

Chapter 17
Answers to Selected Excercises

Problem 1.1.

• TMS320DM646 is a processor chip from Texas Instruments specialized in Multi-
media (video and audio) processing. The chip contains two processors: an ARM
RISC core and a Digital Signal Processor (DSP). Writing software for this chip
thus means writing a program for each processor; and compiling each program
with a compiler for that specific processor. The chip also includes many differ-
ent peripherals and an extensive on-chip bus system. These peripherals require
additional programming.

• EP4CE115 is a Field Programmable Gate Array from Altera. This chip is pro-
grammed with a Hardware Description Language (HDL) such as Verilog or
VHDL. These programs are then compiled to the FPGA using a hardware syn-
thesis tool specific for this FPGA.

• SAM7S512 is a microcontroller from Atmel containing an ARM RISC core, an
on-chip bus system, and many peripherals (memory, input/output ports, timers,
and so on). Writing software for this chip means writing a program for the ARM
processor, and compiling the program with a compiler for that processor.

• ADSP-BF592 is a DSP processor from Analog Devices which includes multiple
peripherals besides the DSP. Such a chip is useful for control applications that
require signal processing. Writing software for this chip means writing software
for the DSP processor on the chip, and using a compiler specific to that processor.

• XC5VFX100T is a Field Programmable Gate Array from Xilinx. This chip is
programmed in a HDL, and these programs are then compiler (synthesized) for
the FPGA using a hardware synthesis tool specific for this FPGA.

Problem 1.3.

455

456 17 Answers to Selected Excercises

(a)The latency, the time it takes to compute a single output from a single input,
will take the same amount of time on the parallel processor. The throughput,
the number of inputs that can start processing per time unit, will increase. The
throughput is only limited by the slowest processor in the processing pipeline,
which will compute the first (fA) or the last (fC) step of the overall function.
fA and fC take 40% of the execution time of the original function. Hence, the
throughput of the parallel system will increase with a factor 1/0.4 = 2.5.

(b)The power dissipation of the single processor system is P = C.V 2. f , with C a
constant. The parallel processor system can scale the voltage and frequency of
each processor to 40% of the original value. The power dissipation of the parallel
processor system is therefore P = 3.C.(0.4V)2.(0.4 f). The ratio of the single-
processor power dissipation to the parallel-processor power dissipation is thus
R = 1/(3.0.43) = 5.2.

Problem 1.5.

This question asks for more than a simple yes/no answer; it asks for the motiva-
tion for answering yes or no.

This question can be answered by evaluating the amount of computations that
are performed by the CORDIC program. Clearly, for a fixed amount of resources
(processors, gates), a larger amount of computations will require a larger amount of
computation time. The CORDIC algorithm in Listing 1.6 has 20 iterations. In each
iteration, the algorithm performs the following operations.

• a 32-bit addition
• a 32-bit subtraction
• two shift-left over a variable amount of positions
• a 32-bit addition or subtraction
• a lookup table access

These are the main operations; we ignore other activities such as loop counter
management. Futhermore, observe in the CORDIC algorithm that the output of one
loop iteration (variables X, Y, and current) is used for the next iteration. Hence, the
loop iterations depend on one another. We have to compute all of time one after the
other.

The question asks if its possible to complete these computations in a fixed amount
of clock cycles or time.

• Is it possible to complete the algorithm in 1000 clock cycles? Yes. 1000 clock
cycles gives you 50 clock cycles per iteration. A simple processor is able to
handle the computational load within that time.

• Is it possible to complete the algorithm in 1000 microseconds? Certainly. Run-
ning the above mentioned processor at a clock period of 1 microsecond (only 1
MHz) gives you the require performance.

17 Answers to Selected Excercises 457

• Is it possible to complete the algorithm in 1 clock cycle? This gets tricky. On a
simple processor, definitely not. With a large amount of hardware (lots of adders
and subtractors), yes.

• Is it possible to complete the algorithm in 1 microsecond? This would be possible
if we could run the hardware mentioned earlier at a clock frequency of 1MHz.
However, this is unlikely, because the loop dependencies require us to calculate
the adders and shifters one after the other. Thus, we have a chain of at least 20
adder-shifter combinations, and each adder-shifter has only 50ns to compute the
output. Therefore, the answer for this question is ’not in current CMOS technol-
ogy’.

Problem 2.1.

