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1.1 Fundamentals of the semiclassical laser theory

V.A. LoroTA, H. WEBER

A rigorous description of light—matter interaction requires a fully quantized system of field equa-
tions, which is the content of quantum optics [ToHakl [05Wall [97Scul [95Manl [01Voe]. This theory
is well developed and the results are confirmed perfectly by many experiments (see Chap. 5.1).
But most problems of laser design and laser technology can be solved in a satisfactory way by
applying the semiclassical theory. This means a non-relativistic quantum-mechanical approach for
the electronic system and a non-quantized, classical electromagnetic field.

Non-relativistic means that the velocity of the interacting electrons is small compared with the
velocity of light. This holds for the outer shell electrons of the atoms and molecules, which are
relevant in laser physics. It is not true for the free-electron laser and for the interaction of strong
fields with plasmas, which demand a relativistic treatment.

A non-quantized electromagnetic field implies that the photon is neglected. In laser technology
the photon flux in most applications is extremely high and the granulation of light beams is of
no importance. It is of significance for metrology, where the lower limit of detectability is partly
given by photon statistics. There are some other effects, which are not covered by the semiclassical
theory:

— Planck’s law, related to photon statistics,
— squeezed states,

— entangled photons,

— zero-point energy effects,

— spontaneous emission,

and some spectral line shifts (Lamb-shift [47Lam]), of minor importance for laser technology,
although of great experimental interest for the confirmation of the fundamental theory. The spon-
taneous emission of excited atoms/molecules is responsible for the lower limit of laser line width
and for the on-set of laser oscillation. Therefore, spontaneous emission has to be
included in the semiclassical theory by a phenomenological term as shown in Fig. 1.1.1.

It is the intention of this chapter to compile the relevant relations of laser dynamics, their
application in laser design and to discuss the limitations and approximations. The mathematical
derivations can be taken from the references.

1.1.1 The laser oscillator

The laser oscillator is based on the principle of the feed-back amplifier, a principle invented by
A. Meissner 1918 and patented 1919 . All coherent electromagnetic waves are generated by
such self-sustained oscillators, from radio frequencies to microwaves and finally lasers. Basov and
Prokhorov published 1954 a theoretical paper on masers , Schawlow and Townes in 1958
a theoretical paper discussing the possibility of masers in the visible range of the spectrum,
and Maiman realized 1960 the first laser N60Maﬂ/.
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4 1.1.1 The laser oscillator [Ref. p. 40

Radiation field E
classical field, no photons, Maxwell’s equations, mainly in the SVE-approximation |<g——
of the wave equation

Optical resonator/amplifier

The field interacts with the electronic system (atoms or molecules) inside an optical
resonator or amplifier.

Atoms/ molecules
are approximated by a two-level system, interacting with the field in the dipole
approximation. Schrédinger’s equation delivers a macroscopic polarization P.

Polarization P
is the source of a new coherent electromagnetic field.

self-consistent in steady state

Spontaneous emission
is introduced phenomenologically and produces a stochastic field which is added to
the coherent field.

Fig. 1.1.1. The semiclassical laser theory (SVE-approximation: Slowly Varying Envelope approximation,
see Sect. 1.1.2.2.3).

pump power

- >l | ==

output power

Fig. 1.1.2. Schematic set-up of
a laser oscillator.

G(), V
The principle set-up of a laser oscillator is plotted in Fig. 1.1.2. Light is amplified by induced
emission in an active medium (gas discharge, doped crystals or liquids, pn-transitions). The active
medium is characterized by an intensity- and frequency-dependent gain factor G(J) (with J: inten-
sity). The beam bounces forth and back between the two mirrors of an optical resonator. On-set
of laser oscillation requires a gain factor exceeding the total losses per round trip:

GoRV >1 (threshold condition) (1.1.1)
with

Gy: small-signal gain factor for the intensities,
R = /Ry Ry: average reflection factor of the mirrors,
V. internal loss factor of the resonator.

With increasing intensity J the gain decreases due to saturation of the amplifier
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G(J) <Gy .
In steady state the gain has to compensate the losses:
G(J)RV =1 (steady-state condition) . (1.1.2)

If the relation G(J) is known, depending on the specific amplifier, (1.1.2) gives the internal
intensity of the laser system in steady state.

The wavelength of the field is determined by the resonance condition. After one round trip the
phase shift Ay of the field must be

Ap=2np, p=1,2,3,... (resonance condition) , (1.1.3)

otherwise the field would be reduced by destructive interference. The resonator is mainly responsible
for the mode structure of the output field and can be described by a non-quantized field. Details
are given in Chap. 8.1. For the interaction field—amplifier a plane wave is assumed and diffraction
is neglected.

1.1.2 The electromagnetic field

Light is a special case of propagating electromagnetic waves, as was predicted by Mazwell 1856

and confirmed experimentally by Hertz . The electromagnetic field is characterized

by the electric/magnetic vector fields E, H. In this section the propagation of quasi-monochromatic
waves with frequency w and wavelength A is investigated. The wavelength range from the infrared
(A = some 10 um) to the UV (A = 0.1 pm) is normally called light.

1.1.2.1 Maxwell’s equations

The electromagnetic field is used in the classical representation, neglecting the quantization. The
materials equations, based on quantum mechanics, are introduced phenomenologically. The final
result is a wave equation, describing the propagation of electromagnetic waves.

The classical electromagnetic field is completely described by Maxwell’s equations:

0B
|F = ——— 1.14
cur 5 (1.1.4)
oD
1| H = — ] 1.1.5
cur ot +27, ( )
divD=p, (1.1.6)
divB =0 (1.1.7)

with

E: electric field (SI-unit: V/m),

H: magnetic field (ST-unit: A/m),

D: electric displacement (SI-unit: As/m?),

B: magnetic induction (SI-unit: Vs/m?),

j: current density (SI-unit: A/m?),

p: density of electric charges (SI-unit: As/m3).
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6 1.1.2 The electromagnetic field [Ref. p. 40

For all quantities the complex notation is used 7 the real quantities are Qea = %(Q—l—Q*)
The relations between D, E and B, H are given by the material equations. Under the action of
an external electric/magnetic field atomic or molecular electric/magnetic dipoles are generated in
matter. The dipole moment per unit volume is called the electric or magnetic polarization P(E, H)
or J(E, H), respectively. The resulting material quantities are the electric displacement D and
the magnetic induction B given as:

D=¢E+PEH)=cye(E,H)-E, (1.1.8)
B = poH + J(E,H) = o W(E, H) - H (1.1.9)
with

P =¢yx.(E,H)E : electric polarization (SI-unit: As/m?),
J = poxm(E, H)H : magnetic polarization (SI-unit: Vs/m?),
Xe(E, H), xm(E, H) : electric/magnetic susceptibility, in general a tensor and a function of

the fields,
€ =14 Xe, p =1+ xm : permittivity/permeability number, in general tensors, 1: unit tensor,

g0 = 8.8542 x 10712 As/Vm: electric constant,
po = 47t x 107 Vs/Am: magnetic constant.

The current inside a medium is caused by the electric field and Ohm’s law holds
j=o.FE (1.1.10)

with
oe: electric conductivity, in general a tensor and function of the field, (SI-unit: A/Vm).

Electric and magnetic polarization depend in general on both generating fields, E and H. In
many cases this relation is linear, but quite often a very complicated relation occurs, as in non-
linear optics, ferro-magnetism or ferro-electricity. The material equations can only be evaluated
by quantum mechanics. In the following non-conducting (o, = 0), charge-free (p = 0) and non-
magnetic (xm = 0, # = 1) media are assumed, which holds for dielectrics. The magnetic field can
be eliminated and a wave equation results from Maxwell’s equations:

1 92 1
ddivE-AE+ —|E+—P) =0 1.1.11
grad div + 2 o2 ( + - ) , ( )
divD =0 (1.1.12)
with

= 2.99792458 x 10® m/s : vacuum velocity of light .

Co —

1
VEOHO

Equation (1.1.11) is the fundamental equation, describing the propagation of optical fields. It
includes diffraction as well as amplification of light and non-linear effects. It has now to be adapted
and simplified for the different applications in optics and laser technology.

1.1.2.2 Homogeneous, isotropic, linear dielectrics

The propagation of light in homogeneous media as gases, liquids, glasses or cubic crystals is in-
vestigated. These materials are assumed to be homogeneous (permittivity € does not depend on the
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Ref. p. 40] 1.1 Fundamentals of the semiclassical laser theory 7

spatial coordinates), isotropic (e does not depend on the polarization of light), and linear (¢ does
not depend on the intensity of the field). The last assumption holds for low-intensity fields only.

The permittivity € is a scalar and (1.1.11)/(1.1.12) reduces to the standard wave equation:

¢ O°F

_EoE 1.1.13
c ot? ’ ( )

divE=0. (1.1.14)

Simple solutions are the plane and the spherical waves.

