
Name: _______________

LINEAR PROGRAMMING MODULE
Part 2 - Solution Algorithm 

THE SIMPLEX SOLUTION METHOD

It should be obvious to the reader by now that the graphical method for solving linear
programs is limited to models of 2 variables such as in Illustration 1). The models such
as Illustration 3), with 3 or more variables, are not easily graphed on two-dimensional
graph paper. Thus, an algebraic technique is needed to solve LPs with numerous
variables and equations. Also, such an algebraic technique is conducive to computer
solution. One algebraic technique for solving linear programs is called the simplex
algorithm. It was created by George Dantzig in 1947, and its theoretical foundation was
established in 1948 by Gale, Kuhn and Tucker in the working paper “Extremum
Problems with Inequalities as Subsidiary Conditions.” The interested reader is referred
to the classic volume, Linear Programming and Extensions, by George Dantzig,
Princeton University Press, 1963.

Illustration 9)

Consider the linear program: 

Objective function:  max Z = 10 X1 + 40 X2

Constraints: 
X1 + X2 # 10
2 X1 + 5 X2 # 30
X1 $ 0, X2 $ 0.

1)  The simplex algorithm begins by moving all the terms on the right-hand side 
of the objective function to the left: Z = 10 X1 + 40 X2 becomes 

Z & 10 X1 & 40 X2 = 0

2)  The inequalities of the constraint equations are changed into equalities by the
addition of the slack variables, X3 and X4. Slack variables represent resources that are
not used. For example, if we have 10 cars and our motor pool requires 6 cars, then we
have 4 cars not being used: a slack of 4 cars. Six is obviously less than10, but if we add
the slack of 4 to 6 we have the equality 6 + 4 = 10. 

X1  +  X2           # 10  becomes 

X1  +  X2  +  X3  = 10
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and 
2 X1 + 5 X2          # 30  becomes

2 X1 + 5 X2 +  X4  =  30

3)  The three adjusted equations are: 

Z - 10 X1 - 40 X2                  =  0 
           X1  +  X2  +  X3          = 10
        2 X1 + 5 X2         +  X4  =  30

Note that the constants on the right-hand-side (RHS) of the equations are 0, 10, 30. 

4)  a - We make a chart, called the tableau, with Z, X1, X2, X3, X4 as variables and the
constants on the RHS of the columns. 

     b - We enter the coefficients of Z, X1, X2, X3, X4 and the RHS at appropriate places in
this tableau. 

Z X1 X2 X3 X4 RHS

objective function row 1 - 10 - 40 0 0 0

1st constraint row 0 1 1 1 0 10

2nd constraint row 0 2 5 0 1 30

5)  We indicate the column in the tableau with the smallest number in the objective 
function row. 

Z X1 X2 X3 X4 RHS

1 - 10 - 40 0 0 0

0 1 1 1 0 10

0 2 5 0 1 30

The column with -40 has the smallest value in the objective function row. The indicated
column, X2, is called the pivot column. 

6) a - We pick only the positive numbers in the pivot column, i.e., no.’s bigger than 0. 
    b - We divide the corresponding RHS by these numbers.

Z X1 X2 X3 X4 RHS

1 - 10 - 40 0 0 0

0 1 1 1 0 10 10 / 1 =10

0 2 5 0 1 30 30 / 5 = 6
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7)  We indicate the row with the smallest RHS/X ratio. The row is called the pivot row.
30 / 5 = 6 is smaller than 10 / 1 = 10.

Z X1 X2 X3 X4 RHS

1 - 10 - 40 0 0 0

0 1 1 1 0 10

pivot row 0 2 5 0 1 30

pivot
column

The number  "5" common to both pivot row and pivot column is the pivot element.  

8)  We change the pivot element, 5, into 1 by multiplying the pivot row by 1/5.

Pivot row: (0 2 5 0 1 30) × 1/5 = 
New pivot row: (0 2/5 1 0 1/5 6)

New tableau: 

Z X1 X2 X3 X4 RHS

1 - 10 - 40 0 0 0

0 1 1 1 0 10

new pivot row 0 2/5 1 0 1/5 6

9)  We change the other entries, -40 and 1 in the objective-function row and 1st
constraint row respectively, in the pivot column to zeros by arithmetic procedures. 
 

