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2.2 Beam characterization
B. Eppich

2.2.1 Introduction

The success of almost any laser application depends mainly on the power density distributions in a
certain area of the laser beam, usually the focal region. It is the aim of laser beam characterization
to describe and predict the profiles a beam takes on under free-space propagation or behind optical
systems.

The attributes of a power density distribution in a plane transverse to the direction of prop-
agation can be divided into size and shape. Under free-space propagation the size of the power
density profile is always changing with the distance from the source, whereas the shape of the
profile may vary or not. Examples for shape-invariant laser beams are the well-known Gaussian,
Laguerre-Gaussian, Hermite–Gaussian, and Gauss-Schell model beams.

A complete characterization of laser beams would allow the prediction of power density distri-
butions, including size and shape, behind arbitrary optical systems as far as they are sufficiently
known. Admittedly for such detailed characterization a huge amount of data and sophisticated
measurement procedures are necessary. But for many applications the knowledge and prediction of
the transverse extent of the laser beam profile might be sufficient. Restriction to nearly aberration-
free optical systems then enables beam characterization by only ten or less parameters.

In the following the validity of the paraxial approximation will be presumed. In practical this
means that the full divergence angle of the beam should not exceed 30 degrees. Furthermore,
any polarization effects are neglected. Beam characterization methods based on the considerations
presented in this chapter have recently become an international standard, published as ISO 11146
[99ISO].

2.2.2 The Wigner distribution

A complete description of partially coherent radiation fields (within the restrictions stated above)
can be given by a two-point-correlation integral of the field in a transverse plane at location z
[99Bor]:

Γ̃ (r1, r2, z, τ) =
1
T

t0+T∫
t0

E ∗ (r1, z, t) E (r2, z, t+ τ) dt , (2.2.1)

where E (r, z, t) is the electrical field, z the coordinate along the direction of propagation,
r = (x, y)T a transverse spatial vector (see Fig. 2.2.1), and T the integration time which shall
be large enough to ensure that the integration results are independent of the starting time t0. The
temporal Fourier transform of this correlation integral is known as the cross-spectral density or
the (mutual) power spectrum:
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Fig. 2.2.1. Spatial coordinates r1 and r2 of a pair of points in a
plane transverse to the direction of propagation.
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Fig. 2.2.2. The phase space coordinates of the Wigner distribu-
tion. x and y are spatial transverse coordinates, u and v are the
corresponding angular coordinates.

Γ (r1, r2, z, ω) =
∫
Γ̃ (r1, r2, z, τ) eiωτ d τ . (2.2.2)

Since laser beams in general can be considered as quasi-monochromatic, the frequency depen-
dency will be dropped in the following:

Γ (r1, r2, z, ω0) → Γ (r1, r2, z) . (2.2.3)

From the cross-spectral density in a transverse plane at location z the power density in that
plane can easily be obtained by

I (r, z) = Γ (r, r, z) . (2.2.4)

Given the cross-spectral density at an entry plane the further propagation through arbitrary,
but well-defined optical systems can be calculated by several methods and hence the power density
distribution in the output plane of the systems predicted [99Bor].

The Wigner distribution W (r, q, z) of partially coherent beams is defined as the Fourier trans-
form of the cross spectral density with respect to the separation vector s [78Bas]:

W (r, q, z) =
∫
Γ
(
r + 1

2 s, r − 1
2 s, z

)
e−ikq s ds . (2.2.5)

The Wigner distribution contains the same information as the cross-spectral density, but in a
different, more descriptive manner. Considering q = (u, v)T as an angular vector with respect to
the z-axis (Fig. 2.2.2), the Wigner distribution gives the part (amount) of the radiation power
which passes the plane at z through the point r in the direction given by q. Within this picture
the Wigner distribution might be considered as a generalization of the geometric optical radiance,
although this analogy is limited. E.g. the Wigner distribution may take on negative values.
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The power density distribution in a transverse plane is obtained by integration over the angles
of direction,

I (r, z) =
∫
W (r, q, z) dq , (2.2.6)

and the far-field power density distribution by integration over the spatial coordinates,

IF (q) =
∫
W (r, q, z) dr . (2.2.7)

The Wigner distribution represents the beam in a transverse plane at location z. As the beam
propagates in free space or through an optical system the Wigner distribution changes. This is
reflected in the z-dependency of the Wigner distribution in the equations above. In the following
equations this z-dependency will be dropped wherever appropriate.