If we observe the stream of tokens accepted by the snk actor, we see the values
2, 4, 8, 16, and so on. The value of token n therefore is equal to 2n.

Problem 2.3.

A loop of two copies of the original dataflow system will produce two tokens that
can be fed into the snk2 actor. The initial token from the original graph should not
be duplicated; this would modify the sequence of values observed in snk2.

fork add fork

snk2

fork add fork

Problem 2.5.

Constructing the topology matrix G, with columns A, B, C, and rows (A,B),
(B,C), and (C,A), we find:

G =

 X −2 0
0 1 −Y
−1 0 1



458 17 Answers to Selected Excercises

For a PASS to exist, the rank of this matrix needs to be 2, in other words, a
combination of two rows can yield the third one. Choosing X = 2 and Y = 1 gives a
possible solution, and in general X = 2.k and Y = k for a positive integer k.

Problem 2.7.

A0

B0

C0

B1

Problem 2.9.

A0
10

B0
10

D D

D

D

A1
10

B1
10

A2
10

B2
10

The iteration bound before unfolding is (10+ 10)/4 = 5. The iteration bound
after unfolding is (10+10+10+10+10+10)/4 = 15.

Problem 3.1.

#include <malloc.h>

17 Answers to Selected Excercises 459

typedef struct fifo {
int size; // current queue size
int *data; // token storage
unsigned wptr; // write pointer
unsigned rptr; // read pointer

} fifo_t;

void init_fifo(fifo_t *F) {
F->wptr = F->rptr = 0;
data = (int *) malloc(2 * sizeof(int));
size = 2;

}

void put_fifo(fifo_t *F, int d) {
if (((F->wptr + 1) % size) != F->rptr) {

F->data[F->wptr] = d;
F->wptr = (F->wptr + 1) % size;

} else {
// fifo full - resize
int newsize = 2*size;
int *newdata = (int *) malloc(newsize * sizeof(int));
unsigned i;
for (i=0; i<size; i++)

newdata[i] = data[i];
for (i=size; i<newsize; i++)

newdata[i] = 0;
data = newdata;
size = newsize;
put_fifo(F, d); // this call will succeed

}
}

int get_fifo(fifo_t *F) {
int r;
if (F->rptr != F->wptr) {

r = F->data[F->rptr];
F->rptr = (F->rptr + 1) % size;
return r;

}
return -1;

}

unsigned fifo_size(fifo_t *F) {
if (F->wptr >= F->rptr)

return F->wptr - F->rptr;
else

return size - (F->rptr - F->wptr) + 1;
}

Problem 3.3.

460 17 Answers to Selected Excercises

Let’s first write a small C program and construct an equivalent SDF graph. Here
is a C program with a single input and a single output and a loop.

unsigned myfunc(unsigned a) {
unsigned i, j;
unsigned t1, t2, t3 = 0;
t1 = a + 3;
for (i=0; i<10; i++) {

t2 = t1 + i;
t3 = t3 + t2;

}
return t3;

}

Assuming we map each addition in the C program to a separate actor, the SDF
version of the program would look as follows,

+3
1 1

+i +
1 10 10 1

a t1 t2 t3

The first actor adds three to the input token and produces a single output token;
the second actor adds the numbers 0 to 9 to the input token and produces 10 output
tokens. The third actor takes the sum of 10 input tokens and produces a single output
token. The loop bound (10) thus translates into actor production/consumption rates.
Indeed, the inner loop body in the C program executes 10 times for every execution
of the code outside of the loop. Hence, there are 10 values for t2 produced for
every value of t1. The multi-rate dataflow diagram thus is a natural rendering of a C
program with loops. The loop bounds appear as production/consumption rates, and
as a consequence, data-dependent loop bounds will result in variable or unknown
production/consumption rates.

