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Preface

Almost all control systems are realized using discretized (discrete-time and
discrete-value, i.e., digital) signals. However, analysis and design methods for dis-
cretized/quantized control systems are not always established. The analytical treat-
ment of linear discrete-time (sampled-data) control systems was developed in the
1950s and the 1960s, and is covered in several classical textbooks. Nevertheless,
since the characteristics of control systems with discrete-value (discretized) signals
become nonlinear, the analysis and design of these discrete control systems has not
been elucidated. The aim of this book is to establish a basis for the analysis and
design of discretized/quantized control systems for continuous physical systems.

Chapter 1 surveys the mathematical descriptions of discrete-time and also
“discrete-value” systems. In Chap. 2, beginning with the necessary mathematical
foundations and system model descriptions, the analysis in function spaces for these
discretized (nonlinear) control systems is developed. Chapter 3 analyzes the ro-
bust stability of discretized nonlinear feedback systems in the frequency domain
based on the input-output stability concept. In order to keep a practical perspec-
tive on the uncertain physical systems, most of the methods are carried out in the
frequency domain. As part of the design procedure, modified Nyquist-Hall and
Nichols diagrams are presented. In Chap. 4, first, a discretized version of tradi-
tional proportional-integral-derivative (PID) control schemes is reconsidered. Next,
schemes for a model reference feedback that corresponds to a discrete observer
feedback are proposed. It is shown that the model reference feedback approximately
becomes a PID control scheme.

Although single-loop feedback systems form the core of the text, in Chap. 5,
some considerations are given to multiple loops and nonlinearities. Furthermore,
Chap. 6 discusses the robust control performance and stability of discrete inter-
val systems (with multiple uncertainties) from the viewpoint of the characteristic
roots area based on Sturm’s theorem. Finally, in Chap. 7, the relationship between
feedback control and discrete event systems is outlined. The nonlinear phenomena
associated with practically important event-driven systems are elucidated, and the
dynamics and stability of finite state and discrete event systems are defined.

The author’s thoughts on recent control theory are as follows.
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viii Preface

(1) The state-space representation is useful for the analysis and simulation of con-
trol systems in the time domain. However, the method is not always appropriate
for the design of control systems.

(2) To keep a practical perspective on uncertain physical systems, modeling/identi-
fication and control should be carried out in a limited frequency range.

(3) There will be a large difference in time scale for feedback control systems (tran-
sient responses) and adaptive control loops. Therefore, adaptive and learning
control processes should be discussed separately.

(4) This book treats discrete signals; therefore, differential and integral techniques
are not used in principle.

I would like to thank Mr. Oliver Jackson and Ms. Charlotte Cross at Springer UK
for giving me the opportunity to write this book and for helping me to complete it.

Yoshifumi OkuyamaTokushima, Japan
October 2013
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Chapter 1
Mathematical Descriptions and Models

1.1 Introduction

Almost all control systems are realized using discretized (discrete-time and
discrete-value, i.e., digital) signals. However, analysis and design methods for dis-
cretized/quantized control systems are not always established. An analytical treat-
ment of linear discrete-time (sampled-data) control systems was developed in the
1950s and the 1960s, and is covered in several classical textbooks [4, 10]. Never-
theless, since the characteristics of control systems with discrete-value (discretized)
signals become nonlinear, the analysis and design of these discrete control sys-
tems has not been elucidated [3]. In this chapter, the mathematical descriptions of
discrete-time and also “discrete-value” systems are surveyed [5, 6].

1.2 Input–Output Representation

The control systems to be considered here are composed of some (dynamic) ele-
ments or subsystems. Each element or subsystem (and whole system) is regarded as
a relationship between the cause and the effect (i.e., the input and the output).

1.2.1 The System

First, it is assumed that the system can be expressed by a “relation” between one
input and one output. In general, the relation is given by

y = S(u), (1.1)

where S is an operator (or a transformation) which defines the system. This may be
represented in block diagram form, as shown in Fig. 1.1. Here, u is the input, and y

Y. Okuyama, Discrete Control Systems,
DOI 10.1007/978-1-4471-5667-3_1, © Springer-Verlag London 2014
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2 1 Mathematical Descriptions and Models

Fig. 1.1 The discrete system

is the output. In other words, u is an independent variable, and y is a dependent vari-
able. In general, u is considered a time sequence of real numbers u0, u1, · · · , uk, · · · ,
and y is a time sequence of real numbers y0, y1, · · · , yk , · · · . Of course, these may
be considered sequences in space.

1.2.2 Linear and Nonlinear

The transformation S is linear if it follows the principle of superposition, i.e.,

y = S(au+ bv)= aS(u)+ bS(v), (1.2)

where a and b are constant parameters. In this case, y is a linear function of u and
v; otherwise, it is a nonlinear function. Here, the former transformation S is referred
to as a linear operator; otherwise, S is referred to as a nonlinear operator.

1.2.3 Static and Dynamic Systems, Causality

If a system is given by

yk = S(uk), k = 0,1,2, · · · , (1.3)

the system is called static. On the other hand, if a system is affected by time sequence
u0, u1, u2, · · · , uN as

yk = S(u0, u1, · · · , uN), 0 ≤ k ≤N, (1.4)

the system is considered dynamic. When system (1.4) is written as

yk = S(u0, u1, · · · , uk) (1.5)

the system may be called causal.

1.2.4 Time Invariance

The system S is time-invariant if its response is independent of the moment of ap-
plication of the input u. If i and k represent arbitrary time instances, then

yi−k = S(ui−k), ∀i, k ≥ 0,
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where yi−k = 0, for i < k.

Otherwise, the system is time-variant.

1.2.5 Discrete and Continuous Time

When a variable is in the form of a time sequence, e.g., u0, u1, u2, · · · , uk, · · · ,
it can be assigned to u(0), u(1), u(2), · · · , u(k), · · · as a function of discrete time
0,1,2, · · · , k, · · · .

In general, the input and the output of the system S can be written as

uk = u(k), vk = v(k),

k ∈ Z+ := {0,1,2,3, · · · }.
Functions of continuous time, u(t) and v(t), can be given as

u= u(t), v = v(t),

t ∈R+ := [0, ∞).

1.2.6 Discrete and Continuous Values

In the above expression, values of u(k), u(t) may be either discrete or continuous.
However, in this section, the set of real numbers (an uncountably infinite set) R will
be identified with a countably infinite set Z,

u(k), y(k) ∈ Z ⊂ R,

Z := (−∞,+∞),

in spite of the strict mathematical definition. The values of u(k) and y(k) may be-
long to finite sets U ,Y ⊂ Z due to some limiter or saturation in the system S. The
behavior of finite value and state systems will be discussed in the next subsection
and in Chap. 7.

1.2.7 Concept of the State

In order to express the internal structure strictly, the concept of “state” will be intro-
duced. In general, a system S can be written as follows:1

1In the following, boldface will be used in principle for vector (multivariable) representation and
also for set representation.
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x(k + 1)= f (x(k), u(k))

y(k)= g(x(k + 1))
(1.6)

x(k) ∈ Zn, u(k), y(k) ∈ Z

f : Zn ×Z → Zn, g : Zn → Z.

The system equations (1.6) can be rewritten as follows:{
x(k + 1)= f (x(k), u(k))

y(k)= g(x(k + 1)))= g∗(x(k), u(k))
(1.7)

g∗ : Zn ×Z → Z.

When Z is considered as finite sets U , X, and Y , the system (1.6) can be written as:{
x(k + 1)= f (x(k), u(k))

y(k)= g(x(k + 1))
(1.8)

x(k) ∈ X, u(k) ∈ U , y(k) ∈ Y

f : X × U → X, g : X → Y .

In the automata theory, Eq. (1.6) is called the Moore machine expression. On the
other hand, Eq. (1.7) is called the Mealy machine expression with respect to g∗(·, ·).
However, in this chapter, only “time-driven”-type systems are considered. In these
expressions, k ∈ N is an independent variable that corresponds to an elapsed time t .
With respect to discrete event (“event-driven”-type) systems, the definition and the
behavior of finite state systems will be described in Chap. 7.

1.3 Linear Discrete Equations

As in differential equations, the discrete equation (system model) for linear dynamic
systems is described in the relationship between a dependent variable (sometimes
called “output” y) and a forcing function (sometimes called “input” u) with respect
to an independent variable (discrete time series k). In this section, the method of
solving such discrete equations is presented. It helps to formulate, synthesize, and
analyze discrete-time linear systems similarly to linear differential equations.

1.3.1 Forward Discrete-Time Equation

The discrete equation based on a forward-type expression is given as follows:

a0y(k + n)+ a1y(k + n− 1)+ · · · + an−1y(k + 1)+ any(k)= u(k). (1.9)
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Here, independent variable k may or may not be time elapsed. It may be in the form
of discrete-space (e.g., integer grid) coordinates. However, throughout this book, it
is assumed that the independent variable is a discrete-time variable, as shown in the
sampling process (Fig. 1.7). In general, (1.9) can be written as

y(k+n)+· · ·+an−1y(k−1)+any(k)= b0u(k+n)+· · ·+bn−1u(k−1)+bnu(k),

(1.10)
where n is the order of the equation.2

In these equations, dependent variables y(k) and u(k) may or may not be of
continuous value, i.e.,

y(k), u(k) ∈R, or y(k)= y†(k), u(k)= u†(k) ∈ Z.

However, in this section, the dependent variables are considered to be continuous,
unless otherwise specified (or to belong to an uncountably infinite set).

Example 1.1 In the case of a first-order system, the equation can be written as3

x(k + 1)+ a1x(k)= b0u(k + 1)+ b1u(k).

When it is homogeneous, the following simple expression is given:

x(k + 1)+ a1x(k)= 0.

Thus, the first-order homogeneous equation can be written as

x(k + 1)=Ax(k), A= −a1, k = 0,1,2, · · · ,

where x(k+ 1) is the next stage of the above discrete equation. When k = 0, x(0) is
the initial condition, and x(1) is the next stage. If x(k) ∈R and A ∈R, x(k+1) ∈R

is satisfied.
In general, by using a vector-matrix form, the homogeneous discrete equation

can be expressed as

x(k + 1)= Ax(k), x ∈ Rn, A ∈Rn×n. (1.11)

If there exists an exogenous (forced) input, the vector-matrix form can be written as

x(k + 1)= Ax(k)+ Bu(k), u ∈ R, B ∈Rn. (1.12)

2Without loss of generality, the leading coefficient is assumed to be 1 (i.e., a0 = 1). This assump-
tion can easily lead to a vector-matrix form and a “monic” polynomial of z-transform variables.
3Symbol x was used for y in order to introduce a state-variable representation.
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A set of first-order equations can be represented by using the vector-matrix form
(1.11) as follows:⎡

⎢⎢⎢⎣
x1(k + 1)
x2(k + 1)

...

xn(k + 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
x1(k)

x2(k)
...

xn(k)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
b1
b2
...

bn

⎤
⎥⎥⎥⎦u(k). (1.13)

Since an n-th-order discrete-time equation (1.10) can be written as a set of first-order
equations, e.g.,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(k + 1)= x2(k)− a1x1(k)+ (b1 − a1b0)u(k)

x2(k + 1)= x3(k)− a2x1(k)+ (b2 − a2b0)u(k)

...

xn(k + 1)= −anx1(k)+ (bn − anb0)u(k),

(1.14)

it can be given in the following vector-matrix form:⎡
⎢⎢⎢⎢⎢⎣

x1(k + 1)
x2(k + 1)

...

xn−1(k + 1)
xn(k + 1)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−a1 1 0 . . . 0
−a2 0 1 . . . 0
...

...
...

. . .
...

−an−1 0 0 . . . 1
−an 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1(k)

x2(k)
...

xn−1(k)

xn(k)

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

b1 − a1b0
b2 − a2b0

...

bn−1 − an−1b0
bn − anb0

⎤
⎥⎥⎥⎥⎥⎦u(k)

(1.15)
and

y(k)= x1(k)+ b0u(k). (1.16)

Equations (1.15) and (1.16) correspond to a linear constant (time-invariant) expres-
sion for the general system equation (1.7). The above expression is also called an
“observable canonical form.” With respect to vector-matrix form (i.e., state-space
representation), there are many possible expressions. As an example, the following
expression, which is also called a “controllable canonical form,” can be shown:⎡
⎢⎢⎢⎢⎢⎣

x1(k + 1)
x2(k + 1)

...

xn−1(k + 1)
xn(k + 1)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−an −an−1 −an−2 . . . −a1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1(k)

x2(k)
...

xn−1(k)

xn(k)

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦u(k)

(1.17)
and

y(k)= [
bn − an bn−1 − an−1 · · · b1 − a1

]
⎡
⎢⎢⎢⎣
x1(k)

x2(k)
...

xn(k)

⎤
⎥⎥⎥⎦ + u(k). (1.18)
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1.3.2 Backward Discrete-Time Equation

When considering time shifting k + n → k the discrete-time equation given
by (1.10) is rewritten as follows:

y(k)+ · · · + an−1y(k − n+ 1)+ any(k − n)= b0u(k)+ · · · + bn−1u(k − n+ 1)+ bnu(k − n).

(1.19)
For a first-order system, it can be written as

x(k)+ a1x(k − 1)= b0u(k)+ b1u(k − 1).

Therefore, the vector-matrix discrete-time equation which corresponds to (1.11) will
be expressed as

x(k)= Ax(k − 1), x ∈ Rn, A ∈Rn×n. (1.20)

Of course, if there exists an exogenous input, the vector-matrix discrete equation
which corresponds to (1.12) will be written as follows:

x(k)= Ax(k − 1)+ Bu(k), u ∈ R, B ∈Rn. (1.21)

Since future data cannot be used, these backward expressions (1.19) and (1.21) are
actually used on computer simulation models instead of the forward expressions
(1.10) and (1.12).

1.3.3 Difference Equation

Another approach for formulating a discrete equation is to analyze the behavior of
the differences between two successive values of the dependent variable. The first
forward difference,

�y(k)= y(k + 1)− y(k),

transforms the discrete equation to the following difference equation:

d0�
ny(k)+ d1�

n−1y(k)+ · · · + dn−1�y(k)+ dny(k)= u(k). (1.22)

Here, higher differences are defined similarly to the first difference, i.e.,

�ny(k)=�(�n−1y(k)). (1.23)

For example, the second forward difference is given by

�2y(k)=�(�y(k))=�y(k + 1)−�y(k).



8 1 Mathematical Descriptions and Models

Thus, it can be defined as

�2y(k)= y(k + 2)− 2y(k + 1)+ y(k).

Properties

(i) The first forward difference of the product of two discrete functions is given by

�(f (k)g(k))= f (k + 1)�g(k)+ g(k)�f (k). (1.24)

Proof As is obvious from the definition of the first forward difference,

�(f (k)g(k))= f (k + 1)g(k + 1)− f (k)g(k)

= f (k + 1)(g(k + 1)− g(k))+ g(k)(f (k + 1)− f (k)),

(1.24) is proved.
(ii) The relationship between the discrete equation (1.9) and difference equation

(1.22) is given as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ap =
p∑

q=0

(−1)p−qC
n−q
p−qdq

dp =
p∑

q=0

C
n−q
p−qaq

(1.25)

Equation (1.25) relates the coefficients of the difference equation to the coeffi-
cients of the discrete equation and vice versa.

Backward Difference Equation The first backward difference is defined as

Δy(k)= y(k)− y(k − 1).

An n-th-order backward difference equation which corresponds to forward differ-
ence equation (1.22) is given as follows:

d0Δ
ny(k)+ d1Δ

n−1y(k)+ · · · + dn−1Δy(k)+ dny(k)= u(k). (1.26)

Higher differences are defined similarly to the first difference, i.e.,

Δny(k)=Δ(Δn−1y(k)). (1.27)

The second backward difference is given by

Δ2y(k)=Δ(Δy(k))=Δy(k)−Δy(k − 1).

Thus, it can be defined as

Δ2y(k)= y(k)− 2y(k − 1)+ y(k − 2).



1.3 Linear Discrete Equations 9

Properties

(i) The first backward difference of the product of two discrete functions is given
by

Δ(f (k)g(k))= f (k)Δg(k)+ g(k − 1)Δf (k). (1.28)

Proof From the definition of the first backward difference,

Δ(f (k)g(k))= f (k)g(k)− f (k − 1)g(k − 1)

= f (k)(g(k)− g(k − 1))+ g(k − 1)(f (k)− f (k − 1)),

(1.28) is proved.
(ii) The relationship between the discrete equation (1.19) and difference equation

(1.26) is given as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ap =
p∑

q=0

(−1)p−qC
n−q
p−qdq

dp =
p∑

q=0

C
n−q
p−qaq

(1.29)

Equation (1.29) relates the coefficients of the difference equation to the coeffi-
cients of the discrete equation and vice versa.

1.3.4 Solution of Discrete and Difference Equations

The classical methods for the solution of discrete equations are similar to the meth-
ods for differential equations. Here, homogeneous equations are considered.

Solution of Homogeneous Equation Consider a general homogeneous equation,

a0y(k + n)+ a1y(k + n− 1)+ · · · + any(k)= 0.

If we assume y(k)= λk as a solution, then

y(k + n− p)= λk+n−p.

For all 0 ≤ p ≤ n, the following is obtained:

(a0λ
n + a1λ

n−1 + · · · + an)λ
k = 0.

The characteristic equation can be defined as follows:

a0λ
n + a1λ

n−1 + · · · + an = 0.

The general solution is a linear combination of solutions, based on the root of the
characteristic equation.
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Table 1.1 The numerical
behavior for real λ λ Values of y(k) for k = 0,1,2, · · ·

λ > 1 Increasing

λ= 1 Constant

0 < λ< 1 Decreasing

−1 < λ< 0 Decreasing, alternating sign

λ= −1 Alternating value

λ <−1 Increasing, alternating sign

Example 1.2 Consider the following example:

y(k + 2)− 1.5y(k + 1)+ 0.5y(k)= 0

The characteristic equation is obtained as

λ2 − 1.5λ+ 0.5 = 0, λ= 1.0, 0.5.

Then, the solution is given by

y(k)= C1 +C2 · (0.5)k,

where C1 and C2 are arbitrary (real) constants.
In general, the values of λ describe the natural behavior of the solution y(k).4

The numerical behavior of y(k) is summarized in Table 1.1 when one of the roots is
real.

In the case of complex or imaginary roots, the solution is given as

y(k)= C1λ+C2λ̄,

where

λ= a + jb, λ̄= a − jb, j = √−1,

where a and b are real numbers.
Similarly to continuous systems, the behavior of y(k) is described by a com-

bination of two sinusoids (damped or undamped), and for the case of a conjugate
imaginary pair it is a pure oscillation. Multiple real roots generate behavior which
consists of the term kλk . The graphical description of the natural behavior of the
homogeneous equation is given in the following sections on the z-plane.

A practical method for solving the discrete or difference equations is to use the
z-transform approach [2, 6]. This is the subject of the following sections.

4λk plays the same role in discrete equations as eλt in linear, time-invariant differential equations.
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1.4 The z-Transform and Transfer Characteristics

The z-transform is a valuable approach for formulating, analyzing, and solving
problems in the time-invariant, linear, discrete-time domain.

1.4.1 Definition of the z-Transform

The z-transform is defined as

Z[f (kh)] := F(z)=
∞∑
k=0

f (kh)z−k, (1.30)

where it is assumed that f (kh) is defined only in k ≥ 0.
The right side of (1.30) exists if and only if the following infinite series con-

verges:

F(z)= f (0)+ f (h)z−1 + f (2h)z−2 + · · · . (1.31)

That is, the summation of series (1.31) should be expressed in a closed form.

Example 1.3 Consider the following exponential function:

f (kh)= e−akh, for k ≥ 0,

F (z)=
∞∑
k=0

e−akhz−k = 1 + e−ahz−1 + e−2ahz−2 + · · · . (1.32)

If |z|> e−ah is satisfied, the following closed form is obtained:

F(z)= 1

1 − e−akhz−1
= z

z− e−akh
. (1.33)

As a special case, when a = 0, the above can be written as

f (kh)= 1, for k ≥ 0

F(z)=
∞∑
k=0

z−k = 1 + z−1 + z−2 + · · · .

Thus, if |z|> 1 is satisfied, the following is obtained:

F(z)= 1

1 − z−1
= z

z− 1
. (1.34)
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1.4.2 Properties of the z-Transform

Some properties of the z-transform are given here:

(i) Superposition.

Z[af (kh)+ bg(kh)] = aZ[f (kh)] + bZ[g(kh)] = aF(z)+ bG(z).

(ii) Real backward translation (shifting theorem).

Z[f (kh− �h)] = z−�Z[f (kh)] = z−�F (z), � > 0.

(iii) Real forward translation (shifting theorem).

Z[f (kh+ �h)] = z�F (z)−
�−1∑
k=0

f (kh)z�−k, �≥ 1.

(iv) Complex translation.

Z[eakhf (kh)] = F(e−ahz)

(v) Initial value theorem.

f (0)= lim
z→∞F(z).

(vi) Final value theorem.

lim
k→∞f (kh)= lim

z→1
(1 − z−1)F (z).

Proof From the linearity of z-transform (1.30), (i) and (ii) are easily proved. For
(iii) through (vi), the following proof is given:

(iii) As is obvious from (1.30),

Z[f (kh+ k�)] =
∞∑
k=0

f (kh+ k�)z−k = z�
∞∑
k=0

f ((k + �)h)z−(k+�)

= z�
∞∑
κ=�

f (κh)z−κ = z�

{
F(z)−

�−1∑
κ=0

f (κh)z−κ

}
, κ = k + �.

(iv) From (1.30), the following is obtained:

Z[eakhf (kh)] =
∞∑
k=0

f (kh)(e−ahz)−k = F(e−ahz).

(v) From (1.31), the following is easily obtained:

lim
z→∞F(z)= f (0).
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(vi) In regard to the right side of the equation, the following can be obtained:

(1 − z−1)F (z)= f (0)+ (f (h)− f (0))z−1 + ((f (2h)− f (h))z−2

+· · · + (f (kh)− f ((k − 1)h))z−k + · · · .
Thus

lim
z→1

(1 − z−1)F (z)= lim
k→∞f (kh).

1.4.3 Solving Discrete-Time Equations

Using the definition of the z-transform and its properties, an approach for solving a
discrete equation can be formulated. Consider the following equation:5

y(k + n)+ · · · + an−1y(k + 1)+ any(k)= b0u(k + n)+ · · · + an−1z+ anu(k).

(1.35)
If each term on the left side of this equation is transformed, the following can be
obtained based on the shifting theorem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Z{y(k + n)} = znŷ(z)− (y(0)zn−1 + · · · + y(n− 1)zn−1)

· · ·
Z{an−1y(k + 1)} = an−1(zŷ(z)− y(0))

Z{any(k)} = anŷ(z).

The transformed function of each term on the right side of (1.35) will be obtained
in the same way. For simplicity, the initial conditions are assumed to be zero (i.e.,
y(0) = y(1) = · · · = y(n − 1) = 0 and also u(0) = u(1) = · · · = u(n − 1) = 0).
Then, the following transformed equation can be given:

(zn + a1z
n−1 + · · · + an−1z+ an)ŷ(z)= (b0z

n + b1zn−1 + · · · + an−1z+ bn)û(z).

(1.36)
Equation (1.36) may be written as

ŷ(z)= b0z
n + b1z

n−1 + · · · + bn−1z+ bn

zn + a1zn−1 + · · · + an−1z+ an
· û(z),

where zn + a1z
n−1 + · · · + an−1z + an is the characteristic polynomial. The roots

of the characteristic polynomial correspond to the roots λ’s of the homogeneous
solution.

5Hereafter, sampling period h is omitted, and to indicate z-transformed functions a hat symbol,
e.g., ŷ(z) is used instead of a capital letter Y (z), because a capital letter is usually used for a matrix
(or set) expression.
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Example 1.4 Consider the following discrete-time equation:

y(k + 2)− y(k + 1)+ 0.5y(k)= u(k + 1)+ u(k). (1.37)

The z-transformed equation is given as

(z2 − z+ 0.5)ŷ(z)− zy(0)− y(1)+ y(0)= (z+ 1)û(k)− u(0). (1.38)

If the input (forced term) is assumed to be a step function, then

(z2 − z+ 0.5)ŷ(z)− zy(0)− y(1)+ y(0)= z(z+ 1)

z− 1
− u(0).

When the initial conditions are zero (i.e., y(0) = y(1) = 0 and u(0) = 0), the fol-
lowing transformed equation is obtained:

ŷ(z)= z(z+ 1)

(z− 1)(z2 − z+ 0.5)
. (1.39)

The method used to find the explicit solution y(k) will be presented in Sect. 1.4.5
(Example 1.6).

Incidentally, when considering time shifting k + 2 → k (k = 2,3, · · · ) as shown
in (1.19), discrete-time equation (1.37) can also be written as

y(k)− y(k − 1)+ 0.5y(k − 2)= u(k − 1)+ u(k − 2), k = 2,3, · · · . (1.40)

Since data in a computer are obtained with a time delay, the discrete-time equation
might have to be written as shown in (1.40). Using the backward shifting theorem,
the transformed equation is given as

(1 − z−1 + 0.5z−2)ŷ(z)= (z−1 + z−2)û(z). (1.41)

Thus,

ŷ(z)= z−1 + z−2

1 − z−1 + 0.5z−2
û(z). (1.42)

When a unit step function
z

z− 1
= 1

1 − z−1
is added as an input, the following is

obtained:

ŷ(z)= (1 + z−1)z−1

(1 − z−1)(1 − z−1 + 0.5z−2)
. (1.43)

Obviously, (1.42) is the same as (1.39).
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Fig. 1.2 Connected systems

Fig. 1.3 Feedback system

1.4.4 Transfer Function of Connected Systems

The concept of transfer function may be developed independently by using the dis-
crete equation formulation, e.g., Eq. (1.10),

y(k+n)+· · ·+an−1y(k−1)+any(k)= b0u(k+n)+· · ·+bn−1u(k−1)+bnu(k).

In this case, the z-transformation yields

(zn + a1z
n−1 + · · · + an)ŷ(z)= (b0z

n + b1z
n−1 + · · · + bn)û(z).

Here, all the initial conditions are assumed to be zero. Thus, the transfer function is
defined as follows:

G(z)= ŷ(z)

û(z)
= b0z

n + b1z
n−1 + · · · + bn

zn + a1zn−1 + · · · + an
.

If several discrete-time systems are connected to each other, the output of one of
the systems serves as the input to the others. As was described in continuous-time
systems, the transfer function of cascade connected systems (Fig. 1.2) is given by

ŷ2(z)=G2(z)ŷ1(z)=G2(z)G1(z)û(z).

For a feedback connection (Fig. 1.3),

ŷ(z)=G1(z)û(z)

v̂(z)=G2(z)ŷ(z), û(z)= r̂(z)− v̂(z).

Thus, the transfer function of the feedback system is given by

ŷ(z)

r̂(z)
= G1(z)

1 +G1(z)G2(z)
.

In general, the usual block diagram algebra can be applied.
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1.4.5 The Inverse Transformation

The inverse transformation is used to obtain the explicit behavior f (kh) (k =
1,2, · · · ) in the time domain from the z-transform F(z). The inverse transforma-
tion formula is given as follows:

f (kh)= Z−1[F(z)] = 1

2πj

∮
C

F(z)zk−1dz, (1.44)

where C is a Jordan curve in the complex plane. The solution of inverse transforma-
tion (1.44) can be obtained from Cauchy’s residue theorem, i.e.,

1

2πj

∮
C

F(z)dz=
n∑

i=1

Res(F;pi), (1.45)

where Res(F;pi) indicates a residue of function F with respect to the pole, pi . Al-
though the definition of inverse transformation is given by (1.45), the direct contour
integration is scarcely used. Usually, the following partial fraction or power series
expansions are applied.

Example 1.5 Consider a simple example,

F(z)= z+ 0.5

(z− 1)(z− 0.5)
= z+ 0.5

z2 − 1.5z+ 0.5
. (1.46)

(i) First, the direct formula (1.45) is applied:

f (k)= Res(F;1)+ Res(F;0.5)

= lim
z→1

(z− 1)F (z)zk−1 + lim
z→0.5

(z− 0.5)F (z)zk−1

= 3 − 2(0.5)k−1, k = 1,2, · · · . (1.47)

(ii) Using partial fraction expansion, z-transform (1.46) can be written as

F(z)= 3

z− 1
+ −2

z− 0.5
= 3z−1

1 − z−1
− 2z−1

1 − 0.5z−1

= 3z−1(1 + z−1 + z−2 + · · · )− 2z−1(1 + 0.5z−1 + 0.25z−2 + · · · ) (1.48)

with respect to |z|> 1. From the coefficients of power series (1.48), the result,
(1.47), is obtained.
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(iii) In general, if z-transform function F(z) is represented by the following rational
function:6

F(z)= b0z
n + b1z

n−1 + · · · + bn

zn + a1zn−1 + · · · + an
, (1.49)

a power series can be obtained by using the division algorithm,

F(z)= c0 + c1z
−1 + c2z

−2 + · · · . (1.50)

Here, the coefficients of power series (1.50) are determined as follows:

c0 = b0

c1 = b1 − a1c0

c2 = b2 − a2c0 − a1c1

c3 = b3 − a3c0 − a2c1 − a1c2

· · ·

ck = bk −
k−1∑
i=0

ak−ici (1.51)

· · · , (ak, bk = 0, for k > n).

Thus, the time sequence f (k) is given as

f (k)= ck.

In the case of (1.46), the following coefficients are determined:

c0 = b0 = 0

c1 = b1 = 1

c2 = b2 − a1c1 = 2

c3 = −a2c1 − a1c2 = 2.5

c4 = −a2c2 − a1c3 = 2.75

· · · .
That is, the power series of (1.46) is given as

F(z)= z−1 + 2z−2 + 2.5z−3 + 2.75z−4 + · · · , (1.52)

and the time sequence, f (k) (vs. k = 0,1,2, · · · ), is depicted as shown in
Fig. 1.4.