The propagation of the Wigner distribution through aberration-free first-order optical sys-
tems (combinations of parabolic elements and free-space propagation) is very similar to that of
geometric-optical rays. Such rays are specified by their position r and direction q. After prop-
agation through an aberration-free optical system position and direction will change according
to (

rout
qout

)
= S ·

(
rin
qin

)
, (2.2.8)

where S is a 4× 4-matrix representing the optical system, the system matrix (see Chap. 3.1). Con-
sidering the Wigner distribution as a density distribution of geometric optical rays, its propagation
law is given by ray tracing [78Bas]:

Wout (rout, qout) = Win (rin, qin) with
(

rin
qin

)
= S−1 ·

(
rout
qout

)
. (2.2.9)

2.2.3 The second-order moments of the Wigner distribution

From the Wigner distribution smaller sets of data can be derived, which can be associated to
certain physical properties of the beams. These sets of data are the so-called moments of the
Wigner distribution [86Bas]:

〈
xky�umvn

〉
=

∫
W (x, y, u, v) xk y� um vn dxdy du dv∫

W (x, y, u, v) dxdy du dv
with k , � ,m , n ≥ 0 , (2.2.10)

where

W (x, y, u, v) = W (r, q) with r = (x, y)T , q = (u, v)T . (2.2.11)

The order of the moments is defined by the sum of the exponents, k + � + m + n. There are
four first-order moments, 〈x〉 , 〈y〉 , 〈u〉 , and 〈v〉 , which together specify position and direction of
propagation of the beam profile’s centroids within the given coordinate system.

The centered moments of the Wigner distribution are defined to be independent of the coordi-
nate system:〈

xky�umvn
〉
c =∫

W (x, y, u, v) (x− 〈x〉)k (y − 〈y〉)� (u− 〈u〉)m (v − 〈v〉)n dxdy du dv∫
W (x, y, u, v) dxdy du dv

. (2.2.12)
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There are ten centered second-order moments, specified by k + �+m+ n = 2. Three pure spatial
moments,

〈
x2

〉
c ,

〈
y2

〉
c , 〈xy〉c , three pure angular moments,

〈
u2

〉
c ,

〈
v2

〉
c , 〈uv〉c , and four mixed

moments, 〈xu〉c , 〈y v〉c , 〈x v〉c , and 〈y u〉c . The centered second-order moments are associated
to the beam extents in the near and far field and to the propagation of beam widths as will be
discussed in the next section.

Only the three pure spatial moments can directly be measured since they can be obtained from
the power density distribution in the observation plane by

〈
xky�

〉
c =

1
P

∫
I (x, y) (x− 〈x〉)k (y − 〈y〉)� dxdy (2.2.13)

with

〈x〉 =
1
P

∫
I (x, y) xdxdy , (2.2.14)

〈y〉 =
1
P

∫
I (x, y) y dxdy , (2.2.15)

and

P =
∫
I (x, y) dxdy . (2.2.16)

As the beam propagates through optical systems the Wigner distribution changes and conse-
quently the moments change, too. A simple propagation law for the centered second-order moments
through aberration-free optical systems can be derived from the propagation law of the Wigner
distribution (2.2.9). Combining the ten moments in a symmetric 4× 4-matrix, the variance matrix

P =

⎛
⎜⎜⎝

〈
x2

〉
c 〈xy〉c 〈xu〉c 〈xv〉c

〈xy〉c
〈
y2

〉
c 〈yu〉c 〈yv〉c

〈xu〉c 〈yu〉c
〈
u2

〉
c 〈uv〉c

〈xv〉c 〈yv〉c 〈uv〉c
〈
v2

〉
c

⎞
⎟⎟⎠ , (2.2.17)

delivers the propagation law

Pout = S · Pin · ST , (2.2.18)

where Pin and Pout are the variance matrices in the input and output planes of the optical system,
respectively, and S is the system matrix.

2.2.4 The second-order moments and related physical
properties

In this section the relations between the centered second-order moments and some more physical
properties are discussed.

2.2.4.1 Near field

The three spatial-centered second-order moments are related to the spatial extent of the power
density in the reference plane as can be derived from (2.2.13). For example, the centered second-
order moments

〈
x2

〉
c , defined by
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〈
x2〉

c =
1
P

∫
I (x, y) (x− 〈x〉)2 dxdy , (2.2.19)

can be considered as the intensity-weighted average of the squared distances in x-direction of all
points in the plane from the beam-profile center. Obviously, this quantity increases with increasing
beam extent in x-direction. A beam width in x-direction can be defined as

dx = 4
√

〈x2〉c . (2.2.20)

The factor of 4 in this equation has been chosen by convention to adapt this beam-width definition
to the former 1/e2-definition for the beam radius of Gaussian beams. For an aligned elliptical
Gaussian beam profile,

I (x, y) ∝ e
−2 x

2

w2
x · e

−2 y
2

w2
y , (2.2.21)

where wx and wy are the 1/e2-beam radii in x- and y-direction, respectively, the relation

dx = 2wx

holds. Similar, a beam width in y-direction can be defined as

dy = 4
√

〈y2〉c . (2.2.22)

