
Name: _________________________

EMPIRICAL MODELING MODULE 

INTRODUCTION 

The essential parts of the model making process are introduced here in a diagrammatic
fashion: 

The block diagrams reveal some important characteristics of models: 
a)  They are built from "real world" situations; a model is a replica of the "real world." 
b)  The creation of a mathematical model involves at the initial stage the collection of

appropriate data. 
c)  The acceptability of a model depends on "tests" : How do the model reproduce

measurements? How well has the model predicted future events? In the last
analysis, is the model useful? 
Models range from the simple (one equation) to the complex, requiring computer

processing. (A model of the national economy of the U.S., for example, can easily
consists of hundreds if not thousands of equations.) This module works with models of
one equation, serving as an introduction to the whole idea of modeling, such as the
econometric models covered in Chapters 2 and 3 of the textbook. After completing this
module you should: 
a)  Be exposed to model construction based on empirical data. 
b)  Become familiar the use of power/exponential functions in econometric modeling—a

useful background for spatial modeling . 
c)  Understand the properties of power or exponential functions through log-linear

transformation using semi-log graphs.  

MODELING EMPIRICAL DATA

Illustration 1)

The Gross National Product (GNP) of a country is given below for ten years. 
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year GNP (billions of dollars) 
1 53 
2 59 
3 68 
4 68 
5 85 
6 97 
7 116 
8 142 
9 166 
10 197 

These measurements from the "real world" may be used to produce a model by

graphical means: 

The dotted line of the graphical model fulfills one of the purposes of building the
model: prediction of the future. For example, according to the graphical model, we may
predict the GNP to be approximately $240B for the 11th year, and the GNP to be
approximately $300B for the 12th year. Whether this graphical is acceptable or not can
be gleaned by comparing the predicted GNPs with the measured GNPs. If the predicted
compare "reasonably" well with the actual, we may consider the model to be
acceptable; otherwise, we may reject the model. 

The GNP-versus-year graph is in the familiar shape of an exponential curve, usually
represented mathematically as: y = a bx. The y and x, as usual, are the vertical and
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horizontal axes respectively. In our model, the GNP is measured by the vertical axis
and the year (call it "t”) is measured by the horizontal axis. We  substitute GNP and “t”
into the standard exponential curve formula:  GNP =  a bt  We take the logarithm of 
both sides of  the equation: *  

 
log GNP =  log a + t log b  

or equivalently,  

log GNP =  (log b) t + log a  

For simplicity, we specify  t = 0  for the base year,  t = 1 for the first year, t = 2 for
the second year, ... , t = 10 for the 10th year, ... , t = 20 for the 20th year, ... , etc. The
new equation, after taking logarithms, is in the standard form of a linear equation with
slope m and intercept c: 

y = m x + c

where log GNP is equivalent to y of the standard form, log b is equivalent to the slope, t
is equivalent to x, and log a is equivalent to the y-axis intercept. If we plot on a graph
paper where the vertical axis is in logarithmic scale and the horizontal axis is in the
regular numeric scale, the exponential equation of the form y = a b x, or its equivalent
form, log y = log a + (log b) x, should be a straight line of the form y = m x + c. Such a
graph paper is called semi-loq because one of  its axises is in logarithmic scale. The
above points are reflected in part by the population projection discussion in Section II.A
(Chapter 2) of the textbook. 
__________________
*  Remember for logarithms:  

log 10 = 1 
log 100 = 2  
log 1000 = 3  etc.  
log (a)(b) =  log a + log b  
log ax = x (log a)  

For further discussion on logarithmic scales, please see the section beginning on page
5. 

Illustration 2)

Plot the values of GNP and year on the semi-log graph: 

year 1    2   3   4   5   6    7     8     9    10
GNP 53 59 68 68 85 97 116 142 166 197 

Note that vertical scale is spaced in logarithmic scale. For example, if we want to graph
the value of 100 on the vertical scale, we don't have to look up the value of the log of
100 on a log table, because the mark at 100 on the vertical scale represents the log of
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100. For further discussion on logarithm see the section beginning on page 5. 

Compare this graph with the graph in Illustration l. 
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LOGARITHM1C SCALE 

A graphic way to appreciate the
power function is through its log-
linear transformation. Consider the
"unusual vertical scale" 

If we want to locate or graph a population of 3 billions, we pick line a or if we want to
locate or graph a population of 6 billions, we pick line b and so on. However, consider
this question: If we want to graph a population of 4.5 billions, how do we place it on the
vertical scale? 
We know that: 

    6 = 21(3)
  12 =  21(6) = 22(3)
  24 = 21(12) = 22(6) = 23(3)

These relations show how the marks are placed on the vertical scale. For example, if
we let the distance between "6" and "3" to be one inch, then we mark "12" one inch
above "6" (the exponent 1 in 21 from 12 =  21(6) ); we mark "12" two inches above "3"
(the exponent 2 in 22 from 12 =  22(3) ). In other words, it is the exponent in the relations
that tells us how to mark the numbers. 