6Also in this case, for simplicity, a leading coefficient of the denominator polynomial of a0 = 1 is
assumed.
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Fig. 1.4 Time sequence of
the solution for Example 1.5

Example 1.6 Consider transformed function (1.39) shown in Example 1.4. Since it
can also be written as

F(z)= z2 + z)

z3 − 2z2 + 1.5z− 0.5
, (1.53)

the following sequence is obtained based on (1.51):

c0 = b0 = 0

c1 = b1 = 1

c2 = b2 − a1c1 = 3

c3 = −a2c1 − a1c2 = 4.5

c4 = −a3c1 − a2c2 − a1c3 = 5

c5 = −a3c2 − a2c3 − a1c4 = 4.75

c6 = −a3c3 − a2c4 − a1c5 = 4.25

· · · .
Thus,

F(z)= z−1 + 3z−2 + 4.5z−3 + 5z−4 + 4.75z−5 + 4.25z−6 + · · · . (1.54)

The time sequence, f (k) (vs. k = 0,1,2, · · · ), is as shown in Fig. 1.5. The same
result is obtained on a computer simulation based on the vector-matrix form (e.g.,
(1.15) and (1.16)). The state-space representation is given as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[
x1(k + 1)

x2(k + 1)

]
=

[
−a1 1

−a2 0

] [
x1(k)

x2(k)

]
+

[
b1

b2

]
u(k),

y(k)= x1(k), where a1 = −1, a2 = 0.5.

(1.55)
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Fig. 1.5 Time sequence of
the solution for Example 1.6

Thus, if u(k)= 1 for k ≥ 0 is applied, sequence y(k) can easily be calculated. (Note
that a0 = 1 and b0 = 0 in this example.) A block diagram representation for a com-
puter simulation is as shown in Fig. 1.6. Note that the response is delayed by one
step as shown in Fig. 1.5 if y(k) = x1(k + 1) is applied to the computer program
for (1.55).

1.5 Sampling/Holding and Discrete-Time Signals

In this section, the sampling and holding process in the time domain for continu-
ous signals is described. The sampled signals are analyzed by using Laplace and
z-transformation.

Fig. 1.6 Block diagram for Example 1.6, where a1 = 1, a2 = 0.5, and b1 = b2 = 1
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Fig. 1.7 Sampling (time
discretization) and holding
process

1.5.1 The Sampling and Holding Process

Consider the sampling and holding process represented by Fig. 1.7. The sampling
process consists of sampling a continuous-time signal v(t) every h seconds (with
small time width) as shown in Fig. 1.8(a), (b). The sampled signal u∗(t) may be
held on a constant value in the small interval as shown in Fig. 1.9(a). In practice, the
sampled signal will be stored in an electronic circuit until the next sample occurs
(i.e., ZOH: zero-order hold).7 Therefore, the output signal v(t) becomes a stepwise
function of continuous time t as shown in Fig. 1.9(b).8 In this figure, an example of
the output with a relatively large resolution is represented. By using expressions of
countably infinite set Z, the output can therefore be written as

v(t)= v(kh) : Z+ → Z, (1.56)

Z+ := [0,+∞),

where h ∈ Z+ is the sampling period. The analysis of time (and also space) dis-
cretized signals (i.e., discrete-time and discrete-value signals) will be discussed in
Sect. 1.6.

Fig. 1.8 Sampling with small time width

7In this book, the symbol H is used.
8The sampling period may be time-varying. Usually, the sampling process is an electrical signal
in an analog-to-digital (A/D) converter, but optical, mechanical, and other forms of signals are
possible.
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Fig. 1.9 Sampling and holding functions

Fig. 1.10 Continuous plant
and sampling/holding
function

1.5.2 Transfer Function of Sampling/Holding Process

The output of the sampling and holding process, as shown in Fig. 1.10, is given by

y∗
p(t)=

∞∑
k=0

y(kh)Δp(t − kh).

Here, Δp is a rectangular pulse, as shown in Fig. 1.11. The Laplace transform of the
pulse is written as

L[Δp(t)] = 1 − e−ps

s
.

Therefore,

ŷ∗
p(s)=

∞∑
k=0

y(kh)L[Δp(t − kh)] =
∞∑
k=0

y(kh)

(
1 − e−ps

s

)
e−khs . (1.57)

When p → 0, the following approximation holds:

1 − e−ps = 1 −
(

1 − ps + (ps)2

2! − · · ·
)

≈ ps.
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Fig. 1.11 Rectangular pulse
function

Thus,

ŷ∗
p(s)≈ p

∞∑
k=0

y(kh)e−khs . (1.58)

The time function can be written as

y∗
p(t)≈ p

∞∑
k=0

y(kh)δ(t − kh), (1.59)

where δ(t) is the unit impulse function. The right side of (1.59) is an impulse train
that has magnitude p · y(kh) at t = kh.

Consider an ideal sampler which operates at each sampling instant h and has
a width of p = 0. When considering y∗

op(t) = y∗
p(t)/p, the Laplace transform is

written as follows:

ŷ∗
op(s)= 1

p
ŷ∗
p(s)=

∞∑
k=0

y(kh)

(
1 − e−ps

ps

)
· e−khs . (1.60)

If the limitation of p → 0 is considered,

ŷ∗(s)= lim
p→0

ŷ∗
op(s)=

∞∑
k=0

y(kh)e−khs . (1.61)

The output of an ideal sampler (a hypothetical sampling signal) is, therefore, written
as

y∗(t)= lim
p→0

y∗
op(t)=

∞∑
k=0

y(kh)δ(k − kh)= y(t)

∞∑
k=0

δ(t − kh). (1.62)

The output of the (zero-order) hold circuit is

v(t)= y(kh), kh≤ t ≤ (k + 1)h.
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The transfer function of the continuous plant and holding circuit is given as

G∗(s)= v̂(s)

û(s)
= 1 − e−hs

s
·G(s). (1.63)

In the z-transform expression, the following relation can be obtained:

G(z)= Z̃
{

1 − e−hs

s
·G(s)

}
= (1 − z−1)Z̃

{
G(s)

s

}
. (1.64)

Here, the symbol Z̃{·} means the z-transform of the sampled sequence for the in-
verse Laplace transform.

If the denominator of the transfer function G(s) is factored as

G(s)= N(s)

(s − p1)(s − p2) · · · (s − pn)
, (1.65)

the transformed function can be written in the following partial fraction form:

G1(s) := G(s)

s
= K0

s
+ K1

s − p1
+ · · · + Kn

s − pn
. (1.66)

It is assumed that pi (i = 1,2, · · · ) are simple poles (in other words, pi are all differ-
ent real or complex constants) and are not equal to zero. Here, N(s) is a numerator
polynomial. Obviously,

K0 = sG1(s)|s=0 and Ki = (s − pi)G1(s)|s=pi , i = 1,2, · · · , n. (1.67)

From (1.66) and (1.32), the z-transform expression is given as follows:

G1(z) := Z̃ {G1(s)} = K0

1 − z−1
+ K1

1 − ep1hz−1
+ · · · Kn

1 − epnh
z−1. (1.68)

If reducing to a common denominator, (1.68) becomes

G1(z)= K0[(1 − ep1hz−1) · · · (1 − epnhz−1)] + · · · +Kn[(1 − z−1) · · · (1 − epn−1hz−1)]
(1 − z−1)(1 − ep1hz−1) · · · (1 − epnhz−1)

.

Thus, (1.64) is expressed as

G(z)= (1 − z−1)G1(z)

= K0[(1 − z−1ep1h) · · · (1 − epnhz−1)] + · · · +Kn[(1 − z−1) · · · (1 − epn−1hz−1)]
(1 − ep1hz−1) · · · (1 − epnhz−1)

.

On the other hand, if the transfer function G(s) has a pole at the origin, i.e.,

G(s)= N(s)

s(s − p1)(s − p2) · · · (s − pn)
, (1.69)
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Table 1.2 z-Transform table

Continuous
time (t ≥ 0)

Discrete time
(k ≥ 0)

Laplace transform
(�s > 0)

z-Transform
(|z|> 1)

1 1
1

s

z

z− 1

t kh
1

s2

hz

(z− 1)2

ept khepkh
1

s − p

z

z− eph

tept epkh
1

(s − p)2

hephz

(z− eph)2

sinωt sinωkh
ω

s2 +ω2

(sinωh)z

z2 − 2(cosωh)z+ 1

cosωt cosωkh
s

s2 +ω2

z2 − (cosωh)z

z2 − 2(cosωh)z+ 1

the partial fraction expansion should be given as

G1(s)= K0

s2
+ K01

s
+ K1

s − p1
+ · · · + Kn

s − pn
, (1.70)

where

K0 = sG1(s)|s=0 and Ki = (s − pi)G1(s)|s=pi , i = 1,2, · · · , n

and

K01 = ds2G1(s)

ds

∣∣∣∣
s=0

. (1.71)

From (1.70) and Example 1.3, the following z-transformed function is obtained:

G1(z)= K0hz
−1

(1 − z−1)2
+ K01

1 − z−1
+ K1

1 − ep1hz−1
+ · · · + Kn

1 − epnhz−1

= K0hz

(z− 1)2
+ K01

z− 1
+ K1z

z− ep1h
+ · · · + Knz

z− epnh
. (1.72)

The relationship between time sequences, Laplace transforms, and z-transforms is
given in Table 1.2 for the reader’s reference.

In any case, the z-transform of G(s) with a zero-order holding can be written as
follows:9

9These operations can be provided in C-language functions.
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Fig. 1.12 State-space
representation and
sampling/holding function

G(z)= (1 − z−1)G1(z)= b0 + b1z
−1 + b2z

−2 · · · + bnz
−n

1 + a1z−1 + a2z−2 · · · + anz−n

= b0z
n + b1z

n−1 + · · · + bn−1z+ bn

zn + a1zn−1 + · · · + an−1z+ an
. (1.73)

From the last expression, the difference equation (1.10) can be considered. Fur-
thermore, the vector-matrix form (1.12) (i.e., the state-space representation) and, for
example, (1.15) can be given.

1.5.3 Discretization for State-Space Representation

In this subsection, the direct transformation to a state-space system is represented.
Consider a discretized system as shown in Fig. 1.12. Here, x is an n-dimensional
state vector (i.e., x ∈ Rn). The continuous-time linear system can be written in the
following state representation:10

⎧⎨
⎩

dx(t)

dt
= Ax(t)+ Bu(t)

y(t)= Cx(t)
. (1.74)

Its discretized version is obtained as

x(k + 1)= �(h)x(k)+
∫ (k+1)h

kh

�[(k + 1)h− τ ]Bu(τ)dτ, (1.75)

where the transition matrix, �(τ ), is given by

�(τ ) := eAτ = 1 + Aτ + Aτ 2

2! + · · · . (1.76)

If the system is time-invariant, (1.75) is simply written as

x(k + 1)= �(h)x(k)+
∫ h

0
�(τ )Bu(τ)dτ. (1.77)

10In order to clarify the relationship between continuous and discrete systems, a traditional state-
space expression is considered here.
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Fig. 1.13 Continuous plant,
sampling/holding, and
discretization

For u(τ) = const. during period h, the discrete-time version of (1.74) can be ex-
pressed as

{
x(k + 1)= �(h)x(k)+ �(h)u(k), �(h)= ∫ h

0 �(τ )Bdτ

y(k)= Cx(k + 1).
(1.78)

It can be seen that (1.78) corresponds to a linear constant version of (1.6).
Thus, the z-transform of the system is given by

{
zx̂(z)= �x̂(z)+ �û(z)

ŷ(z)= Czx̂(z).
(1.79)

Rearranging the above, the following expression can be obtained:

ŷ(z)= C[I − �z−1]−1�û(z). (1.80)

1.6 Space Discretization of Continuous Signals

So far the sampling and holding process of continuous signals in the time domain
(i.e., the method of processing discrete-time signals) has been described. In this
section, the space discretization of continuous signals (i.e., the method of processing
discrete-value signals) is also discussed.

1.6.1 Sampling/Holding and Discretization Process

As was described in Sect. 1.5, the sampling and holding process consists of sam-
pling a continuous signal u(t) every h (e.g., seconds) and holding its value constant.
Usually this is executed in A/D and digital-to-analog (D/A) converters. Figure 1.13
shows the sampling/holding and space discretization process of an A/D (D/A) con-
verter. An example of output u(k) is drawn as shown in Fig. 1.14. Here, the sampling
period and the resolution value are chosen as h = γ = 1. Figure 1.14(a) shows the
sampling/holding signals with and without (space) discretization, respectively. The
discretized output is clearly depicted in Fig. 1.14(b).
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Fig. 1.14 Output of sampling/holding and discretization

1.6.2 Discrete-Value Signals

It has been assumed that the values of both continuous-time function v(t) and
discrete-time function v(k) are continuous. However, those values in computer-
ized or automated digital systems are not continuous in practice. In this section, the
method of processing these discrete-time and discrete-value systems is described.
In a discrete system, a signal v(k) that is discretized in a broad sense can be written
as

v(k) ∈ {· · · ,−2γ,−γ,0, γ, 2γ, · · · },
where γ is the resolution of the signal.11 In the following, such a discretized signal
will be denoted as v†(k), and without loss of generality it may be written as

v†(k) ∈ Z := {· · · ,−2,−1,0,1,2, · · · },
with the assumption of γ = 1.

1.6.3 Connection of Sampling/Holding Process

Figure 1.15 shows the cascade connection of sampling and holding processes. Un-
fortunately, since the characteristic of discretizations D� (�= 1,2) is nonlinear, the

11For example, in TV scanning or image processing, the resolution is given as γ =R/N , where R
and N are the operating range and the pixel number, respectively.
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Fig. 1.15 Sampling/holding processes and cascade connection

Fig. 1.16 Sampling/holding
processes and feedback
connection

Fig. 1.17 The space
discretizing process

transfer function of the connected system cannot be obtained using the method de-
scribed in Sect. 1.4.4. Moreover, a feedback connection which corresponds to an
infinitely connected system is always found in control systems. Figure 1.16 shows
the feedback connection of sampling and holding processes [1, 9]. These problems
are discussed in Chap. 2 and later in the book.

1.6.4 Space Discretizing Process

A discretization process as shown in Fig. 1.17 is considered here. In this process,
D1 and D2 are discretizing elements on the input and output sides of a continuous
static and memoryless (frequency-independent) nonlinear characteristic N(·). The
output of the discretizing elements is written as

u†(k) ∈ {· · · ,−2γ1,−γ1,0, γ1, 2γ1, · · · },
v†(k) ∈ {· · · ,−2γ2,−γ2,0, γ2, 2γ2, · · · }.

In the following chapter, the resolutions will be assumed to be γ1 = γ2 = 1.0, with-
out loss of generality. Thus, variables u†(k) and v†(k) may be written on integer
grid coordinates as follows:

u†(k), u†(k) ∈ Z

Z := {· · · ,−3,−2,−1,0,1,2,3, · · · }.
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Fig. 1.18 Discretizing process for a linear continuous characteristic

Table 1.3 Discretized
signals u u† v v†

(−12.0,−10.0] −10.0 −8.5 −8.0

(−10.0,−8.0] −8.0 −6.8 −6.0

(−8.0,−6.0] −6.0 −5.1 −4.0

(−6.0,−4.0] −4.0 −3.4 −2.0

(−4.0,−2.0] −2.0 −1.7 0.0

(−2.0,0.0] 0.0 0.0 0.0

[0.0,2.0) 0.0 0.0 0.0

[2.0,4.0) 2.0 1.7 0.0

[4.0,6.0) 4.0 3.4 2.0

[6.0,8.0) 6.0 5.1 4.0

[8.0,10.0) 8.0 6.8 6.0

[10.0,12.0) 10.0 8.5 8.0

Example 1.7 Figure 1.18 shows a numerical example of the space discretizing pro-
cess for a case where continuous characteristic N(·) is linear. The input/output
characteristic of input-side discretization D1 for resolution γ1 = 2.0 is as shown
in Fig. 1.18(a). In this example, for output-side discretization D2 the resolution
is chosen the same as for the input-side discretization, as shown in Fig. 1.18(c).
Figure 1.18(b) shows the discretized (point-to-point) characteristic when the linear
continuous characteristic is v = 0.85u.

As is shown in the figure, the discretization performed in this process is based on
a round-down procedure. Table 1.3 shows each variable of the discretizing process.

Example 1.8 Figure 1.19 shows a numerical example of the space discretizing pro-
cess for a case where continuous characteristic N(·) is nonlinear. In this example, a
sigmoid function is applied for the continuous characteristic. Using a programming
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Fig. 1.19 Discretized process for a nonlinear characteristic

Table 1.4 Discretized
signals for nonlinear
characteristic

u u† v v†

(−12.0,−10.0] −10.0 −8.22 −8.0

(−10.0,−8.0] −8.0 −7.31 −6.0

(−8.0,−6.0] −6.0 −6.30 −6.0

(−6.0,−4.0] −4.0 −5.13 −4.0

(−4.0,−2.0] −2.0 −3.43 −2.0

(−2.0,0.0] 0.0 0.0 0.0

[0.0,2.0) 0.0 0.0 0.0

[2.0,4.0) 2.0 3.43 2.0

[4.0,6.0) 4.0 5.13 4.0

[6.0,8.0) 6.0 6.30 6.0

[8.0,10.0) 8.0 7.31 6.0

[10.0,12.0) 10.0 8.22 8.0

language such as C, the following expression can be given:

u† = γ ∗ (double)(int)(u/γ ),

v = 0.3 ∗ u† + 3.0 ∗ atan(0.6 ∗ u†), (1.81)

v† = γ ∗ (double)(int)(v/γ ).

The input-output side discretization elements, D1, D2, are the same as in Exam-
ple 1.7. Figure 1.19(b) shows the discretized (point-to-point) characteristic when
the continuous characteristic is the above sigmoid function. Table 1.4 shows each
variable of the discretizing process.
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1.6.5 Binary Arithmetic with a Finite Word Length

The discussion in this subsection concentrates on the methods most used in micro-
processor digital control [6]. It will be assumed that a word length of C + 1 bits
is chosen to represent a number, C bits for the numerical value and one bit for the
sign. Therefore, 2C different numbers may be represented with a C-bit word for the
positive axis and the same for the negative axis. 2−C is the least significant bit of
the binary number and represents the limit of the resolution.

In fixed point representation, the binary point is fixed, e.g., for C = 4 the follow-
ing is obtained:

11.01 = 1 × 21 + 1 × 20 + 0 × 2−1 + 1 × 2−2

= 2 + 1 + 0 + 0.25

= 3.25.

Depending on the way in which negative numbers are represented, there are three
different forms of fixed point arithmetic.

(i) The sign-magnitude representation, in which the reading bit represents the sign,
0 for positive values and 1 for negative values, e.g.,

−3.25 
 011.01

+3.25 
 111.01

In sign-magnitude form the number 0 has two representations, 000.00 and
100.00.

(ii) The 2’s-complement representation, in which the positive numbers are identi-
cal to the sign-magnitude representation. The negative of a positive number is
obtained by complementing all bits, and adding 1 in the least significant bit,
e.g.,

−(111.01)= (000.10)+ (000.01)

= 000.11.

Using positive numbers, the following is obtained:

−(000.11)= (111.00)+ (000.01)

= 111.01.

(iii) The 1’s-complement representation, where positive numbers are represented as
in sign magnitude and 2’s-complement, and the negative of a positive number
is obtained by complementing all the bits of the positive number, e.g.,

−(111.01)= 000.10.
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Fig. 1.20 Truncation and rounding

The position of the binary point in fixed point arithmetic in microprocessors
is just to the right of the first bit. Proper scaling is needed to represent all
quantities in the range −1.0 to +1.0 − 2−C .

1.6.6 Truncation and Rounding of Binary Numbers

It is assumed that there is no overflow during A/D conversion and during arithmetic
operations. However, there is a limit on the resolution, because the width of the
resolution is the value of the least significant bit (2−C ).

Truncation In truncation all bits less than the least significant bit are discarded.
The relationship between the untruncated value x and the truncated number Q(x) is
depicted in Fig. 1.20(a). For 2’s-complement representation (fixed point) the trun-
cation error εT , defined as

εT =QT [x] − x,

is

0 ≥ εT >−2−C.

For 1’s complement and sign-magnitude representations the truncation error is

0 ≤ εT < 2−C for x < 0

0 ≥ εT >−2−C for x > 0.

Rounding Rounding of a binary number to C bits is accomplished by choosing
the number in the C-bit closest to the unrounded quantity, e.g., 0.01101 rounded
to a 4-bit number is 0.011. A choice must be made for rounding of numbers; e.g.,
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Fig. 1.21 Truncation process for a linear characteristic

Table 1.5 Discretized
signals u u† v v†

(−12.0,−10.0] −10.0 −10.5 −10.0

(−10.0,−8.0] −8.0 −8.8 −8.0

(−8.0,−6.0] −6.0 −7.1 −6.0

(−6.0,−4.0] −4.0 −5.4 −4.0

(−4.0,−2.0] −2.0 −3.7 −2.0

(−2.0,0.0] 0.0 −2.0 2.0

[0.0,2.0) 0.0 0.0 0.0

[2.0,4.0) 2.0 1.7 0.0

[4.0,6.0) 4.0 3.4 2.0

[6.0,8.0) 6.0 5.1 4.0

[8.0,10.0) 8.0 6.8 6.0

[10.0,12.0) 10.0 8.5 8.0

0.01010 rounded to a 4-bit number is either 0.010 or 0.011. For fixed point arith-
metic, the error made by rounding is the same for all three types of number repre-
sentations (sign-magnitude, 1’s-complement, and 2’s-complement). The error is

εR =QR[x] − x

−2−C

2
≤ εR ≤ 2−C

2
.

The behavior of QR[x] compared to x is depicted in Fig. 1.20(b). Figure 1.20(c)
shows a stepwise characteristic which corresponds to the discretizing process shown
in Fig. 1.14 and C programming (1.81). Figure 1.21 shows an example of the trun-
cation process for a linear characteristic based on the discretization as shown in
Fig. 1.20(a). Table 1.5 shows each variable of the discretizing process for the trun-
cation.
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1.7 Exercises

(1) Find the homogeneous solutions to each of the following difference equations:

(i) y(k + 2)− 3y(k + 1)+ 2y(k)= u(k),
(ii) y(k + 2)− 2y(k + 1)+ y(k)= u(k).

(2) Prove that

Z[kf (kh)] = −z
dF(z)

dz
for |z|> 1.

(3) Determine the z-transform of the discrete ramp function

f (k)=
{
k for k ≥ 0,

0 for k < 0.

(4) Show that an n-th-order discrete-time equation (1.99) can also be written in the
following vector-matrix form:⎡

⎢⎢⎢⎣
x1(k + 1)
x2(k + 1)

...

xn(k + 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 . . . 0
...

...
. . . 0

0 0 . . . 1
−an −an−1 . . . a1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
x1(k)

x2(k)
...

xn(k)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
0
...

1

⎤
⎥⎥⎥⎦u(k)

and

y(k)= [
bn − an bn−1 − an−1 . . . b1 − a1

]
⎡
⎢⎢⎢⎣
x1(k)

x2(k)
...

xn(k)

⎤
⎥⎥⎥⎦ + u(k).

(5) Determine the discrete-time version (1.78) of the following state-space repre-
sentation: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d

dt

[
x1

x2

]
=

[
0 1

−2 −3

] [
x1

x2

]
+

[
0

1

]
u(t)

y(t)=
[
1 0

] [
x1

x2

]
.

Assume h= 1, and u= const. through 0 ≤ t ≤ h.
(6) Determine the z-transform of the following time function as a closed form:

(i) f (t)= t · e−at

(ii) f (t)= sinωt

(7) Determine f (k) for

F(z)= z+ 1

z3 − 2z2 + 1.5z− 0.5
,
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and confirm that it corresponds to the delayed response as shown in light blue
in Fig. 1.4.

Appendix A: Simultaneous Linear Equations and Matrix
Expressions

Consider the following linear system of m equations in n unknowns:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a11x1 + a12x2 + · · · + a1nxn = y1

a21x1 + a22x2 + · · · + a2nxn = y2

. . .

am1x1 + am2x2 + · · · + amnxn = ym

. (1.82)

As is well known, (1.82) can be simply written as follows:

Ax = y. (1.83)

Here,

A =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣
x1
x2
...

xn

⎤
⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎣
y1
y2
...

ym

⎤
⎥⎥⎥⎦ .

There are appropriate reasons why the vector-matrix expression (1.83) is considered
from the original simultaneous equations (1.82). It can be seen from (1.82) that the
following operations do not influence the solution of simultaneous equations [12]:

(1) interchanging two equations,
(2) multiplying each term in one equation by a nonzero constant,
(3) adding a constant multiple of one equation to another.

In the matrix expression A, these are called elementary row operations, and they
become the following operations:

(a) interchanging two rows,
(b) multiplying each entry in one row by a nonzero constant,
(c) adding a constant multiple of one row to another row.

Note that the above operations are related not only to entries of A but also to vari-
ables xi and yj (i, j = 1,2, · · · , n).
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Consider a square matrix (i.e., m= n). If operation (c) is applied to the left side
matrix A in (1.83), the following matrices can be obtained:12

→ A1 =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
0 a22 . . . a2n
...

...
. . .

...

0 0 . . . ann

⎤
⎥⎥⎥⎦ , → A2 =

⎡
⎢⎢⎢⎣
a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...

0 0 . . . ann

⎤
⎥⎥⎥⎦ .

Here, A1 is called an upper13 triangular matrix, and A2 is a diagonal matrix. More-
over, the following diagonal matrix (having all diagonal elements equal to 1) is
called a unity matrix (or an identity matrix):

I =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎥⎦ .

(It is also written as In or E.) If the solution x is obtained by using the above
process, it can be written as

x = By = A−1y, (1.84)

where B = A−1 is called an inverse matrix.

Determinant With respect to a square matrix A, the determinant is defined as
follows:

det A = |A| =

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
, (1.85)

which is a generalization of the area of a parallelogram in the two-dimensional
plane, i.e., ∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21.

In general for n ≥ 3, the determinant of a square matrix A is defined for the (n −
1) × (n − 1) matrix Aij that is obtained by deleting the i-th row and j -th column
from A:

detA =
n∑

j=1

aij (−1)i+j detAij . (1.86)

12This operation is referred to as the sweep-out method.
13If all the entries above the main diagonal are zero, it is called a lower triangular matrix.
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Since the calculation of (1.86) becomes a permutation problem, it is difficult to
obtain the value of the determinant. Then, by applying the elementary row operation
(c), the matrix A should be led to an upper triangular matrix. Note that the value of
the determinant is invariant for this operation. As a result, it is obtained in regard to
the diagonal elements of the triangular matrix as follows:

detA = a11a22 · · ·ann. (1.87)

Here, we define the matrix of cofactors, i.e.,

adjA = [(−1)i+j detAji]. (1.88)

Thus, it can be shown that

A · adjA = detA · I = adjA · A.

For detA, the inverse matrix in (1.84) is given by

A−1 = adjA

detA
. (1.89)

When A−1 is obtainable as shown in (1.89), the matrix A is referred to as a regular
or nonsingular matrix.

Eigenvalue/Eigenvector When the direction of a vector Ax is the same as that of
x, i.e.,

Ax = λx, (1.90)

the vector x is called an eigenvector, and in that case λ is called an eigenvalue.
The idea in (1.90) is also applied to complex vectors (and matrices) in general.
Equation (1.90) can be written as

(λI − A)x = 0. (1.91)

In this expression, (1.91) is considered to be simultaneous homogeneous equations.
The trivial solution of (1.91) is x = 0. Obviously, the condition having nontrivial
solutions of (1.91) is given as follows:

det(λI − A)= 0. (1.92)

Equation (1.92) is called a characteristic equation, and λ is called a characteristic
root.

Quadratic Form With respect to a square matrix A, the following function,
Rn →R, can be defined:

Q(x)= xT Ax = [
x1 x2 . . . xn

]
⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
x1
x2
...

xn

⎤
⎥⎥⎥⎦

=
n∑

i=1

n∑
j=1

aij xixj (1.93)
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which corresponds to the equation of an ellipse and a hyperbola. The value of the
function is scalar, and is considered the inner product of Ax and x. The above
mathematical form is called a quadratic form.

If considering xij , the coefficients aij and aji can be replaced with a′
ij = a′

ji =
(aij + aji)/2. Therefore, the matrix A in (1.93) can be considered a symmetry ma-
trix. Since such an expression is clear in mathematics, it is often applied to control
theory, e.g., as a candidate of a Lyapunov function. However, the mathematical form
in (1.93) is not always suitable for the expression of real complex systems.

Appendix B: Function Space, Hp, Lp, and �p Spaces

A linear space X is called a normed linear space (or simply a normed space) [11],
if for every x ∈ X, there is associated a real number ‖x‖, the norm of the vector x,
such that

‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0, (1.94)

‖x + y‖ ≤ ‖x‖ + ‖y‖ : triangle inequality, (1.95)

‖αx‖ = |α| · ‖x‖. (1.96)

The topology of a normed space X is defined by the distance (or metric)14

ρ(x, y)= ‖x − y‖. (1.97)

Here, ρ(x, y) satisfies the following axiom of distance:

ρ(x, y)≥ 0 and ρ(x, y)= 0 if and only if x = y, (1.98)

ρ(x, y)≤ ρ(x, z)+ ρ(z, y) : triangle inequality, (1.99)

ρ(x, y)= ρ(y, x). (1.100)

Obviously, ρ(x, y)= ‖x − y‖ = ‖y − x‖ = ρ(y, x) and

ρ(x, y)= ‖x − y‖ = ‖x − z+ z− y‖ ≤ ‖x − z‖ + ‖z− y‖ = ρ(x, z)+ ρ(z, y).

The convergence lim
n→∞ρ(xn, x)= 0 in a normed space X is denoted by xn → x, and

sequence {xn} is said to converge to x. Thus lim
n→∞‖xn‖ = ‖x‖, if xn → x.

(1) Let X be a real or complex vector space (i.e., x = (x1, x2, · · · , xn)T with xi ∈R

or C). The following norms are defined:

14See also Appendix A in Chap. 7.
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‖x‖1 :=
n∑

i=1

|xi | (1.101)

‖x‖p :=
(

n∑
i=1

|xi |p
)1/p

,1 ≤ p <∞ (1.102)

‖x‖∞ := max
i

|xi |. (1.103)

Here, ‖x‖2 is called the Euclidean norm of x. Thus, the normed space corre-
sponds to an n-dimensional Euclidean space.

