| |
RSC_LEARN reduced set construction - learning pre-images
|
a = rsc_learn(alg,hyper)
generates a rsc object, using the learning pre-images method
hyperparameters:
child=svm algorithm worked on
rsv=.5 if rsv e [0,1): #rsv = #sv * rsv
if rsv > 1: #rsv
ridge=1e-5 ridge for ridge regression
rr_k=rbf,1 kernel for regression estimation
model:
alpha new alphas for rs-vectors
Xsv rs vectors
stats:
w2=0 final value of ||w-w*||^2
delta_w=0 total decrease in ||w-w*||^2
dw=0 run through delta_w
methods:
train constructs a reduced set, returns trained rs-machine
test tests new rs-machine on supplied data
example:
d=gen(toy2d('2circles','l=100'));
[r,a]=train(svm({kernel('rbf',1),'C=10000','alpha_cutoff=1e-2'}),d);
[r,a2]=train(rsc_learn(a,'rsv=.9'),d);
test(a2,d,loss)
author: goekhan BakIr, philipp berens
reference: learning to find pre-images, G. BakIr, 2004