Problem 3.5.

void count(actorio_t *g) {
while (1) {
if (fifo_size(g->in[0]) >=1) {

unsigned i;
i = get_fifo(g->in[0]) + 1;
put_fifo(g->out[0], i);
put_fifo(g->out[1], i);

}
stp_yield();

}
}

void split(actorio_t *g) {
while (1) {
while (fifo_size(g->in[0]) >=2) {

17 Answers to Selected Excercises 461

i = get_fifo(g->in[0]) + 1;
put_fifo(g->out[0], get_fifo(g->in[0]));
put_fifo(g->out[1], get_fifo(g->in[0]));

}
stp_yield();

}
}

void diff(actorio_t *g) {
while (1) {

while (fifo_size(g->in[0]) >=2) {
put_fifo(g->out[0], get_fifo(g->in[0]) -

get_fifo(g->in[0]));
}
stp_yield();

}
}

void join(actorio_t *g) {
while (1) {

while ((fifo_size(g->in[0]) >=1) &&
(fifo_size(g->in[1]) >=1)) {

put_fifo(g->out[0], get_fifo(g->in[0]));
put_fifo(g->out[0], get_fifo(g->in[1]));

}
stp_yield();

}
}

void snk(actorio_t *g) {
while (1) {
while (fifo_size(g->in[0]) >=1) {
printf("%d\n", get_fifo(g->in[0]));

}
stp_yield();

}
}

int main() {
fifo_t q1, q2, q3, q4, q5, q6, q7;
fifo_init(&q1);
fifo_init(&q2);
fifo_init(&q3);
fifo_init(&q4);
fifo_init(&q5);
fifo_init(&q6);
fifo_init(&q7);

actorio_t count_io = {{&q1}, {&q1,&q2}};
actorio_t split_io = {{&q2}, {&q3,&q4}};
actorio_t diff1_io = {{&q3}, {&q5}};
actorio_t diff2_io = {{&q4}, {&q6}};
actorio_t join_io = {{&q5,&q6}, {&q7}};
actorio_t snk_io = {{&q7}};

462 17 Answers to Selected Excercises

stp_create(count, &count_io); // create thread
stp_create(split, &split_io); // create thread
stp_create(diff, &diff1_io); // create thread
stp_create(diff, &diff2_io); // create thread
stp_create(join, &join_io); // create thread
stp_create(snk, &snk_io); // create thread

stp_start(); // run the schedule

return 0;
}

Problem 3.7.

count0

count1

count2

count3

split0

split1

diff

diff

join snk

+1

+1

+1

+1

-

-

out

This circuit does not have a particular purpose or function; its only use is to
demonstrate the conversion of a multi-rate data-flow graph into hardware.

Problem 4.1.

17 Answers to Selected Excercises 463

1

2

3

4

5

1

2

3

4

5

a

a

a

a

b

c

d

1

2

3

4

5

a

a

a

b

c
d

c

CFG (a) DFG (a) DFG (c)

(a)Refer to the Figure.
(b)The longest path is 4.
(c)The function can be rewritten as shown below. The resulting DFG is shown in

the Figure. The longest path in the optimized DFG is 3.

int addall(int a, int b, int c, int d) {
a = a + b;
c = c + d;
a = a + c;
return a;

}

Problem 4.2.

N X J

>

==0 * + -

input

0x80 0

flag_if flag_zero

c1 c2 c3

>>1

Problem 4.5.

464 17 Answers to Selected Excercises

1

2a

2b

3

4

0

2c

5

1

2a

2b

3

4

0

2c

5

i

i
i

i

i

i

i

i

1

2a

2b

3

4

0

2c

5

max

max

max

max

a[] a[]

a[]

CFG DFG (edges for i) DFG (edges for max, a[])

Problem 4.7.

unsigned char mysqrt(unsigned int N) {
unsigned int x1, x2, x3, j1, j2;
x1 = 0;
for (j1 = 1<<7; merge(j1,j2) != 0; j2 = merge(j1, j2) >> 1) {

x2 = merge(x1, x2, x3) + merge(j1, j2);
if (x2 * x2 > N)

x3 = x2 - merge(j1, j2);
}
return merge(x2, x3);

}

Problem 5.1.

Circuits c and d.

Problem 5.3.

17 Answers to Selected Excercises 465

S0

S1 S2

1/0

0/1

1/0 0/0

1/1

0/0 Sb

Sa

out in

Problem 5.5.

dp divider(in x : ns(8);
in y : ns(8);
in start : ns(1);
out q : ns(10);
out r : ns(8);
out done : ns(1)) {

reg rq : ns(10);
reg rr : ns(8);
reg yr : ns(8);
reg str : ns(1);
reg cnt : ns(4);
sig z : ns(10);
sig qb : ns(1);
sig a,b : ns(8);
sig rb : ns(8);

always { q = rq;
r = rr;
str = start;

}
sfg iterate { z = 2*a - b;

qb = (z > 0x7f) ? 0 : 1;
rb = (z > 0x7f) ? 2*a : z;

