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Disclaimer

This tutorial was built upon teaching material for courses on advanced remote 
sensing, delivered by Dr. S. Lang and Prof. T. Blaschke between 2002 and 
2006. Explanations are partly quotes from literature.

Its purpose it to give an introduction to the emerging field of object-based image 
analysis and to provide a comprehensive overview of methods involved and 
the respective background. 

The tutorial is available as ‘slide set only’ or ‘slide set with additional text notes’. 
Both are provided in PDF (Acrobat® Reader® required for display).  

Dissemination of this Version 1.0 of the OBIA Tutorial is free. Please obey ‘fair-
use’ conditions as being commonly understood.

We gratefully acknowledge the financial support from Definiens AG 
(www.definiens.com), which was granted for the compilation of this tutorial.

Contact

Dr. Stefan Lang
Centre for Geoinformatics
Schillerstr. 30, Bauteil XV, 3. Stock
5020 Salzburg
+43.662.8044.5262
stefan.lang@sbg.ac.at

"Please cite the tutorial as follows

Lang S, F Albrecht & T Blaschke (2006) 
OBIA-Tutorial – Introduction to Object-
based Image Analysis, V 1.0 – Salzburg.



3

Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | 
 stefan.lang@sbg.ac.at

OBIA OBIA --
TutorialTutorial Slide 3 / 96

Table of Contents

� Chapter 1 – Image interpretation and 
perception

� Chapter 2 –Basic concepts of hierarchy 
theory

� Chapter 3 – Knowledge representation
� Chapter 4 – Image segmentation
� Chapter 5 – Object-based classification
� Chapter 6 – Accuracy assessment

Chapter 1 – Image interpretation and perception
Visual perception; Image context and experience; Pixel- vs. objects; 
Visual delineation vs. machine-based segmentation 

Chapter 2 – Basic concepts of hierarchy theory
Relevance of multi-scale representation; Scales and scaled 
representation; Decomposition and holarchy; Multi-scale approach 
with remote sensing; Hierarchical patch dynamics paradigm

Chapter 3 – Knowledge representation
What is knowledge? Cognition networks; Image understanding; 
Production systems vs. adaptive learning

Chapter 4 – Image segmentation
History; Image segmentation in remote sensing; Segmentation 
algorithms; Scale space analysis ; Multi-resolution segmentation

Chapter 5 – Object-based classification
Introduction; Available features for classification; Sample- vs. rule-
based classification; Fuzzy classification; Class hierarchy; Class-
related features; Strengths of object-based classification

Chapter 6 – Accuracy assessment
Definitions; Non-site specific vs. site-specific accuracy assessment;
Error matrix; Object-based accuracy assessment



4

Centre for Geoinformatics, Salzburg University

OBIA – Tutorial
Introduction to object-based image analysis

Chapter 1
Image interpretation and perception



5

Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | 
 stefan.lang@sbg.ac.at

OBIA OBIA --
TutorialTutorial Slide 5 / 96

Outline

� Visual perception
� Image context
� Role of experience
� Pixel- vs. object-scope
� Using objects
� Visual delineation vs. machine-based 

segmentation

The first chapter introduces basic ideas behind object-based image analysis (OBIA). The 
way how human beings perceive imaged information will be covered and we will talk 
about the role of experience in image interpretation. In this context, the advantages of 
object-based image interpretation compared to a pixel-based approach will be pointed 
out.
When using a computer for classifying an image we transfer our knowledge to the 
machine and make it trying to imitate certain characteristics of the human way of image 
interpretation. In this respect, and in particular when going beyond spectral cues of 
certain geographical features, a pixel-based classification approach (i.e. treating single 
pixels individually) is limited. An object-based approach instead does support 
considering spatial characteristics of geographical features explicitly. Form-related as 
well as hierarchical (i.e. scale-related) characteristics can be addressed. We therefore 
are at the interface between remote sensing and GIScience. But, as we will see later, 
also the object-based approach has its limitations. Still, our human perception is an 
ultimate benchmark, still undefeated in analyzing complex scene contents with ease. 
Thus, this chapter starts with a short discussion how we perceive the contents of 
images. An example is given that shows that the content of a picture file can only be 
recognized given data are coded in the right way. Only then we perceive patterns of 
color and form, structured in various levels throughout the image. The example shows 
that the content of an image appears in several scales. The difference between the 
human way of image interpretation and the way how image data are represented as 
pixels becomes obvious. The human eye sees much more than only different colors, it 
also perceives shapes, texture and the spatial arrangement of certain elements. Our own 
experience influences image interpretation and each of us sees the image in a different 
context. The context we apply depends on the degree familiarity with nadir-looking 
satellite imagery or aerial photographs, their different band combinations, and our 
knowledge about the depicted image content. Gaining experience is a basic prerequisite 
for skilful image interpretation.
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Visual perception

The following example illustrates that data is only valuable for us if coded in the right 
way. Numbers alone can hardly be interpreted beyond their immediate meaning and 
transforming rows of number to a ‘picture’ is nearly impossible for the human brain. Even 
if coded into (arbitrary) colors, as shown in the following slide, it does not make much 
difference. Only if there is proper link between coding and color scheme, information is 
conveyed successfully (see slide after).

n » Compared to a scene being represented in pixels the human way of image interpretation is 
quite different (Pinz, 1994) even if we see single pixels in an image due to a bad resolution we 
refuse to perceive them. Usually – when looking at an image – we perceive a complex pattern of 
colour and form, structured in various levels throughout the image. Fine structured features appear 
but we simultaneously aggregate them into larger ones. That means that the content of a scene 
appears in several scales at the same time. To illustrate this, an example is given showing an array 
of grey-scaled pixels. In spite of the bad resolution and the limited number of grey scales, it is 
possible to convey enough information to recognize a face! The specific arrangement of perceived 
parts of the face and clothing makes it easy to assign the face to a well-known person. A blurred 
sight imitates smoothing (suppression of high frequencies). All in all, (exactly) two scale domains 
are visible, namely the one of the face, and the one of its constituting parts (like eyes, nose, beard, 
hair, forehead). « (Lang, 2005, p.39)
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Visual perception (2)
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Visual perception (3)
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contrast b/w and shape:
“black line in white area”

contrast b/w and shape 
(elongated but acute):
“certain stripes pattern
Î zebra”

mainly shape (pattern 
suppressed): “chair with 
zebra pattern”

Image context

Similarly, we can illustrate the role of image context and, in addition, the power of 
a given spatial arrangement. The picture above, far left, shows a feature which 
can be interpreted as a piece of a black line on a white background.
As soon as there is more context provided, we can see that the black area is 
indeed a small section of a line which belongs to a striped pattern that we 
recognize as the fur pattern of a zebra. 
Hmm, sorry, the last picture makes us rejecting all our previous ideas and there 
is no way in ignoring that there is a chair with a zebra-like cover!
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Role of Experience

� Human vision is well adapted for complex image 
interpretation tasks

� Experience built up since early childhood
� But human vision is challenged when dealing with remote 

sensing imagery:
� Applying an overhead view
� Dealing with spectral characteristics beyond the visual spectrum
� Working with unfamiliar scales and resolutions

-> Experience is an important prerequisite for skillful and 
successful interpretation 

Aster; green, red, infraredQuickbird; bands 3,2,1 Quickbird; bands 4,3,2 Color Photo

Images of the Fortress in Salzburg, Austria

n » We can hardly describe exactly what really happens if we look at an image and suddenly 
‘see’ something. But indeed we notice that we do any kind of pattern recognition without major 
effort (Eysenck and Keane, 1995; Tarr and Cheng, 2003). Human perception is a complex matter 
of filtering relevant signals from noise, a selective processing of detailed information and, of 
course, experience. « (Lang, 2005)
o » Three issues distinguish interpretation of remotely sensed imagery from interpretation 
conducted in everyday experience. First, remotely sensed images usually portray an overhead 
view – an unfamiliar perspective […]. Second, many remote sensing images use radiation outside 
the visible portion of the spectrum […]. Finally, remote sensing images often portray the earth’s 
surface at unfamiliar scales and resolutions […]. Students cannot expect to become proficient in 
image analysis simply by reading about image interpretation. Experience forms the only sure 
preparation for skillful interpretation. « (Campbell, 2002)
p » When starting with manual air-photo or satellite image interpretation we notice that a lot of 
experience is required. It mostly needs training to match the imaged false colour schemes with 
natural phenomena and to understand certain texture or structures and the imaged features. 
Unfortunately, even long time learning cannot prevent us from facing ambiguity when features 
are very like in structure or colour. According to recent findings in brain research (Spitzer, 2000; 
Churchland, 2001) signal processing by any of our senses is based on vector coding of signals in a 
high-dimensional feature space. It remains a challenge to find out more about the vector axes 
being used when we interpret signals through our senses. ‘Experience’ means a tighter allocation 
in our multidimensional feature space. « (Lang, 2005)
q » Note that the domain of interest of a skilled interpreter may differ from that of a simple user; 
the experience of the former makes him specifically look for certain features, whereas the latter is 
mainly interested in the information he wants to obtain. « (Lang, 2005)
r » Nevertheless, human photo-interpreters also implicitly use structural knowledge in the 
manual classification process. They do not only consider contextual information but also 
information about the shape of and the spatial relations between the image regions. « (Blaschke, 
2003)
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municipal park
• spectral properties
• specific spatial 
context

river
• spectral properties
• specific form/shape

Pixel- vs. object-scape

From Definiens, 2004

When looking at an image we see several different features that we can describe by 
looking at their properties. 
For example the river in the figure above, left, has specific spectral values and we by its 
form can distinguish it from other features (e.g. lakes) that have similar spectral values. 
Another example is a municipal park. Although spectrally similar to grassland we can 
identify them as parks because they are placed inside urban areas. How can we tell the 
computer to classify these features properly? By utilizing spatial context and form. 
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� ‘picture element’
� integrated signal
� treated individually, 

no matter where 
located

Pixel- vs. object-scape (2)

An average Landsat scene with a size of 141 km² and a spatial resolution of 30 m is 
composed by some 22 million pixels per band. The number of panchromatic pixels (15 m 
resolution) increases to 88 million. An Ikonos scene covering 11 km² is built up by 
approx. 7.5 million pixels (four bands, 4 m resolution) and 121 million panchromatic 
pixels. No matter, which resolution, a pixel is always an integrated signal of reflection 
emitted by the observed underlying features (mixed pixel effect). Since usually 
neighboring pixels over a certain range have similar signals (spatial autocorrelation), it is 
kind of inappropriate and also ‘uneconomically’ to treat each of them individually.
n » A digital image is composed of many thousands of pixels (“picture elements”), usually each 
too small to be individually resolved by the human eye. Each pixel represents the brightness of a 
small region on the earth’s surface recorded digitally as a numeric value usually with separate 
values for each of the several regions of the electromagnetic spectrum. « (Campbell, 2002)
o » For the remotely sensed data classification, many classifiers based on the spectral analysis of 
individual pixels have been proposed and significant progress has been achieved. However, these 
approaches have their limitations since most remote sensing image classification techniques are 
based on per-pixel procedures (Blaschke & Strobl, 2001). They analyze pixels mainly using 
multivariate statistics. So the current results still cannot compare with human photo-interpreters. «
(Blaschke, 2003)
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Pixel- vs. object-scape (3)

� Pixel-based classification process

� Problems
� Spectral values belong to more than one information class
� No spatial relationships used in classification
� Pixel artificial spatial unit
� ‘Artifacts’ (salt-and-pepper effect)

Raw image
Feature space

Classified image
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n » By comparing pixels to one another, and to pixels of known identity, it is possible to 
assemble groups of similar pixels into classes that are associated with the informational categories 
of interest to users of remotely sensed data. These classes form regions on a map or an image, so 
that after classification the digital image is presented as a mosaic of uniform parcels, each 
identified by a colour or symbol. These classes are, in theory, homogeneous: pixels within classes 
are spectrally more similar to one another than they are to pixels in other classes. In practice, of 
course, each class will display some diversity, as each scene will exhibit some variability within 
classes. « (Campbell, 2002)
o » The traditional method for analysis of EO data in landscape research is the classification of 
pixels based on pixels in the same land cover class being close in spectral feature space. This does 
not hold true for complex environments and their respective classifications. « (Burnett & 
Blaschke, 2003)
p » Sometimes such [pixel-based] classifiers are referred to as spectral or point classifiers 
because they consider each pixel as a “point” observation (i.e., as values isolated from their 
neighbours). Although point classifiers offer the benefits of simplicity and economy, they are not 
capable of exploiting the information contained in relationships between each pixel and those that 
neighbour it. « (Campbell, 2002; page 319f.)
q » As Townshed et al. (2002) point out, a significant, but usually ignored problem with per-
pixel characterization of land cover is that a substantial proportion of the signal apparently 
coming from the land area represented by a pixel comes from the surrounding pixels. This is the 
consequence of many factors including the optics of the instrument, the detector and the 
electronics, as well as the atmospheric effects. An alternative is to use contextual procedures in 
which observations from surrounding pixels are used to assist the characterisation. Although it 
might be desirable to integrate neighbourhood information continuously or in a fuzzy way, one 
operational method to work with relatively homogeneous areas is image segmentation, i. e. the 
use of image objects. « (Blaschke & Strobl 2001)
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Pixel- vs. object-scape (4)

Limitations of pixel-based analysis 

considering
� Colour (spectral reflectance in

n Bands)
� Texture (certain environment, 

e.g. 3*3 pixels)

but not
� Form & shape
� Neighbourhood
� Context
� Levels

n » Human interpreters could derive little information using the point-by-point approach, because 
humans derive less information from the brightness of individual pixels than they do from the 
context and the patterns of brightnesses [i.e. texture], of groups of pixels, and from the sizes 
shapes and arrangements of parcels of adjacent pixels. « (Campbell, 2002)
o » Human photo-interpreters also implicitly use structural knowledge in the manual 
classification process. They do not only consider contextual information but also information 
about the shape of and the spatial relations between the image regions. […] One way to make use 
of this additional information is to organize the image into objects that represent regions of similar 
pixels prior to the classification. […] In most cases, information important for the understanding 
of an image is not represented in single pixels but in meaningful image objects and their mutual 
relations. « (Blaschke, 2003)
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Using objects 