X2 (before) X2 (after)
&40 0
  1 0 

Note: We always want to keep the pivot element at "1" and change all the other
numbers in the pivot column to “0.”  

a - We multiply the new pivot row by 40:
(0  2/5 1  0 1/5  6) × 40 = 
(0  16  40  0  8  240) 

and add this to the objective-function row 
(1 -10 -40  0   0   0)

and the sum is: 
(1   6    0   0   8  240)   7  new objective function row 
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New tableau: 

Z X1 X2 X3 X4 RHS

new obj-fn row 1 6 0 0 8 240

0 1 1 1 0 10

new pivot row 0 2/5 1 0 1/5 6

b - We multiply the new pivot row by -1: 
(0   2/5   1  0   1/5   6) x (-1) =
(0 &2/5 &1  0 &1/5 &6)

and add this to the 1st constraint row: 
(0    1    1   1   0  10)

and the sum is: 
(0   3/5  0   1  &1/5  4),

New tableau: 

Z X1 X2 X3 X4 RHS

1 6 0 0 8 240

0 3/5 0 1 &1/5 4

0 2/5 1 0 1/5 6

pivot
column

The pivot column has zeros and one "1". In the addition or subtraction operations
between rows, we always want to keep the RHS nonnegative.

10)  Are the entries in the objective-function row (the top row) zero or positive? Yes (the
next illustration deals with a "no" answer). We're at the end of the simplex algorithm if
the answer is "yes". The final and optimal tableau is: 

Z X1 X2 X3 X4 RHS

1 6 0 0 8 240

0 3/5 0 1 &1/5 4

0 2/5 1 0 1/5 6

The solution to the problem is read off the tableau as follows: 

a - Pick all columns with zeros and one "1". 
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b - The corresponding RHS on the same row of the "1" is the optimal answer of the
variable. 

Z X1 X2 X3 X4 RHS

1 6 0 0 8 240

0 3/5 0 1 &1/5 4

0 2/5 1 0 1/5 6

Z= 240, X2 = 6,  X3 = 4 and all the other variables are equal to zero, X1= 0, X4 = 0.

The optimal answer: 
Maximum value of Z = 240 at X1= 0, and X2 = 6. There is a slack of 4 for the 1st
constraint equation, i.e., 4 units of the limited resource represented by the 1st constraint
equation is not used. 

NOTE: This specific procedure of the simplex algorithm works only for these conditions:
a - maximizing the objective function. 
b - less-than-equal-to inequalities in all the constraint equations 
c - nonnegativity 

Illustration 10)

Consider: 
max Z = 4 X1 + 3 X2 + 6 X3

subject to: 
   3 X1 +    X2 + 3 X3 # 30
   2 X1 + 2 X2 + 3 X3 # 40
   X1 $ 0, X2 $ 0, X3 $ 0

1)  Transform objective function: 

Z & 4 X1 & 3 X2 & 6 X3 = 0

2)  Add slack variable, X4, to the 1st constraint equation: 

   3 X1 + X2 + 3 X3 + X4 = 30

3)  Add slack variable, X5, to the 2nd constraint equation: 

2 X1 + 2 X2 + 3 X3 + X5 = 40

4)  Write tableau. (Please fill in the blank entries in the following tableau.)
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Z X1 X2 X3 X4 X5 RHS

1 & 4 & 3 & 6 0 0 0

0 3 0 30

0 2 0

5)  Pick pivot column, the column with the smallest numerical value in the objective 
row. (Please fill in the blank entries in the following tableau.)

Z X1 X2 X3 X4 X5 RHS

1 - 4 - 3 - 6 0 0 0

0 3 3 0 30

0 2 3 0

6)  Divide the numbers in the RHS column by the numbers in the X3 column, the 
pivot column. 

X3 RHS

- 6 0

3 30 6 30 / 3 = 10

3 (      ) 6 (      ) = (      )

The (      ) constraint equation has the smallest RHS/X3 ratio. This is the pivot row. 

7)  

Z X1 X2 X3 X4 X5 RHS

1 - 4 - 3 - 6 0 0 0

pivot row 0 3 1 3 1 0 30

0 2 2 3 0 1 40

pivot
column

The pivot element is 3. 