The beam width along an arbitrary azimuthal direction enclosing an angle of α with the x-axis
can be derived from a rotation of the coordinate system delivering

dα = 4
√

〈x2〉c cos2 α+ 2 〈xy〉c sinα cosα+ 〈y2〉c sin2 α . (2.2.23)

In general, the beam width considered as a function of the azimuthal direction α has unique
maximum and minimum. The related directions are orthogonal to each other and define the prin-
cipal axes of the beam. The signed angle between the x-axis and that principal axis which is closer
to the x-axis is given by

ϕ =
1
2

atan
(

2 〈xy〉c
〈x2〉c − 〈y2〉c

)
. (2.2.24)

The beam width along that principal axis which is closer to the x-axis is determined by

d ′
x = 2

√
2
{(〈

x2〉
c +

〈
y2〉

c

)
+ ε

[(〈
x2〉

c − 〈
y2〉

c

)2
+ 4 〈xy〉2c

] 1
2
} 1

2

(2.2.25)

with

ε = sgn
(〈
x2〉

c − 〈
y2〉

c

)
. (2.2.26)

Correspondingly, the beam width along the principal axis closer to the y-axis is given by

d ′
y = 2

√
2
{(〈

x2〉
c +

〈
y2〉

c

) − ε
[(〈

x2〉
c − 〈

y2〉
c

)2
+ 4 〈xy〉2c

] 1
2
} 1

2

. (2.2.27)

Hence, the three spatial-centered second-order moments define the size and orientation of the
so-called variance ellipse as the representation of a beam profile’s extent (Fig. 2.2.3).

Beam profiles having approximately equal beam widths in both principal planes, d ′
x ≈ d ′

y , may
be considered as circular and a beam diameter may be defined by

d = 2
√

2
√

〈x2〉 + 〈y2〉 . (2.2.28)

Sometimes this is an useful definition even for non-circular beam profiles, denoted then as “gener-
alized beam diameter”.
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Fig. 2.2.3. Widths and variance ellipse of a power density profile. Left: widths dx and dy along the
coordinate axes, middle: width dα along an arbitrary direction, right: widths d ′

x and d ′
y along the principal

axes.

2.2.4.2 Far field

The three angular-centered second-order moments are related to the beam-profile extent in the
far field, far away from the reference plane, or in the focal plane of a focusing lens. From the
propagation law of the second-order moments, (2.2.18), the dependency of the spatial moments on
the propagation distance z from the reference plane can be derived:〈

x2〉
c (z) =

〈
x2〉

c,0 + 2 z 〈xu〉c,0 + z2 〈
u2〉

c,0 ,

〈xy〉c (z) = 〈xy〉c,0 + z
(
〈xv〉c,0 + 〈yu〉c,0

)
+ z2 〈uv〉c,0 , (2.2.29)〈

y2〉
c (z) =

〈
y2〉

c,0 + 2 z 〈yv〉c,0 + z2 〈
v2〉

c,0 .

For large distances z the spatial moments depend only on the angular moments in the reference
plane:〈

x2〉
c (z) ≈ z2 〈

u2〉 ,
〈xy〉c (z) ≈ z2 〈uv〉 , (2.2.30)〈
y2〉

c (z) ≈ z2 〈
v2〉 .

The azimuthal angle ϕF of that principal axis in the far field, which is closer to the x-axis is then
obtained by

ϕF = lim
z→∞

1
2

atan
(

2 〈xy〉c (z)
〈x2〉c (z) − 〈y2〉c (z)

)
=

1
2

atan
(

2 〈uv〉c
〈u2〉c − 〈v2〉c

)
, (2.2.31)

and the (full) divergence angles along the principal axes of the far field might be defined as

θ ′
x = lim

z→∞
d ′

x (z)
z

= 2
√

2
{(〈

u2〉
c +

〈
v2〉

c

)
+ η

[(〈
u2〉

c − 〈
v2〉

c

)2
+ 4 〈uv〉2c

] 1
2
} 1

2

, (2.2.32)

θ ′
y = lim

z→∞
d ′

y (z)
z

= 2
√

2
{(〈

u2〉
c +

〈
v2〉

c

) − η
[(〈

u2〉
c − 〈

v2〉
c

)2
+ 4 〈uv〉2c

] 1
2
} 1

2

(2.2.33)

with

η = sgn
(〈
x2〉

c − 〈
y2〉

c

)
. (2.2.34)

The generalized beam divergence angle might be defined as

θ = 2
√

2
√

〈u2〉c + 〈v2〉c . (2.2.35)

The azimuthal orientation of the far field may differ from the orientation of the near field.
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2.2.4.3 Phase paraboloid and twist

