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Disclaimer

This tutorial was built upon teaching material for courses on advanced remote
sensin%, delivered by Dr. S. Lang and Prof. T. Blaschke between 2002 and
2006. Explanations are partly quotes from literature.

Its purpose it to give an introduction to the emerging field of object-based image
analysis and to provide a comprehensive overview of methods involved and
the respective background.

The tutorial is available as ‘slide set only’ or ‘slide set with additional text notes’.
Both are provided in PDF (Acrobat® Reader® required for display).

Dissemination of this Version 1.0 of the OBIA Tutorial is free. Please obey *fair-
use’ conditions as being commonly understood.

We gratefully acknowledge the financial support from Definiens AG
(www.definiens.com), which was granted for the compilation of this tutorial.
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= Visual perception
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= Role of experience

= Pixel- vs. object-scope

= Using objects

= Visual delineation vs. machine-based
segmentation
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The first chapter introduces basic ideas behind object-based image analysis (OBIA). The
way how human beings perceive imaged information will be covered and we will talk
about the role of experience in image interpretation. In this context, the advantages of
object-based image interpretation compared to a pixel-based approach will be pointed
out.

When using a computer for classifying an image we transfer our knowledge to the
machine and make it trying to imitate certain characteristics of the human way of image
interpretation. In this respect, and in particular when going beyond spectral cues of
certain geographical features, a pixel-based classification approach (i.e. treating single
pixels individually) is limited. An object-based approach instead does support
considering spatial characteristics of geographical features explicitly. Form-related as
well as hierarchical (i.e. scale-related) characteristics can be addressed. We therefore
are at the interface between remote sensing and GlScience. But, as we will see later,
also the object-based approach has its limitations. Still, our human perception is an
ultimate benchmark, still undefeated in analyzing complex scene contents with ease.

Thus, this chapter starts with a short discussion how we perceive the contents of
images. An example is given that shows that the content of a picture file can only be
recognized given data are coded in the right way. Only then we perceive patterns of
color and form, structured in various levels throughout the image. The example shows
that the content of an image appears in several scales. The difference between the
human way of image interpretation and the way how image data are represented as
pixels becomes obvious. The human eye sees much more than only different colors, it
also perceives shapes, texture and the spatial arrangement of certain elements. Our own
experience influences image interpretation and each of us sees the image in a different
context. The context we apply depends on the degree familiarity with nadir-looking
satellite imagery or aerial photographs, their different band combinations, and our
knowledge about the depicted image content. Gaining experience is a basic prerequisite
for skilful image interpretation.
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The following example illustrates that data is only valuable for us if coded in the right
way. Numbers alone can hardly be interpreted beyond their immediate meaning and
transforming rows of number to a ‘picture’ is nearly impossible for the human brain. Even
if coded into (arbitrary) colors, as shown in the following slide, it does not make much
difference. Only if there is proper link between coding and color scheme, information is
conveyed successfully (see slide after).

© » Compared to a scene being represented in pixels the human way of image interpretation is
quite different (Pinz, 1994) even if we see single pixels in an image due to a bad resolution we
refuse to perceive them. Usually — when looking at an image — we perceive a complex pattern of
colour and form, structured in various levels throughout the image. Fine structured features appear
but we simultaneously aggregate them into larger ones. That means that the content of a scene
appears in several scales at the same time. To illustrate this, an example is given showing an array
of grey-scaled pixels. In spite of the bad resolution and the limited number of grey scales, it is
possible to convey enough information to recognize a face! The specific arrangement of perceived
parts of the face and clothing makes it easy to assign the face to a well-known person. A blurred
sight imitates smoothing (suppression of high frequencies). All in all, (exactly) two scale domains
are visible, namely the one of the face, and the one of its constituting parts (like eyes, nose, beard,
hair, forehead). « (Lang, 2005, p.39)
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Similarly, we can illustrate the role of image context and, in addition, the power of
a given spatial arrangement. The picture above, far left, shows a feature which
can be interpreted as a piece of a black line on a white background.

As soon as there is more context provided, we can see that the black area is
indeed a small section of a line which belongs to a striped pattern that we
recognize as the fur pattern of a zebra.

Hmm, sorry, the last picture makes us rejecting all our previous ideas and there
is no way in ignoring that there is a chair with a zebra-like cover!
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= Human vision is well adapted for complex image
interpretation tasks
= Experience built up since early childhood
= But human vision is challenged when dealing with remote
sensing imagery:
= Applying an overhead view
= Dealing with spectral characteristics beyond the visual spectrum
= Working with unfamiliar scales and resolutions
-> Experience is an important prerequisite for skillful and
successful interpretation

Images of the Fortress in Salzburg, Austria
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© » We can hardly describe exactly what really happens if we look at an image and suddenly
‘see’ something. But indeed we notice that we do any kind of pattern recognition without major
effort (Eysenck and Keane, 1995; Tarr and Cheng, 2003). Human perception is a complex matter
of filtering relevant signals from noise, a selective processing of detailed information and, of
course, experience. « (Lang, 2005)

® » Three issues distinguish interpretation of remotely sensed imagery from interpretation
conducted in everyday experience. First, remotely sensed images usually portray an overhead
view — an unfamiliar perspective [...]. Second, many remote sensing images use radiation outside
the visible portion of the spectrum [...]. Finally, remote sensing images often portray the earth’s
surface at unfamiliar scales and resolutions [...]. Students cannot expect to become proficient in
image analysis simply by reading about image interpretation. Experience forms the only sure
preparation for skillful interpretation. « (Campbell, 2002)

© » When starting with manual air-photo or satellite image interpretation we notice that a lot of
experience is required. It mostly needs training to match the imaged false colour schemes with
natural phenomena and to understand certain texture or structures and the imaged features.
Unfortunately, even long time learning cannot prevent us from facing ambiguity when features
are very like in structure or colour. According to recent findings in brain research (Spitzer, 2000;
Churchland, 2001) signal processing by any of our senses is based on vector coding of signals in a
high-dimensional feature space. It remains a challenge to find out more about the vector axes
being used when we interpret signals through our senses. ‘Experience’ means a tighter allocation
in our multidimensional feature space. « (Lang, 2005)

O » Note that the domain of interest of a skilled interpreter may differ from that of a simple user;
the experience of the former makes him specifically look for certain features, whereas the latter is
mainly interested in the information he wants to obtain. « (Lang, 2005)

© » Nevertheless, human photo-interpreters also implicitly use structural knowledge in the
manual classification process. They do not only consider contextual information but also
information about the shape of and the spatial relations between the image regions. « (Blaschke,
2003)

10
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river municipal park
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¢ specific form/shape e specific spatial
context

From Definiens, 2004
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When looking at an image we see several different features that we can describe by
looking at their properties.

For example the river in the figure above, left, has specific spectral values and we by its
form can distinguish it from other features (e.g. lakes) that have similar spectral values.
Another example is a municipal park. Although spectrally similar to grassland we can
identify them as parks because they are placed inside urban areas. How can we tell the
computer to classify these features properly? By utilizing spatial context and form.

11
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An average Landsat scene with a size of 141 km? and a spatial resolution of 30 m is
composed by some 22 million pixels per band. The number of panchromatic pixels (15 m
resolution) increases to 88 million. An Ikonos scene covering 11 km? is built up by
approx. 7.5 million pixels (four bands, 4 m resolution) and 121 million panchromatic
pixels. No matter, which resolution, a pixel is always an integrated signal of reflection
emitted by the observed underlying features (mixed pixel effect). Since usually
neighboring pixels over a certain range have similar signals (spatial autocorrelation), it is
kind of inappropriate and also ‘uneconomically’ to treat each of them individually.

O » A digital image is composed of many thousands of pixels (“picture elements”), usually each
too small to be individually resolved by the human eye. Each pixel represents the brightness of a
small region on the earth’s surface recorded digitally as a numeric value usually with separate
values for each of the several regions of the electromagnetic spectrum. « (Campbell, 2002)

® » For the remotely sensed data classification, many classifiers based on the spectral analysis of
individual pixels have been proposed and significant progress has been achieved. However, these
approaches have their limitations since most remote sensing image classification techniques are
based on per-pixel procedures (Blaschke & Strobl, 2001). They analyze pixels mainly using
multivariate statistics. So the current results still cannot compare with human photo-interpreters. «
(Blaschke, 2003)

12
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= Pixel-based classification process
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= Problems
= Spectral values belong to more than one information class
= No spatial relationships used in classification
= Pixel artificial spatial unit
= ‘Artifacts’ (salt-and-pepper effect)
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© » By comparing pixels to one another, and to pixels of known identity, it is possible to
assemble groups of similar pixels into classes that are associated with the informational categories
of interest to users of remotely sensed data. These classes form regions on a map or an image, so
that after classification the digital image is presented as a mosaic of uniform parcels, each
identified by a colour or symbol. These classes are, in theory, homogeneous: pixels within classes
are spectrally more similar to one another than they are to pixels in other classes. In practice, of
course, each class will display some diversity, as each scene will exhibit some variability within
classes. « (Campbell, 2002)

@® » The traditional method for analysis of EO data in landscape research is the classification of
pixels based on pixels in the same land cover class being close in spectral feature space. This does

not hold true for complex environments and their respective classifications. « (Burnett &
Blaschke, 2003)

© » Sometimes such [pixel-based] classifiers are referred to as spectral or point classifiers
because they consider each pixel as a “point” observation (i.e., as values isolated from their
neighbours). Although point classifiers offer the benefits of simplicity and economy, they are not
capable of exploiting the information contained in relationships between each pixel and those that
neighbour it. « (Campbell, 2002; page 319f.)

O » As Townshed et al. (2002) point out, a significant, but usually ignored problem with per-
pixel characterization of land cover is that a substantial proportion of the signal apparently
coming from the land area represented by a pixel comes from the surrounding pixels. This is the
consequence of many factors including the optics of the instrument, the detector and the
electronics, as well as the atmospheric effects. An alternative is to use contextual procedures in
which observations from surrounding pixels are used to assist the characterisation. Although it
might be desirable to integrate neighbourhood information continuously or in a fuzzy way, one
operational method to work with relatively homogeneous areas is image segmentation, i. e. the
use of image objects. « (Blaschke & Strobl 2001)

13
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Limitations of pixel-based analysis
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© » Human interpreters could derive little information using the point-by-point approach, because
humans derive less information from the brightness of individual pixels than they do from the
context and the patterns of brightnesses [i.e. texture], of groups of pixels, and from the sizes
shapes and arrangements of parcels of adjacent pixels. « (Campbell, 2002)

® » Human photo-interpreters also implicitly use structural knowledge in the manual
classification process. They do not only consider contextual information but also information
about the shape of and the spatial relations between the image regions. [...] One way to make use
of this additional information is to organize the image into objects that represent regions of similar
pixels prior to the classification. [...] In most cases, information important for the understanding
of an image is not represented in single pixels but in meaningful image objects and their mutual
relations. « (Blaschke, 2003)
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O » To extract objects of interest, the statistical analysis of pixels exclusively based on their
spectral statistic is not sufficient. As laid out in several recent publications (Blaschke, Strobl 2001;
Ehlers et al., 2002; Flanders et al. 2003), the advent of higher resolution image data increased the
need for more efficient methods more than ever. Generally, for high resolution data, segmentation
as a pre-classification step is preferred over pixel based classification because the resulting
division of space tends to involve fewer and more compact subregions. « (Blaschke, 2003)

® » Segmentation approaches are generally more suitable for high resolution data, where pixels
tend to be spatially clumped. « (Blaschke, 2003)

© » For example, in a 1.0-m-resolution image of a forest canopy, where each tree crown exhibits
a 10-m diameter, each crown image-object will be composed of many pixels. In this situation
each 1.0 m pixel will be part of an individual crown. [...] As a result, an image-object tends to be
composed of spatially clustered pixels that exhibit high spectral autocorrelation because they are
all part of the same object. Consequently they have similar gray values. These characteristics
correspond to Tobler’s first law of Geography where ‘objects are related to all other objects, but
proximal objects are more likely to be related to each other’ (Tobler 1970). In an image-object,
this relationship is both spectral and spatial. « (Hay et al., 2003)

15
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Landsat ETM image of a small bog system in Southern Germany (top), pixel based
classification (lower left), segmentation-based classification (lower right).

© » The Figure illustrates the main difference when building objects prior to the classification
process. Some degree of generalization is applied in this phase. For many applications, e.g. land
cover mapping, generalization is intrinsically required to produce tangible target objects of the
same class which are relatively homogenous according to the class definition. « (Blaschke, 2003)

The ‘salt-and-pepper-effect’ occurs, if there are many pixels classified differently but
actually belonging to the same land cover type (here: bog). This may result in a
unnecessarily detailed classification of the land surface. It can be overcome by
segmentation (i.e. grouping the similar pixels first), followed by classification.