1.1.2.2.1 The plane wave

The infinite, monochromatic wave with a plane phase front and constant amplitude reads:

E = E; expli(wt — nkor)] , (1.1.15)

H = H, expli(wt — nkor)] ; (1.1.16)
o [ko X Eo]

H, = Wl

It is a transversely polarized field with E1 H 1 kg, as plotted in Fig. 1.1.3.
n=+€=1+/14Xe : the refractive index of the medium, in general complex, (1.1.17)

ko = 21/ Ag : wave number in vacuum,
ko: wave vector, direction of propagation,
Ao: wavelength in vacuum,

Z = /% :  impedance, Zy= Mo _ 3767 Q: vacuum impedance.
£€0 €o

The Poynting vector or energy flux is a real quantity with

S = [Erea1 X Hye]  (SI-unit: W/m?).

Fig. 1.1.3. The plane wave in a homogeneous,
isotropic medium.
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8 1.1.2 The electromagnetic field [Ref. p. 40

Table 1.1.1. Values of refractive index n, and absorption coefficient a at wavelength Ao [85Pall [82Gral
78Dri].

Material Ao [pm] Ny a [m™]
Fused quartz 0.54 1.46 very small
Sapphire 0.50 1.765/1.764 very small
Water 0.54 1.332 0.8

Water 1 1.328 80
Copper 0.54 0.7 11.6 x 10°
Gold 0.54 0.3 11.1 x 10°
Iron 0.54 2.4 16.4 x 10°

The intensity is the time average over one period T' = 27t/w and results in:

J=(S)p = i @ + Zl> (EoE}) . (1.1.18)

For dielectrics without losses (4 = 1, n = n, is real), (1.1.18) reduces to
1 2
J = 560nr60 |Eo| (1119)

with both quantities, Fy and J, inside the medium. For vacuum applies

Jwjmz =133 %1072 [Eg v ym|” + |Bovym| = 274/ Jw e -

For a homogeneous dielectric, low-absorbing medium the complex refractive index is given by

[99Bor} p. 739]:

@
n=n—i—, a<k 1.1.20
" 2k, 0 ( )
with

n;: real part of the refractive index,

a: absorption coefficient, in general the non-resonant broad-band absorption.

For a field propagating in z-direction (1.1.15)/(1.1.20) deliver an exponentially damped ampli-
tude:
az

E(z,t) = Eq exp |i(wt — nykoz) — 7} . (1.1.21)

Some numbers of n,, a are compiled in Table 1.1.1.

1.1.2.2.2 The spherical wave

One solution of the wave equation (1.1.13) in spherical coordinates is the quasi-spherical wave,
generated by an oscillating dipole (Hertz’s dipole), see Fig. 1.1.4. The far field reads [99Jad|:

ME 42k
0 ﬁexp[i(wt—ﬁkor)]sinﬁ, |E19|:|m$7 > Ao

E(r,9,t) =
(r,9.) =

with p the dipole moment and ¥ the angle between the dipole axis and beam propagation k.
In the paraxial approach (9 = 7t/2 , 8 <« 1) the well-known spherical wave, useful for applying
Huygens’ principle, results:

A
E(z,t) 2 22 Eyexpli(wt — kor)] , 0<1, (1.1.22)
T

where E is approximately parallel to the dipole axis.
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Ref. p. 40] 1.1 Fundamentals of the semiclassical laser theory 9

Fig. 1.1.4. A quasi-spherical wave, emitted by an
oscillating dipole.

1.1.2.2.3 The slowly varying envelope (SVE) approximation

In the Slowly Varying Envelope approximation (1.1.11) is solved approximately with the ansatz of
a quasi-monochromatic, quasi-plane wave

E = Ey(z,y, z,t) expli(wt — nykoz)], P = Po(z,y, 2,t)expli(wt — n.koz)] . (1.1.23)

The wave propagates mainly in z-direction and the amplitude is slowly varying with z, vy, z, t,
which means:

— slowly varying in time (quasi-monochromatic): 9|Ey|/dt < w|Ey|, or spectral bandwidth
Aw < w,

— slowly varying in space (quasi-plane wave): 9| E|/0z < ko|Eg|, which means low divergence of
the beam Af <« 1 (paraxial approach), and a smooth transverse profile,

— slowly varying polarization 0|Py|/0t < w|Py|,

— slowly varying electric susceptibility 9|x.|/0t < w|xe| and |grad x.| < kol|xel-

Then second order terms can be neglected and the SVE-approximations are obtained [84She} p. 47],

|66 War| [86Sie].
1.1.2.2.4 The SVE-approximation for diffraction
Steady-state propagation in vacuum means 0|Ey|/0t = 0 and P = 0. Equation (1.1.11) delivers

with the ansatz (1.1.23) and neglecting 9% E /0t? the SVE-approximation used in diffraction theory,
also called the Schrddinger equation of optics:

<Atr — Qiko({f) Ey=0, divE=0. (1.1.24a)
z
Ay, is the transverse delta-operator, which in rectangular coordinates reads
0? 0?
Ay = =5+ =—5 .
T 9a2 + Oy?

The field in (1.1.24a) is a vector field, and the A-operator in cylinder coordinates is rather
complicated, because the unit-vectors are no longer constant [99Jac|, especially for non-uniform
polarization in circular birefringent media [82Fer] [93Wit]. In most cases (except birefringence) the
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10 1.1.2 The electromagnetic field [Ref. p. 40

scalar version of the SVE-approzimation is sufficient. It reads in rectangular/cylindrical coordi-
nates

0? 0? 0
92 10 1 02 .0
(87”2+r87“+7”2(3<,02 ‘21’%2) Bo=0. (1.1.240)

This is the fundamental equation in paraxial diffraction optics. It gives the Fresnel-integral and
the eigenmodes of free propagation (Gauss-Hermite/Gauss-Laguerre polynomials, see Chaps. 3.1
and 8.1). Equations (1.1.24a)/(1.1.24b)/(1.1.24c) hold for a homogeneous medium, but can be
extended to quadratic index media

1.1.2.3 Propagation in doped media

The active medium of a laser amplifier consists of a host material, doped with the active atoms
(molecules). Host and doping interact differently with the laser radiation.

A plane wave without transverse structure interacts with active atoms or molecules and induces a
polarization P4. In most cases the active atoms are embedded in a host medium (glass, crystal,
liquid, gas), which is also polarized by the field, generating an additional polarization Py. The
total polarization is:

P = Py + Py = (Pao + Pro) expli(wt — n.koz)] . (1.1.25)

The response of the host medium is in most cases very fast (10712 ... 1074 s), no transient
behavior occurs and nonlinear effects are assumed to be small. Then the host polarization is
proportional to the applied field:

PH = SOXHE .

xH is the complex susceptibility of the host material and is related to the refractive index n, and
the loss coefficient a according to (1.1.17)/(1.1.20) [99Ber]:

neQ

ko

xu=m?—1)—i . a<kp. (1.1.26)

The imaginary part of xy is called extinction coefficient. Some values of refractive indices n, and
absorption coefficients « are given in Table 1.1.1. For the polarization of the active atoms one has

Py =coxa(Eo)E, (1.1.27)

where xa depends on the field and has to be evaluated quantum-mechanically. Neglecting first and
second order derivations of Pay and second order derivations of Eq, the SVE-approximation for
the interaction is obtained, assuming a plane wave without transverse structure:

0 10 «o . ko .

(SVE-approximation for the amplitude of a plane wave in an active medium)

with ¢ = ¢p/n, the phase velocity of the wave in the host medium. The above equation describes
the amplification/attenuation of cw-fields and pulsed radiation by an active medium. It provides
also the widely used rate-equation approach, as will be shown in Sect. 1.1.5.1. It fails for fields
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with amplitudes varying very rapidly in time or space (fs-pulses). If the intensity J (1.1.19) and
the susceptibility of the active medium (1.1.27) are introduced, (1.1.28) reduces to:

o 10 ko
A I LR | J=0. 1.1.29
(82 * 08t> + <a Ny mXA) ( )
The active atoms enhance or reduce the losses of the medium, depending on the sign of the
imaginary part Im y of the susceptibility, which is a function of the intensity. In steady state and
for constant ya, which holds for low intensities, (1.1.29) can be integrated and delivers for the
intensity

k
J(z) = J(0) exp {a + n—o Im (XA)} z.
The amplifying factor is called the small-signal gain factor Gy of the medium and the exponent
the small-signal gain coefficient go:

k k
Go = exp LLO Im(XA)z] =explgoz] , go= 201y (xa) - (1.1.30)

Ny

Some typical values of gy are compiled in Table 1.1.4.

1.1.3 Interaction with two-level systems

Most quantum systems as atoms or molecules have an infinite number of energy levels. To demon-
strate the essential features of light—matter interaction, a simplified model with only two levels is
presented.

1.1.3.1 The two-level system

The relevant parameters are the enerqy difference AE of the two levels, the inversion An, the
dipole moment ., and the polarization Pa.

The two-level system can be part of an atom, ion, molecule, or something more complicated. A
monochromatic electric field F of frequency w in the SVE-approximation according to (1.1.23) acts
via the Coulomb force on the bound electrons of the active medium. In linear systems (parabolic
potential) the negative electrons will oscillate sinusoidally, whereas the heavy positive nucleus
remains more or less at rest. An oscillating dipole is induced with a dipole moment g (¢), which is
given by

u=—ex (1.1.31)

with

e: electron charge,
x: displacement of the electron.