(2) Let X be the space of sequences of real numbers (x = (x(1), x(2), · · · , x(N))).
The following norms can be defined:

‖x(k)‖1 :=
N∑
k=1

|x(k)| (1.104)

‖x(k)‖p :=
(

N∑
k=1

|x(k)|p
)1/p

,1 ≤ p <∞ (1.105)

‖x(k)‖∞ := sup
1≤k≤N

|x(k)|. (1.106)

The corresponding normed spaces for N → ∞ are called �1, �p , and �∞, re-
spectively. In this book, the following norm is especially considered for discrete
signals (x = x(0), x(1), x(2), · · · ) with x : Z+ → R:

‖x(k)‖2 =
( ∞∑
k=0

|x(k)|2
)1/2

<∞. (1.107)

The normed space corresponds to an �2 space.
(3) Let X be the space of continuous signals with x : R+ → R. The following

norms are defined:

‖x(t)‖1 :=
∫ ∞

0
|x(t)|dt (1.108)

‖x(t)‖p :=
(∫ ∞

0
|x(t)|pdt

)1/p

,1 ≤ p <∞ (1.109)

‖x(t)‖∞ := ess sup
t∈R

|x(t)|. (1.110)

The corresponding normed spaces are called L1, Lp , and L∞, respectively.
(4) Let X be the space of transformed variables with x̂ : C → C. The following

norms are defined:

‖x̂(ζ )‖1 := sup
r∈[0,1)

‖x̂r (ζ )‖1 = sup
r∈[0,1)

1

2π

∫ π

−π

|x̂(ζ )|dθ (1.111)
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‖x̂(ζ )‖p := sup
r∈[0,1)

‖x̂r (ζ )‖p = sup
r∈[0,1)

(
1

2π

∫ π

−π

|x̂(ζ )|pdθ

)1/p

(1.112)

‖x̂(ζ )‖∞ := sup
r∈[0,1)

|x̂(ζ )|, where ζ = r · ejθ . (1.113)

The corresponding spaces are called the Hardy spaces, H1, Hp , and H∞, re-
spectively [7]. In particular, H∞ has recently been used in control theory. As
for continuous systems, the following domain is usually considered:

ζ = e−T s, T > 0.

The right half-plane of s = σ + jω (i.e., σ > 0) corresponds to the open unit
disk,

D = {ζ ∈ C : |ζ |< 1}.
The boundary line of domain D (i.e., the imaginary axis s = jω) corresponds
to the unit circle,

L = {ζ ∈C : |ζ | = 1}.
In this book, since discrete-time signals are treated in the system analysis, the
following norm on the boundary line is considered for ζ = z−1 = e−hs (h :
sampling period):

‖x̂(ζ )‖2 := sup
r∈[0,1)

(
1

2π

∫ π

−π

|x̂(ζ )|2dθ

)1/2

.

Obviously, r = e−hσ and θ = ωh. Thus, the L2 norm becomes

‖x̂(z)‖2 =
(

h

2π

∫ π

−π

|x̂(e−jωh)|2dω

)1/2

.

Appendix C: Inverse z-Transform

The z-transform and the inverse z-transform are defined by the following pair of
equations:

F(z)=
∞∑
k=0

f (kh)z−k, (1.114)

f (kh)= 1

2πj

∮
C

F(z)zk−1dz, (1.115)

where C is a Jordan curve in the complex plane. Here, as a reference, the definition
of the Laplace transform and its inverse transform are given below:
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Fig. 1.22 Relationship between z-plane and s-plane, and contours

F(s)=
∫ ∞

0
f (t) e−stdt, (1.116)

f (t)= 1

2πj

∫ c+j∞

c−j∞
F(s) estds, s = σ + jω. (1.117)

If f (t) is a sample/hold (stepwise) function f̃ (kh), then F̃ (s)= L{f̃ (kh)} becomes

F̃ (s)= h

∞∑
k=0

f̃ (kh)z−k.

On the other hand, from (1.117) the following expression can be obtained:

f̃ (kh)= 1

2πhj

∮
C

F̃ (s)zk−1dz,

because dz = hehsds. Thus, the relationship between the z-transform of f̃ (kh) and
the inverse one hold with respect to arbitrary h.

Relation Between z-Plane and s-Plane As was defined in Sect. 1.4, the rela-
tionship between the z-transform variable and Laplace transform variable is given
as z = ehs . This is shown graphically in Fig. 1.22. In these complex planes, two
domains and contours,

D = {z ∈C : |z|< 1},
L = {z ∈ C : |z| = 1},

and
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D = {s ∈C : �(s) < 0},
L = {s ∈ C : �(s)= 0},

are defined [7]. The stability problem for discrete-time systems will be clarified
from these diagrams.

Appendix D: Sampling Theorem

The hypothetical sampling signal u∗(t) is expressed by an impulse function train
that modulates continuous signal u(t) with a carrier wave signal as follows [8]:

u∗(t)= u(t)

∞∑
k=−∞

δ(t − kh). (1.118)

Since
∞∑

k=−∞
δ(t − kh) is a periodic function, the following expression can be given

by using the complex Fourier series:

∞∑
k=−∞

δ(t − kh)= 1

h

∞∑
k=−∞

ejkωs t , (1.119)

where ωs = 2π/h is the sampling angular frequency. Therefore, the Laplace trans-
form of u∗(t) is given by using the shifting theorem in the s-plane as follows:

û∗(s)= 1

h

∞∑
k=−∞

û(s + jkωs). (1.120)

That is, the Laplace transform of hypothetical sampling signal û(s) is the Laplace
transform of a modulated signal û(s) that is shifted to the imaginary axis by ωs (plus
or minus). When the frequency spectrum of |û(jω)| is given as shown in Fig. 1.23,
the frequency spectrum of the sampler output is repeated as shown in Fig. 1.24(a).
Therefore, if cut-off frequency ωc

15 is given by

ωc <
ωs

2
, (1.121)

the modulated signal u(t) is transmitted on the sampling process without losing its
information, and the original signal can be recovered perfectly. However, if

ωc >
ωs

2
, (1.122)

15A cut-off frequency means that the frequency spectrum is negligible there.
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Fig. 1.23 Frequency shifting and spectrum

Fig. 1.24 Frequency responses of the sampling

the frequency spectrum is duplicated (in other words “folded”) as shown in
Fig. 1.24(b), and the modulated signal cannot be transmitted without losing its in-
formation. Thus, it is difficult to recover the original signal. The sampling (angular)
frequency ωs that can recover a continuous signal must be at least twice the highest
component frequency, i.e.,

ωs

2
>ωc. (1.123)

This is called Shannon’s sampling theorem.

Systems with Transmission Delay In regard to control systems with transmission
delay, the above concept should be revised as follows. Assume that the continuous
signal is written as

ud(t)= u(t −L),
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where L is a time delay. When the signal is in discrete time, it can be written as

ud(kh)= u((k − d�)h),

where d� = L/h (d� ∈ Z+). The Laplace transform expression of u∗
d(t) that corre-

sponds to (1.120) is given as

û∗
d(s)= û∗(s)e−Ls = 1

h

∞∑
k=−∞

û(s + jkωs)e
−L(s+jkωs). (1.124)
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Chapter 2
Discretized Feedback Systems

2.1 Introduction

As we described in the previous chapter, since discretized/quantized feedback sys-
tems become nonlinear, the analysis and design of those types of systems has not
been elucidated. The first attempt to clarify these problems was described in a paper
of Kalman [3]. However, few results have been obtained for the stability analysis of
nonlinear discrete-time feedback systems [2, 9]. In this chapter, the analysis in an
�2 space for such a discrete-time and discrete-value system is discussed.

2.2 Discretized Control Systems

A discretized nonlinear control system can be represented by a sampled-data control
system with two samplers, S1, S2, and a continuous nonlinear characteristic, N(·),
as shown in Fig. 2.1. Here, D1, D2, and H denote the discretization and zero-order
hold elements, which are usually performed in A/D (D/A) conversion, and G(s) is
the transfer function (the Laplace-transformed one) of a linear (continuous-time)
controlled system. It is assumed that the two samplers with sampling period h op-
erate synchronously. The feedback structure corresponds to the sampling/holding
system shown in Fig. 1.16, when G1(s) is considered to be a static nonlinear char-
acteristic. The sampled-data control system can be equivalently transformed into a
discretized control system, as shown in Fig. 2.2. Here, G(z) is the z-transform of
G(s) together with a zero-order hold, and D1 and D2 are the discretizing units (static
quantizers) on the input and output sides of the nonlinear element, respectively.

In Fig. 2.2, each symbol e, u, v, . . . indicates the sequence e(k), u(k), v(k), . . . ,
(k = 0,1,2, · · · ) in discrete time, but in continuous values. On the other hand, each
symbol e†, u†, v†, . . . indicates a discrete value that can be assigned to an integer
number, e.g.,

e† ∈ {· · · ,−3γ1,−2γ1,−γ1,0, γ1, 2γ1, 3γ1, · · · },
Y. Okuyama, Discrete Control Systems,
DOI 10.1007/978-1-4471-5667-3_2, © Springer-Verlag London 2014
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Fig. 2.1 Nonlinear
sampled-data feedback
system

Fig. 2.2 Discretized
nonlinear control system

v† ∈ {· · · ,−3γ2,−2γ2,−γ2,0, γ2, 2γ2, 3γ2, · · · },
where γ1 and γ2 are the resolution values of each variable. In the above expressions,
it is assumed that the input and output signals of the nonlinearity have the same
resolution in the discretization (i.e., γ = γ1 = γ2 > 0) [1, 5, 6]. Here, e†, u†, and v†

also represent the time sequences e†(k), u†(k), and v†(k).
The relationship between e and v† = Nd(e) in the figure becomes a stepwise

nonlinear characteristic on integer grid coordinates, as shown in Fig. 2.3(a). In this
chapter, a round-down discretization, which is usually executed on a computer, is

Fig. 2.3 Discretization for nonlinear and linear characteristics



2.2 Discretized Control Systems 47

Fig. 2.4 Effect of resolution values

Fig. 2.5 Logarithmic quantizers

applied. Therefore, the relationship between e and v† is indicated by small circles
(i.e., a point-to-point transition) on the stepwise nonlinear characteristic. Even if the
continuous characteristic N(·) is linear, the discretized characteristic v† becomes
nonlinear on integer grid coordinates, as shown in Fig. 2.3(b). In order to compare
the discretization, Figs. 2.4(a) and (b) show the effect of resolution values. In these
figures, two cases are depicted: (a) input resolution γ = 2 and output resolution
γ = 1, (b) input and output resolutions γ = 2.

Some authors have investigated a logarithmic quantizer in relation to the robust
stability. Figs. 2.5(a) and (b) show two cases of the logarithmic quantizer. However,
the applications of these discretizations are scarcely known in practice.
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Fig. 2.6 Nonlinear characteristics and output-side discretizations

Hereafter, without loss of generality, it will be assumed that γ = 1. That is, the
variables e†, u†, · · · are defined by integers as follows:

e†, u† ∈ Z, Z := {· · · − 3,−2,−1,0,1,2,3, · · · }. (2.1)

On the other hand, the time variable t is given as t ∈ {0, h,2h,3h, · · · } for the sam-
pling period h. When assuming h = 1.0, the following expression can be defined:

t ∈ Z+, Z+ := {0,1,2,3, · · · }. (2.2)

Therefore, each signal e†(t), u†(t), · · · traces on a grid pattern that is composed of
integers in the time and (controller variables) space.

2.3 Discretization and Nonlinear Sector

2.3.1 Three Types of Discretization

Output-Side Discretization When a signal is discretized only on the output side
of the nonlinear characteristic, the relationship between e and v† becomes a step-
wise nonlinear characteristic with step height 1, as shown in Figs. 2.6(a) and (b).
Figure 2.6(a) is the output-side discretization for a saturation-type nonlinear charac-
teristic (arctangent sigmoid function). On the other hand, Fig. 2.6(b) is the output-
side discretization for a sinusoidal nonlinear characteristic. Without loss of general-
ity, it is assumed that the nonlinear characteristics have origin symmetry and exist
in the first and third quadrants.

Input-Side Discretization When a signal is discretized only on the input side of
the nonlinear characteristic, the relationship between e and v† becomes a stepwise
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Fig. 2.7 Nonlinear characteristics and input-side discretizations

nonlinear characteristic with step width 1, as shown in Figs. 2.7(a) and (b). Fig-
ure 2.7(a) is the input-side discretization for a saturation-type nonlinear characteris-
tic (arctangent sigmoid function), whereas Fig. 2.7(b) is the input-side discretization
for a sinusoidal nonlinear characteristic.

Input and Output Sides Discretization When a signal is discretized on the input
and output sides of the nonlinear characteristic, the relationship between e and v†

becomes a stepwise nonlinear characteristic with step hight and width 1 (i.e., broken
line on integer coordinates) as shown in Figs. 2.8(a) and (b). Figure 2.8(a) is the
input and output side discretization for a saturation-type nonlinear characteristic
(arctangent sigmoid function). On the other hand, Fig. 2.8(b) is the input and output
side discretization for a sinusoidal nonlinear characteristic.

2.3.2 Nominal Gains and Sector Parameters

In general, the discretized nonlinear characteristic

v† =Nd(e)=Ke+ g(e), 0 <K <∞, (2.3)

can be partitioned into the following two sections:

|g(e)| ≤ g <∞, (2.4)

for |e|< ε, and

|g(e)| ≤ β|e|, 0 ≤ β ≤K, (2.5)
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Fig. 2.8 Nonlinear characteristics and input and output side discretizations

for |e| ≥ ε. When considering relative nonlinear characteristics, the partitioned ex-
pression is given as follows:

v† =Nd(e)=K(e+ n(e)),

|n(e)| ≤ α|e|. (2.6)

Clearly, the sector parameter is considered to be β =Kα.
Equation (2.4) represents a bounded nonlinear characteristic that exists in a finite

region. On the other hand, Eq. (2.5) represents a sectorial nonlinearity for which the
equivalent linear gain exists in a limited range. It can also be expressed as follows:

0 ≤ g(e)e ≤ βe2. (2.7)

When dealing with the robust stability in a global sense, it is sufficient to consider
the nonlinear term (2.5) for |e| ≥ ε because the nonlinear term (2.4) can be treated
as a disturbance signal. (In the stability problem, a fluctuation or an offset of error is
assumed to be allowable in |e| < ε.) Figures 2.9(a) and (b) show the discretization
characteristics and the nonlinear parts g(e) of two examples. In these examples, the
thresholds are chosen as ε = 2.

In partitioning (2.3), nominal gain K and sectorial nonlinearity g(e) can be cho-
sen appropriately. For example, if K is chosen in integer numbers, w† = g(e) also
becomes an integer number. Figures 2.10(a) and (b) show examples of the partition-
ing of nonlinear characteristics when K = 1 (i.e., an integer number). In these cases,
sector parameter β should be given by the larger value of Kmax −K and K −Kmin.
In general, the nominal gain and the sector parameter should be determined as fol-
lows:

K = Kmax +Kmin

2
(2.8)
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Fig. 2.9 Nonlinear characteristics and discretized outputs

Fig. 2.10 Nonlinear characteristics and discretized outputs

β = Kmax −Kmin

2
=Kmax −K. (2.9)

By partitioning nonlinear characteristic Nd(·), a single-loop control system can be
drawn as shown in Fig. 2.11. It can also be drawn in regard to the discretized input
as shown in Fig. 2.12. In the figure, discretized input e† is assumed to be determined
as follows:

e = e†, when e† ≤ e < e† + γ.

In this case, the nominal gain and the sector parameter will be given as follows:
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Fig. 2.11 Discretized
nonlinear control system

Fig. 2.12 Discrete-input
nonlinear control system

K†
n = K

†
max +K

†
min

2
, (2.10)

β† = K
†
max −K

†
min

2
, (2.11)

where the following relations hold:1

K†
max =Kmax, K

†
min ≤Kmin.

Figure 2.13(a) shows the difference between Kmin and K
†
min for the sinusoidal non-

linearity shown in Figs. 2.9(b) and 2.10(b). In this figure, nominal gains K and K†

are also drawn in chain lines. The control system shown in Fig. 2.12 can also be
drawn as shown in Fig. 2.14. From Fig. 2.14, the relationship between e(k) and
e†(k) and the equivalent exogenous input ε(k) are drawn in Fig. 2.13(b). As is clear
from the figure, ε(k)= e†(k)− e(k) may be considered a bounded disturbance sig-
nal.

1β will be used instead of β† in the following discussion.
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Fig. 2.13 Different sectors and equivalent input

Fig. 2.14 Equivalent
discrete-input control system

2.4 Equivalent Transformation

Based on the above considerations, the following new sequences e∗(k) and w∗(k)
are defined:

e∗(k)= e(k)+ q · �e(k)
h

, (2.12)

w∗(k)=w(k)− βq · �e(k)
h

, (2.13)

where q is a non-negative number, e(k) and w(k) are neutral points of sequences
e(k) and w(k),

e(k)= e(k)+ e(k − 1)

2
, (2.14)

w(k)= w(k)+w(k − 1)

2
, (2.15)
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Fig. 2.15 Transformation of
nonlinear element g(e)

Fig. 2.16 Equivalent
nonlinear subsystem

and �e(k) is the backward difference of sequence e(k), that is,

�e(k) := e(k)− e(k − 1). (2.16)

When using delay operator z−1, Eqs. (2.14), (2.15), and (2.16) may be given as
follows:

e(k)= (1 + z−1)

2
e(k), (2.17)

w(k)= (1 + z−1)

2
w(k), (2.18)

and then

�e(k)= (1 − z−1) e(k). (2.19)

By using z-transform expressions, Eqs. (2.12) and (2.13) can be written as follows:

(1 + z−1)

2
ê∗(z)= (1 + z−1)

2
ê(z)+ q · (1 − z−1)

h
ê(z), (2.20)

(1 + z−1)

2
ŵ∗(z)= (1 + z−1)

2
ŵ(z)− βq · (1 − z−1)

h
ê(z). (2.21)

The relationship between Eqs. (2.20) and (2.21) is shown by the block diagram in
Fig. 2.15, and by the equivalent subsystem in Fig. 2.16. In these figures, operator δ
is defined by a bilinear transformation as follows:

δ(z) := 2

h
· 1 − z−1

1 + z−1
. (2.22)

Therefore, if the subsystem shown in Fig. 2.16 is used instead of g(e), the whole
control system is drawn as shown in Fig. 2.17. The control system represented by
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Fig. 2.17 Discrete nonlinear
control system

Fig. 2.18 Discrete nonlinear
control system 2

Fig. 2.17 is equivalently transformed into Fig. 2.18. In this figure, since⎧⎨
⎩
ê†(z)= ê(z)+ ε̂(z)

ê∗†(z)= (1 + qδ(z))ê†(z),

the equivalent exogenous input ε′ can be given by

ε̂′(z)= (1 + qδ(z))ε̂(z). (2.23)

From these figures,

ê(z)= r̂(z)−G(z)[ŵ∗(z)+ (K + βqδ(z))ê(z)+ d̂ ′(z)].
Furthermore,

[1 + (K + βqδ(z)]G(z)ê(z)=G(z)ŵ∗(z)+ r̂(z)+G(z)d̂ ′(z).

Thus,

ê(z)= G(z)ŵ∗(z)+ r̂(z)+G(z)d̂ ′(z)
1 + (K + βqδ(z))G(z)

.
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Fig. 2.19 Equivalent
nonlinear control system

Fig. 2.20 Small-gain
feedback system

From these equations, we can obtain

ê∗(z)= (1 + qδ(z))G(z)

1 + (K + βqδ(z))G(z)
ŵ∗(z)

+ (1 + qδ(z))

1 + (K + βqδ(z))G(z)
r̂(z)+ (1 + qδ(z))G(z)

1 + (K + βqδ(z))G(z)
d̂(z). (2.24)

Therefore,

e∗†(z)= (1 + qδ(z))G(z)

1 + (K + βqδ(z))G(z)
ŵ∗(z)+ ε̂′(z)

+ 1 + qδ(z)

1 + (K + βqδ(z))G(z)
r̂(z)+ (1 + qδ(z))G(z)

1 + (K + βqδ(z))G(z)
d̂(z) (2.25)

Consequently, we have the block diagram of the discretized control system
shown in Fig. 2.19, where

H(β,q, z)= G(z)

1 + (K + βqδ(z))G(z)
. (2.26)

Thus, the loop transfer function from w∗ to e∗ can be given by

W(β,q, z)= (1 + qδ(z))G(z)

1 + (K + βqδ(z))G(z)
, (2.27)

as shown in Fig. 2.20. Here, r ′ is given by

r̂ ′(z)= 1

1 + (K + βqδ(z))G(z)
r̂(z).
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Furthermore, the reference input r ′′ in Fig. 2.20 is equivalently expressed as

r̂ ′′(z)= (1 + qδ(z))r̂ ′(z)+ ε̂(z).

2.5 Norm Inequalities

We now provide an assumption with respect to the behavior of control systems.

Assumption The absolute value of the backward difference of sequence e(k) does
not exceed γ , i.e.,

|�e(k)| = |e(k)− e(k − 1)| ≤ γ. (2.28)

If condition (2.28) is satisfied, �e(k) becomes exactly ±γ or 0 because of the dis-
cretization D1. That is, the absolute value of the backward difference can be given
as

|�e(k)| = |e(k)− e(k − 1)| = γ or 0.

The assumption stated above will be satisfied in some examples given in the
following chapters. These examples will include figures illustrating the phase trace
of the backward difference �e.

In this subsection, some lemmas with respect to an �2 norm of the sequences are
presented. Here, we define a new nonlinear function

f (e) := g(e)+ β e. (2.29)

When considering the discretized output of the nonlinear characteristic, w† = v† −
Ke†, the following expression can be given:

f (e†(k))=w†(k)+ βe†(k). (2.30)

In expression (2.30), we note that w† /∈ Z in general. From inequality (2.5), it can be
seen that the function (2.30) belongs to the first and third quadrants. Figures 2.21(a)
and (b) show the discretized outputs v† =Nd(e) and f (e) for the examples given in
Fig. 2.9(a) and (b) when the discretized error ε was not considered and the point-to-
point transition was executed.

Considering the equivalent linear characteristic, the following inequality can be
defined:

0 ≤ψ(k) := f (e(k))

e(k)
≤ 2β. (2.31)

When this type of nonlinearity ψ(k) is used, inequality (2.5) can be written as

w†(k)= g(e(k))= (ψ(k)− β)e(k). (2.32)
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Fig. 2.21 Nonlinear characteristics and discretized outputs

For the neutral points of e(k) and w†(k), the following expression is given
from (2.30):

1

2
(f (e(k))+ f (e(k − 1)))=w†(k)+ βe†(k). (2.33)

Moreover, Eq. (2.32) is rewritten as w†(k) = (ψ(k) − β)e†(k). Since |e†(k)| ≤
|e(k)|, the following inequality is satisfied when a round-down discretization is ex-
ecuted:

|w†(k)| ≤ β|e†(k)| ≤ β|e(k)|. (2.34)

Based on this premise, the following norm conditions are examined.

Lemma 2.1 The following inequality holds for a positive integer p:

‖w†(k)‖2,N ≤ β‖e†(k)‖2,N ≤ β‖e(k)‖2,N . (2.35)

Here, ‖ · ‖2,N denotes an �2 norm, which can be defined by

‖x(k)‖2,N :=
(

N∑
k=1

|x(k)|2
)1/2

.

Proof The proof is clear from inequality (2.34). �

Lemma 2.2 If the following inequality is satisfied with respect to the inner product
of the neutral points of (2.30) and the backward difference:〈

w†(k)+ βe†(k),�e(k)
〉
N

≥ 0, (2.36)
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we can obtain the inequality

‖w∗†(k)‖2,N ≤ β‖e∗†(k)‖2,N (2.37)

for any q ≥ 0. Here, 〈·, ·〉N denotes the inner product, which is defined as

〈
x1(k), x2(k)

〉
N

=
N∑
k=1

x1(k)x2(k).

Proof The following equation is obtained from (2.12) and (2.13):

β2‖e∗†(k)‖2
2,N − ‖w∗†(k)‖2

2,N

= β2‖e†(k)‖2
2,N − ‖w†(k)‖2

2,N + 2βq

h
· 〈
w†(k)+ βe†(k),�e(k)

〉
N
. (2.38)

Thus, inequality (2.37) is satisfied by using the left-side inequality of (2.35). More-
over, as for the input of g∗(·), the following inequality can be obtained from (2.38)
and the right-side inequality of (2.35):

‖w∗†(k)‖2,N ≤ β‖e∗(k)‖2,N . (2.39)

�

2.6 Sum of Trapezoidal Areas

The left side of inequality (2.36) can be expressed by a sum of trapezoidal areas.

Lemma 2.3 For any step N , the following equation is satisfied:

σ(N) := 〈
w†(k)+ βe†(k),�e(k)

〉
N

= 1

2

N∑
k=1

(f (e(k))+ f (e(k − 1)))�e(k).

(2.40)

Proof The proof is clear from (2.33). �

In general, the sum of trapezoidal areas has the following property.

Lemma 2.4 If inequality (2.28) is satisfied with respect to the discretization of the
control system, the sum of trapezoidal areas becomes non-negative for any N , that
is,

σ(N)≥ 0. (2.41)
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Fig. 2.22 Non-negative characteristics of trapezoidal summation

Proof Since f (e(k)) belongs to the first and third quadrants, the area of each trape-
zoid

τ(k) := 1

2
(f (e(k))+ f (e(k − 1)))�e(k) (2.42)

is non-negative when e(k) increases (decreases) in the first (third) quadrant. On the
other hand, the trapezoidal area τ(k) is non-positive when e(k) decreases (increases)
in the first (third) quadrant.

Strictly speaking, when (e(k) ≥ 0 and �e(k) ≥ 0) or (e(k) ≤ 0 and �e(k) ≤ 0),
τ(k) is non-negative for any k. On the other hand, when (e(k) ≥ 0 and �e(k) ≤
0) or (e(k) ≤ 0 and �e(k) ≥ 0), τ(k) is non-positive for any k. Here, �e(k) ≥ 0
corresponds to �e(k) = γ or 0 (and �e(k) ≤ 0 corresponds to �e(k) = −γ or 0)
for the discretized signal, when inequality (2.28) is satisfied. The sum of trapezoidal
areas is given from (2.40) as:

σ(N)=
N∑
k=1

τ(k). (2.43)

We thus derive the following result. The sum of trapezoidal areas becomes non-
negative, σ(N) ≥ 0, regardless of whether e(k) (and e(k)) increases or decreases.
Since the discretized output traces the same points on the stepwise nonlinear char-
acteristic, the sum of trapezoidal areas is canceled when e(k) (and e(k) decreases
(increases) from a certain point (e(k), f (e(k))) in the first (third) quadrant. (Here,
without loss of generality, the response of discretized point (e(k), f (e(k))) is as-
sumed to commence at the origin.) Thus, the proof is concluded. �

Figures 2.22(a) and (b) show the sum of trapezoidal areas for f (e) given in
Fig. 2.21(a), when e is a sinusoidal input with amplitude 8.0, i.e., e(k)= 8.0 sinωk
(ω: an arbitrary number).
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Fig. 2.23 Non-negative characteristics of integrals

(a) The sinusoid starts from 0 to 8.0. Then, e decreases to e < 5.0.
(b) The sinusoid starts from 0, passes 8.0, 0.0, −8.0, and increases to e >−5.0.

In any case, the sum of trapezoids will be canceled.
On the other hand, Figs. 2.23(a) and (b) show the sum of trapezoidal areas for

f (e) when the sampling period h is very small (i.e., �e(k) → 0), in other words,
the integration of f (e),

σ(N)=
∫ e(N)

e(0)
f (e)de.

The latter case corresponds to the Popov stability problem for continuous control
systems.2

For an easier understanding, examples of the sequences of continuous/discretized
signals and the sum of trapezoidal areas are depicted in Figs. 2.24(a), (b) and
2.25(a), (b).

Example 2.1 The input/output characteristic shown in Fig. 2.24(a) is written as:

e† = γ ∗ (double)(int)(e/γ )
v = 0.3 ∗ e† + 2.7 ∗ atan(0.7 ∗ e†) (2.44)

v† = γ ∗ (double)(int)(v/γ )
by using a C-language expression. Here, (int) and (double) denote the conversion
into an integral number (a round-down discretization) and the reconversion into a

2The relation to the Popov criterion will be described in Chap. 3, Sect. 3.6.
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Fig. 2.24 Discretized input/output signals of a nonlinear element

double-precision real number, respectively. The second equation of (2.44) corre-
sponds to a sigmoid (saturated) function (needless to say, atan(·)= tan−1(·)).

In Fig. 2.24(b), the curve e and the sequence of circles e† show the input of the
nonlinear element and its discretized signal. The curve v and the sequence of circles
v† show the corresponding output of the nonlinear characteristic and its discretized
signal, respectively. As shown in the figure, the sequences of circles e† and v† trace
a grid pattern that is composed of integers. The sequence of circles w† shows the
discretized output of the nonlinear characteristic g(·). The curve of shifted non-
linear characteristic f (e) and the sequence of circles f †(e) are also shown in the
figures.
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Fig. 2.25 Discretized input/output signals of a nonlinear element for Example 2.2

Example 2.2 For the example of Figs. 2.25(a) and (b), the following nonlinear char-
acteristic is considered:

e† = γ ∗ (double)(int)(e/γ )
v = 1.0 ∗ e† + 1.5 ∗ sin(0.7 ∗ e†) (2.45)

v† = γ ∗ (double)(int)(v/γ ).
The second equation of (2.45) is an inclined sinusoidal function. In either of the

examples, (2.41) in Lemma 2.4 is satisfied, i.e., σ(k)≥ 0 (k = 1,2, · · · ).
Figures 2.26(a), (b) and 2.27(a), (b) show the two cases in Examples 2.1 and 2.2

with a nearly continuous characteristic, where γ = 0.1 and h = 0.1, that is, 1/10
high resolution. As is obvious from the figures, σ(t) ≥ 0 (t = 0.1,0.2, · · · ). Thus,
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Fig. 2.26 Input/output signals of a nearly continuous characteristic for Example 2.1

the calculated results show that the input/output characteristics of nonlinear ele-
ments become similar to continuous problems, that is, Popov’s criterion and other
conditions in continuous time.

Example 2.3 Figures 2.28(a) and (b) illustrate the case where the following nearly
nonlinear characteristic is considered:

e† = γ ∗ (double)(int)(e/γ )
v = 1.0 ∗ e† + 0.15 ∗ sin(0.7 ∗ e†) (2.46)

v† = γ ∗ (double)(int)(v/γ ).
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Fig. 2.27 Input/output signals of a nearly continuous characteristic for Example 2.2

In this example, the amplitude of sinusoidal function is chosen as 1/10 for Exam-
ple 2.2 (i.e., 1.5 → 0.15). Figures 2.29(a) and (b) illustrate the case where 1/10 high
resolution is applied (i.e., γ = 0.1 and h= 0.1). As is obvious from these examples,
the theory of discretized static and/or dynamic nonlinear systems (in other words,
discrete-time and discrete-value nonlinear systems) considered in this chapter ap-
proaches that of continuous-time and continuous-value nonlinear systems asymp-
totically for γ → 0 and h → 0. Of course, it includes that of continuous linear
systems for β → 0 naturally, as shown in Figs. 2.29(a) and (b).
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Fig. 2.28 Discretized input/output signals of a nearly continuous characteristic for Example 2.3

2.7 Exercises

(1) Prove that the sector condition in (2.5),

|g(e)| ≤ β|e|,
is equivalently written as (2.7).