-- (to be continued) --
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-- (continued from last page) --

Back to the original question,  where do we place 4.5? We know the 6 = 21(3) and
12 = 22 (3) etc.  What value of x such that 4.5 = 2 x (3)  is  true? 

4.5 / 3 = 2 x  or 1.5 = 2 x.

Take logarithm:
     log 1.5 = x log 2
   0.17609 = x (0.30103)
       0.585 = x 
If we place “6" one inch from “3" (the exponent in 6 = 21(3) ), and we place "4.5" 0.585
inch from "3" (the exponent in 4.5 = 2 0.585 (3) ). Thus, in a normal scale, we place "4.5"
midway between “6" and "3;" but on a doubling scale, we place "4.5" closer to "6" than
"3." 

Suppose a and b are equal distances. If a + b equals 1
inch, then b = 0.500 inch.

Here, b = 0.585 (a+b). If a + b equals 1 inch, then b =
0.585 inch. 

Where do we place "5" on the doubling scale if the distance from "3" to "6" is one
inch? 

5 = 2x (3), or 0.737 = x

We place "5" 0.737 inch above "3." 
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-- (continued from last page) --

Consider the vertical scale of the economic model.

What is the value (GNP) indicated by the marks a and b, where a is half between "1"
and "2" and b is also half way between "2" and “4?" Note that ' this is a doubling scale. 

We know that: 

2  =  21(1)  

If we assume the distance between "2" and "1" is one inch, then a  = 2½ (1). The ½  is in
the exponent because "a" is midway between  "2" and “1." "a"  is ½  inch from "1."

2½ = %2
a = %2(1)
a = 1.414. 

Therefore "a" represents 1,414 trillions. 

For the mark “b” between "4" and "2": 

4 = 21 (2) 
b = 2½ (2)

The “½” is in the exponent be because b is ½ inch from "2." 

b = %2(2), or b = 2.828

Therefore, b represents 2.828 trillions. 

The vertical scale on page 4 of the module, unlike the doubling scale of the
textbook, is a multiple factor of 10 scale.

Location Theory & Decision Analysis
(c) Springer  2011

Page 7 of 16



-- (continued from last page) --

 

     100 = 101 (10) 
   1000 = 101 (100) = 102 (10)
In the doubling scale, 2 is raised to an exponent; whereas in the multiple factor of

10 scale, 10 is raised to an exponent. 

Where do we mark the value of 90 on the multiple of 10 scale if the distance from
"10" to "100" is one inch? 

       90 = 10x (10)
         9 = 10x

   log 9 = x log 10
0.9542 = x

The value for "90" should be marked 0.9542 inch above “10.”

Where should 50 be marked? 
     50 = 10x (10)
       5 = 10x 
 log 5 = x log 10
0.699 = x 
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USE OF POWER/EXPONENTIAL FUNCTIONS

Illustration 3)

Using the new notations, we calculate new values from the old values in illustration l.

Year GNP (billions of dollars) New: log GNP

1 53 1.72

2 59 1.77

3 68 1.83

4 68 1.83

5 85 1.93

6 97 1.99

7 116 2.06

8 142 2.15

9 166 2.22

10 197 2.29

The values of log GNP and year (t) are measurements from the "real world" and we
want to build a “regression” model from these data. From the discussions and exercises
of illustrations 1 and 2, we know that log GNP and year (t) have a linear relationship of
the form: 

log GNP = a1 t +a0

To "fit" a linear equation to these data points, we use the least squares method:
Given a set of points, (X1, Y1), (X2, Y2), ... , (Xn, Yn), we could derive an equation to

"fit" these points of the form: 

Y = a1 X + a0

where 

a0 = [('iYi) ('iXi
2) & ('iXi) ('iXiYi)] / [n 'iXi

2 & ('iXi)
2]

a1 = [n 'iXiYi & ('iXi)('iYi)] / [n 'iXi
2 & ('iXi)

2]

For our example: 
Y = log GNP
X = year (t) 
n = 10 (Because we have a set of 10 years, each with a log GNP observation) 
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The least-squares regression was done for the data points and we arrived at the
equation: 

*logGNP* = 0.064 t + 1.62

Please note that the formulas of the previous page were used, giving: 
a0 = 1.62 
a1 = 0.064
This is our least-squares regression model of the data. The asterisks are to

emphasize that *logGNP* is the fitted or predicted value. 

a)  Using the given equation, what is the fitted value of log GNP for the year t = 1?