� Relation between 
target objects and 
spatial resolution
� Increasing 

importance of VHR 
EO data 

� High level of detail 
provides extended 
set of  target classes

� Addressing these 
target classes in a
Landsat-imagery 
would fail

n » To extract objects of interest, the statistical analysis of pixels exclusively based on their 
spectral statistic is not sufficient. As laid out in several recent publications (Blaschke, Strobl 2001; 
Ehlers et al., 2002; Flanders et al. 2003), the advent of higher resolution image data increased the 
need for more efficient methods more than ever. Generally, for high resolution data, segmentation 
as a pre-classification step is preferred over pixel based classification because the resulting 
division of space tends to involve fewer and more compact subregions. « (Blaschke, 2003)

o » Segmentation approaches are generally more suitable for high resolution data, where pixels 
tend to be spatially clumped. « (Blaschke, 2003)

p » For example, in a 1.0-m-resolution image of a forest canopy, where each tree crown exhibits 
a 10-m diameter, each crown image-object will be composed of many pixels. In this situation 
each 1.0 m pixel will be part of an individual crown. […] As a result, an image-object tends to be 
composed of spatially clustered pixels that exhibit high spectral autocorrelation because they are 
all part of the same object. Consequently they have similar gray values. These characteristics 
correspond to Tobler’s first law of Geography where ‘objects are related to all other objects, but 
proximal objects are more likely to be related to each other’ (Tobler 1970). In an image-object, 
this relationship is both spectral and spatial. « (Hay et al., 2003)
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Using objects (2)

Manual
delineation 

(‚Bog‘) 

Pixel-based
classification

Object-based
classification

Landsat ETM image of a small bog system in Southern Germany (top), pixel based 
classification (lower left), segmentation-based classification (lower right).

n » The Figure illustrates the main difference when building objects prior to the classification 
process. Some degree of generalization is applied in this phase. For many applications, e.g. land 
cover mapping, generalization is intrinsically required to produce tangible target objects of the 
same class which are relatively homogenous according to the class definition. « (Blaschke, 2003)

The ‘salt-and-pepper-effect’ occurs, if there are many pixels classified differently but 
actually belonging to the same land cover type (here: bog). This may result in a 
unnecessarily detailed classification of the land surface. It can be overcome by 
segmentation (i.e. grouping the similar pixels first), followed by classification.
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� Meaningful objects
� Improved reliability of statistics
� Several measurements (pixels) per object
� Clear boundaries

� Augmented, uncorrelated feature 
space
� Texture within objects, shape,

neighbours, hierarchy

Using objects (3) 

DN

CT

0

n » The basic elements of an object-oriented approach are image objects. Image objects are 
contiguous regions in an image. We distinguish between image object primitives and objects of 
interest. Only objects of interest match real-world objects, e.g. the building footprints or whole 
agricultural parcels. Object primitives are usually the necessary intermediate step before objects 
of interest can be found by segmentation and classification process. The smallest image object is 
one pixel. Image objects can be linked to a hierarchical network, where they are attributed with a 
high-dimensional feature space. [...] Within an image object all kind of statistics based on single 
input layers or combinations within the input image layer stack can be computed, e.g. the ratio of 
the mean values of two input channels A and B. [...] Using image objects to calculate this statistic 
instead of boxes of pixels improves the reliability of statistic without smearing edges, since 
objects do not exceed edges. Of course homogeneous areas of mixed pixels can’t be resolved. In 
ideal cases, this mixture would be detected since it is not matching the signatures of pure classes 
and therefore result in a reduced reliability of object classification. [...] Advantages of object-
oriented analysis are meaningful statistic and texture calculation, an increased uncorrelated feature 
space using shape (e.g. length, number of edges, etc.) and topological features (neighbour, super-
object, etc.), and the close relation between real-world objects and image objects. This relation 
improves the value of the final classification and cannot be fulfilled by common, pixel-based 
approaches. « (Benz et al., 2004)
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Using objects (4)

� Î Integration of
Remote Sensing and
GIS 

� GIS users are ‘used to’
polygon environment

� Aggregation of 
information (highly 
textured images like VHR 
data or radar)

� Modelling of scale-specific 
ecological processes 
through multi-scale 
representation

n » Remotely sensed data are a crucial source for GIS users. From the GIS user‘s perspective a 
polygonal structured image representation is like mother tongue. […] Making use of the objects’
attributes and spatial relations brings geographical concepts that are basic to GIS into the field of 
Remote Sensing. […] We argue for a somewhat different handling of our entities introducing the 
concepts of neighborhood, distance and location. All these concepts are not new. In fact, entire 
disciplines like Geography are based on these concepts. The question therefore is: Why are 
remote sensing and digital image processing still so much focused on the statistical analysis of 
single pixels rather than on the spatial patterns they build up? « (Blaschke, Strobl, 2001)

o » GIS analysis is usually dominated by an investigation of the horizontal relationships of (map) 
objects. […] High-resolution image data carry information in a fine scale resolution and in 
aggregated super-levels at the same time. […] Nested relationships in a systemic hierarchy are 
needed. « (Lang, 2005)
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� Problems occurring with visual delineation visually 
(may be solved via segmentation):
� selection of appropriate levels of generalization
� Individual delineations
� placement of boundaries when there 

is a graded transition

� Problems that challenge machine-
based segmentation:
� Delineating conceptual boundaries 

(e.g. the ‘outline’ of an orchard, 
see below)

Visual delineation vs. machine-based segmentation 

Several possibilities for the 
delineation of ‘Forest’

n » The interpreter must often delineate, or outline, regions as they are observed on remotely 
sensed imagery. The interpreter must be able to separate distinct areal units that are characterized 
by specific tones and textures, and to identify edges or boundaries between separate areas. Typical 
examples include delineation of separate classes of forest or of land use – both occur only as areal
entities (rather than as discrete objects). Typical problems include: (1) selection of appropriate 
levels of generalization (e.g., when boundaries are intricate, or when many tiny but distinct 
parcels are present); and (2) placement of boundaries when there is a gradation (rather than a 
sharp edge) between two units. « (Campbell, 2002; page 123ff.)

o » We can classify the generated segments by modelling their structural properties (ORM). 
Hierarchical properties of image segments can be expressed by various measures characterizing 
the averaged properties of (sub)-objects and/or their spatial arrangement (proximity measures). 
However, in some cases ORM cannot provide a solution for the intended modelling of a target 
class. This applies when the required geometry of the target class polygons is not provided by 
segmentation due to restrictions of (region- or edge-based) segmentation algorithms. In many 
cases the human brain can easily manage to detect and delineate features that otherwise in a 
machine-based way are hardly to extract. This we can prominently observe for features whose 
boundaries are mentally constructed and not directly seen in an image. « (Blaschke et al., 2005)



20

Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | 
 stefan.lang@sbg.ac.at

OBIA OBIA --
TutorialTutorial Slide 20 / 96

� Image Objects = 
Landscape Units?
� Usually landscape analysis 

or -planning is based on 
landscape units 
Î manual interpretation

� Leads image segmentation to 
similar results?

� Image objects not per se
‚real world objects‘
� not object recognition
� Any raster layer can be used 

for segmentation (e.g. DEM)
� object merge can improve 

appropriateness of objects

CIR 
interpretation

Image 
segmentation

Visual delineation vs. machine-based segmentation (2) 

Obviously, any kind of planning is based on spatial units, patches, etc. 
Landscape analysis and landscape planning utilize units, often derived and 
updated through images.

When deriving Image objects, we do not have per se real world objects in hand. 
They may be used as representatives for real-world objects, if being (1) 
appropriate to the respective geographical feature they represent and (2) 
satisfying our eye. But of course, our eye is not unambiguous either. 
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� Some more aspects
� Results not necessarily more 

correct, but more intuitive, more 
convincing, more practical

� object generation suitable for 
textured or low-contrast image data
� VHR-satellite imagery
� Airborne optical scanner data
� Airborne laser scanning (ALS) data
� Synthetic aperture radar (SAR) data

� Semi-automated image 
interpretation 

� Supports image understanding by 
solving complex semantic problems

� Monitoring of known structures 
� e.g. existing land use classification 

can be used as pre-defined 
boundaries for segmentation

Visual delineation vs. machine-based segmentation (3) 

Figure: M. Preiner

Figure: E. Schöpfer
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Outline

� Relevance of multi-scale representation 
� Scales and scaled representation
� Decomposition and holarchy
� Multi-scale approach with remote 

sensing
� Hierarchical patch dynamics paradigm

In this chapter we will take a closer look on the concept of scale, and start with a short 
review on hierarchy theory. Note that applying a coarser scale does not necessarily 
mean reaching a hierarchical level. In fact hierarchy theory is talking about the level of 
organization, which is not restricted to average size or extent alone. But drawing on this 
theory, the Hierarchical Patch Dynamics Paradigm (HPDP) has been introduced in 
landscape ecology (see below). The term holarchy from hierarchy theory has been 
applied to the hierarchical organization of landscapes (hierarchically structured patches 
of increasing average size). 
Objects have an inherent scale. An image can be represented in different scales 
simultaneously (multi-scale representation), depending on the respective scale domain 
of target objects. In hierarchy theory fundamental parts interacting in a complex system 
are called holons. Separating and ordering the system components according to their 
scale can be done by the means of multi-scale analysis. From a remote sensing 
perspective, image objects are at the same time aggregates of pixels (or smaller 
objects), as well as parts of larger objects.
The strategy provided by HPDP combines the idea of hierarchically organized patches, 
their interactions within the ecological system, and the relation between the observed 
patterns and underlying processes that change with scale.
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Relevance of multi-scale representation

� General remarks
� Sensor resolution 

nowadays enters the 
scale of human activity

� Field of potential 
applications is 
increasing

� More and more detailed 
object levels can be 
represented

� Complexity of analysis 
tasks increases as well

Meteosat

Landsat 7

IKONOS

...

Increasing resolution of image data lets us climb farther down within the ‘G-
scale’. Because image resolution is now entering the domain of scale of human 
interaction we need to apply a different view.
In the 1 m resolution domain provided by Ikonos, Quickbird and other operational 
EO sensors, the variety of application areas is broadly increasing (ecology, urban 
planning, security issues, etc). Whereas a classical land use / land cover 
classification may aim at a list of maybe 15-20 classes, the level of detail of 
recent data allows for a much higher number of classes to differentiate. The 
degrees of freedom in what we can find our increases heavily. 
High spatial resolution supports multi-scale observation, because the human 
activity resides right in the centre resolution domain. By this, he former 
‘macroscope’ of remote sensing data evolves to a ‘homoscope’.
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Scales and scaled representation

� Scale 
Refers to the size of objects 

that appear in the landscape 
or in a representation of it 
(e.g. a map or a satellite 
image)

� Different objects have 
different scales
Every object has its inherent 

scale
It only appears in a certain 

range of scale
� Depending on the 

elevation of our 
viewpoint we see
certain objects

Different Views – Different Scales –
Different Objects?

Figure: M. Conradi

n » In landscape ecology, there is a growing awareness about continuity of phenomena and 
discontinuities of scales. Forman (1995) described this ambiguity through the metaphor of a 
person gradually descending with a spaceship or balloon. Human perception abruptly starts to 
discover patterns and mosaics. Many mosaics are quasi-stable or persistent for a while, separated 
by rapid changes that represent the “domains of scale”. Each domain exhibits certain spatial 
patterns, which in turn are produced by a certain causal mechanism or group of processes. «
(Blaschke & Strobl, 2001)
o » According to Allen and Starr (1982) the concept of scale is illustrated by the analogy of a 
window, through which the constant flows of signals is filtered or weighted. So scale is defined 
by “the period of time or space over which signals are integrated [...] to give message”. « (Lang & 
Blaschke, 2003)
p » Hay et al. (2003) demonstrated that the representation at different scales corresponds more to 
the objects of interests rather than only referring to statistical measures in an image. « (Lang & 
Blaschke, 2003)
q » Although in the domain of remote sensing a certain scale is always presumed by pixel 
resolution, the desired objects of interest often have their own inherent scale. Scale determines the 
occurrence or non-occurrence of a certain object class. The same type of objects appears 
differently at different scales. Vice versa, the classification task and the respective objects of 
interest directly determine a particular scale of interest. « (Definiens, 2004, p 62)
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Scales and scaled representation (2)

� Scaling Ladder
Every portion of land 

contains objects of many 
different scales resulting 
in a series of scales

� Boundaries within 
the scale spectrum
Thresholds between ranges 

of scale are never crisp

Level 0
(Focal Level)

Level 1
(Super Level)

Level -1
(Sub Level)

: Nodes

: Branches

: Span

n » The ladder of hierarchical levels (Wu, 1999) seems to be infinite in either direction – the 
ultimate constituents of reality are not found yet. « (Lang, 2005)
o » The metaphor of a ‘scaling ladder’ (Wu, 1999) marks adjacent scale domains in a continuous 
scale spectrum. According to hierarchy theory it is assumed that a series of scales is inherent in 
any portion of land (landscape) no matter what the actual size is (Lang, 2001). O’Neill et al. 
(1986) have proposed to consider at least three nested scales in any study: the level of interest 
(‘focal level’ or ‘reporting level’) is constrained by controlling conditions of the level above, 
which provides significance; lower level components supply explanations (Turner, et al., 2001). 
Burnett & Blaschke (2003) use ‘candidate discretisations’ to illustrate the formation of scaled 
representations when working on image data with several inherent scale levels. « (Lang & 
Langanke, 2006; Lang, 2005)
p » Scale thresholds are never crisp, since they mark the boundaries between scale continuums, 
but are made hard by fiat. « (Burnett & Blaschke,  2003)
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Hierarchical patch dynamics paradigm

� HPDP – combining hierarchy theory and 
patch dynamics
A hierarchical scaling strategy dealing with spatial 

heterogeneity

� Holon = patch = ecological unit at a 
particular scale

� Interaction of components
Loose vertical and horizontal coupling in structure 

and function

n » Patch dynamics provides a powerful way of dealing explicitly with spatial heterogeneity. Wu 
and Loucks (1995) suggest the integration between hierarchy theory and patch dynamics via the 
HPD paradigm and lay a theoretical framework for a theory-driven breaking down of ecological 
complexity through a hierarchical scaling strategy. Wu (1999), drawing on the Koestler’s 
concepts of flux rates in hierarchy, suggests that ecological systems are nearly completely 
decomposable systems because of their loose vertical and horizontal coupling in structure and 
function. The term “loose” suggests “decomposable” and the word “coupling” implies resistance 
to decomposition. When translating hierarchy theory to landscape ecology, holons are 
synonymous with patches: the ecological unit at a particular scale. Patches interact with other 
patches at the same and at higher and lower levels of organization through loose horizontal and 
vertical coupling. […] Wu & Loucks (1995) and Wu (1999) suggest that the HPD theoretical 
framework can be used to perceive and model landscape as a hierarchical mosaic of patches 
although it is difficult in empirical studies to distinguish clearly between nested and non-nested 
hierarchies (Allen & Starr, 1982), at least prior to investigation. « (Burnett & Blaschke, 2003)

o » Ecological systems are hierarchical patch mosaics. On different scales, a patch may be 
defined as a continent surrounded by oceans, a forest stand surrounded by agricultural lands and 
urban areas, a fire-burned area or a tree gap within a forest, or a stomata on a leaf. Patches can be 
characterized by their size, shape, content, duration, structural complexity, and boundary 
characteristics. The theory of patch dynamics indicates that the structure, function, and dynamics 
of such patches are important to understanding the systems they comprise, be they populations, 
communities, ecosystems, or landscapes. « (Wu, 1999)
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Hierarchical patch dynamics paradigm (2)