(2) Confirm that block diagram Fig. 2.16 is equivalent to Fig. 2.15.
(3) From Fig. 2.18, determine the loop transfer function H(β,q, z) in Fig. 2.19.
(4) From (2.5) and (2.29), prove the sector inequality in (2.31), that is,

0 ≤ f (e(k))

e(k)
≤ 2β.
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Fig. 2.29 Discretized input/output signals of a nearly continuous characteristic for Example 2.3

(5) Prove Lemma 2.1, that is,

‖w†(k)‖2,N ≤ β‖e†(k)‖2,N ≤ β‖e(k)‖2,N ,

using inequality (2.34).
(6) For N = 2, prove Schwarz’s inequality (2.60).
(7) Using the result of (6), prove Minkowski’s inequality (2.68) when N = 2.



68 2 Discretized Feedback Systems

Appendix A: Norms and Inner Products of Lp and �p Spaces

In this appendix, inner products and norms in an �2 space are explained for discrete-
time systems. In general, norms of Lp and �p spaces are defined as follows. For a
continuous-time signal x: R+ → R,

‖x(t)‖p :=
(∫ ∞

0
|x(t)|pdt

)1/p

, 1 ≤ p <∞, (2.47)

‖x(t)‖∞ := ess sup
t∈[0,∞)

|x(t)|, (2.48)

and for a discrete-time signal x: Z+ →R (or Z),

‖x(k)‖p :=
( ∞∑
k=1

|x(k)|p
)1/p

, 1 ≤ p <∞, (2.49)

‖x(k)‖∞ := sup
k≥1

|x(k)|. (2.50)

In the �2 space, the norm is defined as

‖x(k)‖2 :=
( ∞∑
k=1

|x(k)|2
)1/2

, (2.51)

and the inner product is given by

〈
x(k), y(k)

〉 := ∞∑
k=1

x(k)y(k). (2.52)

The preceding definitions for finite time series x(k)(k = 0,1,2, · · · ,N) are written
as follows:

‖x(k)‖2,N :=
(

N∑
k=1

|x(k)|2
)1/2

, (2.53)

〈
x(k), y(k)

〉
N

:=
N∑
k=1

x(k)y(k). (2.54)

When N → ∞, these definitions are written as:

‖x(k)‖2 := lim
N→∞‖x(k)‖2,N , (2.55)

〈
x(k), y(k)

〉 := lim
N→∞

〈
x(k), y(k)

〉
N
. (2.56)
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Appendix B: Hölder and Schwarz Inequalities

(1) In an Lp space, the following inequality holds:

∫ ∞

0
|x(t)y(t)|dt ≤

(∫ ∞

0
|x(t)|pdt

)1/p (∫ ∞

0
|y(t)|qdt

)1/q

,
1

p
+ 1

q
= 1.

(2.57)
As for discrete signals, the following inequality holds in an �p space:

∞∑
k=1

|x(k)y(k)| ≤
( ∞∑
k=1

|x(k)|p
)1/p ( ∞∑

k=1

|y(k)|q
)1/q

,
1

p
+ 1

q
= 1. (2.58)

These are called Hölder’s inequalities [4, 8, 10]. The proof is given for 1 ≤ p ≤ ∞
(i.e., 1 ≤ q ≤ ∞) in, e.g., [8].

(2) An important special case of (2.58) for p = q = 2 is given as

∞∑
k=1

|x(k)y(k)| ≤
( ∞∑
k=1

|x(k)|2
)1/2 ( ∞∑

k=1

|y(k)|2
)1/2

. (2.59)

Equation (2.59) is called Schwarz’s inequality. The easier proof of (2.59) is as fol-
lows. For finite sums of N steps, Schwarz’s inequality (2.59) is rewritten as

(
N∑
k=1

|x(k)y(k)|
)2

≤
(

N∑
k=1

|x(k)|2
) (

N∑
k=1

|y(k)|2
)

(2.60)

N∑
k=1

|x(k)y(k)|2 + 2
N∑

k,l=1,k �=l

|x(k)y(k)| · |x(l)y(l)|

≤
N∑
k=1

|x(k)|2|y(k)|2 +
N∑

k,l=1,k �=l

|x(k)|2|y(l)|2. (2.61)

In (2.61), the following sum must be non-negative:

N∑
k,l=1,k �=l

|x(k)|2|y(l)|2 −2
N∑

k,l=1,k �=l

|x(k)y(k)|·|x(l)y(l)| =
⎛
⎝ N∑
k,l=1,k �=l

|x(k)y(l)|
⎞
⎠

2

,

(2.62)
and it must hold for N → ∞. Thus, inequality (2.60) has been proved.
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Appendix C: Minkowski Inequalities

(1) In an Lp space, the following inequality holds:

(∫ ∞

0
|x(t)+ y(t)|pdt

)1/p

≤
(∫ ∞

0
|x(t)|pdt

)1/p

+
(∫ ∞

0
|y(t)|pdt

)1/p

.

(2.63)
The norm expression based on (2.47) is given by

‖x(t)+ y(t)‖p ≤ ‖x(t)‖p + ‖y(t)‖p. (2.64)

As for discrete signals, the following inequality holds in an �p space:

( ∞∑
k=1

|x(k)+ y(k)|p
)1/p

≤
( ∞∑
k=1

|x(k)|p
)1/p

+
( ∞∑
k=1

|y(k)|p
)1/p

. (2.65)

The norm expression based on (2.49) is given by

‖x(k)+ y(k)‖p ≤ ‖x(k)‖p + ‖y(k)‖p. (2.66)

These are called Minkowski’s inequalities [7, 8].
(2) A special case of (2.65) for p = 2 and finite sums of N steps is written as

(
N∑
k=1

|x(k)+ y(k)|2
)1/2

≤
(

N∑
k=1

|x(k)|2
)1/2

+
(

N∑
k=1

|y(k)|2
)1/2

(2.67)

‖x(k)+ y(k)‖2,N ≤ ‖x(k)‖2,N + ‖y(k)‖2,N . (2.68)

In order to prove (2.65), consider the following equality:

(|x(k)| + |y(k)|)p = |x(k)|(|x(k)| + |y(k)|)p−1 + |y(k)|(|x(k)| + |y(k)|)p−1.

Hölder’s inequality gives

N∑
k=1

|x(k)|(|x(k)| + |y(k)|)p−1

≤
(

N∑
k=1

|x(k)|p
)1/p (

N∑
k=1

(|x(k)| + |y(k)|)(p−1)q

)1/q

(2.69)

N∑
k=1

|y(k)|(|x(k)| + |y(k)|)p−1

≤
(

N∑
k=1

|y(k)|p
)1/p (

N∑
k=1

(|x(k)| + |y(k)|)(p−1)q

)1/q

. (2.70)
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Since (p − 1)q = p and 1/q = 1 − 1/p, the addition of (2.70) and (2.69) gives

N∑
k=1

(|x(k)| + |y(k)|)p ≤
(

N∑
k=1

(|x(k)| + |y(k)|)p
)(1−1/p)

·
⎡
⎣(

N∑
k=1

|x(k)|p
)1/p

+
(

N∑
k=1

|y(k)|p
)1/p⎤

⎦ . (2.71)

Moreover, |x(k)+y(k)| ≤ |x(k)|+ |y(k)|. Thus, Minkowski’s inequality (2.65)
is obtained for N → ∞.

To provide a clear understanding, the following simple equality is considered
here:

(|x(k)| + |y(k)|)2 = |x(k)|(|x(k)| + |y(k)|)+ |y(k)|(|x(k)| + |y(k)|).
Schwarz’s inequality gives

|x(1)|(|x(1)| + |y(1)|)+ |x(2)|(|x(2)| + |y(2)|)
≤ (|x(1)|2 + |x(2)|2)1/2[(|x(1)| + |y(1)|)2 + (|x(2)| + |y(2)|)2]1/2

|y(1)|(|x(1)| + |y(1)|)+ |y(2)|(|x(2)| + |y(2)|)
≤ (|y(1)|2 + |y(2)|2)1/2[(|x(1)| + |y(1)|)2 + (|x(2)| + |y(2)|)2]1/2.

By adding these inequalities, we have

(|x(1)| + |y(1)|)2 + (|x(2)| + |y(2)|)2
≤ [(|x(1)|2 + |x(2)|2)1/2 + (|y(1)|2 + |y(2)|2)1/2]

· [(|x(1)| + |y(1)|)2 + (|x(2)| + |y(2)|)2]1/2.

Thus,√
|x(1)+ y(1)|2 + |x(2)+ y(2)|2 ≤

√
|x(1)|2 + |x(2)|2 +

√
|y(1)|2 + |y(2)|2,

and the equality problem is proved.
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Chapter 3
Robust Stability Analysis

3.1 Introduction

In this chapter, the robust stability of discretized feedback systems is analyzed in
the frequency domain. Throughout the theories, it is assumed that the discretization
is executed on the input and output sides of a nonlinear element at equal spaces, and
the sampling period is chosen of a size suitable for the discretization in the space.
Based on this premise, the discretized (point-to-point) nonlinear characteristic is
examined from two viewpoints: global and local.

3.2 Input-Output Stability

The basic results of input-output stability theory are presented in this section. This
theory is later in origin than Lyapunov stability theory. Figure 3.1 shows the basic
feedback structure of a nonlinear time-varying discrete-time system. As is obvious
from the figure, the following equations are given:⎧⎪⎨

⎪⎩
v(k)= f (e, k), k = 0,1,2, · · ·
ŷ(z)=G(z)û(z)

e(k)= r(k)− y(k), u(k)= v(k)+ d(k).

(3.1)

Here, r(k) and d(k) are exogenous inputs that exist in an �2 space. Moreover, in the
strict sense, the nonlinear time-varying element f (e, k) should be written as

f (e, k)= f (e(kh), kh),

where h is the sampling period.

Definition If r(k) ∈ �2 and d(k) ∈ �2 lead to e(k) ∈ �2 and y(k) ∈ �2, the feedback
system is called bounded input-bounded output (BIBO) stable.

Y. Okuyama, Discrete Control Systems,
DOI 10.1007/978-1-4471-5667-3_3, © Springer-Verlag London 2014
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Fig. 3.1 Nonlinear
time-varying feedback system

That is, if it is valid that

∞∑
k=0

|r(k)|2 <∞,

∞∑
k=0

|d(k)|2 <∞

lead to
∞∑
k=0

|e(k)|2 <∞,

∞∑
k=0

|y(k)|2 <∞,

then the nonlinear feedback system is input-output stable (in other words, �2-stable)
[1, 3, 8, 13–15]. For the norm expression, the above conditions can be written as
follows:

‖r(k)‖2 <∞ and ‖d(k)‖2 <∞ ⇒ ‖e(k)‖2 <∞ and ‖y(k)‖2 <∞.

3.3 Small Gain Theorem and Circle Criterion

From the last equations of (3.1), the norm inequalities of these variables are given
by applying Minkowski’s inequality1 as follows:

‖e(k)‖2 ≤ ‖r(k)‖2 + ‖y(k)‖2, (3.2)

‖u(k)‖2 ≤ ‖v(k)‖2 + ‖d(k)‖2. (3.3)

If the nonlinear time-varying element f (e, k) is written as

|f (e, k)|
|e(k)| ≤ ρ <∞, (3.4)

the norm of the output of nonlinear element v(k) can be expressed as

‖v(k)‖2 ≤ ρ · ‖e(k)‖2.

Then, inequality (3.3) is given by

‖u(k)‖2 ≤ ρ · ‖e(k)‖2 + ‖d(k)‖2. (3.5)

1See Appendix C in Chap. 2.
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On the other hand, the following holds for z= ejωh:

‖ŷ(z)‖2 ≤ sup
|z|=1

|G(z)| · ‖û(z)‖2. (3.6)

Here, |z| = 1 corresponds to ω : −π/h→ π/h, i.e.,

sup
|z|=1

|G(z)| = sup
−π/h≤ω≤π/h

|G(ejωh)|.

Since open-loop system G(z) is assumed to be stable, the boundary line |z| = 1 is
considered.

By applying Parseval’s identity,2 the following inequality is obtained:

‖y(k)‖2 ≤ sup
|z|=1

|G(z)| · ‖u(k)‖2. (3.7)

By using (3.3),

‖e(k)‖2 ≤ ‖r(k)‖2 + sup
|z|=1

|G(z)| · ‖u(k)‖2.

Thus,

‖e(k)‖2 ≤ ‖r(k)‖2 + sup
|z|=1

|G(z)|(ρ · ‖e(k)‖ + ‖d(k)‖2. (3.8)

Rearranging (3.8), the following inequality is obtained:

(1 − ρ · sup
|z|=1

|G(z)|)‖e(k)‖2 ≤ ‖r(k)‖2 + sup
|z|=1

|G(z)| · ‖d(k)‖2. (3.9)

Theorem 3.1 If ‖r(k)‖2 < ∞, ‖d(k)‖2 < ∞, and sup
|z|≥1

|G(z)| < ∞, then ‖e(k)‖
becomes bounded when

1 − ρ · sup
|z|=1

|G(z)|> 0. (3.10)

That is,

sup
|z|=1

|G(z)|< 1

ρ
. (3.11)

The inequalities (3.10) and (3.11) are referred to as the small gain theorem.

Figure 3.2(a) is a graphical interpretation of (3.11), i.e.,

|G(ejωh)| =
√
U2(ω)+ V 2(ω) <

1

ρ
, (3.12)

where U(ω)= �{G(ejωh)} and V (ω)= �{G(ejωh)}.

2See Appendix B in this chapter.
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Fig. 3.2 Circle criterion for discrete-time systems

Fig. 3.3 Time-varying gain
feedback system

On the other hand, when the feedback system shown in Fig. 3.1 is drawn with
respect to the nominal gain K as shown in Fig. 3.3, the small gain theorem (3.11) is
rewritten as

sup
|z|=1

∣∣∣∣ G(z)

1 +KG(z)

∣∣∣∣ < 1

ρ
, (3.13)

and instead of (3.4)

|g(e, k)|
|e(k)| ≤ ρ <∞. (3.14)

Inequality (3.13) can be written in regard to the inverse function of G(z) as follows:∣∣∣∣ 1

G(ejωh)
+K

∣∣∣∣ > ρ. (3.15)

Therefore, the condition of (3.14) becomes one such that the inverse Nyquist curves
of G(ejωh) exist in the outside of a small circle, as shown in Fig. 3.2(b). This stabil-
ity criterion is also called the circle criterion. Note that the stability condition in the
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Fig. 3.4 Nonlinear
continuous-time feedback
system

relation between Nyquist curves and specified circles will be described in Sect. 3.7
on the Hall diagram.

Continuous-Time Systems For continuous-time systems, the nonlinear feedback
systems in question should be written, of course, as shown in Fig. 3.4. The definition
of input-output stability is given as follows.

Definition If r(t) ∈ L2 and d(t) ∈ L2 lead to e(t) ∈ L2 and y(t) ∈ L2, the feedback
system is called BIBO stable.

That is, if it is valid that

∫ ∞

0
|r(t)|2dt <∞,

∫ ∞

0
|d(t)|2dt <∞

lead to ∫ ∞

0
|e(t)|2dt <∞,

∫ ∞

0
|y(t)|2dt <∞,

then the nonlinear feedback system is input-output stable (in other words, L2-
stable).

For the norm expression, the above conditions can be written as follows:

‖r(t)‖2 <∞ and ‖d(t)‖2 <∞ ⇒ ‖e(t)‖2 <∞ and ‖y(t)‖2 <∞.

As for the continuous case, Theorem 3.1 should be rewritten as

Corollary 3.2 If ‖r(t)‖2 < ∞, ‖d(t)‖2 < ∞, and sup
�s≥0

|G(s)| < ∞, then ‖e(t)‖
becomes bounded when

1 − ρ · sup
s=jω

|G(s)|> 0. (3.16)

That is,

sup
s=jω

|G(s)|< 1

ρ
. (3.17)
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In recent control theory, (3.16) and (3.17) may be written as3

1 − ρ · ‖G(s)‖∞ > 0 (3.18)

and

‖G(s)‖∞ <
1

ρ
. (3.19)

Truncated Input Functions In general, even if |x(k)| < ∞(k = 0,1,2, · · · ), the
following is not always valid:

‖x(k)‖2 <∞. (3.20)

However, if the following function xN is considered for an arbitrary integer number
N > 0: ⎧⎨

⎩
xN(k)= x(k), for k < N,

xN(k)= 0, for k ≥N,
(3.21)

inequality (3.20) is always satisfied. This operation is called truncation. On the other
hand, if the norm of truncated function ‖xN(k)‖2 is considered as4

‖xN(k)‖ = ‖x(k)‖2,N =
(

N∑
k=1

|x(k)|2
)1/2

,

the �2 norm can be obtained as a limiting value, i.e.,

‖x(k)‖2 = lim
N→∞‖x(k)‖2,N .

Thus, the input-output stability of discrete systems can be determined from these
concepts. Figures 3.5(a) and (b) show examples of truncated discrete functions.

In the case of continuous-time systems, the truncated function can be defined as
follows: ⎧⎨

⎩
xT (t)= x(t), for t < T ,

xT (t)= 0, for t ≥ T .
(3.22)

Therefore, the boundedness of norms can be clarified as

‖xT (t)‖2 = ‖x(t)‖2,T <∞,

3See Appendix B in Chap. 1.
4See Appendix A in Chap. 2.
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Fig. 3.5 Truncations of oscillating discrete functions

where

‖x(t)‖2,T :=
(∫ T

0
|x(t)|2dt

)1/2

.

Obviously,

‖x(t)‖2 = lim
T→∞‖x(t)‖2,T .

Thus, the input-output stability of discrete systems can be determined from this
expression.5

3.4 Discretized Nonlinear Control Systems

As was described in Chap. 2, the discretized control system shown in Fig. 3.6 is
equivalently transformed into Fig. 3.7. The control system can be treated as a feed-
back structure, shown in Fig. 3.8.

As is obvious from these figures, the following relations are obtained:

w∗(k)= g∗[e∗†(k)], (3.23)

ê∗†(z)= ε̂′(z)+ ê∗(z). (3.24)

Here, as is shown in (3.4) and (3.14), the following sector can be considered in
regard to the nonlinear part:

|g∗[e∗†(k)]|
|e∗†(k)| ≤ β <∞. (3.25)

5See Appendix A in Chap 2.
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Fig. 3.6 Discretized
nonlinear control system

Fig. 3.7 Equivalent feedback
system

Fig. 3.8 Equivalent
small-gain system

Furthermore, ⎧⎪⎨
⎪⎩
r̂ ′′(z)= ε̂′(z)+ (1 + qδ(z))r̂ ′(z),
ê∗†(z)= r̂ ′′(z)− ŷ′(z),
ŷ′(z)=H(β,q, z)(ŵ∗(z)+ d̂(z)).

(3.26)

Here,

r̂ ′(z)= r̂(z)

1 + (K + βqδ(z))G(z)

and thus

H(β,q, z)= G(z)

1 + (K + βqδ(z))G(z)
.

The loop transfer function is obtained as follows:

W(β,q, z)= (1 + qδ(z))H(β,q, z)= (1 + qδ(z))G(z)

1 + (K + βqδ(z))G(z)
. (3.27)

Therefore, the loop characteristic equation is given by
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ê∗†(z)= r̂ ′′(z)−W(β,q, z)(ŵ∗(z)+ d̂(z)), (3.28)

where

r̂ ′′(z)= ε̂(z)+ 1 + qδ(z)

1 + (K + βqδ(z))G(z)
r̂(z).

From (3.28), the following inequalities are obtained with respect to norms in the �2
space:

‖e∗†(z)‖2 ≤ ‖r̂ ′′(z)‖2 + |W(β,q, z)|(‖v̂∗(z)‖2 + ‖d̂(z)‖2)

≤ ‖r̂ ′′(z)‖2 + β|W(β,q, z)| · ‖ê∗†(z)‖2 + |W(β,q, z)| · ‖d̂(z)‖2.

Thus, the small gain theorem is given as follows:

sup
|z|=1

|W(β,q, z)|< 1

β
. (3.29)

In practical physical systems, it can be written as

sup
0<ω≤ωc

|W(β,q, ejωh)|< 1

β
, (3.30)

where ωc is a cut-off frequency. Although inequality (3.30) corresponds to a robust
stability condition for discrete control systems, the allowable sector β cannot be
explicitly given.

3.5 Robust Stability for Discretized Systems

In this section, based on the above result, the following robust stability condition for
discretized nonlinear control systems is derived explicitly [10, 11].

Theorem 3.2 If there exists a q ≥ 0 in which the sector parameter β defined
in (3.25) satisfies the following inequality, the discrete control system is robustly
stable in an �2 sense:

β < β0 =Kη(q0,ω0)= max
q

min
ω

Kη(q,ω), (3.31)

when the linearized feedback system with nominal gain K is stable. (That is, the
allowable sector is given as [0, β0] from (3.31).)

Here, the η-function is written as follows:

η(q,ω) := −q�V + √
q2�2V 2 + (U2 + V 2){(1 +U)2 + V 2}

U2 + V 2
, (3.32)

∀ω ∈ [0,ωc], ωc : cut−off frequency.
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Moreover, �(ω) is the distorted frequency of angular frequency ω and is given by

δ(ejωh)= j�(ω)= j
2

h
tan

(
ωh

2

)
, j = √−1. (3.33)

Here, δ corresponds to the bilinear transformation

δ(z) := 2

h
· z− 1

z+ 1
.= 2

h
· 1 − z−1

1 + z−1
(3.34)

in the z-plane. In addition, U(ω) and V (ω) are the real and the imaginary parts of
KG(ejωh), respectively.

Corollary 3.3 When considering relative sector parameters α = β/K , the theorem
can be written simply as follows:

α <
−q�V + √

q2�2V 2 + (U2 + V 2){(1 +U)2 + V 2}
U2 + V 2

, ∀ω ∈ [0,ωc]. (3.35)

Proof Based on the loop characteristic in Fig. 3.8, the following inequality can be
given with respect to z= ejωh:

‖e∗(z)‖2,p ≤ c1‖r ′(z)‖2,p +c2‖d(z)‖2,p + sup
|z|=1

|W(β,q, z)| · ‖w∗†(z)‖2,p. (3.36)

Here, r ′(z) and d(z) denote the z-transformation for the neutral points of sequences
r ′(k) and d(k), respectively. Moreover, c1 and c2 are positive constants.

By applying the inequality

‖w∗†(k)‖2,p ≤ β‖e∗(k)‖2,p, (3.37)

the following expression is obtained:(
1 − β · sup

|z|=1
|W(β,q, z)|

)
‖e∗(z)‖2,p ≤ c1‖r ′(z)‖2,p + c2‖d(z)‖2,p. (3.38)

Therefore, if the following inequality (i.e., the small gain theorem with respect
to �2 gains) is valid:

|W(β,q, ejωh)| =
∣∣∣∣ (1 + jq�(ω))(U(ω)+ jV (ω))

K + (K + jβq�(ω))(U(ω)+ jV (ω))

∣∣∣∣ < 1

β
, (3.39)

the sequences e∗(k), e(k), e(k), and y(k) in the feedback system are restricted in
finite values when exogenous inputs r(k), d(k) are finite and p → ∞.

When β =Kα is used, inequality (3.39) can be rewritten as∣∣∣∣ (1 + jq�(ω))(U(ω)+ jV (ω))

1 + (1 + jαq�(ω))(U(ω)+ jV (ω))

∣∣∣∣ < 1

α
. (3.40)
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Fig. 3.9 Nonlinear
sampled-data control system

Fig. 3.10 Nonlinear discrete
control system

From the square of both sides of inequality (3.40), we have

α2(1 + q2�2)(U2 + V 2) < (1 +U − αq�V )2 + (V + αq�U)2.

The following quadratic inequality for α is obtained:

α2(U2 + V 2)+ 2αq�V − {(1 +U)2 + V 2}< 0. (3.41)

Consequently, as a solution of inequality (3.41),

α <
−q�V + √

q2�2V 2 + (U2 + V 2){(1 +U)2 + V 2}
U2 + V 2

is given. Thus Theorem 3.2 (i.e., (3.31) and (3.32)) is proved. �

Example 3.1 Consider a nonlinear feedback control system as shown in Figs. 3.9
and 3.10, which are equivalent to Figs. 2.1 and 2.2, but with a proportional controller
Kp inserted in the feedback loop. Here, Nd(·) is a nonlinear time-invariant element,
and G(z) is a discrete-time linear dynamic system. When the following continuous
plant is considered:

G(s)= K

s(s + 0.2)(s + 0.4)
, K = 0.02, (3.42)

G(z) is given as

G(z)= 0.0029z2 + 0.0099z+ 0.0021

z3 − 2.49z2 + 2.04z− 0.549
(3.43)
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Fig. 3.11 Nonlinear characteristics and allowable sectors

by using the procedure given in Sect. 1.5.2. Here, it is assumed that the discretized
nonlinear characteristic to be considered is as shown in Figs. 3.11(a) and (b).6 When
proportional feedback (Kp = 1.0) is executed, η(q,ω) can be drawn as shown in
Fig. 3.12 in the three-dimensional view. Figure 3.13(a) shows min

ω
Kη(q,ω) vs. ω

for Kp = 1.0,1.2,1.4. For Kp = 1.0, β0 = max
q

min
ω

= 0.863 is determined. Hence,

the allowable sector of β is given as 0.137 < β < 1.863.7 When Kp = 1.4, the

Fig. 3.12 Three-dimensional
η(q,ω) curves

6In the following example, the stepwise representation is applied to the (point-to-point) nonlinear
characteristic. As a result, the lower bound of the nonlinear sector is less than that of the point-
transition characteristics.
7Actually, 0 < β < 1.863 when the nominal system is stable.
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Fig. 3.13 The min-max value of η(q,ω) curves

stable sector, 0.669 < β < 1.331, can be calculated as drawn in yellow in Fig. 3.11.
Obviously, the former is guaranteed stability, while the latter is not.

Example 3.2 Next, consider the following nonminimum phase system:

G(s)= K(s + 0.5)(−s + 1.0)

s(s + 0.2)(s + 1.0)
, K = 0.15. (3.44)

As described in Example 3.1, the following G(z) can be obtained by using a com-
puterized procedure:

G(z)= −0.0494z2 + 0.1890z− 0.0966

z3 − 2.17z2 + 1.49z− 0.301
. (3.45)

Figure 3.13(b) shows min
ω

Kη(q,ω) vs. ω for Kp = 1.0,1.5,2.0. When Kp = 1.0,

β0 = 0.887 is obtained. Thus, the allowable sector of β is given as 0.113 < β <

1.887. For Kp = 1.5, the stable sector can be calculated as 0.386 < β < 1.614. In
either case, the discretized feedback system with nonlinearity shown in Fig. 3.11(a)
or (b) is guaranteed stability. However, when Kp = 2.0, β0 = 0.238 and 0.762 <

β < 1.238. Obviously, the feedback system with nonlinearity as shown in Fig. 3.11
is not guaranteed in this case.

3.6 Some Relations to Traditional Theory

Aizerman’s Conjecture The relationship between the robust stability condition in
(3.31) and the allowable gain band (i.e., interval set parameter), in other words, the
validity of Aizerman’s conjecture extended into discrete-time systems, is examined.

In the following case, Theorem 3.2 becomes equal to the robust stability condi-
tion of the linear gain band that corresponds to Aizerman’s conjecture.
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Theorem 3.3 If the right side of (3.31), i.e.,

η(q0,ω0)= max
ω

min
q

η(q,ω) (3.46)

is satisfied at the saddle point,(
∂η(q,ω)

∂q

)
q=q0,ω=ω0

= 0, (3.47)

then (3.32) of Theorem 3.2 becomes equal to the robust stability condition that is
provided for linear discrete-time systems.

Proof From (3.32), i.e.,

η(q,ω)= −q�V + √
q2�2V 2 + (U2 + V 2){(1 +U)2 + V 2}

U2 + V 2
,

the partial differential function is given by

∂η

∂q
= 1

U2 + V 2

(
−�V + q�2V 2√

(q2�2V 2 + (U2 + V 2)){(1 +U)2 + V 2}

)

= −�Vη(q,ω)√
q2�2V 2 + (U2 + V 2){(1 +U)2 + V 2} . (3.48)

Therefore, when (3.47) is satisfied, the following equality must hold:

V (ω0)= 0, (3.49)

because �(ω0) > 0 and η(q0,ω0) > 0 for 0 <ω0 <
π

h
. Then,

η(q0,ω0)= |1 +U(ω0)|
|U(ω0)| =

∣∣∣∣1 + 1

U(ω0)

∣∣∣∣ > α, (3.50)

that is,

β <Kη(q0,ω0)= |1 +K�{G(ejωh)}|
|�{G(ejωh)}| =

∣∣∣∣K + 1

�{G(ejωh)}
∣∣∣∣ . (3.51)

Inequalities (3.50) and (3.51) correspond to the robust stability condition which is
determined for linear discrete-time systems by the linear gain band, i.e., the Nyquist
and the inverse Nyquist stability criteria for discrete-time systems. �

As was shown in Fig. 3.13(a), (3.47) is satisfied in Example 3.1. However, in
Example 3.2, although (3.47) is satisfied as to the small allowable sector (e.g., the
case of Kp − 2.0 in Fig. 3.13(b)), the other cases in the figure (Kp = 1.0,1.5) are



3.6 Some Relations to Traditional Theory 87

not. The difference in the time responses of these cases will be described in the
following section.

Popov’s Criterion Inequality (3.40) can be rewritten as follows:∣∣∣∣ α�(α,q, ejωh)

1 + α�(α,q, ejωh)

∣∣∣∣ < 1, (3.52)

where

�(α,q, ejωh)= (1 + jq�(ω))KG(ejωh)

1 + (1 − α)KG(ejωh)
.