16
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= Meaningful objects
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= Clear boundaries
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O » The basic elements of an object-oriented approach are image objects. Image objects are
contiguous regions in an image. We distinguish between image object primitives and objects of
interest. Only objects of interest match real-world objects, e.g. the building footprints or whole
agricultural parcels. Object primitives are usually the necessary intermediate step before objects
of interest can be found by segmentation and classification process. The smallest image object is
one pixel. Image objects can be linked to a hierarchical network, where they are attributed with a
high-dimensional feature space. [...] Within an image object all kind of statistics based on single
input layers or combinations within the input image layer stack can be computed, e.g. the ratio of
the mean values of two input channels A and B. [...] Using image objects to calculate this statistic
instead of boxes of pixels improves the reliability of statistic without smearing edges, since
objects do not exceed edges. Of course homogeneous areas of mixed pixels can’t be resolved. In
ideal cases, this mixture would be detected since it is not matching the signatures of pure classes
and therefore result in a reduced reliability of object classification. [...] Advantages of object-
oriented analysis are meaningful statistic and texture calculation, an increased uncorrelated feature
space using shape (e.g. length, number of edges, etc.) and topological features (neighbour, super-
object, etc.), and the close relation between real-world objects and image objects. This relation
improves the value of the final classification and cannot be fulfilled by common, pixel-based
approaches. « (Benz et al., 2004)

17
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© » Remotely sensed data are a crucial source for GIS users. From the GIS user‘s perspective a
polygonal structured image representation is like mother tongue. [...] Making use of the objects’
attributes and spatial relations brings geographical concepts that are basic to GIS into the field of
Remote Sensing. [...] We argue for a somewhat different handling of our entities introducing the
concepts of neighborhood, distance and location. All these concepts are not new. In fact, entire
disciplines like Geography are based on these concepts. The question therefore is: Why are
remote sensing and digital image processing still so much focused on the statistical analysis of
single pixels rather than on the spatial patterns they build up? « (Blaschke, Strobl, 2001)

® » GIS analysis is usually dominated by an investigation of the horizontal relationships of (map)
objects. [...] High-resolution image data carry information in a fine scale resolution and in
aggregated super-levels at the same time. [...] Nested relationships in a systemic hierarchy are
needed. « (Lang, 2005)

18
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© » The interpreter must often delineate, or outline, regions as they are observed on remotely
sensed imagery. The interpreter must be able to separate distinct areal units that are characterized
by specific tones and textures, and to identify edges or boundaries between separate areas. Typical
examples include delineation of separate classes of forest or of land use — both occur only as areal
entities (rather than as discrete objects). Typical problems include: (1) selection of appropriate
levels of generalization (e.g., when boundaries are intricate, or when many tiny but distinct
parcels are present); and (2) placement of boundaries when there is a gradation (rather than a
sharp edge) between two units. « (Campbell, 2002; page 123ff.)

® » We can classify the generated segments by modelling their structural properties (ORM).
Hierarchical properties of image segments can be expressed by various measures characterizing
the averaged properties of (sub)-objects and/or their spatial arrangement (proximity measures).
However, in some cases ORM cannot provide a solution for the intended modelling of a target
class. This applies when the required geometry of the target class polygons is not provided by
segmentation due to restrictions of (region- or edge-based) segmentation algorithms. In many
cases the human brain can easily manage to detect and delineate features that otherwise in a
machine-based way are hardly to extract. This we can prominently observe for features whose
boundaries are mentally constructed and not directly seen in an image. « (Blaschke et al., 2005)

19
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Obviously, any kind of planning is based on spatial units, patches, etc.
Landscape analysis and landscape planning utilize units, often derived and
updated through images.

When deriving Image objects, we do not have per se real world objects in hand.
They may be used as representatives for real-world objects, if being (1)
appropriate to the respective geographical feature they represent and (2)
satisfying our eye. But of course, our eye is not unambiguous either.

20



DBJA -

Tutorial

Visual delineation vs. machine-based segmentation (3)

= Some more aspects

Results not necessarily more
correct, but more intuitive, more
convincing, more practical
object generation suitable for
textured or low-contrast image data

= VHR-satellite imagery

= Airborne optical scanner data

= Airborne laser scanning (ALS) data

= Synthetic aperture radar (SAR) data
Semi-automated image
interpretation
Sulpports imalge understgnding by
solving complex semantic problems
Monitoring of known structures

= e.g. existing land use classification
can be used as pre-defined
boundaries for segmentation

A ;
f OIS
.

| Figure: M. Preiner

Figure: E. Schopfer

Z G | S Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

21



UNIVERSITAT
SALZBURG

OBIA - Tutorial

Introduction to object-based image analysis

Chapter 2
Some basic concepts of hierarchy theory

Z G | S Centre for Geoinformatics, Salzburg University
——

22



OB/A -

Tutorial

Outline

Relevance of multi-scale representation
Scales and scaled representation
Decomposition and holarchy

Multi-scale approach with remote
sensing

Hierarchical patch dynamics paradigm

Z Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

In this chapter we will take a closer look on the concept of scale, and start with a short
review on hierarchy theory. Note that applying a coarser scale does not necessarily
mean reaching a hierarchical level. In fact hierarchy theory is talking about the level of
organization, which is not restricted to average size or extent alone. But drawing on this
theory, the Hierarchical Patch Dynamics Paradigm (HPDP) has been introduced in
landscape ecology (see below). The term holarchy from hierarchy theory has been
applied to the hierarchical organization of landscapes (hierarchically structured patches
of increasing average size).

Objects have an inherent scale. An image can be represented in different scales
simultaneously (multi-scale representation), depending on the respective scale domain
of target objects. In hierarchy theory fundamental parts interacting in a complex system
are called holons. Separating and ordering the system components according to their
scale can be done by the means of multi-scale analysis. From a remote sensing
perspective, image objects are at the same time aggregates of pixels (or smaller
objects), as well as parts of larger objects.

The strategy provided by HPDP combines the idea of hierarchically organized patches,
their interactions within the ecological system, and the relation between the observed
patterns and underlying processes that change with scale.

23
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Increasing resolution of image data lets us climb farther down within the ‘G-
scale’. Because image resolution is now entering the domain of scale of human
interaction we need to apply a different view.

In the 1 m resolution domain provided by Ikonos, Quickbird and other operational
EO sensors, the variety of application areas is broadly increasing (ecology, urban
planning, security issues, etc). Whereas a classical land use / land cover
classification may aim at a list of maybe 15-20 classes, the level of detail of
recent data allows for a much higher number of classes to differentiate. The
degrees of freedom in what we can find our increases heavily.

High spatial resolution supports multi-scale observation, because the human
activity resides right in the centre resolution domain. By this, he former
‘macroscope’ of remote sensing data evolves to a ‘homoscope’.
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Scales and scaled representation

= Scale

Refers to the size of objects
that appear in the landscape

or in a representation of it Different Views — Different Scales —
(e.g. a map or a satellite Different Objects?
image)

= Different objects have
different scales
Every object has its inherent
scale
It only appears in a certain
range of scale
= Depending on the
elevation of our
viewpoint we see
certain objects

Figure: M. Conradi
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© » In landscape ecology, there is a growing awareness about continuity of phenomena and
discontinuities of scales. Forman (1995) described this ambiguity through the metaphor of a
person gradually descending with a spaceship or balloon. Human perception abruptly starts to
discover patterns and mosaics. Many mosaics are quasi-stable or persistent for a while, separated
by rapid changes that represent the “domains of scale”. Each domain exhibits certain spatial
patterns, which in turn are produced by a certain causal mechanism or group of processes. «
(Blaschke & Strobl, 2001)

® » According to Allen and Starr (1982) the concept of scale is illustrated by the analogy of a
window, through which the constant flows of signals is filtered or weighted. So scale is defined
by “the period of time or space over which signals are integrated [...] to give message”. « (Lang &
Blaschke, 2003)

© » Hay et al. (2003) demonstrated that the representation at different scales corresponds more to
the objects of interests rather than only referring to statistical measures in an image. « (Lang &
Blaschke, 2003)

O » Although in the domain of remote sensing a certain scale is always presumed by pixel
resolution, the desired objects of interest often have their own inherent scale. Scale determines the
occurrence or non-occurrence of a certain object class. The same type of objects appears
differently at different scales. Vice versa, the classification task and the respective objects of
interest directly determine a particular scale of interest. « (Definiens, 2004, p 62)
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Scales and scaled representation (2)

= Scaling Ladder

Every portion of land Level 1
contains objects of many (Super Level)

different scales resulting / ‘ ﬂ: Span

in a series of scales

= Boundaries within
the scale spectrum

Level 0

Thresholds between ranges (Focal Level)

of scale are never crisp
/ ‘ : Branches

(Sub Level)
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: Nodes

© » The ladder of hierarchical levels (Wu, 1999) seems to be infinite in either direction — the
ultimate constituents of reality are not found yet. « (Lang, 2005)

@® » The metaphor of a ‘scaling ladder’ (Wu, 1999) marks adjacent scale domains in a continuous
scale spectrum. According to hierarchy theory it is assumed that a series of scales is inherent in
any portion of land (landscape) no matter what the actual size is (Lang, 2001). O’Neill et al.
(1986) have proposed to consider at least three nested scales in any study: the level of interest
(“focal level’ or ‘reporting level’) is constrained by controlling conditions of the level above,
which provides significance; lower level components supply explanations (Turner, et al., 2001).
Burnett & Blaschke (2003) use ‘candidate discretisations’ to illustrate the formation of scaled
representations when working on image data with several inherent scale levels. « (Lang &
Langanke, 2006; Lang, 2005)

© » Scale thresholds are never crisp, since they mark the boundaries between scale continuums,
but are made hard by fiat. « (Burnett & Blaschke, 2003)
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Hierarchical patch dynamics paradigm

= HPDP - combining hierarchy theory and
patch dynamics

A hierarchical scaling strategy dealing with spatial
heterogeneity

= Holon = patch = ecological unit at a
particular scale

= Interaction of components

Loose vertical and horizontal coupling in structure
and function
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© » Patch dynamics provides a powerful way of dealing explicitly with spatial heterogeneity. Wu
and Loucks (1995) suggest the integration between hierarchy theory and patch dynamics via the
HPD paradigm and lay a theoretical framework for a theory-driven breaking down of ecological
complexity through a hierarchical scaling strategy. Wu (1999), drawing on the Koestler’s
concepts of flux rates in hierarchy, suggests that ecological systems are nearly completely
decomposable systems because of their loose vertical and horizontal coupling in structure and
function. The term “loose” suggests “decomposable” and the word “coupling” implies resistance
to decomposition. When translating hierarchy theory to landscape ecology, holons are
synonymous with patches: the ecological unit at a particular scale. Patches interact with other
patches at the same and at higher and lower levels of organization through loose horizontal and
vertical coupling. [...] Wu & Loucks (1995) and Wu (1999) suggest that the HPD theoretical
framework can be used to perceive and model landscape as a hierarchical mosaic of patches
although it is difficult in empirical studies to distinguish clearly between nested and non-nested
hierarchies (Allen & Starr, 1982), at least prior to investigation. « (Burnett & Blaschke, 2003)

® » Ecological systems are hierarchical patch mosaics. On different scales, a patch may be
defined as a continent surrounded by oceans, a forest stand surrounded by agricultural lands and
urban areas, a fire-burned area or a tree gap within a forest, or a stomata on a leaf. Patches can be
characterized by their size, shape, content, duration, structural complexity, and boundary
characteristics. The theory of patch dynamics indicates that the structure, function, and dynamics
of such patches are important to understanding the systems they comprise, be they populations,
communities, ecosystems, or landscapes. « (Wu, 1999)
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Hierarchical patch dynamics paradigm (2)

= Wu (1999)

= Ecological systems as spatially nested patch
hierarchies

= Dynamics of an ecological system derived from
the dynamics of interacting patches

= Pattern and process are related and change with
scale

= Non-equilibrium and stochastic processes do not
necessarily work against stability
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O » The list below is a digest of the HPD framework found in Wu (1999).

1. Ecological systems can be perceived as spatially nested patch hierarchies, in which larger
patches are made up of smaller, functioning patches.

2. The dynamics of a given ecological system can be derived from the dynamics of interacting
patches at adjacent hierarchical levels. Patches at higher levels impose top-down constraints to
those lower levels by having slower or less frequent processes, while lower levels provide
initiating conditions and mechanistic explanations for, and give apparent identity to, higher levels
through interactions among patches. Distinctive characteristic time scales of patches at lower
versus higher levels are the fundamental reason for the near-decomposability of ecological
systems.

3. Pattern and process have components that are reciprocally related, both pattern and process, as
well as their relationship, change with scale.