� Wu (1999)
� Ecological systems as spatially nested patch 

hierarchies
� Dynamics of an ecological system derived from 

the dynamics of interacting patches
� Pattern and process are related and change with 

scale
� Non-equilibrium and stochastic processes do not 

necessarily work against stability

n » The list below is a digest of the HPD framework found in Wu (1999).
1. Ecological systems can be perceived as spatially nested patch hierarchies, in which larger 
patches are made up of smaller, functioning patches.
2. The dynamics of a given ecological system can be derived from the dynamics of interacting 
patches at adjacent hierarchical levels. Patches at higher levels impose top-down constraints to 
those lower levels by having slower or less frequent processes, while lower levels provide 
initiating conditions and mechanistic explanations for, and give apparent identity to, higher levels 
through interactions among patches. Distinctive characteristic time scales of patches at lower 
versus higher levels are the fundamental reason for the near-decomposability of ecological 
systems.
3. Pattern and process have components that are reciprocally related, both pattern and process, as 
well as their relationship, change with scale.
4. Non-equilibrium and stochastic processes are common in ecological systems. In general, small 
scale processes tend to be more stochastic and less predictable. However, non-equilibrium and 
stochastic processes do not necessarily work against stability. They usually constitute mechanisms 
that underlie the apparent stability of systems. (Wu; 1999) 
We believe that a better landscape analysis methodology can be built upon a combination of HPD 
theoretical base, an object-orientated modeling environment and advanced GIS and RS methods.
« (Burnett, Blaschke; 2003)
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Scales and scaled representation (3)

� Relevant range of the 
scale spectrum for 
landscape analysis
� Grain

minimum area at which an 
organism responds

comparable to resolution (spatial, 
spectral, temporal) in an image

� Extent
coarsest scale of spatial 
heterogeneity 
extent of the whole scene (total 
area, bandwidths, covered temporal 
duration)

n » Landscape ecology: Grain is the minimum area at which an organism perceives and responds 
to the patch structure of landscape (Kotliar and Wiens, 1990). Extent is the coarsest scale of 
spatial heterogeneity at which organisms react (Farina, 1998). « (Burnett & Blaschke; 2003)
o » Remote sensing point of view: Grain refers to the smallest intervals in an observation set, 
while extent refers to the range over which observations at a particular grain are made (O’Neill 
and King, 1997). From a remote sensing perspective, grain is equivalent to the spatial, spectral 
and temporal resolution of the pixels composing an image, while extent represents the total area, 
combined bandwidths and temporal duration covered within the scene (Hay et al., 2001). « (Hay 
et al., 2003)
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Scales and scaled representation (4)

� Representation in various 
levels simultaneously

� Each knows it’s context 
and hierarchical 
neighbourhood

Object hierarchy

Taken from Lang et al., 2004

n » The problem is not to choose the correct scale of description, but rather to recognize that 
change is taking place on many scales at the same time, and that it is the interaction amongst 
phenomena on different scales that must accompany our attention (Levin (1992), p. 1947). «
(Burnett, Blaschke; 2003)
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� Landscape as a system
Consisting of interacting 

subsystems

� Decomposition 
Separating a system into its 

components according to 
their scale and ordering 
them hierarchically

Decomposability and Holarchy

Separation Hierarchical
organization

n » Systems structure can also be characterized in terms of hierarchical interaction. A system is 
nearly-decomposable into constituting sub-systems and hierarchical organization is an 
overarching principle in all living systems (Simon, 1973). « (Lang, Burnett, Blaschke; 2004) 
o » Decomposition is the process of separating and ordering system components according to 
their temporal or spatial scales or both. This is done by the means of multi-scale analysis. «
(Burnett, Blaschke; 2003)
p » In hierarchy theory, objects are apparent as separable entities because of differences in flux 
rates, by gradients (Simon, 1962; Koestler, 1967). Relatively strong gradients will evoke more 
apparent boundaries, or local heterogeneity. Boundaries manifest both between objects at the 
spatial (and temporal) scale and between objects at different scales. « (Burnett, Blaschke; 2003)
q » Interactions tend to be stronger and more frequent within a level of hierarchy than among
levels (Allen and Starr, 1982). This important fact enables the perception and description of 
complex systems by decomposing them into their fundamental parts and interpreting their 
interactions (Simons, 1962). « (Hay et al.; 2003)
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Level +1
(Higher 
Level)

Level 0
(Focal Level)

Level -1
(Lower 
Level)

Integrative 
tendencies

Self-assertive 
tendencies

Embeddedness

Coupling of 
holons

� Subsystems are 
rather independent 
from each other
Horizontal and vertical 

coupling

� But still have 
integrative 
tendencies
Part-being of 

constituting 
elements

Decomposition and Holarchy (2)

n » The existence of vertical and horizontal loose couplings is exactly the basis of the 
decomposability of complex systems […]. While the word “loose” suggests “decomposable”, the 
word “coupling” implies resistance to decomposition. Strictly speaking, complete 
decomposability only occurs when coupling between components becomes zero, which seems a 
trivial case because, by definition, a system is composed of interacting parts. Thus, hierarchical 
complex systems are only nearly completely  decomposable or nearly  decomposable (Simon, 
1962, 1973). « (Wu, 1999) 
o » This means that constituent elements of a larger system operate in a rather independent way 
[…]. Koestler (1967) has elaborated on the idea that a system on any level can be considered as 
both self-assertive and integrative, and suggested the term ‘holon’ (from Greek holos and –on) to 
emphasize this dialectic property. Whereas the first underlines the independent and singular 
character of a system, the latter emphasizes the part-being of a constituting element. In order to 
highlight the dynamic character of a hierarchy of nested holons, Koestler proposed the term 
‘holarchy’. Landscape ecologists (Naveh, 1995; Naveh, Lieberman, 1994) have tried to apply 
general systems theory to derive organizational forms above and beyond the organism/community 
dialectic. According to these an ecotope can be defined as a concrete above-organism holon and at 
the same time as a constituting element of larger landscape mosaics. « (Lang, Burnett, Blaschke; 
2004)
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Multi-scale approach with remote sensing

� Definition of fundamental objects in remote sensing 
images
Integrated objects vs. aggregate objects

� Interaction of objects within and across scale domains
� What scales should be chosen for the different objects?
� At what scale should hierarchies be established?

n » However, to achieve this [description of complex systems by decomposition/ multi-scale 
approach], objects, i.e., fundamental parts, have to be clearly defined. Rowe (1961) distinguishes 
between two fundamental object types: integrated objects and aggregate objects. Integrated 
objects contain structurally organized parts, while aggregate objects occupy a common area, but 
have no structural organization. Furthermore, integrated objects have intrinsic scale, whereas 
aggregates do not. From a remote sensing perspective, image objects are integrated objects that 
exhibit an intrinsic scale and are composed of structurally connected parts, i.e., H-res pixels. «
(Hay et al., 2003)

o » To understand how image objects interact within and across scale domains, we need 
techniques to automatically define them in remote sensing data and the ability to link them within 
hierarchical structures. The primary unknowns to achieve this are: What are the ‘optimal’ scales 
to evaluate the varying sized, shaped, and spectrally distributed image-objects within a scene? At 
what scale should hierarchies be established? We suggest that there is no single ‘optimal’ scale for 
analysis. Rather there are many optimal scales that are specific to the image-objects that 
exist/emerge within a scene (Hay and Niemann, 1994; Hay et al., 1997, 2001). « (Hay et al., 
2003)

p » A single scale of image objects is probably insufficient to characterize the hierarchical nature 
of Nature. O’Neill et al. (1986) has suggested that at least three levels should be used. « (Lang, 
Burnett, Blaschke, 2004)

q » Anthropogenic features usually cover a narrow scale window. They demand a shallow 
hierarchy. Natural objects demand a multi-scale representation, reflecting several scales which are 
corresponding to functional hierarchies. A ‘shallow’ hierarchical representation is faced with a 
‘deep’ or flexible one, the bottom of which is not clearly defined. « (Lang, Blaschke; 2003)
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Outline

� What is knowledge?
� Cognition networks
� Image understanding
� Production systems vs. adaptive learning
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What is knowledge?

� Knowledge plays key role in image interpretation 
part of remote sensing
� Implicit human knowledge is supplemented with explicit 

knowledge by training

� Artificial intelligence distinguishes knowledge into:
� Procedural knowledge (specific computational functions)

� Represented by a set of rules

� Structural knowledge (how concepts of a domain are 
interrelated)
� For image understanding in remote sensing: Are there links 

established between image objects and ‘real world’
geographical features?

� Rich semantic content 
� Represented by a semantic network

n » Knowledge plays a key role in the interpretation-oriented parts of the remote sensing process 
chain (Campbell, 2001). We have a huge store of implicit knowledge at our disposal and a 
significant part of it is used in image interpretation […]. From an artificial intelligence (AI) 
perspective knowledge can be distinguished in procedural and structural knowledge. Procedural 
knowledge is concerned with the specific computational functions and can be represented by a set 
of rules. Structural knowledge implies how concepts of a domain are interrelated: in our case that 
means, which links between image objects and ‘real world’ geographical features are established. 
It is characterized by high semantic contents and therefore by far more difficult to tackle with. «
(Lang, 2005) 
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What is knowledge? (2)

� Structural knowledge can be organized in knowledge 
organizing systems
� Realised as graphic notations such as semantic nets or 

frames
� Semantic knowledge representation (using inheritance 

concept, e.g. ‘is part of’, ‘is more specific than’, ‘is an 
instance of’) as formal framework for image analysis

� Semantic net
� To be created
� Control over existing 

connections, once
established

� Transparency and
operability

Pond

WaterGolf Course
low IR

is more
specific than

small

Spectralvalue

Size

is part of

Example:

compare to Pinz, 1994; p. 94

n » Structural knowledge can be organized in knowledge organizing systems (KOSs), realised by 
graphic notations such as semantic networks (Ibrahim, 2000; Pinz, 1994; Liedtke et al., 1997; 
Sowa, 1999), and more mathematical theories like the formal concept analysis (FCA, Ganter & 
Wille, 1996). Within image analysis semantic nets and frames (Pinz, 1994) offer a formal 
framework for semantic knowledge representation using an inheritance concept (is part of, is 
more specific than, is instance of). In section 3.3.5 a semantic net is used as part of a cognition 
network. Though a semantic net needs to be created manually, it allows for controlling each and 
every existing connection once being established. With increasing complexity the transparency 
and operability will reach a limit. Bayesian networks are manually built, but the weighting of the 
connections can be trained, though it has to be trained for every connection. « (Lang, 2005)
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Cognition network

� Purpose of the cognition network
� Documentation of every step and setting in the process of image understanding

� Usefulness of the approach
� Transparent, a suitable means for communication
� Reproducible
� To a high degree comprehensible
� Technically transferable to other scenes

Cognition network

Structural knowledge Procedural knowledge

Number and parameterisation
of segmentation layers

How to group pixels from an
image into segments
(segmentation)

• System of target classes
• Class definitions, stored in a 
semantic net

How to assign segments from
the image to their corresponding
classes (classification)

n » Within object-based mapping a cognition network (Binnig, et al., 2001) is established which 
serves as a conceptual framework for the number and parameterization of segmentation layers and 
the definition of classes. Especially when multi-scale segmentation and object-relationship 
modelling (MSS/ORM, see Burnett & Blaschke, 2003) is being applied, such a conceptual outline 
seems to be indispensable. Any step and setting during the entire classification process is 
documented, and can be assessed and adopted if needed. Although the result is not necessarily 
more accurate, it can be reproduced and the process is to a high degree comprehensible. The 
formalized approach of analysis (i.e. the class definitions and composition and the documentation 
of the workflow and settings in the semi-automated process) technically allows for a transfer of 
the classification to other scenes (Lang & Langanke, 2004; Benz, et al., 2004). « (Lang & 
Langanke, 2006)

o » The establishment of a cognition network encapsulates the required knowledge for building 
up a rule set. Though not empirically proved as yet in this case, the transferability seems to be 
rather a matter of adapting the parameterization (Schöpfer et al., 2005). « (Lang & Langanke, 
2006)

p » A triple-SN [self-organizing, semantic, self-similar network] is essentially a kind of 
hierarchical world knowledge network containing knowledge about objects, their properties, and 
their relations, as well as processing knowledge about what to do when certain kinds of objects 
are present in the real world. By "real world" we mean the varying input that interacts with the 
triple-SN. This input could be an image, a text, or any complex structure. « (Binnig et al., 2002)

q » The networking and structuring of the input transforms information into knowledge and, to a 
certain extent, constitutes an automatic "understanding". « (Binnig et al., 2002)

r » By an optimally hierarchically structured network the classifications and segmentation in an 
alternating manner, the unstructured input (the single pixels) evolves to a logical structural 
arrangement of objects according to the cognition network: “the creation of objects and their 
relations on and across different hierarchical levels is equivalent to transform information into 
knowledge”. « (Binnig et. al., 2002)
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Image understanding

1. Definition
Image understanding (IU) is a process leading to the description of the image 
content (Reconstruction of an imaged scene)

2. Extent of IU
Reaching form signals (image data) to a symbolic representation of the scene 
content

3. Circumstances for IU
Outcome depends on the domain of interest of the interpreter, defined by:
� Underlying research question
� Specific field of application
� Pre-existing knowledge and experience of the interpreter

4. Output description
� Description of real-world objects and their relationships in the specific scene
� Resulting in thoroughly described features (not mere listing and labelling of features)

5. Knowledge input
Process is driven by 
� Utilisation of processing knowledge
� transformation of structural knowledge

6. Involved disciplines
� Image processing
� Pattern recognition
� Artificial Intelligence

Image understanding

1. Definition 2. Extent of IUImage understanding (IU) is a 
process leading to the description
of the image content 
(= reconstruction of an imaged scene) Reaching form signals

(image data) to a
Symbolic representation
of the scene content

3. Conditions for IU

Outcome depends on the
domain of interest of the
interpreter, defined by:
• Underlying research

question
• Specific field of

application
• Pre-existing knowledge

and experience of the
interpreter

4. Output description

• Description of real-world
objects and their
relationships in the
specific scene

• Resulting in thoroughly
described features (not
mere listing and 
labelling of features)

