. (a) Diffracted field and intensity. (b) Encircled energy in the diffraction plane with a circular
screen.

Table 3.1.6. Zeros and maxima of intensity for diffraction by a circular aperture.

Number n rna/(λd) In/I0

0 0 1
FWHM 2 × 0.257 0.5
1 0.610 0
1 0.817 0.0175
2 1.117 0
2 1.340 0.00415
3 1.619 0
3 1.849 0.00160
4 2.121 0
4 2.355 0.00078

Field distribution:

E(r, z) =
π a2

iλ z
E0 exp

{
−i k

(
z +

kr2

2z

)}{
2
J1 [2 π a r/(λ z)]

2 π a r/(λ z)

}
(3.1.49)

with E0 the electric-field amplitude and r the radius in the far-field plane.

Intensity:

I(r) = I(0, z)
{

2
J1[2 π a r/(λ z)]

2 π a r/(λ z)

}2

. (3.1.50)
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3.1.4.4.2.1 Applications

Airy’s disc:

r1 Airy = 0.610λ/ sin σ , (3.1.51)

1st-minimum radius of the intensity distribution in the focal plane of an aberration-free lens (Lom-
mel 1885, Debye 1909, [86Sta, 99Bor]): Substitute in (3.1.50) a/z ⇒ sin σ (numerical aperture =
sinus of the intersection angle σ with optical axis in the focal point, generally : image point) and
r = r1 Airy as above.

Annular aperture: obscuration of the central part in the circular aperture A of Fig. 3.1.12:

– Reduction of the central diffraction maximum width by ≈ 20 %.
– Increase of secondary maximum by factor ≈ 7.
– See Bessel beams, Sect. 3.1.3.2.4, [05Hod].

3.1.4.4.3 Gratings

Grating equation:

sin α+ sin β = m
λ

g
(3.1.52)

with

α : angle of incidence (see Fig. 3.1.14),
β : diffraction angle,
g : grating constant (grating period, groove distance),
m : order of diffraction. Convention [82Hut, p. 25] often used: If the diffraction order is on

the same side with the zero order (m = 0) as the grating normal: m > 0, otherwise m < 0. In
Fig. 3.1.14, the directions of the +1st transmitted order and the grating normal (dashed and dotted
lines) are on the same side of the 0th transmitted order. Therefore m = 1 > 0 .

Slit factor : represents the diffraction by a single slit of the grating. Its form regulates the energy
distribution between the different orders m [82Hut, 99Bor]. For the real phase and reflection grat-
ings, it is substituted by the diffraction efficiency curves in dependence on α or λ. There is an
extreme diversity of cases. Catalogs of such curves: see [80Pet, 97Loe].

Theoretical spectral resolution of a grating :

Rtheor = λ/(∆λ) = mN = W (sin α+ sin β)/λ (3.1.53)

Incident
plane  wave

Grating Lens Focal
plane

Subsidiary
maximum

Reflected
orders

Transmitted
orders

Focused
orders

Slit
factor

�1 st

�1 st

�1 st

0 th0 th

0 th

0 th

1 st

1 st

1 st

1 st

f

g
�



�1

Fig. 3.1.14. Reflected and transmitted orders of
a grating, here with N = 4 slits. The far-field dis-
tribution is visualized after focusing by an ideal
lens. Between the main maxima occur N − 2 sub-
sidiary maxima. The dashed envelope is the slit
factor.
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with

N : number of grooves of the grating,
W : width of the grating,
α, β : see (3.1.52).

Real resolution contains theoretical resolution and the aberrations of the optical elements for
collimation and focusing of the grating-diffracted plane waves or by the aberrations of the concave
gratings with imaging properties. [87Chr, 82Hut].

Holographical gratings [82Hut] show lower disturbations than mechanically produced gratings (ap-
plication: external laser resonators).

Blazed gratings diffract light into an order m wanted with more than 60–90 % over one octave of
wavelengths [80Pet, 82Hut, 97Loe].

Volume gratings: [81Sol, 81Rus].

Mountings of spectral devices: [82Hut].

3.1.4.5 Fresnel’s diffraction figures

Fresnel’s approximation is given in (3.1.39) in Table 3.1.4.

3.1.4.5.1 Fresnel’s diffraction on a slit

In Fig. 3.1.15 Fresnel’s diffraction pattern of a slit with width 2a is shown.

NF = 0.5

NF = 1.0

NF = 1.5

NF = 2.0

NF = 2.5

NF = 3.5

NF = 4.0

NF = 4.5

NF = 5.0

NF = 10

NF = 3.0

0 x�a a

NF = 20

0 x�a a

Fig. 3.1.15. Fresnel’s diffraction
pattern of a slit with width 2a
(see Fig. 3.1.10 with b ⇒ ∞).
Fresnel’s number NF = a2/(λz)
is the essential parameter to char-
acterize the transition from far-
field (Fraunhofer) approximation
(NF < 0.2 . . . 0.5) to near-field
(Fresnel) approximation (NF >
0.5). NF = 0.5 : one central maxi-
mum only, NF = 3 : three maxima,
NF = N : N maxima. Hard-edge
diffraction results in a ripple in the
near field, which can be avoided
by soft apertures, for instance
Gaussian-like [86Sie] (apodization
in optics [99Bor]). Figure after
[86Sie, p. 721].
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3.1.4.5.2 Fresnel’s diffraction through lens systems (paraxial diffraction)

Given: a system of lenses and the field distribution E(x, y) to be propagated.

The sequence of steps easily taken is:

– Given: E(x, y) in the plane z = 0. Required: the field in the plane z = z. Solution: (3.1.39).
– Given: E(x, y) in the plane z = 0 and near to this plane a lens. Required: the field in the plane

z = z. Solution: modification of (3.1.39) by an additional factor L(x ′, y ′) to:

EFre(x, y, z) =
i exp {−i kz}

λd

∫∫
A

E(x ′, y ′, 0) L(x ′, y ′)

× exp
{

−i π
(x− x ′)2 + (y − y ′)2

λ z

}
dx ′ d y ′ , (3.1.54)

L(x ′, y ′) = p(x ′, y ′) exp {−i kn tL} exp
{

i k(x ′2 + y ′2)
2f

}
(3.1.55)

with

n : refractive index of the lens,
tL : thickness of the lens,
f : focal length of the lens,
p(x ′, y ′) : amplitude part, which can describe a marginal aperture or a Gaussian apodization.

A general complex function L(x ′, y ′) can model diffractive optical elements.

Cases of integration:

– No transversal limitations (without stops) and quadratic arguments of the exponential functions
due to analytical results. The Collins integral is the closed form of such a calculation (see
Sect. 3.1.7.4).

– One stop (finite integration limits): The result includes the error function [70Abr].
– Two and more finite integration limits are not useful. Then, (commercial) numerical field prop-

agation programs through systems should be consulted.

Examples: [68Goo, 91Sal, 71Col, 85Iiz, 92Lug, 68Pap].

The Beam Propagation Method (BPM) in integrated optics (many “infinitely thin lenses”) is the
generalization of this method [95Mae, 91Spl, 99Lau, 98Hec].

3.1.4.6 Fourier optics and diffractive optics

Fourier optics results from the transformation of the temporal frequency methods of electrical
engineering to spatial frequency methods in optics, see Figs. 3.1.9, 3.1.10 and (3.1.41), (3.1.43),
(3.1.44).

References: principles of Fourier optics: [68Goo, 78Loh, 83Ste, 85Iiz, 89Ars, 93Sto, 98Hec,
99Lau], filtering: [92Lug], filtering in connection with holography: [96Har, 71Col], noise suppression:
[91Wyr].

Example 3.1.5. Spatial spectral filtering

In Fig. 3.1.16 low-pass filtering of a laser beam with a four-f -setup is shown.
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f f ff

Incident  beam

Lens Lens

Low-pass
filter

High
frequency

Filtered  beam

Fig. 3.1.16. Low-pass filtering of a laser beam with
a four-f -setup [92Lug]. The mask is a low-pass filter,
which transmits a zero mode only and suppresses
the higher modes. The incident beam can also be
modified by a transmission element which changes
amplitude and phase.

Diffractive optical elements influence the propagation of light with help of amplitude- and/or phase-
changing microstructures whose dimensions are of the order of the wavelength mostly. They extend
the classical means of optical design. References: [67Loh, 84Sch, 97Tur, 00Tur, 00Mey, 01Jah].

Example 3.1.6.

– Gratings generated by mechanical or interference ruling [69Str, 67Rud] on either plane or con-
cave substrates for the combination of dispersive properties with imaging [82Hut, 87Chr].

– Fresnel’s zone plates acting as microoptic lenses of [97Her].
– Mode transformation optics (“modane”) for transformation and filtering of modes of a laser

[94Soi].
– Generation of theoretical ideal wavefronts for optical testing with interferometrical methods

[95Bas, Vol. II, Chap. 31].
– Mode-discriminating and emission-forming elements in resonators [94Leg, 97Leg, 99Zei].

For pure imaging applications, refracting surfaces are still preferred, even in the micro-range
[97Her]. Tasks with special dispersion requirements and special optical field transformations are
the main application of the diffractive elements with increasing share.

The technology of dispersion compensation and weight reduction in large optical systems by
special diffractive elements is partially solved, now.