The four mixed moments 〈xu〉c , 〈xv〉c , 〈yu〉c , and 〈yv〉c are closely related to the phase properties
of the beam in the reference plane. Together with the three spatial moments they determine the
radii of curvature and azimuthal orientation of the best-fitting phase paraboloid. Although the
phase properties of partially coherent beams might be quite complicated, it is always possible to
find a best-fitting phase function being quadratic (bilinear) in x and y:

Φ (x, y) = k
(
a x2 + 2 b x y + c y2) . (2.2.36)

The best-fitting parameters a, b, c are defined by minimizing the generalized divergence angle,
(2.2.35), if a phase function according to (2.2.36) would be subtracted from the actual phase
distribution in the reference plane (e.g. by introducing a cylindrical lens) resulting in

a =

〈
y2

〉 〈xu〉 (〈x2
〉

+
〈
y2

〉) − 〈xy〉2 (〈xu〉 − 〈yv〉) − 〈xy〉 〈y2
〉
(〈xv〉 + 〈yu〉)

(〈x2〉 + 〈y2〉)
(
〈x2〉 〈y2〉 − 〈xy〉2

) , (2.2.37)

b =

〈
x2

〉 〈
y2

〉
(〈xv〉 + 〈yu〉) − 〈xy〉 (〈x2

〉 〈yv〉 +
〈
y2

〉 〈xu〉)
(〈x2〉 + 〈y2〉)

(
〈x2〉 〈y2〉 − 〈xy〉2

) , (2.2.38)

c =

〈
x2

〉 〈yv〉 (〈x2
〉

+
〈
y2

〉)
+ 〈xy〉2 (〈xu〉 − 〈yv〉) − 〈xy〉 〈x2

〉
(〈xv〉 + 〈yu〉)

(〈x2〉 + 〈y2〉)
(
〈x2〉 〈y2〉 − 〈xy〉2

) . (2.2.39)

A phase distribution as given in (2.2.36) can be considered as a rotated phase paraboloid, with

ϕP =
1
2

atan
(

2 b
a− c

)
(2.2.40)

as the signed angle between the x-axis and that principal axis of the phase paraboloid, which is
closer to the x-axis, and with

R ′
x =

2

(a+ c) + µ

√
(a− c)2 + 4 b2

(2.2.41)

and

R ′
y =

2

(a+ c) − µ

√
(a− c)2 + 4 b2

(2.2.42)

with

µ = sgn (a− c) (2.2.43)

as the radii of curvature along that principal axis of the phase paraboloid, which is closer to the
x- and y-axis, respectively. The radii of curvature R ′

x and R ′
x independently may be positive or

negative or infinite, the later indicating a plane phase front along that azimuthal direction. The
azimuthal orientation of the phase paraboloid’s principal axes may differ from the orientation of
the near field and/or far field.

If the radii of phase curvature along both principal axes are approximately equal, R ′
x ≈ R ′

y , a
generalized phase curvature of the best-fitting rotational symmetric phase paraboloid is defined by

R =

〈
x2

〉
c +

〈
y2

〉
c

〈xu〉c + 〈yv〉c
. (2.2.44)
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Another phase-related parameter is the so-called twist, defined as

tw = 〈xv〉 − 〈yu〉 . (2.2.45)

The twist parameter is proportional to the orbital angular momentum transferred by the beam
[93Sim].

2.2.4.4 Invariants

From the ten centered second-order moments two basic quantities can be derived, that are invariant
under propagation through aberration-free first-order optics [03Nem].

The effective beam propagation ratio is defined as

M2
eff =

4π

λ
(det (P))

1
4 ≥ 1 (2.2.46)

and can be considered as a measure of the focusability of a beam. The lower limit holds only for
coherent Gaussian beams.

The intrinsic astigmatism a, given by

a =
8π2

λ2

[ (〈
x2〉

c

〈
u2〉

c − 〈xu〉2c
)

+
(〈
y2〉

c

〈
v2〉

c − 〈yv〉2c
)

+2
(

〈xy〉c 〈uv〉c − 〈xv〉c 〈yu〉c
)]

−
(
M2

eff

)2
≥ 0 , (2.2.47)

is related to the visible and hidden astigmatism of the beam (see below).

2.2.4.5 Propagation of beam widths and beam propagation ratios

Under free-space propagation any directional beam width dα, as well as the generalized beam
diameter d, obeys an hyperbolic propagation law:

dα (z) = d0,α

√
1 +

(
z − z0,α

zR,α

)2

=
√
d2
0,α + θ2α (z − z0,α)2 , (2.2.48)

where z0,α is the z-position of the smallest width, the waist position, d0,α is the waist width, θα

the divergence angle, and zR,α the Rayleigh length, i.e. the distance from the waist position, where
the width has grown by factor of

√
2. For the width along the x-direction, α = 0 , see Fig. 2.2.4,

the parameters can be obtained by

z0 = −〈xu〉c
〈u2〉c

, (2.2.49)

d0 = 4

√
〈x2〉c − 〈xu〉2c

〈u2〉c
, (2.2.50)

and

zR =

√
〈x2〉c
〈u2〉c

− 〈xu〉2c
〈u2〉2c

. (2.2.51)
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x

z0 z

zR

d0

�

Fig. 2.2.4. Free-space propagation of beam widths
with the beam waist position z0, the beam waist
width d0, the Rayleigh length zR, and the full di-
vergence angle θ.