The dipole moment per volume is the macroscopic polarization P of the active medium. As
all single dipoles are aligned by the electric field, the resulting polarization reads:
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12 1.1.3 Interaction with two-level systems [Ref. p. 40

A

4 E2 — ], ‘¢2> , Cy
w
>
S
2 h w,
L

\ 2
£ E1 — n,, ¢I> , C4
Fig. 1.1.5. The two-level system.
P =ngp (1.1.32)
with

no: dipole density (m=3),
w: expectation value of the dipole moment (Asm).

In this section the induced dipole moment will be evaluated quantum-mechanically, which
requires some simplifications. It is not the intention to discuss in detail the mathematics, but
only to summarize briefly the main results of interest for laser technology and to emphasize the
approximations and the range of validity. A consistent presentation of the interaction light—matter,
starting from first principles, is given in many textbooks [61Mes| 68Schl, [77Cohl [95Man)].

From the infinite number of energy levels of an electronic system only two, F; and F,, are
taken into account for the interaction [75All [89Yarl [69Are], see Fig. 1.1.5. This is a reasonable
approach if the field is nearly resonant with the transition from E; to Es. In this case the other
levels of the system will not or only very weakly interact with the field.

It applies

|wA — w| < Awp

with
wa: resonance frequency of the transition,
Awpa: bandwidth of the transition,

w: frequency of the radiation field,
h = 1.0546 x 10734 Ws2: Planck’s constant.

1.1.3.2 The dipole approximation

The oscillating electric field E deforms the electron cloud of the two-level system and generates
a complicated, oscillating charge distribution. A first order approximation is an oscillating dipole.
The interaction of this dipole with a monochromatic wave is evaluated quantum-mechanically.

1.1.3.2.1 Inversion density and polarization

The interaction of an electromagnetic field with a two-level system was first investigated by Bloch

[46Blo] and extensively discussed by Allen and Eberly [75All]. It is characterized by its dipole
moment and the population densities in the two levels:
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n1, ng : density of states (atoms, molecules) in the lower/upper level,
An = ng — nq : inversion density,
ng = n1 + ng : total density, const.

The following assumptions are made:

— Non-relativistic interaction. The velocity of the electrons is small compared with the velocity
of light. This does not hold for inner-shell electrons, hot plasmas and free-electron lasers.

— The wavelength of the light is large compared with the diameter of the atoms/molecules. It
means that in the domain of the atomic wave function the electromagnetic field is locally
constant. Bohr’s radius with rg = 5.3 x 10™° pm is a typical atomic dimension. The wavelength
in the visible range of the spectrum is about 0.5 pm, thus this condition is fulfilled in the visible
and UV-part of the spectrum. It is called the dipole approximation .

— The permanent dipole moments of the two-level system p11 = oo are zero. Even if larger
molecules have a permanent dipole moment, their response to the high-frequency field is small.
Ounly for very strong fields are the permanent dipole moments of importance (see Part 4 on
nonlinear optics). A dipole moment exists only for the transition from level 1 to 2 and vice
versa. Non-degenerated levels are assumed with g = 12 = o1

The two-level system is completely described by its state vector |¢), which in general is time-
dependent:

Eqt

) =aa(®)lon) exp (1500 ) + calt) o) exp (i) (1133

with |p1), |¢2) the eigenfunctions and Ey, F5 the energy eigenstates. The eigenfunctions are nor-
malized, orthogonal and depend on the position vector r:

/wi‘%dr = (p1p2) = dij - (1.1.34)
The state vector has to fulfill the time-dependent Schrodinger equation:

9lp)

ih Bt

= (Ho + Hin) ) (1.1.35)

with Hy the Hamilton operator of the undisturbed system (Hi,, = 0) and Hi, the interaction
energy. For the undisturbed system holds [89Yar]:

which follows directly from (1.1.35) by replacing |¢) by |¢;)exp (—iE;t/h). The parameters of
interest, the inversion density An = ny — n; and the macroscopic polarization

Pyr=nop (1.1.37)

are determined by the coefficients ¢1, ¢3. The probability of the system to be in the lower/upper
state is given by \cl|2 , |cz|2 , respectively, which requires:

ler)? 4+ ea? = 1. (1.1.38)
The number of atoms in the lower/upper level is then given by:

2 2
ny=mnolel|”, nma=mnglea|” , ni+ng=mng

and hence the inversion density :

Landolt-Bérnstein
New Series VIII/1A1



14 1.1.3 Interaction with two-level systems [Ref. p. 40

An = ng (\CQ\Z - \01\2) . (1.1.39)

The expectation value of the dipole moment (p) = —e (1) is obtained from (1.1.33). Using
the afore mentioned assumptions:

(H11) = —e(p1rpr) =0, (p22) = —e(parp2) =0
one obtains finally for the polarization from (1.1.33), (1.1.34), (1.1.38)

Py =ng{(p12) cjeca exp (—iwat) + (p21) c1c5 exp (+iwat)} (1.1.40)

with (p12), (1) the dipole moment of the transition E; <+ E5 and vice versa. For non-degenerated
transitions one has (p12) = (1) = pa. In the following only pa will be used, which is a charac-
teristic parameter of the specific transition:

pa = —e{p1rpa) . (1.1.41)

1.1.3.2.2 The interaction with a monochromatic field

The interaction Hamiltonian for a non-quantized real field E ., corresponds to the classical energy
of an electric dipole in an electric field. It reads [97Scul:
(E + E¥)

—

Substitution of (1.1.42) into (1.1.35), using the orthogonality (1.1.34) and (1.1.41) provides two
differential equations for the coefficients c¢i, co of the state vector:

Hint = “AEreal = KA (1142)

d i E + E*

% = %cz exp (—iwat) MA% ,

d62 i . (E + E*)

— = = - 1.14
i 7> C1 eXD (+iwat) pea 5 ( 3)

The time dependence of inversion density and polarization is obtained from (1.1.39), (1.1.40) by
differentiating and applying (1.1.43). After some simple mathematics the following two equations
for the macroscopic parameters of the two-level-system result are obtained:

0An i y .

5 = 5 (E+E)(Pa-Py)}, (1.1.44a)
a-PA . HA *

S = l{wApA + 52 (s (B+ E) An} . (1.1.44b)

For E and P, the SVE-approximations of (1.1.23), (1.1.25) are used. Then in (1.1.44a),
(1.1.44b) terms with the frequency 2w appear, which are neglected. This approach is called the

rotating-wave approximation [97Scul [72Cou|. The above equations simplify to

0An i . .
W = ﬁ {EOPAO — EOPAO} 5 (11453,)
p .
‘98:0 — i§Pao + % (aEo) An, §=w—wa (1.1.45b)
(rotating-wave approximation)

with

4 electric dipole moment of the transition,

w: frequency of the interacting field,

wa: resonance frequency of the two-level system,
h = 1.0546 x 1073* Ws2: Planck’s constant.

Some typical values of dipole moments are given in Table 1.1.2.
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Table 1.1.2. Typical values of dipole moments [01Men].

Transition |[pea| [As m]
Bohr’s radius x electron charge 10729
Hydrogen 1s — 2p Ao =121 nm 0.8 x 107%°
4f — 5g o = 4053 nm 8.3 x 1072
Chromium ions in ruby 4A5(3/2) — E levels Ao = 694 nm 1072

1.1.3.3 The Maxwell-Bloch equations

The idealized rotating-wave approrimation is adapted to the real situation and combined with the
SVE wave equation. Incoherent perturbations by the environment are taken into account.

So far the interaction of the two-level system with the electromagnetic field is purely coherent, no
perturbations by external influences on the system are considered. Stochastic processes will modify
the interaction considerably. Here only a very basic description is presented. A detailed analysis of

these statistical processes is given in |[70Hak] .

1.1.3.3.1 Decay time T of the upper level (energy relaxation)

Three incoherent processes reduce or increase the upper-level population and have to be considered
in (1.1.45a), (1.1.45b):

— spontaneous emission,
— interaction with the host material (collisions, lattice vibrations),
— increase of the population by pumping (light, electron collisions, or other processes).

1.1.3.3.1.1 Spontaneous emission

The two-level system is coupled to the modes of the optical resonator or to the free-space modes.
Spontaneous emission into these modes reduces the upper-level population. Moreover, by each
spontaneous emission process the phase relation between the field and the two-level eigenfunction
is destroyed. If the dimensions of the resonator are large compared with the wavelength, the decay
is given by Ong /0t = —ng /Ty, , with Agy = 1/Ty;, , the Einstein coefficient of spontaneous emission.
If the resonator dimensions are comparable with the wavelength, spontaneous emission is strongly
influenced by the resonator geometry, it can be enhanced or reduced (see Chap. 8.1).