3.1.5 Optical materials

Medium with absorption:

ε̂r = n̂2 (3.1.56)

with

ε̂r : complex relative dielectric constant (or tensor),
n̂ : complex refractive index,

weakly absorbing isotropic medium:

α � k0 : n̂ = n− i ke = n− inκ = n− i
α

2 k0
, (3.1.57)

damped plane wave (unity field amplitude):

exp {−i kz} = exp {−i k0(n− iκ) z} exp
{

−i k0

(
n− i

α

2 k0

)
z

}

= exp
{

−i k0z − α

2
z
}
, (3.1.58)
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96 3.1.5 Optical materials [Ref. p. 131

intensity :

I(z) = I(0) exp {−α z} (Lambert-Beer-Bouguer’s law ) , (3.1.59)

amplification in pumped media:

I(z) = I(0) exp {g z} (3.1.60)

with

α [m−1] : (linear) absorption constant (standard definition [95Bas, Vol. II, Chap. 35],
[99Bor, 91Sal, 96Yar, 05Hod]) or extinction constant or attenuation coefficient,

g [m−1] : gain,
ke [m−1] : [88Yeh, 95Bas] (or κ [m−1] : [99Bor, 04Ber]) extinction coefficient, attenuation index.

Different convention after (3.1.6): α, g, ke and κ are defined with other signs, for example n̂ = n (1 + iκ)
if the other time separation (1st convention) is used [99Bor, Chap. 13], [95Bas, Vol. I, Chap. 9].

Measurement of α : see [85Koh, 04Ber, 82Bru], [90Roe, p. 34], [95Bas, Vol. II, Chap. 35].

3.1.5.1 Dielectric media

In Fig. 3.1.17 the real- and imaginary part of the refractive index in the vicinity of a resonance in
the UV are shown.

Single-resonance model for low-density media [99Bor, 96Ped]:

n̂ = n− i ke = 1 +
N e2

2 ε0m (ω2
0 − ω2 + i γ ω)

=

{
1 +

N e2γ
(
ω2

0 − ω2
)

2 ε0m [(ω2
0 − ω2)2 + γ2 ω2]

}
− i

{
Ne2γ ω

2 ε0m [(ω2
0 − ω2)2 + γ2 ω2]

}
(3.1.61)

with

e = −1.602 × 10−19 C : elementary charge,
m = 9.109 × 10−31 kg : mass of the electron,
ω = 2 π ν [s−1] : circular frequency of the light,
ω0 [s−1] : circular resonant frequency of the electron,

Visible
range

UV-
resonances

IR-
resonances

Resonance
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�0
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x,

re
al

  p
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ar
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Fig. 3.1.17. Real- and imaginary part of the refractive in-
dex in the vicinity of a resonance in the UV. The principal
shape is explained by the classical oscillator model after
J.J. Thomson, P. Drude, and H.A. Lorentz [99Bor, 88Yeh].
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γ [s−1] : damping coefficient,
N [m−3] : density of molecules,
ε0 = 8.8542 × 10−12 As/Vm : electric permittivity of vacuum.

Examples see [96Ped, 88Kle], generalization to dense media see [96Ped, 88Kle, 99Bor].

The Kramers-Kronig relation connects n(ω) with k(ω) [88Yeh].

3.1.5.2 Optical glasses

Dispersion formula [95Bac]:

n2(λ) = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
(Sellmeier’s formula) . (3.1.62)

The dimensions of the constants are given in example 3.1.7. The available wavelength range is
given by the transmission limits, usually.

Example 3.1.7. [96Sch]: Glass N-BK7: λ [µm], B1 = 1.03961212, B2 = 2.31792344 × 10−1, B3 =
1.01046945, C1 = 6.00069867× 10−3 [µm2], C2 = 2.00179144× 10−2 [µm2], C3 = 1.03560653× 102

[µm2], n(0.6328 µm) = 1.51509, n(1.06 µm) = 1.50669.

Other interpolation formulae for n(λ) are given in [95Bac], [95Bas, Vol. II, Chap. 32], [05Gro1,
p. 121].

Further information is available from glass catalogs (see Sect. 3.1.5.10) and from subroutines in
commercial optical design programs:

– relative dispersive power or Abbe’s number νd =
nd − 1
nF − nC

with nd(587.56 nm = yellow He-

line), nF(486.13 nm = blue H-line), nC(656.27 nm = red H-line) [95Bac, 80Sch]; application:
achromatic correction of systems [84Haf],

– spectral range of transmission,
– temperature coefficients of n and νd,
– photoelastical coefficients,
– Faraday’s effect (Verdet’s constant),
– chemical resistance, thermal conductivity, micro hardness etc.

Sellmeier-like formulae for crystals are available in [95Bas, Vol. II, Chap. 32]. Information in con-
nection with laser irradiation damage is presented in [82Hac]. Specific values of laser glasses are
given in tables in [01Iff].

3.1.5.3 Dispersion characteristics for short-pulse propagation

The parameters can be calculated from the dispersion interpolation (3.1.62) [91Sal, 96Die]:

β(ν) = n(ν)
2π ν

c0
(propagation constant [m−1]) , (3.1.63)

cph =
c0
n(ν)

(phase velocity [m s−1]) , (3.1.64)
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v =
2 π
d β
d ν

=
1

d β
d ω

(group velocity [m s−1]) , (3.1.65)

Dv =
1

2 π

d2 β

d ν2 = 2 π
d2 β

dω2 =
d

d ν

(
1
v

)
(group velocity dispersion (GVD)) (3.1.66)

with

ν : frequency of light,
c0 : velocity of light in vacuum.

Application: Temporal pulse forming by the GVD of dispersive optical elements [96Die, 01Ben].

3.1.5.4 Optics of metals and semiconductors

The refractive index of metals is characterized by free-electron contributions (ω0 = 0 in (3.1.61)).
One obtains from [67Sok, 72Woo], [95Bas, Vol. II, Chap. 35] with a plasma resonance (here collision-
free: γ = 0):

n2(ω) = 1 −
(ωp

ω

)2
(3.1.67)

with

ωp [s−1]: plasma frequency, depending on free-electron density [88Kle].

From (3.1.67) follows

– n(ω) < 1 for ω > ωp, which means λ < λp (example: λp = 209 nm for Na): transparency,
– pure imaginary n(ω) for ω < ωp, λp < λ .

Other effects change the ideal case (3.1.67) [88Kle].
The complex refractive index of semiconductors is determined by transitions of electrons bet-

ween or within the energy bands and by photon interaction with the crystal lattice (reststrahlen
wavelength region). It depends strongly on the wavelength and is modified by heterostructures and
dopands [71Pan, 95Kli], [95Bas, Vol. II, Chap. 36].

3.1.5.5 Fresnel’s formulae

Fresnel’s formulae describe the transmission and reflection of plane light waves at a plane interface
between

– homogeneous isotropic media: [99Bor, 88Kle] and other textbooks on optics,
– homogeneous isotropic medium and anisotropic medium: special cases [99Bor, 86Haf] and other

textbooks on optics,
– general case of anisotropic media: [58Fed],
– modification by photonic crystals: [95Joa, 01Sak].

Fresnel’s formulae for the amplitude (field) reflection and transmission coefficients are listed in
Table 3.1.7.

Plane of incidence: plane, containing the wave number vector k of the light and the normal vector
n on the interface.
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Fig. 3.1.18. Refraction at an interface, represented in the plane of incidence: (a) Es-case, (b) Ep-case.
The commonly used convention is shown for the orientation of the relevant vectors (k: the wave number
vector, E: the electrical field, and H: the magnetic field) ensuring that k, E, and H are a right-handed
system in every case. The E-field is important for the action on a nonmagnetic material.

Polarization:

– E perpendicular to the plane of incidence: s-polarization (TE-case or σ-case [88Kle]), the cor-
responding E-component is called E⊥ [99Bor] or Es (s: “senkrecht” (German) which means
“perpendicular”) [88Yeh] or index E [97Hua] or index x [90Roe, 77Azz, 91Sal].

– E parallel to the plane of incidence: p-polarization (TM-case or π-case [88Kle]), the corre-
sponding E-component is called E‖ [99Bor] or Ep [88Yeh] or index M [97Hua] or index y
[90Roe, 77Azz, 91Sal].

Snell’s law :

n̂ sinΘ = n̂ ′ sinΘ ′ (3.1.72)

with

n̂, n̂ ′ : refractive indices of both media, respectively,
Θ, Θ ′ : see Fig. 3.1.18.

Other convention than Fig. 3.1.18b [58Mac, 89Gha, 91Ish] (electrical engineering) on the orientation of
the E-vectors: E and E ′′ point into the same direction for Θ → 0, H changes sign; application: E-
interferences.

Remark :

– n̂ is real and n̂ ′ is complex (absorption [76Fed, 77Azz] or gain [88Boi]).

– n̂ and n̂ ′ are real and n̄ =
n̂ ′

n̂
< 1 and (n̄2−sin2Θ) < 0 (total reflection). Then

√
n̄2 − sin2Θ =

i
√

sin2Θ − n̄2 yields for (3.1.68) and (3.1.69) rs = exp (i δs) and rp = exp (i δp) (modulus = 1,

all energy reflected) and tan
δs
2

= −
√

sin2Θ − n̄2

cosΘ
and tan

δp
2

= −
√

sin2Θ − n̄2

n̄2 cosΘ
.

The intensities in the media are calculated with help of the z-component of Poynting’s vector
[88Kle, 90Roe, 76Fed].

Reflectance (reflected part of intensity):

Rs,p = |rs,p|2 . (3.1.73)
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Transmittance (transmitted part of intensity):

Ts,p =
Re (n̂ ′ cosΘ ′)
Re (n̂ cos Θ)

|ts,p|2 (3.1.74)

with

Re : real part.