}
sfg init { rq = 0;

rr = x;
yr = y;
cnt = 8;

}
sfg go { a = rr;

b = yr;
rq = (rq << 1) | qb;
rr = rb;

466 17 Answers to Selected Excercises

cnt = cnt - 1;
}

sfg busy { done = 0;
}

sfg hasdone { done = 1;
}

}
fsm c_divider(divider) {

initial s0;
state s1, s2, s3;
@s0 if (str) then (busy, iterate, go) -> s1;

else (busy, init) -> s0;
@s1 if (cnt == 0) then (hasdone) -> s0;

else (busy, iterate, go) -> s1;
}

dp dividertest {
sig x, y : ns(8);
sig start : ns(1);
sig q : ns(10);
sig r : ns(8);
sig done : ns(1);

use divider(x, y, start, q, r, done);
always { $display($cycle, " ", x, " ", y, " ", start,

" ", q, " ", r, " ", done);
}

sfg go { x = 12;
y = 15;
start = 1;

}
sfg wait { x = 0;

y = 0;
start = 0;

}
}
fsm c_dividertest(dividertest) {

initial s0;
state s1;
@s0 (go) -> s1;
@s1 (wait) -> s1;

}

system S {
dividertest;

}

The simulation output illustrates that the result is obtained in 10 cycles:

> /opt/gezel/bin/fdlsim div.fdl 15
0 c f 1 0 0 0
1 0 0 0 0 c 0
2 0 0 0 1 9 0
3 0 0 0 3 3 0

17 Answers to Selected Excercises 467

4 0 0 0 6 6 0
5 0 0 0 c c 0
6 0 0 0 19 9 0
7 0 0 0 33 3 0
8 0 0 0 66 6 0
9 0 0 0 cc c 1

Problem 5.8.

dp filter(in a : ns(32); out q : ns(32)) {
reg t0, t1, t2, t3, t4;
always {

t4 = a;
t3 = t4;
t2 = t3;
t1 = t2;
t0 = t1;
q = -t0 + 5*t1 + 10*t2 + 5*t3 - t4;

}
}

Problem 5.10.

000

001

010

011

100

101

110

111

State Encoding
{a1 a2[1] a2[0]}

Problem 6.1.

468 17 Answers to Selected Excercises

Instruction M1 M2 ALU Horizontal Vertical
M1[1:0] M2[1:0] ALU[1:0] H[5:0] V[2:0]

SWAP 10 10 00 101000 001
ADD R1 01 00 00 010000 010
ADD R2 00 01 00 000100 011
COPY R1 00 10 00 001000 100
COPY R2 10 00 00 100000 101
NOP 00 00 00 000000 000

• The encoding of the horizontal micro-instruction corresponds to M1 M2 ALU.
• The encoding of the vertical micro-instruction implies an additional decoder that

transforms the vertically encoded micro-operation into a horizontally encoded
micro-operation. For example, the msbit of M1 can be obtained as M1[1] =
(Ṽ[2] & Ṽ[1] & V[0]) | (V[2] & Ṽ[1] & V[0]).

Problem 6.3.

Combination b0 b1 b2 b3 Meaning
Instruction 1 1 X 0 0 JUMP RELATIVE

(CSAR = CSAR+offset;)
Instruction 2 X 1 1 0 JUMP ABSOLUTE

(CSAR = offset;)
Instruction 3 0 1 1 1 CALL SUBROUTINE

(RETURN = CSAR+1; CSAR = offset;)
Instruction 4 X 0 1 0 RETURN FROM SUBROUTINE

(CSAR = RETURN;)

Problem 6.5.

(a)No
(a)Yes, assuming careful initialization of CSAR, and assuming the datapath state

can be safely shared between the two different threads.

Problem 7.1.

int main() {
int a, b;

if (((unsigned) &a) < ((unsigned) &b))
printf("Stack grows upwards\n");

else
printf("Stack grows downwards\n");

}

17 Answers to Selected Excercises 469

Problem 7.4.

a Not correct
b Memory-mapped coprocessor registers are registers that are visible as mem-

ory locations on the processor. Accessing such a register requires memory-load
and/or memory-store operations. It is therefore very different from accessing a
processor register. The storage specifier register only applies to processor
registers.