1.1.3.3.1.2 Interaction with the host material

This interaction reduces the population density. Energy is transferred to the host material
and converted into heat. A simple approach for this decay is again an exponential ansatz
Ons /Ot = —ng /Ty . This decay time together with the spontaneous decay time delivers a re-
sulting decay Ty of the upper-level population, also called energy relaxation time or longitudinal
relaxation time.
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16 1.1.3 Interaction with two-level systems [Ref. p. 40

1.1.3.3.1.3 Pumping process

The dynamics of upper-level excitation depend on the special pumping scheme and are discussed
in Sect. 1.1.5.3 and in Vol. VIII/1B, “Solid-state laser systems”. In any case the pump produces
in steady state and without a coherent field (Ey = 0) an inversion density Ang.

These three processes are included into (1.1.45a) by the term:

0An B An — Ang

= T (1.1.46)

with

T1: the resulting time constant.

1.1.3.3.2 Decay time T5 of the polarization (entropy relaxation)

An external field FE induces dipoles, which generate the macroscopic polarization P 4. If the external
field is switched off, the polarization will disappear for several reasons:

The energy of the two-level system decays with 17, which means that the polarization disappears
at least with the same time constant.

Due to incoherent interaction with the host material (collisions), the single dipoles are disori-
ented in their direction or dephased. The resulting polarization becomes zero, although the single
dipole still exists. This process can be much faster than T (see Table 1.1.6) and is characterized by
a time constant 75. This decay strongly depends on the interaction process. The simplest approach
is :

OPao _ Pao

o Ty’

(1.1.47)

and (1.1.45b) has to be completed by (1.1.47). Ty is called the transverse relaxation time, the
entropy time constant or the dephasing time. Finally, the two-level equations together with the
SVE-approximation, (1.1.28), of the wave equation read:

J0An i An — Ang

- =" (E5Pao — EoP,) — T , (1.1.48a)
0Py . 1 A (paEo)
_ P ZANPATOIA =w— 1.1.4
5 (16+T2) a0 +i W n, 0=w-—wa, ( 8b)
0 10 « . ko
(az toa T 2) Bo = —ig p, Fao (1.1.480)

(Maxwell-Bloch equations).

They describe the propagation of radiation in two-level systems and are called Maxwell-Bloch
equations. Equation (1.1.48c¢) holds, if the transition frequency wa for all two-level atoms is the
same (homogeneous system). In inhomogeneous systems (see Sect. 1.1.6.3, Fig. 1.1.13) different
groups of atoms exist with center frequencies wp of each group and a center frequency wg of the
ensemble. Therefore (1.1.48¢) has to be replaced by [81Ver|:

0 10 ok
(82 + C(?t) EO = _1260(;% /h(wA;WR)PAO(EO;WA)de . (1148d)

h(w,wa) is the spectral density of atoms with the transition frequency wa according to (1.1.92)/
(1.1.93). For the solution of these equations, three different regimes are distinguished:

Landolt-Bérnstein
New Series VIII/1A1



Ref. p. 40] 1.1 Fundamentals of the semiclassical laser theory 17

Steady-state equations

A P
The temporal variations of the radiation field are slow M =0 9P 1o =0
. ot ot
compared with T7.
Adiabatic equations
A P
no transient effects of the atom, To <« T7. aa—tn #£0 86:0 =0
Coherent equations
A P
The width 7 of the interacting pulses is short compared aa—tn 0 6:0 #0

with Ty, Ty; (1.1.45a), (1.1.45b) can be applied.

1.1.4 Steady-state solutions

In steady state inversion density Ang, polarization Pag, and intensity J of the field are constant
in time, but may depend on the spatial coordinates.

1.1.4.1 Inversion density and polarization

The stationary solutions of (1.1.48a), (1.1.48b) are obtained immediately:

Ano

An=—————— (inversion density, homogeneously broadened), 1.1.49
XA = n};: {Z;Au;‘; + i] An  (susceptibility), (1.1.50)
Ppo =coxaEo (polarization) (1.1.51)
with
1
J = 5 gocone|Eo|* (intensity of the field), (1.1.52)
th . . . cps
s = (saturation intensity of the two-level transition), (1.1.53)
20’0T1
o =o0of(w,wa) (frequency-dependent cross section of the transition), (1.1.54)
| pal®waTo
09 = —————= (cross section in resonance), (1.1.55)
EQConrh
Awy /2)?
frlw,wa) = ( ;}A/ ) 5 (spectral line shape, Lorentzian), (1.1.56)
(wa —w)” 4+ (Awa /2)
Awp =2/T5  (line width of the transition), (1.1.57)

Landolt-Bérnstein
New Series VIII/1A1
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[Ref. p. 40

Angogf(w,wa)
1+ (J/Js) fw,wa)

gh(w,wa) =Ano = (gain coefficient, homogeneously

broadened),
A ngog Awp

ginh(wa WR) = \/ﬁh(w, wR)—

5 (gain coefficient, inhomogeneously

broadened, see Sect. 1.1.6.3).

(1.1.58a)

(1.1.58b)

In Table 1.1.3 some numbers of relevant laser transitions are compiled, in Table 1.1.4 some
typical values of the small-signal gain coefficient in resonance are given. The susceptibility strongly
depends on the frequency as shown in Fig. 1.1.6. According to (1.1.26) the real part of xa produces

an additional refractive index, and the imaginary part absorption or amplification:

ReXA:nf—lzan (w_wA>An7

kio AwA/2
Im xa = —nyaky = anAn .
ko
The steady-state propagation of the electric field is obtained from (1.1.48c):
dE, a ocAn . W — WA
dz {QJF 2 JrlJnAwA] 0

where An is a function of the field or the intensity.

(1.1.59a)

(1.1.59b)

(1.1.60)

Table 1.1.3. Examples of resonance wavelength Ao, resonance cross section g, upper-level lifetime 77 and
saturation intensity Js. The simple relation (1.1.53) for the saturation intensity holds for two-level systems

only and is not applicable in general [01Men)].

Ao oo Ty Js

(1] [m?] [s] [W/m?]
Amplifiers
CO2-gas (1300 Pa) 10.6 10720 107° 2 x 10°
Neodymium-ion in glass 1.06 4x 107 3x107* 8...12x 107
Neodymium-ion in YAG 1.06 5x 1072 2x 1074 2 x 107
Chromium-ion in AlyO3 0.69 2x 107 3x1073 2.4 % 107
(ruby, T = 300 K)
Neon (25 Pa) 0.63 3x107Y 1078 5.3 x 10°
Rhodamine 6G in ethanol 0.57 4x 10720 5x%x107° 10°
Absorbers
SFs 10.6 8 x 10722 4x107* 2.5 x 10°
KODAK dye 9860 1.06 4 %1072 ~ 1071 5.6 x 10!
KODAK dye 9740 1.06 6 x 10720 ~ 1071 4 x 10
Cryptocyanine-dye 0.7 5x 1072 5x 10710 2 x 10"

in methanol

Table 1.1.4. Typical values of the small-signal gain coefficient go = Angop in resonance. The exact values

depend on pumping, doping, and other parameters of operation [01Men].

System Ao [nm] go [m™1]
He/Ne laser 632.8 0.1
Nd-doped glass 1060 5
Nd-doped YAG 1060 50
GaAs-diode 880 4 x 10°
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-~

/ '\ Imy,~gain
I
I
Aw,
Rl A .
/ : -, Re y,~phase shift
L ..
- / .: N .‘l--.
* 0.‘ :..1 _—
* enas® @n Frequency @ Fig. 1.1.6. Real and imaginary part of

the susceptibility vs. frequency.

1.1.4.2 Small-signal solutions

The solutions for low intensities are discussed. Low means that the intensity J is small compared
with the characteristic parameter Js of the system (see Table 1.1.3).

At low intensities J < Jg, the inversion density is not affected by the intensity,

An = Ang ,
and (1.1.60) can be integrated. Together with (1.1.23), the complete field is obtained:

E(z) = Eo(0) expli(wt — nikoz) — %(a — Angyo)z] (1.1.61)
with a total refractive index n;

ocAng w — wa
=n, (1 . 1.1.62
nn<+nk M) (1.1.62)

The active atoms of the two-level system cause an additional phase shift or refractive index
and an additional absorption or amplification, depending on the sign of Ang. The small-signal gain
factor according to (1.1.30)/(1.1.50) is:

Go = explo(w)Angz] . (1.1.63)

Amplification, Gy > 1, requires inversion Ang > 0. The complex amplitude transmission factor A
is defined as the ratio of the monochromatic field amplitudes and can be written:

E()(Z) ,O'QA’n,O ACUA/Q

2 (w—wa)+iAwa/2 = (1.1.64)

It depends on the frequency of the field, which means dispersion. Time-dependent fields and espe-
cially short pulses are distorted by the amplifying system, pulse broadening and chirping occur.

1.1.4.3 Strong-signal solutions

The steady-state solutions are discussed for intensities which saturate the inversion, see Fig. 1.1.7.

The inversion now depends on the intensity. For the propagation of the intensity, (1.1.48c) gives
in steady state
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20 1.1.5 Adiabatic equations [Ref. p. 40

dJ
— =((J)—a)J 1.1.65
= () —0) T (1.1.65)
where g(J) is the saturated gain coefficient of (1.1.58a), (1.1.58b). For a homogeneously broadened
transition and without losses (v = 0) this equation can be can be integrated and provides a
transcendental relation for the gain factor G:

Go J(0)

e = exp T flw) (G-1) (1.1.66)

with Gg the small-signal gain factor of (1.1.62) and G the ratio of output/input intensities
G=J(2)/J(0).