Energy conservation:

Ts,p +Rs,p = 1 .

3.1.5.6 Special cases of refraction

3.1.5.6.1 Two dielectric isotropic homogeneous media (n̂ and n̂ ′ are real)

rs =
n− n ′

n+ n ′ = −rp . (3.1.75)

(The negative sign of rp results from the convention of Fig. 3.1.18 that Ep is diffracted into −E ′′
p ).

Rs = Rp =
(
n− n ′

n+ n ′

)2

and Ts = Tp = 1 −Rs . (3.1.76)

Example 3.1.8. n = 1, n ′ = 1.5 (glass): Rs = 0.04 .

3.1.5.6.2 Variation of the angle of incidence

3.1.5.6.2.1 External reflection (n < n ′)

Brewster’s angle (angle of polarization) ΘB :

ΘB +Θ ′
B = 90◦ , Rp = 0 , tanΘB =

n ′

n
. (3.1.77)

Example 3.1.9. n = 1, n ′ = 1.5, ΘB = 56.3◦ . See Fig. 3.1.19.

3.1.5.6.2.2 Internal reflection (n > n ′)

Critical angle of total reflection:

sinΘC =
n ′

n
. (3.1.78)

Total reflection: Θ > ΘC with |rs| = |rp| = 1 and the phases of the reflected waves: rs = exp (iΦs)
and rp = exp (iΦp) .

Brewster’s angle:

tanΘB =
n ′

n
. (3.1.79)
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Fig. 3.1.19. (a) Reflection coefficients rp and rs and (b) reflectances Rp and Rs for n = 1 and n ′ = 1.5.
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Fig. 3.1.20. Internal reflection (n = 1.5, n ′ = 1). (a) Reflection coefficients rp and rs for Θ < ΘC and
phases Φp and Φs for Θ > ΘC. (b) Reflectances Rp and Rs (= 1 for Θ > ΘC).

Example 3.1.10. n = 1.5, n ′ = 1, ΘC = 41.8◦, ΘB = 33.7◦. See Fig. 3.1.20.

Penetration depth in Fig. 3.1.21 [88Kle, p. 67]:

dpen =
λ0

2 π
√
n2 sin2Θ − n ′2

. (3.1.80)

Goos–Hänchen shift [88Yeh, p. 74], see Fig. 3.1.22:

dG.−H.,s,p =
dΦs,p

dΘ
(3.1.81)

with Φp and Φs from Fig. 3.1.20. For a more precise treatment of the Goos–Hänchen shift for
Gaussian beams see [05Gro1, p. 100].
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Fig. 3.1.21. Total reflection of plane waves with
an inhomogeneous wave in the medium with the
refractive index n ′ (dpen : amplitude ⇒ 1/e).

Fig. 3.1.22. Goos–Hänchen shift of a total re-
flected beam with finite (exaggerated small) cross
section (RP: effective reflection plane).

3.1.5.6.3 Reflection at media with complex refractive index
(Case n̂ = 1 and n̂ ′ = n ′ + i k ′)

In Fig. 3.1.23 the refractive index n and the attenuation index k of gold (Au) is shown, in Fig. 3.1.24
the reflectance for both polarization cases of gold is given.
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Fig. 3.1.23. Refractive index n and attenuation
index k of gold (Au).

Fig. 3.1.24. Reflectance for both polarization cases
of gold (Au). There is a minimum of Rp which is
connected with a pseudo Brewster angle.
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Fig. 3.1.25. Refraction at a medium with absorption: generation
of an inhomogeneous wave.

Inhomogeneous wave (Fig. 3.1.25): Snell’s refraction law is modified:

sinΘT =
n

nT
sinΘ (3.1.82)

with

2n2
T = n ′ 2 − k ′ 2 + n2 sin2Θ +

√(
n ′ 2 − k ′ 2 − n2 sin2Θ

)2
+ 4n ′ 2 k ′ 2 (Ketteler’s formula) .

The effective refractive index nT determines the direction angle ΘT of planes of constant phase in
Fig. 3.1.25 via (3.1.82) [88Kle, p. 78], [41Str, p. 503], [99Bor, p. 740]. The full inhomogeneous wave
can be calculated using [99Bor, p. 740].

Example 3.1.11. Θ = 45 ◦, Au: λ = 800 nm, n ′ = 0.19, k ′ = 4.9, nT = 0.73, ΘT = 75.1 ◦ (see
[28Koe, p. 209]).

Intensity attenuation in the case Θ = 0 ◦:

I = I0 exp {−2 (ω/c) k ′ z} . (3.1.83)

Example 3.1.12. Θ = 0 ◦, Au: λ = 800 nm, n ′ = 0.19, k ′ = 4.9, I = I0 exp
(−7.7 × 104 z[mm]

)
,

1/e − depth = 13 nm.

Ellipsometry : δp−δs and moduli
|rp|
|rs| of the reflected light rp = |rp| exp (i δp) and rs = |rs| exp (i δs)

can be measured. The complex refractive index of a material results [77Azz, 90Roe]. Application:
Measurements for the optical constants of metals, semiconductors, and thin-film systems.

3.1.5.7 Crystal optics

3.1.5.7.1 Classification

The dielectric tensor εr = εij in (1.1.8) is symmetrical and real in the case of a nonabsorbing
medium.

In Fig. 3.1.26 vectors connected with wave propagation in crystal optics are depicted. In Ta-
ble 3.1.8 optical crystals are listed. In Table 3.1.9 three of the eight surfaces for visualization of
wave propagation in crystals are presented.

Landolt-Börnstein
New Series VIII/1A1



Ref. p. 131] 3.1 Linear optics 105

n

Beam  edge

Beam  edge = k
k

s

DE

B,H

Fig. 3.1.26. Vectors connected with wave propagation in
crystal optics [99Bor]: s : ray direction unit vector ‖ Poynt-
ing vector E × H, n : unit vector in the normal direction
‖ k and ⊥ phase planes, orthogonalities: B,H ⊥ E,D,n, s ;
E ⊥ s ; D ⊥ n.

Table 3.1.8. Optical crystals.

Classification:
system (syngony)
of crystal

Refractive index
in the main axis
system

Optical type
of crystal

Example Values of the
refractive index
for λ = 589.3 nm

triclinic,
monoclinic,
orthorhombic

nx �= ny �= nz �= nx biaxial crystal, no
ordinary waves

NaNO3 nx = 1.344 ,
ny = 1.411 ,
nz = 1.651

trigonal,
tetragonal,
hexagonal

nx = ny = no

(ordinary
index)

positive uniaxial
crystal: no < ne

SiO2

(quartz)
no = 1.544,
ne = 1.553

nx �= nz = ne

(extraordinary
index)

negative uniaxial
crystal: no > ne

CaCO3

(calcite)
no = 1.658,
ne = 1.486

cubic nx = ny = nz = n isotropic crystal NaCl n = 1.544

Table 3.1.9. Three of the eight surfaces for visualization of wave propagation in crystals.

Surface Given Found by construction are the

Index ellipsoid (indicatrix)
(one-shell surface)

normal direction n D-vectors for the two polarization cases
and the two refractive indices for phase
propagation

Index surface, wave vector
surface (two-shell surface)

normal direction n ray directions s, which are perpendicular
to the surface for both polarization cases

Ray surface, wave surface, representing
Huygens’ elementary wave for both
polarization cases (two-shell surface)

ray direction s normal direction n, which is perpendicular
to the surface

Main feature of crystal optics: s is not parallel with n for wave propagation, mostly.

– s is essential for description of the energy propagation (edges of bundles, rays),
– n is essential for description of the interferences of infinite broad waves.

References: [28Szi, 54Bel, 58Shu, 61Ram, 76Fed, 79Wah, 84Yar, 04Ber, 99Pau, 99Bor]. A de-
tailed comparison between that surfaces is given in [28Szi].
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3.1.5.7.2 Birefringence (example: uniaxial crystals)

Uniaxial crystals in the plane of incidence:

– Refraction of the normal direction n of wavefronts: The wavevector surface is shown in
Fig. 3.1.27.

sinΘo =
n

no
sinΘ (ordinary wave (ko)) (3.1.84)

(no does not depend on the angle of incidence),

sinΘe =
n

nθ e (Θe(Θ))
sinΘ (extraordinary wave (ke)) (3.1.85)

(ne depends on the angle of incidence).
– Refraction of rays (Poynting vector): se and so are given by tangent construction in Fig. 3.1.28.
– Algorithm for the calculation of ko (‖so), ke, se of Fig. 3.1.28 with n, no, ne, η, θ of Fig. 3.1.29

[86Haf]:

n2
θ e =

A

B
+
n2(n2

o − n2
e)

2 sin2Θ sin2(2η)
2B2

± n(n2
o − n2

e)
2 sinΘ sin (2η)
B

×
√
n2 sin2Θ

[
(n2

o − n2
e)2 sin2(2η)
4B2 − 1

]
+
A

B
(3.1.86)

(refractive index for the extraordinary wave)

with

A = (n2
e − n2

o)n
2 sin2Θ cos (2η) − n2

o n
2
e ,

B = n2
o + (n2

e − n2
o) sin2 η ,

where the decision on the ± sign in (3.1.86) can be made by controlling the satisfaction of

n2
θ e

[
n2

o + (n2
e − n2

o) sin2(η +Θe)
]

= n2
e n

2
o .

