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Name:

PROBABILITY MODULE

An understanding of probability is important to the decision maker. Many decisions
must be based on predictions of future events. Inevitably, the prediction of future
events has uncertainties and probable errors. An example is population projection,
as discussed in Chapter 2 of this text. An understanding of probability concepts
helps the decision maker to appreciate the significance of such uncertainties and
probable errors. This module serves to introduce or review the fundamental
probability concepts, which allows an understanding of what is information and
imperfect information.

This activity module is divided into three sections. The first section covers some
of the theories of probability. The second section covers some rules of counting.
Finally, the third section builds upon the first and second sections and illustrates with
some interesting examples.

By the end of this exercise, the student
a) would be familiar with these concepts: sample space, events, union and

intersection of events, empirical or frequency probability, subjective probability,

and permutation;
b) would have seen some useful application of these concepts.

THEORY OF PROBABILITY

Definition: Sample space refers to all the possible outcomes of a process or
experiment. (Sample space is the more general technical term for "equally likely
results" used in many textbooks.)

lHlustrations:

1) Suppose we define an experiment of tossing two pennies. The set of possible
outcomes of tossing the two pennies is (assuming that they do not land on the
edge):

1st Penny  2nd Penny

Possibility A head head
Possibility B head tail
Possibility C tail head
Possibility D tail tail

If we use H for head, and T for tail, and parentheses with two spaces ( , ); with the
1st space representing the 1st penny, and the 2nd space representing the 2nd
penny, the set of all possible outcomes, or in other words, the sample space can be
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summarized:
S={(H,H),HT),(, H), (T}

Note that we are using S as the symbol for the sample space. Each entry in S is
called a sample point or sample element. Thus (H, H) is called a sample point,
likewise for (H, T), (T, H) and (T, T).

A final note, the concept of sample space can only be applied to experiments
with well-defined outcomes, and where the set of all possible outcomes can be
specified. An example that violates the rule is this: suppose we give questionnaires to
all the students on campus to determine their heights. The questionnaire is designed
as follows:

A) 4 ft- 5 ft B) 5ft-6%ft  C) 6ft-7Vft

The elements of this sample space overlap each other and thus it is not a set of
objects. Note: one of the requirements for a set is that the elements in the set must
be distinct. Sample space is a set.

2) Suppose we define an experiment of tossing one die. The set of all possible
outcomes of tossing one die is:

Possible outcome A: the face with one dot is on top

Possible outcome B: the face with two dots is on top

Possible outcome C: the face with three dots is on top

Possible outcome D: the face with four dots is on top

Possible outcome E: the face with five dots is on top

Possible outcome F: the face with six dots is on top or in shorter notation:

S={1, 2,3, 4,5, 6} each number represents the top face of the die

3) Suppose we define an experiment of tossing three coins, and recording the
outcome of the toss of each coin as head or tail. The sample space of this
experiment has eight sample points. Please fill in the missing points:

S={(H,H,H), (HHT),( ) ( ) ( ), (T, H, T), ( ), (T, T, T) }

4) Suppose we define a process of surveying voting individuals. We ask each
voter his/her sex (male or female) and political affiliation (Democrat, Republican,
or Other). The sample space of this process has six sample points. Let the
symbols M, F, D, R, and 0 stand for the sex and political affiliation respectively.
Please fill in the missing sample points: S = { (M, D), (M, R), ( (),
() )}

5) Suppose we define an experiment of tossing two dice and recording the faces on
top. The sample space of this experiment has 36 sample points. In other words, this
experiment has 36 possible outcomes. One of the possible outcomes is (1, 1) -1st die
shows one and 2nd die shows one. Please list in the space below the other 35 possible
outcomes of this experiment. There are 36 possible outcomes because the 1st die has
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six possible outcomes, and the 2nd die has six possible outcomes, and six times six is
36.

Definition: Suppose we are interested in some of all of the possible outcomes. For
example, we may be interested only in one of the possible outcomes, or two of the
possible outcomes, or six of the possible outcomes, and so on. These possible are
subsets of all of the possible outcomes. These subsets of the sample space are called
events in probability theory. (Event is the technical term for "a favorable result" used in
many textbooks.)