For inhomogeneously broadened transitions a more complicated relation is obtained |81 Ver].

I
0 1 2 3 4

 » JO)s

Fig. 1.1.7. Saturation of the gain factor G for a homogeneously and inhomogeneously broadened transition.
1: G():l, 2. G0=4, 3 G()ZG.

1.1.5 Adiabatic equations

If the polarization is in equilibrium with the applied field, without transient oscillations of the
electronic system, the interaction is called adiabatic.

1.1.5.1 Rate equations

The field is replaced by the intensity, most spectral effects are neglected and the rate equations are
obtained. They represent an energy balance.

T5 is the time constant, which characterizes the transient behavior of the polarization. In most cases
(see Table 1.1.6) T3 is much smaller than T3, and the transient oscillations of the electrons can be
neglected. In (1.1.48a) the polarization is replaced by its steady-state value (1.1.50)/(1.1.51) and
the rate equations are obtained. They have to be completed by the time-dependent pump term, here
labeled as A ng. It depends on the specific pump scheme (see Sect. 1.1.5.3). The rate equations are
widely used in laser design to evaluate output power, spiking behavior and Q-switching dynamics.
The spontaneous emission contributes to the intensity of the interacting field, but only with a very
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small amount and is neglected here. Nevertheless it is important, because the laser is started by
spontaneous emission and in the lower limit it determines the laser band width (Chap. 5.1).

With these approximations the field equations (1.1.48a)/(1.1.48b)/(1.1.48c) for the interaction
with a monochromatic field reduce to one equation for the inversion density and a transport
equation for the intensity:

OAn _ Jf(w),  (An—Ang)

% =T An T , (1.1.67)
0 0

(E)z + i&'t) J=(Anogf(w)) J (1.1.68)

(rate equations for a homogeneously broadened two-level system and a plane monochromatic wave)
with
J(z,t): local intensity,

Js: saturation intensity, depends on the level system (2,3, or 4 levels), see Sects. 1.1.4.1/1.1.5.3,
An(z,t): local inversion density.

1.1.5.2 Thermodynamic considerations

So far the interaction with a monochromatic field of intensity J(w) was discussed. Now the in-
tensity is replaced by the spectral energy density p,, of black-body radiation, providing the Einstein
coefficients of spontaneous and induced emission.

Einstein published in 1917 his famous work on the quantum theory of radiation, where for
the first time induced emission was introduced, the cornerstone of laser physics. He discussed the
two-level system in equilibrium with thermal radiation of spectral energy density p, (energy per
volume and spectral range dw). The density is given by Planck’s law [61Mor]:

(1.1.69)

hw? 1 [VAS2 ]
po = 5

m2c3 exp [hw/KT) — 1 m?3
with
k = 1.38 x 10723 VAs/K: Boltzmann’s constant.

In thermal equilibrium the levels |¢1), |¢2) are populated according to Boltzmann’s law [61Mor]:

"2 _ exp[~hwa/KT] . (1.1.70)
ni

These two fundamental laws can only be fulfilled, if induced emission is introduced, and Einstein
postulated the following equation in steady state for the interaction of thermal radiation with a
two-level system:

Bz pun1 = Bai pu, n2 + A1 no (1.1.71)

(absorption = induced emission + spontaneous emission)

with
Bia, Bs1, Aoy Einstein coefficients of induced and spontaneous emission.

The transition of atoms from the lower level to the upper level by absorption of radiation must be
balanced by induced emission and spontaneous emission from the upper level. This equation was
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derived by thermodynamical considerations. The quantum-mechanical equation (1.1.67) delivers
in steady state, replacing An by no — ni and ng by ni + no, and furthermore taking into account

that for steady state without interaction holds Ang = —ng:
o o N2
J—n =J— — . 1.1.72
thnl thn2+ T ( )

This equation has the same structure as the Einstein equation. If the monochromatic intensity J(w)
is replaced by the spectral density p, and integration over the full spectral range is performed, a
relation between the Einstein coefficients and the atomic parameters is obtained. These relations
read in general for degenerated levels with weighting factors g1, g2 (degeneracies)
[00Dav]:

2
g2 |pal
By = 2= 1.1.73
127 127 h2egy ( 2)
2
g1 |pal
By = — 1.1.73b
2T 127 h2egq ( )
I a 2 Wi
s - L _o 1.1.74
T3 Al megohcd ( )
HA = K12 = M21 ,
)\2
Ugl(w) = ZAglh(w) 5 (1.1.75)
o12(w) = Lom(w) (1.1.76)
g1
ATy, N2 o
091 (wWa) = — — < — (holds for Lorentzian line shape), (1.1.77)
A Ty 4
Bi2gi = Ba19g2 (1.1.78)
A21 2ﬁw/3\
Aan_ 2hwR 1.1.79
B21 71'0‘3 ( )

The above relations were derived for isotropic media. Anisotropic media are discussed in [86Sie].
Equation (1.1.80) holds for all dipole transitions, as long as the quantum system is coupled to
a large number of modes (free space or a resonator with dimensions large compared with the
wavelength). With these equations the gain coefficient can be related to the Einstein coefficient of
spontaneous emission \\
> g2
g(w) = hlw,wa) [nz - = nl} Az (1.1.80)
91
with

h(w,wa) : the spectral line shape, depending on the type of broadening (see Sect. 1.1.6).

1.1.5.3 Pumping schemes and complete rate equations

The fundamental methods to obtain inversion are presented, discussing the idealized 3- and 4-level
system.

Till now a two-level system was discussed, assuming a steady-state inversion A ng, which is always
negative. To obtain positive inversion An = ns —n; > 0 and gain, additional levels are necessary.
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An > 0 is a state of non-equilibrium. To support this state, energy has to be pumped into the
system. This pumping energy can be incoherent light, kinetic energy of electrons/ions, chemical
energy or electric energy. The pumping schemes can become very complicated, and in most cases
many energy levels are involved. To understand the principal process for the generation of inversion,
two idealized pumping schemes will be discussed.

1.1.5.3.1 The three-level system

The simplified diagram of the three-level system is shown in Fig. 1.1.8. The level Ej is excited by
absorption of light or by electron collisions, depending on the specific system. The decay from FEs3
to Fs, the upper laser level, is very fast. Nearly all excited atoms are transferred into this level,
which has a very long life time. If the pumping power is sufficiently high to overcome the decay of
level Es, atoms will be accumulated and finally ns is larger than ny. The adiabatic rate equations
give for the upper-level population without induced emission between the two levels (J = 0):

dTLQ
dt

n

=W (ng —ng) — — . (1.1.81)
Ty

W is the pumping rate, the product of the cross-section 13 and the specific pump parameters. T}

is the upper laser-level lifetime. This holds under the assumption that the population of level Fs

is zero and that n; + ns = ng. Equation (1.1.81) reads with the inversion density An = ny —nq:

dAn ng—An

D —An) — 1.1.82
T =W (o= Am) = " (1182
and in steady state one obtains:
A Ngtes T —1
Nsteady,3 W, (1.1.83)

no _WT1+].

The relation between the inversion density and the pump rate is shown in Fig. 1.1.9. Inversion
occurs for WT7 > 1. With increasing pump rate the inversion increases also and approaches finally
one, all atoms are in the upper level. To obtain A ngeady,3 > 0 requires at least 50 % of the active
atoms to be pumped into the upper level, high pump rates are necessary and the efficiency is low.
Equation (1.1.82) has to be completed by the coherent interaction term of (1.1.67). The complete
rate equation for the three-level system with pump rate W, interacting with a monochromatic field
of intensity J is given in (1.1.84). For the intensity (1.1.48¢), (1.1.48d) hold, depending on the type
of line-broadening (Sect. 1.1.6).

Three-level system Four-level system
E;, ng=0 E;, ng=0
| A :l
E,, n, — E;, n,
pump pump laser
laser L E, n=0
Fo I o= 1y

Fig. 1.1.8. The idealized three- and four-level system.
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Four-level system

steady T~ +1

Three-level system

wrt, —*

-+ 1 Fig. 1.1.9. Inversion density vs. pump
rate for a three- and four-level system.

0An _ J f(w)

B no+An
ot Js Ty

Ty

An+W(ng—An)— (1.1.84)

(rate equation of a three-level system).

1.1.5.3.2 The four-level system

The commonly used pump scheme, due to its high efficiency, is the four-level system as shown in
Fig. 1.1.8. The two laser levels are E5 and E;, where the lower level F; has a very short lifetime
and its population ny is nearly zero. This requires that the energy E; — Ey is much larger than
the thermal energy xT. The pump level E3 decays very rapidly to the upper laser level Fy and its
population is again nearly zero. The inversion density now is An = ny — ny = no. Then the rate
equation for the pump process reads:

0An An

with the steady-state solution (without coherent interaction):

A Nsteady,4 o WTl

= . 1.1.86
L) 1+ WT ( )

Inversion is reached now at very small pump-power levels as shown in Fig. 1.1.9. The efficiency of
such systems is much higher than of three-level systems. The complete rate equation for pumping
and interaction with a field of intensity J is obtained by taking into account the corresponding
term of (1.1.67). It has to be considered that n; = 0, and therefore the saturation intensity is
higher by a factor of 2.