The resulting angles are:

Θo = arcsin(n sinΘ/no) , (3.1.87)

x

z�
k

k o k e�e�o

Index n Indices andn no e

TE

TM

Optical  axis

Polarization
TE and TM Fig. 3.1.27. Construction of wavefront birefringence with

the wavevector surface: The wavefronts show no transversal
limitation.
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Index n Index nIndices andn no e

Optical
axis

Elementary
waves

Rays
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k e
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�ew
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Index n Indices andn no e

Optical  axis

�

II so

II s

Fig. 3.1.28. Huygens’ tangent construction of bire-
fringence in a crystal slab for transversal-limited
beams.

Fig. 3.1.29. Refraction for normal and ray direc-
tions. η : angle between z-axis and optical axis.

Θe = arcsin (n sinΘ/nΘ e) , (3.1.88)

Θew = arctan
tan η − C

1 + C tan η
(3.1.89)

with

C =
n2

o

n2
e

×
√
n2

Θ e − n2 sin2Θ tan η + n sinΘ√
n2

Θ e − n2 sin2Θ − n sinΘ tan η
.

Application: Θe, Θo, no, and nΘ e ⇒ phase differences (interferences) and reflection coefficient,
Θo and Θew ⇒ ray separation in a crystal.

Example 3.1.13. Calcite: no = 1.658, ne = 1.486, η = 45◦: #1: Θ = 0◦: C = 1.244822, nΘ e = 1.565,
Θo = Θe = 0◦, Θew = −6.224◦; #2: Θ = 45◦: nΘ e = 1.636, C = 0.438329, Θo = 25.23◦, Θe = 25.6◦,
Θew = 21.33◦.

General formulation of (3.1.85)–(3.1.89): see [76Fed, Table 9.1] for more detailed discussions.

3.1.5.8 Photonic crystals

Starting with the forbidden (stop) bands in case of multi-layer Bragg reflection [88Yeh, p. 123] a
material class is under development which stops light propagation along as many directions and for
as many wavelengths as possible. This suppresses the spontaneous emission for laser applications
and opens new possibilities in the micro- and nano-optics [95Joa, 01Sak, 04Bus]. Photonic crystal
fibers [04Bus] can be designed for special light propagation properties and high-power fiber lasers
[03Wad].
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3.1.5.9 Negative-refractive-index materials

The common excitation of electrical dipoles and magnetical dipoles by light in a medium can
result in a negative dielectric permittivity Re (ε) < 0 in combination with a negative magnetic
permeability Re (µ) < 0 . Then, in Snell’s law (3.1.72) an effective index n̂ ′ < 0 is possible [68Ves]
which results in imaging by a slab of this material without curved surfaces [00Pen] and other
interesting effects [05Ram]. Such metamaterials can be generated by microtechnology, now for
mm- and terahertz-waves, but with the trend towards visible radiation [05Ele].

3.1.5.10 References to data of linear optics

[62Lan] contains optical constants, only. In later editions, the optical constants are listed together
with other properties of substances. An overview is given in the content volume [96Lan].

Optical glass: [62Lan, Chap. 283], [97Nik], [95Bas, Vol. 2, Chap. 33], cat-
alogs of producers: [96Sch, 98Hoy, 96Oha, 92Cor], and com-
mercial optical design programs.

Infrared materials: [98Pal, 91Klo], [96Sch, infrared glasses], commercial optical
design programs.

Crystals: [62Lan, Chap. 282], [95Bas, Vol. 2, Chap. 33], [97Nik, 91Dmi,
81Kam].

Photonic crystals: [95Joa, 01Sak, 04Bus].
Negative-refractive-index materials: [05Ram].
Polymeric materials: [62Lan, Chap. 283], [95Bas, Vol. 2, Chap. 34], [97Nik].
Metals: [62Lan, Chap. 281], [98Pal], [95Bas, Vol. 2, Chap. 35].
Semiconductors: [96Lan, 98Pal, 87EMI], [95Bas, Vol. 2, Chap. 36].
Solid state laser materials: [01Iff, 97Nik, 81Kam].
Liquids: [62Lan, Chaps. 284, 285], [97Nik].
Gases: [62Lan, Chap. 286].

3.1.6 Geometrical optics

Geometrical optics represents the limit of the wave optics for λ ⇒ 0 .
The development sinσ = σ− 1

3!σ
3 + 1

5!σ
5 − . . . with σ the angle in Snell’s law characterizes the

different approaches of geometrical optics. Table 3.1.10 gives an overview of different approxima-
tions of geometrical optics.

3.1.6.1 Gaussian imaging (paraxial range)

The signs of the parameters determined in [03DIN, 96Ped] are applied in Sect. 3.1.6.1.1, later on
f = f ′ is used.
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Table 3.1.10. Different approximations of geometrical optics.

Problem to be treated Algorithm for solving

Given: object point O in the paraxial range,
asked : image point O ′ in the paraxial range
approximation: sinσ ≈ σ .

– Gaussian collineation and Listing’s construction:
see Sect. 3.1.6.1.

– Gaussian matrix formalism (ABCD-matrix): see
Sect. 3.1.6.2,
ref.: [04Ber, 99Bor].

Imaging in Seidel’s range,
asked : imaging quality

approximation: sinσ ≈ σ − 1
3!
σ3 .

Formulae for Seidels aberrations: see Sect. 3.1.6.3,
ref.: [70Ber, 80Hof, 84Haf, 84Rus, 86Haf, 91Mah].

General image formation. (Commercial) raytracing programs with geometric
and wave optical merit functions and tolerancing,
ref.: [84Haf, 86Haf].

3.1.6.1.1 Single spherical interface

Figure 3.1.30 shows the imaging by a spherical interface in the paraxial range (small x, x ′, h).

Gaussian imaging equation:

n

(
1
r

− 1
s

)
= n ′

(
1
r

− 1
s ′

)
or

n ′

s ′ =
n

s
+
n ′ − n

r
. (3.1.90)

Abbe’s invariant n
(

1
r

− 1
s

)
is a constant on both sides of the interface.

Object-space focal length:

f = − nr

n ′ − n
. (3.1.91)

Image-side focal length:

f ′ =
n ′r

n ′ − n
. (3.1.92)

Remark : The symbol f means outside this section, Sect. 3.1.6.1, the positive focal length for a positive
(converging) lens.

Newton’s imaging equation:

z z ′ = f f ′ . (3.1.93)

x

z

O
x

s

z f f ’ z ’

s ’

x ’
O ’

Mh r

V

P

F F ’

Fig. 3.1.30. Imaging by a spherical interface in the
paraxial range (small x [object height], x ′ [image
height], h [zonal height]). Full line: axial imaging,
dashed line: off-axis imaging, dotted line: focusing to
image side F ′. Sign conventions: s, s ′ > 0 , if they
point to the right-hand side of the vertex V , r > 0 ,
if the center of curvature of the interface is on the
right-hand side in comparison with V . Here: s < 0,
s ′ > 0, r > 0. M : center of curvature of the sphere.
The left-hand-side-directed arrows symbolize nega-
tive values for the corresponding parameters here.
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Lagrange’s invariant :

x ′ n ′ s ′ = xn s (3.1.94)

with

n : object-space refractive index,
n ′ : image-space refractive index,
s : object distance,
s ′ : image distance,
r : radius of curvature of the interface,
x : height of the object point,
x ′ : height of the image point,
z : focus-related object distance,
z ′ : focus-related image distance.

Imaging through an optical system: concatenation of the imaging of the spherical surfaces in suc-
cession via (3.1.90) by using sfollowing surface = s ′

prior surface−d, d : the distance between the surfaces,
and (3.1.94) for an object height x �= 0.

3.1.6.1.2 Imaging with a thick lens

Figure 3.1.31 shows the axial imaging with a thick lens, Fig. 3.1.32 depicts Listing’s construction
for thick-lens imaging of a finite-height object point O to image point O ′.

Thick-lens imaging equation:

−1
a

+
1
a ′ =

1
f ′ = (n ′ − 1)

(
1
r1

− 1
r2

)
+
t (n ′ − 1)2

n ′ r1 r2
. (3.1.95)
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Fig. 3.1.31. Axial imaging with a thick lens. Car-
dinal planes and points are: object-space principal
plane with object principal point H on axis, image-
space principal plane with image principal point H ′

on axis, object-space focal point F , image-space fo-
cal point F ′. Nodal points [98Mah, 96Ped] are equal
to the principal points if O and O ′ are embedded
in media with equal refractive index as here. Then
f = −f ′. The sign convention used here means:
Parameters characterized by an arrow pointing to
the left (right) hand side show a negative (positive)
sign [80Hof, 86Haf]. The dashed line shows the use
of H ′ for simplifying the plot for a ray focusing.

Fig. 3.1.32. Listing’s construction for thick-lens
imaging of a finite-height object point O to image
point O ′. Scheme of construction: Ray 1 (parallel
with axis) is sharply bent at plane H ′ towards F ′.
Ray 3 towards H is continued at H ′ with the angle
σ ′ = σ . Ray 5 through F is bent sharply parallel
with axis at H-plane. The magnification x ′/x =
a ′/a can be calculated by elimination of a ′ from
(3.1.95) ⇒ x ′ .
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Position of the principal point H:

sH = −n ′ − 1
n ′ r2

f ′t . (3.1.96)

Position of the principal point H ′ :

sH ′ = −n ′ − 1
n ′ r1

f ′t . (3.1.97)

Distance between the principal planes:

HH ′ = t

(
1 − f ′ n

′ − 1
n ′

(
1
r1

− 1
r2

))
. (3.1.98)

Thin lens: t ⇒ 0 : (3.1.95) ⇒ “Lens maker’s formula”.