From (3.52), the following inequality is obtained:

2α · �{�(α,q, ejωh)} + 1 > 0. (3.53)

Therefore, the following robust stability condition can be given:

�
{

1 + (1 + α)KG(ejωh)+ 2jαq�(ω)KG(ejωh)

1 + (1 − α)KG(ejωh)

}
> 0, (3.54)

which is equivalent to (3.31) and (3.32). When α = 1 is chosen, (3.54) can be written
as follows:

1

Kn

+ �{(1 + jq�(ω))G(ejωh)}> 0, (3.55)

where Kn = 2K . In this case, the allowable sector of nonlinear characteristic N(·)
is given by

0 ≤N(e)e ≤Kne
2, e �= 0. (3.56)

When h approaches zero (or ω is a low frequency), inequalities (3.55) and (3.56) are
equivalent to an expression of Popov’s criterion for continuous-time systems (i.e.,
δ → s, �→ ω, and G(ejωh)→G(jω)).

In the case of q = 0, the definition of η(q,ω) becomes the inverse of the absolute
value of complementary sensitivity function T (jω). Then, Corollary 3.3 can be
written as follows:

η(0,ω)=
√
(1 +U)2 + V 2
√
U2 + V 2

= 1

|T (jω)| > α. (3.57)

On the other hand, from (3.54)

�
{

1 + (1 + α)KG(ejωh)

1 + (1 − α)KG((ejωh)

}
> 0, (3.58)

and thus the following criteria are obtained:

|1 +KG(ejωh)|
|KG(ejωh)| > α, (3.59)
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Fig. 3.14 Equivalent
passivity system

that is,

β <

∣∣∣∣K + 1

G(ejωh)

∣∣∣∣ . (3.60)

Inequalities (3.57), (3.59), and (3.60) correspond to the circle criterion for nonlinear
time-varying systems.

Passivity Theorem Consider a nonlinear subsystem as shown in Fig. 3.14. Here,
φ(·) is some nonlinear (time-invariant) element that is defined in the first and third
quadrants, δ is a bilinear operator as shown in (3.34), and q is a non-negative pa-
rameter. From the left block of the diagram,

ê(z)+ q · 2

h
· 1 − z−1

1 + z−1
ê(z)= ê∗(z). (3.61)

Then,

1 + z−1

2
ê(z)+ q · 1 − z−1

h
ê(z)= 1 + z−1

2
ê∗(z). (3.62)

Therefore, the following relation can be given with respect to time sequences:

e(k)+ q · �e(k)
h

= e∗(k), (3.63)

where, as defined in Chap. 2,

e(k)= e(k)+ e(k − 1)

2
, �e(k)= e(k)− e(k − 1).

In regard to the inner product of the neutral point of input/output sequences, the
following relation can be obtained:

〈
y(k), e∗(k)

〉
N

= 〈
φ(e(k)), e∗(k)

〉
N

= 〈
φ(e(k)), e(k)+ q · �e(k)

h
· 〉
N

= 〈
φ(e(k)), e(k)

〉
N

+ q

h
· 〈
φ(e(k)),�e(k)

〉
N
, (3.64)

where

φ(e(k))= φ(e(k)+ φ(e(k − 1))

2
.

Since nonlinear characteristic φ(·) belongs to the first and third quadrants, the fol-
lowing inequality must be satisfied for N → ∞:〈

φ(e(k)), e(k)
〉
N

≥ 0. (3.65)
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If q ≥ 0 and 〈
φ(e(k)),�e(k)

〉
N

≥ 0, (3.66)

the following inequality is satisfied:〈
φ(e(k)), e∗(k)

〉
N

≥ 0. (3.67)

Inequality (3.66) was described in Chap. 2. Thus, the property of passivity has been
elucidated with respect to Lemma 2.2.

Autonomous System Stability Consider a nonlinear control system as shown in
Figs. 3.9 and 3.10. When considering continuous plant G(s), G(z) should be given
by

G(z)= Z
{

1 − e−hs

s
G(s)

}
= (1 − z−1)Z

{
G(s)

s

}
= (1 − z−1)G1(z). (3.68)

As was described in Chap. 1, (3.68) is expressed as

G(z)= b0 + b1z
−1 + b2z

−2 · · · + bnz
−n

1 + a1z−1 + a2z−2 · · · + anz−n
= b0z

n + b1z
n−1 + · · · + bn−1z+ bn

zn + a1zn−1 + · · · + an−1z+ an
.

(3.69)

Therefore, the input-output relation should be written as

ŷ(z)=G(z)û(z)= b0z
n + b1z

n−1 + · · · + bn−1z+ bn

zn + a1zn−1 + · · · + an−1z+ an
· û(z). (3.70)

Clearly, (3.70) is rewritten as the following state-space equation:⎧⎨
⎩

x(k + 1)= Ax(k)+ Bu(k),

y(k)= Cx(k)+Du(k),
(3.71)

x ∈ Zn, u, y,D ∈ Z, A ∈ Zn×n, B,C ∈ Zn,

and furthermore, from the block diagram,

e(k)= r(k)− y(k), u(k)= v(k)+ d(k), v(k)=Nd(e). (3.72)

Hence, the closed-loop characteristic can be given as:⎧⎨
⎩

x(k + 1)= f (x(k), r(k), d(k))

y(k)= g(x(k), r(k), d(k))
(3.73)

x(k) ∈ Zn, r(k), u(k), y(k) ∈ Z

f : Zn ×Z → Zn, g : Zn ×Z → Z, k ∈ Z+.
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If exogenous inputs r(k), d(k) (e.g., reference and/or disturbance) are considered
truncated functions:{

rN(k)= r(k) for k < N,

rN(k)= 0 for k ≥N,

{
dN(k)= d(k) for k < N,

dN(k)= 0 for k ≥N,

the state equation can be written in the following autonomous form:⎧⎨
⎩

x(k + 1)= f̃ (x(k))

y(k)= g̃(x(k)) for k =N,N + 1, · · ·
. (3.74)

Therefore, if ‖y(k)‖2 <∞ with respect to the above truncated inputs, the system is
regarded as input-output stable in the �2 sense.

In this case, if |y(k)| → 0 or ‖x(k)‖ → 0, the system is said to be asymptoti-
cally stable. Strictly speaking, in regard to some Lyapunov-type function V (x), if
V (x(k + 1)) < V (x(k)) (i.e., the inclusive characteristic) holds, the system can be
defined as asymptotically stable. Moreover, when ‖x(k)‖ ≤ Xe−at (X > 0, a > 0),
the system may be said to be exponentially stable.

Example 3.3 We will now check the time responses of discretized feedback control
for continuous plants as shown in Example 3.1, i.e.,

G(s)= K

s(s + 0.2)(s + 0.4)
, K = 0.02.

The feedback control system is as shown in Figs. 3.9 and 3.10. Moreover, the
discretized nonlinear characteristics are assumed to be as shown in Figs. 3.11(a)
and (b).

Considering the expressions for (3.71) and (3.72) (and, e.g., (1.15) and (1.16) in
Chap. 1), the following discrete-time state equation can be obtained from (3.43):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡
⎢⎣x1(k + 1)

x2(k + 1)

x3(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣ 2.49 1 0

−2.04 0 1

0.549 0 0

⎤
⎥⎦

⎡
⎢⎣x1(k)

x2(k)

x3(k)

⎤
⎥⎦ +

⎡
⎢⎣0.0029

0.0099

0.0021

⎤
⎥⎦u(k),

y(k)= x1(k),

(3.75)

and

e(k)= rN(k)− y(k), u(k)=Kpv(k)+ dN(k), v(k)=Nd(e).

Thus, when the nonlinear characteristic is as shown in Fig. 3.11(a), the time re-
sponses for k ≥N with respect to the initial states x1(N)= 6.0, x2(N) = x3(N)=
0.0 become as shown in Figs. 3.15(a) and (b). On the other hand, when the non-
linear characteristic is as shown in Fig. 3.11(b), the time responses become as
shown in Figs. 3.16(a) and (b). In these figures, e(k), e†(k), �e(k), and �e†(k)
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Fig. 3.15 Phase traces and attenuating responses for Example 3.3 (sigmoid-type nonlinearity)

Fig. 3.16 Phase traces and attenuating responses for Example 3.3 (inclined sinusoidal nonlinear-
ity)

(k =N,N + 1, · · · ) are drawn when (i) Kp = 1.0 and (ii) Kp = 0.5. As is obvious
in (a), �e†(k) is only 0 or ±1.

Example 3.4 Next, consider the continuous plant as shown in Example 3.2, i.e.,

G(s)= K(s + 0.5)(−s + 1.0)

s(s + 0.2)(s + 1.0)
, K = 0.15.

In regard to the expression of (3.71) and (3.72) (and, e.g., (1.15) and (1.16) in
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Fig. 3.17 Phase traces and attenuating responses for Example 3.4 (sigmoid-type nonlinearity)

Chap. 1), the following discrete-time state equation can be obtained from (3.43):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎣x1(k + 1)

x2(k + 1)

x3(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣ 2.17 1 0

−1.49 0 1

0.301 0 0

⎤
⎥⎦

⎡
⎢⎣x1(k)

x2(k)

x3(k)

⎤
⎥⎦ +

⎡
⎢⎣−0.0494

0.1890

−0.0966

⎤
⎥⎦u(k),

y(k)= x1(k),

(3.76)

and

e(k)= rN(k)− y(k), u(k)=Kpv(k)+ dN(k), v(k)= Nd(e).

Thus, when the nonlinear characteristic is as shown in Fig. 3.11(a), the time re-
sponses for k ≥N with respect to the initial states x1(N)= 6.0, x2(N) = x3(N)=
0.0 become as shown in Figs. 3.17(a) and (b). On the other hand, when the nonlin-
ear characteristic is as shown in Fig. 3.11(b), the time responses become as shown
in Figs. 3.18(a) and (b). Also in these figures, e(k), e†(k), �e(k), and �e†(k)

(k =N,N + 1, · · · ) are drawn when (i) Kp = 1.0 and (ii) Kp = 0.5.

3.7 Modified Hall Diagram (Off-Axis M-Circles)

In order to interpret (3.31) and (3.32) in Theorem 3.2 graphically, a modified Hall
diagram is presented in this section [10]. Here, the following inverse function of the
η-function is considered:

ξ(q,ω)= 1

η(q,ω)
. (3.77)
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Fig. 3.18 Phase traces and attenuating responses for Example 3.4 (inclined sinusoidal nonlinear-
ity)

Using this notation, inequality (3.31) is rewritten as follows:

M0 = ξ(q0,ω0)= min
q

max
ω

ξ(q,ω) <
K

β
. (3.78)

When q = 0, the ξ -function can be expressed as

ξ(0,ω)=
√
U2 + V 2√

(1 +U)2 + V 2
= |Sc(ejωh)|, (3.79)

where Sc(z) is the complementary sensitivity function for the discrete-time system.
It is evident that the following curve on the complex plane,

ξ(0,ω)=M, (M : const.), (3.80)

corresponds to an M-circle in the Hall diagram.8 Figure 3.19 shows an example of
a Hall diagram and Nyquist curves accompanied by performance indices, Mp , gain
margin, and phase margins.

However, since (3.32) in Theorem 3.2 contains an arbitrary non-negative number
q , the equality that corresponds to (3.80) should be rewritten as

ξ(q,ω) := U2 + V 2

−q�V + √
q2�2V 2 + (U2 + V 2){(1 +U)2 + V 2} =M. (3.81)

From this expression, the following quadratic equation can be obtained:

(M2 − 1)U2 + 2M2U + (M2 − 1)V 2 +M2 − 2Mq�V = 0. (3.82)

8See Appendix D.
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Fig. 3.19 Hall Diagram and
Nyquist curves
(Mp = 1.35,3.0,
gM = 11.0,5.16 [dB],
pM = 43.8,20.8 [deg])

Obviously, when M = 1,

2U + 1 = 2q�

M
· V.

When M > 1, the following equation of circles is obtained from (3.82):

(
U + M2

M2 − 1

)2

+ (V − λ)2 = M2

(M2 − 1)2
+ λ2, (3.83)

where

λ= q�M

M2 − 1
≥ 0. (3.84)

Although the distorted frequency � is a function of ω, the term

cq := q�(ω)≥ 0 (3.85)

is assumed to be constant in this study. Hence, it can been seen that (3.83) represents
off-axis circles with their center at

(−M2/(M2 − 1), λ)

and with a radius of √
M2/(M2 − 1)+ λ2.

Note that either of the circles crosses the real axis at

U = −M

M − 1
or

−M

M + 1
,

in which we will consider the latter for the robust stability problem.
The verification of robust stability using the above modified Hall diagram (off-

axis M-circles) is based on the following theorem.
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Fig. 3.20 Off-axis M-circles
and Nyquist curves for
Example 3.1 (Kp = 1.0,0.43,
M = 1.23, and
cq = 0.0, · · · ,10.0)

Theorem 3.4 If vector locus KG(ejωh) exists in the following area as determined
by a certain q = q0 (the outside of circle C shown in Fig. 3.20):

ξ(q0,ω)= ξ̃ (q0,ω,U,V )≤M0 <
K

β
, (3.86)

the discretized feedback system is stable.

Proof As is evident from (3.78), the following inequality is valid in general:

ξ(q,ω)≤ ξ(q,ω0), ∀ω ∈ [0,ωc]. (3.87)

The right side of (3.87) is a peak value for angular frequency ω. Here, ω0 is not
always determined as only one frequency, and may not be a smooth (differentiable)
point of the frequency range depending on the q-value. Nonetheless, inequality
(3.38) is also satisfied for q = q0. Therefore, the following inequality is obtained:

ξ(q0,ω)≤ ξ(q0,ω0)=M0, ∀ω ∈ [0,ωc]. (3.88)

It can be shown that (3.86) in Theorem 3.4 is equivalent to (3.32). �

Figure 3.20 shows an example of the modified Hall diagram and Nyquist curves
for 0 ≤ cq ≤ 4.0 and M = 1.24. Here, as an open-loop transfer function, we consider
G(s) shown in (3.42) and the proportional gain Kp . In the figure, N1 is a vector
locus that contacts with an M-circle at the peak value (Mp = 1.24, Kp = 1.0,0.43).
On the other hand, N2 is a vector locus that contacts with a circle C on the real
axis, where all the M-circles cross the real axis. In this case, Aizerman’s conjecture
extended to discrete-time systems is valid. At the continuous saddle point which is
also the phase-crossover point Pc, the following equation is satisfied:(

∂ξ(q,ω)

∂q

)
q=q0,ω=ω0

= 0. (3.89)
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Fig. 3.21 Off-axis M-circles
and Nyquist curves for
Example 3.2 (Kp = 1.0,0.45,
M = 1.2, and
cq = 0.0, · · · ,10.0)

Equality (3.89) is equivalent to (3.47). Incidentally, the phase margin pM is obtained
from the gain-crossover point Gc.

Figure 3.21 shows the case where the open-loop transfer function is given
in (3.44). As is obvious from N2 locus in the figure, the curve does not contact
with a circle C on the real axis. In this case, Aizerman’s conjecture is not valid; that
is, the equality (3.89) is not satisfied.

3.8 Modified Nichols Diagram

Naturally, the above ideas can be applied to the Nichols diagram as well [9]. If the
absolute value and the argument of KG(ejωh) are defined as

ρ =
√
U2 + V 2 and θ = tan−1

(
V

U

)
,

the ξ -function (3.81) can be rewritten as follows:

ξ(q,ω)= ρ2

−qρ� sin θ +
√
q2ρ2�2 sin2 θ + ρ2{(1 + ρ cos θ)2 + ρ2 sin2 θ}}

= ρ

−q� sin θ +
√
q2�2 sin2 θ + ρ2 + 2ρ cos θ + 1

, (3.90)

because U = ρ cos θ and V = ρ sin θ .
In this expression, the following robust stability condition must hold:

M0 = ξ(q0,ω0)= min
q

max
ω

ξ(q,ω) <
K

β
.
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When q = 0, the ξ -function can be expressed as

ξ(0,ω)= ρ√
ρ2 + 2ρ cos θ + 1

= |Sc(ejωh)|, (3.91)

where Sc(z) is the complementary sensitivity function for the discrete-time system.
It is evident that the following curve on the gain-phase plane,

ξ(0,ω)=M, (M : const.), (3.92)

corresponds to the contour of the constant M in the Nichols diagram.9

As described in the previous section, since an arbitrary non-negative number q is
considered, the ξ -function that corresponds to (3.79) and (3.80) is given as follows:

ρ

−q� sin θ +
√
q2�2 sin2 θ + ρ2 + 2ρ cos θ + 1

=M. (3.93)

From this expression, the following quadratic equation can be obtained:

(M2 − 1)ρ2 + 2ρM(M cos θ − q� sin θ)+M2 = 0. (3.94)

The solution of this equation is expressed as

ρ = − M

M2 − 1
(M cos θ−q� sin θ)± M

M2 − 1

√
(M cos θ − q� sin θ)2 − (M2 − 1).

(3.95)
The modified contour in the gain-phase plane (θ , ρ) is drawn based on Eq. (3.95).
Although the distorted frequency � is a function of ω, the term q� = cq ≥ 0 is
assumed to be a constant parameter. This assumption for M contours is the same as
in the previous section.

Figure 3.22 shows the modified Nichols diagram for Example 3.1 (M = 1.23,
0 ≤ cq ≤ 4.0, and Kp = 1.0,0.43. Here, GP1 is a gain-phase curve that touches an
M contour at the peak value (Mp = 1.23,Kp = 0.43). On the other hand, GP2 is
a gain-phase curve that crosses the θ = −180◦ line and all the M contours at the
phase-crossover point Pc. That is, the gain margin gM becomes equal to

gM = −20 log10 M/(M + 1)= 5.4[dB].

Obviously, at point Pc, the gain-phase curve GP2 touches an M contour. At this
point, the following (continuous saddle point) equation is satisfied:(

∂ξ(q,ω)

∂q

)
q=q0,ω=ω0

= 0. (3.96)

9See Appendix E.
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Fig. 3.22 Modified Nichols
diagram for Example 3.1
(M = 1.23,
cq = 0.0,0.2, · · · ,4.0)

Fig. 3.23 Modified Nichols
diagram for Example 3.2
(M = 1.2,
cq = 0.0,0.2, · · · ,4.0)

In this case, Aizerman’s conjecture extended to discrete-time systems is valid. In-
cidentally, the phase margin pM is obtained from the phase-crossover point Pc as
follows:

pM = 20.5[deg].

Figure 3.23 shows the modified Nichols diagram for Example 3.2 (M = 1.2,
0 ≤ cq ≤ 4.0, and Kp = 1.0,0.45. Here, GP1 is a gain-phase curve that touches an
M contour at the peak value (Mp = 1.2,Kp = 0.45). Moreover, GP2 is a gain-phase
curve that crosses the θ = −180◦ line and all the M contours at the phase-crossover
point Pc. That is, the gain margin gM becomes equal to

gM = −20 log10 M/(M + 1)= 14.8[dB],

and the phase margin pM is obtained from Gc as

pM = 49.8[deg].
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However, the gain-phase curve does not touch an M contour at the phase-crossover
point Pc. The continuous saddle point equation (3.96) is not satisfied, and thus, in
this case, Aizerman’s conjecture is not valid.

3.9 Exercises

(1) Show that inequality (3.15) corresponds to Fig. 3.2(b).
(2) Using the result of (3.39), prove the following inequality:

β <K · −q�V + √
q2�2V 2 + (U2 + V 2){(1 +U)2 + V 2}

U2 + V 2
.

(3) Show that the right side of the above inequality can be written as

K · −q� sin θ +
√
q2�2 sin2 θ + ρ2 + 2ρ cos θ + 1

ρ
,

where ρ(ω)= |KG(ejωh)| and θ(ω)= ∠KG(ejωh).
(4) Prove the stability condition (3.11) in Theorem 3.1 based on the definition of

input-output stability.
(5) Prove that

δ(ejωh)= j�(ω)= j
2

h
tan

(
ωh

2

)

in (3.33), where

δ(z)= 2

h
· z− 1

z+ 1
.

(6) Show that (3.89) is equivalent to (3.47).
(7) Derive (3.116) and (3.118) from (3.114) and (3.115).

Appendix A: Fourier-Plancherel Transform

For continuous-time signals, consider the following integral pairs:

x̂(jω)=
∫ ∞

−∞
x(t) e−jωtdt (3.97)

x(t)= 1

2π

∫ ∞

−∞
x̂(jω) ejωtdω, (3.98)
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where ω = 2πf .10 Usually, (3.97) is called the Fourier transform, and (3.98) is
called the inverse Fourier transform [5, 6]. When evaluating at s = jω (s: Laplace
transform variable, in general, s = σ + jω), the preceding transforms become bilat-
eral as follows:

x̂(s)=
∫ ∞

−∞
x(t) e−stdt (3.99)

x(t)= 1

2πj

∫ j∞

−j∞
x̂(s) estds. (3.100)

With respect to t ∈ [0,∞), the following transform is defined:

x̂(s)=
∫ ∞

0
x(t) e−stdt. (3.101)

Definition (3.101) is the (unilateral) Laplace transform, which is well known in the
field of control engineering.

The value of integrations (3.97) and (3.99) exists when the following inequality
holds:

|x̂(s)| =
∣∣∣∣
∫ ∞

−∞
x(t) e−stdt

∣∣∣∣ ≤
∫ ∞

−∞
|x(t)|dt <∞.

In functional analysis, x(t) is said to belong to the L1 space, and is written as
x(t) ∈ L1. In general, if ∫ ∞

−∞
|x(t)|pdt <∞,

x(t) is said to belong to Lp and is written as x(t) ∈ Lp or

x ∈ Lp(R), R := (−∞,∞).

In the Lp space, the norm is defined as follows:

‖x(t)‖p :=
(∫ ∞

−∞
|x(t)|pdt

)1/p

. (3.102)

Obviously, in regard to the inverse Fourier (Laplace) transform, x(s) must belong to
the L1 space.

Plancherel’s theorem states that if x(t) ∈ L1 ∩L2, the above transformed function
x̂(s) can also be determined similarly.

10In this book, we assume that the independent variable t represents time (expressed in the SI unit
of seconds), and the transformed variables f and ω represent ordinary frequency (in Hertz) and
angular frequency (in radians per second), respectively.
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Plancherel Theorem When x ∈ L2(R), the following x̂(jω) exists:

x̂A(jω)=
∫ A

−A

x(t) e−jωtdt

∫ ∞

−∞
|x̂(jω)− x̂A(jω)|2dω → 0, for A→ ∞.

With respect to x̂(jω), the following relation holds:

xB(t)= 1

2π

∫ B

−B

x̂(jω) ejωtdω

∫ ∞

−∞
|x(t)− xB(t)|2dt → 0, for B → ∞.

Appendix B: Parseval Identity

Consider the following integral with respect to x1(t), x2(t) ∈ L1 ∩L2:

I =
∫ ∞

−∞
dtx1(t)x2(t). (3.103)

By using the inverse Fourier (Laplace) transform, x2(t) is given by

x2(t)= 1

2πj

∫ j∞

−j∞
dsx̂2(s)e

st .

Substitution of this value of x2(t) into (3.103) yields

I =
∫ ∞

−∞
dt x1(t)

1

2πj

∫ j∞

−j∞
ds est x̂2(s).

Interchange the order of the integrations,

I = 1

2πj

∫ j∞

−j∞
ds x̂2(s)

∫ ∞

−∞
dt est x1(t). (3.104)

By applying the Fourier (two-sided Laplace) transform,

x̂1(s)=
∫ ∞

−∞
dt e−st x1(t).

This expression can be written as

x̂1(−s)=
∫ ∞

−∞
dt est x1(t)
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Therefore, (3.104) is expressed as

I = 1

2πj

∫ j∞

−j∞
ds x̂1(−s)x̂2(s). (3.105)

For an easier understanding, (3.105) is rewritten for s = jω,

I = 1

2π

∫ ∞

−∞
x̂1(−jω)x̂2(jω) dω. (3.106)

When x1(t)= x2(t)= x(t), (3.106) is given by

I = 1

2π

∫ ∞

−∞
x̂(−jω)x̂(jω) dω = 1

2π

∫ ∞

−∞
|x̂(jω|2 dω. (3.107)

Then, the following equality is obtained from (3.103):∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|x̂(jω|2 dω. (3.108)

Here, define the following L2 norms:

‖x(t)‖2 :=
(∫ ∞

−∞
|x(t)|2dt

)1/2

‖x̂(jω)‖2 :=
(

1

2π

∫ ∞

−∞
|x̂(jω)|2dω

)1/2

.

Thus, we obtain

‖x(t)‖2 = ‖x̂(jω)‖2.

This formula is called Parseval’s identity.
On the other hand, as for discrete-time signals, consider the following summation

of discrete signals:

J =
∞∑
k=1

x1(k)x2(k). (3.109)

By using the inverse z-transform,

x2(k)= 1

2πj

∫
|z|=1

x̂2(z)z
k−1dz, (3.110)

where z= eh(σ+jω). Substitution of this x2(k) into (3.109) yields

J =
∞∑
k=0

x1(k)
1

2πj

∫
|z|=1

x̂2(z)z
k−1dz.
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Here, for σ = 0,

dz= jhejωh dω.

Based on the z-transform,

x̂1(z)=
∞∑
k=0

x1(k) z
−k,

the following can be defined:

x̂1(z)=
∞∑
k=1

x1(k) z
k.

Thus

J = 1

2πj

∫
|z|=1

x̂1(z)x̂2(z)z
−1dz= h

2π

∫ π

−π

x̂1(e
−jωh) x̂2(e

jωh) dω. (3.111)

When x1(k)= x2(k)= x(k), (3.111) is given by

J = h

2π

∫ π

−π

x̂(e−jωh) x̂(ejωh) dω.= h

2π

∫ π

−π

|x̂(e−jωh)|2 dω.

Then, the following equality is obtained from (3.109):

∞∑
k=0

|x(k)|2 = h

2π

∫ π

−π

|x̂(ejωh)|2dω. (3.112)

If the norm expressions in the �2 space,

‖x(k)‖2 :=
( ∞∑
k=0

|x(k)|2
)1/2

‖x̂(ejωh)‖2 :=
(

h

2π

∫ π

−π

|x̂(ejωh)|2dω

)1/2

are used, the relation

‖x(k)‖2 = ‖x̂(ejωh)‖2

can be obtained. The result is called Parseval’s identity [7, 12].
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Fig. 3.24 Relation between z-plane and δ-plane, and contours

Appendix C: Bilinear Transformation and Mapping

The relationship between z and δ with respect to

δ = 2

h
· z− 1

z+ 1
, that is, z= 1 + h

2 δ

1 − h
2 δ

,

is as shown in Figs. 3.24(a) and (b). Furthermore, from the following equality:

δ(ejωh)= j�(ω)= j
2

h
tan

(
ωh

2

)
,

the relationship between ω and � is illustrated in Fig. 3.25.

Appendix D: The Hall Diagram

Consider a (unity feedback) closed-loop characteristic,

W(z)= G(z)

1 +G(z)
, (3.113)

as shown in Fig. 3.26. When we define the following frequency characteristic for
ω < ωc as shown in (3.32):

G(ejωh)=U(ω)+ jV (ω),

and

W(ejωh)=Mejϕ,
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Fig. 3.25 Distorted
frequency characteristic

Fig. 3.26 Discrete-time
unity feedback system

obviously,

M = |W(ejωh)| and ϕ = ∠W(ejωh).

Therefore,

M = |U + jV |
|1 +U + jV | (3.114)

and

ϕ = tan−1 V

U
− tan−1 V

1 +U
. (3.115)

By rearranging (3.114), the following equation is obtained:

(
U + M2

M2 − 1

)2

+ V 2 =
(

M

M2 − 1

)2

, for M �= 1. (3.116)

Here, when M = 1, the equation is given as

U = − 1

2
. (3.117)

Equation (3.117) is a (purple) line in Fig. 3.27, and (3.116) (in blue) circles the right
side to (3.117) for M < 1 and the left side to the line for M > 1.



106 3 Robust Stability Analysis

Fig. 3.27 Hall diagram

On the other hand, with respect to (3.115) the following circles equation is ob-
tained by setting N = tanϕ:

(
U + 1

2

)2

+
(
V − 1

2N

)2

= 1

4

(
N2 + 1

N2

)
. (3.118)

Equation (3.118) also becomes circles, shown in light blue in Fig. 3.27. Such type
of diagram is often called the Hall diagram [2].

The derivations of (3.116) and (3.118) from (3.114) and (3.115) are left for the
reader.

Appendix E: The Nichols Diagram

Next, consider the open-loop characteristic G(ejωh) in polar coordinates as follows:

G(ejωh)= ρ · ejθ . (3.119)

Obviously, the closed-loop characteristic is given by

W(ejωh)= ρ · ejθ

1 + ρ · ejθ
. (3.120)

Therefore,

M = |W(ejωh)| = ρ√
(1 + ρ cos θ)2 + ρ2 sin2 θ

. (3.121)

By rearranging (3.121), the following quadratic equation is obtained for M �= 1:

ρ2 + 2
M2 cos θ

M2 − 1
· ρ + M2

M2 − 1
= 0. (3.122)
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Fig. 3.28 Nichols diagram

Then,

ρ = 1

M2 − 1

(
−M2 cos θ ±M

√
cos2 θ − (M2 − 1)

)
. (3.123)

Curves (3.123) are drawn in blue in Fig. 3.28. When M = 1, note that ρ is simply
written as follows:

ρ = − 1

2 cos θ
. (3.124)

This curve is drawn in purple in the figure.
On the other hand, for phase ϕ,

ϕ = ∠W(ejωh)= θ − tan−1
(

ρ sin θ

1 + ρ cos θ

)
. (3.125)

From (3.125),

N = tanϕ = sin θ

cos θ + ρ
.

Then,

ρ = sin θ

tanϕ
− cos θ. (3.126)

Curves (3.125) are drawn in sky blue in the figure. Here, the derivations of (3.123),
(3.124), and (3.126) from (3.121) and (3.125) are left for the reader.

The diagram shown in Fig. 3.28 is the well-known Nichols diagram [4].
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Chapter 4
Model Reference Feedback and PID Control

4.1 Introduction

In the previous chapters, the robust stability of nonlinear discrete-time and discrete-
value (discretized) control systems was examined in the frequency domain. In this
chapter, a design problem for these discretized control systems is presented based on
first a traditional but discretized PID control scheme, and then on a discrete-model
reference feedback structure. The model reference feedback using a second-order
continuous-value (linear) system is equivalently transformed into a traditional PID
control. In the design procedure, the concepts of a modified Nyquist and Hall dia-
gram (off-axis M-circles) and a modified Nichols chart for nonlinear control systems
are applied.

4.2 Discretized PID Control

4.2.1 PID Control Scheme

The control scheme based on proportional-integral-derivative (PID) techniques has
been widely used in practice and theory irrespective of whether it is continuous or
discrete in time [1–4, 18, 21, 22], since it is a basic feedback control technique.