4. Non-equilibrium and stochastic processes are common in ecological systems. In general, small
scale processes tend to be more stochastic and less predictable. However, non-equilibrium and
stochastic processes do not necessarily work against stability. They usually constitute mechanisms
that underlie the apparent stability of systems. (Wu; 1999)

We believe that a better landscape analysis methodology can be built upon a combination of HPD
theoretical base, an object-orientated modeling environment and advanced GIS and RS methods.
« (Burnett, Blaschke; 2003)
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Scales and scaled representation (3)

= Relevant range of the
scale spectrum for
landscape analysis

= Grain
minimum area at which an
organism responds

comparable to resolution (spatial,
spectral, temporal) in an image

= Extent
coarsest scale of spatial
heterogeneity
extent of the whole scene (total
area, bandwidths, covered temporal
duration)
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© » Landscape ecology: Grain is the minimum area at which an organism perceives and responds
to the patch structure of landscape (Kotliar and Wiens, 1990). Extent is the coarsest scale of
spatial heterogeneity at which organisms react (Farina, 1998). « (Burnett & Blaschke; 2003)

® » Remote sensing point of view: Grain refers to the smallest intervals in an observation set,
while extent refers to the range over which observations at a particular grain are made (O’Neill
and King, 1997). From a remote sensing perspective, grain is equivalent to the spatial, spectral
and temporal resolution of the pixels composing an image, while extent represents the total area,
combined bandwidths and temporal duration covered within the scene (Hay et al., 2001). « (Hay
et al., 2003)
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Scales and scaled representation (4)

= Representation in various
levels simultaneously

= Each knows it’s context
and hierarchical
neighbourhood

4

Object hierarchy

Taken from Lang et al., 2004
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© » The problem is not to choose the correct scale of description, but rather to recognize that
change is taking place on many scales at the same time, and that it is the interaction amongst
phenomena on different scales that must accompany our attention (Levin (1992), p. 1947). «

(Burnett, Blaschke; 2003)
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Decomposability and Holarchy

" Landscape as a System Separation Hierarchical
Consisting of interacting organization
subsystems

= Decomposition L
Separating a system into its

components according to
their scale and ordering = |
them hierarchically 1
5
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© » Systems structure can also be characterized in terms of hierarchical interaction. A system is
nearly-decomposable into constituting sub-systems and hierarchical organization is an
overarching principle in all living systems (Simon, 1973). « (Lang, Burnett, Blaschke; 2004)

® » Decomposition is the process of separating and ordering system components according to
their temporal or spatial scales or both. This is done by the means of multi-scale analysis. «
(Burnett, Blaschke; 2003)

© » In hierarchy theory, objects are apparent as separable entities because of differences in flux
rates, by gradients (Simon, 1962; Koestler, 1967). Relatively strong gradients will evoke more
apparent boundaries, or local heterogeneity. Boundaries manifest both between objects at the
spatial (and temporal) scale and between objects at different scales. « (Burnett, Blaschke; 2003)

O » Interactions tend to be stronger and more frequent within a level of hierarchy than among
levels (Allen and Starr, 1982). This important fact enables the perception and description of
complex systems by decomposing them into their fundamental parts and interpreting their
interactions (Simons, 1962). « (Hay et al.; 2003)
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Decomposition and Holarchy (2)

= Subsystems are
rather independent
from each other
Horizontal and vertical
coupling
= But still have
integrative
tendencies
Part-being of
constituting
elements

Level +1
(Higher

Level)

Level 0
(Focal Level)

Level -1 / T \

(LL:::Zr n Embeddedness

* Q
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Integrative ™ self-assertive R Coupling of
tendencies tendencies holons
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O » The existence of vertical and horizontal loose couplings is exactly the basis of the
decomposability of complex systems [...]. While the word “loose” suggests “decomposable”, the
word “coupling” implies resistance to decomposition. Strictly speaking, complete
decomposability only occurs when coupling between components becomes zero, which seems a
trivial case because, by definition, a system is composed of interacting parts. Thus, hierarchical
complex systems are only nearly completely decomposable or nearly decomposable (Simon,
1962, 1973). « (Wu, 1999)

® » This means that constituent elements of a larger system operate in a rather independent way
[...]. Koestler (1967) has elaborated on the idea that a system on any level can be considered as
both self-assertive and integrative, and suggested the term ‘holon’ (from Greek /olos and —on) to
emphasize this dialectic property. Whereas the first underlines the independent and singular
character of a system, the latter emphasizes the part-being of a constituting element. In order to
highlight the dynamic character of a hierarchy of nested holons, Koestler proposed the term
‘holarchy’. Landscape ecologists (Naveh, 1995; Naveh, Lieberman, 1994) have tried to apply
general systems theory to derive organizational forms above and beyond the organism/community
dialectic. According to these an ecotope can be defined as a concrete above-organism holon and at
the same time as a constituting element of larger landscape mosaics. « (Lang, Burnett, Blaschke;
2004)
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Multi-scale approach with remote sensing

= Definition of fundamental objects in remote sensing
images

Integrated objects vs. aggregate objects
= Interaction of objects within and across scale domains
= What scales should be chosen for the different objects?
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© » However, to achieve this [description of complex systems by decomposition/ multi-scale
approach], objects, i.e., fundamental parts, have to be clearly defined. Rowe (1961) distinguishes
between two fundamental object types: integrated objects and aggregate objects. Integrated
objects contain structurally organized parts, while aggregate objects occupy a common area, but
have no structural organization. Furthermore, integrated objects have intrinsic scale, whereas
aggregates do not. From a remote sensing perspective, image objects are integrated objects that
exhibit an intrinsic scale and are composed of structurally connected parts, i.e., H-res pixels. «
(Hay et al., 2003)

® » To understand how image objects interact within and across scale domains, we need
techniques to automatically define them in remote sensing data and the ability to link them within
hierarchical structures. The primary unknowns to achieve this are: What are the ‘optimal’ scales
to evaluate the varying sized, shaped, and spectrally distributed image-objects within a scene? At
what scale should hierarchies be established? We suggest that there is no single ‘optimal’ scale for
analysis. Rather there are many optimal scales that are specific to the image-objects that
exist/emerge within a scene (Hay and Niemann, 1994; Hay et al., 1997, 2001). « (Hay et al.,
2003)

© » A single scale of image objects is probably insufficient to characterize the hierarchical nature
of Nature. O’Neill et al. (1986) has suggested that at least three levels should be used. « (Lang,
Burnett, Blaschke, 2004)

® » Anthropogenic features usually cover a narrow scale window. They demand a shallow
hierarchy. Natural objects demand a multi-scale representation, reflecting several scales which are
corresponding to functional hierarchies. A ‘shallow’ hierarchical representation is faced with a
‘deep’ or flexible one, the bottom of which is not clearly defined. « (Lang, Blaschke; 2003)
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Knowledge representation
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What is knowledge?

Cognition networks

Image understanding

Production systems vs. adaptive learning
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What is knowledge?

= Knowledge plays key role in image interpretation
part of remote sensing
= Implicit human knowledge is supplemented with explicit
knowledge by training
= Artificial intelligence distinguishes knowledge into:
= Procedural knowledge (specific computational functions)
= Represented by a set of rules
= Structural knowledge (how concepts of a domain are
interrelated)

= For image understanding in remote sensing: Are there links
established between image objects and ‘real world’
geographical features?

= Rich semantic content
= Represented by a semantic network
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© » Knowledge plays a key role in the interpretation-oriented parts of the remote sensing process
chain (Campbell, 2001). We have a huge store of implicit knowledge at our disposal and a
significant part of it is used in image interpretation [...]. From an artificial intelligence (Al)
perspective knowledge can be distinguished in procedural and structural knowledge. Procedural
knowledge is concerned with the specific computational functions and can be represented by a set
of rules. Structural knowledge implies how concepts of a domain are interrelated: in our case that
means, which links between image objects and ‘real world’ geographical features are established.
It is characterized by high semantic contents and therefore by far more difficult to tackle with. «
(Lang, 2005)
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What is knowledge? (2)

= Structural knowledge can be organized in knowledge
organizing systems
= Realised as graphic notations such as semantic nets or
frames
= Semantic knowledge representation (using inheritance
concept, e.g. ‘is part of’, ‘is more specific than’, ‘is an
instance of”) as formal framework for image analysis
= Semantic net
= To be created

= Control over existing Golf Course -%
lue > Jow IR

connections, once = more
established specific than

= Transparency and
operability small

compare to Pinz, 1994; p. 94
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Example:

0 » Structural knowledge can be organized in knowledge organizing systems (KOSs), realised by
graphic notations such as semantic networks (Ibrahim, 2000; Pinz, 1994; Liedtke et al., 1997;
Sowa, 1999), and more mathematical theories like the formal concept analysis (FCA, Ganter &
Wille, 1996). Within image analysis semantic nets and frames (Pinz, 1994) offer a formal
framework for semantic knowledge representation using an inheritance concept (is part of, is
more specific than, is instance of). In section 3.3.5 a semantic net is used as part of a cognition
network. Though a semantic net needs to be created manually, it allows for controlling each and
every existing connection once being established. With increasing complexity the transparency
and operability will reach a limit. Bayesian networks are manually built, but the weighting of the
connections can be trained, though it has to be trained for every connection. « (Lang, 2005)
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Cognition network

Cognition network

Structural knowledge Procedural knowledge

How to assign segments from
the image to their corresponding
classes (classification)

How to group pixels from an
image into segments
(segmentation)

= Purpose of the cognition network
= Documentation of every step and setting in the process of image understanding

= Usefulness of the approach
= Transparent, a suitable means for communication
= Reproducible
= To a high degree comprehensible
= Technically transferable to other scenes
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© » Within object-based mapping a cognition network (Binnig, et al., 2001) is established which
serves as a conceptual framework for the number and parameterization of segmentation layers and
the definition of classes. Especially when multi-scale segmentation and object-relationship
modelling (MSS/ORM, see Burnett & Blaschke, 2003) is being applied, such a conceptual outline
seems to be indispensable. Any step and setting during the entire classification process is
documented, and can be assessed and adopted if needed. Although the result is not necessarily
more accurate, it can be reproduced and the process is to a high degree comprehensible. The
formalized approach of analysis (i.e. the class definitions and composition and the documentation
of the workflow and settings in the semi-automated process) technically allows for a transfer of
the classification to other scenes (Lang & Langanke, 2004; Benz, et al., 2004). « (Lang &
Langanke, 2006)

® » The establishment of a cognition network encapsulates the required knowledge for building
up a rule set. Though not empirically proved as yet in this case, the transferability seems to be
rather a matter of adapting the parameterization (Schopfer et al., 2005). « (Lang & Langanke,
2006)

© » A triple-SN [self-organizing, semantic, self-similar network] is essentially a kind of
hierarchical world knowledge network containing knowledge about objects, their properties, and
their relations, as well as processing knowledge about what to do when certain kinds of objects
are present in the real world. By "real world" we mean the varying input that interacts with the
triple-SN. This input could be an image, a text, or any complex structure. « (Binnig et al., 2002)

® » The networking and structuring of the input transforms information into knowledge and, to a
certain extent, constitutes an automatic "understanding". « (Binnig et al., 2002)

© » By an optimally hierarchically structured network the classifications and segmentation in an
alternating manner, the unstructured input (the single pixels) evolves to a logical structural
arrangement of objects according to the cognition network: “the creation of objects and their
relations on and across different hierarchical levels is equivalent to transform information into
knowledge”. « (Binnig et. al., 2002)
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Image understanding
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© » Major advances and efforts have been made in Al including feature detection algorithms. Yet
image understanding is more than just feature extraction on a specified scene (Ibrahim, 2000). In
interpreting an ecological scene we are dealing with a high variety of instances of different target
classes (& see paper E2). Image understanding (IU) is commonly regarded as a process, through
which in the end we arrive at a description of the image content, i.e. the reconstruction of an
imaged scene (Pinz, 1994).

Document image understanding employing optical character recognition is often taken as a
striking example of successful Al implementation. Whereas in this arena the target symbology is
rather clear and well defined, it remains a challenge to correctly identify poor handwriting.

Usually today’s image understanding process does not end up with a mere listing and labelling of
image primitives (cp. Pinz, 1994). Within image interpretation of EO data the target scheme is
usually much less defined and rather ambiguous, especially when dealing with scenes
representing natural features. IU more and more aims at providing highly aggregated and
application-related information in a defined domain of interest; therefore aiming at a ‘full” scene
description and is equipped with crucial elements from formal knowledge to reach from signals to
a symbolic representation of the scene content. One focus is on the description of (real-world)
objects and their relationships in the specific scene (Winston, 1984).