3.1.6.2 Gaussian matrix (ABCD-matrix, ray-transfer matrix) formalism
for paraxial optics

Three tasks can be treated with the help of the ray-transfer matrix:

1. full description of paraxial optics (this section, Sect. 3.1.6.2),
2. Gaussian beam propagation (coherent radiation) by combination with a special beam calcula-

tion algorithm (see Sect. 3.1.7 on beam propagation),
3. propagation of the second-order moments of the radiation field (inclusion of partial coherent

radiation) (see Chap. 2.2 on beam characterization).

The optical system can be the separating distance in an optical medium, a single spherical
optical surface or a true, more complicated optical system.

There are different definitions for the ABCD-matrices:
Here: The slope components of the input and output rays are the real angles without any

relation to the refractive indices at input and output spaces of Fig. 3.1.33 [66Kog1, 66Kog2, 84Hau,
91Sal, 95Bas, 96Ped, 96Yar, 98Hec, 98Sve, 01Iff, 05Gro1, 05Hod]. Then, the determinant of the
matrix M : ‖M‖ = n ′/n with n the index of the medium of the input plane and n ′ the index of the
medium of the output plane.

Other authors [75Ger, 86Sie, 88Kle, 04Ber] use:
slope parameter = (angle) × (related refractive index). Then the equation ‖M‖ = 1 applies.

In Fig. 3.1.34 the concatenation of different ray-transfer matrices for different types of sub-
systems is shown.

z z

x x

x2

x2x2

x2

x1 x1

x1

x1

Input  plane Output  plane

Optical  system OutputInput

�2�2

�2

�1 �1

�1

�1
�2� �dx dx

dz dz
1 2

=

=

A B
C D

M

Fig. 3.1.33. Transfer of the input height x1 and slope
α1 into the output height x2 and slope α2 with the ray-
transfer matrix M. The sign of slope α1 is positive in this
figure. The German standard DIN 1335 uses a different
sign with change of some signs in the ABCD matrices
[96Ped].
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xn

x2

x3 x4

x1

Input  plane Output  plane
Output  plane
of  element 1
= input  plane
of  element 2

�2

�4

�1

�n

M M M

�3

1 2 3

Lens Air distance System

Following
elements

Element  1 Element  2 Element  3

M M M M M...= n�1 3 2 1

Fig. 3.1.34. Concatenation of different ray-transfer matrices for different types of sub-systems. Matrices
known for systems before can be used to construct the matrix for a larger system containing the known
systems. The sequence of the matrices is shown at the bottom of the figure.

3.1.6.2.1 Simple interfaces and optical elements with rotational symmetry

In Table 3.1.11 ABCD-matrices for simple interfaces and optical elements with rotational symmetry
are listed.

3.1.6.2.2 Non-symmetrical optical systems

Rotational symmetry lacks and the axis is tilted due to the non-symmetrical optical system. In such
a system, the central ray of imaging is called the basic ray. The optics in a narrow region around
the basic ray is called parabasal optics [95Bas, Vol. 1, p. 1.47] as analogon to paraxial optics. For
treatment of astigmatic pencils see [72Sta].

A special case of the non-symmetrical optical system is a system without torsion: Two ortho-
gonal cases do not mix during propagation. Examples are different setups of spectroscopy and laser
physics (ring resonators).

In Table 3.1.12 ABCD-matrices for non-symmetrical optical elements without torsion are listed.

3.1.6.2.3 Properties of a system

Properties of a system included in its ABCD-matrix are discussed in [75Ger, 96Ped, 05Hod, 05Gro1].
In Table 3.1.13 distances between cardinal elements of an optical system are listed, in Ta-

ble 3.1.14 the meaning of the vanishing of different elements of the ABCD-matrix is depicted.

3.1.6.2.4 General parabolic systems without rotational symmetry

The generalization of the two-dimensional ray transfer after Fig. 3.1.33 to three dimensions [69Arn]
is shown in Fig. 3.1.35. The ray in the input plane is characterized by two coordinates x1 and y1
of the piercing point P and two small (paraxial range) angles α1 and β1 .

The matrix S relates these parameters to the corresponding parameters in the output plane
like in Fig. 3.1.33:
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Table 3.1.11. ABCD-matrices for simple interfaces and optical elements with rotational symmetry.

Effect Figure ABCD-matrix Remark

Propagation

d

l O

[
1 d
0 1

] The rays propagate from I to O
within the same medium.

Spherical
surface

I O

n1

r

n2

[
1 0

n1 − n2

n2 r

n1

n2

] Sign: r > 0 for convex surface seen
by the propagating light.

Plane

I O

n1 n2

[
1 0
0
n1

n2

] Corresponds to a spherical surface
with r ⇒ ∞ .

Planar plate

I O

n1 n1n2

d

[
1
n1

n2
d

0 1

] Contains two refractions.

Thin lens

I O
n1 n1n2

r1
r2

⎡
⎣ 1 0

− 1
f

1

⎤
⎦ 1

f
=
n2 − n1

n1

[
1
r1

− 1
r2

]
,

air: n1 = 1 .

Thick lens
in air

I O

r >1 0 r <2 0

H H’

n

sH s’H ’

t

⎡
⎢⎣ 1 − sH ′

f

d

n

− 1
f

1 +
sH

f

⎤
⎥⎦

1
f

= (n−1)
[

1
r1

− 1
r2

]
+

(n− 1)2 t
n r1 r2

,

sH = − (n− 1) f t
n r2

, see (3.1.96) ,

sH ′ = − (n− 1) f t
n r1

, see (3.1.97) ,

H, H ′ : principal planes.

Spherical
mirror

I IO O

r

=

substituted
by

[
1 0

−2
r

1

] Unfolding of the mirror;
sign(r) > 0 , if the incident light sees
a concave mirror surface.

Gradient-
index lens
or
thermal
lens I O

n1n1

n

t

[
A B
C D

]

n = n0 (1 − γ x2) ;
γ > 0 : higher
index on axis

A = cos
(√

2γ t
)
;

B = n1 sin
(√

2γ t
)
/
(
n0

√
2γ
)
;

C = − (√
2γ n0/n1

)
sin

(√
2γ t

)
;

D = cos
(√

2γ t
)
;

development of the trigonometric
functions for

√
2γ t � 1 ⇒ simpli-

fications

Gradient optics:
see [02Gom, 05Gro1].

(continued)
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Table 3.1.11 continued.

Effect Figure ABCD-matrix Remark

Gaussian
apodization,
usable for
q-parameter
transfer
(Table 3.1.18) I O

[
1 0

− iλa
2 π

1

]

λ : wavelength
of light

The amplitude transmission function
between I and O is
exp

(−a x2/2
)
,

x: transverse coordinate
[86Sie, p. 787]

Remark : Other treatments of the mirror see [86Sie, 98Sve, 75Ger].

Table 3.1.12. ABCD-matrices for non-symmetrical optical elements without torsion.

Effect Figure ABCD-matrix Remark

Refraction
at a sphere

Tangential
(meridional)
plane

�1

�2

n1
n2

⎡
⎢⎣

cos (θ1)
cos (θ2)

0

∆nt

r n2

n1 cos (θ2)
n2 cos (θ1)

⎤
⎥⎦

n1 sin (θ1) = n2 sin (θ2)

(Snell’s law)

∆nt =
n2 cos (θ2) − n1 cos (θ1)

cos (θ1) cos (θ2)

Sagittal
plane

n1 n2

⎡
⎣ 1 0

∆ns

r n2

n1

n2

⎤
⎦ ∆ns = n2 cos (θ2) − n1 cos (θ1)

Rowland
concave
grating
(unfolded)

Tangential
(meridional)
plane

�1
�2

Radius  of  curvature r

[
A B
C D

]
,

A =
cos (θ1)
cos (θ2)

;

B = 0 ;

C = − 2 cos (θ2)
r t cos (θ1)

;

D = A .

Grating equation (3.1.52):

sin (θ1) + sin (θ2) = m
λ

g
,

r t =
2 r cos2 (θ2)

cos (θ1) + cos (θ2)

Sagittal
plane

[
1 0

− 2
rs

1

]
rs =

2 r
cos (θ1) + cos (θ2)

,

general corrected holographical
gratings: see [81Gue]

Spherical
concave
mirror

Specialization of the
Rowland grating to
g ⇒ ∞ ,
θ1 = θ2 .
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Table 3.1.13. Distances between cardinal elements of an optical system: F , F ′ : object- and image-space
focal points, respectively; H, H ′ : object- and image-space principal points, respectively; I, O: input and
output plane, respectively. The order of points determines the signs.

Distance between
two points

A, B, C, and D
for n1 = n2

I F
D

C

F H − 1
C

OF ′ −A

C

H F ′ − 1
C

Table 3.1.14. The meaning of the vanishing of different elements of the ABCD-matrix.

Element Figure Remark

A = 0

I O

0 B
C D

x2 = B α1

Focusing of collimated light into the
image-side focal plane.

B = 0

I O

0A
C D

x2 = Ax1

The input plane is imaged to the
output plane (conjugated planes).
A : magnification of imaging;
appl.: calculation of image plane.

C = 0

I O

0
BA
D

α2 = Dα1

Transformation of collimated light
into collimated light.
D : angular magnification;
telescope (afocal system).

D = 0

I O

0
BA

C

α2 = C x1

Collimation of divergent pencil of
rays.
C : power of the element or system.