5. Knowledge input

Process is driven by 
• utilisation of procedural

knowledge
• transformation of

structural knowledge

6. Involved disciplines

• Image processing
• Pattern recognition
• Artificial Intelligence

n » Major advances and efforts have been made in AI including feature detection algorithms. Yet 
image understanding is more than just feature extraction on a specified scene (Ibrahim, 2000). In 
interpreting an ecological scene we are dealing with a high variety of instances of different target 
classes (& see paper E2). Image understanding (IU) is commonly regarded as a process, through 
which in the end we arrive at a description of the image content, i.e. the reconstruction of an 
imaged scene (Pinz, 1994).
Document image understanding employing optical character recognition is often taken as a 
striking example of successful AI implementation. Whereas in this arena the target symbology is 
rather clear and well defined, it remains a challenge to correctly identify poor handwriting.
Usually today’s image understanding process does not end up with a mere listing and labelling of 
image primitives (cp. Pinz, 1994). Within image interpretation of EO data the target scheme is 
usually much less defined and rather ambiguous, especially when dealing with scenes 
representing natural features. IU more and more aims at providing highly aggregated and 
application-related information in a defined domain of interest; therefore aiming at a ‘full’ scene 
description and is equipped with crucial elements from formal knowledge to reach from signals to 
a symbolic representation of the scene content. One focus is on the description of (real-world) 
objects and their relationships in the specific scene (Winston, 1984). 
Describing a scene always depends on a conceptual framework constructed by components like 
(a) the underlying research question within (b) a specific field of application and (c) pre-existing 
knowledge and experience of the operator. Gaining insight into the content of a scene requires 
familiarity with the potential content as being realized by personal acquaintance with the imaged 
area or general experience. This implies recognition of the imaged features and their systemic 
structure. That means the inference from specific arrangement of units in 2-dimensional space to a 
certain application context. The field of image understanding is interwoven with disciplines, such 
as image processing, pattern recognition, and AI. Image processing provides the sources in a pre-
processed way. Pattern recognition has made enormous advances in the last decade has 
incorporated methods of knowledge representation and expert systems to a wide degree. AI 
covers a major field of computer-based image understanding, yet a certain portion is left 
uncovered that is related of unsolved challenges of knowledge transfer to an automated system 
(Ibrahim, 2000). « (Lang, 2005, p 49f.)
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� Planning of the image description outcome
� Which target objects, scales and classes 

(dependent on domain of interest)
� Multi-scale segmentation

� Modelling (categorizing the image objects)
� Scene description as conceptual reality
� Utilization and transformation of 

knowledge

Image understanding (2)

Planning of the image
description outcome and segmentation
• which target objects, scales and classes 

(dependent on the domain of interest)
• multi-scale segmentation

Modelling (categorizing
the image objects)

Scene description 
as conceptual reality
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n » By forming the conceptual link to human perception image segmentation is considered an 
essential prerequisite for image understanding (Gorte, 1998). Object-oriented image analysis 
(OBIA) offers valuable methodological assets in breaking down scene complexity into 
meaningful image primitives. By providing “candidate discretizations of space” (Burnett & 
Blaschke, 2003) a scene can be modelled in adaptive scales according to the domain of interest. 
The relevant steps of using an object-based image analysis approach are depicted in [the 
following slides]. « (Lang, 2005)
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Planning of the image description outcome and segmentation

Knowledge

Image understanding (3)

Modelling (categorizing the image objects)

Scene description as conceptual reality

Real world scene

Complex image 
content

Segmentation problem

Domain of 
interest

1st match

scale

Target objects

classes

Input: 

Class description

ORM rules

Labels

‘body plan’

K
now

ledge 
transform

ation

1st match

n » A profound prerequisite of image object modelling is the provision of a clear underlying 
concept regarding the domain of interest. This comprises an understanding of the target scale, the 
target object set, and the target class scheme. Note that the domain of interest of a skilled 
interpreter may differ from that of a simple user; the experience of the former makes him 
specifically look for certain features, whereas the latter is mainly interested in the information he 
wants to obtain. « (Lang, 2005) 
o » One of the most important aspects of understanding imagery is information about image 
context. There are two types of contextual information: global context, which describes the 
situation of the image – basically, time, sensor and location – and local context, which describes 
the mutual relationships of image regions. […] Image objects have to be linked to allow low and 
high-level semantic and spatial context. The image object network becomes a hierarchical image 
object network, when image objects of different scale at the same location are linked. Together 
with classification and mutual dependencies between objects and classes, such a network can be 
seen as a spatial semantic network. « (Benz et al., 2004)
p » From image domain to application domain: Starting from a real-world scene subset captured 
by an image of high complex content the first step comprises the provision of scaled 
representations by aggregation information and reducing complexity. The multi-scale 
segmentation should be steered by a clear picture in mind of how target objects are structured by 
sub-level primitives (or super-level aggregates). The critical choice of appropriate segmentation 
levels makes up the 1st match of a scene-centred view with conceptual reality. « (Lang, 2005)
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Knowledge

Modelling (categorizing the image objects)

Image understanding (4)

Scene description as conceptual reality

K
now

ledge 
transform

ation

Input: 

Class description

ORM rules

Labels

‘body plan’

Embeddedness

Object 
hypotheses

Object modelling

2nd match

1st match

Class system

Spectral, 
structural, 
semantic

Output: 

Spatial distribution 
of known features

Planning of the image description outcome and segmentation

Real world scene

Complex image content

Segmentation problem

Domain of interest

1st match

scale
Target objects

classes Real world scene

Complex image content

Segmentation problem

Domain of interestDomain of interest

1st match1st match

scale
Target objects

classes

1st match

2nd match

n » Having object hypotheses in mind (Bruce & Green, 1990) the modelling is realized by 
encoding expert knowledge into a rule system. Modelling aims at categorizing the image objects 
by their spectral and spatial properties and their mutual relationships (Lang & Langanke, 2006). 
In accordance to various possibilities of grouping this kind of knowledge one can differentiate 
between spectrally, structurally, and semantically defined classes. This is the 2nd match and the 
shift to an object-centred view is accomplished. « (Lang, 2005)
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Knowledge Scene description as conceptual reality

Image understanding (5)

Modelling (categorizing the image objects)

Planning of the image description outcome and segmentation

Output: 

Spatial distribution 
of known features

K
now

ledge 
transform

ation

Semantic system Ù conceptual reality

Scene description

Transparency
Transferability

Objectivity

2nd match

3rd match

Class system

Spatial 
distribution of 
categorized 

objects 

EmbeddednessEmbeddedness
Object hypotheses

Object modelling

2nd match Class system

Spectral, 
structural, 
semantic

EmbeddednessEmbeddedness
Object hypothesesObject hypotheses

Object modelling

2nd match2nd match Class systemClass system

Spectral, 
structural, 
semantic

Real world scene

Complex image content

Segmentation problem

Domain of interest

1st match

scale
Target objects

classes Real world scene

Complex image content

Segmentation problem

Domain of interestDomain of interest

1st match1st match

scale
Target objects

classes

2nd match

n » In the final stage of image understanding when arriving at a scene description an exhaustive 
categorization of any object is achieved. This representation of the image content meets the 
conceptual reality of the interpreter or user. « (Lang, 2005)
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Image understanding (6)

Planning of the image description outcome and segmentation

Modelling (categorizing the image objects)

Scene description as conceptual reality

Real world scene

Complex image content

Segmentation problem

Domain of interest

1st match

scale
Target objects

classes

EmbeddednessEmbeddedness
Object hypotheses

Object modelling

2nd match Class system

Spectral, 
structural, 
semantic

Semantic system Ù conceptual reality

Scene description

Transparency
Transferability

Objectivity

3rd match
Spatial distribution of 
categorized objects 

Knowledge

K
now

ledge 
transform

ation

Input: 

Class description

ORM rules

Labels

‘body plan’

Output: 

Spatial distribution 
of known features

1st match

2nd match

n » The entire process is characterized by the utilization and transformation of knowledge. 
Knowledge input is realized by establishing a body plan for the relevant features through class 
descriptions, modelling, rules and labelling. The procedure makes expert knowledge explicit. 
Knowledge is stepwise adapted and improved through progressive interpretation and object 
modelling. Knowledge will be enriched from analyzing unknown scenes and the transfer of 
knowledge may incorporate or stimulate new rules. « (Lang, 2005)
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Outline

� Short history
� Image segmentation in remote sensing
� Categories of segmentation algorithms

� Histogram-based/pixel-based segmentation
� Region-based segmentation
� Edge-based segmentation

� Scale space analysis - Image Objects and Blobs
� Multiresolution Segmentation algorithm

� Region merging and scale
� Local mutual best fitting approach
� Colour and shape homogeneity

Chapter 4 discusses segmentation algorithms that can be used to derive objects from an 
image. We also introduce multi-resolution segmentation. We start with a short history on 
image segmentation, with a focus on applications in remote sensing. We will explain the 
concept of image segmentation highlighting the importance of homogeneity as a key 
criterion of the extracted regions. The practical aim is of image segmentation is to find an 
optimum match between image objects and geographical features of the real world 
objects. 
We may broadly distinguish between three categories of segmentation algorithms, i.e. 
histogram-based, edge-based, and region-based segmentation algorithms. Histogram-
based approaches perform segmentation within the feature space. These clustering 
approaches differ from other approaches mainly by ignoring the spatial dimension in real 
space. It is a form of unsupervised classification, leading to classes but not to spatially 
contiguous regions. Region-based segmentation algorithms, as the name indicates, 
deliver regions. They can be differentiated into region growth, region merging and 
splitting techniques and various derivations or combinations. Region growth starts with a 
set of seed pixels from which regions grow by adding neighboring pixels as long as a 
homogeneity criterion applies. Region merging starts with initial regions, e.g. single 
pixels, and merges them together until a scale-dependent threshold in size is reached. 
The splitting algorithms divide an image into regular sub-regions (e.g. squares), which 
again will be divided until a certain level of homogeneity is reached. The combination of 
split and merge is realized in the split-and-merge algorithm. Here, the image is 
subdivided into squares of a fixed size. Heterogeneous squares are subdivided again 
and homogeneous squares can be merged together. Edge-based algorithms are 
searching for edges that occur between homogeneous areas. This process usually 
includes filtering and enhancement of the image prior to the detection of the edges. The 
detected edges (groups of pixels) need to be combined in order to form a boundary.
The multi-resolution segmentation algorithm implemented in Definiens software is a 
region-based, local mutual best fitting approach. The algorithm is utilizing a combined 
homogeneity and shape concept and allows several segmentation levels to be 
established within one image. 
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Short history

� 1980ies: first developments of image 
segmentation
Major driver: industrial vision

� Rarely made use of in remote sensing until 
the late 1990ies
Reason: little progress in segmentation of multi-

band images, algorithms not made for EO data

� Since then a high number of segmentation 
algorithms has been developed
� Availability in commercial products made use of 

segmentation of EO data more common

n » Although image segmentation techniques are well known in some areas of machine vision 
(see Narendra & Goldberg, 1980, Fu & Mui, 1981, Haralick &Shiparo, 1985, Cross et al., 1988) 
they are rarely used for the classification of earth observation (EO) data. One of the main reasons 
for this is that most of these algorithms were developed for the analysis of patterns, the 
delineation of discontinuities on materials or artificial surfaces, and quality control products, in 
essence. These goals differ from our goals: the discretisation of EO remote sensing imagery aims 
at the generation of spectrally homogeneous segments, which show the inherent 
dimensions/objects of the images. « (Blaschke et al., 2004) 
o » Kartikeyan et al. (1998: 1695) state: “Although there has been a lot of development in 
segmentation of grey tone images in this field and other fields, like robotic vision, there has been 
little progress in segmentation of colour or multi-band imagery.” Especially within the last two 
years many new segmentation algorithms as well as applications were developed, but not all of 
them lead to qualitatively convincing results while being robust and operational. « (Blaschke & 
Strobl, 2001)
p » The number of methods for segmenting an image is legion (for an overview, see Haralick and 
Shapiro, 1985; Ryherd and Woodcock, 1996; Kartikeyan et al., 1998; Baatz and Schäpe, 2000; 
Schiewe et al., 2001). Common approaches use region growing or thresholding algorithms, but 
many derivatives for specific applications such as grey scale, hyper spectral images or data fusion 
of different sensors exist. « (Burnett & Blaschke, 2003)
q » As stated above, the idea of segmentation is not new but it is becoming more widespread 
within the EO/RS community recently. While the foundations of the basic principles were laid out 
in the 80ies (see Haralick & Shiparo, 1985) and various applications demonstrated the potential in 
the following years for environmental applications (e.g. Véhel & Mignot, 1994, Panjwani & 
Healey, 1995, Lobo et al., 1996), mainly the availability in commercial software packages 
catalysed a boost of applications more recently. « (Blaschke et al., 2004)
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Image segmentation in remote sensing

� Division of an image into regions so that
� the whole scene is covered by regions (spatially 

continuous, exhaustive segmentation)
� the regions do not overlap
� the regions are homogeneous within themselves
� the homogeneity criteria of neighbouring regions differ

� Region (token):
� aggregate of pixels grouped together (directly or indirectly)

� Homogeneity as overarching principle
� ‘relatively’ homogeneous regions reflect better the ‘Near-

decomposability’ of natural systems 
� High heterogeneity creates boundary to neighbouring 

patches, low remaining heterogeneity within patches
� Homogeneity criterion: grey value, colour, texture, form, 

altitude, etc.