Describing a scene always depends on a conceptual framework constructed by components like
(a) the underlying research question within (b) a specific field of application and (c) pre-existing
knowledge and experience of the operator. Gaining insight into the content of a scene requires
familiarity with the potential content as being realized by personal acquaintance with the imaged
area or general experience. This implies recognition of the imaged features and their systemic
structure. That means the inference from specific arrangement of units in 2-dimensional space to a
certain application context. The field of image understanding is interwoven with disciplines, such
as image processing, pattern recognition, and Al. Image processing provides the sources in a pre-
processed way. Pattern recognition has made enormous advances in the last decade has
incorporated methods of knowledge representation and expert systems to a wide degree. Al
covers a major field of computer-based image understanding, yet a certain portion is left
uncovered that is related of unsolved challenges of knowledge transfer to an automated system
(Ibrahim, 2000). « (Lang, 2005, p 49f.)
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Image understanding (2)

Scene description
as conceptual reality
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O » By forming the conceptual link to human perception image segmentation is considered an
essential prerequisite for image understanding (Gorte, 1998). Object-oriented image analysis
(OBIA) offers valuable methodological assets in breaking down scene complexity into
meaningful image primitives. By providing “candidate discretizations of space” (Burnett &
Blaschke, 2003) a scene can be modelled in adaptive scales according to the domain of interest.
The relevant steps of using an object-based image analysis approach are depicted in [the
following slides]. « (Lang, 2005)
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Image understanding (3)
Scene description as conceptual reality
- Modelling (categorizing the image objects)
Planning of the image description outcome and segmentation
1st match
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O » A profound prerequisite of image object modelling is the provision of a clear underlying
concept regarding the domain of interest. This comprises an understanding of the target scale, the
target object set, and the target class scheme. Note that the domain of interest of a skilled
interpreter may differ from that of a simple user; the experience of the former makes him
specifically look for certain features, whereas the latter is mainly interested in the information he
wants to obtain. « (Lang, 2005)

® » One of the most important aspects of understanding imagery is information about image
context. There are two types of contextual information: global context, which describes the
situation of the image — basically, time, sensor and location — and local context, which describes
the mutual relationships of image regions. [...] Image objects have to be linked to allow low and
high-level semantic and spatial context. The image object network becomes a hierarchical image
object network, when image objects of different scale at the same location are linked. Together
with classification and mutual dependencies between objects and classes, such a network can be
seen as a spatial semantic network. « (Benz et al., 2004)

© » From image domain to application domain: Starting from a real-world scene subset captured
by an image of high complex content the first step comprises the provision of scaled
representations by aggregation information and reducing complexity. The multi-scale
segmentation should be steered by a clear picture in mind of how target objects are structured by
sub-level primitives (or super-level aggregates). The critical choice of appropriate segmentation
levels makes up the 1st match of a scene-centred view with conceptual reality. « (Lang, 2005)
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Image understanding (4)

Scene description as conceptual reality
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© » Having object hypotheses in mind (Bruce & Green, 1990) the modelling is realized by
encoding expert knowledge into a rule system. Modelling aims at categorizing the image objects
by their spectral and spatial properties and their mutual relationships (Lang & Langanke, 2006).
In accordance to various possibilities of grouping this kind of knowledge one can differentiate
between spectrally, structurally, and semantically defined classes. This is the 2" match and the
shift to an object-centred view is accomplished. « (Lang, 2005)
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O » In the final stage of image understanding when arriving at a scene description an exhaustive
categorization of any object is achieved. This representation of the image content meets the

conceptual reality of the interpreter or user. « (Lang, 2005)
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O » The entire process is characterized by the utilization and transformation of knowledge.
Knowledge input is realized by establishing a body plan for the relevant features through class
descriptions, modelling, rules and labelling. The procedure makes expert knowledge explicit.
Knowledge is stepwise adapted and improved through progressive interpretation and object
modelling. Knowledge will be enriched from analyzing unknown scenes and the transfer of
knowledge may incorporate or stimulate new rules. « (Lang, 2005)
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= Short history
= Image segmentation in remote sensing
= Categories of segmentation algorithms
= Histogram-based/pixel-based segmentation
= Region-based segmentation
= Edge-based segmentation
= Scale space analysis - Image Objects and Blobs
= Multiresolution Segmentation algorithm
= Region merging and scale
= Local mutual best fitting approach
= Colour and shape homogeneity

Z Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

Chapter 4 discusses segmentation algorithms that can be used to derive objects from an
image. We also introduce multi-resolution segmentation. We start with a short history on
image segmentation, with a focus on applications in remote sensing. We will explain the
concept of image segmentation highlighting the importance of homogeneity as a key
criterion of the extracted regions. The practical aim is of image segmentation is to find an
optimum match between image objects and geographical features of the real world
objects.

We may broadly distinguish between three categories of segmentation algorithms, i.e.
histogram-based, edge-based, and region-based segmentation algorithms. Histogram-
based approaches perform segmentation within the feature space. These clustering
approaches differ from other approaches mainly by ignoring the spatial dimension in real
space. It is a form of unsupervised classification, leading to classes but not to spatially
contiguous regions. Region-based segmentation algorithms, as the name indicates,
deliver regions. They can be differentiated into region growth, region merging and
splitting techniques and various derivations or combinations. Region growth starts with a
set of seed pixels from which regions grow by adding neighboring pixels as long as a
homogeneity criterion applies. Region merging starts with initial regions, e.g. single
pixels, and merges them together until a scale-dependent threshold in size is reached.
The splitting algorithms divide an image into regular sub-regions (e.g. squares), which
again will be divided until a certain level of homogeneity is reached. The combination of
split and merge is realized in the split-and-merge algorithm. Here, the image is
subdivided into squares of a fixed size. Heterogeneous squares are subdivided again
and homogeneous squares can be merged together. Edge-based algorithms are
searching for edges that occur between homogeneous areas. This process usually
includes filtering and enhancement of the image prior to the detection of the edges. The
detected edges (groups of pixels) need to be combined in order to form a boundary.

The multi-resolution segmentation algorithm implemented in Definiens software is a
region-based, local mutual best fitting approach. The algorithm is utilizing a combined
homogeneity and shape concept and allows several segmentation levels to be
established within one image.
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Short history

= 1980ies: first developments of image
segmentation

Major driver: industrial vision

= Rarely made use of in remote sensing until
the late 1990ies
Reason: little progress in segmentation of multi-
band images, algorithms not made for EO data
= Since then a high number of segmentation
algorithms has been developed

= Availability in commercial products made use of
segmentation of EO data more common
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O » Although image segmentation techniques are well known in some areas of machine vision
(see Narendra & Goldberg, 1980, Fu & Mui, 1981, Haralick &Shiparo, 1985, Cross et al., 1988)
they are rarely used for the classification of earth observation (EO) data. One of the main reasons
for this is that most of these algorithms were developed for the analysis of patterns, the
delineation of discontinuities on materials or artificial surfaces, and quality control products, in
essence. These goals differ from our goals: the discretisation of EO remote sensing imagery aims
at the generation of spectrally homogeneous segments, which show the inherent
dimensions/objects of the images. « (Blaschke et al., 2004)

® » Kartikeyan et al. (1998: 1695) state: “Although there has been a lot of development in
segmentation of grey tone images in this field and other fields, like robotic vision, there has been
little progress in segmentation of colour or multi-band imagery.” Especially within the last two
years many new segmentation algorithms as well as applications were developed, but not all of
them lead to qualitatively convincing results while being robust and operational. « (Blaschke &
Strobl, 2001)

© » The number of methods for segmenting an image is legion (for an overview, see Haralick and
Shapiro, 1985; Ryherd and Woodcock, 1996; Kartikeyan et al., 1998; Baatz and Schipe, 2000;
Schiewe et al., 2001). Common approaches use region growing or thresholding algorithms, but
many derivatives for specific applications such as grey scale, hyper spectral images or data fusion
of different sensors exist. « (Burnett & Blaschke, 2003)

O » As stated above, the idea of segmentation is not new but it is becoming more widespread
within the EO/RS community recently. While the foundations of the basic principles were laid out
in the 80ies (see Haralick & Shiparo, 1985) and various applications demonstrated the potential in
the following years for environmental applications (e.g. Véhel & Mignot, 1994, Panjwani &
Healey, 1995, Lobo et al., 1996), mainly the availability in commercial software packages
catalysed a boost of applications more recently. « (Blaschke et al., 2004)
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Image segmentation in remote sensing

= Division of an image into regions so that

= the whole scene is covered by regions (spatially
continuous, exhaustive segmentation)

= the regions do not overlap

= the regions are homogeneous within themselves

= the homogeneity criteria of neighbouring regions differ
= Region (token):

= aggregate of pixels grouped together (directly or indirectly)
= Homogeneity as overarching principle

= ‘relatively’ homogeneous regions reflect better the ‘Near-
decomposability’ of natural systems

= High heterogeneity creates boundary to neighbouring
patches, low remaining heterogeneity within patches

= Homogeneity criterion: grey value, colour, texture, form,
altitude, etc.
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Segmentation rests upon four mathematical principles of (cp. Horowitz and Pavlidis,
1974): (1) Union set of regions makes up the image, (2) Regions are not allowed to
overlap, (3) Homogeneity criterion H applies, (4) Homogeneity criteria of neighbouring
regions differ.

© » Image analysis implies to deal with image semantics. In most cases important semantic
information to understand an image is not represented in single pixels but in meaningful image
objects and their mutual relations. Furthermore many types of image data are more or less
textured. Airborne data, radar or VHR-satellite data are playing an increasing role in remote
sensing. In most cases, analysis of such textured data can only be successful when they are
segmented in meaningful ‘homogenous’ areas. « (Baatz, Schépe; 2000)

® » Segmentation is the division of an image into spatially continuous, disjoint, and
homogeneous regions. Segmentation is powerful and it has been suggested hat image analysis
leads to meaningful objects only when the image is segmented in ‘homogeneous’ areas (Gorte,
1998, Molenaar, 1998, Baatz & Schipe, 2000) or into ‘relatively homogeneous areas’. The latter
term reflects better the ‘near-decomposability’ of natural systems as laid out by Koestler (1967)
and we explicitly address a certain remaining internal heterogeneity. The key is that the internal
heterogeneity of a parameter under consideration is lower than the heterogeneity compared with
its neighbouring areas. « (Blaschke et al.; 2004)

© » Because we believe that ‘natural’ hard boundaries are antithesis to a view of landscapes as
continuum mosaics, we turn to HPD theory for guidance. With multi-scale segmentation, we are
searching for the gradient of flux zones between and within holons (patches): areas where the
varying strengths of interactions between holons produce surfaces. [...] Methodologically, this
equates to searching for changes in image object heterogeneity/homogeneity. « (Burnett,
Blaschke; 2003)
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Categories of segmentation algorithms

= Pixel-based or )
histogram-based
Thresholding techniques
Segmentation in the feature  » Finding homogenous
space ObjeCtS
= Region-based
Region growing, merging
and splitting
= Edge-based Detecting edges

i between objects [and
Laplace filter, Sobel-operator, .
Eepresentativeness,p... background (matrix)]
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Traditional image segmentation methods have been commonly divided into three
approaches: pixel-, edge and region based segmentation methods.

© » Pixel based methods include image thresholding and segmentation in the feature space [...].
In edge based segmentation methods, the aim is to find edges between the regions and determine
the segments as regions between the edges [...]. Region-based segmentation algorithms can be
divided into region growing, merging and splitting techniques and their combinations. «
(Blaschke et al., 2004)

® » Technically, there are a number of possibilities how to segment an image. Most approaches
can be grouped into two classes, namely edge-based algorithms and area-based algorithms. This
classification also includes fractal-based approaches aiming at detecting discontinuities as well as
fractal-based or texture-based algorithms (Salari & Ling 1995, Ryherd & Woodcock 1996) aiming
at finding homogeneous areas. A recent survey of some competing approaches lists advantages
but also some potential pitfalls for extracting geoinformation and useful landscape elements on
real surfaces (Blaschke et al. 2000). Locally extracted histograms provide a good representation of
the local feature distribution, which captures substantially more information than the frequently
used mean feature values. The ‘representativeness approach’ (Hofmann & Bohner 1999) and
other boundary- forming techniques (Schneider et al. 1997, Banko et al. 2000) and segmentation
approaches (Gorte 1998, Molenaar 1998, Cheng 1999) provide good results in test areas but are
not necessarily using all contextual information beyond the spectral information of neighbouring
pixels such as texture, shape, directionality, spatial distribution within the study area, connectivity
etc. However, from preliminary studies it is concluded, that the most promising recent
developments are fractal approaches spearheaded by the developments of INRIA in Paris (Véhel
and Mignot 1994) and Definiens AG in Munich (Baatz and Schipe 2000). « (Blaschke & Strobl,
2001)
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= Objects vs. background
(matrix) in a grey value image
= = tokens (token set)

Region (token): aggregate of pixel
grouped according to homogeneity
criterion (directly or indirectly)

background

-——-'

brightness

profile

objects \ 3
“ 4/ profile

Image events (tokens)

Constellation token

stefan.lang@sbg.ac.at
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Note that after Pinz (1994 ) tokens can overlap each other.
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Histogram-based

= Histogram Thresholding:
simplest way to accomplish
exhaustive regional segmentation

= =» ‘Swijss cheese’ segmentation
for punched parts

= One- or bimodal distribution of
grey values, threshold has to be
d etermin ed Quickbird: 6 classes Isodata

classification
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O » Some of the simplest approaches are all types of global thresholding. The spectral feature
space is separated into subdivisions, and pixels of the same subdivision are merged when locally
adjacent in the image data. Typically, this method leads to results of relatively limited quality.
Oversegmentation and undersegmentation — i.e., separating into units which are too small or
merging regions that do not belong to each other — take place easily without good control of
meaningful thresholds. Local contrasts are not considered or not represented in a consistent way
and the resulting regions can widely differ in size. « (Definiens, 2004)

® » Common alternatives are knowledge-based approaches. They try to incorporate knowledge
derived from training areas or other sources into the segmentation process [Gorte, 1998]. These
approaches mostly perform a pixel-based classification, based on clustering in a global feature
space. Segments are produced implicitly after classification, simply by merging all adjacent pixels
of the same class. In doing so, these approaches are typically not able to separate different units or
objects of interest of the same classification. Furthermore, the information on which classification
can act typically is limited to spectral and filter derivates. « (Definiens, 2004)
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Region-based segmentation

= Region growing S
= Seed cells are distributed over image s aiEeEe +
= Bottom up (randomly) - NEHTHT
= Top-down (content expected) s150 SESESC

= Neighbours (4- or 8-neighbourhood) i
are included into region, if
= they do not belong to another region yet i i

= the homogeneity criterion H applies i

= Two neighbouring regions are unified,
if H applies
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0 » ECHO [extraction and classification of homogeneous objects; after Kettig and Landgrebe,
1975] searches for neighbouring pixels that are spectrally similar, then enlarges these groups to
include adjacent pixels that have spectral values that resemble those of the core group. For
example, the algorithm can first search for neighbourhoods of four contiguous pixels. For each
group, it then tests members for homogeneity [...] Pixels that are not similar to their neighbours
are rejected from the group [...].

