
Irradiance Particles

mental ray – irradiance particles

Document version 1.0
December 4, 2007

Irradiance Particles

Copyright Information
Copyright c 1986-2007 mental images GmbH, Berlin, Germany.
All rights reserved.

This document is protected under copyright law. The contents of this document may not be
translated, copied or duplicated in any form, in whole or in part, without the express written
permission of mental images GmbH.

The information contained in this document is subject to change without notice. mental images
GmbH and its employees shall not be responsible for incidental or consequential damages
resulting from the use of this material or liable for technical or editorial omissions made
herein.

mental images®, mental ray®, mental matter®, mental mill™, mental queue™, mental q™,
mental world™, mental map™, mental earth™, mental™, Reality™, RealityServer®,
RealityPlayer®, RealityDesigner®, MetaSL™, Meta™, Meta Shading™, Meta Node™,
Phenomenon™, Phenomena™, Phenomenon Creator™, Phenomenon Editor™, Phenomill™,
Phenograph™, neuray™, iray®, imatter®, Cybernator™, 3D Cybernator™, Shape-By-Shading™,
SPM®, NRM™, and rendering imagination visible™ are trademarks or, in some countries,
registered trademarks of mental images GmbH, Berlin, Germany.

Other product names mentioned in this document may be trademarks or registered trademarks
of their respective companies and are hereby acknowledged.

Irradiance Particles

Introduction

Irradiance Particles is the name of a new method to calculate global illumination
in mental ray, with significant advantages compared to other algorithms.
The most important are:

 - Easy set up
 - Fast, compared to other algorithms

This document gives a short Introduction to Irradiance Particles.
You will get an idea of the basic concept and learn how to setup and tweak
a simple scene with Irradiance Particles in mental ray.

Basics

Computing global illumination with irradiance particles is split in different passes.
Before rendering starts, importons are shot from the camera into the scene.
These importons are collected as a new kind of particles, called
“irradiance particles”, which actually hold information about the direct illumination
coming at their position and possibly the indirect one as well, hence the name
“irradiance”.
The particles are organized in a structure called “particle map”.
Depending on how many light bounces we choose to include, several other
passes are processed to also include the indirect irradiance to these particles.
If interpolation is used, a final preprocessing step is done in which irradiance is
collected for every irradiance particle in order to be used later during rendering.
After this preprocessing is done, the particles are possibly saved in a file.
During rendering, this particle map is used to estimate the indirect illumination
(the irradiance) for every shading point.

Irradiance Particles

Set up the scene

Render the Scene, shipped with this tutorial.

The room is quite dark,
it is only lit by the sun.
(direct illumination only)

relative rendering time: 1

Insert the line:
"irradiance particles" on
into the options block and render again.

This line activates the "irradiance particles"
with default settings.
The room is far more lit, because there is one
indirect illumination pass included.

rrt: 5

Of course there are other string options related to "irradiance particles".
The most important are:

"irradiance particles indirect passes" int default 0
"irradiance particles rays" int default 256
"irradiance particles scale" scalar default 1.0

"irradiance particles interpolate" string default "always"
"irradiance particles interppoints" int default 64

"irradiance particles env" bool default on
"irradiance particles env scale" scalar default 1.0
"irradiance particles env rays" int dynamic default

"irradiance particles file" string default ""
"irradiance particles rebuild" bool default on

Most of them are quite easy to understand, but to get a feeling, it is always a
good idea to play with them.

Irradiance Particles

Rays

The "irradiance particles rays" option determines how many rays are shot
from a point to gather the illumination information.
The contribution of these rays is then averaged, which means:
The more rays are shot the more accurate is the light situation.
First, without interpolation:

“irradiance particles rays” 2
"irradiance particles interpolate" “never"

“irradiance particles rays” 256
“irradiance particles interpolate” “never”

rrt: 29

“irradiance particles rays” 512
“irradiance particles interpolate” “never”

rrt: 45

Irradiance Particles

The First thing that is obviously is that rendering times are very long.
This is because interpolation is switched off, which in fact forces mental ray
to estimate the irradiance by shooting rays at every shading point (the number of
rays to shoot is given by the "irradiance particles ray" string option).
This is the most precise way to calculate indirect illumination with
irradiance particles, but also the slowest.

The first image is very noisy.
At every shading point, mental ray looks in just 2 directions for irradiance
particles, which is far too few.
For the third image mental rays samples the particle map with 512 rays at every
shading point, this is why it took 45 times longer than the original image
(the one rendered without irradiance particles).
We can greatly reduce this time, by using interpolation.

Interpolation

There are two string options related to interpolation:

"irradiance particles interpolate" "always" / "never"
"irradiance particles interppoints" int

Interpolation is enabled by setting "irradiance particles interpolate" to
"always" and disabled by setting it to "never", as it was done in the chapter
“Rays”.

With interpolation mental ray adds an extra final irradiance pass in the
preprocessing step in which it samples the particle map to gather the illumination
information for each one of the irradiance particles, which will be later used as
interpolation points.
When mental ray has to compute the irradiance at a shading point during
rendering, it looks for the n closest irradiance particles, where n is the number,
given in the "irradiance particles interppoints" string option and computes
the weighted sum of those irradiances.
This is clearly much faster than tracing the rays for every shading point.

If the same scenes are rendered but this time with interpolation on by setting
"irradiance particles interpolate" option to "always",
The results differ, also in rendering times.

Irradiance Particles

“irradiance particles rays” 2
“irradiance particles interpolate” “always”

rrt: 7

“irradiance particles rays” 256
“irradiance particles interpolate” “always”

rrt: 8

“irradiance particles rays” 512
“irradiance particles interpolate” “always”

rrt: 11

Factor 8 for the second image is nice, we take it.

Irradiance Particles

Now a good number of interpolation points should be found.
Until now always 64 interpolation points, the default, are used,
but what happens if this parameter is varied.

“irradiance particles interppoints” 3
“irradiance particles rays” 256
“irradiance particles interpolate” “always”

rrt: 6

“irradiance particles interppoints” 64
“irradiance particles rays” 256
“irradiance particles interpolate” “always”

rrt: 8

“irradiance particles interppoints” 256
“irradiance particles rays” 256
“irradiance particles interpolate” “always”

rrt: 12

Irradiance Particles

As one can see 3 points (the minimum) are far to less, the image get artifacts
resulting from the fact that the irradiance at a shading point is computed by
building the weighted sum of just these three points.

These artifacts are gone if we use 64 interpolation points because every single
interpolation point contributes less irradiance to the result.
Increasing the number of points only results in longer rendering times.

The trick is, to use enough Interpolation points, to not get artifacts, but not using
too many, otherwise a lot of detail gets lost (and it takes longer).
The default 64 works quite well for most scenes.

Environment

Irradiance Particles are also able to gather light information from environment
shaders.
There are 3 parameters related to the environment.

"irradiance particles env" bool default on
"irradiance particles env rays" int dynamic default
"irradiance particles env scale" scalar default 1.0

The first option enables/disables the environment for irradiance particles, the
second is the number of rays to be used to evaluate the irradiance coming from
the environment.
The dynamic default for "irradiance particles env rays" means that it is by
default the same number that is set with the "irradiance particles rays"
string option.
It is there for fine tuning reasons.
This default works well for outdoor scenes, but for indoor scenes, where the
environment is only seen through a window, it is better to just increase the
"irradiance particles env rays" and leave the "irradiance particles rays"
value as it is, or set "irradiance particles env" off and use a portal light
instead.