For other azimuthal directions α the same equations apply with the following substitutions:〈
x2〉

c → 〈
x2〉

c cos2 α+ 2 〈xy〉c cosα sinα+
〈
y2〉

c sin2 α ,

〈xu〉c → 〈xu〉c cos2 α+ 2 (〈xv〉c + 〈yu〉c) cosα sinα+ 〈yv〉c sin2 α , (2.2.52)〈
u2〉

c → 〈
u2〉

c cos2 α+ 2 〈uv〉c cosα sinα+
〈
v2〉

c sin2 α .

For the generalized diameter d the propagation parameters are obtained by

z0 = −〈xu〉c + 〈yv〉c
〈u2〉c + 〈v2〉c

, (2.2.53)

d0 = 2
√

2

√
(〈x2〉c + 〈y2〉c) − (〈xu〉c + 〈yv〉c)2

〈u2〉c + 〈v2〉c
, (2.2.54)

and

zR =

√
〈x2〉c + 〈y2〉c
〈u2〉c + 〈v2〉c

−
( 〈xu〉c + 〈yv〉c

〈u2〉c + 〈v2〉c

)2

. (2.2.55)

It should be noted that beam widths along the principal axes, d ′
x and d ′

y, do not obey the hyperbolic
propagation law in the case of a general astigmatic beam with rotating variance ellipse (see next
section).

The product of the (directional) beam waist diameter d, dα and the corresponding far-field
divergence angle θ, θα is called the beam parameter product. Due to diffraction the beam parameter
product has a lower limit given by

d0 · θ =
d2
0

zR
≥ 4

λ

π
, d0,α · θα =

d2
0,α

zR,α
≥ 4

λ

π
. (2.2.56)

Normalization to this lower limit delivers the so-called beam parameter ratios

M2 =
π

λ

d0 · θ
4

, M2
α =

π

λ

d0,α · θα

4
. (2.2.57)

The beam parameter ratios M2 and M2
α are invariant in stigmatic aberration-free first-order optical

systems (combinations of perfect spherical lenses). In contrast to the effective beam parameter ratio
M2

eff , they may change under propagation through cylindrical lenses.

2.2.5 Beam classification

Lasers beams can be classified according to their propagation behavior. The classification is based
on the discrimination between circular and non-circular power density profiles and the azimuthal
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orientation of the non-circular profiles. A beam profile is considered circular if the beam widths
along both principal axes are approximately equal, or, in practice, if

min
(
d ′

x, d
′
y

)
max

(
d ′

x, d
′
y

) > 0.87 . (2.2.58)

In this sense a homogeneous profile with square footprint is regarded circular, see Fig. 2.2.5.

Fig. 2.2.5. Within the concept of second-order-moment beam char-
acterization a square top-hat profile is considered circular: Its width
is independent of the azimuthal direction.

2.2.5.1 Stigmatic beams

A laser beam is considered stigmatic if all its profiles under free-space propagation are circular and
if all non-circular profiles behind an arbitrary cylindrical lens, inserted somewhere in the beam,
have the same azimuthal orientation as the lens. The system matrix Pst of a perfectly stigmatic
beam has only three independent parameters:

Pst =

⎛
⎜⎜⎝

〈
x2

〉
c 0 〈xu〉c 0

0
〈
x2

〉
c 0 〈xu〉c

〈xu〉c 0
〈
u2

〉
c 0

0 〈xu〉c 0
〈
u2

〉
c

⎞
⎟⎟⎠ . (2.2.59)

Physical parameters of a stigmatic beam are the beam diameter in the reference plane

d = 4
√

〈x2〉c (2.2.60)

and the full divergence angle

θ = 4
√

〈u2〉 . (2.2.61)

Since the properties of a stigmatic beam are independent of the azimuthal direction, it has a unique
waist position

z0 = −〈xu〉c
〈u2〉c

(2.2.62)

with a waist diameter of
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d0 = 4

√
〈x2〉c − 〈xu〉2c

〈u2〉c
. (2.2.63)

The Rayleigh length zR is the distance from the waist position where the diameter has grown by
a factor of

√
2, given by

zR =

√
〈x2〉c
〈u2〉c

− 〈xu〉2c
〈u2〉2c

. (2.2.64)

Finally, the phase paraboloid is of rotational symmetry with the radius of curvature being

R =

〈
x2

〉
c

〈xu〉c
. (2.2.65)