Problem 7.5.

a The compiler computed the result of the for loop at compile time. Such ’un-
rolling’ is possible when compile-time optimization is used. In this case, the op-
timization flag -O2was used. Close inspection of the assembly listing shows that
the instructions compute the value 5*a + 6. The same value can be obtained
by symbolically computing the result of the C function in Listing 7.13.

b Using a similar argument as for part (a) of the question, we can derive that the
result of the computation would be 5*a - 6. Hence, the assembly code would
remain the same apart from the last instructions: instead of an add instruction,
we would expect a subtract instruction.

Problem 7.7.

mov add

add

ldr

add cmp

ble add

add str

r0

r0

r3

r3

r2

r3

r1

r1

r1

r1

r1

r1 #99

(flag)

#1 #0
sp

#800

#-800

#-400

1

3

4

5

6 8

7 11

10 9

a
b Instructions 1, 3, 4, and 9 can all be seen to have a dependency into the memory-

load instruction, and are thus involved in the address calculation.

470 17 Answers to Selected Excercises

Problem 8.1.

a Every access to the UART needs to be done directly to the peripheral. Caching
those variables makes no sense. This is particularly true for variables (memory
locations) that can be updated outside of the control of the processor. An example
of such a register is the data-receive register of the UART (See Section 8.4.3).

b Multiple processors can update memory locations independently from one an-
other. Whenever a given memory location is updated (written), all cached copies
of that memory location should be invalidated. This problem is known as the
cache-coherency problem: multiple caches on a bus must maintain a consistent
view of the main memory.

c The data cache, since the instruction memory-space is read-only.

Problem 8.3.

CPU SRAM

High-speed Bus Peripheral Bus

Bridge

NVRAM
Boot UART

32 B

VGA

16 KB

Flash

16 MB

32 32

16 MB 128 KB 0000 0000

00ff ffff
0100 0000

0101 ffff

0102 0000

7fff ffff

8000 0000

80ff ffff

8100 0000

8100 3fff
8100 4000

8100 401f
8100 4020

ffff ffff

SRAM

NVRAM

FLASH

VGA

UART

Cached

Bridged

Problem 9.1.

To communicate from CPU1 to CPU2, at least the following bus transactions will
be needed:

• A high-speed bus transaction (50ns)
• A bridge transfer (100 ns)
• A low-speed bus transaction (200ns)

The communication latency is therefore 50+ 100+ 200ns, or 350ns, or 2.87M
transactions per second. This is an optimistic upperbound; in practice additional
memory accesses will slow down the system operation.

17 Answers to Selected Excercises 471

Problem 9.3.

By plotting the equation 1000 = K + 20Q, the (K,Q) plane is divided in two
regions. In one region, the sum K + 20Q is smaller than 1000. This means that the
total execution time consumed by hardware is smaller than the execution time for
the same functionality in software. Hence, the hardware coprocessor provides an
overall gain in speedup. At the other side of the line, the sum K+20Q is larger than
1000. In this case, the hardware coprocessor does not provide any benefit over the
software.

Q
cycles to
transfer one word

K
cycles to execute Hardware

50

1000

Hardware
Coprocessor

helps

Hardware
Coprocessor

does NOT help

CPU HW
Coproc

Q cycles to
transfer one word

K cycles to
execute Hardware

Problem 10.2.

(a)Cursor position ’X’ is a memory read.
(b)The address falls within the address range of a, which goes from 0x44001084

to 0x44001084 + 0x40*4 = 0x44001184. Hence, the memory read at
cursor position ’X’ must be a data memory read.

(c)Address 0x4400111C corresponds to the address of a[0x1A], or a[26]. Ac-
cording to Listing 10.1, a[26] is read when i must be 27.

Problem 10.4.

(a)Bus master 1 has priority over bus master 2. This can be observed at clock edge
2.

(b)At clock edge 3, bus master 2 gains control over the bus. Hence, bus master 2
controls the bus between clock edge 3 and clock edge 4.

(c)A bus arbiter generates bus-grant signals.
(d)The acknowledge signal is generated by the bus slave to indicate completion of

the bus transfer.

Problem 11.2.

472 17 Answers to Selected Excercises

Mailbox
Software Hardware

volatile int *req = (int *) ADDR1;
volatile int *ack = (int *) ADDR2;
volatile int *dat = (int *) ADDR3;

void send(int a1, int a2) {
 *data = a1;
 *req = 1;
 while (!*ack) ;
 *data = a2;
 *req = 0;
 while (*ack);
}

S0

S1

dat

req

ack

~req/
ack=0

req/
ack=1,
read

req/
ack=1

~req/
ack=0
read

1st data token

2nd data token

Problem 11.4.