6) The sample space of tossing two coins is: S ={ (H, H), (H, T), (T, H), (T, T) }

The event, "two tails," is { (T, T) }.
The event, "one head"is { (H, T), (T, H) }.
The event, "at least one tail" is { (H, T), (T, H), (T, T) }.

Fill in the missing:

The event, "at least one head,"is{ (H, H), ( ), ( )}

The event, "at least one head or one tail," is{ (H, H), ( ),( ), ( )}
The event, "two heads,"is{( )}.

The event, “one tail,”is{( ), ( )}

The event, "first coin is head," is { (H, H), ( ) }.

The event, "second coin is tail," is { (H, T), ( ) }.

7) Suppose we define an experiment of tossing two dice. The sample space of this
experiment has 36 sample points or possible outcomes. (See illustration 5).

The event, "the sum of the spots on the two dice is two," is { (1, 1) }
The event, "the sum of the spots on the two dice is 11," is { (5, 6), (6, 5) }.

Fill in the missing:

The event, "the sum of the spots on the 2 diceis 7,"is { (6, 1), (5,2), ( ), ( ), ( ), (1,
6) }.
The event, “number on the second die is twice the number on the first die," is { (1, 2),

(2,4), ()}

The event, "the number on the second die is larger than the number on the first die,” is {
(1,2),(1,3),C ) ) )1&3),0 ) )HC )0 ) )L )0 ) )G 6k
The event, "the number on the firstdieis 2,"is{ (2, 1), ( ), ( ),( ), ( ), ( )}

It is very useful to use set operations in probability theory. The three set operations
are union, intersection, and complement.
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Illustrations:
8) Suppose we define an experiment of tossing two coins. The sample space for this
experiment is: (see illustration 1) S={(H, H), (H, T), (T, H), (T, T) }
The event, "first coin shows head," is:
A={(H,H),H,T)}
The event, "at least one coin shows tail, " is:
B={(H,T),(T,H), (T, T)}
The event, "at least one coin shows head," is:
C={(H,H),(H,T),(T,H)}

We thus have so far identified events A, B, and C. The event, "first coin shows
head or at least one coin shows tail," is { (H, H), (H, T), (T, H), (T, T) }, which is just A
union B, or A U B in set notation. This union process is to combine elements of A and
B, and to retain only one of each redundancies, in this case we have two (H, T)'s and
we just retain one (H, T).

The event, "first coin shows head and at least one coin shows tail," is { (H, T) },
which is A intersection B or A n B in set notation. We see immediately this intersection
process is to pick out the common elements of A and B, which is (H, T).

_ The event, “first coin shows tail," is { (T, H), (T, T) },” which is just A complement or
Aor A'in set notation. We see immediately that A complement is the elements in S that
are notin A.

Fill in the missing:
The event, “first coin shows head or at least one coin shows head," is

{(HH), () )}

The event, “first coin shows head and at least one coin shows head," is

{(H,H), ()}

The event, “at least one coin shows tail or at least one coin shows head," is

{C e e )0)}

The event, “at least one coin shows tail and at least one coin shows head," is

{C)0)}

Now that we have some understanding of sample space and events, we can begin to
assign numbers to probabilities of events, There are three ways to assign numbers to
probabilities of events, One way is called a priori or theoretical probabilities. For example,
the sample space of tossing two coins is: HH, HT, TH, TT. These four possible outcomes
are equally likely to happen. We reasoned that the coins will not land on the edge, or
break apart upon landing on the surface, or fly up into space or disappear, etc. Thus the
probability of the event "two heads" is 4, because there is only one outcome of two
heads, { (H, H) } and there are four equally likely outcomes, The probability of the event,
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"one tail " is Y2 because there are two outcomes of "one tail,” (HT) and (TH) and there are
four equally likely outcomes. In general, in a priori probability:

P(E) = n(E) / n(S)

where n(E) = number of sample points in event E
n(S) = number of equally likely sample points in the sample space S.