Each of the homogeneous patches is then compared to each of its neighbours. If similar patches
border each other, they are merged to form a larger patch. Patches are allowed to grow until they
meet the edges of contrasting patches; when all patches reach their maximum extent within the
constraints defined by the operator, the growing process stops. [...]

ECHO is a good example of a classifier that operates on fields of pixels rather than on each pixel
in isolation. However, it performs the classification upon the average brightness of each patch, so
it does not attempt to use image texture. « (Campbell, 2002, p. 346)

@® » These algorithms depend on a set of given seed points, but sometimes suffering from lacking
control over the break-off criterion for the growth of a region. Common to operational
applications are different types of texture segmentation algorithms. They typically obey a two-
stage scheme (Jain & Farrokhnia, 1991, Mao & Jain, 1992, Gorte, 1998, Molenaar, 1998,
Hoffman et al., 1998). « (Blaschke et al.; 2004)
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Region-based segmentation (2)

= 'Split and Merge’
= Combination of coarse segmentation and
merge

= Example: Quadtree

= Initially: image as one object = division into 4 parts, if
H does not apply

= Resulting quadtree structure
= Merge of homogenous quadtree areas
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© » In region merging and splitting techniques the image is divided into sub regions and these
regions are merged or split based on their properties. In region merging the basic idea is to merge
segments starting with initial regions. These initial regions may be single pixels or objects
determined with help of any segmentation technique. In region splitting methods the input usually
consists of large segments and these segments are divided into smaller units if the segments are
not homogeneous tough. In an extreme case region splitting starts with the original image and
proceeds by splitting it into n rectangular sub-images. The homogeneity of these rectangles is
studied and each rectangle is recursively divided into smaller regions until the homogeneity
requirement is fulfilled. In both, region merging and splitting techniques, the process is based on a
high number of pair wise merges or splits. The segmentation process can be seen as a
crystallisation process with a big number of crystallisation seeds. The requirement for the
maintenance of a similar size/scale of all segments in a scene is to let segments grow in a
simultaneous or simultaneous-like way. « (Blaschke et al., 2004)
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Region-based segmentation (3)

Quadtree structure in a Quickbird Image of Salzburg, generated with eCognition
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Application of quadtree algorithm to a QuickBird scene (0.6 m spatial resolution, pan-
sharpened).
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Edge-based segmentation

= Region-based segmentation makes sense when
large, compact and coherent objects occur
(‘blobs’)

= =» edge-based segmentation for elongated
structures

= Edge: boundary between homogenous areas

brightness
brightness

Build the
?’
derivative / \
edge line

profile profile
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Looking at image brightness as a function, the first derivative generates lines
where the edge between homogeneous regions lies.

95



pBlAa-

Tutorial

Edge-based segmentation (2)

= Workflow

1.Edge detection
= Filtering — smoothing to
decrease noise in the image
= Enhancement - revealing
local changes in intensities
= Detection - select edge
pixels, e.g. by thresholding
= Closing of gaps / deleting
artefacts
= Combining, extending of
lines
2.Linking the edge pixels to
form the region boundaries
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Edge-based segmentation (3)

= Enhancement filters (examples)

=Sobel operator =Laplace filter =Compass edge ...
112]1 0|10 -1[-2]-1 -2(-1]10
0/0]0 11-4|1 0/0]0 -110(1
-1]-2]-1 0[1]0 1121 0[1]2
horizontal 0° 45°
-110]1 1141 -1{0]1 0|1[2
-2(0(2 4120 4 -2[0[2 -1{0(1
-1(0[1 1141 -110]1 -2(-1]0
vertical 90° 135°

The resulting filter
is the combination
of all eight directions.
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Edge-based segmentation (4)

= Segmentation by
representativeness
measures

= Calculate a

representativeness of
each pixel for its

neighbours .—, : /,.“g SN

= The minima represent 73 ,//‘:‘t";““‘;@
unsteadiness and 1= LS Vi e
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= Vectorised minima
delimit areas with
similar spectral
properties
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O » Hoffman & Bohmer (1999) proposed an edge based method in which they calculate a
representativeness of each pixel for its neighbours. The image segmentation is based on the
representativeness values of each pixel. At first the values are calculated by a harmonic analysis
of the values for each spectral channel. The minima in the matrix of representativeness — typically
arranged in pixel lineaments — represents spatial unsteadiness in the digital numbers. For the
image segmentation, the vectorised minima of the representativeness delimit areas consisting of
pixels with similar spectra properties (spatial segments). A convergence index is combined with a
single-flow algorithm for the vectorisation of the representativeness minima. A standardisation is
performed through the calculation of a convergence index for every pixel in a 3 by 3 window. «
(Blaschke et al., 2004)
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Watershed segmentation

= Watershed segmentation

@ by Slang 2005
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O » A further relatively common procedure is watershed segmentation [Wegner & al 1997]. It got
its name from the manner in which the algorithm segments regions into catchment basins.
Typically, the procedure first transforms the original data into a gradient image. The resulting
grey tone image can be considered as a topographic surface. If we flood this surface from its
minima and if we prevent the merging of the waters coming from different sources, we partition
the image into two different sets: the catchment basins and the watershed lines. The catchment
basins should theoretically correspond to the homogeneous grey level regions of this image. This
method works for separating essentially convex and relatively smooth objects of interest that even
may touch slightly in relatively homogeneous image data. When it works, it is convenient, fast
and powerful. However, for remote sensing data, which typically contain a certain noise and not
always strong contrasts, this method is typically not able to achieve appropriate results. «
(Definiens, 2004)

® » Watershed segmentation (Haris, 1998) is a segmentation method with a high intuitive
character and transparency. Spectral reflectance is modelled as height values and segments are
built at gradient magnitudes along similar altitude levels, just in analogy of water flowing into
valleys between watersheds. Region growing stops when neighbouring flooding regions meet
each other. Higher scale segmentation is achieved by decreasing the number of local minima. One
problem of watershed segmentation is that in an initial stage the algorithm leads to over-
segmentation (Ibrahim, 2000), and in many cases it has to be actively controlled by markers. It
only depends on spectral likeness, so objects may vary significantly in size. « (Lang, 2005)
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Scale space analysis - Image Objects and Blobs

= Temporal aspect = image events
= Scale space blobs

= Detection

= Blobs

Compact image object
usually with a clear centroid

Significant within scale domains = defined by
spatial extension, brightness, scale (4D)

Repetitive Gaussian filtering

Local maxima are determined
Shapes are drawn around

centroids (circle, polygon) Hyper blob with
image events
*Annihilation
*Split

*Merge

«Creation
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O » The following overview represents a multiscale approach as described by Lindberg (1994)
that is composed of two principal components: Linear Scale-Space (SS) and Blob-Feature
Detection. For a more detailed non-mathematical description of both, see Hay et al. (2002). [...] A
SS multiscale representation of a signal (such as a remote sensing image of a landscape) is an
ordered set of derived signals showing structures at coarser scales that constitute simplifications,
i.e. smoothing, of corresponding structures at finer scales. [...] This results in a scale-space cube or
'stack’ of progressively 'smoothed' image layers, where each new layer represents convolution at
an increased scale. [...] The second SS component we use is referred to as Blob-Feature Detection
(Lindberg, 1994). The primary objective of this non-linear approach is to link structures at
different scales in the scale-space, to higher order objects called 'scale-space blobs' and extract
significant features based on their appearance and persistence over scales. [...] An important
premise of SS is that structures which persist in scale-space are likely candidates to correspond to
significant structures in the image and thus in the landscape. [...] Within a single hyper-blob four
primary types of 'bifurcation events' may exist: annihilations (A), merges (M), splits (S) and
creations (C). These SS-events represent critical components of SS analysis, as scales between
bifurcations are linked together forming the lifetime (Lt ) and topological structure of individual
SS-blobs. « (Hay et al.; 2003)
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Multiresolution Segmentation algorithm

UNIVERSITAT
SALZBURG

= Design goals

Overview

»Convince the human eye"

Multi-resolution (strictly
hierarchic)

Similar resolution
Reproducibility
Universality

Performance (i.e. speed ©)

Region merging technique
Decision heuristics
Homogeneity criterion
= Colour homogeneity
= Shape homogeneity
compactness and smoothness
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stefan.lang@sbg.ac.at
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Region merging and scale

= Bottom up region merging technique
= Starting with each pixel being a region

= A pair of regions is merged into one region,
each merge having a merging cost (degree of
fitting)

= Objects are merged into bigger objects as long
as the cost is below a ‘least degree of fitting’
(scale parameter?
= the merge fulfils the homogeneity criterion

= Starting points for merging distributed with
maximum distance ]

= Pair wise clustering process considering
smallest growth of heterogeneity
- Establishin? segmentation levels on
several scales using different scale
parameters

(e.g. 2nd level based on 1st level: larger scale
parameter results in larger objects consisting of pieievel
the objects of the 1st level)

Level 3

Level 2

Level 1
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0 » Segmentation needs to address a certain scale: does the application require information about
single bushes or trees or about land cover units such as orchards or mires? Most segmentation
approaches don’t allow the user to specify a certain scale of consideration and a level of detail or
generalization, accordingly. « (Blaschke, 2003)

® » The flexibility in performing scale-specific segmentation has led to a growing interest from
landscape ecological applications of this approach. Within landscape ecology the hierarchical
representation of process-relevant spatial units in various scale domains is one of the fundamental
pillars (Wu, 1999). Segmentation can be used to provide a consistent set of image primitives to be
used as landscape objects (Lang et al., in press; Burnett & Blaschke, 2003). « (Lang & Langanke,
2005)
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Decision heuristics

= Finding an adjacent object B
for an arbitrary object A for
merging them

1. Fitting: when the
homogeneity criterion is
fulfilled

2. Best fitting: when the
homogeneity criterion is
fulfilled, and the merge
between B and A produces
the best degree of fitting
compared to the merge
between A and any other
adjacent object of A

—_ fitting

— not fitting

best fitting
—  fitting

— not fitting
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Decision heuristics (2)

Fitting
Best fitting

3. Local mutually best fitting:
find the best fitting object B for the

N =

object A, then find the best fitting object < —> notfitting
C for the object B. Confirm that object C —> fitting
is the object A, otherwise take B for A B best fitting
and C for B and repeat the procedure.

mutuall

=> find best fitting pair of objects in the “ pest fitting
local vicinity of A following the gradient
of homogeneity

4. Global mutually best fitting:

merge the pair of objects for which the

homogeneity criterion is fulfilled best in

the whole image

=  Distributed treatment order
Use starting points with maximum distance

to all other points treated before Sonmly
(treatment order defined over pixels or best fitting

segments)
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Find the best fitting object B for the object A and confirm that the best fitting object C for
the object B is indeed the object A (homogeneity criterion is fulfilled mutually). If not, take
B for A and C for B and try again.
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Homogeneity criterion

Definition of the degree of fitting

= Colour and shape homogeneity are weighted against each
other

= Compactness and smoothness make up the shape
homogeneity and are weighted against each other

Colour homogeneity Shape homogeneity
Smoothness
Two objects are Compactness: ideal compact form of
similar which are near objects (objects don’t become lengthy)
to each other in a Smoothness: boundaries of the edges
certain feature space don’t become fringed
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Homogeneity criterion (2)

Relation between boundary length | of the object and the

square root of the number n of the pixels of the object
(square root of n equals the side of a square with n pixels)

s, i W
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h = —
compact —
\n

hcompact =

Relation between boundary length | of the object and the

perimeter of the bounding box of the object (bounding
box: shortest possible boundary Iength)
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The smooth shape homogeneity criterion only allows the objects to grow into shapes that
have no fringed boundaries. The compact shape homogeneity criterion suppresses
fringed boundaries, too, but additionally favours compact object shapes.
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Introduction to object-based image analysis

Chapter 5
Object-based classification
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= Introduction

= Available features for classification

= Sample- vs. rule-based classification

= Fuzzy classification

= Class hierarchy

= Class-related features

= Strengths of object-based classification
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In this chapter we explore object-based classification, its commonalities and specifics as
compared to other pixel-based classification techniques in remote sensing. Looking at
the peculiarities of object-based classification, there are at least two major aspects to be
considered.

(1) We are dealing with a (largely) augmented, high-dimensional feature space. The
number of features is virtually unlimited, and several hundreds can easily be
constructed. Two reasons account for that: first, since objects are aggregates of n pixels
we can use for any feature statistical derivatives like mean, standard deviation etc.
Second there are a variety of geometrical features to be used. In addition, when working
with hierarchical representations, there are features which characterize the relationships
among objects on different hierarchical levels. All of these features can be used for
classification. The ‘art’ is to find out which ones of these are really distinctive for a certain
class. Consider taking samples for distinguishing between two pairs of classes,
coniferous forest vs. deciduous forest and grassland vs. football ground. Whereas in
either case you may establish shape-related features (area, rectangularity, etc.) for your
samples, only in the latter case these are distinctive.