O0An J f(w) An
_ A _Ap) 2" 1.1.
57 Ta T n+ Wi(ng n) T (1.1.87)

(rate equation of a four-level system)
with

hw
Jsa = jf‘ :  saturation intensity of the four-level system.
Ool1
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1.1.5.4 Adiabatic pulse amplification

The amplification and shaping of light pulses by saturable two-level systems is presented.

The pulse is adiabatic if its width 7 is small compared with 77 and large compared with T5. Then
the variation of the upper-level population due to spontaneous emission and pump can be neglected
and this term can be neglected. If such a pulse travels through an active medium of length ¢, it
depletes the upper level, is amplified and shaped as depicted in Fig. 1.1.10. The initial conditions
at ¢ = —oo0 are:

Inversion density: An(z) =Ang, 0<z</.
Input intensity: Jo z=0.
Input energy: Fi z=0.

The equations (1.1.67)/(1.1.68) can be solved for a loss-free-medium (a = 0) with a four-level
system and yield for the output intensity [63Fra):

G
Jout (t) = Jin(t — £/c) 0 (1.1.88)
t—0/c
1
GO - (Go - 1) exXp | —— / Jin(t/)dtl
Es
— 00
The total output energy density Fo, of the pulse is
Eout = Estn[l + Go (exp (Ein/Es) — 1)] (1.1.89)
with the two limiting cases
G(Olain ) Ein < Es ) 1.1.90
out — Ei11+Es€nGO:Ein+%7 Ein > Es ( -1 )

with

Gy : small-signal gain factor, (1.1.63),
Ey = Js 4T : saturation energy density,
Ein out : input/output energy density.

Equations (1.1.88)—(1.1.90) also hold for saturable absorbers with Gy < 1. The pulse will be
shaped in any case and the peak velocity will differ from the phase- and group velocities.

Gy,
J 0%in
J out
input pulse J;, output pulse J,(t)
Jin amplifier 4
absorber—
— T—> ]
0 Fig. 1.1.10. Pulse amplification
¢ and shaping by a saturable ampli-

fier /absorber.
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1.1.5.5 Rate equations for steady-state laser oscillators

In the oscillator system, two counter-propagating traveling waves J*, J~ appear, see Fig. 1.1.11,
which are amplified by an intensity- and z-dependent gain coefficient according to (1.1.58a),
(1.1.58b):

% =1[g(J)—a] JT, (1.1.91a)
djz_ — () —a] I (1.1.91b)

For the two traveling waves the boundary conditions at the mirrors are:
JT(z=0)=J (2=0)Ry,
J (z=0)=J"(z=0Ry .

The combination of (1.1.91a) and (1.1.91b) yields [81Ver]:
J*(2)J (2) = const. ,

a useful relation for analytical solutions. The gain coefficient is saturated by both waves. In steady
state (1.1.84)/(1.1.87) hold with J = J* + J~, depending on the level system and on the type
of broadening. For homogeneous broadening a solution is given in n general, numerical
calculations are necessary. For optimization a diagram is offered in [92Koe]. The intensity rate
equations are very useful for laser design and optimization, but deliver no spectral effects such as
line width [58Schl [74Sar| [95Man|, mode competition [00Dav|, mode hopping
74Sar|, or intensity-dependent frequency shifts (Lamb dip) [64Lam]|. Multimode oscillation can be
described by rate equations with restrictions [64Stal, [63Tan! (93Sve].

< >

Mirror R, Mirror R,
A 0 Sk g
7 3
£ % %é — U
141 Z

. Fig. 1.1.11. The laser oscillator
with two counter-propagating

waves.

out,1
A . 0

N

1.1.6 Line shape and line broadening

Shape and width of the spectral response of the two-level system depend on the special stochastic
perturbation processes, in detail discussed by 1, . An easy-to-read introduction is given
by 00Day/.
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1.1.6.1 Normalized shape functions

Normalized line shapes are introduced, which determine the relative strength of interaction.

The line shape depends on the specific interaction process. Two standard line shapes, easy to
handle, are the Lorentzian and the Gaussian profiles [92Koe|, shown in Fig. 1.1.12. They can be

normalized differently.

Gaussian

/ Lo7ntzian

4 4
O— W)
A Fig. 1.1.12. Gaussian and
[0 . .
Lorentzian line shape.
1.1.6.1.1 Lorentzian line shape
(Awa/2)? 2
W, wp) = , hr(w,wp) = w,wa) . 1.1.92
fulw,wn) (w—wA)2+(AwA/2)2 L(wwa) nAwAfL( A) ( )
1.1.6.1.2 Gaussian line shape
W — WA 2 In2 2
= — In2 h =14/— . 1.1.93
o) =ex |- (524 ) ] he@ =22 ) (1.1.93)
1.1.6.1.3 Normalization of line shapes
+oo
fG,L(w = wA) = 1 5 fG’L(w = WA :|: AWA/Z) = 05 5 / hG7L(w,wA)dw = 1 . (1194)

—0o0
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1.1.6.2 Mechanisms of line broadening

1.1.6.2.1 Spontaneous emission

The spontaneous emission decay time 7%}, of quantum dot lasers can be influenced by the geometry
, but for all macroscopic laser systems it is equal to the free-atom decay and related to the
dipole moment (see Sect. 1.1.5.2). The line width of the power spectrum is Aw = 1/T, . The line
shape is Lorentzian for undisturbed systems.

1.1.6.2.2 Doppler broadening

In thermal equilibrium the particles in a gas have a Maxwellian velocity distribution of the veloc-
ity v:

2
ma mav</2
h(v) =/ 5 exp {KT/] (1.1.95)

with

map : atomic mass,
kT : thermal energy of the particles.

The resonance frequency of a transition is shifted by the Doppler effect
Aw=wav/cy .

Replacing the velocity in (1.1.76) by the frequency, delivers for the resulting spectral distribution
a Gaussian line shape (1.1.74) with the width

A wp kT In2
—= = — (1.1.96)
A mACy

Some numbers are compiled in Table 1.1.5.

Table 1.1.5. Doppler and collision broadening for a thermal energy of KT" = 1 eV. The Doppler broadening
refers to wa = 10'° s, the collision broadening holds for a pressure of p = 133 Pa (1 torr) [81Ver] [01Men].

Gas Doppler broadening Collision broadening
Awp [10% 57 Awc [107 s7Y

H> 5.6 2.8

He 4 1.3

Ne 1.8 0.8

COq 1.2 1.2

Ar 1.5 9

1.1.6.2.3 Collision or pressure broadening

Elastic collisions between radiating atoms imply no energy loss, but a discontinuous jump in the
phase of the emitted field. The average temporal length of the wave trains, in the undisturbed case
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given by the spontaneous life time T, is reduced to the collision time 7. The Fourier transform
of these shortened waves gives a Lorentzian line shape with the spectral width Awe = 2/7 or

Awe = —=— (1.1.97)

with

oc : collision cross section of the atom,
p: pressure of the gas.

The collision broadening is proportional to the gas pressure. Some numbers are given in Table 1.1.5.

1.1.6.2.4 Saturation broadening

A strong field of intensity J, comparable with the saturation intensity Js, depletes the upper laser
level. The gain is reduced according to (1.1.58a), (1.1.58b) and the gain profile becomes flatter and
broader with the spectral width (see Fig. 1.1.13) [81Ver]:

Awg ZAwA\/l—‘rJ/JS.

1.1.6.3 Types of broadening

The interaction of the field depends strongly on the type of broadening. Two idealized cases are
the homogeneous and the inhomogeneous broadening [00Dav].

1.1.6.3.1 Homogeneous broadening

All transitions have the same resonance frequency wa. The gain is saturated for all atoms in the
same way as given by (1.1.58a) and shown in Fig. 1.1.13. Examples for this type of broadening are:

— spontaneous emission,

— collision broadening,

— saturation broadening,

— thermal broadening in crystals by interaction with the lattice vibrations.

g(w)
Homogeneously Inhomogeneously

o wg

Frequency of the radiation field @

Fig. 1.1.13. Saturation of homogeneously and inhomogeneously broadened systems by a radiation field
of frequency w.
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1.1.6.3.2 Inhomogeneous broadening

Groups of atoms with spectral density h(wgr,wa) and different frequencies wa produce a resulting
line profile with center frequency wr and width A wg as shown in Fig. 1.1.14. A strong monochro-
matic field of frequency w interacts mainly with the group wa = w and saturates this particular
group. A dip appears in the profile, which is called spectral hole-burning. Examples of inhomoge-
neous broadening are:

— Doppler broadening,
— Stark broadening in crystals due to statistical local crystalline fields.

Wp  WR
B —————

Frequency o

Fig. 1.1.14. An inhomogeneously broadened profile.