For a continuous-time classical representation,

uc(t)=Kpu(t)+CI

∫
u(t)dt +CD

du(t)

dt
. (4.1)

Using the Laplace transform with zero initial conditions, we have

ûc(s)=Kpû(s)+CI

û(s)

s
+CDsû(s)= C(s)û(s). (4.2)

Y. Okuyama, Discrete Control Systems,
DOI 10.1007/978-1-4471-5667-3_4, © Springer-Verlag London 2014
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Thus, the controller can be written as1

C(s)=Kp

(
1 + 1

TI s
+ TDs

)
, (4.3)

where TI and TD are referred to as integral and derivative time, respectively.
The PID controller is referred to as a three-term controller, which means that

the control strategy can easily be adjusted by using only three parameters. If the
stability of the control system is guaranteed, a proportional-integral (PI) controller
is also used, for example, in industrial processes approximated by a first-order time-
delay model [7, 8, 19]. In this case, only two parameters need to be adjusted.

In a similar representation as in the continuous case, a discrete-time PID control
scheme can be given as follows:

ûc(z)=Kpû(z)+CI · û(z)
δ

+CD · δû(z), (4.4)

where δ should be considered a bilinear operator as we have defined in (3.34), i.e.,

δ = 2

h
· 1 − z−1

1 + z−1
. (4.5)

Of course, as shown in (4.3), the controller can be written as

C(δ)=Kp

(
1 + 1

TI δ
+ TDδ

)
. (4.6)

The operator δ has the following properties:

(1) Since

δ−1 = h

2
· 1 + z−1

1 − z−1
,

the relationship between the input and output sequences, x(k), y(k), (k =
0,1,2, · · · ) can be written as

y(k)= y(k − 1)+ h

2
(x(k)+ x(k − 1)). (4.7)

This transformation corresponds to a trapezoidal summation (integration).
(2) On the other hand, with respect to the operator δ, the following relation is ob-

tained:

y(k)= −y(k − 1)+ 2

h
(x(k)− x(k − 1)). (4.8)

1Since the pure differentiation cannot be realized in practice, a high-cut filter is usually added in
the derivative operation.
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Fig. 4.1 Relationship
between ω and �

Therefore, the PID controller can be given in a bilinear expression,

C(z)=Kp

(
1 + h

2
· 1 + z−1

TI (1 − z−1)
+ 2

h
· TD(1 − z−1)

1 + z−1

)
. (4.9)

In the frequency domain, (4.6) can be obtained from (3.33) as follows:

C(j�)=Kp

(
1 + 1

jTI�
+ jTD�

)
=Kp

[
1 + j

(
TD�− 1

TI�

)]
, (4.10)

where � is the distorted frequency of ω that is defined in (3.33), i.e.,

�(ω)= 2

h
tan

(
ωh

2

)
.

The relationship between ω and �(ω) is drawn as shown in Fig. 4.1.
We can also apply the direct difference method to the discrete-time PID controller

as follows:

uc(k)=Kpu(k)+CI

k∑
j=0

u(j)+CD�u(k), (4.11)

where �u(k)= u(k)− u(k − 1) is a backward difference of the input signal. Using
the z-transform expression, (4.11) can be written as

ûc(z)=Kpû(z)+CI (1 + z−1 + z−2 + · · · )û(z)+CD(1 − z−1)û(z). (4.12)

Therefore, when considering |z|> 1, (4.12) can be written in closed form,

ûc(z)=Kpû(z)+CI · 1

1 − z−1
û(z)+CD(1 − z−1)û(z). (4.13)
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Fig. 4.2 Discretized PID
control system

Fig. 4.3 Discretized
nonlinear PID control system

Thus, the controller can be given as follows:

C(z)=Kp

(
1 + h

TI (1 − z−1)
+ TD

h
(1 − z−1)

)
. (4.14)

By using the above PID controllers, the discretized control systems can be repre-
sented as shown in Fig. 4.2 and equivalently in Fig. 4.3.

4.2.2 Controller Algorithm

The PID control algorithm based on (4.13) and (4.14) is easily realized in a com-
puter (or a microprocessor). It can also be represented by a block diagram, as
shown in Fig. 4.4. On the other hand, the controller algorithm using a bilinear
approximation method based on (4.9) becomes a little complicated, as shown in
Fig. 4.5.

However, the difference in the controller performance between these algorithms
is not so large in the frequency response for ω � ωs/2 = π/h. For example, the
gain curves in the frequency domain become as shown in Figs. 4.6(a) and (b), where
Kp = CI = CD = 1.0 and h = 1.0 are chosen. Here, (i) and (ii) are frequency re-
sponses (vs. ω) of the PID controller using the direct difference and bilinear approx-
imation methods, respectively.

In addition, if the controller algorithm without division as shown in (4.11)
and (4.12) is used, all variables can be realized in integers when parameters Kp ,
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Fig. 4.4 PID controller using
a direct difference method,
where C∗

I = CIh=Kph/TI
and C∗

D = CD/h=KPTD/h

CI , and CD are also chosen in integers. Therefore, the direct difference method
(4.11) will be used in the following examples.

Fig. 4.5 PID controller using a bilinear approximation method, where C∗∗
I = CIh/2 =Kph/2TI

and C∗∗
D = 2CD/h= 2KPTD/h

Fig. 4.6 Frequency-domain characteristics of discretized PID controllers (gain curves)
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Table 4.1 PID parameters
and control performances for
Example 4.1

Cases Kp CI CD Mp gM [dB] pM [deg]

(i) 1.0 1.0 0.0 1.70 13.6 34.5

(ii) 1.0 1.0 0.5 1.67 16.3 35.2

Example 4.1 (A) Consider the following continuous plant without a pole on the
origin (compare with Examples 3.1 and 3.2):

G(s)= K

(s + 0.2)(s + 0.4)
, K = 0.02. (4.15)

Here, the sampling period is assumed to be h= 1.0. Including the integration of the
zero-order hold as shown in (1.66), the following partial fraction is obtained:

GI (s)= G(s)

s
= 0.25

s
− 0.5

s + 0.2
+ 0.25

s + 0.4
. (4.16)

Then,

GI (z)= 0.25

1 − z−1
− 0.5

1 − e−0.2z−1
+ 0.25

1 − e−0.4z−1
.

The z-transform of (4.15) with the zero-order hold is given as

G(z)= (1 − z−1)GI (z)= 0.0082z+ 0.0067

z2 − 1.489z+ 0.549
. (4.17)

Using a direct difference method as shown in (4.14), the controller can be written as

C(z)=Kp + CI

1 − z−1
+CD(1 − z−1), (4.18)

where CI = Kp/TI and CD = KpTD . The PID parameters and control perfor-
mances are given in Table 4.1. Here, Mp , gM , and pM are the peak values, gain
margins, and phase margins, respectively. Figure 4.7 shows the discretized nonlin-
ear characteristics for this example, and Fig. 4.8 the Hall diagram. Figures 4.9(a)
and (b) show the phase traces and step responses for cases (i) and (ii). The figures
clearly show that the control system responses are well stabilized by using these
PI and PID controllers. In this case, the modified Hall diagram is drawn as shown
in Figs. 4.8(i) and (ii). Obviously, the robust stability is satisfied as β > 1.0 in ei-
ther case. In this first example, the discretized nonlinear characteristic considered
in the feedback loop is assumed to be a sigmoid (saturated) function as shown in
Fig. 4.7(a) [11, 12].

Example 4.1 (B) Consider the case in which the discretized nonlinear characteristic
is given as shown in Fig. 4.7(b) (i.e., the inclined sine function, as was shown in
Figs. 2.6–2.8 (b).) In this case, similar phase traces and step responses are obtained,
as shown in Figs. 4.10(a) and (b).
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Fig. 4.7 Discretized nonlinear characteristics for Example 4.1

Fig. 4.8 Modified Hall diagram for Example 4.1

Example 4.2 Consider the following continuous plant without a pole on the origin
(with a slightly quicker response than in Example 4.1):

G(s)= K

(s + 0.5)(s + 1.0)
, K = 0.3. (4.19)

Including the integration of the zero-order hold, we have

GI (s)= G(s)

s
= 0.6

s
− 1.2

s + 0.5
+ 0.6

s + 1.0
. (4.20)
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Fig. 4.9 Phase traces and step responses for Example 4.1 (A)

Fig. 4.10 Phase traces and step responses for Example 4.1 (B)

Here, the sampling period is chosen to be the same as in Example 4.1, i.e., h= 1.0.
Therefore,

GI (z)= 0.6

1 − z−1
− 1.2

1 − e−0.5z−1
+ 0.6

1 − e−1.0z−1
.

The z-transform of (4.19) with the zero-order hold is given as follows:

G(z)= (1 − z−1)GI (z)= 0.093z+ 0.056

z2 − 0.974z+ 0.223
. (4.21)

In the case of (i) in Table 4.1 (i.e., PI control), the discrete PI controller is written as

C(z)=Kp + CI

1 − z−1
.
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Fig. 4.11 Modified Hall diagram and pole location for Example 4.2

Fig. 4.12 Step responses for
Example 4.2

If the controller parameters are chosen as Kp = 1.0 and CI = 1.0, the characteristic
equation is approximately given as

f̂ (z)= z3 − 1.79z2 + 1.22z− 0.28 = 0. (4.22)

In this case, the modified Hall diagram is drawn as shown in Fig. 4.11(a). Fig-
ure 4.11(b) shows the location of the characteristic roots of the control system in
the z-plane. The step responses of the PI control system are shown in Fig. 4.12. The
robust performance of (4.22) will be discussed in Chap. 6.
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4.2.3 Controlled Systems with Time Delay

The transfer function of a continuous plant (controlled system) with a time delay
can be written based on the form of (1.65) as

G(s)=G0(s)e
−Lps = Np(s)

(s − p1)(s − p2) · · · (s − pn)
· e−Lps, (4.23)

irrespective of whether the time delay exists in the input or output side of the plant.
Here, Lp is the time delay and Np(s) is a numerator polynomial. The order of the
numerator is less than that of the denominator in general. From the derivation of
G(z) in Sect. 1.5.2, the z-transform transfer function of the continuous plant and
holding circuit is given by

G(z)= (1 − z−1)GI (z)z
−dp , (4.24)

where dp = Lp/h. Thus, with respect to time-delayed systems, the following ex-
pression can be obtained; see (1.73) and (1.74):

G(z)= b0 + b1z
−1 + b2z

−2 · · · + bnz
−n

1 + a1z−1 + a2z−2 · · · + anz−n
· z−dp (4.25)

= b0z
n + b1z

n−1 + · · · + bn−1z+ bn

zn + a1zn−1 + · · · + an−1z+ an
· z−dp . (4.26)

Example 4.3 Consider a plant with time delay Lp (or a transmission delay in the
control action), i.e.,

G(s)= K

(s + 0.2)(s + 0.4)
· e−Lps, K = 0.02, Lp = 2.0. (4.27)

Since h = 1.0, from (4.17) the z-transform of G(s) with a zero-order hold can be
written as

G(z)= 0.0082z+ 0.0067

z2 − 1.489z+ 0.549
· z−2. (4.28)

Therefore, when applying PID algorithm (4.18), the calculation results for the phase
traces and step responses are given as shown in Figs. 4.13(a) and (b). In this case,
allowable sectors β with respect to the robust stability are calculated as shown in
Table 4.2. In case (ii), the robust stability is satisfied with regard to the discretized
nonlinearities as shown in Figs. 3.11(a) and (b) (i.e., sector [0.5,1.5]). The modified
Hall and Nichols diagrams are shown in Figs. 4.14(a) and (b).
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Fig. 4.13 Phase traces and step responses for Example 4.3

Fig. 4.14 Modified Hall and Nichols diagrams for Example 4.3

Table 4.2 PID parameters
and control performances for
Example 4.3

Cases Kp CI CD Mp gM [dB] pM [deg] β

(i) 1.0 1.0 0.5 4.3 3.5 15.1 0.49

(ii) 1.0 1.0 1.0 4.0 3.8 16.1 0.55

4.3 Model Reference Feedback Control

4.3.1 Discrete Model Reference and Observer

A model reference feedback structure for a robust control system was proposed by
the author in 1964 [9]. A discrete-time version of the model reference feedback was
presented in [20]. In this chapter, a discretized model reference control system (see
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Fig. 4.15 Model reference feedback system

Fig. 4.16 Model reference feedback structure

Fig. 4.15) is examined [13–15]. The control system is redrawn as shown in Fig. 4.16.
In these figures, G(s) is a continuous-time and continuous-value plant, and G(z) is
the z-transform of G(s) together with the zero-order hold H. Also, Np(·), Dp1, and
Dp2 are, respectively, a nonlinear element and the input and output discretizing units
which are determined by sensor and actuator elements. Moreover, Gm(z) is a plant
model and F(z) is a feedback compensator (from another point of view, a discrete
observer). Dm(·) and Df (·) are the nonlinear discretized elements of the model and
the compensator, respectively.

In the figures, each symbol e, v, · · · indicates the sequence e(k), v(k), · · · , (k =
0,1,2, · · · ) in discrete time, but for continuous values. Each symbol e†, v†, · · ·
indicates a discrete value that can be assigned to an integer number, e.g.,

e
†
1 ∈ {· · · ,−2γ,−γ,0, γ, 2γ, · · · },
v

†
1 ∈ {· · · ,−2γ,−γ,0, γ, 2γ, · · · }, (4.29)
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where γ is the resolution of each variable. An example of the discretization char-
acteristics Dp1, Dp2 and the discretized characteristic v

†
1 = Dp(e1) is depicted as

shown in Fig. 4.7(A). Here, without loss of generality, the resolutions in Dp1 and
Dp2 are assumed to be γ = 1.0, and the continuous nonlinear curve Np(·) is chosen
as a sigmoid function. Note that nonlinear discretized characteristic Dp(·) corre-
sponds to Nd(·) in Fig. 4.2.

4.3.2 Bilinear Transformation and Discrete Model

The model system KmGm(z) is assumed to be a second-order lag system, e.g.,

KmGm(z)=KmG̃m(δ)= Km

1 +C1δ +C2δ2
, (4.30)

where δ is the following bilinear transformation as shown in (4.5):

δ = 2

h
· z− 1

z+ 1
. (4.31)

Here, Km is the nominal gain of Dm, which is usually chosen as the nominal gain
of discretized nonlinear characteristic Dp (i.e., K), and C1 and C2 are the design
parameters of the model system.

This type of model system will correspond to a discrete observer, although it does
not clearly observe the states of the plant. The z-transform expression of (4.30) is
given by

KmGm(z)= Kmh
2(z+ 1)2

h2(z+ 1)2 + 2C1h(z+ 1)(z− 1)+ 4C2(z− 1)2
. (4.32)

Obviously, the δ-function approaches Laplace transform variable s, when the sam-
pling period is h→ 0.

In this chapter, hereafter, δ will be used instead of the z-transform operator.
Therefore, the feedback compensator KfF(z) as shown in Figs. 4.15 and 4.16 is
defined as

KfF(z)=Kf F̃ (δ)= 1 +C1δ +C2δ
2

Km(1 + c1δ + c2δ2)
. (4.33)

Here, Kf is the nominal gain of Df that will be substituted by 1/Kf , and C1 and
C2 are the design parameters of the feedback compensator. Thus, the z-transform
expression of (4.33) is written as

F(z)= h2(z+ 1)2 + 2C1h(z+ 1)(z− 1)+ 4C2(z− 1)2

h2(z+ 1)2 + 2c1h(z+ 1)(z− 1)+ 4c2(z− 1)2
. (4.34)
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Fig. 4.17 Second-order model reference feedback

In the frequency domain, as was described in (3.33), δ can be expressed as

δ(ejωh)= j�(ω)= j
2

h
tan

(
ωh

2

)
, (4.35)

where � is a distorted frequency of ω. By using expression (4.35), (4.30) and (4.33)
can be written as follows:

Gm(e
jωh)= G̃m(j�)= 1

1 −C2�2 + jC1�
, (4.36)

and

F(ejωh)= F̃ (j�)= 1 −C2�
2 + jC1�

1 − c2�2 + jc1�
. (4.37)

By applying a second-order model, the model reference control systems can be re-
drawn as shown in Fig. 4.17.

When the controllers are in high resolution (i.e., γ → 0), the model reference
control system as shown in Fig. 4.17 can be transformed into Fig. 4.18. Here, d ′ is
a disturbance signal generated by the discretization of controllers. The equivalent
controller C(δ) and the pre-compensator D(δ) are given by

C(δ)= KfF(δ)

1 −KmKfGm(δ)F (δ)
= 1 +C1δ +C2δ

2

Km(c1δ + c2δ2)
, (4.38)

D(δ)= 1

KfF(δ)
= Km(1 + c1δ + c2δ

2)

1 +C1δ +C2δ2
. (4.39)

Then, the block diagram of the equivalent PID control system is drawn simply as
shown in Fig. 4.19. Here, C(δ) can be considered to be a controller when c2 � c1.
If c2 → 0, the controller is approximately written as

C(δ)= 1

κ
δ−1 + C1

κ
+ C2

κ
δ, (4.40)
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Fig. 4.18 Approximate PID control system

Fig. 4.19 Equivalent PID
control system

where κ = Kmc1. We can see that (4.40) is a three-term controller based on the
bilinear transform expression. When the sampling period is h → 0, the δ-function
approaches Laplace transform variable s. Therefore, the scheme given in (4.40) will
correspond to a traditional continuous PID control.

The z-transform of (4.40) is written as

C(z)= h

2κ
· z+ 1

z− 1
+ C1

κ
+ 2C2

κh
· z− 1

z+ 1
. (4.41)

In the distorted frequency domain, it can be expressed as

C(j�)= C1

κ
+ j · 1

κ

(
C2�− 1

�

)
. (4.42)

These algorithms (4.40) and (4.41) can be regarded as quasi-PID control algorithms.
With respect to higher order and time-delay plants, the model system KGm(z)

can be improved as follows:

KmGm(δ)= Km

1 +C1δ +C2δ2
· e−Lms, (4.43)

where Lm is the inserted time delay of the model system. Since a feedback compen-
sator that has a time-lead characteristic cannot be realized, the quasi-PID controller
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should be written as

C(δ)= 1 +C1δ +C2δ
2

Km(1 + c1δ + c2δ2)− z−dm
, dm = Lm/h. (4.44)

4.4 Discretized Nonlinear Characteristics and Inequality
Conditions

4.4.1 Partition of Nonlinear Characteristics

The input/output discretization processes and the discretized nonlinear characteris-
tics are illustrated in Fig. 4.20. The nonlinear characteristics can be partitioned as
follows:

v
†
1 = Dp(e

†
1)=Ke

†
1 + g1(e

†
1), 0 <K <∞, (4.45)

|w†
1| = |g1(e

†
1)|<∞, for |e†

1|< ε1, (4.46)

|w†
1| = |g1(e

†
1)| ≤ β1|e†

1|, for |e†
1| ≥ ε1. (4.47)

Since the input-side discretization is equivalently represented as shown in Fig. 4.21,
the input signal is considered as an integer, e1 = e

†
1. Here, w†

1 is not always an
integer, although † is attached to the symbol. In these inequalities, when analyzing
the robust stability in a global sense, it is sufficient to consider nonlinear term (4.47),
because nonlinear term (4.46) can be treated as a disturbance signal. In this study,
since the nonlinear characteristic (4.45) is assumed to exist in the first and third
quadrants, the sector parameter β1 should be considered in 0 ≤ β1 ≤K .

In regard to the model reference feedback system, the nonlinear characteristic in
the discrete model should be considered:

v
†
2 = Dm(e

†
2)=Kme

†
2 + g2(e

†
2), 0 <Km <∞, (4.48)

|w†
2| = |g2(e

†
2)|<∞, for |e†

2|< ε2, (4.49)

|w†
2| = |g2(e

†
2)| ≤ β2|e†

2|, for |e†
2| ≥ ε2, (4.50)

and 0 ≤ β2 ≤ Km. Moreover, in regard to the feedback compensator, the following
expression will be given:

v
†
3 = Df (e

†
3)=Kf e

†
3 + g3(e

†
3), 0 <Kf <∞, (4.51)

|w†
3| = |g3(e

†
3)|<∞, for |e†

3|< ε3, (4.52)

|w†
3| = |g3(e

†
3)| ≤ β3|e†

3|, for |e†
3| ≥ ε3, (4.53)

and 0 ≤ β3 ≤Kf .
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Fig. 4.20 Discretization for a
nonlinear characteristic

Fig. 4.21 Equivalent
expression (ε = e

†
1 − e1 = d1:

a sawtooth signal)

Therefore, the robust stability of model reference feedback systems with multi-
nonlinearity is analyzed based on the inner product and norm analysis in the �2

space. In regard to (4.47), the following new nonlinear function can be defined:2

fi(ei) := gi(ei)+ βi · ei, i = 1,2,3. (4.54)

When considering the discretized output of the nonlinear characteristic, w†
i =

gi(e
†
i ), the following expression is given:

fi(e
†
i (k))=w

†
i (k)+ βi · e†

i (k). (4.55)

From inequality (4.47), it can be seen that (4.55) belongs to the first and third quad-
rants.

2Hereafter, only i = 1 is considered.
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For the neutral points of e†
i (k) and w

†
i (k), the following expression can be given

from (4.55):

1

2
(fi(e

†
i (k))+ fi(e

†
i (k − 1)))=w

†
i (k)+ βi · e†

i (k), (4.56)

where

w
†
i (k)= w

†
i (k)+w

†
i (k − 1)

2
, e

†
i (k)= e

†
i (k)+ e

†
i (k − 1)

2
. (4.57)

Then, the trapezoidal area of the one-step transition in integer grid coordinates,
fi(e), is written as

τi(k) := 1

2
(fi(e

†(k))+ fi(e
†
i (k − 1)))�e†

i (k)

= (w
†
i (k)+ βie

†
i (k))�e

†
i (k). (4.58)

Here, �e†
i (k) is the backward difference of sequence e†

i (k).

�e
†
i (k)= e

†
i (k)− e

†
i (k − 1).

Since f (e
†
i (k)) belongs to the first and third quadrants, the area of each trapezoid

τi(k) is non-negative when ei(k) increases (decreases) in the first (third) quadrant.
On the other hand, the trapezoidal area τi(k) is non-positive when ei(k) decreases
(increases) in the first (third) quadrant.

As described in Chap. 3, the following assumption is provided with respect to
the discretized responses on the integer grid coordinates.

Assumption The absolute value of the backward difference of sequence e(k) does
not exceed γ , i.e.,

|�ei(k)| = |ei(k)− ei(k − 1)| ≤ γ. (4.59)

If condition (4.59) is satisfied, �e†(k) is exactly ±γ or 0 because of the discretiza-
tion. That is, the absolute value of the backward difference can be given as

|�e†
i (k)| = |e†

i (k)− e
†
i (k − 1)| = γ or 0.

This assumption states that each point of the response traces on adjacent points
in the integer grid coordinates.
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Fig. 4.22 Nonlinear
subsystem (i = 1,2,3)

4.4.2 Sum of Trapezoidal Areas

Consider the following sum of trapezoidal areas:

σi(p)=
p∑

k=1

τi(k). (4.60)

If the above assumption is satisfied with respect to the discretization of the con-
trol system, the sum of trapezoidal areas, σ(p), becomes non-negative for any p.
Since the discretized output traces the same points on the stepwise nonlinear char-
acteristic, the sum of trapezoidal areas is canceled when ei(k) (and e†

i (k)) decreases

(increases) from a certain point (e†
i (k), fi(e

†
i (k))) in the first (third) quadrant. (Here,

without loss of generality, the response of discretized point (e†
i (k), fi(e

†
i (k))) is as-

sumed to commence at the origin.)
From Eq. (4.58), the sum of trapezoidal areas can be expressed as follows:

σi(p) := 1

2

p∑
k=1

(fi(e
†
i (k))+ fi(e

†
i (k − 1)))�e†

i (k)

= 〈 w†
i (k)+ βie

†
i (k),�e

†
i (k) 〉p. (4.61)

Here, 〈·, ·〉p denotes the inner product in the �2 space,

〈 x(k), y(k) 〉p =
p∑

k=1

x(k)y(k).

In order to derive the robust stability condition, the following new sequences are
considered:

e
∗†
i (k)= e

†
i (k)+ qi · �e

†
i (k)

h
, (4.62)

w
∗†
i (k)=w

†
i (k)− βiqi · �e

†
i (k)

h
, (4.63)

where qi is a non-negative number. The relationship between Eqs. (4.62) and (4.63)
is as shown in Fig. 4.22.

Based on these sequences, we give the following lemma.
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Lemma 4.1 If the following inequality is satisfied with respect to the inner product
of the neutral points of (4.55) and the backward difference:

〈 w†
i (k)+ βie

†
i (k),�e

†
i (k) 〉p ≥ 0, (4.64)

we can obtain

‖w∗†
i (k)‖2,p ≤ βi‖e∗†

i (k)‖2,p ≤ βi‖e∗
i (k)‖2,p (4.65)

for any qi ≥ 0 and p → ∞. Here, ‖ · ‖2,p denotes the Euclidean norm, which can
be defined as

‖x(k)‖2,p :=
(

p∑
k=1

|x(k)|2
)1/2

.

Proof The following equation is obtained from (4.62) and (4.63):

β2
i ‖e∗†

i (k)‖2
2,p − ‖w∗†

i (k)‖2
2,p

= β2
i ‖e†

i (k)‖2
2,p − ‖w†

i (k)‖2
2,p + 2βiqi

h
· 〈w†

i (k)+ βie
†
i (k),�e

†
i (k)〉p.

From (4.47), (4.50), and (4.53), it holds that

‖w†
i (k)‖2,p ≤ βi‖e†

i (k)‖2,p. (4.66)

Thus, from (4.64) we can obtain

‖w∗†
i (k)‖2,p ≤ βi‖e∗†

i (k)‖2,p. (4.67)

Since ‖e†
i (k)‖2,p ≤ ‖ei(k)‖2,p for p → ∞, the following inequality holds in the

frequency domain based on Parseval’s formula:3

‖e∗†
i (δ)‖2 = |1 + qiδ| · ‖e†

i (δ)‖2 ≤ |1 + qiδ| · ‖ei(δ)‖2 = ‖e∗
i (δ)‖2.

Then, ‖e∗†
i (k)‖2,p ≤ ‖e∗

i (k)‖2,p , and thus the right side of inequality (4.65) is satis-
fied. �

3Hereafter, δ is considered j�(ω) as shown in (4.35).
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4.5 Vector-Matrix Expression for Model Reference Control

The model reference control system as shown in Fig. 4.15 is given by the following
vector-matrix expression:4

⎡
⎣e1(δ)

e2(δ)

e3(δ)

⎤
⎦ =

⎡
⎣1

0
0

⎤
⎦ r(δ)+

⎡
⎣−G(δ) 0 0

0 Gm(δ) 0
0 0 F(δ)

⎤
⎦

⎡
⎣u1(δ)

u2(δ)

u3(δ)

⎤
⎦ , (4.68)

where control inputs u1, u2, and u3 are given by

⎡
⎣u1(δ)

u2(δ)

u3(δ)

⎤
⎦ =

⎡
⎣ u2(δ)

v
†
3(δ)

v
†
1(δ)+ v

†
2(δ)

⎤
⎦ +

⎡
⎣d ′(δ)
r ′(δ)

0

⎤
⎦ .

As shown in Fig. 4.22, the nonlinear parts (point-to-point characteristics) of the
system can be written as

⎡
⎢⎣
v

†
1

v
†
2

v
†
3

⎤
⎥⎦ =

⎡
⎢⎣
�1(δ) 0 0

0 �2(δ) 0

0 0 �3(δ)

⎤
⎥⎦

⎡
⎢⎣
e

†
1

e
†
2

e
†
3

⎤
⎥⎦ +

⎡
⎢⎣
w

∗†
1

w
∗†
2

w
∗†
3

⎤
⎥⎦ , (4.69)

where �1(δ)=K + β1q1δ, �2(δ)=Km + β2q2δ, �3(δ)=Kf + β3q3δ.

If the exogenous inputs are r ′ = d ′ = 0, u1 is equal to u2. Moreover, since e†
i =

ei − di (i = 1,2,3), the following closed-loop system equation can be given:

⎡
⎢⎣e

†
1
e

†
2
e

†
3

⎤
⎥⎦ =

⎡
⎣d1 + r

d2
d3

⎤
⎦ +

⎡
⎣−G 0
Gm 0
0 F

⎤
⎦ [

u1

u3

]
(4.70)

=
⎡
⎣d1 + r

d2
d3

⎤
⎦ +

⎡
⎣−G 0
Gm 0
0 F

⎤
⎦ [

0 0 �3
�1 �2 0

] ⎡
⎢⎣e

†
1
e

†
2
e

†
3

⎤
⎥⎦

+
⎡
⎣−G 0
Gm 0
0 F

⎤
⎦ [

0 0 1
1 1 0

] ⎡
⎢⎣w

∗†
1

w
∗†
2

w
∗†
3

⎤
⎥⎦ ,

where di (|di | ≤ γ ) are discretized/quantized errors.

4In the following, the transformed variables, e.g., e(δ), e(z), u(δ), u(z), · · · will be used without
the “hat” symbol.
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For the neutral points defined in (4.57), the following expression can be given:

⎡
⎣ 1 0 �3G

0 1 −�3Gm

−�1F −�2F 1

⎤
⎦

⎡
⎢⎣e

†
1
e

†
2
e

†
3

⎤
⎥⎦ =

⎡
⎢⎣
d1 + r

d2

d3

⎤
⎥⎦

⎡
⎣ 0 0 −G

0 0 Gm

F F 0

⎤
⎦

⎡
⎢⎣w

∗†
1

w
∗†
2

w
∗†
3

⎤
⎥⎦ .