2.2.5.2 Simple astigmatic beams

A laser beam is classified as simple astigmatic if at least some of the power density profiles the beam
takes on under free-space propagation are non-circular, but all non-circular profiles have the same
azimuthal orientation. In practice, the orientations of two non-circular beam profiles are regarded
as equal, if the azimuthal angles differ by less than 10 degrees. A simple astigmatic beam whose
principal axes are parallel to the x- and y-axis is called aligned simple astigmatic. The variance
matrix Pasa of a perfect aligned simple astigmatic beam has six independent parameters:

Pasa =

⎛
⎜⎜⎝

〈
x2

〉
c 0 〈xu〉c 0

0
〈
y2

〉
c 0 〈yv〉c

〈xu〉c 0
〈
u2

〉
c 0

0 〈yv〉c 0
〈
v2

〉
c

⎞
⎟⎟⎠ . (2.2.66)

All the physical parameters given for stigmatic beams can be assigned separately for each principal
axis of a simple astigmatic beam. The diameters in x- and y-direction are

dx = 4
√

〈x2〉c , dy = 4
√

〈y2〉c (2.2.67)

and the according full divergence angle

θx = 4
√

〈u2〉 , θy = 4
√

〈v2〉 . (2.2.68)

Aligned simple astigmatic beams have in general two different waist positions for each principal
axis:

z0,x = −〈xu〉c
〈u2〉c

, z0,y = −〈yv〉c
〈v2〉c

(2.2.69)

with the associated waist diameters

d0,x = 4

√
〈x2〉c − 〈xu〉2c

〈u2〉c
, d0,y = 4

√
〈y2〉c − 〈yv〉2c

〈v2〉c
. (2.2.70)

Similarly, two Rayleigh lengths are defined by

zR,x =

√
〈x2〉c
〈u2〉c

− 〈xu〉2c
〈u2〉2c

, zR,y =

√
〈y2〉c
〈v2〉c

− 〈yv〉2c
〈v2〉2c

, (2.2.71)
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and the radii of phase curvature are

Rx =

〈
x2

〉
c

〈xu〉c
, Ry =

〈
y2

〉
c

〈yv〉c
. (2.2.72)

The propagation laws for the beam diameters along both principal axes are:

dx (z) = d0,x

√
1 +

(
z − z0,x

zR,x

)2

=
√
d2
0,x + θ2x (z − z0,x)2 (2.2.73)

and

dy (z) = d0,y

√
1 +

(
z − z0,y

zR,y

)2

=
√
d2
0,y + θ2y (z − z0,y)2 . (2.2.74)

For non-aligned simple astigmatic beams similar relations hold.

2.2.5.3 General astigmatic beams

All other beams are classified as general astigmatic. Usually all ten second-order moments are
necessary to describe a general astigmatic beam.

2.2.5.4 Pseudo-symmetric beams

Pseudo-symmetric beams are general astigmatic but “look like” stigmatic or simple astigmatic
under free-space propagation. They possess an inner astigmatism which is hidden under free prop-
agation and propagation through stigmatic (isotropic) optical systems (i.e. combinations of spher-
ical lenses). Pseudo-symmetric beams differ from real stigmatic or simple astigmatic beams by a
non-vanishing twist parameter, tw �= 0.

The variance matrix Ppst of pseudo-stigmatic beams is therefore

Ppst =

⎛
⎜⎜⎜⎝

〈
x2

〉
c 0 〈xu〉c t

2

0
〈
x2

〉
c − t

2 〈xu〉c
〈xu〉c − t

2

〈
u2

〉
c 0

t
2 〈xu〉c 0

〈
u2

〉
c

⎞
⎟⎟⎟⎠ . (2.2.75)

Under free-space propagation there is no difference between a real stigmatic beam, tw = 0 , and the
corresponding pseudo-stigmatic one, tw �= 0 , (2.2.29). The difference can be uncovered by inserting
an arbitrary cylindrical lens somewhere in the beam path. The stigmatic beam is converted into a
simple astigmatic beam with non-rotating variance ellipse while the pseudo-stigmatic one is turned
into a general astigmatic beam with rotating variance ellipse. Figure 2.2.6 illustrates the different
behaviors.

The variance matrix Ppsa of aligned pseudo-simple astigmatic beams is given by

Ppsa =

⎛
⎜⎜⎜⎝

〈
x2

〉
c 0 〈xu〉c t

2

0
〈
y2

〉
c − t

2 〈yv〉c
〈xu〉c − t

2

〈
u2

〉
c 0

t
2 〈yv〉c 0

〈
v2

〉
c

⎞
⎟⎟⎟⎠ . (2.2.76)
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Fig. 2.2.6. Propagation of a stigmatic (top) and pseudo-stigmatic (bottom) laser beam. In free-space
propagation both beams are indistinguishable. But a cylindrical lens transforms the stigmatic beam into
a simple astigmatic one, whereas the pseudo-stigmatic beam becomes general astigmatic with rotating
variance ellipse.

