Example of Fig 4.4
EOF with all maps considered
function example44 % % Plot case in which there are only k vectors in the time series % flon = [ 0 360];lonbox=flon; flat = [ -90 90];latbox=flat; k = 34; % Only threee independent vectors lnorm = 'full'; [zt,ind,fcos]=readz500(latbox,lonbox,'season','jfm','scaling','yes'); [zold,sdz]=anomaly(zt,lnorm); if k ~= 34 ibase=ceil(linspace(1,34,k)); zbase=zold(:,ibase); zcof=2*rand(k,34)-1; z = zbase*zcof; else z=zold; end clear zold; clf;axis on; [u,lam,v,proj]=eoffast(z,ind,15,1); subplot(311) bigtit{1}= 'Case in which all maps are considered'; bigtit{2}= 'EOF 1'; sdz=expand(u(:,1),ind,[96 48]); llmap(sdz,flat,flon,-0.05:0.01:0.05,bigtit,'shading','off'); subplot(312) bigtit{1}= ''; bigtit{2}= 'EOF 2'; sdz=expand(u(:,2),ind,[96 48]); llmap(sdz,flat,flon,-0.05:0.01:0.05,bigtit,'shading','off'); subplot(615) lam=lam/sum(lam); bar(1:length(lam),lam); line([0 length(lam)],[0 0]); axis([ 0 length(lam)+1 -0.2 1]); title('Eigenvalues of the Covariance Matrix'); subplot(616) cc=cumsum(lam); bar(1:length(lam),cc); line([0 length(lam)],[0 0]); axis([ 0 length(lam)+1 -0.2 1]); title('Cumulative Sum of the Variance Explained'); orient tall; print('-dpdf','-painters','-adobecset','example04.pdf'); return;
Normalization full Expanded Field Shading is off Reshaping for T30 Gaussian grid Contouring from a minimum -0.0500 Contouring to a maximum 0.0500 Contouring interval is 0.0100 Contour values are: -0.0500 -0.0400 -0.0300 -0.0200 -0.0100 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 Maximum field value 0.0231 Minimum field value -0.0265 Shading is off Reshaping for T30 Gaussian grid Contouring from a minimum -0.0500 Contouring to a maximum 0.0500 Contouring interval is 0.0100 Contour values are: -0.0500 -0.0400 -0.0300 -0.0200 -0.0100 0.0000 0.0100 0.0200 0.0300 0.0400 0.0500 Maximum field value 0.0281 Minimum field value -0.0326