Segmentation rests upon four mathematical principles of (cp. Horowitz and Pavlidis, 
1974): (1) Union set of regions makes up the image, (2) Regions are not allowed to 
overlap, (3) Homogeneity criterion H applies, (4) Homogeneity criteria of neighbouring 
regions differ.
n » Image analysis implies to deal with image semantics. In most cases important semantic 
information to understand an image is not represented in single pixels but in meaningful image 
objects and their mutual relations. Furthermore many types of image data are more or less 
textured. Airborne data, radar or VHR-satellite data are playing an increasing role in remote 
sensing. In most cases, analysis of such textured data can only be successful when they are 
segmented in meaningful ‘homogenous’ areas. « (Baatz, Schäpe; 2000)
o » Segmentation is the division of an image into spatially continuous, disjoint, and 
homogeneous regions. Segmentation is powerful and it has been suggested hat image analysis 
leads to meaningful objects only when the image is segmented in ‘homogeneous’ areas (Gorte, 
1998, Molenaar, 1998, Baatz & Schäpe, 2000) or into ‘relatively homogeneous areas’. The latter 
term reflects better the ‘near-decomposability’ of natural systems as laid out by Koestler (1967) 
and we explicitly address a certain remaining internal heterogeneity. The key is that the internal 
heterogeneity of a parameter under consideration is lower than the heterogeneity compared with 
its neighbouring areas. « (Blaschke et al.; 2004)
p » Because we believe that ‘natural’ hard boundaries are antithesis to a view of landscapes as 
continuum mosaics, we turn to HPD theory for guidance. With multi-scale segmentation, we are 
searching for the gradient of flux zones between and within holons (patches): areas where the 
varying strengths of interactions between holons produce surfaces. […] Methodologically, this 
equates to searching for changes in image object heterogeneity/homogeneity. « (Burnett, 
Blaschke; 2003)
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Categories of segmentation algorithms

� Pixel-based or 
histogram-based
Thresholding techniques
Segmentation in the  feature 

space

� Region-based
Region growing, merging

and splitting

� Edge-based
Laplace filter, Sobel-operator, 

representativeness, …

� Non-image-related/ 
non content expecting
Tiling image with a honeycomb 

or chessboard structure

Finding homogenous 
objects

Detecting edges 
between objects [and 
background (matrix)]

Regions defined without 
information from the 
image

Traditional image segmentation methods have been commonly divided into three 
approaches: pixel-, edge and region based segmentation methods.
n » Pixel based methods include image thresholding and segmentation in the feature space […]. 
In edge based segmentation methods, the aim is to find edges between the regions and determine 
the segments as regions between the edges […]. Region-based segmentation algorithms can be 
divided into region growing, merging and splitting techniques and their combinations. «
(Blaschke et al., 2004)
o » Technically, there are a number of possibilities how to segment an image. Most approaches 
can be grouped into two classes, namely edge-based algorithms and area-based algorithms. This 
classification also includes fractal-based approaches aiming at detecting discontinuities as well as 
fractal-based or texture-based algorithms (Salari & Ling 1995, Ryherd & Woodcock 1996) aiming 
at finding homogeneous areas. A recent survey of some competing approaches lists advantages 
but also some potential pitfalls for extracting geoinformation and useful landscape elements on 
real surfaces (Blaschke et al. 2000). Locally extracted histograms provide a good representation of 
the local feature distribution, which captures substantially more information than the frequently 
used mean feature values. The ‘representativeness approach’ (Hofmann & Böhner 1999) and 
other boundary- forming techniques (Schneider et al. 1997, Banko et al. 2000) and segmentation 
approaches (Gorte 1998, Molenaar 1998, Cheng 1999) provide good results in test areas but are 
not necessarily using all contextual information beyond the spectral information of neighbouring 
pixels such as texture, shape, directionality, spatial distribution within the study area, connectivity 
etc. However, from preliminary studies it is concluded, that the most promising recent 
developments are fractal approaches spearheaded by the developments of INRIA in Paris (Véhel 
and Mignot 1994) and Definiens AG in Munich (Baatz and Schäpe 2000). « (Blaschke & Strobl, 
2001)
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Objects as Tokens

� Objects vs. background
(matrix) in a grey value image

� Î tokens (token set)

background

objects

profile

profile

br
ig

ht
ne

ss

Image events (tokens)

Constellation tokenRegion (token): aggregate of pixel 
grouped according to  homogeneity 
criterion (directly or indirectly)

Note that after Pinz (1994) tokens can overlap each other.
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Histogram-based

� Histogram Thresholding:
simplest way to accomplish 
exhaustive regional segmentation

� Î ‘Swiss cheese’ segmentation 
for punched parts

� One- or bimodal distribution of 
grey values, threshold has to be 
determined Quickbird: 6 classes Isodata 

classification

Quickbird: band 1, thresholded

n » Some of the simplest approaches are all types of global thresholding. The spectral feature 
space is separated into subdivisions, and pixels of the same subdivision are merged when locally 
adjacent in the image data. Typically, this method leads to results of relatively limited quality. 
Oversegmentation and undersegmentation – i.e., separating into units which are too small or 
merging regions that do not belong to each other – take place easily without good control of 
meaningful thresholds. Local contrasts are not considered or not represented in a consistent way 
and the resulting regions can widely differ in size. « (Definiens, 2004)
o » Common alternatives are knowledge-based approaches. They try to incorporate knowledge 
derived from training areas or other sources into the segmentation process [Gorte, 1998]. These 
approaches mostly perform a pixel-based classification, based on clustering in a global feature 
space. Segments are produced implicitly after classification, simply by merging all adjacent pixels 
of the same class. In doing so, these approaches are typically not able to separate different units or 
objects of interest of the same classification. Furthermore, the information on which classification 
can act typically is limited to spectral and filter derivates. « (Definiens, 2004)
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Region-based segmentation

� Region growing
� Seed cells are distributed over image

� Bottom up (randomly)
� Top-down (content expected)

� Neighbours (4- or 8-neighbourhood) 
are included into region, if
� they do not belong to another region yet
� the homogeneity criterion H applies

� Two neighbouring regions are unified, 
if H applies

Campbell, p. 346

n » ECHO [extraction and classification of homogeneous objects; after Kettig and Landgrebe, 
1975] searches for neighbouring pixels that are spectrally similar, then enlarges these groups to 
include adjacent pixels that have spectral values that resemble those of the core group. For 
example, the algorithm can first search for neighbourhoods of four contiguous pixels. For each 
group, it then tests members for homogeneity […] Pixels that are not similar to their neighbours 
are rejected from the group […].
Each of the homogeneous patches is then compared to each of its neighbours. If similar patches 
border each other, they are merged to form a larger patch. Patches are allowed to grow until they 
meet the edges of contrasting patches; when all patches reach their maximum extent within the 
constraints defined by the operator, the growing process stops. […]
ECHO is a good example of a classifier that operates on fields of pixels rather than on each pixel 
in isolation. However, it performs the classification upon the average brightness of each patch, so 
it does not attempt to use image texture. « (Campbell, 2002, p. 346)
o » These algorithms depend on a set of given seed points, but sometimes suffering from lacking 
control over the break-off criterion for the growth of a region. Common to operational 
applications are different types of texture segmentation algorithms. They typically obey a two-
stage scheme (Jain & Farrokhnia, 1991, Mao & Jain, 1992, Gorte, 1998, Molenaar, 1998, 
Hoffman et al., 1998). « (Blaschke et al.; 2004)
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Region-based segmentation (2)

� ‘Split and Merge’
� Combination of coarse segmentation and 

merge
� Example: Quadtree

� Initially: image as one object Î division into 4 parts, if 
H does not apply

� Resulting quadtree structure
� Merge of homogenous quadtree areas

n » In region merging and splitting techniques the image is divided into sub regions and these 
regions are merged or split based on their properties. In region merging the basic idea is to merge 
segments starting with initial regions. These initial regions may be single pixels or objects 
determined with help of any segmentation technique. In region splitting methods the input usually 
consists of large segments and these segments are divided into smaller units if the segments are 
not homogeneous tough. In an extreme case region splitting starts with the original image and 
proceeds by splitting it into n rectangular sub-images. The homogeneity of these rectangles is 
studied and each rectangle is recursively divided into smaller regions until the homogeneity 
requirement is fulfilled. In both, region merging and splitting techniques, the process is based on a 
high number of pair wise merges or splits. The segmentation process can be seen as a 
crystallisation process with a big number of crystallisation seeds. The requirement for the 
maintenance of a similar size/scale of all segments in a scene is to let segments grow in a 
simultaneous or simultaneous-like way. « (Blaschke et al., 2004)
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Region-based segmentation (3)

Quadtree structure in a Quickbird Image of Salzburg, generated with eCognition

Application of quadtree algorithm to a QuickBird scene (0.6 m spatial resolution, pan-
sharpened).
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Edge-based segmentation

� Region-based segmentation makes sense when 
large, compact and coherent objects occur 
(‘blobs’)

� Î edge-based segmentation for elongated 
structures

� Edge: boundary between homogenous areas 

profile
br

ig
ht

ne
ss

lineedge

profile

br
ig

ht
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ss

Build the 
derivative

Looking at image brightness as a function, the first derivative generates lines 
where the edge between homogeneous regions lies. 
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Edge-based segmentation (2)

� Workflow
1.Edge detection

� Filtering – smoothing to 
decrease noise in the image

� Enhancement – revealing 
local changes in intensities

� Detection – select edge 
pixels, e.g. by thresholding
� Closing of gaps / deleting 

artefacts
� Combining, extending of 

lines 

2.Linking the edge pixels to 
form the region boundaries
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Edge-based segmentation (3)

� Enhancement filters (examples)
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Edge-based segmentation (4)

� Segmentation by 
representativeness
measures

� Calculate a 
representativeness of 
each pixel for its  
neighbours

� The minima represent 
unsteadiness and 
indicate edges

� Vectorised minima 
delimit areas with 
similar spectral 
properties

n » Hoffman & Böhmer (1999) proposed an edge based method in which they calculate a 
representativeness of each pixel for its neighbours. The image segmentation is based on the 
representativeness values of each pixel. At first the values are calculated by a harmonic analysis 
of the values for each spectral channel. The minima in the matrix of representativeness – typically 
arranged in pixel lineaments – represents spatial unsteadiness in the digital numbers. For the
image segmentation, the vectorised minima of the representativeness delimit areas consisting of 
pixels with similar spectra properties (spatial segments). A convergence index is combined with a 
single-flow algorithm for the vectorisation of the representativeness minima. A standardisation is 
performed through the calculation of a convergence index for every pixel in a 3 by 3 window. «
(Blaschke et al., 2004)
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Watershed segmentation

� Watershed segmentation

n » A further relatively common procedure is watershed segmentation [Wegner & al 1997]. It got 
its name from the manner in which the algorithm segments regions into catchment basins. 
Typically, the procedure first transforms the original data into a gradient image. The resulting 
grey tone image can be considered as a topographic surface. If we flood this surface from its 
minima and if we prevent the merging of the waters coming from different sources, we partition 
the image into two different sets: the catchment basins and the watershed lines. The catchment 
basins should theoretically correspond to the homogeneous grey level regions of this image. This 
method works for separating essentially convex and relatively smooth objects of interest that even 
may touch slightly in relatively homogeneous image data. When it works, it is convenient, fast 
and powerful. However, for remote sensing data, which typically contain a certain noise and not 
always strong contrasts, this method is typically not able to achieve appropriate results. «
(Definiens, 2004)
o » Watershed segmentation (Haris, 1998) is a segmentation method with a high intuitive 
character and transparency. Spectral reflectance is modelled as height values and segments are 
built at gradient magnitudes along similar altitude levels, just in analogy of water flowing into 
valleys between watersheds. Region growing stops when neighbouring flooding regions meet 
each other. Higher scale segmentation is achieved by decreasing the number of local minima. One 
problem of watershed segmentation is that in an initial stage the algorithm leads to over-
segmentation (Ibrahim, 2000), and in many cases it has to be actively controlled by markers. It 
only depends on spectral likeness, so objects may vary significantly in size. « (Lang, 2005)
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Hyper blob with 
image events

•Annihilation

•Split

•Merge

•Creation

Scale space analysis - Image Objects and Blobs

� Blobs
� Compact image object 
� usually with a clear centroid
� Temporal aspect Î image events

� Scale space blobs
� Significant within scale domains Î defined by 

spatial extension, brightness, scale (4D)

� Detection
� Repetitive Gaussian filtering
� Local maxima are determined
� Shapes are drawn around 

centroids (circle, polygon)

from Hay et al., 2003

n » The following overview represents a multiscale approach as described by Lindberg (1994) 
that is composed of two principal components: Linear Scale-Space (SS) and Blob-Feature 
Detection. For a more detailed non-mathematical description of both, see Hay et al. (2002). [...] A
SS multiscale representation of a signal (such as a remote sensing image of a landscape) is an 
ordered set of derived signals showing structures at coarser scales that constitute simplifications, 
i.e. smoothing, of corresponding structures at finer scales. [...] This results in a scale-space cube or 
'stack' of progressively 'smoothed' image layers, where each new layer represents convolution at 
an increased scale. [...] The second SS component we use is referred to as Blob-Feature Detection 
(Lindberg, 1994). The primary objective of this non-linear approach is to link structures at 
different scales in the scale-space, to higher order objects called 'scale-space blobs' and extract 
significant features based on their appearance and persistence over scales. [...] An important 
premise of SS is that structures which persist in scale-space are likely candidates to correspond to 
significant structures in the image and thus in the landscape. [...] Within a single hyper-blob four 
primary types of 'bifurcation events' may exist: annihilations (A), merges (M), splits (S) and 
creations (C). These SS-events represent critical components of SS analysis, as scales between 
bifurcations are linked together forming the lifetime (Ltn) and topological structure of individual 
SS-blobs. « (Hay et al.; 2003)
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Multiresolution Segmentation algorithm

� Design goals
� „Convince the human eye“
� Multi-resolution (strictly 

hierarchic)
� Similar resolution
� Reproducibility
� Universality
� Performance (i.e. speed ☺)

� Overview
� Region merging technique
� Decision heuristics
� Homogeneity criterion

� Colour homogeneity
� Shape homogeneity 

compactness and smoothness
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Region merging and scale

� Bottom up region merging technique
� Starting with each pixel being a region
� A pair of regions is merged into one region, 

each merge having a merging cost (degree of 
fitting)

� Objects are merged into bigger objects as long 
as the cost is below a ‘least degree of fitting’
(scale parameter)
= the merge fulfils the homogeneity criterion

� Starting points for merging distributed with 
maximum distance

� Pair wise clustering process considering 
smallest growth of heterogeneity

� Establishing segmentation levels on 
several scales using different scale 
parameters
(e.g. 2nd level based on 1st level: larger scale 

parameter results in larger objects consisting of 
the objects of the 1st level)

Level 1

Level 2

Level 3

Pixel level

n » Segmentation needs to address a certain scale: does the application require information about 
single bushes or trees or about land cover units such as orchards or mires? Most segmentation 
approaches don’t allow the user to specify a certain scale of consideration and a level of detail or 
generalization, accordingly. « (Blaschke, 2003)
o » The flexibility in performing scale-specific segmentation has led to a growing interest from 
landscape ecological applications of this approach. Within landscape ecology the hierarchical 
representation of process-relevant spatial units in various scale domains is one of the fundamental 
pillars (Wu, 1999). Segmentation can be used to provide a consistent set of image primitives to be 
used as landscape objects (Lang et al., in press; Burnett & Blaschke, 2003). « (Lang & Langanke, 
2005)
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Decision heuristics

� Finding an adjacent object B 
for an arbitrary object A for 
merging them

1. Fitting: when the 
homogeneity criterion is 
fulfilled

2. Best fitting: when the 
homogeneity criterion is 
fulfilled, and the merge 
between B and A produces 
the best degree of fitting 
compared to the merge 
between A and any other 
adjacent object of A

fitting

not fitting

fitting

not fitting

best fitting

A

A

B

B

B

B

B

B

B

B



64

Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | 
 stefan.lang@sbg.ac.at

OBIA OBIA --
TutorialTutorial Slide 64 / 96

Decision heuristics (2)

