Example 5.3
Consider the electrochemical discharge of a planar electrode.[5]
u(x,0) = 1 (5.1.20)
(0,t) = 0 and
(1,t) = -δ
where u is the dimensionless concentration and is the dimensionless applied current density at the surface. The electrochemical performance of the electrode depends on the concentration (u) at the surface. When this problem is cast into finite differences we arrive at the matrix differential equation (equation (5.1.16) with a constant b vector. Hence, we can use equation (5.1.18) to arrive at the semianalytical solution. However, because of flux boundary conditions at both the ends, the A matrix becomes singular. Hence, A cannot be inverted and equation (5.1.18) cannot be used. It should be noted that if A is singular that does not mean that equation (5.1.16) does not have a solution. One can prove that the solution (equation (5.1.18)) is independent of A-1 by using the series expansion for the exponential matrix[7] [8]
(5.1.21)
Now the exponential matrix in the second term is represented as an infinite series:
( 5.1.22)
where I is the identity matrix of order N x N. Equation (5.1.22) can be further simplified by factoring out A-1b from the second and third terms.
(5.1.23)
The identity matrices inside the parenthesis get cancelled. Next, A-1 outside the parenthesis is taken inside the parenthesis to obtain:
(5.1.24)
We observe that equation (5.1.24) is independent of A-1 and, hence, we can obtain a solution for equation (5.1.16) even when A is singular. The infinite series in equation (5.1.23) is difficult to calculate. Alternatively, we use equation (5.1.17), which is valid even when A is singular to obtain the semianalytical solutions. Equation (5.1.19) is solved below in Maple using the procedure described above with equation (5.1.17)a for the nonhomogeneous part.
| > |
with(linalg):with(plots): |
| > |
ge:=diff(u(x,t),t)=diff(u(x,t),x$2); |
 |
(1) |
 |
(2) |
| > |
bc2:=diff(u(x,t),x)+delta; |
 |
(3) |
 |
(4) |
 |
(5) |
 |
(6) |
| > |
dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: |
| > |
dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: |
| > |
dydx:=1/2/h*(u[m+1](t)-u[m-1](t)): |
| > |
d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): |
| > |
bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1): |
| > |
bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2): |
), `-`(`*`(3, `*`(u[0](t)))), `*`(4, `*`(u[1](t)))))), `*`(h)))](images/Example 5.3 rev 1_14.gif) |
(7) |
, `*`(3, `*`(u[5](t))), `-`(`*`(4, `*`(u[4](t))))))), `*`(h)), delta)](images/Example 5.3 rev 1_15.gif) |
(8) |
| > |
for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),x=i*h,rhs(ge));od: |
| > |
u[0](t):=(solve(eq[0],u[0](t))); |
))), `*`(`/`(4, 3), `*`(u[1](t))))](images/Example 5.3 rev 1_16.gif) |
(9) |
| > |
u[N+1](t):=solve(eq[N+1],u[N+1](t)); |
))), `*`(`/`(4, 3), `*`(u[4](t))), `-`(`*`(`/`(2, 3), `*`(delta, `*`(h)))))](images/Example 5.3 rev 1_17.gif) |
(10) |
| > |
for i from 1 to N do eq[i]:=eval(eq[i]);od; |
| > |
eqs:=[seq(rhs(eq[j]),j=1..N)]: |
| > |
Y:=[seq(u[i](t),i=1..N)]; |
, u[2](t), u[3](t), u[4](t)]](images/Example 5.3 rev 1_22.gif) |
(12) |
| > |
A:=genmatrix(eqs,Y,'b1'): |
| > |
b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b); |
 |
(13) |
 |
(14) |
| > |
if N > 4 then A:=map(evalf,A);end: |
 |
(15) |
 |
(16) |
We observe that the A matrix is singular.
| > |
mat:=map(simplify,mat): |
| > |
Y0:=matrix(N,1):for i from 1 to N do Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0); |
 |
(17) |
| > |
b2:=subs(t=tau,evalm(b)); |
 |
(18) |
| > |
mat2:=subs(t=tau,evalm(mat)): |
| > |
mat4:=map(int,mat3,tau=0..t): |
| > |
Y:=evalm(mat&*Y0+mat4): |
| > |
for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: |
| > |
for i from 0 to N+1 do u[i](t):=eval(u[i](t));od; |
We obtain the semianalytical solution for the concentration profile as a function of dimensionless current density, δ. Concentration profiles can be plotted specifying values for δ.
| > |
pp:=plot([seq(subs(delta=1,u[i](t)),i=0..N+1)],t=0..0.4); |
![PLOT(CURVES([[0., 1.00000000109500008], [0.871886166666666594e-2, 1.00005113338534035], [0.163050965833333346e-1, 1.00023142060362846], [0.248366111666666682e-1, 1.00052447312057158], [0.3342467816666...](images/Example 5.3 rev 1_41.gif) |
(20) |
| > |
pt:=textplot([[0.25,evalf(subs(t=0.25,delta=1,u[0](t))),typeset(u[0],"(t)"),align=above],seq([0.25,evalf(subs(t=0.25,delta=1,u[i](t))),typeset(u[i],"(t)"),align=below],i=1..N+1)]); |
![PLOT(TEXT([.25, .8901810652], _TYPESET(u[0],](images/Example 5.3 rev 1_42.gif) |
(21) |
| > |
display([pp,pt],thickness=4,title="Figure Exp. 5.7",axes=boxed,labels=[t,"u"]); |
| > |
pp:=plot([seq(subs(delta=0.1,u[i](t)),i=0..N+1)],t=0..0.4); |
![PLOT(CURVES([[0., 1.00000000100949982], [0.871886166666666594e-2, 1.00000511423853400], [0.163050965833333346e-1, 1.00002314296036277], [0.248366111666666682e-1, 1.00005244821205719], [0.3342467816666...](images/Example 5.3 rev 1_44.gif) |
(22) |
| > |
pt:=textplot([[0.25,evalf(subs(t=0.25,delta=0.1,u[0](t))),typeset(u[0],"(t)"),align=above],seq([0.25,evalf(subs(t=0.25,delta=0.1,u[i](t))),typeset(u[i],"(t)"),align=below],i=1..N+1)]); |
![PLOT(TEXT([.25, .9890181074], _TYPESET(u[0],](images/Example 5.3 rev 1_45.gif) |
(23) |
| > |
display([pp,pt],thickness=4,title="Figure Exp. 5.8",axes=boxed,labels=[t,"u"]); |
 |
(24) |
We observe that as δ decreases, the time taken for discharge (the concentration to decrease from 1 to 0) increases. A three dimensional plot for the concentration profile can be made as follows:
 |
(25) |
| > |
T1:=[seq(tf*i/M,i=0..M)]; |
![array( 1 .. 6, 1 .. 31, [ ] )](images/Example 5.3 rev 1_54.gif) |
(27) |
| > |
for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: |
| > |
for i from 1 to N+2 do for j from 2 to M+1 do PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od: |
| > |
plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: |
| > |
surfdata( plotdata, axes=boxed, title="Figure Exp. 5.9",labels=[x,t,u],orientation=[45,45]); |
Electrochemical behavior of the electrode depends on the surface concentration given by:

 |
(28) |
| > |
plot3d(u[N+1](t),delta=0..1,t=0..1,axes=boxed,title="Figure Exp. 5.10",view=[0..5,0..1,0..1],orientation=[0,90],labels=[delta,t,"us"]); |
For low values of δ, the surface concentration remains close to 1, and as δ decrease, the surface concentration depletes faster. Accuracy can be increased by increasing the number of node points.