8)  Multiply the pivot row by (      ) to change the pivot element into "1". (Please fill in the
blanks in square brackets below.)

pivot row (0 3 1 3 1 0 30) × (      ) =
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(0 [    ] [    ] 1 [    ] 0 [    ]) 

9)  New tableau:
 

Z X1 X2 X3 X4 X5 RHS

1 - 4 - 3 - 6 0 0 0

0 1 1/3 1 1/3 0 10

0 2 2 3 0 1 40

We want to change 

X3 (old) X3 (new)

- 6 0

1 1

3 0

a)  Multiply new pivot row by (     ) and add to objective function row to change -6 of the
pivot column to 0. 

b)  Multiply new pivot row by (      ) and add to 2nd constraint equation row to change 3
of the pivot column to 0.

c)  Do the arithmetic. (Please show the calculations.)

10)  The new tableau after the arithmetic procedures of step 9 is: 

Z X1 X2 X3 X4 X5 RHS

1 2 - 1 0 2 0 60

0 1 1/3 1 1/3 0 10

0 & 1 1 0 & 1 1 10

Are all the entries in the objective function row (top row) zero or positive? 'No". The
entry "&1" in the X2 column is not zero or positive. Therefore, X2 column is the new pivot
column. And again, we calculate the RHS/X2 ratios, except for the objective-function
row. 

X2 RHS

- 1 60

1/3 10 6 10 / (1/3) = (      )

1 10 6 (            ) = (      )
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11)  The (     ) constraint equation row has the smallest RHS/X2 ratio, thus 
it becomes the new pivot row. 

Z X1 X2 X3 X4 X5 RHS

1 2 - 1 0 2 0 60

0 1 1/3 1 1/3 0 10

new pivot row 0 & 1 1 0 & 1 1 10

new
pivot

column

The new pivot element is 1. 

We want to change the X2 column as follows:

X2 (old) X2 (new)

- 1 0

1/3 0

1 1

Note:  we always want to keep the pivot element at "1" and change all the other
numbers in the pivot column to “0.”

a)  Multiply new pivot row by 1 and add to objective-function row to change -1 to 0.
b)  Multiply new pivot row by (      ) and add to 1st constraint-eqn row to change 1/3 to 0.
c)  Do the arithmetic. (Please show the calculations.)

12) The new tableau after the arithmetic procedures of step 11:

Z X1 X2 X3 X4 X5 RHS

1 1 0 0 1 1 70

0 4/3 0 1 2/3 &1/3 20/3

0 & 1 1 0 & 1 1 10

Are all the entries in the objective function row (top row) zero or positive? "Yes". We
have arrived at the final and optimal tableau.
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Z X1 X2 X3 X4 X5 RHS

1 1 0 0 1 1 70

0 4/3 0 1 2/3 &1/3 20/3

0 & 1 1 0 & 1 1 10

The optimal answer: 

Z = 70 X2 = (      ) X3 = (      )
X1 = (      ) X4 = (      ) X5 = (      )

Illustration 11)

Apply the simplex algorithm to the ice-cream plant illustration. (Please show all the
calculations in all the tableaux.)

X1 = number of quarts of chocolate produced 
X2 = number of quarts of vanilla produced 

max Z = 13 X1 + 10 X2

       X1      + X2    # 1,000 (Plant capacity constraint) 
       X1                 # 600 (Chocolate sale constraint)

         X2    # 800 (Vanilla sale constraint) 
        X1 $ 0, X2 $ 0.

CONCLUSION 

In this simplex and the model formulation modules, we have studied various LP models
and the simplex solution algorithm. It can be seen that LPs are used frequently to
configure processes, programs, and plans. These examples are used for the sole
purpose of learning the basic techniques. The simplex algorithm illustrated in this
module is limited to LP models formulated in a particular format. In real life situations,
LP models usually assume many different forms, and they have hundreds and
thousands of variables and constraint equations. Thus, a more advanced
understanding of LP and computer programs are essential in solving these LP models.
Chapter 4 (entitled “Prescriptive Tools”) and Appendix 4 of this text (entitled
“Optimization Schemes”) will provide more depth in linear programming. Many available
software packages are quite efficient in handling LP models of large size. For
convenience, the author has included a software survey in both Chapter 7 and 8 of the
text.
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