1. Fitting
2. Best fitting
3. Local mutually best fitting:

find the best fitting object B for the 
object A, then find the best fitting object 
C for the object B. Confirm that object C 
is the object A, otherwise take B for A 
and C for B and repeat the procedure.
=> find best fitting pair of objects in the 

local vicinity of A following the gradient 
of homogeneity

4. Global mutually best fitting:
merge the pair of objects for which the 
homogeneity criterion is fulfilled best in 
the whole image

� Distributed treatment order
Use starting points with maximum distance 

to all other points treated before 
(treatment order defined over pixels or 
segments)

fitting

not fitting

best fitting

A
B

B

B

B

mutually 
best fitting

A

C C

C

BC A

B

C

C
C

B

AC

BA

C

B

C
A

C

CBA

global 
mutually 
best fitting

A

B

Find the best fitting object B for the object A and confirm that the best fitting object C for 
the object B is indeed the object A (homogeneity criterion is fulfilled mutually). If not, take 
B for A and C for B and try again.
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Homogeneity criterion

Definition of the degree of fitting
� Colour and shape homogeneity are weighted against each 

other
� Compactness and smoothness make up the shape 

homogeneity and are weighted against each other

Smoothness
Colour homogeneity

Compactness

Shape homogeneity

Two objects are 
similar which are near 
to each other in a 
certain feature space

Compactness: ideal compact form of 
objects (objects don’t become lengthy)
Smoothness: boundaries of the edges 
don’t become fringed
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hcompact = 5.84                  5.84                  6.57                7.67                  8.76                  9.49              10.95

Homogeneity criterion (2)

Compactness

Smoothness

hcompact =
l

√n

l

b
hsmooth =

Relation between boundary length l of the object and the 
square root of the number n of the pixels of the object 
(square root of n equals the side of a square with n pixels)

Relation between boundary length l of the object and the 
perimeter of the bounding box of the object (bounding 
box: shortest possible boundary length)

8              6.4           5.33         4.57             4
hcompact =

1               1           1.125        1.3125         1.5     1.625         1.875

hsmooth =

The smooth shape homogeneity criterion only allows the objects to grow into shapes that 
have no fringed boundaries. The compact shape homogeneity criterion suppresses 
fringed boundaries, too, but additionally favours compact object shapes.
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Outline

� Introduction
� Available features for classification
� Sample- vs. rule-based classification
� Fuzzy classification
� Class hierarchy
� Class-related features
� Strengths of object-based classification

In this chapter we explore object-based classification, its commonalities and specifics as 
compared to other pixel-based classification techniques in remote sensing. Looking at 
the peculiarities of object-based classification, there are at least two major aspects to be
considered. 
(1) We are dealing with a (largely) augmented, high-dimensional feature space. The 
number of features is virtually unlimited, and several hundreds can easily be 
constructed. Two reasons account for that: first, since objects are aggregates of n pixels 
we can use for any feature statistical derivatives like mean, standard deviation etc. 
Second there are a variety of geometrical features to be used. In addition, when working 
with hierarchical representations, there are features which characterize the relationships 
among objects on different hierarchical levels. All of these features can be used for 
classification. The ‘art’ is to find out which ones of these are really distinctive for a certain 
class. Consider taking samples for distinguishing between two pairs of classes, 
coniferous forest vs. deciduous forest and grassland vs. football ground. Whereas in 
either case you may establish shape-related features (area, rectangularity, etc.) for your 
samples, only in the latter case these are distinctive. 
(2) Depending on the features we use for our classification, we are facing a high degree 
of freedom. Using shape information we can for example differentiate between grassland 
and a football ground. Using size information, we can tell small from big football grounds. 
Using spatial context information we can distinguish a big football ground within a city 
from a big football ground in the countryside. And so on. As this process becomes has a 
strong modeling component, working with samples alone may be limited. We therefore 
put a strong focus on formulating rule sets and perform rule-based classification in the 
sense of a productions system.
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Introduction

� Classifying
� Assigning objects to a certain class 

according to the class‘s description
� Feature space segmented into 

distinct regions which leads to a 
many-to-one relationship between 
the objects and the classes

� Definition of the class descriptions
� Available object features
� Sample-based or rule-based 

classification strategy

n » Usually classifying means assigning a number of objects to a certain class according to the 
class’s description. Thereby, a class description is a description of the typical properties or 
conditions the desired classes have. The objects then become assigned (classified) according to 
whether they have or have not met these properties/conditions. In terms of database language one 
can say the feature space is segmented into distinct regions which leads to a many-to-one 
relationship between the objects and the classes. « (Definiens, 2004)
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Available features for classification

� layer values
� mean
� std-dev

� geometrical properties 
� size, shape, …

� textural properties
� layer value texture (e.g. mean of sub objects: std-dev)
� shape texture (e.g. directions of sub objects)

� hierarchical properties
� number of higher levels
� number of super or sub objects

� relations to classes of …
� neighbour objects 
� sub objects (relative area of …)
� super objects

� membership to …

class related features

to neighbour objects

to sub objects

to super objects

object features

colour

shape

texture

hierarchy

n » Pixels can be characterised by their spectral behaviour, as being expressed by their specific 
allocation in an n-dimensional feature space (where n equals the number of spectral bands of a 
sensor). With multispectral data (such as colour and false-colour orthophotos, QuickBird data, 
Landsat data) n ranges from 3 to 6 or 7. When considering image objects instead of pixels, a 
wealth of additional features can be used for characterisation. Besides statistically aggregated 
spectral features also geometrical and neighbourhood-related features can be used, by which the 
dimensionality of the resulting feature space is getting significantly higher and raises to virtually 
limitless extent. If still a network of image objects is created (full multi-scale decomposition, 
Burnett and Blaschke, 2002), even vertical relationships between super-objects and sub-objects in 
the object hierarchy can be used to expand the feature space even further. « (Lang, 2005)
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Sample- vs. rule-based classification

� Sample-based classification
� Define class membership by similarity to 

selected samples
� Sample has to be representative for its class
� Use features clearly distinguishing the sampled class 

from other classes

� Nearest neighbour classifier
� Object will be assigned to the 

class who's samples are closest
to it in the feature space

Useful approach, if knowledge 
about the scene’s content is limited

Feature A

Fe
at

ur
e 

B

n » Multispectral classification, in a pixel-oriented view, can be defined in a rather straight-
forward definition as the act of “assigning pixels to classes” (Campbell, 2001). This implies 
transforming reflectance values and ordinal scaled pixel values into nominal classes. In a 
statistical sense this means pixels are grouped according to their proximity in the spectral feature 
space, i.e. their spectral homogeneity. […] By their respective spectral behaviour pixels can be 
allocated in an n-dimensional feature space, created by the n bands of a sensor. Classificators are 
used to assign pixels to certain classes, which correspond to specific regions in the feature space. 
These regions are usually defined by training areas. Minimum distance (or nearest neighbour) 
calculates the Euclidean distance for each pixel to the centroid of each class and then assigns a 
given pixel to the nearest class. When working with objects instead of pixels, the feature space is 
significantly augmented; in this case a minimum distance classificator is more suitable, since 
normal distribution of features can hardly be presumed in all cases. […]
Image objects can be classified by (1) classification based on samples and (2) using prior external 
knowledge stored in rule bases (Schöpfer et al., in press). The first is a supervised classification
process, which unifies advantages of manual and statistical procedures. Rather than delineating 
training areas sample objects are iteratively selected. These sample objects should have the most 
representative and clearly distinguished features. « (Lang, 2005)
o » In comparison to pixel-based training, the object-based approach of the nearest neighbour 
requires less training samples: One sample object already covers many typical pixel samples and 
their variations. « (Definiens, 2004)



72

Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | 
 stefan.lang@sbg.ac.at

OBIA OBIA --
TutorialTutorial Slide 72 / 96

Sample- vs. rule-based classification (2)

� Rule-based classification
� Define a class by a rule on one feature or by rules on 

several features
� Fuzzy or crisp rule definition
� Hierarchical relations of classes
� Rules can address different kinds of features

� Object features 
� Class-related features

� Advantages compared to sample-based 
classification
� Incorporation of expert knowledge in the classification
� Formulation of complex class descriptions
� Transparency (especially compared to neural networks)
� Transferability

n » The second, more transparent and better transferable approach of encapsulating prior 
knowledge in rule-bases has been theoretically discussed in section 2.7.3. In Lang, Blaschke, 
2005, Lang, Schöpfer, Langanke, 2005 and Lang, Langanke, 2006 we demonstrate how rule-
based classification has been successfully applied. Integrating knowledge is a way to overcome 
the spectral similarity of different geographical features (Schöpfer et al., in press). Rules can 
address any of the spectral, spatial or hierarchical features the objects are equipped with. Because 
of the enormous range of potential features, a rule-based approach needs formalised 
representation of the target class system and the way how to interpret them beforehand. By 
fuzzification the degree of class membership can be modelled for a certain range of values. «
(Lang, 2005)
o » Fuzzy logic classification is a simple technique, which basically translates feature values of 
arbitrary range into fuzzy values between 0 and 1, indicating the degree of membership to a 
specific class. It was chosen for the analysis of image objects in eCognition because
• by translating feature values into fuzzy values it standardizes features and allows the 
combination of features, even of very different range and dimension.
• it provides a transparent and adaptable feature description especially compared to neural 
networks.
• it enables the formulation of complex feature descriptions by means of logical operations and 
hierarchical class descriptions. « (Definiens, 2004)
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Fuzzy classification

� Fuzzy vs. crisp classification
� Uncertainties about class descriptions

� Approximate real-world knowledge in its complexity
� Uncertain human knowledge about the world, imprecise human 

thinking
� Vague (linguistic) class descriptions
� Other:

� Uncertainty in sensor measurements
� Class mixtures due to limited (spatial and spectral) resolution

� Possibilities of fuzzy classification
� Express each object’s membership to more than one class
� Probability of an object to belong to other classes

⇒No sharply defined boundaries between classes as in crisp 
classification

n » Supervised and unsupervised classification algorithms typically use hard classification logic 
to produce a classification map that consists of hard, discrete categories (e.g., forest, agriculture). 
Conversely, it is also possible to use fuzzy set classification logic, which takes into account the 
heterogeneous and imprecise nature of the real world. « (Jensen, 2005; p. 389)
o » Fuzzy classification is beside neural networks (Gopal and Woodcock, 1996) and probabilistic 
approaches (Curlander and Kober, 1992) a very powerful soft classifier. As an expert system for 
classification (Tsatsoulis, 1993) it takes into account:
• uncertainty in sensor measurements,
• parameter variations due to limited sensor calibration,
• vague (linguistic) class descriptions,
• class mixtures due to limited resolution. […] 
Avoiding arbitrary sharp thresholds, fuzzy logic is able to approximate real world in its 
complexity much better than the simplifying boolean systems do. Fuzzy logic can model 
imprecise human thinking and can represent linguistic rules. « (Benz et al., 2004)
p » It makes it also possible to express each object’s membership in more than just one class or 
the probability of belonging to other classes, but with different degrees of membership or 
probabilities. With respect to image understanding these soft classification results are more 
capable of expressing uncertain human knowledge about the world and thus lead to classification 
results which are closer to human language, thinking and mind. « (Definiens, 2004)
q » Thus, fuzzy set does not have sharply defined boundaries, and a set element (a pixel in our 
case) may have partial membership in several classes. […] All that has been learned before about 
traditional hard classification is pertinent for fuzzy classification because training still takes place, 
feature space is partitioned, and it is possible to assign a pixel to a single class, if desired. 
However, the major difference is that it is possible to obtain information on the various 
constituent classes found in a mixed pixel. If desired (Foody, 2000). It is instructive to review 
how this is done. « (Jensen, 2005)
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Fuzzy classification (2)

� Transition from a crisp to a fuzzy system
(To decide if a feature value belongs to a fuzzy set)
� The fuzzy set (A): 

� Is a certain subset of values of the whole range of an object feature X 
(e.g. NIR-band)

� represents an object feature class (e.g. forest) within one object 
feature

� Replace boolean logic (“false“ and “true“) of the membership value 
μ by a continuous range of [0, …, 1]

� Define membership function μ(x)
� Assigning to every object feature

value x a membership value μ
� If μ > 0, then x belongs to the fuzzy

set A
� Relation between object feature and

classification
⇒Choice and parameterisation of the

membership function influence the
quality of the classification

⇒ Introducing expert knowledge X = feature range
x = feature value
A(X) = fuzzy set

Example:

μ = membership value
μ(x) = membership function

0 255
0

1

17585

0.5

fuzzy set A

50 230
X

μ

μ(x)

n » Fuzzy logic is a multi-valued logic quantifying uncertain statements. The basic idea is to 
replace the two boolean logical statements “true” and “false” by the continuous range of [0, …, 
1], where 0 means “false” and 1 means “true” and all values between 0 and 1 represent a 
transition between true and false. « (Benz et al., 2004)
o » Fuzzification describes the transition from a crisp system to a fuzzy system. It defines on an 
object feature certain fuzzy sets. These fuzzy sets represent object feature classes, e.g. “low”, 
“medium” or “high”. […] These fuzzy object feature classes are defined by so-called membership 
functions. These functions assign a membership degree between 0 and 1 to each object feature 
value with respect to the considered object feature class. Depending on the shape of the function, 
the transition between “full member” and “no member” can be crisp (for a rectangular function) 
or fuzzy. All feature values, which have a membership value higher than 0 belong to a fuzzy set. «
(Benz et al., 2004)
p » Fuzzy set theory provides some useful tools for working with imprecise data (Zadeh, 1965; 
Wang, 1990a, b). Fuzzy set theory is better suited for dealing with real-world problems than 
traditional logic because most human reasoning is imprecise and is based on the following logic. 
First, let X be a universe whose elements are denoted x. That is, X= {x}. As previously 
mentioned, membership in a classical set A of X is often viewed as a binary characteristic 
function fA from X {0 or 1} such that fA (x) = 1 if and only if x є A. Conversely, a fuzzy set B in 
X is characterised by the membership function fB that associates with each x a real number from 0 
to1. The closer the value of fB (x) is to 1, the more x belongs to B. « (Jensen, 2005)
q » For successful classification a deliberate choice and parameterization of the membership 
function is crucial. The function has to model the underlying relation between object features and 
classification as good as possible. The design is one of the most important steps to introduce 
expert knowledge into the system. Therefore, the better the knowledge about the real system is 
modelled by the membership functions, the better the final classification result (Civanlar and 
Trussel, 1986). It is possible to define more than one fuzzy set on one feature. « (Benz et al., 
2004)