⎡
⎢⎢⎣
x2
y2
α2
β2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Axx Axy Bxx Bxy

Ayx Ayy Byx Byy

Cxx Cxy Dxx Dxy

Cyx Cyy Dyx Dyy

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
y1
α1
β1

⎤
⎥⎥⎦ or

[
r2
γ2

]
=

[
A B
C D

] [
r1
γ1

]
= S

[
r1
γ1

]
(3.1.99)

with the matrices A, B, C, D, and S given by comparison with the more detailed representations.
Identities between the matrices, characteristic for the symplectic geometry (see Sect. 3.1.6.2.6),

are: A DT − B CT = I ; A BT = B AT ; C DT = D CT , and det
∣∣∣∣A B
C D

∣∣∣∣ =
n ′

n
, where T means the
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x

y

y1

zx1

� 1

1

Fig. 3.1.35. Three-dimensional ray in the input plane I.

transposition of the matrix and I the identity matrix [86Sie, 05Hod]. The matrix S contains at
most 10 independent parameters [76Arn, 86Sie, 05Hod].

In Table 3.1.15 general ray-transfer matrices are given.

3.1.6.2.5 General astigmatic system

A general astigmatic system can be generated by two cylindrical lenses with their axes non-parallel
and non-orthogonal, separated by a distance L: SGA = R−1 Scyl,1 R SL Scyl,2 .

3.1.6.2.6 Symplectic optical system

Symplectic optical systems in the paraxial range can be described by the formalism of the symplectic
geometry [03Wal]. They can be generated by a finite number of cylindrical and spherical lenses
separated by free spaces. The mathematical formulation is connected with the matrix properties
given in Sect. 3.1.6.2.4. For theoretical foundation and practical calculations see [64Lun, p. 216],
[83Mac, 85Sud, 86Sie, 99Gao, 05Gro1, 05Hod].

3.1.6.2.7 Misalignments

The geometric optical calculations of misalignments with matrix techniques require, generally,
higher dimensional matrices [05Gro1, p. 51], for example 3 × 3-matrices [86Sie] or 4 × 4-matrices
[85Wan] for two-dimensional problems or 6 × 6-matrices for three-dimensional problems [76Arn].

Landolt-Börnstein
New Series VIII/1A1



Ref. p. 131] 3.1 Linear optics 117

Table 3.1.15. General ray-transfer matrices [99Gao, 05Hod].

Effect of the matrix Matrix

Free propagation,
index n0, length z

SL =

⎡
⎢⎢⎢⎢⎣

1 0
z

n0
0

0 1 0
z

n0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

Aligned spherical thin lens,
focal length f

Ssph =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−1
f

0 1 0

0
−1
f

0 1

⎤
⎥⎥⎥⎥⎥⎦

Aligned cylindrical thin lens

Scyl =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−1
fx

0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

Cylindrical telescope,
m and n are the magnifications
along x- and y-axis, respectively SM =

⎡
⎢⎢⎣
m 0 0 0
0 n 0 0
0 0 m−1 0
0 0 0 n−1

⎤
⎥⎥⎦

Rotation of the x-y-plane by the angle θ :
given a system matrix S, then the rotated
system matrix

Srot = R−1 (θ)S (θ = 0) R (θ)

with R−1 (θ) = R (−θ) = RT (θ)

R =

⎡
⎢⎢⎣

cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 − sin θ cos θ

⎤
⎥⎥⎦

3.1.6.3 Lens aberrations

Corrections beyond the paraxial range are required by large object-space aperture light sources like
semiconductor lasers (large vertical far-field angles) or large image-space aperture laser focusing
optics like CD-optics.

Shape factor of a lens:

q =
r2 + r1
r2 − r1

. (3.1.100)

Shape factor and spherical aberration for focusing of light:

– Minimum of spherical aberration:

r1
r2

=
n (2n− 1) − 4
n (2n+ 1)

.
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r1r1 r2 Plane

a b

h h

Fig. 3.1.36. Focusing of incident collimated light by (a) a
general lens with curvature radii r1 and r2, (b) a plano-convex
lens with shape factor q = 1.

– Refractive index n = 1.5 ⇒ r1
r2

= −1
6

⇒ q = 0.7 .

–
∣∣∣∣r1r2

∣∣∣∣ ⇒ 1
∞ ⇒ q = 1 (plano-convex lens), spherical aberration near to minimum.

In Fig. 3.1.36 the focusing of incident collimated light by (a) a general lens with curvature radii
r1 and r2 and (b) a plano-convex lens with shape factor q = 1 is shown.

In Table 3.1.16 the third-order spherical aberration and coma for a thin plano-convex lens is
given in comparison with the diffraction-limited resolution for a plane wave or Gaussian illumina-
tion.

Remark 1 : Third-order formulae for finite object distance: see [88Kle, 76Jen], more general: [80Hof, 86Haf,
96Ped, 99Bor].

Remark 2 : About further third-order aberrations as astigmatism, field curvature, image distortion: see
[76Jen, 78Dri, 80Hof, 86Haf, 88Kle, 96Ped, 99Bor].

Remark 3 : The third-order aberrations are not exactly valid for higher apertures. Example: The third-order
spherical aberration deviates for 2h/f = 1/5 by ≈ 2 % from the ray-tracing values (the limit, recommended
in [74Sle] for estimations), h/f = 3/10 : ≈ 15 % deviation [76Jen]. Therefore, the ray tracing should be
preferred for larger deviations from the paraxial case. It is the base of modern commercial optical design
programs.

Example 3.1.14. Given: a plano-convex lens after Fig. 3.1.36b with the radius of the spherical
surface r1 = 5 mm, n = 1.5, collimated light with wavelength λ = 1 µm, stop with a height
h = 1.5 mm, and a fiber with core diameter 2 r = 100 µm and numerical aperture N.A. = 0.2.
Required: a geometric-optical estimation on the hits of the core of the fiber by the rays in the
paraxial focal point and in the point of least confusion (Fig. 3.1.37). From (3.1.101)–(3.1.105):
f = 10 mm, ∆s ′

l = −262 µm, |∆s ′
t | = 39 µm, ∆s ′

lc = −210 µm, |∆s ′
tc| = 16 µm, ∆s ′

tb = 4 µm,
and ∆s ′

tg = 2.1 µm. In the paraxial focal plane as well as in the plane of least confusion, the
hits of the fiber core by rays are closer than 50 µm to the optical axis and the angles of the rays
with the optical axis are ≤ 0.15 within the fiber aperture. Therefore, all rays are accepted by a
step-index fiber. About the analog task for Gaussian beams see references in Sect. 3.1.7.5.4 and
commercial optical design programs, which show in this case, that a large part of radiation is
coupled in higher-order modes.
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Table 3.1.16. Third-order spherical aberration and coma for a thin plano-convex lens [76Jen, p. 152],
[88Kle, p. 185], [87Nau, p. 109] in comparison with the diffraction-limited resolution for a plane wave or
Gaussian illumination.

Figures Formulae

IP

LC
h

f

� s ’t
� s ’tc

� s’l

� s’lc

Fig. 3.1.37. Spherical aberration at a plano-convex
lens. IP: paraxial image plane, LC: least confusion.

Lens equation (3.1.95) with t = 0 ,
a ⇒ −∞ , r2 ⇒ −∞ , f = f ′ ,
which is modified outside Sect. 3.1.6.1:

1
f

= (n− 1)
1
r1

, (3.1.101)

∆s ′
l

f
= − n3 − 2n2 + 2

2n (n− 1)2

(
h

f

)2

, (3.1.102)

∆s ′
t = ∆s ′

l
h

f
, (3.1.103)

plane of least confusion [87Nau, 99Pau, 99Bor],
[01Iff, p. 214]:

∆s ′
lc ≈ 0.8 ∆s ′

l , (3.1.104)

∆s ′
tc ≈ 0.4 ∆s ′

t . (3.1.105)

Gaussian weights of the illumination change the geo-
metric optical position of least confusion [01Mah].

IP

h

f

�
x ’

z

a

2a

Fig. 3.1.38. Coma at a plano-convex lens.

x ′ = θ f , (3.1.106)

a

f
= −n2 − n− 1

2n (n− 1)

(
h

f

)2

θ (3.1.107)

with

θ : angle of incidence.

h

f f
� s ’tg � s ’tb

nmed

a b

Fig. 3.1.39. Diffraction-limited resolution for (a) a
Gaussian beam with waist h (1/e2-intensity level)
in the object-side focal plane, (b) a plane wave at
circular stop with radius h.

∆s ′
tg =

λ

πnmed(h/f)
, (3.1.108)

∆s ′
tb = 0.61

λ

nmed sinσ ′

≈ 0.61
λ

nmed (h/f)
(3.1.109)

with

λ : wavelength [m],
h : zonal height [m],
f : focal length [m],
nmed : refractive index of the image space.
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3.1.7 Beam propagation in optical systems

Paraxial propagation of light in a system given by its ABCD-matrix can be calculated

– for (coherent) Gaussian beams by q-parameter propagation (Sect. 3.1.7.2),
– for general field distributions by Collins integral (Sect. 3.1.7.4),
– for second-order moments of the electric field by propagation of the Wigner distribution in

Chap. 2.2 (beam characterization).

3.1.7.1 Beam classification

In Table 3.1.17 various types of beams are listed.

3.1.7.2 Gaussian beam: complex q-parameter and its
ABCD-transformation

3.1.7.2.1 Stigmatic and simple astigmatic beams

3.1.7.2.1.1 Fundamental Mode

– Stigmatic beam and rotational-symmetric system:
⇒ both longitudinal cross sections are treated equally,

– Simple astigmatic beam and elements with a symmetry plane:
⇒ two different sets of ABCD-matrices for the tangential and sagittal cut (see Table 3.1.12).