The following solution forces all data to go through the register loopbackreg.
The module keeps track of the register status through the rfull flag. When rfull
is low (loopbackreg is empty), only write can set it. When rfull is high
(loopbackreg is filled), only read can clear it.

dp loopback(in wdata : ns(32);
in write : ns(1);
out full : ns(1);
out rdata : ns(32);
out exists : ns(1);
in read : ns(1)) {

reg loopbackreg : ns(32);
reg rfull : ns(1);
always {

rfull = (˜rfull & write) | (rfull & ˜read);
exists = rfull;
full = rfull;
rdata = loopbackreg;
loopbackreg = (˜rfull & write) ? wdata : loopbackreg;

}
}

Problem 11.6.

17 Answers to Selected Excercises 473

r5 r5

op1

r3

op2

op3

r6

op4

op5

op6

r3

r3

r3

r6

r6

r6

Fusion #1

Fusion #2

Problem 11.8.

(a)Yes, the energy consumption per sample is proportional to the amount of work
done per sample.

(b)Yes, the custom instruction shortens the execution time, while the question sug-
gests that the added power is the same. Hence the energy per sample decreases.

(c)No. This will increase the power dissipation, and proportionally shorten the exe-
cution time. Hence, the energy per sample remains (approximately) the same.

(d)Impossible to decide. The question does not state if the clock frequency remains
the same or not. If it remains the same, the energy per sample will decrease
because the power dissipation decreases under the same execution time. If the
clock frequency is reduced together with the voltage, the benefit from reduced
power dissipation is reduced by increased execution time.

Problem 12.3.

(a)The coprocessor has three data input-ports, one data output-port.

474 17 Answers to Selected Excercises

(b)The median is computed in a single clock cycle (dp median). However, the
hardware interface can provide only a single data input and a single data out-
put. Close examination of the hardware interface (dp medianshell) shows
that this is a time-multiplexed interface. Hence, the design is communication-
constrained.

(c)The register structure that holds the three input operands is advanced as follows.
First, a zero must be written in the input register of the hardware interface. Next,
a non-zero value must be written. This sequence must be repeated three times,
to provide each of the three input operands. After the third time, the result can
be immediately retrieved from the coprocessor output, because the result is com-
puted in a single clock cycle.

(d)The program is shown below.

#include <stdio.h>

int main() {
unsigned volatile *din = (unsigned *) 0x80000000;
unsigned volatile *dout = (unsigned *) 0x80000004;

*din = 0;

*din = 36;

*din = 0;

*din = 99;

*din = 0;

*din = 58;

printf("The result is %d\n", *dout);
}

Problem 12.5.

By analyzing the reservation table, we find that the set of forbidden latencies is
(2), because pipeline stage 2 is reused with a latency of 2 cycles. By executing a few
pipeline executions, we note that, for optimal utilization of the second pipeline stage,
data must enter the pipeline at irregular intervals. The following figure illustrates
this.

17 Answers to Selected Excercises 475

Stage1

Stage 2

Stage 3

Cycle 1 2 3 4

A

A A

A

1 2 3

Forbidden
Latency = 2

Stage1

Stage 2

Stage 3

Cycle 1 2 3 4

A

A

A

5 6 7 8

A

B

B

B

B

C

C

C

C

D

D

D

D

9
Irregular
Pipeline
Initiation

To address this issue, we need to rework the delays in the pipeline. We cannot
change the execution sequence of pipeline stages: it must remains (stage 1, stage
2, stage 3, stage 2). However, we can postpone execution of a pipeline stage by
introducing additional pipeline registers. This increases the overall latency of the
instruction, but it may obtain a regular pipeline initiation. The following figure il-
lustrates that, by doubling the pipeline register at the output of stage 3, we obtain
the desired effect.

Stage1

Stage 2

Stage 3

Cycle 1 2 3 4

A

A

A

1 2 3

Forbidden
Latency = 3

Stage1

Stage 2

Stage 3

Cycle 1 2 3 4

A

5 6 7 8 9
Regular
Pipeline
Initiation

5

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

10 11

Additional
Pipeline
Register

	Answers to Selected Excercises