75

Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | 
 stefan.lang@sbg.ac.at

OBIA OBIA --
TutorialTutorial Slide 75 / 96

Fuzzy classification (3)

� Fuzzy rule-base 
� Fuzzy rule “if – then” for assigning an object 

to a class
� If feature value x (of the object) is member of 

the fuzzy set (e.g. associated with the class 
forest), the image object is a member of the 
land-cover forest

� Combination of fuzzy sets to create advanced 
fuzzy rules
� Operator “AND” – Minimum operation 
� Operator “OR” – Maximum operation
� Operator “NOT” – inversion of a fuzzy value: 

returns 1 – fuzzy value
� Fuzzy rule-base (combination of the fuzzy 

rules of all classes) delivers a fuzzy 
classification
� Every object has a tuple of return values 

assigned to it with the degrees of membership 
to each class/degrees of class assignment

� Since these values are possibilities to belong to 
a class, they don’t have to add up to 1 (unlike 
probabilities)

x = 215 μx = 0.7

A

0
0

1

21550 230 X

μ

0.7

Feature X

0
0

1
0.9

B

130 Y

μ

μ(y)

90

y = 90 μy = 0.9

Feature Y

μforest =  μx AND μy = Min(μx, μy)

= Min(0.7, 0.9) = 0.7

Class “forest” defined by 
Feature X AND Feature Y

μforest     = 0.7 
μpasture   = 0.4
μwater     = 0.05
…
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Fuzzy classification (4)

� Comparison of membership degrees
� Reliability of class assignment

The higher the degree of the most possible 
class, the more reliable is the assignment

� Stability of classification
Stable classification for differences between 

highest membership value and other values
� Equal membership degrees

� high values – reliability for both classes: 
classes cannot be distinguished with the 
provided classification

� Low values – unreliable classification (use 
threshold of a least required membership 
degree to ensure quality of classification)

� Defuzzification
� Maximum membership degree of fuzzy 

classification used as crisp classification

μ

0

1

0.5

μforest μpasture μwater

the smaller, the more reliable
is the classification

Stability

n » To produce results like maps for standard land-cover and land-use applications, the fuzzy 
results have to be translated back to a crisp value. To this end, the maximum membership degree 
of the fuzzy classification is used as crisp class assignment. This process is a typical approach for 
defuzzification of fuzzy classification results. If the maximum membership degree of a class is 
below a threshold, no classification is performed to ensure minimum reliability. As this output 
removes the rich measures of uncertainty of the fuzzy classification, this step should be only 
performed if necessary and as late as possible in the whole information extraction process. Further 
information on fuzzy systems in image analysis and remote sensing can be found in Bezdek and 
Pal (1992), Maselli et al. (1996), Benz (1999) and Jaeger & Benz (2000). « (Benz et al., 2004)
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Class hierarchy 

� Classes are embedded in a 
heritage system Î i.e. child 
classes inherit all spectral props 
from their parents

� Classes can be grouped 
semantically

� Classification can be shown on 
different semantic levels

Bright vegetation

Meadow Football 
field

Feature-based 
inheritance

Urban area

Built up Football 
field

Semantic 
inheritance

n » The class hierarchy is the frame of eCognition’s “language” for formulating the knowledge 
base for classifying image objects. It contains all classes of a classification scheme in a 
hierarchically structured form. The relations defined by the class hierarchy are twofold: the 
inheritance of class descriptions of child classes on the one hand, and semantic grouping of 
classes on the other. Each class is represented by a semantic group. The semantic objects can have 
different relationships to each other. […] 
Inheritance: Class descriptions defined in parent classes are passed down to their child classes. A 
class can inherit descriptions from more than one parent class. Based on the same inherited feature 
descriptions, the inheritance hierarchy is a hierarchy of similarities.
Purpose: reduction of redundancy and complexity in the class descriptions.
Groups: Combination of classes to a class of superior semantic meaning. Beyond that, the groups 
hierarchy has a direct functional implication: each feature which addresses a class is automatically 
directed to this class and all its child classes in the groups hierarchy. A class can be part of more 
than one group. The group register displays the hierarchy of semantic meaning.
Purpose: combination of classes previously separated by the classification in a common semantic 
meaning. […] 
Inheritance is a common technique in object orientated modelling. More general parent objects 
passes on their properties to child objects. Inheritance is not only used for the sake of simplicity, 
but also ensures the synchronization of all child objects. Changes in a parent class do not need to 
be redone in each of the child classes since these inherit the changes automatically. […] Circular 
inheritance, however, is impossible (A passes on to B, B passes on to C, C passes on to A). «
(Definiens, 2004)
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Class-related features

� Classifying an object based on the 
classification of other objects
� Class of other objects works as a 

context feature
� E.g. a green area (class contains parks, meadows,…) is 

classified as urban park because it is embedded in urban
area

� Newly classified object may be a context feature 
itself for other objects

� Iterative Process
� Possibly indeterministic or even unstable 
� Mutual and circular dependencies (should be 

avoided if possible)

class related features

to neighbour objects

to sub objects

to super objects

n » The use of class-related features is more complex. When an object changes its classification 
because of the classification of networked objects, the problem arises that the object itself might 
be a context feature for the evaluation of other objects. Therefore, classification must be an 
iterative process in cycles in which each object is classified over and over taking into account the 
changes in the classification of networked objects. The number of cycles can be specified for this 
purpose. 
With context classification a new complexity arises: while classification without context is a 
deterministic process, context classification can become indeterministic and even unstable due to 
the possibility of circular dependencies between different classes. Classification becomes an 
optimizing problem in which convergence to a global best classification must be ensured. 
This problem of unstable classification can basically be avoided by the sensible generation of 
class descriptions. Mutual or circular dependencies between classes should be avoided whenever 
possible. Class A should not be described by means of class-related features which refer to Class 
B if Class B itself depends on Class A because of its class description. If this can be ensured 
classification might need more than one classification cycle, but it is not an optimizing problem. «
(Definiens, 2004)
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Strengths of object-based classification

� Additional information can be utilized (shape, texture, 
relationship to neighbours)

� ‘Overcoming’ texture through segmentation
� Especially useful with VHSR-data and radar data

� Objects: increased signal/noise ratio 
� Decreased number of units to be classified
� Adaptable image resolution
� ‘Click and classify’ – since based on objects
� Classification: data base query

n » Any step and setting during the entire classification process is documented, and can be 
assessed and adopted if needed. Although the result is not necessarily more accurate, it can be 
reproduced and the process is to a high degree comprehensible. The formalized approach of 
analysis (i.e. the class definitions and composition and the documentation of the workflow and 
settings in the semi-automated process) technically allows for a transfer of the classification to 
other scenes (Lang & Langanke, 2004; Benz et al., 2004). « (Lang & Langanke, 2006)
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Outline

� Definitions
� Non-site specific accuracy assessment
� Site-specific accuracy assessment
� Error matrix
� Limitations of the error matrix
� Specifics of object-based accuracy 

assessment

Accuracy assessment is an important part in image analysis, in order to have at hand a n 
evaluation about the level of potential confusion, the reliability of the class assignments 
and the overall quality of the results. In this chapter we discuss different approaches to 
accuracy assessment. Starting with non-site-specific map comparison the chapter 
moves on to more advanced site-specific approaches with the error matrix as a core 
element. There are several different accuracy measures that can be retrieved from the 
error matrix, including overall accuracy, consumer’s and producer’s accuracy as well as 
the kappa statistic. The chapter concludes with elaborating on some problems that 
explicitly apply to object-based accuracy assessment. Especially the spatial geometrical 
characteristics of the extracted objects need to be evaluated, a challenging task which is 
still an open field of research.
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Definitions

� Accuracy
� Degree of correctness of a map or classification 

(degree to which the derived image classification 
agrees with reality or conforms to the ‘truth’) 
(Foody, 2002)

� Error
� Discrepancy between the situation depicted on 

the thematic map and reality (Foody, 2002) 
� Significance of accuracy for
� Usefulness of thematic maps for land 

management
� The validity of maps for scientific investigations

n » The quality of spatial data sets is a very broad issue that may relate to a variety of properties 
(Worboys, 1998) but frequently, and here, the property of interest is map or classification 
accuracy. […] It is important that the quality of thematic maps derived from remotely sensed data 
be assessed and expressed in a meaningful way. This is important not only in providing a guide to 
the quality of a map and its fitness for a particular purpose, but also in understanding error and its 
likely implications, especially if allowed to propagate through analyses linking the map to other 
data sets (Arbia, Griffith, & Haining, 1998; Janssen & van der Wel, 1994; Veregin, 1994). «
(Foody, 2002)
o » The scientists who create remote sensing-derived thematic information should recognize the 
sources of the error, minimize it as much as possible, and inform the user how much confidence 
he or she should have in the thematic information. Remote sensing-derived thematic maps should 
normally be subjected to a thorough accuracy assessment before being used in scientific 
investigations and policy decisions (Stehman and Czaplewski, 1998; Paine and Kiser, 2003). «
(Jensen, 2005)
p » Accuracy has many practical implications: for example, it affects the legal standing of maps 
and reports derived from remotely sensed data, the operational usefulness of such data for land 
management, and their validity as a basis for scientific research. « (Campbell, 2002)
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Definitions (2)

� Accuracy assessment
� Meaningfully quantify the accuracy of digital land 

cover classifications; “A classification is not 
complete until its accuracy is assessed”
(Lillesand, Kiefer; 2000)

� Comparison of
1.Pixels or polygons in a remote sensing-derived 

classification (the map to be evaluated)
2.Ground reference test information (reference map) 

(Jensen, 2005) 

n » The accuracy assessment task can be defined as one of comparing two maps, one based upon 
analysis of remotely sensed data (the map to be evaluated), and another based upon a different 
source of information (reference map, assumed to be accurate, standard for the comparison). «
(Campbell, 2002)
o » To correctly perform a classification accuracy (or error) assessment, it is necessary to 
systematically compare two sources of information: 1. pixels or polygons in a remote sensing-
derived classification map, and 2. ground reference test information (which may in fact contain 
error). « (Jensen, 2005)
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Non-site-specific assessment

� Comparing area percentages of 
categories in classified and 
reference map (inventory error can 
be assessed)

� Disadvantage:
� Inaccurate method (e.g. classes have 

similar proportions but may appear in 
different locations of the mapped area)

A

F

W

A

F
W

A = 20%   F = 64%   W = 16%

A = 20%   F = 64%   W = 16%

Two maps that are similar
according to non-site-specific
accuracy assessment

fr
o
m

 C
am

p
b
el

l,
 2

0
0
2

Classified Image Reference Map Difference
Forest 42,00% 40,00% 2,00%
Meadow 13,00% 17,00% -4,00%
Sealed 25,00% 22,00% 3,00%
Water 18,00% 19,00% -1,00%
Bare Rock 2,00% 2,00% 0,00%

100,00% 100,00%

Example of non-site-specific accuracy assessment

n » In this, accuracy assessment was based on comparisons of the areal extent of the classes in 
the derived thematic map (e.g., km² or % cover of the region mapped) relative to their extent in 
some ground or other reference data set. The non-site-specific nature of this approach is, however, 
a major limitation as a map could easily display the classes in the correct proportions but in the 
incorrect locations, greatly limiting the value of the map for some users. Thus, a major problem 
with this approach to accuracy assessment is that the apparent and quantified accuracy of the map 
would hide its real quality. « (Foody, 2002)
o » This method is inaccurate in itself due to the possibility of compensating errors that don’t 
show up and only overall figures of the two images are compared. Nevertheless, the “inventory 
error” of the classification map can be estimated. « (compare to Campbell, 2002)



85

Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | 
 stefan.lang@sbg.ac.at

OBIA OBIA --
TutorialTutorial Slide 85 / 96

Site-specific accuracy assessment

� Agreement between categories in classified and 
reference map at specific locations
� Based on site-by-site comparison (using pixels, clusters of pixels 

or polygons)
� Every site can only be occupied by one class (for a clear 

statement of “error” or “correctly classified”)
� Calculation of error matrices 

Reference 
Image

Classified 
Image

from Campbell, 2002
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Error Matrix

� Identification of overall 
errors and 
misclassifications (by 
category)

� n × n array; where n is the 
number of categories

� Every cell summarizes the 
number of sample units 
assigned to a particular 
category in the 
classification relative to 
the actual category
� Diagonal cells (upper left to 

lower right): correctly 
classified units

� Off-diagonal cells: error in the 
remote sensing classification 
relative to the ground 
reference information

from Campbell, 2002
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DIAGONAL ENTRIES GIVE CORRECTLY CLASSIFIED
PIXELS (“RANGE CLASSIFIED AS RANGE”)

SUM OF DIAGONAL ENTRIES GIVE TOTAL NUMBER
OF CORRECTLY CLASSIFIED PIXELS

Error matrix (schematic representation)

n » The standard form for reporting site-specific error is the error matrix, sometimes referred to 
as the confusion matrix because is identifies not only overall errors for each category, but also 
misclassifications (due to confusion between categories) by category. Compilation of an error 
matrix is required for any serious study of accuracy. It consists of an n × n array, where n 
represents the number of categories. The left-hand side (y-axis) is labelled with the categories on 
the reference (“correct”) classifications; the upper edge (x-axis) is labelled with the same n 
categories; these refer to those on the map to be evaluated. (Note that the meanings of the two 
axes can be reversed in some applications, as the convention is not universal). « (Campbell, 2002)
o » The intersection of the rows and columns summarize the number of sample units (e.g. pixels, 
clusters of pixels, or polygons) assigned to a particular category (class) relative to the actual 
category as verified in the field. […] The diagonal of the matrix summarizes those pixels or 
polygons that were assigned to the correct class. Every error in the remote sensing classification 
relative to the ground reference information is summarized in the off-diagonal cells of the matrix. 
Each error is both an omission from the correct category and a commission to the wrong category. 
The column and row totals around the margin of the matrix (referred to as marginals) are used to 
compute errors of inclusion (commission errors) and errors of exclusion (omission errors). The 
outer row and column totals are used to compute the producer’s and user’s accuracy. Some 
recommend that the error matrix contain proportions rather than individual counts (Stehman and 
Czaplewski, 1998). « (Jensen, 2005)
p » Presently, the confusion or error matrix is at the core of accuracy assessment but there is 
much scope to extend the analysis beyond it (Congalton, 1994; Congalton & Green, 1999). «
(Foody, 2002)



87

Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | 
 stefan.lang@sbg.ac.at

OBIA OBIA --
TutorialTutorial Slide 87 / 96

Error Matrix (2)

� Percentage correct (overall
accuracy)
� Sum of diagonal entries divided 

by total observations
� Errors of omission 
Ù Errors of commission
� Regarding an error from two 

different viewpoints
� Error of omission: correct class 

hasn’t been recognised by the 
classification process (exclusion 
from category)