The resulting line profile is a convolution of the individual group profiles and the broadening pro-
cess, which results in complicated integrals. The saturation process for inhomogeneously broadened
lines is quite different, as will be shown by a simple example. In this case (1.1.58a) holds only for
one group of atoms with the spectral density h(wa,wr). Integration over all groups results in the
total gain coefficient gi,p:

—+oo
Ginh (W, wr) = / flw,wa)h(wa,wr)dwy . (1.1.98)
If the width A wy is much smaller than the total width Awg, the function h(wa,wr) can be taken

outside of the integral at wa = w. Assuming a Lorentzian profile for the single group, (1.1.98)
becomes:

f(wa(“')A)
in =A h(w,
(o) = Aot | 7 e
and can be integrated:
Anoo'o HAWA A’nodo AWA
inh (W) = ——= h(w,w = w . 1.1.99
i) =~ W) T = 2B f() T (1.1.99)

The gain saturates slower than in the case of homogeneous broadening, but the maximum gain
is lower by the ratio of the line widths. Inhomogeneous gain profiles can also be caused by spatial
hole burning in solid-state laser systems. The standing waves between the mirrors produce an
inversion grating and holes in the spectral gain profile .

The spectral characteristics of lasers depend strongly on the type of broadening, see Fig. 1.1.15.
In steady state the gain compensates losses and the gain profile saturates to fulfill the condition
GRV = 1. A homogeneously broadened gain profile saturates till the steady-state condition is ful-
filled for the central frequency. The bandwidth A wy, j, is very small and depends on the thermal and
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Homogeneous broadening Inhomogeneous broadening

Aw| AW | inh

I
N

Total gain factor GRV

0 T T
()N —_— wRr

Frequency o

Fig. 1.1.15. Spectrum of an inhomogeneously and homogeneously broadened laser transition in steady
state. Total gain factor GRV vs. frequency of the radiation field.

mechanical fluctuations . In the case of solid-state lasers spatial hole burning will influence
the spectral behavior and can produce even for homogeneous transitions multi-mode oscillation
[66Men]. In the case of inhomogeneous broadening each spectral group of atoms saturates
separately and many modes will oscillate, which produces a large lasing bandwidth A wry, jnn. If
single-mode operation is enforced by suitable frequency selecting elements, the left — right and
the right — left traveling waves produce two symmetric holes, due to the Doppler effect. This effect
can be used for frequency stabilization (Lamb dip [64Lam]).

1.1.6.4 Time constants

The line profile of a real laser transition is in most cases a mixture of homogeneous and inhomoge-
neous profiles, depending on the temperature and the pressure. The following time constants are
used in literature:

Tsp: spontaneous life time,

Ty: upper-laser-level life time (energy relaxation time, longitudinal relaxation time),

T, : Stochastic processes broaden the line homogeneously. The inverse of the line width is the
dephasing time T5 .

Ty : The line is broadened inhomogeneously. The inverse of this line width Awg is the de-
phasing time T .

T>: For the resulting dephasing time (transverse relaxation time, entropy time constant),
approximately holds (depends on the line profiles):

1 1 1

R

Some examples of decay times are given in Table 1.1.6.

1.1.7 Coherent interaction

Radiation field and two-level system are two coupled oscillators. Without stochastic perturbations
the stored energy is permanently exchanged between these two systems.

If the interaction time of the radiation field with the two-level system is small compared with
all relaxation times, including the pump term, the stochastic processes can be neglected and
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Table 1.1.6. Spontaneous life time Ty, upper-laser-level life time T4, transverse relaxation time 7%,
homogeneous relaxation time 7, and inhomogeneous relaxation time T3 [01Iff] [92Koel [86Sie], [01Men|
Chap. 6].

Tsp [s] Ty [s] T, [s] Ty [s] 75 [s]
Neon-atom (He/Ne-laser), 1078 1078 3x107° 1078 4x107°
Ao = 632.8 nm, He (p = 130 Pa),
Ne (p = 25 Pa)
Chromion-ion, Ap = 694.3 nm,
Ri-transition in ruby
T =300 K 3x107° 3x107° 107" 107" 2x 1077
T=4K 4x107° 4x107° 2x107"7 3x107° 2x107"7
SFg-molecule, A\g = 10.5 pm, 1073 1073 6 x 107° 7x 1076 6x107°
p=0.4Pa
Rhodamin-molecule in ethanol, 5x107° 5x107° 10712 10712 -
singlet-transition, Ao = 570.0 nm
Neodymium-ion in YAG-crystal, 5x 1074 23x107*%  7x10712 - -

Ao = 1060 nm, T' = 300 K

(1.1.45a)/(1.1.45b) hold. This kind of coherent interaction is of strong interest in nonlinear spec-
troscopy [84Shel |86Sie| [71Laml| [72Cou], [01Men| Chap. 7] and confirmed by many experiments.
Examples of nonlinear coherent interaction are transient response of atoms, optical nutation, pho-
ton echoes, n m-pulses and quantum beats. Here only some very simple examples will be presented.
A more detailed treatment is given in [95Man)].

1.1.7.1 The Feynman representation of interaction

Feynman introduced a very elegant representation of interaction, which enables an easy-to-under-
stand visualization.

A very compact description of the two-level interaction was given by Feynman [57Fey|. The real
electric field is
1
E. o = 5 {Epexp[i(wt — kz)] + Efexp [—i (wt — kz)]} .
It generates a real polarization, (1.1.23), shifted in phase against the field:

1 . " .
Py rea = 3 {Paoexp [i(wt — kz)] + Phoexp [—i(wt — k2)]}
= C cos (wt — kz) + S sin (wt — kz2) (1.1.100)

with C, S real vectors:

1. N
C: (PAO+P*AO)7 Szil(PAO*PAO)

1
2

In the following an isotropic medium is assumed. Then ps, Pa and E are parallel and can be
treated as scalars. With these new real quantities the equations of interaction (1.1.45a), (1.1.45b)
become:
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R;= uAn, inversion

R
R,, sin-polarization
R;, cos-polarization
Fig. 1.1.16. In the case of coherent
interaction, the system is characterized
by its R-vector which rotates in the
polarization/inversion space with con-
stant length.
oC A—A*
at:_(;S_HMA.An< 5 ) , (1.1.101a)
a8 A+ A*
= =60 —up - A , 1.1.101b
” pa - An ( - ) (1.1101b)
0An A—A* A+ A*
— = —i 1.1.101
pA= 1C< 3 )+S< 3 ), ( 0lc)
where A is a complex quantity. Its modulus is called the Rabi frequency:
E
Az, t) = MAh 9 |4] : Rabi frequency . (1.1.102)

Two vectors R, F' are introduced:

A+A4  A-AF
i

R:(C7S7MAA’”‘):(R1)R27R3)7 F:( 2 3 2

76) :(F17F2>F3)-

The R-vector characterizes the state of the two-level system and can be depicted in an inver-
sion/polarization space, as shown in Fig. 1.1.16. R corresponds to the Bloch vector of the spin-1/2
system [46Blo|. The equations (1.1.101a), (1.1.101b) of interaction can be condensed to:

68—1: = [F x R] (coherent interaction) . (1.1.103)

Scalar multiplication of this equation with R results in:

<R8R> (R[FxR]) =0,

ot
which means that the length of the vector is constant during interaction:
|CP +1S1” + |ua Anf* = [Ro|* . (1.1.104)

The tip of the vector moves on a sphere in the inversion/polarization space with complicated
trajectories [69McCl, [74Sar} |69Ics|. The incoherent relaxation and pumping of the system can be
included in (1.1.103) by an additional relaxation term [72Cou].

1.1.7.2 Constant local electric field

If the amplitude Eq of the electric field is assumed to be constant, a very simple solution of the
rotating-wave equations is obtained with one main parameter, the Rabi frequency A.
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A . o
e g InversionAn  ,e** Polarization P,,
Time t
Fig. 1.1.17. Oscillation of inver-
- sion density An and polarization

amplitude Pao in resonance for a
constant local electric field.

For a constant electric field at a fixed position z the rotating-wave approximation has a periodic
solution. Inversion and polarization with the initial condition ¢ = 0, An = ng, Pag = 0 are:

An 62+ |A] cos Bt paFo
_ Al cospt o pako 1.1.1
= Lcon Bt = (1.1.105)
A
PAozno% %(l—cos at)+isinat| , B=+/02+]42. (1.1.106)

In resonance w = wa, d = 0, the inversion density A n and the amplitude P a( of the polarization
oscillate with this frequency, see Fig. 1.1.17. The real polarization P year 0f (1.1.100) contains the
frequencies wp + |A|. Some values of dipole moments are given in Table 1.1.2 to estimate |A.
Off resonance the temporal behavior of inversion and polarization is more complicated (optical
nutation) . If at ¢ = 0 all atoms are in the lower level (Ang = —ng) a complete inversion
is produced at ¢t = 7/|A| by a coherent field. It is called pulse inversion . At t =2/|4], all
atoms are again in the lower level, no energy transfer has taken place.

1.1.7.3 Propagation of resonant coherent pulses

For short pulses, T < Ty, the perturbations can be neglected. The solution of the complete interaction
equations (1.1.101a)—(1.1.101¢) for a propagating resonant pulse is rather simple.

