
f is the focal length of the lensP
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We go to the thin lens and set d = 0
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P23 =(-1/r2)( n3 -n2)/n3P12 =(-1/r1)( n2 -n1)/n2

The special case of the thin lens matrix.
We start with the symbolic calculation of two surfaces at distance d 

Thin lens matrix

G23SYMB3M



With P12 =(-1/r1)( n2 -n1)/n2 P23 =(-1/r2)( n3 -n2)/n3

we obtain for 1/f =-((-1/r2)( 1 -n2) + (-1/r1)( n2 -1) )

and have finally fo the thin lens matix
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