(4.71)
The inverse matrix of the left side of the equation is written as⎡

⎣ 1 0 �3G

0 1 −�3Gm

−�1F −�2F 1

⎤
⎦

−1

= 1

1 + (�1G− �2Gm)�3F
·
⎡
⎣1 − �2�3GmF −�2�3GF −�3G

�1�3GmF 1 + �1�3GF �3Gm

�1F �2F 1

⎤
⎦

=
⎡
⎣�11 �12 �13
�21 �22 �23
�31 �32 �33

⎤
⎦ . (4.72)

Hereafter, in order to simplify the equation, we will use the symbols

�i(δ)= 1 + qiδ, i = 1,2,3. (4.73)

Thus, ⎡
⎢⎣
e
∗†
1 (δ)

e
∗†
2 (δ)

e
∗†
3 (δ)

⎤
⎥⎦ =

⎡
⎢⎣
�1(δ) 0 0

0 �2(δ) 0

0 0 �3(δ)

⎤
⎥⎦

⎡
⎢⎣
e

†
1(δ)

e
†
2(δ)

e
†
3(δ)

⎤
⎥⎦ . (4.74)

Hence, the vector-matrix expression for the control system is written by functions
of δ as follows:⎡

⎢⎣
e
∗†
1

e
∗†
2

e
∗†
3

⎤
⎥⎦ =

⎡
⎢⎣
�1 0 0

0 �2 0

0 0 �3

⎤
⎥⎦

⎡
⎢⎣
�11 �12 �13

�21 �22 �23

�31 �32 �33

⎤
⎥⎦

⎡
⎣d1 + r

d2

d3

⎤
⎦

+
⎡
⎢⎣
�1 0 0

0 �2 0

0 0 �3

⎤
⎥⎦

⎡
⎢⎣
�11 �12 �13

�21 �22 �23

�31 �32 �33

⎤
⎥⎦

⎡
⎢⎣

0 0 −P

0 0 Pm

F F 0

⎤
⎥⎦

⎡
⎢⎣
w

∗†
1

w
∗†
2

w
∗†
3

⎤
⎥⎦

=
⎡
⎢⎣
�1�11 �1�12 �1�13

�2�21 �2�22 �2�23

�3�31 �3�32 �3�33

⎤
⎥⎦

⎡
⎢⎣
d1 + r

d2

d3

⎤
⎥⎦
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+
⎡
⎢⎣
�1�13F �1�13F −�1(�11G−�12Gm)

�2�23F �2�23F −�2(�21G−�22Gm)

�3�33F �3�33F −�3(�31G−�32Gm)

⎤
⎥⎦

⎡
⎢⎣
w

∗†
1

w
∗†
2

w
∗†
3

⎤
⎥⎦ .

In regard to each norm of the equation, we obtain the inequality

⎡
⎢⎣

‖e∗†
1 ‖2

‖e∗†
2 ‖2

‖e∗†
3 ‖2

⎤
⎥⎦ �

⎡
⎢⎣

|�1�11| |�1�12| |�1�13|
|�2�21| |�2�22| |�2�23|
|�3�31| |�3�32| |�3�33|

⎤
⎥⎦

⎡
⎢⎣

‖d1‖2 + ‖r‖2

‖d2‖2

‖d3‖2

⎤
⎥⎦

+
⎡
⎢⎣

|�1�13F | |�1�13F | |�1(�11G−�12Gm)|
|�2�23F | |�2�23F | |�2(�21G−�22Gm)|
|�3�33F | |�3�33F | |�3(�31G−�32Gm)|

⎤
⎥⎦

⎡
⎢⎣

‖w∗†
1 ‖2

‖w∗†
2 ‖2

‖w∗†
3 ‖2

⎤
⎥⎦ . (4.75)

Here, the symbol � denotes a set of inequalities for each element.

4.6 Robust Stability Condition for Multi-Nonlinearity Systems

By using the result of Lemma 4.1, the following inequality is derived:⎡
⎢⎣

1 − β1|�1�13F | −β2|�1�13F | −β3|�1(�11G−�12Gm)|
−β1|�2�23F | 1 − β2|�2�23F | −β3|�2(�21G−�22Gm)|
−β1|�3�33F | −β2|�3�33F | 1 − β3|�3(�31G−�32Gm)|

⎤
⎥⎦

·
⎡
⎢⎣

‖e∗†
1 ‖2

‖e∗†
2 ‖2

‖e∗†
3 ‖2

⎤
⎥⎦ �

⎡
⎢⎣

|�1�11| |�1�12| |�1�13|
|�2�21| |�2�22| |�2�23|
|�3�31| |�3�32| |�3�33|

⎤
⎥⎦

⎡
⎢⎣

‖d1‖2 + ‖r‖2

‖d2‖2

‖d3‖2

⎤
⎥⎦ . (4.76)

When the matrix of the left side of this inequality is written as

A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ , (4.77)

all non-diagonal elements are obviously non-positive. In addition, if all diagonal
elements are positive and if all principal minors of all orders are positive, this matrix
A is called an M-matrix [5, 6, 16, 17].

Theorem 4.1 If there exists a qi ≥ 0 in which matrix (4.77) becomes an Os-
trowski’s M-matrix, the discretized model reference control system with sector non-
linearities (4.47), (4.50), and (4.53) is robustly stable in an �2 sense, when the lin-
earized system with nominal gains K , Km, and Kf is asymptotically stable [14, 15].
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Proof From (4.77), inequality (4.76) can be written as⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦

⎡
⎣x1
x2
x3

⎤
⎦ =

⎡
⎣ỹ1
ỹ2
ỹ3

⎤
⎦ �

⎡
⎣y1
y2
y3

⎤
⎦ , (4.78)

where xi ≥ 0, yj ≥ 0, and aij ≤ 0 for i �= j (i, j = 1,2,3). Here, ỹj are arbitrary
values that satisfy 0 < ỹj ≤ yj <∞ (j = 1,2,3).

The equality part of (4.78) can be rewritten as follows:⎡
⎢⎢⎣
a
(1)
11 a

(1)
12 a

(1)
13

0 a
(2)
22 a

(2)
23

0 0 a
(3)
33

⎤
⎥⎥⎦

⎡
⎢⎣x

(1)
1
x
(1)
2
x
(1)
3

⎤
⎥⎦ =

⎡
⎢⎣ỹ

(1)
1
ỹ
(2)
2
ỹ
(3)
3

⎤
⎥⎦ , (4.79)

where x(1)i = xi , ỹ
(1)
j = ỹj , and a

(1)
ij = aij (i, j = 1,2,3), and furthermore,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
a
(2)
22 = 1

a
(1)
11

∣∣∣∣∣a
(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

∣∣∣∣∣ , a
(2)
23 = 1

a
(1)
11

∣∣∣∣∣a
(1)
11 a

(1)
13

a
(1)
21 a

(1)
23

∣∣∣∣∣ ,
a
(2)
32 = 1

a
(1)
11

∣∣∣∣∣a
(1)
11 a

(1)
12

a
(1)
31 a

(1)
32

∣∣∣∣∣ , a
(2)
33 = 1

a
(1)
11

∣∣∣∣∣a
(1)
11 a

(1)
13

a
(1)
31 a

(1)
33

∣∣∣∣∣ ,
and

a
(3)
33 = 1

a
(2)
22

∣∣∣∣∣a
(2)
22 a

(2)
23

a
(2)
32 a

(2)
33

∣∣∣∣∣ .
Then, the right side of (4.79) can be written as

ỹ
(1)
1 = ỹ1, ỹ

(2)
2 = ỹ

(1)
2 − a

(1)
21

a
(1)
11

ỹ
(1)
1 , ỹ

(3)
3 = ỹ

(2)
3 − a

(2)
32

a
(2)
22

ỹ
(2)
2 ,

provided a
(1)
11 > 0 and a

(2)
22 > 0, where 0 < ỹ

(j)
j ≤ y

(j)
j (j = 1,2,3). Thus, we can

see that these values are non-negative and bounded if each norm of the exogenous
inputs is bounded (i.e., ‖r‖2 <∞, ‖dj‖2 <∞). In addition, if a(3)33 > 0 is satisfied,

0 < x
(1)
3 <∞, 0 < x

(1)
2 <∞, and 0 < x

(1)
1 <∞ are obtained in reverse order. Note

that the above sweep-out procedure for inequalities is similar to the method shown
in Appendix A of Chap. 1.5

On the other hand, (4.79) can be rewritten as⎡
⎢⎢⎣
a
(1)
11 x

(1)
1

a
(2)
22 x

(1)
2

a
(3)
33 x

(1)
3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
ỹ
(1)
1

ỹ
(2)
2

ỹ
(3)
3

⎤
⎥⎥⎦ +

⎡
⎢⎣

0 −a
(1)
12 −a

(1)
13

0 0 −a
(2)
23

0 0 0

⎤
⎥⎦

⎡
⎢⎢⎣
x
(1)
1

x
(1)
2

x
(1)
3

⎤
⎥⎥⎦ . (4.80)

5The author proposed a method for inequalities in [10].
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Therefore, if 0 < x3 < ∞, 0 < x2 < ∞, and 0 < x1 < ∞, then a
(3)
33 > 0, a(2)22 > 0,

and a
(1)
11 > 0 are obtained in reverse order.

Noted that the above conditions a(1)11 > 0, a(2)22 > 0, and a
(3)
33 > 0 can be rewritten

as follows:

a
(1)
11 =Δ1 = a11 > 0

a
(2)
22 = Δ2

Δ1
=

∣∣∣∣a11 a12
a21 a22

∣∣∣∣
a11

> 0

a
(3)
33 = Δ3

Δ2
=

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣
> 0.

The conditions say that all principal minors of matrix A are positive, which means
that the matrix becomes an M-matrix.6 Thus, it can be proven that

‖e∗
i ‖<∞ and ‖ei‖<∞, i = 1,2,3,

for a nominal control system with gains K , Km, and Kf . Thus, the proof of Theo-
rem 4.1 based on the concept of bounded input-bounded output (BIBO) stability of
model reference control systems is completed. �

Example 4.4 Consider the following continuous plant:

G(s)= K1

(s + 0.1)(s + 0.3)(s + 0.5)
, (4.81)

where the gain constant is K1 = 0.03. The sampling period and the resolution value
are assumed to be h = 1.0 and γ = 1.0. That is, the responses of the control sys-
tems trace on integer grid coordinates. The discretized nonlinear characteristic (dis-
cretized sigmoid, i.e., arctangent) is as shown in Fig. 4.20. The Hall diagram is
shown in Fig. 4.23. The input/output characteristic of the discretization process can
be written by, e.g., a C-language expression as follows:

e
†
1 = γ ∗ (double)(int)(e1/γ )

v1 = 0.4 ∗ e†
1 + 3.0 ∗ atan(0.6 ∗ e†

1) (4.82)

v
†
1 = γ ∗ (double)(int)(v1/γ ).

6The derivation of the result in general form is written in Chap. 5, and graphical representations
are presented in Appendix B of Chap. 5.
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Fig. 4.23 Modified Hall
diagram for Example 4.4

Table 4.3 Performances of
model reference control
system for Example 4.4

Cases C1 Mp gM [dB] pM [deg]

(i) 16.0 2.2 7.1 28.3

(ii) 12.0 2.1 10.0 35.9

(iii) 8.0 2.1 14.9 37.7

When the nominal gain K = 1.0 and the threshold ε1 = 2.0 are considered, the
sectorial area of the point-to-point characteristic for ε1 ≤ |e1| ≤ 40.0 can be deter-
mined as [0.5,1.5].

The model system is chosen as

Gm(δ)= 1

1 +C1δ + 8.0δ2
, Km = 1.0, (4.83)

and the feedback compensator is chosen as

F(δ)= 1 +C1δ + 8.0δ2

1 + 8.0δ + δ2
, Kf = 1.0. (4.84)

For the three cases in Table 4.3, the phase traces and the step responses are depicted
as shown in Figs. 4.24(a) and (b). By applying the model reference feedback struc-
ture, the control system can be sufficiently stabilized. The control performances are
obtained as shown in Table 4.3.

In order to check the robust stability of the discrete control system, the loop
characteristics and the stability margins,

|H | = |�1�13F | (4.85)

and

Δ1 = 1 − β1|�1�13F |, (4.86)
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Fig. 4.24 Phase traces and step responses for Example 4.4 ((i) C1 = 16.0, (ii) C1 = 12.0, (iii)
C1 = 8.0)

Fig. 4.25 Checking of robust stability margins for Example 4.4 when β1 = 0.5, β2 = 0.1,
β3 = 0.1, and C1 = 5.0

in (4.77) for q1 = 20.0 ∼ 36.0 are calculated as shown in Fig. 4.25(a). Figure 4.25(b)
shows calculated results of the following principal minors for q1 = 20.0, q2 = 5.0,
and q3 = 5.0:

Δ1 = a11, Δ2 =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ , Δ3 =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ .
It is obvious from these figures that the stability margins for the discrete control
systems are satisfied. For reference, the modified Hall diagram and Nyquist curves
are shown in Fig. 4.23 when the controllers are in high resolution.
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Fig. 4.26 Phase traces and step responses for Example 4.5 ((i) C1 = 16.0 and Lm = 2.0,
(ii) C1 = 12.0 and Lm = 2.0, (iii) C1 = 8.0 and Lm = 2.0)

Example 4.5 In this example, the model system is assumed to be the following
time-delay system:

Gm(δ)= 1

1 +C1δ + 8.0δ2
· e−Lms, Lm = 2.0, Km = 1.0. (4.87)

As for the three cases described in Example 4.4, the phase traces and the step re-
sponses are depicted as shown in Figs. 4.26(a) and (b). By using a model system
with time delay, the responses of the control system can be well stabilized.

4.7 Model Reference Control with Transmission Delay

Since the discretized model reference and quasi-PID control techniques in the pre-
vious sections are analyzed in the frequency domain, the stabilization and design
of control systems with some transmission delay can also be applied. As was de-
scribed in Sect. 4.4, the transfer function of a continuous plant with time delay can
be written as

G(s)= Np(s)

(s − p1)(s − p2) · · · (s − pn)
· e−Lps, (4.88)

irrespective of whether the time delay exists in the input or the output side of the
plant. Here, Lp is the transmission delay (time delay) and the order of the numerator
polynomial Np(s) is less than that of the denominator. With respect to time-delayed
systems, the following expression can be given:

G(z)= b0 + b1z
−1 + b2z

−2 · · · + bnz
−n

1 + a1z−1 + a2z−2 · · · + anz−n
· z−dp

= b0z
n + b1z

n−1 + · · · + bn−1z+ bn

zn + a1zn−1 + · · · + an−1z+ an
· z−dp .
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Fig. 4.27 Modified Hall diagram for Examples 4.6 and 4.7

Table 4.4 Performances of
model reference control
system for Example 4.6

Cases C1 Lp Lm Mp gM [dB] pM [deg]

(i) 8.0 2.0 0.0 3.38 4.43 17.2

(ii) 8.0 2.0 2.0 5.49 2.66 11.4

(iii) 8.0 2.0 4.0 3.18 5.84 19.1

Example 4.6 Consider the following continuous plant with transmission delay:

G(s)= Kp

(s + 0.1)(s + 0.3)(s + 0.5)
· e−Lps, Kp = 0.03, Lp = 2.0. (4.89)

Here, the model system is assumed to be

Gm(δ)= 1

1 +C1δ + 8.0δ2
· e−Lms, Lm = 2.0, Km = 1.0. (4.90)

The feedback compensator F(δ) is the same as (4.84). The Hall diagram and
Nyquist curves are shown in Fig. 4.27. Also in this example, the phase trace and the
step responses are well stabilized and depicted as shown in Figs. 4.28(a) and (b). Ta-
ble 4.4 shows the model and compensator parameters and the control performances.
The relationship between the step responses and the performance indices is not as
clear as it appeared in linear control systems.

Example 4.7 The model reference control technique can be applied to controlled
systems with long transmission delay. In this last example, consider the following
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Fig. 4.28 Phase traces and step responses for Example 4.6 (C1 = 8.0, (i) Lm = 0.0, (ii) Lm = 2.0,
(iii) Lm = 4.0)

Fig. 4.29 Phase traces and step responses for Example 4.7 (C1 = 8.0, (i) Lm = 2.0, (ii) Lm = 4.0,
(iii) Lm = 6.0)

Table 4.5 Performances of
model reference control
system for Example 4.7

Cases C1 Lp Lm Mp gM [dB] pM [deg]

(i) 8.0 6.0 2.0 2.1 0.20 0.29

(ii) 8.0 6.0 4.0 1.8 0.06 0.69

(iii) 8.0 6.0 6.0 1.6 3.78 25.6

continuous plant:

G(s)= Kp

(s + 0.2)(s + 0.4)
· e−Lps, Kp = 0.1, Lp = 6.0. (4.91)
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Fig. 4.30 Robust
performance measures Δ1
(C1 = 8.0, Lp = 6.0, and
Lm = 6.0)

Figures 4.29(a) and (b) show the phase traces and the step responses when using the
model system given as

Gm(δ)= 1

1 +C1δ + 8.0δ2
· e−Lms. Km = 1.0, (4.92)

where Lm = 2.0,4.0, and 6.0. Although there are some deformations in the re-
sponses, the stabilization of the control system is achieved well. However, the re-
lationship between the step responses and the performance indices is considerably
different from those in (usual) linear control systems. The relationship between the
model and compensator parameters and the control performances becomes as shown
in Table 4.5.

For reference, the robust performance measures |H | , β1|H |, and �1 that cor-
respond to (4.85) and (4.86) in Example 4.4 are depicted in Fig. 4.30. The mod-
ified Hall diagram and Nyquist curves for Examples 4.6 and 4.7 are as shown in
Figs. 4.27(a) and (b) when the controllers are in high resolution.

4.8 Exercises

(1) Confirm that the following equality holds in regard to (4.3) and (4.6):

lim
h→0

C(δ)= C(s).

(2) Determine the z-transform of the following plant with a zero-order hold:

G(s)= K

(s + 1)(s + 2)
, K = 1.0.

Assume the sampling period h = 0.1, and use the result of Example 4.1, i.e.,
Eqs. (4.15)–(4.17).
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(3) Determine the characteristic equation F(z)= 0 for Example 4.1 (A) when a PI
controller is used (i.e., case (i), Kp = 1.0, CI = 1.0, and CD = 0.0).

(4) Show that the approximate PID control system in Fig. 4.18 is obtained from the
model reference feedback system in Fig. 4.17, when Dm(·) and Df (·) are Km

and Kf = 1/Km, respectively.
(5) Regarding the simultaneous (linear) inequalities,⎧⎪⎨

⎪⎩
a11x1 + a12x2 + a13x3 ≤ y1

a21x1 + a22x2 + a23x3 ≤ y2

a31x1 + a32x2 + a33x3 ≤ y3,

show that the following operations are valid (a similar concept to (1), (2), and
(3) in Appendix A of Chap. 1):

(1) interchanging two inequalities,
(2) multiplying each term in one inequality by a positive constant,
(3) adding a positive multiple of one inequality to another.

(6) In regard to a vector-matrix expression, Ax � y, where

A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ , x =

⎡
⎣x1
x2
x3

⎤
⎦ , y =

⎡
⎣y1
y2
y3

⎤
⎦ ,

show that the following operations are valid (a similar concept to (a), (b), and
(c) in Appendix A of Chap. 1):

(a) interchanging two rows,
(b) multiplying each term in one row by a positive constant,
(c) adding a positive multiple of one row to another,

considering the influence on variables xi and yj (i, j = 1,2,3).
(7) Show that the condition of the M-matrix is not influenced by the above opera-

tions (a), (b), and (c).

Appendix

In this chapter, C-language functions for polynomial and complex variable opera-
tions are provided as a reference for the reader.

A.1 Polynomial Operations

/* polynomial multiplication */
void p_mul(na,nb,a,b,c)
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int na,nb;
double a[20],b[20],c[20];
{

int i,ia,ib,nc;
nc=na+nb;
for(i=0;i<=nc;i++){

c[i]=0.0;
}
for(ia=0;ia<=na;ia++){

for(ib=0;ib<=nb;ib++){
c[ia+ib]=c[ia+ib]+a[ia]*b[ib];

}
}

}

/* polynomial addition */
void p_add(na,nb,a,b,c)
int na,nb;
double a[20],b[20],c[20];
{

int i,ia,ib,nc;
if(na>=nb){

nc=na;
for(ib=nb+1;ib<=nc;ib++){

b[ib]=0.0;
}

}
else{
nc=nb;
for(ia=na+1;ia<=nc;ia++){

a[ia]=0.0;
}

}
for(i=0;i<=nc;i++){

c[i]=a[i]+b[i];
}

}

/* polynomial subtraction */
void p_sub(na,nb,a,b,c)
int na,nb;
double a[20],b[20],c[20];
{

int i,ia,ib,nc;
if(na>=nb){
nc=na;
for(ib=nb+1;ib<=nc;ib++){

b[ib]=0.0;
}

}
else{
nc=nb;
for(ia=na+1;ia<=nc;ia++){

a[ia]=0.0;



142 4 Model Reference Feedback and PID Control

}
}
for(i=0;i<=nc;i++){

c[i]=a[i]-b[i];
}

}

/* derivative of ploynomial */
void p_der(nd,ad,cd)
int nd;
double ad[20],cd[19];
{

int i;
for(i=0;i<=nd;i++){

cd[i]=0.0;
}
for(i=0;i<=nd-1;i++){

cd[i]=(double)(i+1)*ad[i+1];
}

}

/* values of polynomial */
complex p_val(nv,av,s)
int nv;
double av[20];
complex s;
{

int i;
complex z,f;
f.re=av[nv];f.im=0.0;
for(i=1;i<=nv;i++){
z.re=av[nv-i]+f.re*s.re-f.im*s.im;

z.im=f.re*s.im+f.im*s.re;
f=z;

}
return(f);

}

A.2 Complex Variable Functions

/* complex variable subroutine functions */
#define TINY 0.000001
typedef struct{

double re;
double im;

}complex;
/* complex addition */
complex cadd(a,b)
complex a,b;
{

complex z;
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z.re=a.re+b.re;
z.im=a.im+b.im;
return(z);

}

/* complex subtraction */
complex csub(a,b)
complex a,b;
{

complex x;

x.re=a.re-b.re;
x.im=a.im-b.im;
return(x);

}

/* complex multiplication */
complex cmul(a,b)
complex a,b;
{

complex x;

x.re=a.re*b.re-a.im*b.im;
x.im=a.re*b.im+a.im*b.re;
return(x);

}

/* complex division */
complex cdiv(a,b)
complex a,b;
{

complex x;
double d;

d=b.re*b.re+b.im*b.im;
if(d==0){

printf("\n\n divided by zero error !!!\n");
d=TINY;

}
printf("d=%lf\n",d);
x.re=(a.re*b.re+a.im*b.im)/d;
x.im=(a.im*b.re-a.re*b.im)/d;
return(x);

}

A.3 Partial Fraction Expansions

/* partial fraction expansion */
/* K*(s-z1)....(s-zm)/(s-p1)....(s-pn) */
void p_pf(n,m,p,z,k,ap)
int n,m;
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double p[20],z[20],k,ap[20][3];
{

int i,j;
double pd=1.0;
double zd=1.0;
for(i=1;i<=n;i++){

pd=1.0;
for(j=1;j<=n;j++){

if(j!=i) pd=pd*(p[i]-p[j]);
}
zd=1.0;
for(j=1;j<=m;j++){

zd=zd*(p[i]-z[j]);
}
ap[i][0]=k*zd/pd;

}
}

/* partial fraction expansion-1 */
/* K*(s-z1)....(s-zm)/s(s-p1)....(s-pn) */
void p_pf1(n,m,p,z,k,ap)
int n,m;
double p[20],z[20],k,ap[20][3];
{

int i,j;
double pn=1.0;
double pd=1.0;
double zn=1.0;
double zd=1.0;
for(i=1;i<=n;i++){

pn=pn*(-p[i]);
}
for(j=1;j<=m;j++){

zn=zn*(-z[j]);
}
ap[0][0]=k*zn/pn;

for(i=1;i<=n;i++){
pd=p[i];
for(j=1;j<=n;j++){

if(j!=i) pd=pd*(p[i]-p[j]);
}
zd=1.0;
for(j=1;j<=m;j++){

zd=zd*(p[i]-z[j]);
}
ap[i][0]=k*zd/pd;

}
}
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Chapter 5
Multi-Loop Feedback Systems

5.1 Introduction

In this chapter, the concepts described in Chaps. 2 and 3 are extended to multi-
variable and multi-loop feedback systems. For the input-output stability of multi-
variable systems, matrix representations and inequalities based on the norms in the
�2 space will be defined. Usually, multivariable control systems are analyzed in a
state space and are designed by using quadratic forms; see, e.g., [8]. However, a
design method on the basis of vector-matrix representations (the linear quadratic,
LQ, form) is not practical, because controlled systems are accompanied by many
nonlinearities [3, 9]. Therefore, in this book, for multiple nonlinearities, inequality
conditions and Ostrowski’s M-matrix [7] are applied to the stability problem.

5.2 Input-Output Stability for Multi-Loop Systems

First, a multi-loop control system as shown in Fig. 5.1 is considered. Here, each
variable is given in vector form as follows:1

r(k)= (r1(k), r2(k), · · · , rn(k))T , e(k)= (e1(k), e1(k), · · · , en(k))T
v(k)= (v1(k), v2(k), · · · , vn(k))T , u(k)= (u1(k), u1(k), · · · , un(k))T
d(k)= (d1(k), d2(k), · · · , dn(k))T , y(k)= (y1(k), y1(k), · · · , yn(k))T
k = 0,1,2, · · · .

1In this chapter, the symbol “n” is used for the number of loops regardless of the system order and
the signal resolution.

Y. Okuyama, Discrete Control Systems,
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Fig. 5.1 Nonlinear
time-varying multi-loop
feedback system

As is obvious from the figure, the following equations are given:⎧⎪⎨
⎪⎩

v(k)= f (e, k), k = 0,1,2, · · ·
ŷ(z)= G(z)û(z)

e(k)= r(k)− y(k), u(k)= v(k)+ d(k).

(5.1)

Here, it is assumed that the nonlinear time-varying element f (e, k) is given by the
following diagonal matrix:

f (e, k)= diag{f1(e1, k), f2(e2, k), · · · , fn(en, k)}, (5.2)

and the linear (discrete-time) dynamical system G(z) can be written as the following
n× n matrix with z-transformed elements:

G(z)=

⎡
⎢⎢⎢⎣
G11(z) G12(z) . . . G1n(z)

G21(z) G22(z) . . . G2n(z)
...

...
. . .

...

Gn1(z) Gn2(z) . . . Gnn(z)

⎤
⎥⎥⎥⎦ . (5.3)

Moreover, ri(k) and di(k) (i = 1,2, · · · , n) are exogenous inputs that exist in the �2
space. Here, in the strict sense, (5.2) should be written as

f (e, k)= diag{f1(e1(kh), kh), f2(e2(kh), kh), · · · , fn(e(kh), kh)},
where h is the sampling period.

Definition If ri(k) ∈ �2 and di(k) ∈ �2 (i = 1,2, · · · , n) lead to ei(k) ∈ �2 and
yi(k) ∈ �2 (i = 1,2, · · · , n), the feedback system is called bounded input-bounded
output stable (BIBO stable).

If it is valid that

∞∑
k=0

|ri(k)|2 <∞,

∞∑
k=0

|di(k)|2 <∞, i = 1,2, · · · , n

lead to
∞∑
k=0

|ei(k)|2 <∞,

∞∑
k=0

|yi(k)|2 <∞, i = 1,2, · · · , n,
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then the nonlinear time-varying multi-loop system is input-output stable. For a norm
expression, the above conditions can be written as follows:

‖ri (k)‖2 <∞ and ‖di(k)‖2 <∞ ⇒ ‖ei(k)‖2 <∞ and ‖yi(k)‖2 <∞, (∀i).

5.3 Stability Condition for Multi-Loop Systems

From the last equations of (5.1), the norm inequalities of these variables are given
by applying Minkowski’s inequality:

‖ei(k)‖2 ≤ ‖ri(k)‖2 + ‖yi(k)‖2, , i = 1,2, · · · , n (5.4)

‖ui(k)‖2 ≤ ‖vi(k)‖2 + ‖di(k)‖2., i = 1,2, · · · , n. (5.5)

In this chapter, these inequalities are rewritten in vector form as follows:2

⎡
⎢⎢⎢⎣

‖e1(k)‖2
‖e2(k)‖2

...

‖en(k)‖2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

‖r1(k)‖2
‖r2(k)‖2

...

‖rn(k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

‖y1(k)‖2
‖y2(k)‖2

...

‖yn(k)‖2

⎤
⎥⎥⎥⎦ , (5.6)

⎡
⎢⎢⎢⎣

‖u1(k)‖2
‖u2(k)‖2

...

‖un(k)‖2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

‖v1(k)‖2
‖v2(k)‖2

...

‖vn(k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

‖d1(k)‖2
‖d2(k)‖2

...

‖dn(k)‖2

⎤
⎥⎥⎥⎦ . (5.7)

In this book, Euclidean norms of these vectors, e.g.,

‖x‖2 =
(

n∑
i=1

|xi |2
)1/2

are not considered, because the stability analysis of nonlinear feedback systems
using those norms may become conservative.

If each component of the nonlinear time-varying element, f (e, k), is given by

|fi(ei, k)|
|ei(k)| ≤ ρi <∞, i = 1,2, · · · , n, (5.8)

2The inequality symbol � denotes that each component of the left-side vector is less than or equal
to each component of the right-side one.
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the norm of the output of the ith nonlinear element vi(k) can be expressed in vector-
matrix form as follows:

⎡
⎢⎢⎢⎣

‖v1(k)‖2
‖v2(k)‖2

...

‖vn(k)‖2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣
ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
. . .

...

0 0 . . . ρn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

‖e1(k)‖2
‖e2(k)‖2

...

‖en(k)‖2

⎤
⎥⎥⎥⎦ ,

where 0 < ρi <∞ (i = 1,2, · · · , n). Then, inequality (5.5) can be written as

⎡
⎢⎢⎢⎣

‖u1(k)‖2
‖u2(k)‖2

...

‖un(k)‖2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣
ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
. . .

...

0 0 . . . ρn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

‖e1(k)‖2
‖e2(k)‖2

...

‖en(k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

‖d1(k)‖2
‖d2(k)‖2

...

‖dn(k)‖2

⎤
⎥⎥⎥⎦ . (5.9)

On the other hand, the following relation holds for z= ejωh:

⎡
⎢⎢⎢⎣

‖ŷ1(z)‖2
‖ŷ2(z)‖2

...

‖ŷn(z)‖2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

sup|z|=1 |G11(z)| sup|z|=1 |G12(z)| . . . sup|z|=1 |G1n(z)|
sup|z|=1 |G21(z)| sup|z|=1 |G22(z)| . . . sup|z|=1 |G2n(z)|

...
...

. . .
...

sup|z|=1 |Gn1(z)| sup|z|=1 |Gn2(z)| . . . sup|z|=1 |Gnn(z)|

⎤
⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

‖û1(z)‖2
‖û2(z)‖2

...