(2) Depending on the features we use for our classification, we are facing a high degree
of freedom. Using shape information we can for example differentiate between grassland
and a football ground. Using size information, we can tell small from big football grounds.
Using spatial context information we can distinguish a big football ground within a city
from a big football ground in the countryside. And so on. As this process becomes has a
strong modeling component, working with samples alone may be limited. We therefore
put a strong focus on formulating rule sets and perform rule-based classification in the
sense of a productions system.
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Introduction

= Classifying

= Assigning objects to a certain class
according to the class's description

= Feature space segmented into
distinct regions which leads to a
many-to-one relationship between
the objects and the classes

= Definition of the class descriptions

= Available object features

= Sample-based or rule-based
classification strategy

@ Houses

@ Meadow

(D) Transportation
@ Trees

@ water
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O » Usually classifying means assigning a number of objects to a certain class according to the
class’s description. Thereby, a class description is a description of the typical properties or
conditions the desired classes have. The objects then become assigned (classified) according to
whether they have or have not met these properties/conditions. In terms of database language one
can say the feature space is segmented into distinct regions which leads to a many-to-one
relationship between the objects and the classes. « (Definiens, 2004)
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Available features for classification

= layer values
= mean
= std-dev
= geometrical properties
= size, shape, ...
= textural properties
= layer value texture (e.g. mean of sub objects: std-dev) colour
= shape texture (e.g. directions of sub objects)
= hierarchical properties
= number of higher levels texture
= number of super or sub objects

shape

hierarchy

= relations to classes of ...
= neighbour objects

. . to neighbour objects
= sub objects (relative area of ...)

= super objects to sub objects
= membership to ... to super objects
Z Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

O » Pixels can be characterised by their spectral behaviour, as being expressed by their specific
allocation in an n-dimensional feature space (where n equals the number of spectral bands of a
sensor). With multispectral data (such as colour and false-colour orthophotos, QuickBird data,
Landsat data) » ranges from 3 to 6 or 7. When considering image objects instead of pixels, a
wealth of additional features can be used for characterisation. Besides statistically aggregated
spectral features also geometrical and neighbourhood-related features can be used, by which the
dimensionality of the resulting feature space is getting significantly higher and raises to virtually
limitless extent. If still a network of image objects is created (full multi-scale decomposition,
Burnett and Blaschke, 2002), even vertical relationships between super-objects and sub-objects in
the object hierarchy can be used to expand the feature space even further. « (Lang, 2005)
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Sample- vs. rule-based classification

= Sample-based classification

= Define class membership by similarity to
selected samples
= Sample has to be representative for its class
= Use features clearly distinguishing the sampled class
from other classes
= Nearest neighbour classifier

= Object will be assigned to the
class who's samples are closest . l

Feature B

to it in the feature space

Useful approach, if knowledge °
about the scene’s content is limited

Feature A

2 Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

© » Multispectral classification, in a pixel-oriented view, can be defined in a rather straight-
forward definition as the act of “assigning pixels to classes” (Campbell, 2001). This implies
transforming reflectance values and ordinal scaled pixel values into nominal classes. In a
statistical sense this means pixels are grouped according to their proximity in the spectral feature
space, i.c. their spectral homogeneity. [...] By their respective spectral behaviour pixels can be
allocated in an n-dimensional feature space, created by the n bands of a sensor. Classificators are
used to assign pixels to certain classes, which correspond to specific regions in the feature space.
These regions are usually defined by training areas. Minimum distance (or nearest neighbour)
calculates the Euclidean distance for each pixel to the centroid of each class and then assigns a
given pixel to the nearest class. When working with objects instead of pixels, the feature space is
significantly augmented; in this case a minimum distance classificator is more suitable, since
normal distribution of features can hardly be presumed in all cases. [...]

Image objects can be classified by (1) classification based on samples and (2) using prior external
knowledge stored in rule bases (Schopfer et al., in press). The first is a supervised classification
process, which unifies advantages of manual and statistical procedures. Rather than delineating
training areas sample objects are iteratively selected. These sample objects should have the most
representative and clearly distinguished features. « (Lang, 2005)

® » In comparison to pixel-based training, the object-based approach of the nearest neighbour
requires less training samples: One sample object already covers many typical pixel samples and
their variations. « (Definiens, 2004)
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Sample- vs. rule-based classification (2)

= Rule-based classification

= Define a class by a rule on one feature or by rules on
several features

= Fuzzy or crisp rule definition
= Hierarchical relations of classes
= Rules can address different kinds of features
= Object features
= Class-related features
= Advantages compared to sample-based
classification
= Incorporation of expert knowledge in the classification
= Formulation of complex class descriptions
= Transparency (especially compared to neural networks)
= Transferability

2 Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

© » The second, more transparent and better transferable approach of encapsulating prior
knowledge in rule-bases has been theoretically discussed in section 2.7.3. In Lang, Blaschke,
2005, Lang, Schopfer, Langanke, 2005 and Lang, Langanke, 2006 we demonstrate how rule-
based classification has been successfully applied. Integrating knowledge is a way to overcome
the spectral similarity of different geographical features (Schopfer et al., in press). Rules can
address any of the spectral, spatial or hierarchical features the objects are equipped with. Because
of the enormous range of potential features, a rule-based approach needs formalised
representation of the target class system and the way how to interpret them beforehand. By
fuzzification the degree of class membership can be modelled for a certain range of values. «
(Lang, 2005)

® » Fuzzy logic classification is a simple technique, which basically translates feature values of
arbitrary range into fuzzy values between 0 and 1, indicating the degree of membership to a
specific class. It was chosen for the analysis of image objects in eCognition because

* by translating feature values into fuzzy values it standardizes features and allows the
combination of features, even of very different range and dimension.

* it provides a transparent and adaptable feature description especially compared to neural
networks.

* it enables the formulation of complex feature descriptions by means of logical operations and
hierarchical class descriptions. « (Definiens, 2004)
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Fuzzy classification

= Fuzzy vs. crisp classification
= Uncertainties about class descriptions
= Approximate real-world knowledge in its complexity
= Uncertain human knowledge about the world, imprecise human
thinking
= Vague (linguistic) class descriptions
= Other:
= Uncertainty in sensor measurements
= Class mixtures due to limited (spatial and spectral) resolution
= Possibilities of fuzzy classification
= Express each object’s membership to more than one class
= Probability of an object to belong to other classes
— No sharply defined boundaries between classes as in crisp
classification

Z Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

0 » Supervised and unsupervised classification algorithms typically use hard classification logic
to produce a classification map that consists of hard, discrete categories (e.g., forest, agriculture).
Conversely, it is also possible to use fuzzy set classification logic, which takes into account the
heterogeneous and imprecise nature of the real world. « (Jensen, 2005; p. 389)

@® » Fuzzy classification is beside neural networks (Gopal and Woodcock, 1996) and probabilistic
approaches (Curlander and Kober, 1992) a very powerful soft classifier. As an expert system for
classification (Tsatsoulis, 1993) it takes into account:

* uncertainty in sensor measurements,

* parameter variations due to limited sensor calibration,
» vague (linguistic) class descriptions,

* class mixtures due to limited resolution. [...]

Avoiding arbitrary sharp thresholds, fuzzy logic is able to approximate real world in its
complexity much better than the simplifying boolean systems do. Fuzzy logic can model
imprecise human thinking and can represent linguistic rules. « (Benz et al., 2004)

© » It makes it also possible to express each object’s membership in more than just one class or
the probability of belonging to other classes, but with different degrees of membership or
probabilities. With respect to image understanding these soft classification results are more
capable of expressing uncertain human knowledge about the world and thus lead to classification
results which are closer to human language, thinking and mind. « (Definiens, 2004)

O » Thus, fuzzy set does not have sharply defined boundaries, and a set element (a pixel in our
case) may have partial membership in several classes. [...] All that has been learned before about
traditional hard classification is pertinent for fuzzy classification because training still takes place,
feature space is partitioned, and it is possible to assign a pixel to a single class, if desired.
However, the major difference is that it is possible to obtain information on the various
constituent classes found in a mixed pixel. If desired (Foody, 2000). It is instructive to review
how this is done. « (Jensen, 2005)
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Fuzzy classification (2)

= Transition from a crisp to a fuzzy system
(To decide if a feature value belongs to a fuzzy set)
= The fuzzy set (A):

= Is a certain subset of values of the whole range of an object feature X
(e.g. NIR-band)

= represents an object feature class (e.g. forest) within one object
feature

= Replace boolean logic (“false"™ and “true") of the membership value
M by a continuous range of [0, ..., 1]
= Define membership function p(x)

= Assigning to every object feature
value x a membership value p

= If p > 0, then x belongs to the fuzzy
set A Pas

0.5
= Relation between object feature and
classification

Example:
Hq

— Choice and parameterisation of the 0
membership function influence the 0 5 8 175 230 255
quality of the classification ~— N X

— Introducing expert knowledge fuzzy set A

X =feature range  p = membership value
x = feature value  p(x) = membership function
A(X) = fuzzy set

Z Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

O » Fuzzy logic is a multi-valued logic quantifying uncertain statements. The basic idea is to
replace the two boolean logical statements “true” and “false” by the continuous range of [0, ...,
1], where 0 means “false” and 1 means “true” and all values between O and 1 represent a
transition between true and false. « (Benz et al., 2004)

@® » Fuzzification describes the transition from a crisp system to a fuzzy system. It defines on an
object feature certain fuzzy sets. These fuzzy sets represent object feature classes, e.g. “low”,
“medium” or “high”. [...] These fuzzy object feature classes are defined by so-called membership
functions. These functions assign a membership degree between 0 and 1 to each object feature
value with respect to the considered object feature class. Depending on the shape of the function,
the transition between “full member” and “no member” can be crisp (for a rectangular function)
or fuzzy. All feature values, which have a membership value higher than 0 belong to a fuzzy set. «
(Benz et al., 2004)

© » Fuzzy set theory provides some useful tools for working with imprecise data (Zadeh, 1965;
Wang, 1990a, b). Fuzzy set theory is better suited for dealing with real-world problems than
traditional logic because most human reasoning is imprecise and is based on the following logic.
First, let X be a universe whose elements are denoted x. That is, X= {x}. As previously
mentioned, membership in a classical set A of X is often viewed as a binary characteristic
function f, from X {0 or 1} such that f, (x) = 1 if and only if x € A. Conversely, a fuzzy set B in
X is characterised by the membership function f; that associates with each x a real number from 0
tol. The closer the value of f; (x) is to 1, the more x belongs to B. « (Jensen, 2005)

® » For successful classification a deliberate choice and parameterization of the membership
function is crucial. The function has to model the underlying relation between object features and
classification as good as possible. The design is one of the most important steps to introduce
expert knowledge into the system. Therefore, the better the knowledge about the real system is
modelled by the membership functions, the better the final classification result (Civanlar and
Trussel, 1986). It is possible to define more than one fuzzy set on one feature. « (Benz et al.,
2004)
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Fuzzy classification (3)

UNIVERSITAT
SALZBURG

*= Fuzzy rule-base

= Fuzzy rule “if — then” for assigning an object
to a class
= If feature value x (of the object) is member of
the fuzzy set (e.g. associated with the class
forest), the image object is a member of the
land-cover forest
= Combination of fuzzy sets to create advanced
fuzzy rules
= Operator "AND"” - Minimum operation
= Operator "OR” — Maximum operation
= Operator "NOT” - inversion of a fuzzy value:
returns 1 - fuzzy value
= Fuzzy rule-base (combination of the fuzzy
rules of all classes) delivers a fuzzy
classification
= Every object has a tuple of return values
assigned to it with the degrees of membership
to each class/degrees of class assignment
= Since these values are possibilities to belong to
a class, they don’t have to add up to 1 (unlike
probabilities)

Class “forest” defined by
Feature X AND Feature Y

Feature X
u
1

07

0

50 215 230

Feature Y

1
1
9|

" ﬁ
130 v

0
_
B

Hrorest = Hx AND piy = Min(u,, 1)

= Min(0.7, 0.9) = 0.7

Hrorest
Hpasture

=0.7
=04
= 0.05

Hwater
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Fuzzy classification (4)

= Comparison of membership degrees

= Reliability of class assignment
The higher the degree of the most possible
class, the more reliable is the assignment
= Stability of classification
Stable classification for differences between
highest membership value and other values
= Equal membership degrees

= high values - reliability for both classes:
classes cannot be distinguished with the

provided classification Ell
= Low values - unreliable classification (use
threshold of a least required membership M1 } the smailer, the more reliable
degree to ensure quality of classification) is the classification
= Defuzzification 05 } Stabilty
= Maximum membership degree of fuzzy
classification used as crisp classification o ‘
Hiorest  Mpasture  Mwater
Z Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

© » To produce results like maps for standard land-cover and land-use applications, the fuzzy
results have to be translated back to a crisp value. To this end, the maximum membership degree
of the fuzzy classification is used as crisp class assignment. This process is a typical approach for
defuzzification of fuzzy classification results. If the maximum membership degree of a class is
below a threshold, no classification is performed to ensure minimum reliability. As this output
removes the rich measures of uncertainty of the fuzzy classification, this step should be only
performed if necessary and as late as possible in the whole information extraction process. Further
information on fuzzy systems in image analysis and remote sensing can be found in Bezdek and
Pal (1992), Maselli et al. (1996), Benz (1999) and Jaeger & Benz (2000). « (Benz et al., 2004)

76



DBIA -

Tutorial

Class hierarchy

= Classes are embedded in a
heritage system = i.e. child

classes inherit all spectral props veagon | Footbal
from their parents fiele
= Classes can be grouped
- Feature-based
semantically inheritance F_n

= Classification can be shown on

different semantic levels

Football

Built u

P field
Semantic
inheritance
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© » The class hierarchy is the frame of eCognition’s “language” for formulating the knowledge
base for classifying image objects. It contains all classes of a classification scheme in a
hierarchically structured form. The relations defined by the class hierarchy are twofold: the
inheritance of class descriptions of child classes on the one hand, and semantic grouping of
classes on the other. Each class is represented by a semantic group. The semantic objects can have
different relationships to each other. [...]