The propagation of pulses in a two-level system is described by the rotating-wave approximation,
(1.1.45a)/(1.1.45b), and by the wave equation in the SVE approximation (1.1.28). The set of these
three non-linear equations is difficult to solve, only special cases will be discussed here. At ¢t = 0
the electric field Ej is assumed to be real, A = A*. In case of resonance, 6 = 0, (1.1.101a) delivers
C =0, R; = 0. The interaction equations (1.1.101b), (1.1.101c) reduce to

R =0,

ORy

2 _ Yy

at RS»
OR3

—=A .
ot Rz

The R-vector moves in the Ro-Rs-plane, see Fig. 1.1.18. If the angle 6 with the Rs-axis is intro-
duced, one solution of the above equations is:

RQZRQSiHQ,

Rs = —Ry cos 0
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v

Fig. 1.1.18. In resonance, 6 = 0, the R-vector of the two-
level system rotates in the Ra-R3-plane.

with

_ % _ HA Ey
ot h

(1.1.107)

Ry is given by the initial conditions at t = 0. The SVE-approximation of (1.1.28) then becomes:

0? 19? o 00 ua ko
(8taz+cat2>6__23t+ Ro sin 6, 7_nr€0h.

(1.1.108)

From 6 the amplitude Ey of the electric field can be calculated with (1.1.107)/(1.1.105).

1.1.7.3.1 Steady-state propagation of nm-pulses

Steady state means that a pulse is propagating with velocity v and constant pulse envelope
E(t,z) = Eo(t — z/v). The amplitude depends on one parameter w only:

w=t—2z/v
and (1.1.108) becomes:

d?0  acdf
(1—7) o —cho sin 6 . (1.1.109)
This equation is equivalent to the equation of the pendulum with friction in a gravitational
field. In the following examples two different initial conditions are assumed:

_ >0 (amplifier) ,
Ro = pa Ao { <0 (absorber) ,

which corresponds to the pendulum up or down at ¢ = 0.

1.1.7.3.1.1 2mt-pulse in a loss-free medium

A medium without losses (o = 0) interacts with a coherent pulse in resonance (6 = 0). The initial
condition is Ang(t = —00) = +Ang (Ang < 0, absorber). One steady-state solution is the 27
pulse, see Fig. 1.1.19, which corresponds to a local field of duration 7 = 27t/A. The leading edge
of the pulse produces an inversion and energy is transferred to the atomic system, the amplitude
is reduced. The trailing part of the pulse is then amplified by this inversion. In total the pulse
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2n — pulse

[~
. -‘. "-. * -
[—— | | —— ]
e “er s + Svee

Fig. 1.1.19. Propagation of 27- and 7-pulses in a two-level system.

has lost no energy, but is delayed in time. Such a pulse is only stable, if the broadband losses are
negligible and if the initial inversion is negative. The steady-state solution is:

exp [iw (t — z/c)]

E = Epe field) |, 1.1.110
peak ot — /o) ] D) ( )
E =2Vhw __Amo (peak amplitude) (1.1.111)
peak — 50(1 — C/U) p p ) M
2hwA
Jpeak = %C/nvoc (peak intensity) , (1.1.112)
1-— T:
Tor=27=2 A=¢/v)Ts (pulse duration) , (1.1.113)
goc
v = WCTQ/Tz (pulse peak velocity) (1.1.114)
with

go = Ango < 0: small-signal absorption coefficient,
c: phase velocity in the medium,
v : pulse peak velocity.

This two-level system is the most simple model of a saturable absorber, which in the case of
incoherent interaction absorbs the radiation. But the coherent 2m-pulse transmits the absorber
without losing energy. Therefore this effect is called self-induced transparency . The pulse is
characterized by three parameters: peak velocity v, peak amplitude Epcai and the width 75,. One of
these parameters can be chosen arbitrarily, the other two result from (1.1.112)/(1.1.113)/(1.1.114).
But the interaction is coherent only as long as To < T5.

1.1.7.3.1.2 m-pulse in an amplifying medium

A steady-state solution in an amplifying medium, initial condition An(t = —00) = Ang > 0, with
broadband losses (« # 0) is the 7-pulse [74Loy], see Fig. 1.1.19:

exp[iw (t — z/¢)]
cosh [(t — z/c)/T)]

E = Epeax (field) , (1.1.115)
h .
Epcark = E (peak amplitude) , (1.1.116)
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A 2
Jpeak = TOWTQ [%} (peak intensity) , (1.1.117)
T.=27=21T, & (pulse duration) . (1.1.118)
9o

The pulse propagates approximately with ¢, depletes at each position the upper level, and converts
this energy via the broadband losses « into heat. The saturated gain just compensates the losses.
The pulse is only stable for a > 0 and gy > 0.

So far solutions of the steady-state SVE-equation were presented, assuming resonance and
a homogeneously broadened two-level system. Off-resonance interaction and inhomogeneously
broadened systems are much more complicated and are discussed in detail in the literature
[74Sar] |691cs| [72Cou]. Moreover, the stability of the pulses with respect to small perturbations
was not yet mentioned. It is controlled by the area theorem .

1.1.7.3.2 Superradiance

The spontaneous emission was neglected in the coherent interaction. An initial state,
R = (0,0, 4 An), complete inversion, without external field F would be stable according to the
interaction equations (1.1.103). But due to spontaneous emission and amplified spontaneous emis-
sion, the R-vector will be pushed a bit out of equilibrium and decay into the stable position
R = (0,0, —pt A n). This phenomenon is called superradiance and discussed in detail in Chap. 6.2.

1.1.8 Notations

Symbol Unit Meaning

Aoy g1 Einstein coefficient of spontaneous emission
B Vs/m? magnetic induction

Bia, Boy m?/VAs? Einstein coefficient of induced emission
c As/m? component of the Feynman vector R
Co m/s vacuum velocity of a plane wave

c m/s phase velocity of light in a medium
€12 — coeflicients of the eigenvector

D As/m? electric displacement

E V/m electric field

E, V/m electric-field amplitude

Ei2 VAs energy eigenstates of the two-level system
By, VAs amplifier input energy

Eout VAs amplifier output energy

Eg VAs/m? amplifier saturation energy density
fw,wa) - line shape factor

G - gain factor

Go - small-signal gain factor

g m~! gain coefficient

90 m~! small-signal gain coefficient

91,2 - degeneracies of lower/upper laser level
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h m~! gain coefficient of a homogeneously broadened
transition

Jinh m~! gain coefficient of an inhomogeneously broadened
transition

H A/m magnetic field

H, A/m magnetic-field amplitude

Hy VAs Hamilton operator of the undisturbed transition

Hiy VAs Hamilton operator of interaction

h(w,wa) s line shape factor

7 A/m? current density

J Vs,/m? magnetic polarization

J VA /m? intensity

Jr, J- VA /m? intensity inside the resonator

Js, Jsa VA /m? saturation intensity of 2-; 3- and 4-level system

k m~! wave number

k m~! wave vector inside the medium

ko m~! wave vector in vacuum

L m geometrical length of the active medium

n - complex refractive index

Ty - real refractive index

no m—3 density of active atoms

n1,2 m—3 density of lower/upper population

PA real As/m? real polarization of the active atoms

Py As/m? complex polarization of the active atoms

Py As/m? amplitude of the complex polarization

Py As/m? complex polarization of the host material

R As/m? Feynman vector

R - = /R Rs, average mirror reflectivity

Ri» — reflectivity of mirror 1, 2

T m position vector

S VA /m? Poynting vector

T S upper-laser-level life time

Ty S dephasing time due to homogeneous broadening

Ty S dephasing time due to inhomogeneous broadening

Ts S resulting dephasing time

Tsp S spontaneous decay time

Tr, Ton S pulse duration of 7-, 2 7t-pulses

\% - resonator loss factor per transit

v m/s pulse peak velocity

Z V/A impedance

Zy V/A vacuum impedance

« m~! absorption coefficient

XA - susceptibility of the active atoms

Xe — electric susceptibility

XH - susceptibility of the host material

Xm - magnetic susceptibility

) 51 detuning

An m—3 inversion density

JA m~2 transverse delta-operator

Awa s1 line width of homogeneous broadening

Awc 5! line width of collision broadening
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A wr -1 line width of inhomogeneous broadening
A wsg -1 line width of saturation broadening

A wr, inh, Awr, b

Ho
12, K21
L7

0

Pw
o(w)
Oe
o]

r

w
WA

WR
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o
8.8542 x 10712 As/Vm

1.38 x 1072 VAs? /K
m

g1

47 x 1077 Vs/Am
Asm
Asm

VAs? /m?
m2
A/Vm

2

m

lasing bandwidth of inhomogeneous/homogeneous
transitions

permittivity

electric constant

state vector of the two-level system
eigenfunctions of the two-level system
Boltzmann’s constant

vacuum wavelength

Rabi frequency

permeability

magnetic constant

= pa, dipole moment of the two-level transition
dipole moment of the two-level transition

beam divergence, slope of the Feynman vector
spectral energy density (per dw)

cross section of the two-level system

electric conductivity

cross section of the two-level system in resonance
pulse width

frequency of the radiation field

resonance frequency of the homogeneously
broadened transition

resonance frequency of the inhomogeneously
broadened transition
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