*logGNP* = 0.064 (1) + 1.62 = 1.684  

The fitted value, *logGNP*,  for t = 1 is 1.684.  Compare this fitted  value with the actual 
value of 1.72 for t = 1.

Complete the following Table:  

year (t) fitted (predicted) actual 

1 1.684 1.72

2 1.748 1.77 

3 1.83 

4 1.83 

5 1.93 

6 1.99 

7 2.06 

8 2.15 

9 2.22 

10 2.26 2.29 

15 2.58 no data 

20 “

25 “

30 “
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The predicted *logGNP* for the country in year 15 is 2.58: 

*logGNP* = 2.58 

Taking anti-log we get *GNP* = 380. The least-squares equation model predicts a GNP
of 380 billion dollars for year 15. Comparing this prediction with the actual
measurements is one of the tests of the appropriateness of this model. 

Please convert the fitted *logGNP* to *GNP* and compare with the actual GNP.  It is
best to show the information as two columns appended to the above Table, labeled
“actual GNP (B$)” and “fitted GNP (B$)” respectively.

Illustration 4)

Illustration 1 presented the exponential growth model: y = a bx. A related model called
exponential decay has the form: y = a b&x. This exponential decay model is very useful
for modeling radioactive decay. The appropriate model for radioactive decay is: 

N = N0 e
&λt

where N has replaced Y of the standard form; N0 has replaced a; e has replaced b; and
λt has replaced x.  Notice e is the natural base of logarithm, or e = 2.718. 

N = number of radioactive nuclei at time t. 
N0 = The number of radioactive nuclei at time 0, i.e., it is the initial amount. 
λ = The decay rate per nucleus; the value of λ varies for different radioactive

substances. 

A useful concept is the half-life of a radioactive material. The half-life, t1/2, is defined
as the time after which the number of radioactive nuclei has decreased to half of its
original value. For example, strontium 90 is a radioactive element with a half-life of 28.8
years. If we initially have 2 grams of strontium 90, then after 28.8 years we would have
1 gram of radioactive strontium. 

year: 0 (initial year)    28.8     57.6     86.4     115.2    144 
amount radioactive: 2 grams     1 g       ½ g     1/4 g      1/8 g     1/16 g

Cobalt 60 is radioactive and has a half-life of 5.2 years. If we have initially 10 grams
of cobalt, calculate the amount of remaining radioactive cobalt 60 after each time
period: 

year 0       5.2    10.4   15.6    20.8    26.0    31.2 
amount radioactive 10 g  5       (     )    (     )   (     )   (     )    (     )

Plot your results for cobalt 60 on the following graph. The shape of the resulting graph
is typical of the general exponential decay model. 
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The half-life of cesium 134 is 2 years. If the initial amount of cesium 134 is 10
grams, plot its exponential decay on the blank Figure on page13.

For the same set of numbers (grams and year) for cesium, plot them on the graph
on page 14 with grams of cesium 134 on the vertical axis. Compare this graph with the
graph on page 13 for cesium and compare this graph with the graph on page 4. 

Illustration 5)

Throughout history, humankind has always been concerned with the environment and
energy. With the increased energy consumption in industrialized countries, these
concerns started to be heightened in the late sixties and seventies. Here is an
illustration that is built upon this theme, complementing Section III in Chapter 3 of the
text.

The total world oil reserves estimated in 1977 is 600x109 barrels. Also, in 1977, it
was estimated that the growth rate in demand is 5% per year. For 1977, the annual
demand is 15 x 109 barrels. We proceed to build a model of world oil reserves.
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Let 
Dn = Demand in the year n. 
Cn = D0 + D1 + D2 + ...  + Dn = The cumulative demand through the year n.
For example, for C4 we have the cumulative demand equal to D0 + D1 + D2 + D3 +

D4. Note that D0 is the demand at the initial year 1977; D1 is the demand for 1978; ... ,
and D4 is the demand for 1981. Let  r  =  The growth rate in demand per year. If D0 is
the demand in 1977 then:  

D1 = (1+ r)  D0  is the demand in 1978.  
D2 = (1+ r)  D1 = (1+ r)(1+ r)D0 = (1+ r)2 D0 is the demand in 1979. 