Inheritance: Class descriptions defined in parent classes are passed down to their child classes. A
class can inherit descriptions from more than one parent class. Based on the same inherited feature
descriptions, the inheritance hierarchy is a hierarchy of similarities.

Purpose: reduction of redundancy and complexity in the class descriptions.

Groups: Combination of classes to a class of superior semantic meaning. Beyond that, the groups
hierarchy has a direct functional implication: each feature which addresses a class is automatically
directed to this class and all its child classes in the groups hierarchy. A class can be part of more
than one group. The group register displays the hierarchy of semantic meaning.

Purpose: combination of classes previously separated by the classification in a common semantic
meaning. [...]

Inheritance is a common technique in object orientated modelling. More general parent objects
passes on their properties to child objects. Inheritance is not only used for the sake of simplicity,
but also ensures the synchronization of all child objects. Changes in a parent class do not need to
be redone in each of the child classes since these inherit the changes automatically. [...] Circular
inheritance, however, is impossible (4 passes on to B, B passes on to C, C passes on to 4). «
(Definiens, 2004)
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Class-related features

= Classifying an object based on the
classification of other objects
= Class of other objects works as a o
context feature

= E.g. a green area (class contains parks, meadows,...) is
classified as urban park because it is embedded in urban
area

= Newly classified object may be a context feature
itself for other objects

= Iterative Process
= Possibly indeterministic or even unstable

= Mutual and circular dependencies (should be
avoided if possible)

2 Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

O » The use of class-related features is more complex. When an object changes its classification
because of the classification of networked objects, the problem arises that the object itself might
be a context feature for the evaluation of other objects. Therefore, classification must be an
iterative process in cycles in which each object is classified over and over taking into account the
changes in the classification of networked objects. The number of cycles can be specified for this
purpose.

With context classification a new complexity arises: while classification without context is a
deterministic process, context classification can become indeterministic and even unstable due to
the possibility of circular dependencies between different classes. Classification becomes an
optimizing problem in which convergence to a global best classification must be ensured.

This problem of unstable classification can basically be avoided by the sensible generation of
class descriptions. Mutual or circular dependencies between classes should be avoided whenever
possible. Class A should not be described by means of class-related features which refer to Class
B if Class B itself depends on Class A because of its class description. If this can be ensured
classification might need more than one classification cycle, but it is not an optimizing problem. «
(Definiens, 2004)
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Strengths of object-based classification

= Additional information can be utilized (shape, texture,
relationship to neighbours)

= ‘Overcoming’ texture through segmentation
= Especially useful with VHSR-data and radar data
= Objects: increased signhal/noise ratio
= Decreased number of units to be classified
= Adaptable image resolution
= ‘Click and classify’ - since based on objects
= C(Classification: data base query

Z Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

© » Any step and setting during the entire classification process is documented, and can be
assessed and adopted if needed. Although the result is not necessarily more accurate, it can be
reproduced and the process is to a high degree comprehensible. The formalized approach of
analysis (i.e. the class definitions and composition and the documentation of the workflow and
settings in the semi-automated process) technically allows for a transfer of the classification to
other scenes (Lang & Langanke, 2004; Benz et al., 2004). « (Lang & Langanke, 2006)
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Introduction to object-based image analysis

Chapter 6
Accuracy assessment

Z G | S Centre for Geoinformatics, Salzburg University
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Outline

= Definitions

= Non-site specific accuracy assessment
= Site-specific accuracy assessment

= Error matrix

= Limitations of the error matrix

= Specifics of object-based accuracy
assessment

Z Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

Accuracy assessment is an important part in image analysis, in order to have at hand an
evaluation about the level of potential confusion, the reliability of the class assignments
and the overall quality of the results. In this chapter we discuss different approaches to
accuracy assessment. Starting with non-site-specific map comparison the chapter
moves on to more advanced site-specific approaches with the error matrix as a core
element. There are several different accuracy measures that can be retrieved from the
error matrix, including overall accuracy, consumer’s and producer’s accuracy as well as
the kappa statistic. The chapter concludes with elaborating on some problems that
explicitly apply to object-based accuracy assessment. Especially the spatial geometrical
characteristics of the extracted objects need to be evaluated, a challenging task which is
still an open field of research.
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Definitions

= Accuracy

= Degree of correctness of a map or classification
(degree to which the derived image classification
agrees with reality or conforms to the ‘truth’)
(Foody, 2002)

= Error

= Discrepancy between the situation depicted on
the thematic map and reality (Foody, 2002)

= Significance of accuracy for

= Usefulness of thematic maps for land
management

= The validity of maps for scientific investigations

2 Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at

O » The quality of spatial data sets is a very broad issue that may relate to a variety of properties
(Worboys, 1998) but frequently, and here, the property of interest is map or classification
accuracy. [...] It is important that the quality of thematic maps derived from remotely sensed data
be assessed and expressed in a meaningful way. This is important not only in providing a guide to
the quality of a map and its fitness for a particular purpose, but also in understanding error and its
likely implications, especially if allowed to propagate through analyses linking the map to other
data sets (Arbia, Griffith, & Haining, 1998; Janssen & van der Wel, 1994; Veregin, 1994). «
(Foody, 2002)

@® » The scientists who create remote sensing-derived thematic information should recognize the
sources of the error, minimize it as much as possible, and inform the user how much confidence
he or she should have in the thematic information. Remote sensing-derived thematic maps should
normally be subjected to a thorough accuracy assessment before being used in scientific
investigations and policy decisions (Stehman and Czaplewski, 1998; Paine and Kiser, 2003). «
(Jensen, 2005)

© » Accuracy has many practical implications: for example, it affects the legal standing of maps
and reports derived from remotely sensed data, the operational usefulness of such data for land
management, and their validity as a basis for scientific research. « (Campbell, 2002)
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Definitions (2)

= Accuracy assessment

= Meaningfully quantify the accuracy of digital land
cover classifications; “A classification is not
complete until its accuracy is assessed”
(Lillesand, Kiefer; 2000)

= Comparison of

1.Pixels or polygons in a remote sensing-derived
classification (the map to be evaluated)

2.Ground reference test information (reference map)
(Jensen, 2005)
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© » The accuracy assessment task can be defined as one of comparing two maps, one based upon
analysis of remotely sensed data (the map to be evaluated), and another based upon a different
source of information (reference map, assumed to be accurate, standard for the comparison). «
(Campbell, 2002)

® » To correctly perform a classification accuracy (or error) assessment, it is necessary to
systematically compare two sources of information: 1. pixels or polygons in a remote sensing-
derived classification map, and 2. ground reference test information (which may in fact contain
error). « (Jensen, 2005)
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Non-site-specific assessment

= Comparing area percentages of
categories in classified and
reference map (inventory error can

be assessed) Two maps that are'similar. ]
. according to non-site-specific
u D|Sadva ntage : accuracy assessment
= Inaccurate method (e.g. classes have A

similar proportions but may appear in
different locations of the mapped area)

Example of non-site-specific accuracy assessment

A=20% F=64% W =16%
Classified Image Reference Map | bifference R

Forest 42,00% 40,00% 2,00% N
Meadow 13,00% 17,00% -4,00% 3
Sealed 25,00% 22,00% 3,00% 2
Q

Water 18,00% 19,00% -1,00% 3
Bare Rock 2,00% 2,00% 0,00% p
100,00% 100,00% A=20% F=64% W =16% é’
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© » In this, accuracy assessment was based on comparisons of the areal extent of the classes in
the derived thematic map (e.g., km? or % cover of the region mapped) relative to their extent in
some ground or other reference data set. The non-site-specific nature of this approach is, however,
a major limitation as a map could easily display the classes in the correct proportions but in the
incorrect locations, greatly limiting the value of the map for some users. Thus, a major problem
with this approach to accuracy assessment is that the apparent and quantified accuracy of the map
would hide its real quality. « (Foody, 2002)

® » This method is inaccurate in itself due to the possibility of compensating errors that don’t
show up and only overall figures of the two images are compared. Nevertheless, the “inventory
error” of the classification map can be estimated. « (compare to Campbell, 2002)
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Site-specific accuracy assessment

= Agreement between categories in classified and
reference map at specific locations

= Based on site-by-site comparison (using pixels, clusters of pixels
or polygons)

= Every site can only be occupied by one class (for a clear
statement of “error” or “correctly classified”)

= Calculation of error matrices

Reference
Image

Classified
Image

from Campbell, 2002

=

Z G |S Centre for Geoinformatics | © 2006 Lang/Albrecht/Blaschke | stefan.lang@sbg.ac.at
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Error Matrix

" Id e ntification Of overa I I Error matrix (schematic representation)
errors and IMAGE TO BE EVALUATED
misclassifi Cations (by URBAN CROP RANGE WATER FOREST BARREN TOTAL
category)

- CROP
= n X n array; where n is the
number of categories

= Every cell summarizes the
number of sample units
assigned to a particular e
category in the B e o
classification relative to S0 O oAGOAL ENTRIES IV TOTAL MM
the actual category orcomEeTY e
= Diagonal cells (upper left to
lower right): correctly
classified units
= Off-diagonal cells: error in the
remote sensing classification
relative to the ground
reference information

RANGE

WATER

FOREST

ROW MARGINALS

BARREN

REFERENCE IMAGE

B 000000

from Campbell, 2002
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© » The standard form for reporting site-specific error is the error matrix, sometimes referred to
as the confusion matrix because is identifies not only overall errors for each category, but also
misclassifications (due to confusion between categories) by category. Compilation of an error
matrix is required for any serious study of accuracy. It consists of an n X n array, where n
represents the number of categories. The left-hand side (y-axis) is labelled with the categories on
the reference (“correct”) classifications; the upper edge (x-axis) is labelled with the same n
categories; these refer to those on the map to be evaluated. (Note that the meanings of the two
axes can be reversed in some applications, as the convention is not universal). « (Campbell, 2002)

@® » The intersection of the rows and columns summarize the number of sample units (e.g. pixels,
clusters of pixels, or polygons) assigned to a particular category (class) relative to the actual
category as verified in the field. [...] The diagonal of the matrix summarizes those pixels or
polygons that were assigned to the correct class. Every error in the remote sensing classification
relative to the ground reference information is summarized in the off-diagonal cells of the matrix.
Each error is both an omission from the correct category and a commission to the wrong category.
The column and row totals around the margin of the matrix (referred to as marginals) are used to
compute errors of inclusion (commission errors) and errors of exclusion (omission errors). The
outer row and column totals are used to compute the producer’s and user’s accuracy. Some
recommend that the error matrix contain proportions rather than individual counts (Stehman and
Czaplewski, 1998). « (Jensen, 2005)

© » Presently, the confusion or error matrix is at the core of accuracy assessment but there is
much scope to extend the analysis beyond it (Congalton, 1994; Congalton & Green, 1999). «
(Foody, 2002)
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Error Matrix (2)

Example of an error matrix

. Percenta?e correct (overall

accuracy . . . IMAGE TO BE EVALUATED

= Sum of dlagonal entries divided URBAN CROP RANGE WATER FOREST BARREN TOTAL PA%
by total observations urean | 150 : +——se—4[225
= Errors of omission G cor| o |70 | b | 4 | s | @
& Errors of commission Z wmveeq——rfobo| = | = | « |[e1] [m0

= Regarding an error from two Guwwer| 3 | e | 1 | e | 8 | 2

different viewpoints W ororesT—23——e+>| 12 | 4 | 30 13

= Error of omission: correct class Eooamren | 3 | 8 [ 15 [ 3 | 11 | 11

y :
hasn’t been recognised by the ® rom 451] [13a] [ss5| [225] [EZED

classification process (exclusion
from category)

= Error of commission: by mistake
the unit has been assigned to the
wrong class (error of inclusion)
= Producer's accuracy
& Consumer's accuracy
= Accuracies of individual categories

= Producer’s accuracy (a measure of omission error): indicates probability of a
reference unit being correctly classified

= Consumer’s accuracy (user’s accuracy, a measure of commission error):
pr:obability(/Jl of a classified unit on the map actually representing that category on
the groun

A% 63.1

Note: Percentage correct = sum of diagonal entries/total observations =
1748/2592 = 67.4%; CA, consumer’s accuracy; PA, producer’s accuracy

Error of omission —»{] Error of commission 4—&]

[

Producer’s accuracy —»[]

from Campbell, 2002; modified
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© » The overall accuracy of the classification map is determined by dividing the total correct
pixels (sum of the major diagonal) by the total number of pixels in the error matrix. Computing
the accuracy of individual categories, however, is more complex because the analyst has the
choice of the dividing the number of correct pixels in the category by the total number of pixels in
the corresponding row or column. Traditionally, the total number of correct pixels in a category is
divided by the total number of pixels of that category as derived from the reference data. This
statistic indicates the probability of a reference pixel being correctly classified and is a measure of
omission error. This statistic is called the producers accuracy because the producer (the analyst) of
a classification is interested in how well a certain area can be classified. If the total number of
correct pixels in a category is divided by the total number of pixels that were actually classified in
that category, the result is a measure of commission error. This measure, called the user’s
accuracy or reliability, is the probability that a pixel classified on the map actually represents that
category on the ground (Story and Congalton, 1986). « (Jensen, 2005)

® » The figure shows an example of an error matrix. Each of the 2592 pixels in this scene was
assigned to one of six land-cover classes. The resulting classification was then compared, pixel by
pixel, to a previously existing land-use map of the same area, and the differences were tabulated,
category by category, to form the data for this table. The total number of pixels reported by the
matrix (in this instance, 2592) may constitute to the entire image, or may simply be a sample
selected from the image. Also the land-use classes here simply form examples; the matrix could
be based on other kinds of classes (including forest types, geology, etc.) and could be smaller or
larger, depending upon the number of classes examined. « (Campbell, 2002)
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Error Matrix (3)

= Kappa coefficient (k)
= Need for a more objective accuracy assessment
= Compensation of the effect of chance agreement

= Example:

= Random assignment of pixels into 3 classes
» Results in 33% correctly classified pixels (= overall
accuracy)

= 4 classes » 25% correct
= 5 classes » 20% correct

—Kappa coefficient

Measure of difference between observed agreement
(between a classification and reference information) and
agreement by chance
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© » After an initial inspection of the error matrix reveals the overall nature of the errors present,
there is often a need for a more objective assessment of the classification. [...] A shortcoming of
usual interpretations of the error matrix is that even chance assignments of pixels to classes can
result in surprisingly good results, as measured by percentage correct. Hord and Brooner (1976)
and others have noted that the use of such measures is highly dependent upon the samples, and
therefore upon the sampling strategy used to derive the observations used in the analysis.

