




Figure 4.2 Branch-and-bound tree
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Bounding concept in B&B
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Figure 4.4(a) A unimodal function
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Figure 4.4(b) Iteration 1
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Figure 4.4(c) Iteration 2
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Figure 4.4(d) Iteration 3
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Figure 4.5 - Interval of uncertainty in Fibonacci search
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Figure 4.6(a)  Roping off an area
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Figure 4.6(b)  Roping off an optimal area
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Figure 4.12   Example search
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Figure 4.14 (a)  Frank-Wolfe algorithm



Figure 4.14 (b)  Frank-Wolfe algorithm
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