. . .
Dn =  (1+ r)n D0 is the demand in the nth year after 1977. 
For people familiar with banking interest, this is the annual interest rate model. Dn is

the “future” value of the initial deposit of D0 after compounding for n years at an interest
rate of r. 
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As mentioned, the cumulative demand for oil after n years is Cn = D0 + D1 + D2 + ... 
+ Dn, or

Cn = D0 + (1+ r) D0 + (1+ r)2 D0 + (1+ r)3 D0 + ... + (1+ r)n D0 
Cn = D0 [1 + (1+ r) + (1+ r)2 + (1+ r)3 + ... + (1+ r)n]
Notice 1 + (1+ r) + (1+ r)2 + (1+ r)3 + ... + (1+ r)n is in the form of  1 + x + x2 + x3 + ...

+ xn, which is called a geometric series.  
The sum of 1 + x + x2 + x3 + ... + xn is (1 & xn+1) / (1 & x ). We could therefore write 1

+ (1+ r) + (1+ r)2 + (1+ r)3 + ... + (1+ r)n as [1 & (1 + r )n+1] / [1 & (1 + r ) ]. Collecting terms
to simplify, the final equation looks like [(1 + r )n+1 & 1] / r. Therefore Cn = D0 [1 + (1+ r) +
(1+ r)2 + (1+ r)3 + ... + (1+ r)n] becomes 

Location Theory & Decision Analysis
(c) Springer  2011

Page 14 of 16



The world’s oil reserves run out when the cumulative demand, Cn, equals 600x109.
We know at 1977, the annual demand, D0, is equal to 15x109 barrels. 

600x109 = 15x109 [(1 + r )n+1 & 1] / r

If we divide both sides of the equation by 15x109, we get: 

40 = [(1 + r )n+1 & 1] / r

This model tells us the year, from 1977, at which the world oil reserves are
completely depleted if the growth rate of demand for oil remains at r, provided no new
reserves are added. The qualifier, provided, is very important in this model because of
the very "tricky" nature of determining oil reserves. The generally accepted definition for
"proven oil reserve" is the “recoverable amount given the present market price of oil.” If
the price of crude oil goes up, then the "proven oil reserves" may increase because new
source or recovery of existing oil becomes economically feasible. There are other
modifiers to the model and we don't need to deal with them except to realize that
models depend on numerous “ifs” and assumptions. 

The value of [(1 + r )n+1 & 1] / r at 40 is tabulated for various n's and r's. In other
words, the table provides for a given depletion rate r the number of years, n, from 1977,
when the total world oil reserves of 600x109 runs out: 

n ( years from 1977) r (in %)
33 1 
32 1.25 
31 1.5 
29 2.0 
27 2.5 
26 3.0 
23.5 4.0 
21.5 5.0 
20 6.0 

The Table shows, for example, that if the world's annual growth rate in demand for
oil is 1% then by the year 2010 (1977 + 33), the total proven reserves as determined in
1977 would run out; or, if annual growth rate is 6%, the proven reserves would run out
by 1997 (1977 + 20). 

Suppose the world's proven reserves is increased from 600 x 109 barrels to 1500 x
109 barrels. Tabulate a chart such as the above for various n's and r's to show the time
for the depletion of the reserves. 

Remember, the supply is depleted when the cumulative demand, Cn, equals 1500 x
109 barrels, and we assume again that the initial consumption, D0, is 15 x109 barrels: 

1500 x 109 = 15x109 [(1 + r )n+1 & 1] / r
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Again, dividing both sides by 15x109 yields 

100 = [(1 + r )n+1 & 1] / r

Suppose r = 1%, find n such that the above equation is true. 

100 = [(1 + 0.01 )n+1 & 1] / 0.01

We multiply both sides of the equation by 0.01: 

1 = (1 + 0.01 )n+1 & 1 

Add 1 to both sides: 

2 = (1 .01 )n+1

Take logarithm

log 2 = (n+1) log 1.01
0.30103 = (n+1) (0.00432)
    69.68 = (n+1) 
    68.68 = n

In approximately 69 years from 1977, or year 2046, the world’s oil reserves of the
new 1500 x 109 barrels will run out, if the growth rate of demand is 1% annually.  

Calculate n's for 2%, 3%, 4%, 5%, 6% annual growth rates. Starting with 1500 x
109, the number of years from 1977, for given r and for the initial depletion rate of
15x109, we construct the following Table:

 n (in years from 1977) r ( in %)
68.68 1.0
(          ) 2.0
(          ) 3.0
(          ) 4.0
(          ) 5.0
(          ) 6.0

Sample calculation for r = 2%:
1500 x 10 9 = 15 x 10 9 [(1 + r )n+1 & 1] / r
 100 = [(1 + 0.02 )n+1 & 1] / 0.02

solve for n.  (Please show one of these calculations in detail, just as an example.) 
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