The introduction of the complex q-parameter [66Kog1, 66Kog2]

1
qx(z)

=
1

Rx(z)
− iλ

πwx(z)2
(3.1.110)

formalizes the x-part of the fundamental-mode equation (3.1.31)

U0(x, z) =
√

w0x

wx(z)
exp

{
− x2

wx(z)2
− i

kx2

2Rx(z)

}
(3.1.111)

to the simple complex shape

U0(x, z) =
1√

1 + i z
z0

exp
{

−i
kx2

qx(z)

}
. (3.1.112)

In Fig. 3.1.40 the transfer of a field distribution by an optical system given by its ABCD-matrix
is shown. In Table 3.1.18 the q-parameter transfer for stigmatic and simple astigmatic beams is
given.
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Field Field
u I uO

Input  plane Output  plane

Optical  system
characterized  by  its

- matrixA B
C D

Fig. 3.1.40. Transfer of a field distribution by an optical system
given by its ABCD-matrix.

Table 3.1.18. q-parameter transfer for stigmatic and simple astigmatic beams.

Given Propagated field

– Gaussian beam in the input plane:

u I(x, z) = exp
{

−i
kx2

2q I x

}
. (3.1.113)

– ABCD-matrix of the optical system
(see Tables 3.1.11 and 3.1.12).

– Starting point:

R I = 1/Re (1/q I) ,

w I = 1/
√

−π Im (1/q I)/λ .

– Transformation of the q-parameter:

qO x =
Aq I x +B

Cq I x +D
. (3.1.114)

– Field in the output plane:

uO(x, z) = exp
{

−i
kx2

2qO x

}
(3.1.115)

with the real parameters of the output beam [96Gro]:

– beam radius:

wO x = w I x

√(
λB

πw2
I x

)2

+
(
A+

B

R I x

)2

, (3.1.116)

– curvature radius of the wavefront:

RO x =

(
A+

B

R I x

)2

+
(

λB

πw2
I x

)2

(
A+

B

R I x

) (
C +

D

R I x

)
+D

(
λB

πw2
I x

)2 .

(3.1.117)

Example 3.1.15. Given: the waist of a Gaussian beam

u I = exp
{

− x2

w2
0

}
= exp

{
−i

kx2

2q1

}

with q1 = i z0 in comparison with (3.1.110).

Asked: free-space propagation along the distance z with the ABCD-matrix
[

1 z
0 1

]
.

Solution:

q2 =
Aq1 +B

Cq1 +D
= z + i z0

and

UO =
(
A+

B

q1

)−1/2

exp
{

−i
kx2

2q2

}
=

(
1 +

z

i z0

)−1/2

exp
{

−i
kx2

2(z + i z0)

}
.
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3.1.7.2.1.2 Higher-order Hermite-Gaussian beams in simple astigmatic beams

Treatment of the x- or y-component of Hermite-Gaussian-beams after (3.1.27): The complex q-
parameter transformation is treated as above, the fundamental mode part is given as above, the
new beam radius for the Hermite polynom of order m, Hm(

√
2 x/w Ix) is calculated from the new

q-parameter and the phase is derived from it, too [70Col].
For complex Hermite-Gaussian beams: see [86Sie].

3.1.7.2.2 General astigmatic beam

In Table 3.1.19 the Q−1-matrix transfer for general astigmatic beams is given. The matrix Q−1 is
the matrix scheme of inverses of q-parameters and no inverted matrix [96Gro].

Table 3.1.19. Q−1-matrix transfer for general astigmatic beams.

Given Propagated field

– General Gaussian beam in the input plane:

U I(r) = exp
{

−i
k

2
r Q−1

I r

}
, (3.1.118)

r ∼ (x, y) the transverse position vector
perpendicular to the propagation axis z .

– Q−1
I -matrix:

Q−1
I =

⎡
⎢⎢⎣

1
qxx

1
qxy

1
qxy

1
qyy

⎤
⎥⎥⎦ (3.1.119)

with qxx, qxy, qyy complex terms describ-
ing the general amplitude- and phase-
distribution of U I , and

r Q−1
I r =

x2

qxx
+ 2

xy

qxy
+

y2

qyy
. (3.1.120)

– S-matrix of the optical system (see Ta-
ble 3.1.15) with

S =
[

A B
C D

]

after (3.1.99).

– Transformation of the Q−1
I -matrix to its output value:

Q−1
O =

(
C + D Q−1

I

) (
A + B Q−1

I

)−1
, (3.1.121)

see [88Sim, 96Gro, 05Hod].
– Field in the output plane:

UO(r) = exp
{

−i
k

2
r Q−1

O r

}
. (3.1.122)

Example 3.1.16. Transformation of a simple astigmatic Gaussian beam (no mixing between x and y)

with a θ-rotated cylindrical lens to a general astigmatic beam: We start with Q−1
I =

[
1

qxx
0

0 1
qyy

]
.

The rotation of an x-aligned cylindrical lens, given as Scyl in Table 3.1.15, is performed by multi-
plying first Scyl with the rotation matrix R of Table 3.1.15, and then the product with the inverse
of R is:
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Srotated cyl. = R−1 Scyl R =
[

A B
C D

]

with

A =
[

1 0
0 1

]
, B =

[
0 0
0 0

]
, C =

[ − cos2 θ/fx − sin θ cos θ/fx

− sin θ cos θ/fx − sin2 θ/fx

]
, D =

[
1 0
0 1

]

and

Q−1
O =

[− cos2 θ/fx + 1/qxx − sin θ cos θ/fx

− sin θ cos θ/fx − sin2 θ/fx + 1/qyy

]
.

Therefore, the output field

uO (r) = exp
{

−i
k

2

[(
−cos2 θ

fx
+

1
qxx

)
x2 − 2

sin θ cos θ
fx

xy +
(

− sin2 θ

fx
+

1
qyy

)
y2

]}

is a general astigmatic Gaussian beam with a mixing term between the coordinates x and y.

3.1.7.3 Waist transformation

Often, the transfer of the beam waist is required for instance for focusing of laser light. Then, the
following algorithms are much more simple than the q-parameter algorithm.

3.1.7.3.1 General system (fundamental mode)

In Table 3.1.20 the waist transformation for a general system is given.

3.1.7.3.2 Thin lens (fundamental mode)

The formulae (3.1.123)–(3.1.126) are further simplified using the focal length f for the thin lens
only, see Table 3.1.21.

Remark : Discussion of equation (3.1.127):

The right-hand-side term of (3.1.127) containing z0 represents the modification introduced by the Gaussian
beam optics to the thin-lens equation ((3.1.95), t ⇒ 0) shown in Fig. 3.1.42.

In Fig. 3.1.43 the relation of the Gaussian waist transfer to the thin-lens equation of geometrical optics
for different influences of diffraction is shown.

Main modifications of the geometrical optics:

– No “image distance” is at infinity.
– For z = f (point P ) the image is at z ′ = f (transfer of the object-side focal plane to the image-side

focal plane after (3.1.130), not ⇒ ∞).
– If a target z ′-position is given, then two starting z-positions are possible.

Example 3.1.17. Given for Fig. 3.1.42: z = 1179 mm, w0 = 0.22 mm, λ = 1.06 µm; it follows z ′ = 109 mm,
w ′

0 = 0.02 mm, θ ′ = 0.96◦, and z ′
0 = 1.21 mm. The second right-hand term of (3.1.127) translates the

Gaussian waist image by 0.16 mm in comparison with the geometrical optical image towards the lens.
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Table 3.1.20. Waist transformation for a general system.

Given Solution

– ABCD-matrix of the system,
– waist w0,
– wavelength λ , including z0 = πw2

0/λ ,
– distance z to the input plane of the system.

Optical  system
characterized  by  its

A   B
C   D

� � ’

z 0

w0

z z ’

z ’
0

w0’
z

- matrix

Fig. 3.1.41. Waist transformation by an optical
system.

Asked : Waist w ′
0 and distance z ′ to the output plane

of the system including z ′
0 .

z ′ =

⎧⎪⎨
⎪⎩

− (Az +B)(Cz +D) −ACz2
0

C2z2
0 + (Cz +D)2

for C �= 0 ,

− Az +B
D for C = 0 ,

(3.1.123)

z ′
0 = z0

[
Cz ′ +A

Cz +D

]
=

z0
C2z2

0 + (Cz +D)2
,

(3.1.124)

w ′
0 =

√
λ z ′

0

π
, (3.1.125)

Θ ′
0 =

√
λ

π z ′
0
. (3.1.126)

The beam parameter product is invariant:

w ′
0Θ

′
0 = w0Θ0 = λ/π .

Table 3.1.21. Waist transformation by a thin lens.

Given Solution

– Focal length f of the lens,
– wavelength λ ,
– waist w0 , including z0 = πw2

0/λ ,
– distance z to the input plane of the system.

w0

z z ’

w0’

f f

Image  point
of  paraxial  optics

Fig. 3.1.42. Waist transformation by a thin lens.

Asked : Waist w ′
0 and distance z ′ to the output plane

of the system and z ′
0 .