Again, under free-space propagation there is no difference between a real simple astigmatic beam,
tw = 0 , and the corresponding pseudo-simple astigmatic one, tw �= 0 , (2.2.29). Inserting an aligned
cylindrical lens somewhere in the beam pass unveils the difference. The simple astigmatic beam
keeps being simple astigmatic while the pseudo-simple astigmatic one is turned into a general
astigmatic beam with rotating variance ellipse. Figure 2.2.7 illustrates the different behaviors.

2.2.5.5 Intrinsic astigmatism and beam conversion

Applying astigmatic (anisotropic) optical systems (including cylindrical lenses) may convert beams
from one class to another. But only beams with vanishing intrinsic astigmatism a, (2.2.47), can be
converted into stigmatic ones [94Mor]. In practice, beams with

a

(M2
eff)2

< 0.039 (2.2.77)

are considered intrinsic stigmatic, all others intrinsic astigmatic (the limit of 0.039 is a consequence
of (2.2.58)). Intrinsic astigmatic beams can always be converted into pseudo-stigmatic or simple
astigmatic ones.
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Fig. 2.2.7. Propagation of a simple astigmatic (top) and a pseudo-simple astigmatic (bottom) laser beam.
In free-space propagation both beams are indistinguishable. But an aligned cylindrical lens transforms the
simple astigmatic beam into a simple astigmatic one, whereas the pseudo-simple astigmatic beam becomes
general astigmatic with rotating variance ellipse.

2.2.6 Measurement procedures

Only the three pure spatial moments out of the ten second-order moments are accessible for direct
measurement. The other seven moments are retrieved indirectly based on the propagation law of
the spatial moments (2.2.29).

The measurement method is based on the acquisition of a couple of power density profiles at
different z-locations near the generalized beam waist, (2.2.53), e.g. by means of CCD cameras or
similar devices (Fig. 2.2.8, left). From the measured profiles the spatial moments at each measure-
ment plane are calculated. Fitting parabolas with three free parameters to the curve of each spa-
tial moment delivers nine independent quantities: the moments

〈
x2

〉
c,0 , 〈xy〉c,0 ,

〈
y2

〉
c,0 , 〈xu〉c,0 ,

〈yv〉c,0 ,
〈
u2

〉
c,0 , 〈uv〉c,0 ,

〈
v2

〉
c,0 and the sum of the crossed mixed moments 〈xv〉c,0 + 〈yu〉c,0. If

the waist of the beam is not accessible, an artificial waist has to be created by inserting an almost
aberration-free focusing lens into the beam path. Approximately half of the profiles should be
acquired close to the waist within one generalized Rayleigh length, the rest outside two Rayleigh
lengths. This ensures balanced accuracy for all parameters of the fitting process.

x x x

y y y
z z z

f
f

Fig. 2.2.8. Determination of the ten second-order moments in three steps. First step is a z-scan measure-
ment (left), in the second step the CCD camera is placed in the focal plane behind a horizontally oriented
cylindrical lens (middle), in the third step the lens is rotated by 90 degrees (right).
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At least one cylindrical lens is needed for the measurement of the missing difference of the
crossed mixed moments 〈xv〉c,0 − 〈yu〉c,0 . To retrieve it, a cylindrical lens with focal length f
is inserted into the beam path at an arbitrary position in the beam waist region. Firstly, this
cylindrical lens shall be aligned with the x-axis and the spatial moment 〈xy〉1 is measured in the
focal distance behind the lens (Fig. 2.2.8, middle). Next, the lens is rotated by 90 degrees and the
spatial moment 〈xy〉2 is again measured in the focal distance from the lens (Fig. 2.2.8, right). The
missing difference of the crossed mixed moments of the reference plane is then given by

〈xv〉c,0 − 〈yu〉c,0 =
〈xy〉2 − 〈xy〉1

f
. (2.2.78)

2.2.7 Beam positional stability

2.2.7.1 Absolute fluctuations

For various reasons a laser beam may fluctuate in position and/or direction. The positional fluc-
tuations in a transverse plane may be measured by the variance of the first-order spatial moments
of the beam profile:

〈
x2〉

s =
1
N

N∑
i=1

〈x〉2i −
(

1
N

N∑
i=1

〈x〉i

)2

, (2.2.79)

〈xy〉s =
1
N

N∑
i=1

〈x〉i 〈y〉i − 1
N

N∑
i=1

〈x〉i

1
N

N∑
i=1

〈y〉i , (2.2.80)