The second way of assigning probabilities to an event is called empirical or frequency
probabilities. For example, an inspector examined 1,000 diesel trucks and found five
trucks with sub-standard brakes, Thus the probability of a diesel truck with a sub-
standard braking system is

P(E) = f/n

where

n = the number of occurrence of event E
f = the total number of times the process or experiment has been
performed or observed

Finally, the third way of assigning probability is called subjective (or Bayesian)
probability. It is the measure of a "knowledgeable" person's belief in the likelihood of the
occurrence of some event. For example, an economist may double a price increase in
crude petroleum within two years with a probability 0.6; or a marketing vice-president may
predict sales of $100 million with a probability of 0.8; or a cancer researcher predicts
finding a cure for lung before the year 2000 with a probability of 0.70. All these
probabilities are based on the prior knowledge of the expert on the subject.

RULES OF COUNTING

Now that you have some understanding of basic definitions in probability, this section will
help you to learn some basic rules of counting or calculating the number of possible
outcomes of a process or experiment. These rules or formulas are short cuts. Obviously,
the most fundamental counting rule is to list all the possible outcomes and count them
individually; but this process is tedious and time consuming and could involve large
numbers.

Rule (1)

If a process or experiment consists of k separate steps, and the first step can occur in n,
different ways, the second step in n, different ways, and n, the kth step in different ways,
then the number of different possible outcomes is n; x n, x n; ... x n,

lHlustrations

9) Suppose we define an experiment of tossing a coin three times and each time recording
whether head or tail. This experiment has three steps:

1st step: a coin is tossed with the result of head or tail, thus the first step has two
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possible outcomes.
2nd step: the coin is tossed and again this step has two possible outcomes.
3rd step: the coin is tossed and again this step has two possible outcomes.

The number of different possible outcomes for this experiment is:

2x2x2=8
Using the hand notation introduced in the first section of this module, the possible outcomes
are: { (HHH), (HHT), (HTH), (THH), (HTT), (THT), (TTH), (TTT) }

The first entry in represents the first toss, the second entry represents second toss and
the third entry represents the third (Note that this experiment is slightly different from
illustration 3 )

10) Suppose we define an experiment of drawing individually five cards, without
replacing each, from a full deck of playing cards, What is the number of different possible
outcomes?

This experiment has five steps:

1st step: a card is drawn from the deck, this step has 52 possible outcomes, and there
remain 51 cards,

2nd step: a card is drawn from the deck; this step has 51 possible outcomes; there
remain 50 cards,

3rd step: a card is drawn from the deck; this step has 50 possible outcomes; there
remain 49 cards.

4th step: a card is drawn from the deck; this step has 49 possible outcomes; there remain
48 cards.

5th step: a card is drawn from the deck; this step has 48 possible outcomes; there remain
47 cards,

The number of different possible outcomes is: 52 x 51 x 50 x 49 x 48 = 311,875,200

11) A student can select five courses from a total offering of 30 courses with no time
conflicts. Please calculate the number of different possible course loads for the student.

1st selection has 30 possible choices.

2nd selection has 29 possible choices.

3rd selection has () possible choices.

4th selection has () possible choices.

5th selection has () possible choices.

The no. of possible different course loads is: 30 x29 x( )x( )x( )=( ).
12) Suppose we define an experiment of tossing a die three times. Please calculate the
number of different possible outcomes of this experiment.

1st toss has 6 possible outcomes.

Page 6 of 10



Location Theory & Decision Analysis
(c) Springer 2011
2nd toss has () possible outcomes.
3rd toss has () possible outcomes.
The number of different possible outcomes is:
6X( )x( )=216
13) Suppose we define an experiment of tossing two dice three times, Please
calculate the number of different possible outcomes of this experiment,
1st toss has 36 possible outcomes (See illustration 5 for this result).
2nd toss has () possible outcomes.