1
z

+
1
z ′ =

1
f

+
z2
0

z [z2 + z2
0 − zf ]

, (3.1.127)

see Fig. 3.1.42,

w ′
0 = w0

f√
z2
0 + (z − f)2

, (3.1.128)

z ′
0 =

πw ′ 2
0

λ
. (3.1.129)

If z = f , then

z ′ = f and w′
0 =

w0f

z0
. (3.1.130)

Landolt-Börnstein
New Series VIII/1A1



126 3.1.7 Beam propagation in optical systems [Ref. p. 131

4

3

2

1

0

-1

-2

-3
-3 -2 -1 0 1 2 3 4

z f/

z
f

' /

Geometrical  optics

Geometrical  optics

z f0 / = 3
z f0 / = 1
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z f0 / = 0.2

P

Fig. 3.1.43. Relation of the Gaussian waist transfer (full
lines) to the thin-lens equation (dashed) of geometrical
optics for different influences of diffraction (wavelength λ
respectively z0).

3.1.7.4 Collins integral

For Fresnel’s approximation of diffraction in paraxial systems see [68Goo, 71Col, 78Loh, 94Roe].
It was generalized to the propagation of field distributions in ABCD-described systems by [70Col,
76Arn, 05Gro2, 05Hod].

3.1.7.4.1 Two-dimensional propagation

In Table 3.1.22 the propagation in rotational symmetric systems and simple astigmatic systems is
given.

Table 3.1.22. Propagation in rotational symmetric systems and simple astigmatic systems.

Given Solution

– ABCD-matrix of the optical
system (see Tables 3.1.11
and 3.1.12),

– field distribution in the in-
put plane U I(x),

– path length along the opti-
cal axis L.

Field UO(x2) in the output plane (Collins integral):

UO(x2) =

√
i
λB

e−ikL

×
∞∫

−∞

dx1 U I(x1) exp
{

−i
k

2B
[
Ax2

1 − 2x1x2 +Dx2
2
]}

. (3.1.131)

Example 3.1.18. The waist of a Gaussian beam is given with U I(x1) = exp (−x2
1/w

2
I) in the input

plane. The system consists of a thin lens with the focal length f followed by a free-space propagation
by distance z. The ABCD-matrix is calculated from Fig. 3.1.34 and Table 3.1.11:

[
A B
C D

]
=

[
1 − z/f z
−1/f 1

]
.

UO(x2) =

√
i
λ z

e−ikL

∞∫
−∞

dx1 exp
(

− x2
1

w2
I

)
exp

{
−i

k

2z

[(
1 − z

f

)
x2

1 − 2x1x2 + x2
2

]}
.
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The result is an output Gaussian intensity distribution with the waist radius

wO =
w I√

1 +
(

π w2
I

λ f

)2
,

the waist position z = zwaist = f

(
π wO w I

λ f

)2

, and zO = πw2
O/λ .

For inclusion of displacements and misalignments in Collins Integral see [96Tov].

3.1.7.4.2 Three-dimensional propagation

In Table 3.1.23 the propagation in in general astigmatic systems is given.

Table 3.1.23. Propagation in general astigmatic systems.

Given Solution

– S : matrix of the optical sys-
tem, see Table 3.1.15 and
(3.1.99) with

S =
[

A B
C D

]
,

– field distribution in the input
plane: U I(r1) , where r1 is the
position vector in the input
plane.

Field UO(r2) in the output plane (Collins integral):

UO(r2) =
−i exp(−i kL)
λ

√
det B

∫ ∫
d r1U I (r1)

× exp
{

−i
k

2
[
r1 B−1 A r1 − 2 r1 B−1 r2 + r2 D B−1 r2

]}
(3.1.132)

with det B the determinant and B−1 the inverse of the matrix B .
Examples in [70Col, 05Gro2, 05Hod].

3.1.7.5 Gaussian beams in optical systems with stops, aberrations, and
waveguide coupling

3.1.7.5.1 Field distributions in the waist region of Gaussian beams including stops
and wave aberrations by optical system

Classical cases of optical system design are given in [99Bor, 80Hof, 86Haf]. [82Wag, 95Gae] use the
calculation of the field distribution in the image by a stop and wave aberrations in the exit pupil.

The analog is modeled for Gaussian beams on the exit pupil in the following references:

– focused Gaussian beams with aberrations and stops: see [69Cam, 71Sch],
– obscuration of a rotationally symmetrical Gaussian beam including longitudinal focal shift: see

[82Car, 86Sta],
– extended systematic discussion of diffraction with stops, obscuration, and aberrations: see

[86Mah, 01Mah],
– spherical aberration: see [98Pu].
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3.1.7.5.2 Mode matching for beam coupling into waveguides

The calculation of the excitation coefficient of an eigenmode in a waveguide (output mode) by the
incident mode (input mode) at the surface of the waveguide is described in Table 3.1.24.

This task occurs

– if a laser beam is formed by an optical system and coupled afterwards into an optical fiber,
– if a laser beam of a master oscillator is to be coupled into a power amplifier,
– in the case of waveguide-waveguide coupling especially fiber-fiber coupling or coupling between

semiconductor lasers.

Solutions are available in commercial optical design programs.

Table 3.1.24. Definitions for waveguide coupling.

Given Solution

– Incident beam (emitted by a laser
(and) transformed by an optical system):
Einput (x, y) .

– Waveguide with an eigenmode field the
coupling to which is asked: Eoutput (x, y) .

x

z
E xinput ( )

E xoutput ( )

Waveguide

Plane  of  mode
matching

Fig. 3.1.44. Mode matching.

Asked: Part of power transmitted into the
waveguide (fiber, laser, integrated optical
waveguide).

Coupling coefficient (power relation):

η =
O IO O∗

IO

N INO
. (3.1.133)

Overlap integral :

O IO =

∞∫
−∞

dx

∞∫
−∞

d y E I(x, y)E∗
O(x, y) . (3.1.134)

Normalization:

N I =

∞∫
−∞

dx

∞∫
−∞

d y E I(x, y)E∗
I(x, y) . (3.1.135)

Normalization:

NO =

∞∫
−∞

dx

∞∫
−∞

d y EO(x, y)E∗
O(x, y) . (3.1.136)

Effective antireflection layers are assumed to be on the
waveguide.

3.1.7.5.3 Free-space coupling of Gaussian modes

For the case that a Gaussian output waist of a source waveguide and a Gaussian input waist of
a receiver waveguide are separated by air, the coupling of both waveguides is generally treated in
[64Kog]. Higher-order modes are also included. The approximation of small misalignments (offset
and tilt) is given in Table 3.1.25, large offsets and tilts are treated in [64Kog, 91Wu].
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Table 3.1.25. Coupling of waveguides .

Given Solution

– Source WG1 (laser, waveguide) which
emits a Hermite-Gaussian beam,

– receiver WG2 (laser, waveguide) which can
accept Hermite-Gaussian eigenmodes:

R O

wO
w0O

� x
WG2WG1

R I

w0I

w I

Plane  of  coupling

	

Fig. 3.1.45. Coupling of Gaussian beams.
w 0 I and w 0 O: beam waist radii for WG1 and
WG2, respectively; w I and wO : beam radii
in the coupling plane; R I and RO: curvature
radii of the beam wavefronts in the coupling
plane; k = 2 π/λ ; λ : the wavelength of light;
∆x : the lateral offset between the waveguides;
ψ : the tilt of the axis.

Asked : The efficiency of the excitation of
the modes in WG2, here the fundamental
mode 00.

η 00−00 =
4(

w I

wO
+
wO

w I

)2

+
(πw I wO

λ

)2
(

1
R I

− 1
RO

)2

− 8 (w 0 I w 0 O ∆x)2

(w2
0 I + w2

0 O)3
− k2 ψ2

2
(
w2

I + w2
O
)
.

(3.1.137)

η 00−00 = 1 for ∆x = ψ = 0 and the exact beam radii
and curvature fitting w I = wO and R I = RO , otherwise
η 00−00 < 1 .

Equation (3.1.137) contains the approximations:

– Gaussian beams (paraxial optics).
– Right-hand side of (3.1.137): 2nd and 3rd term � 1st

term.

About coupling coefficients for higher-order modes and
without the approximation: see [64Kog]; on couplings with
Hermite-Gaussian modes and Laguerre-Gaussian modes:
see [94Kri, 80Gra].

3.1.7.5.4 Laser fiber coupling

Methods of treatment :

– Launching of fundamental-mode laser radiation into the fundamental mode of a single-mode
fiber:

– Calculation of the overlap integral (3.1.134) for a Gaussian mode and the mode field for
different fiber cross sections: see [88Neu, p. 179], [80Gra].

– Approximation of the exact fiber fundamental modes by a Gaussian field distribution (see
[88Neu, pp. 68]) and the application of the waist transformation from laser via an optical
system with the methods of Sects. 3.1.7.2–3.1.7.4 and calculation of the overlap integral
equation (3.1.134) or mode-coupling equation (3.1.137) [91Wu].

– Launching of fundamental-mode laser radiation or multimode laser radiation or incoherent light
sources into multimode fibers:

– Overlap integral techniques in the framework of partial coherence theory: see [87Hil].
– Geometric optical methods (ray tracing and phase space techniques): see [90Gec, 95Sny,

91Gra, 91Wu, 01Iff].
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– Inclusion of the aberrations and stops of the optical system used:

– Monomodal and partial coherent case: calculation of the wave aberrations of the optical
system by ray-tracing methods and inclusion of these aberrations into the overlap integral:
see [82Wag, 95Gae, 89Hil, 99Gue].

– Ray-tracing methods are adequate for stops and aberrations, but not reliable for a few mode
waveguides: rough design [01Iff]: the spot diagram of the ray tracing in the fiber facet should
be within the core area and the angles of incidence should be smaller then the aperture angle
[88Neu] of the fiber.
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