K (kappa) is a measure of the difference between the observed agreement between two maps (as
reported by the diagonal entries in the error matrix) and the agreement that might be attained
solely by chance matching of the two maps. Not all agreement can be attributed to the success of
the classification. K attempts to provide a measure of agreement that is adjusted for chance
agreement. « (Campbell, 2002)

® » The kappa coefficient has many attractive features as an index of classification accuracy. In
particular, it makes some compensation for chance agreement and a variance term may be
calculated for it enabling the statistical testing of the significance of the difference between two
coefficients (Rosenfield & Fitzpatrick-Lins, 1986). This is often important, as frequently, there is
a desire to compare different classifications and so matrices. To further aid this comparison, some
have called for the normalization of the confusion matrix such that each row and column sums to
unity (Congalton, 1991; Smits et al., 1999). « (Foody, 2002)
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Error Matrix (4)

= Kappa coefficient (K,,)

R = Observed agreement - expected agreement
1 - expected agreement

If: Observed agreement ¢ 1 ~
= Then: Kt 1
Expected agreement % 0

kK = 1 » perfect agreement between classification and reference data
R = 0 » agreement is not better than a random classification

= Explanation of the formula:
= Observed agreement = overall accuracy

= Expected agreement = sum of the products of the consumer’s accuracy (CA) and
the producer’s accuracy (PA) of each class

q q
i E:nl':k B F’ph L

Kappa coefficient =
q
2
n® - Xn.n,
Pt k+ 4k
Quelle: Foody, 2002; S. 188
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© » The statistic serves as an indicator of the extent to which the percentage correct values of an
error matrix are due to “true” agreement versus ‘“chance” agreement. As true agreement
(observed) approaches 1 and chance agreement [expected agreement] approaches 0, x approaches
1. This is the ideal case. In reality, k usually ranges between 0 and 1. For example, a x value of
0.67 can be thought of as an indication that an observed classification is 67% better than one
resulting from chance. A x of 0 suggests that a given classification is no better than a random
assignment of pixels. In cases where chance agreement is large enough, k can take on negative
values — an indication of very poor classification performance. « (Lillesand and Kiefer, 2000)

® » x values >0.80 (i.e., >80%) represent strong agreement or accuracy between the classification
map and the ground reference information. x values between 0.40 and 0.80 (i.e., 40 to 80%)
represent moderate agreement. K values <0.40 (i.e., <40%) represent poor agreement (Landis and
Koch, 1977). « (Jensen, 2005)
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Limitations of the error matrix

= Error matrix not a standardized measure
Many different indices, none of them ideal for every single problem
= Used samples

Sampling design (stratified, random...) and sample size can be limiting
factors

= Type of error
thematic error vs. error of location
= Accuracy of the reference data accuracy
= Ground “truth” data is a classification itself and may contain error
= Often remotely sensed data is used as a surrogate for ground data
= No assessment of the spatial distribution of error
= Severity of an error is equalized

= Minor errors between relatively similar classes vs. major errors between
very different classes

= Attempts to represent continua by a set of discrete classes
= Problem with mixed pixels containing more than one class

Classes are not mutually exclusive within this pixel (which is a problem for
site-specific accuracy assessment)
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© » There is no single universally acceptable measure of accuracy but instead a variety of
indices, each sensitive to different features (Stehman, 1997a).

The design of an accuracy assessment programme has several elements including the definition of
an appropriate sample size and sampling design [...]. The sample size, for example, must be
selected with care and be sufficient to provide a representative and meaningful basis for accuracy
assessment (Hay, 1979). [...] If, for example, a probability-based measure of classification
accuracy is to be used (Stehman, 1997a), it is essential that the cases were acquired according to
an appropriate sampling design (Hay, 1979; Stehman, 1999b).

A variety of errors are encountered in an image classification. Typically, interest focuses on
thematic accuracy. [...] Unfortunately, however, other sources of error contribute to the pattern of
misclassification depicted in the confusion matrix [...]. Non-thematic errors can be large and
particular concern focuses on errors due to misregistration of the image classification with the
ground data (Canters, 1997; Czaplewski, 1992; Muller et al., 1998; Stehman, 1997a; Todd et al.,
1980). In fact, the ground data are just another classification which may contain error (Congalton
& Green, 1999; Khorram, 1999; Lunetta, liames, Knight, Congalton, & Mace, 2001; Zhou,
Robson, & Pilesjo, 1998). Problems with ground data accuracy may be particularly severe if a
remotely sensed data set is used as the reference data. The erroneous allocations made by a
classification are typically not randomly distributed over the region (Congalton, 1988; Steele,
Winne, & Redmond, 1998). [...] Unfortunately, however, the confusion matrix and the accuracy
metrics derived from it provide no information on the spatial distribution of error.

In classical accuracy assessments all misallocations are equally weighted. Often, however, some
errors are more important or damaging than others (Forbes, 1995; Naesset, 1996; Stehman,
1999a). In many instances, the errors observed in a classification are between relatively similar
classes and sometimes these may be unimportant while other errors may be highly significant.
(Felix & Binney, 1989; Foody, 2000a; Steele et al., 1998; Townsend, 2000).

A further source of error associated with the use of a standard (hard) classifier that allocates each
pixel to a single class is the implicit assumption that the image is composed of pure pixels (Foody,
1996; Gong & Howarth, 1990). [...] As many remotely sensed data sets are dominated by mixed
pixels, the standard accuracy assessment measures such as the kappa coefficient, which assume
implicitly that each of the testing samples is pure, are, therefore, often inappropriate for accuracy
assessment in remote sensing (Foody, 1996; Karaska et al., 1995). « (Foody, 2002)
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Specifics of object-based accuracy assessment

Need for a different handling of object-based accuracy assessment

= Thematic assessment of object-based classification
= Site-specific approach (making use of random points within objects)

= Selecting objects prior to training process to be used as reference
information

= Selecting small test areas where every single object is assessed in terms
of its label

= Geometry assessment of image objects
= Visually checking classified images against manual delineation
= Quantitative assessment with GIS overlay techniques

= Difficulties in object-based accuracy assessment

= No 100% geometrical fit between reference objects and objects to be
evaluated (due to different ways of segmentation and delineation)

= When using a fuzzified rule base thematic classes are not mutually
exclusive

— Accuracy is a matter of geometrical and semantic agreement
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© » Using an object-based classification approach requires to adapt existing methods of accuracy
assessment and develop new techniques that explicitly assess the accuracy of object-specific
features.

Within object-based image analysis thematic assessment can be performed by generating random
points within objects and checking the labels against a ground truth layer (Lang, Langanke, 2006).
Alternatively a set of objects can be selected prior to the training process to be used as reference
information. In smaller test areas with a limited number of larger objects, every single object
could be assessed in terms of its label (Lang, Langanke, 2006). However, geometrical accuracy is
by far harder to evaluate. Classified image objects can be visually checked against manual
delineation (Koch et al., 2003), but a quantitative assessment requires GIS overlay techniques
(Lang, Schopfer, Langanke, in press). As outlined in Lang, Schopfer, Langanke, in press and
Lang, Langanke, 2006 we encounter difficulties in performing object-based accuracy assessment,
which will satisfy the needs as being discussed by Congalton and Green (1999). Two reasons
account for this at least: a) a 100% geometrical fit between reference and evaluation data is
usually not given due to different segmentation algorithms and other ways of delineation; b) the
thematic classes are not mutually exclusive when using fuzzified rule bases. In other words, the
accuracy is also a matter of geometrical and semantic agreement (see also section 3.4.2; p.82). «
(Lang, 2005)
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Specifics of object-based accuracy assessment (2)

= Visually checking classified images against manual
delineation

Classification result of Test Cell #6

Test Cell 6 - classified
16,9%

26,5%

3,39

B structured
m shaded_veg

M ackeri @ meadow

Eacker2 5 O street

M Gewasser 53,3%

i X .

=gfhu;ten Nortvea Resulting thematic content

[ Schatten_Veq

i Test Cell 6 - digitised

[ Strukburiert

[ Wiesen

- 15,8% 27,0%
Subset of areal anT

2

£

. 2

photo with a B stuctured | | T
haded a

randomly selected 8 shaded_veg | |
mmeadow | | 5

15x15m cell o street 3

53,7%
Visual delineation result of Test Cell #6
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. uantitative assessment of Tolerance buffer:
] | digitised
object geometry accuracy S
= Defining a tolerance (spatial overlay [0.5m buffer

strictness) to allow minor differences
in the object outlines

= Testing of objects

= Classification obg'ect has the same
extent as the reference polygon

w 3 ” Case 1:
(“stable object”) Object stays

= Reference object doesn’t match and is |the same
split into several objects of the
classification

= Complex geometry with objects not P
having the same boundaries Object splits into
= Characterisation of object L

relationship (Yobject fate”, similar to
object-based change analysis)

* Good Ot_)jeCts ) g:rsnepl?e':; geometry
= Expanding objects with expanding and
- Invading ObjECtS intruding objects

— Approach needs further development

Invading obj
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© » LIST [Landscape Interpretation Support Tool] offers GIS routines for combining polygon
themes from different sources and calculating object characteristics and object fate. [...]
However, for several reasons we are mostly dealing with spatially inconsistent features. This
requires a more flexible concept of spatial coincidence. [...] LIST offers a way to prove spatial
coincidence of two data sets. Using a threshold an accepted overlap can be determined. In order to
consider uncertainties in the geometrical properties of the boundaries of related objects a spatial
overlay sensitivity (SOS) factor has been introduced. [...] Image objects are subject to change. At
the same time they may change topological relationships to neighbouring objects over time. In
principle changes may occur with regard to type, intensity and shape of the object. However,
when an object is shrinking or expanding, then instantly the surrounding is affected. Raza and
Kainz, 2001, for example, include subdivision and amalgamation of objects in their list of
spatiotemporal characteristics of parcels. Here it is assumed that one object at time t0 is split into
n parts, or an object in tl is a product of m parts. [...] Straub [2004] presents eight topological
relations being reducible to the principal relationships disjoint, equal, overlap and containment.
[...] All fate categories as depicted are derived by combining basic spatial relationship types. In
general with all t1 objects that intersect (operation inters), the respective t0 objects are considered
to be related to it. The number of objects that are completely within (operation compwi) the
buffered shape of the t0 object is considered to equal the number of ‘good’ objects (ngood). If
compwi equals 1 and the area of the t1 object is equal to the area of the t0 object (considering the
SOS factor), the t0 object has remained the same. If this is not the case or if compwi is greater
than 1, the object t0 has been split over time. The product of the splitting is further distinguished
by additional spatial relationship types, such as ‘have their centre in’ (centin) and ‘intersect’
(inters). The operation centin reveals the number of tl objects originating from the t0 object.
Consequently, the difference of centin and compwi is the number of objects that are originating
from t0, but expanding. And finally the difference of inters and centin reveals the number of
invading objects. « (Lang et al. in press)
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Outlook

= A next version of this tutorial is under preparation.
We will include the following topics:

= Scale-specific vs. scale-adaptive segmentation

= Class modelling = segmentation and classification
as a cyclic process

= Basics of CNL (cognition network language)

= More on object fate = object-based change detection
and object-based accuracy assessment

= Application showcase (forestry, urban studies,
habitats and wetlands, etc.)
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Version 2.0 of the OBIA Tutorial is under preparation and will be issued in
autumn 2007. Please watch out for the announcement under www.uni-
salzburg.at/zgis/research.
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