3rd toss has () possible outcomes.
The number of different possible outcomes is:
36x( )x( )=46,656

Rule (2)

Permutation rules. Permutation refers to an ordered arrangement of objects. For
example, if we select three students from a group of students, each different
possible arrangement of the three students is a permutation,

Rule (2a)

The formula for determining the number of possible permutations of r objects selected
from a set of n objects is: | P ,=n!/(n -r)!

lllustrations

14) nlis read "n-factorial.”
6!means 6 x5x4x3x2x1

10/ means 10 x9x8x7x6x5x4x3x2x1

15) If we select three students from a of 10 students, the number of possible
arrangements is:

1w0oPs=10!/(10 - 3)!
=10!/7!
=(10Xx9x8x7x6x5 x4x3x2x1)/(7x6x5x4x3x2x1)
=720

16) There are eight possible river crossings but we have money only for four bridges.
What is the number of possible arrangements of the four bridges? Please fill in the
missing.

gP =817/ )=(C )
Rule (2b)

The formula for determining the number of possible permutations of r objects selected from a set of n
objects' if repetitions of the r objects are allowed (once the object is put back into the n objects) is ,P'=n".
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lHlustrations

17) Suppose we draw a card from a deck of 52 playing cards. The card is then returned
to the deck and the deck is shuffled. We do this four times, drawing a total of four cards,
How many different permutations of the four cards are possible?

We are drawing four objects from 52 objects, with replacement for each object.
»P*=52%=7,311,616

Suppose we have the letters { a, b, ¢ }. We pick one letter. With repetition (or replacement)
allowed, we pick a second letter. The number of permutations in this process is:

,P?=8%=9
The nine permutations are: ( please fill in the blanks )

aa (b ) cc

ab () E )

() ) )

APPLICATIONS

Let us examine a classic probability problem: In a room of N people, what is the
probability that at least two persons have the same day of the year as birthdays? This
section of the module will help you to answer this question. Please fill in the blanks.

lllustrations
18)

Suppose we have a room with five people. We assume 365 days in the year. There
are 365 possible days for the first person's birthday. There are 365 possible days for the
second person's birthday.

There are () possible days for the 3rd person's birthday,
There are () possible days for the 4th person's birthday.
There are () possible days for the 5th person's birthday.

We are selecting five birthdays ( because there are five persons ) from 365 days, The
number of permutations of five objects (the birthdays) selected from 365 objects (the
days in a year) with repetition (or replacement) is:

a5 P ° = ( )°=6.48 x 10"?

This result can be arrived at by using Rule 1 of the second section of this module. There
are five separate steps in the process, with 365 different ways in each step.
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lHlustrations
19)

If no two persons have the same birthday, then:
There are 365 possible days for the person's birthday.
There are 364 possible days for the 2nd person's birthday.
There are 363 possible days for the 3rd person's birthday.
There are () possible days for the 4th person's birthday.
There are () possible days for the 5th person's birthday.

The number of permutations of five objects ¢ the five birthdays » from 365 objects ( the days
in the year ) without repetition ( because we want no two persons to have the same birthday
)is: g5P 5= ( )! /360! = 6.30 x 10"

or simply,
365x364x363x( )x( )=6.30x10"
The experiment we have defined is:

We chose five days from 365 days, with repetition allowed. The number of elements in this
sample space, n(S), is ( see the first section of this module )

205 P = 6.48 x 10"

In particular, we are interested in the event no two persons have the same birthday. The
number of elements in this event, is:

365 P5 = 6.30 X 1012
The probability of this event, P(E), is:
P(E) =n(E) / n(S) = (6.30 x 10') / (6.48 x 10™?)

The above equation translated into words is "the probability of no two persons in a group
of five persons have the same birthday is 0.972. In probability, the sum of an event and not
that event is always one. For example, in tossing a coin, the probability of a head is 'z, and
the probability of not a head is 2; or in tossing a die, the probability of a “one” is 1/6 and the
probability of not one showing is 5/6.

From the previous discussion, we immediately conclude that the probability of at least
two persons in a group of five persons have the same birthday is:

1-0.972 =0.028
In summary,

0.028 =1 — 4, P o/ 565 P°
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lllustrations
20)
Additional illustrations of the “birthday problem:”

a) The probability of at least two persons with the same birthday in a group of 10
persons:

1 — 465 P 1o/ 365 P'°=1-0.883=0.117

b) The probability of least two persons with the same birthday in a group of 20 persons:
11— P,/ P )=1-0.589=0.411

¢) The probability of least two persons with the same birthday in a group of 25 persons:
1— P,/ P")=1-0.431=0.569

Note that with a group of 25 persons, the probability is greater than 0.5 that two persons
have the same birthday!
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