〈
y2〉

s =
1
N

N∑
i=1

〈y〉i −
(

1
N

N∑
i=1

〈y〉i

)2

, (2.2.81)

where 〈x〉i and 〈y〉i are the first-order moments determined in N individual measurements and

x̄ = 1
N

N∑
i=1

〈x〉i , ȳ = 1
N

N∑
i=1

〈y〉i define the long-term average beam position. Obviously, the positional

fluctuations are different from plane to plane. It can be shown that, under some reasonable assump-
tions, the positional fluctuations can be characterized closely analogous to the characterization of
the beam extent based on the second-order moments of the Wigner distribution [94Mor, 96Mor].
Within this concept, the fluctuation properties of a laser beam are completely determined by ten
different parameters, arranged in a symmetric 4 × 4 matrix

Ps =

⎛
⎜⎜⎝

〈
x2

〉
s 〈xy〉s 〈xu〉s 〈xv〉s

〈xy〉s
〈
y2

〉
s 〈yu〉s 〈yv〉s

〈xu〉s 〈yu〉s
〈
u2

〉
s 〈uv〉s

〈xv〉s 〈yv〉s 〈uv〉s
〈
v2

〉
s

⎞
⎟⎟⎠ , (2.2.82)

obeying the same simple propagation law as the centered second-order moments:

Ps,out = S · Ps,in · ST . (2.2.83)

The elements of the beam fluctuation matrix may be considered as the centered second-order
moments of a probability distribution p (x, y, u, v) giving the probability that the fluctuation beam
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Fig. 2.2.9. Centroid coordinates of fluctuating
beam and corresponding variance ellipse character-
izing the fluctuations.

has a position (x, y) and direction (u, v) at a random measurement. Similar to the second-order
moments of the Wigner distribution, only the three spatial moments are directly measurable. The
complete set can be obtained from a z-scan measurement as described in the section above, by
acquiring a couple of power density distributions in any measurement plane, calculating the first-
order spatial moments from each profile, derive the three variances according to (2.2.79)–(2.2.81),
and obtaining the second-order fluctuation moments in the reference plane from a fitting process.
Again, measurements behind a cylindrical lens are necessary to achieve all ten parameters.

Fluctuation widths can be derived from the second-order fluctuation moments. In analogy to
the beam width definitions, the fluctuation widths are

∆ ′
x = 2

√
2
{(〈

x2〉
s +

〈
y2〉

s

)
+ τ

[(〈
x2〉

s − 〈
y2〉

s

)2
+ 4 〈xy〉2s

] 1
2
} 1

2

, (2.2.84)

∆ ′
y = 2

√
2
{(〈

x2〉
s +

〈
y2〉

s

) − τ
[(〈

x2〉
s − 〈

y2〉
s

)2
+ 4 〈xy〉2s

] 1
2
} 1

2

(2.2.85)

with

τ = sgn
(〈
x2〉

s − 〈
y2〉

s

)
, (2.2.86)

where ∆ ′
x and ∆ ′

y are the beam fluctuation widths along the principal axes of the beam positional
fluctuations and where

β =
1
2

atan
(

2 〈xy〉s
〈x2〉s − 〈y2〉s

)
(2.2.87)

is the signed angle between the x-axis and that principal axis of the beam fluctuation which is
closer to the x-axis (Fig. 2.2.9). The principal axes of the beam positional fluctuations may not
coincide with the principal axes of the power density distribution.

The width of the positional fluctuations along an arbitrary direction, given by the azimuthal
angle α, is given by

∆α = 4
√

〈x2〉s cos2 α+ 2 〈xy〉s sinα cosα+ 〈y2〉s sin2 α . (2.2.88)
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2.2.7.2 Relative fluctuations

For many applications the widths of the positional fluctuations compared to the momentary beam
profile width might be more relevant than the absolute fluctuation widths. The relative fluctuation
along an arbitrary direction, given by the azimuthal angle α, is defined by

∆rel,α =

√
〈x2〉s cos2 α+ 2 〈xy〉s sinα cosα+ 〈y2〉s sin2 α

〈x2〉c cos2 α+ 2 〈xy〉c sinα cosα+ 〈y2〉c sin2 α
. (2.2.89)

The effective relative fluctuation may by specified by

∆rel =

√
〈x2〉s + 〈y2〉s
〈x2〉c + 〈y2〉c

. (2.2.90)

2.2.7.3 Effective long-term beam widths

For applications with response times much longer than the typical fluctuation durations the time-
averaged intensity distribution rather than the momentary beam profile determines the process
results:

Ī (x, y) =
1
T

t0+T∫
t0

I (x, y, t) d t . (2.2.91)

The effective width of the time-averaged power density profile along an azimuthal direction enclos-
ing an angle of α with the x-axis can be obtained from the widths of the momentary beam profile
and the fluctuation width by

deff,α =
√
d2

α + ∆2
α . (2.2.92)
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