� Error of commission: by mistake 
the unit has been assigned to the 
wrong class (error of inclusion)

� Producer‘s accuracy 
Ù Consumer‘s accuracy
� Accuracies of individual categories
� Producer’s accuracy (a measure of omission error): indicates probability of a 

reference unit being correctly classified
� Consumer’s accuracy (user’s accuracy, a measure of commission error): 

probability of a classified unit on the map actually representing that category on 
the ground

from Campbell, 2002; modified
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1748/2592 = 67.4%; CA, consumer’s accuracy; PA, producer’s accuracy
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Example of an error matrix

FOREST 12

RANGE

Error of omission

23

WATER

RANGE

Error of commission

150

Producer’s accuracy ConsumerConsumer’’s accuracys accuracy

n » The overall accuracy of the classification map is determined by dividing the total correct 
pixels (sum of the major diagonal) by the total number of pixels in the error matrix. Computing 
the accuracy of individual categories, however, is more complex because the analyst has the 
choice of the dividing the number of correct pixels in the category by the total number of pixels in 
the corresponding row or column. Traditionally, the total number of correct pixels in a category is 
divided by the total number of pixels of that category as derived from the reference data. This 
statistic indicates the probability of a reference pixel being correctly classified and is a measure of 
omission error. This statistic is called the producers accuracy because the producer (the analyst) of 
a classification is interested in how well a certain area can be classified. If the total number of 
correct pixels in a category is divided by the total number of pixels that were actually classified in 
that category, the result is a measure of commission error. This measure, called the user’s 
accuracy or reliability, is the probability that a pixel classified on the map actually represents that 
category on the ground (Story and Congalton, 1986). « (Jensen, 2005)
o » The figure shows an example of an error matrix. Each of the 2592 pixels in this scene was 
assigned to one of six land-cover classes. The resulting classification was then compared, pixel by 
pixel, to a previously existing land-use map of the same area, and the differences were tabulated, 
category by category, to form the data for this table. The total number of pixels reported by the 
matrix (in this instance, 2592) may constitute to the entire image, or may simply be a sample 
selected from the image. Also the land-use classes here simply form examples; the matrix could 
be based on other kinds of classes (including forest types, geology, etc.) and could be smaller or 
larger, depending upon the number of classes examined. « (Campbell, 2002)
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Error Matrix (3)

� Kappa coefficient (ĸ)
� Need for a more objective accuracy assessment
� Compensation of the effect of chance agreement
� Example:

� Random assignment of pixels into 3 classes
Results in 33% correctly classified pixels (= overall 

accuracy)
� 4 classes 25% correct
� 5 classes 20% correct

⇒Kappa coefficient
Measure of difference between observed agreement
(between a classification and reference information) and 
agreement by chance

n » After an initial inspection of the error matrix reveals the overall nature of the errors present, 
there is often a need for a more objective assessment of the classification. […] A shortcoming of 
usual interpretations of the error matrix is that even chance assignments of pixels to classes can 
result in surprisingly good results, as measured by percentage correct. Hord and Brooner (1976) 
and others have noted that the use of such measures is highly dependent upon the samples, and 
therefore upon the sampling strategy used to derive the observations used in the analysis.
K (kappa) is a measure of the difference between the observed agreement between two maps (as 
reported by the diagonal entries in the error matrix) and the agreement that might be attained 
solely by chance matching of the two maps. Not all agreement can be attributed to the success of 
the classification. K attempts to provide a measure of agreement that is adjusted for chance 
agreement. « (Campbell, 2002)
o » The kappa coefficient has many attractive features as an index of classification accuracy. In 
particular, it makes some compensation for chance agreement and a variance term may be 
calculated for it enabling the statistical testing of the significance of the difference between two 
coefficients (Rosenfield & Fitzpatrick-Lins, 1986). This is often important, as frequently, there is 
a desire to compare different classifications and so matrices. To further aid this comparison, some 
have called for the normalization of the confusion matrix such that each row and column sums to 
unity (Congalton, 1991; Smits et al., 1999). « (Foody, 2002)
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Error Matrix (4)

� Kappa coefficient (Khat)
� ĸ = (observed – expected)/(1 – expected)

� When the observed agreement approaches 1 and the chance agreement 
approaches 0, then ĸ approaches 1

ĸ = 1 perfect agreement between classification and reference data
ĸ = 0 agreement is not better than a random classification

� Explanation of the formula:
� Observed agreement = overall accuracy
� Expected agreement = sum of the products of the consumer’s accuracy (CA) and 

the producer’s accuracy (PA) of each class 

ĸ =
Observed agreement – expected agreement

1 – expected agreement

If: Observed agreement 1

Expected agreement 0
Then: ĸ 1

Quelle: Foody, 2002; S. 188

n » The statistic serves as an indicator of the extent to which the percentage correct values of an 
error matrix are due to “true” agreement versus “chance” agreement. As true agreement 
(observed) approaches 1 and chance agreement [expected agreement] approaches 0, ĸ approaches 
1. This is the ideal case. In reality, ĸ usually ranges between 0 and 1. For example, a ĸ value of 
0.67 can be thought of as an indication that an observed classification is 67% better than one 
resulting from chance. A ĸ of 0 suggests that a given classification is no better than a random 
assignment of pixels. In cases where chance agreement is large enough, ĸ can take on negative 
values – an indication of very poor classification performance. « (Lillesand and Kiefer, 2000)
o » ĸ values >0.80 (i.e., >80%) represent strong agreement or accuracy between the classification 
map and the ground reference information. ĸ values between 0.40 and 0.80 (i.e., 40 to 80%) 
represent moderate agreement. ĸ values <0.40 (i.e., <40%) represent poor agreement (Landis and 
Koch, 1977). « (Jensen, 2005)
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Limitations of the error matrix

� Error matrix not a standardized measure
Many different indices, none of them ideal for every single problem

� Used samples
Sampling design (stratified, random…) and sample size can be limiting 

factors
� Type of error 

thematic error vs. error of location
� Accuracy of the reference data accuracy

� Ground “truth” data is a classification itself and may contain error
� Often remotely sensed data is used as a surrogate for ground data

� No assessment of the spatial distribution of error
� Severity of an error is equalized

� Minor errors between relatively similar classes vs. major errors between 
very different classes

� Attempts to represent continua by a set of discrete classes
� Problem with mixed pixels containing more than one class 

Classes are not mutually exclusive within this pixel (which is a problem for 
site-specific accuracy assessment)

n » There is no single universally acceptable measure of accuracy but instead a variety of 
indices, each sensitive to different features (Stehman, 1997a). 

The design of an accuracy assessment programme has several elements including the definition of 
an appropriate sample size and sampling design […]. The sample size, for example, must be 
selected with care and be sufficient to provide a representative and meaningful basis for accuracy 
assessment (Hay, 1979). […] If, for example, a probability-based measure of classification 
accuracy is to be used (Stehman, 1997a), it is essential that the cases were acquired according to 
an appropriate sampling design (Hay, 1979; Stehman, 1999b).

A variety of errors are encountered in an image classification. Typically, interest focuses on 
thematic accuracy. […] Unfortunately, however, other sources of error contribute to the pattern of 
misclassification depicted in the confusion matrix […]. Non-thematic errors can be large and 
particular concern focuses on errors due to misregistration of the image classification with the 
ground data (Canters, 1997; Czaplewski, 1992; Muller et al., 1998; Stehman, 1997a; Todd et al., 
1980). In fact, the ground data are just another classification which may contain error (Congalton 
& Green, 1999; Khorram, 1999; Lunetta, Iiames, Knight, Congalton, & Mace, 2001; Zhou, 
Robson, & Pilesjo, 1998). Problems with ground data accuracy may be particularly severe if a 
remotely sensed data set is used as the reference data. The erroneous allocations made by a 
classification are typically not randomly distributed over the region (Congalton, 1988; Steele, 
Winne, & Redmond, 1998). […] Unfortunately, however, the confusion matrix and the accuracy 
metrics derived from it provide no information on the spatial distribution of error.

In classical accuracy assessments all misallocations are equally weighted. Often, however, some 
errors are more important or damaging than others (Forbes, 1995; Naesset, 1996; Stehman, 
1999a). In many instances, the errors observed in a classification are between relatively similar 
classes and sometimes these may be unimportant while other errors may be highly significant. 
(Felix & Binney, 1989; Foody, 2000a; Steele et al., 1998; Townsend, 2000). 

A further source of error associated with the use of a standard (hard) classifier that allocates each 
pixel to a single class is the implicit assumption that the image is composed of pure pixels (Foody, 
1996; Gong & Howarth, 1990). […] As many remotely sensed data sets are dominated by mixed 
pixels, the standard accuracy assessment measures such as the kappa coefficient, which assume 
implicitly that each of the testing samples is pure, are, therefore, often inappropriate for accuracy 
assessment in remote sensing (Foody, 1996; Karaska et al., 1995). « (Foody, 2002)
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Specifics of object-based accuracy assessment

Need for a different handling of object-based accuracy assessment

� Thematic assessment of object-based classification
� Site-specific approach (making use of random points within objects)
� Selecting objects prior to training process to be used as reference 

information
� Selecting small test areas where every single object is assessed in terms 

of its label
� Geometry assessment of image objects

� Visually checking classified images against manual delineation
� Quantitative assessment with GIS overlay techniques

� Difficulties in object-based accuracy assessment
� No 100% geometrical fit between reference objects and objects to be 

evaluated (due to different ways of segmentation and delineation)
� When using a fuzzified rule base thematic classes are not mutually 

exclusive
⇒ Accuracy is a matter of geometrical and semantic agreement

n » Using an object-based classification approach requires to adapt existing methods of accuracy 
assessment and develop new techniques that explicitly assess the accuracy of object-specific 
features.
Within object-based image analysis thematic assessment can be performed by generating random 
points within objects and checking the labels against a ground truth layer (Lang, Langanke, 2006). 
Alternatively a set of objects can be selected prior to the training process to be used as reference 
information. In smaller test areas with a limited number of larger objects, every single object 
could be assessed in terms of its label (Lang, Langanke, 2006). However, geometrical accuracy is 
by far harder to evaluate. Classified image objects can be visually checked against manual 
delineation (Koch et al., 2003), but a quantitative assessment requires GIS overlay techniques 
(Lang, Schöpfer, Langanke, in press). As outlined in Lang, Schöpfer, Langanke, in press  and 
Lang, Langanke, 2006 we encounter difficulties in performing object-based accuracy assessment, 
which will satisfy the needs as being discussed by Congalton and Green (1999). Two reasons 
account for this at least: a) a 100% geometrical fit between reference and evaluation data is 
usually not given due to different segmentation algorithms and other ways of delineation; b) the 
thematic classes are not mutually exclusive when using fuzzified rule bases. In other words, the 
accuracy is also a matter of geometrical and semantic agreement (see also section 3.4.2; p.82). «
(Lang, 2005)
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Specifics of object-based accuracy assessment (2)

Visual delineation result of Test Cell #6 

Subset of areal 
photo with a 
randomly selected 
15x15m cell

Classification result of  Test Cell #6

Resulting thematic content

27,0%

53,7%

3,5%
15,8%

structured
shaded_veg
meadow
street

Test Cell 6 - digitised

structured
shaded_veg
meadow
street

Test Cell 6 - classified

26,5%

53,3%

3,3%

16,9%

� Visually checking classified images against manual 
delineation
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Specifics of object-based accuracy assessment (3)

� Quantitative assessment of 
object geometry accuracy
� Defining a tolerance (spatial overlay 

strictness) to allow minor differences 
in the object outlines

� Testing of objects
� Classification object has the same 

extent as the reference polygon 
(“stable object”)

� Reference object doesn’t match and is 
split into several objects of the 
classification

� Complex geometry with objects not 
having the same boundaries

� Characterisation of object 
relationship (“object fate”, similar to 
object-based change analysis)
� Good objects
� Expanding objects
� Invading objects

⇒ Approach needs further development

Case 2:
Object splits into 
n sub-objects

Case 1:
Object stays 
the same

Case 3:
Complex geometry
with expanding and
intruding objects

1

1
2 3

Tolerance buffer:
Selected digitised
polygon with
0.5m buffer

Invading obj

Good obj

Expanding 
obj

n » LIST [Landscape Interpretation Support Tool] offers GIS routines for combining polygon 
themes from different sources and calculating object characteristics and object fate. […] 
However, for several reasons we are mostly dealing with spatially inconsistent features. This 
requires a more flexible concept of spatial coincidence. […] LIST offers a way to prove spatial 
coincidence of two data sets. Using a threshold an accepted overlap can be determined. In order to 
consider uncertainties in the geometrical properties of the boundaries of related objects a spatial 
overlay sensitivity (SOS) factor has been introduced. […] Image objects are subject to change. At 
the same time they may change topological relationships to neighbouring objects over time. In 
principle changes may occur with regard to type, intensity and shape of the object. However, 
when an object is shrinking or expanding, then instantly the surrounding is affected. Raza and 
Kainz, 2001, for example, include subdivision and amalgamation of objects in their list of 
spatiotemporal characteristics of parcels. Here it is assumed that one object at time t0 is split into 
n parts, or an object in t1 is a product of m parts. […] Straub [2004] presents eight topological 
relations being reducible to the principal relationships disjoint, equal, overlap and containment. 
[…] All fate categories as depicted are derived by combining basic spatial relationship types. In 
general with all t1 objects that intersect (operation inters), the respective t0 objects are considered 
to be related to it. The number of objects that are completely within (operation compwi) the 
buffered shape of the t0 object is considered to equal the number of ‘good’ objects (ngood). If 
compwi equals 1 and the area of the t1 object is equal to the area of the t0 object (considering the 
SOS factor), the t0 object has remained the same. If this is not the case or if compwi is greater 
than 1, the object t0 has been split over time. The product of the splitting is further distinguished 
by additional spatial relationship types, such as ‘have their centre in’ (centin) and ‘intersect’
(inters). The operation centin reveals the number of t1 objects originating from the t0 object.
Consequently, the difference of centin and compwi is the number of objects that are originating 
from t0, but expanding. And finally the difference of inters and centin reveals the number of 
invading objects. « (Lang et al. in press)
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Outlook

� A next version of this tutorial is under preparation. 
We will include the following topics: 
� Scale-specific vs. scale-adaptive segmentation
� Class modelling Ö segmentation and classification 

as a cyclic process
� Basics of CNL (cognition network language)
� More on object fate Ö object-based change detection 

and object-based accuracy assessment
� Application showcase (forestry, urban studies, 

habitats and wetlands, etc.)

Version 2.0 of the OBIA Tutorial is under preparation and will be issued in 
autumn 2007. Please watch out for the announcement under www.uni-
salzburg.at/zgis/research. 
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