‖ûn(z)‖2

⎤
⎥⎥⎥⎦ . (5.10)

Here, |z| = 1 corresponds to ω : −π/h→ π/h, i.e.,

sup
|z|=1

|Gij (z)| = sup
−π/h≤ω≤π/h

|Gij (e
jωh)|, i, j = 1,2, · · · , n.

By applying Parseval’s identity,3 the following inequality is obtained:

⎡
⎢⎢⎢⎣

‖y1(k)‖2
‖y2(k)‖2

...

‖yn(k)‖2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

|G11(ejωh)| |G12(ejωh)| . . . |G1n(ejωh)|
|G21(ejωh)| |G22(ejωh)| . . . |G2n(ejωh)|

...
...

. . .
...

|Gn1(ejωh)| |Gn2(ejωh)| . . . |Gnn(ejωh)|

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

‖u1(k)‖2
‖u2(k)‖2

...

‖un(k)‖2

⎤
⎥⎥⎥⎦ .

(5.11)

3See Appendix B in Chap. 3.
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Using (5.6),

⎡
⎢⎢⎢⎣

‖e1(k)‖2
‖e2(k)‖2

...

‖en(k)‖2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

‖r1(k)‖2
‖r2(k)‖2

...

‖rn(k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

|G11(ejωh)| . . . |G1n(ejωh)|
|G21(ejωh)| . . . |G2n(ejωh)|

...
. . .

...

|Gn1(ejωh)| . . . |Gnn(ejωh)|

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

‖u1(k)‖2
‖u2(k)‖2

...

‖un(k)‖2

⎤
⎥⎥⎥⎦ .

(5.12)

Thus,

⎡
⎢⎢⎢⎣

‖e1(k)‖2
‖e2(k)‖2

...

‖en(k)‖2

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

‖r1(k)‖2
‖r2(k)‖2

...

‖rn(k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

|G11(ejωh)| |G12(ejωh)| . . . |G1n(ejωh)|
|G21(ejωh)| |G22(ejωh)| . . . |G2n(ejωh)|

...
...

. . .
...

|Gn1(ejωh)| |Gn2(ejωh)| . . . |Gnn(ejωh)|

⎤
⎥⎥⎥⎦

·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
. . .

...

0 0 . . . ρn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

‖e1(k)‖2
‖e2(k)‖2

...

‖en(k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

‖d1(k)‖2
‖d2(k)‖2

...

‖dn(k)‖2

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (5.13)

Rearranging inequality (5.13), we obtain:

⎡
⎢⎢⎢⎣

1 − ρ1|G11(ejωh)| −ρ2|G12(ejωh)| . . . −ρn|G1n(ejωh)|
−ρ1|G21(ejωh)| 1 − ρ2|G22(ejωh)| . . . −ρn|G2n(ejωh)|

...
...

. . .
...

−ρ1|Gn1(ejωh)| −ρ2|Gn2(ejωh)| . . . 1 − ρn|Gnn(ejωh)|

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

‖e1(k)‖2
‖e2(k)‖2

...

‖en(k)‖2

⎤
⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎣

‖r1(k)‖2
‖r2(k)‖2

...

‖rn(k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

|G11(ejωh)| |G12(ejωh)| . . . |G1n(ejωh)|
|G21(ejωh)| |G22(ejωh)| . . . |G2n(ejωh)|

...
...

. . .
...

|Gn1(ejωh)| |Gn2(ejωh)| . . . |Gnn(ejωh)|

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

‖d1(k)‖2
‖d2(k)‖2

...

‖dn(k)‖2

⎤
⎥⎥⎥⎦ .

(5.14)

When the matrix on the left side of the above inequality is written as

A =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ , (5.15)
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all non-diagonal elements are obviously non-positive. In addition, if all principal
minors of (5.15) are positive,4 matrix A is called an M-matrix [6, 7].

Based on the above premise, the following theorem for multi-loop discretized
nonlinear systems is obtained.

Theorem 5.1 If ‖ri(k)‖2 < ∞ (i = 1,2, · · · , n) and ‖dj (k)‖2 < ∞ (j =
1,2, · · · , n), then ‖el(k)‖ (l = 1,2, · · · , n) become bounded (i.e., the system is BIBO
stable) when the matrix of the left side of inequality (5.14) is Ostrowski’s M-matrix.

Proof By using matrix expression (5.15), the system inequality (5.14) can be written
as follows: ⎡

⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
x1
x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ỹ1
ỹ2
...

ỹn

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣
y1
y2
...

yn

⎤
⎥⎥⎥⎦ , (5.16)

where elements of vectors xi and yi (i = 1,2, · · · , n) are non-negative, and all non-
diagonal elements of matrix (aij ) (i, j = 1,2, · · · , n) on the left side of (5.16) are
non-positive (i.e., xi ≥ 0, yi ≥ 0, and aij ≤ 0 for i �= j ).

The equality part of (5.16) can be rewritten as

⎡
⎢⎢⎢⎢⎣
a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
...

. . .
...

0 0 . . . a
(n)
nn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
x
(1)
1
x
(1)
2
...

x
(1)
n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
ỹ
(1)
1
ỹ
(2)
2
...

ỹ
(n)
n

⎤
⎥⎥⎥⎥⎦ , (5.17)

where a(1)ij = aij , x(1)j = xj , ỹ(1)i = ỹi , and furthermore,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(2)
ij = 1

a
(1)
11

∣∣∣∣∣a
(1)
11 a

(1)
1j

a
(1)
i1 a

(1)
ij

∣∣∣∣∣
a
(3)
ij = 1

a
(2)
22

∣∣∣∣∣a
(2)
22 a

(2)
2j

a
(2)
i2 a

(2)
ij

∣∣∣∣∣
...

a
(n)
ij = 1

a
(n−1)
n−1 n−1

∣∣∣∣∣a
(n−1)
n−1 n−1 a

(n−1)
n−1 j

a
(n−1)
i n−1 a

(n−1)
i j

∣∣∣∣∣ (i, j = 2,3, · · · , n).

4As a result, all diagonal elements become positive.
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Then, the right side of (5.13) can be written as

ỹ
(1)
1 = ỹ1, ỹ

(2)
2 = ỹ

(1)
2 − a

(1)
21

a
(1)
11

ỹ
(1)
1 , ỹ

(3)
3 = ỹ

(2)
3 − a

(2)
32

a
(2)
22

ỹ
(2)
2 ,

· · · · · · , ỹ(n)n = ỹ(n−1)
n − a

(n−1)
n n−1

a
(n−1)
n−1 n−1

ỹ
(n−1)
n−1

provided a
(1)
11 > 0, a(2)22 > 0, · · · , a(n−1)

n−1 n−1 > 0, where ỹ(j)j (j = 1,2, · · · , n). Thus,
one can see that these values are non-negative and bounded if each vector yi is
bounded (i.e., y(1)i < ∞, i = 1,2, · · · , n). In addition, if a(n)nn > 0 is satisfied, then

x
(1)
n < ∞, x(1)n−1 < ∞, · · · , and x

(1)
1 < ∞ are obtained in reverse order. We note

here that these conditions can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(1)
11 =Δ1 = a11 > 0

a
(2)
22 = Δ2

Δ1
=

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
a11

> 0

a
(3)
33 = Δ3

Δ2
=

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
> 0

...

a(n)nn = Δn

Δn−1
=

∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 . . . a1 n−1
...

. . .
...

an−1 1 . . . an−1 n−1

∣∣∣∣∣∣∣∣

> 0.

(5.18)

On the other hand, if the solution of (5.16) is calculated using some numerical
method as x1 <∞, x2 <∞, · · · , xn <∞, then a

(1)
11 > 0, a(2)22 > 0), · · · , a(n)nn will be

obtained in consequence thereof. These conditions say that all principal minors of
matrix A are positive, which means that the matrix becomes an M-matrix.
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The conditions say that all principal minors of matrix A are positive.5 That is,
the matrix becomes an M-matrix. Thus, we can prove that

‖e∗
i ‖<∞ and ‖ei‖<∞, i = 1,2,3,

when the nominal control system with gainsK , Kn, and Kf is asymptotically stable.
Based on the concept of BIBO stability, the robust stability of multi-loop discrete
control systems can be proved.

Remark As is clear from Fig. 5.26 (see Appendix B), the condition “all principal
minors of matrix A are positive” can be rewritten as: “the solution of Ax = 0 exists
in the first quadrant (xi > 0, ∀i).”

5.4 Input-Output Stability for Two-Control-Input Systems

In the case of two-input and two-output systems, Fig. 5.1 is redrawn as shown
in Fig. 5.2. As is given in (5.2), cross terms of nonlinearities are not considered
here. It is assumed that the nonlinear time-varying elements are written as f1(e1, k),
f2(e2, k), and

|f1(e1, k)|
|e1(k)| ≤ ρ1 <∞,

|f2(e2, k)|
|e2(k)| ≤ ρ2 <∞. (5.19)

Then, the norm of the output of each nonlinear element is written in the following
vector-matrix form: [‖v1(k)‖2

‖v2(k)‖2

]
�

[
ρ1 0

0 ρ2

] [‖e1(k)‖2

‖e2(k)‖2

]
. (5.20)

As is obvious from Fig. 5.2,[‖u1(k)‖2

‖u2(k)‖2

]
�

[
ρ1 0

0 ρ2

] [‖e1(k)‖2

‖e2(k)‖2

]
+

[‖d1(k)‖2

‖d2(k)‖2

]
. (5.21)

On the other hand, with respect to the controlled systems the following inequality
holds for z= ejωh:[‖ỹ1(z)‖2

‖ỹ2(z)‖2

]
�

[
sup|z|=1 |G11(z)| sup|z|=1 G12(z)

sup|z|=1 |G21(z)| sup|z|=1 G22(z)

] [‖ũ1(z)‖2

‖ũ2(z)‖2

]
. (5.22)

5The derivation of the result in general form was proved by the author; see [4].
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Fig. 5.2 Nonlinear time-varying two-control-input feedback system

Here, |z| = 1 corresponds to ω := −π/h→ π/h, i.e.,

sup
|z|=1

|Gij (z)| = sup
−π/h≤ω≤π/h

|Gij (e
jωh)|, i, j = 1,2.

By applying Parseval’s identity,

[‖y1(k)‖2

‖y2(k)‖2

]
�

[|G11(ejωh)| |G12(ejωh)|
|G21(ejωh)| |G22(ejωh)|

] [‖u1(k)‖2

‖u2(k)‖2

]
. (5.23)

From Fig. 5.2,

[‖e1(k)‖2

‖e2(k)‖2

]
�

[‖r1(k)‖2

‖r2(k)‖2

]
+

[|G11(ejωh)| |G12(ejωh)|
|G21(ejωh)| |G22(ejωh)|

] [‖u1(k)‖2

‖u2(k)‖2

]
. (5.24)

Thus,

[‖e1(k)‖2

‖e2(k)‖2

]
�

[‖r1(k)‖2

‖r2(k)‖2

]
+

[|G11(ejωh)| |G12(ejωh)|
|G21(ejωh)| |G22(ejωh)|

]

·
{[

ρ1 0

0 ρ2

] [‖e1(k)‖2

‖e2(k)‖2

]
+

[‖d1(k)‖2

‖d2(k)‖2

]}
. (5.25)

Rearranging inequality (5.25), the following is obtained:
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Fig. 5.3 Multi-loop
discretized PID control
system

[
1 − ρ1|G11(ejωh)| −ρ2|G12(ejωh)|
−ρ1|G21(ejωh)| 1 − ρ2|G22(ejωh)|

] [‖e1(k)‖2

‖e2(k)‖2

]

�
[‖r1(k)‖2

‖r2(k)‖2

]
+

[|G11(ejωh)| |G12(ejωh)|
|G21(ejωh)| |G22(ejωh)|

] [‖d1(k)‖2

‖d2(k)‖2

]
. (5.26)

Corollary 5.2 If ‖r1‖2 <∞, ‖r2‖2 <∞, ‖d1‖2 <∞, and ‖d2‖2 <∞, then ‖e1‖2

and ‖e2‖2 become bounded when the following inequalities are satisfied:

1 − ρ1 · |G11(e
jωh)|> 0, (5.27)

( or 1 − ρ2 · |G22(e
jωh)|> 0 ), 0 <ω <ωc,

and

(1 − ρ1|G11(e
jωh)|)(1 − ρ2|G22(e

jωh)|) > 0. (5.28)

Proof The above conditions are obvious from the proof of Theorem 5.1. �

5.5 Multi-Loop Discretized PID Control Systems

For a multi-loop structure, the discretized nonlinear control system is drawn as
shown in Fig. 5.3. In this figure, the dynamical system G(z) is given in matrix
form as follows:

G(z)=

⎡
⎢⎢⎢⎣
G11(z) G12(z) . . . G1n(z)

G21(z) G22(z) . . . G2n(z)
...

...
. . .

...

Gn1(z) Gn2(z) . . . Gnn(z)

⎤
⎥⎥⎥⎦ . (5.29)



5.5 Multi-Loop Discretized PID Control Systems 157

Fig. 5.4 Nonlinear two-input/two-output PID control system

Moreover, controller C(z) is a diagonal matrix that can be written as

C(z)=

⎡
⎢⎢⎢⎣
C1(z) 0 . . . 0

0 C2(z) . . . 0
...

...
. . .

...

0 0 . . . Cn(z)

⎤
⎥⎥⎥⎦ . (5.30)

When considering two-input and two-output systems (i.e., n = 2), the discretized
control system can be drawn as shown in Fig. 5.4.

In (5.30), each controller Cι(z) is given by

ûci(z)=Kpiûi(z)+CIi

û(z)

δ
+CDi · δû(z) (5.31)

as shown in (4.4), where δ is a bilinear operator written as

δ = 2

h
· 1 − z−1

1 + z−1
.

Therefore, controller matrix C(z) can also be written as

C(δ)= diag{C1(δ),C2(δ), · · · ,Cn(δ)},

Ci(δ)=Kpi

(
1 + 1

TIiδ
+ TDiδ

)
. (5.32)

In the frequency domain,

Ci(j�)=Kpi

(
1 + 1

jTIi�
+ jTDj�

)
=Kpi

[
1 + j

(
TDi�− 1

TIi�

)]
,

(5.33)
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Fig. 5.5 Discretized
nonlinear PID control system

where �= (2/h) tan(ωh/2). As described in Chap. 4, if using the direct difference
method, the control algorithm is given by

uci(k)=Kpiui(k)+CIi

k∑
j=0

u(j)+CDi�u(k). (5.34)

The multi-loop discretized control system shown in Fig. 5.3 is redrawn as shown
in Fig. 5.5 in regard to the nominal gain of discretized nonlinearity. Here, the nomi-
nal gain matrix is given by

K =

⎡
⎢⎢⎢⎣
K1 0 . . . 0
0 K2 . . . 0
...

...
. . .

...

0 0 . . . Kn

⎤
⎥⎥⎥⎦ , (5.35)

and the nonlinear part of the system is written as

g : Rn → Rn

wi = gi(ei) i = 1,2, · · · , n. (5.36)

In addition, each variable is written in the following vector forms:

e = (e1(k), e2(k), · · · , en(k))T , w = (w1(k),w2(k), · · · ,wn(k))
T

v† = (v
†
1(k), v

†
2(k), · · · , v†

n(k))
T , y = (y1(k), y2(k), · · · , yn(k))T .

The exogenous inputs are also written as

r = (r1(k), r2(k), · · · , rn(k))T ,
d = (d1(k), d2(k), · · · , dn(k))T .

From the block diagram of Fig. 5.5,

v†(k)= w(k)+ Ke(k).
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Fig. 5.6 Nonlinear
multivariable subsystem

In regard to the z-transform,

v̂†
(z)= ŵ(z)+ Kê(z).

Moreover,

ŷ(z)= G(z)C(z)û(z)= G(z)C(z)(v̂†
(z)+ d̂(z))

= G(z)C(z)[ŵ(z)+ Kê(z)+ d̂(z)].
Since ê(z)= r̂(z)− ŷ(z),

ê(z)= r̂(z)− G(z)C(z)ŵ(z)− G(z)C(z)Kê(z)− G(z)C(z)d̂(z).

Here, as is shown in Fig. 5.6,

ŵ(z)= ŵ∗
(z)+ βqδê(z).

Therefore,

ê(z)= r̂(z)− G(z)C(z)[ŵ∗
(z)+ βqδê(z)] − G(z)C(z)Kê(z)− G(z)C(z)d̂(z),

and furthermore,

[I + G(z)C(z)(K + βqδ)]ê(z)= r̂(z)− G(z)C(z)ŵ∗
(z)− G(z)C(z)d̂(z),

where I is the identity matrix. Thus, H (β,q, z) can be obtained as follows:

H (β,q, z)= [I + G(z)C(z)(K + βqδ)]−1G(z)C(z). (5.37)

As was described in Chap. 2, the discretized control system shown in Fig. 5.5 is
redrawn as shown in Fig. 5.7. In the figure, q is a diagonal matrix with non-negative
elements that is written as

q =

⎡
⎢⎢⎢⎣
q1 0 . . . 0
0 q2 . . . 0
...

...
. . .

...

0 0 . . . qn

⎤
⎥⎥⎥⎦ . (5.38)
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Fig. 5.7 Equivalent
multi-loop system

Moreover, β is also a diagonal matrix that can be written as

β =

⎡
⎢⎢⎢⎣
β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...

0 0 . . . βn

⎤
⎥⎥⎥⎦ . (5.39)

From the equivalent multi-loop system as shown in Fig. 5.7, the following relations
are obtained:

w∗(k)= g∗[e∗†(k)], (5.40)

e∗†(k)= ε′(k)+ e∗(k). (5.41)

Here,

w∗(k)= g∗[e∗†(k)] =

⎡
⎢⎢⎢⎣
g∗

1(e
∗†(k)) 0 . . . 0
0 g∗

2(e
∗†(k)) . . . 0

...
...

. . .
...

0 0 . . . g∗
n(e

∗†(k))

⎤
⎥⎥⎥⎦ , (5.42)

and, as shown in (3.25), it is assumed that the following sectors can be considered
in regard to each nonlinear part:

|g∗
i [e∗†(k)]|
|e∗†(k)| ≤ βi <∞, i = 1,2, · · · , n. (5.43)

Clearly, from Fig. 5.7,

ê∗†
(z)= ε′(z)+ (I + qδ)ê(z)),

ê(z)= r̂ ′
(z)− ŷ′

(z).

On the other hand, the following relations hold:

y′(z)= H (β,q, z)û′
(z),

û′
(z)= ŵ∗

(z)+ d ′(z).
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Fig. 5.8 Equivalent
small-gain system

The block diagram of the discrete control system shown in Fig. 5.7 can be trans-
formed into Fig. 5.8, where

W (β,q, z)= (I + qδ)H (β,q, z)

= (I + qδ)[I + (K + βqδ)G(z)C(z)]−1G(z)C(z). (5.44)

Thus,

e∗†(z)= r ′′(z)− W (β,q, z)(w∗(z)+ d ′(z)), (5.45)

where

r ′′(z)= ε(z)+ (I + qδ(z))r ′(z).

The discrete control system shown in Fig. 5.8 corresponds to Fig. 5.1. Therefore,
inequalities (5.11) through (5.14) can be applied to this multi-loop system. That is,
the following inequality is obtained with respect to z= ejωh:6

⎡
⎢⎢⎢⎢⎣

‖e∗†
1 (k)‖2

‖e∗†
2 (k)‖2
...

‖e∗†
n (k)‖2

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

‖r ′′
1 (k)‖2

‖r ′′
2 (k)‖2
...

‖r ′′
n (k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

|W11(ejωh)| |W12(ejωh)| . . . |W1n(ejωh)|
|W21(ejωh)| |W22(ejωh)| . . . |W2n(ejωh)|

...
...

. . .
...

|Wn1(ejωh)| |Wn2(ejωh)| . . . |Wnn(ejωh)|

⎤
⎥⎥⎥⎦

·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...

0 0 . . . βn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

‖e∗†
1 (k)‖2

‖e∗†
2 (k)‖2
...

‖e∗†
n (k)‖2

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

‖d ′
1(k)‖2

‖d ′
2(k)‖2
...

‖d ′
n(k)‖2

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (5.46)

Then,

6In the following inequalities, vectors of sector parameters β and arbitrary non-negative parameters
q are omitted in Wij (·, ·, ejωh), (i, j = 1,2, · · · , n).
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⎡
⎢⎢⎢⎣

1 − β1|W11(e
jωh)| −β2|W12(e

jωh)| . . . −βn|W1n(e
jωh)|

−β1|W21(e
jωh)| 1 − β2|W22(e

jωh)| . . . −βn|W2n(e
jωh)|

...
...

. . .
...

−β1|Wn1(e
jωh)| −β2|Wn2(e

jωh)| . . . 1 − βn|Wnn(ejωh)|

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

‖e∗†
1 (k)‖2

‖e∗†
2 (k)‖2
...

‖e∗†
n (k)‖2

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎣

‖r ′′1 (k)‖2
‖r ′′2 (k)‖2

...

‖r ′′n (k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

|W11(e
jωh)| |W12(e

jωh)| . . . |W1n(e
jωh)|

|W21(e
jωh)| |W22(e

jωh)| . . . |W2n(e
jωh)|

...
...

. . .
...

|Wn1(e
jωh)| |Wn2(e

jωh)| . . . |Wnn(ejωh)|

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

‖d ′
1(k)‖2

‖d ′
2(k)‖2
...

‖d ′
n(k)‖2

⎤
⎥⎥⎥⎦ .

(5.47)

As was described in (5.14), the matrix of the left side of (5.47) can be written as

A =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ . (5.48)

Obviously, all non-diagonal elements of (5.48) are non-positive. If all principal mi-
nors of (5.48) are positive, the matrix A becomes an Ostrowski M-matrix.

Based on the above premise, we obtain the following theorem for multi-loop
discretized nonlinear systems.

Theorem 5.2 If there exists a qi ≥ 0, ∀i in which matrix (5.48) becomes an Os-
trowski M-matrix, the discretized multi-loop control system with sector nonlineari-
ties (5.43) is robustly stable in an �2 sense, when the linearized system with nominal
gains Ki is asymptotically stable.

Proof By using matrix expression (5.48), the system inequality (5.47) can be written
as follows:

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
x1
x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
ỹ1
ỹ2
...

ỹn

⎤
⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣
y1
y2
...

yn

⎤
⎥⎥⎥⎦ , (5.49)

where elements of vectors xi and yi (i = 1,2, · · · , n) are non-negative, and all non-
diagonal elements of matrix (aij ) (i, j = 1,2, · · · , n) on the left side of (5.49) are
non-positive (i.e., xi ≥ 0, yi ≥ 0, and aij ≤ 0 for i �= j ).
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The equality part of (5.49) can be rewritten as⎡
⎢⎢⎢⎢⎣
a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
...

. . .
...

0 0 . . . a
(n)
nn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
x
(1)
1
x
(1)
2
...

x
(1)
n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
ỹ
(1)
1
ỹ
(2)
2
...

ỹ
(n)
n

⎤
⎥⎥⎥⎥⎦ , (5.50)

where a(1)ij = aij , x(1)j = xj , ỹ(1)i = ỹi , and furthermore,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(2)
ij = 1

a
(1)
11

∣∣∣∣∣a
(1)
11 a

(1)
1j

a
(1)
i1 a

(1)
ij

∣∣∣∣∣
a
(3)
ij = 1

a
(2)
22

∣∣∣∣∣a
(2)
22 a

(2)
2j

a
(2)
i2 a

(2)
ij

∣∣∣∣∣
...

a
(n)
ij = 1

a
(n−1)
n−1 n−1

∣∣∣∣∣a
(n−1)
n−1 n−1 a

(n−1)
n−1 j

a
(n−1)
i n−1 a

(n−1)
i j

∣∣∣∣∣ (i, j = 2,3, · · · , n).

Then, the right side of (5.50) can be written as

ỹ
(1)
1 = ỹ1, ỹ

(2)
2 = ỹ

(1)
2 − a

(1)
21

a
(1)
11

ỹ
(1)
1 , ỹ

(3)
3 = ỹ

(2)
3 − a

(2)
32

a
(2)
22

ỹ
(2)
2 ,

· · · · · · , ỹ(n)n = ỹ(n−1)
n − a

(n−1)
n n−1

a
(n−1)
n−1 n−1

ỹ
(n−1)
n−1

provided a
(1)
11 > 0, a(2)22 > 0, · · · , a(n−1)

n−1 n−1 > 0, where ỹ(j)j (j = 1,2, · · · , n). Thus,

these values are non-negative and bounded if each vector yi is bounded (i.e., y(1)i <

∞, i = 1,2, · · · , n). In addition, if a(n)nn > 0 is satisfied, then x
(1)
n < ∞, x(1)n−1 <

∞, · · · , and x
(1)
1 <∞ are obtained in reverse order.

On the other hand, if the solution of (5.49) is calculated using some numerical
method as x1 <∞, x2 <∞, · · · , xn <∞, then a

(1)
11 > 0, a(2)22 > 0), · · · , a(n)nn will be

obtained in consequence thereof. These conditions say that all principal minors of
matrix A are positive, meaning that the matrix becomes an M-matrix.

The conditions say that all principal minors of matrix A are positive, and this
means that the matrix becomes an M-matrix. Thus, we can prove that

‖e∗
i ‖<∞ and ‖ei‖<∞, i = 1,2,3,

when the nominal control system with gainsK , Kn, and Kf is asymptotically stable.
Based on the concept of BIBO stability, the robust stability of multi-loop discrete
control systems can be proved.
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Example 5.1 Consider the following 2 × 2 controlled system:

G(s)=
⎡
⎣G11(s) G12(s)

G21(s) G22(s)

⎤
⎦ =

⎡
⎢⎢⎣

0.2

(s + 0.5)(s + 1.0)

0.04

s + 0.3

0.04

s + 0.2

0.2

(s + 0.4)(s + 0.8)

⎤
⎥⎥⎦ .

(5.51)
By using computerized transformation, we can obtain the following transfer func-
tions with respect to z:⎧⎪⎪⎨

⎪⎪⎩
G11(z)= 0.061z+ 0.037

z2 − 0.97z+ 0.22
, G12(z)= 0.036

z− 0.82
,

G21(z)= 0.035

z− 0.74
, G22(z)= 0.068z+ 0.046

z2 − 1.12z+ 0.30
.

(5.52)

It is assumed that the controller is given as the following two-channel controller:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uc1(k)=Kp1u1(k)+CI1

k∑
j=0

u1(j)+CD1�u1(k),

uc2(k)=Kp2ui(k)+CI2

k∑
j=0

u2(j)+CD2�u2(k),

(5.53)

as shown in (4.11), where �ui(k) = ui(k) − ui(k − 1) (i = 1,2). Using the z-
transform expression, the controller actions are written as⎧⎪⎪⎨

⎪⎪⎩
ûc1(z)=Kp1û1(z)+CI1 · 1

1 − z−1
û1(z)+CD1(1 − z−1)û1(z)

ûc2(z)=Kp2û2(z)+CI2 · 1

1 − z−1
û2(z)+CD2(1 − z−1)û2(z).

(5.54)

The discrete controller C(z) is given by

C(z)=
[
C1(z) 0

0 C2(z)

]
, (5.55)

where

Ci(z)=Kpi +CIi · 1

1 − z−1
+CDi(1 − z−1), i = 1,2.

The closed-loop characteristic W (β,q, z) as shown in Fig. 5.8 is derived as fol-
lows:

W (β,q, z)=
[
W11(β,q, z) W12(β,q, z)

W21(β,q, z) W22(β,q, z)

]
=

[
1 + q1δ 0

0 1 + q2δ

]
(5.56)
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·
{[

1 0

0 1

]
+

[
K1 + β1q1δ 0

0 K2 + β2q2δ

] [
G11 G12

G21 G22

] [
C1 0

0 C2

]}−1

·
[
G11 G12

G21 G22

] [
C1 0

0 C2

]

[
W11(β1, β2, q1, q2, z) W12(β1, β2, q1, q2, z)

W21(β1, β2, q1, q2, z) W22(β1, β2, q1, q2, z)

]
=

[
1 + q1δ 0

0 1 + q2δ

]

·
{[

1 0

0 1

]
+

[
(K1 + β1q1δ)G11C1 (K1 + β1q1δ)G12C2)

(K2 + β2q2δ)G21C1 (K2 + β2q2δ)G22C2)

]}−1

·
[
G11C1 G12C2

G21C1 G22C2

]
. (5.57)

Here, we use the following symbol in (5.57):

�ij (βi, qi, z)= (Ki + βiqiδ)GijCj , (5.58)

in order to rewrite (5.57) as

1

(1 +�11)(1 +�22)−�12�21

[
1 + q1δ 0

0 1 + q2δ1

] [
1 +�22 −�12

−�21 1 +�11

]

·
[
G11C1 G12C2

G21C1 G22C2

]

Thus, each element of W is given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W11 = 1

(1 +�11)(1 +�22)−�12�21
(1 + q1δ)[(1 +�22)G11C1 −�12G21C1]

W12 = 1

(1 +�11)(1 +�22)−�12�21
(1 + q1δ)[(1 +�22)G12C2 −�12G22C2]

W21 = 1

(1 +�11)(1 +�22)−�12�21
(1 + q2δ)[(1 +�11)G21C1 −�21G11C1]

W22 = 1

(1 +�11)(1 +�22)−�12�21
(1 + q2δ)[(1 +�11)G22C2 −�21G12C2]

(5.59)
Here, we note that �ij (i, j = 1,2) are complex functions and 1 + qiδ = 1 + jqi�

when z= ejωh.



166 5 Multi-Loop Feedback Systems

Fig. 5.9 Discretized nonlinear characteristics for Example 5.1

The discretized nonlinear characteristics are assumed to be as shown in
Figs. 5.9(a) and (b). If using C-language expressions, they can be written for (a),

e
†
1 = γ ∗ (double)(int)(e1/γ )

v1 = 0.3 ∗ e†
1 + 2.7 ∗ atan(0.7 ∗ e†

1) (5.60)

v
†
1 = γ ∗ (double)(int)(v1/γ ),

and for (b),

e
†
2 = γ ∗ (double)(int)(e2/γ )

v2 = 0.4 ∗ e†
2 + 2.9 ∗ atan(0.6 ∗ e†

2) (5.61)

v
†
2 = γ ∗ (double)(int)(v2/γ ).

First, it is assumed that the PID parameters in (5.54) are given by

Kp1 = 1.0, CI1 = 0.9, CD1 = 0.0,

Kp2 = 1.0, CI2 = 0.9, CD2 = 0.0,

that is, only PI control is executed. In this case, the modified Hall diagram and
Nyquist curves are as shown in Fig. 5.10. Moreover, the step responses of each
variable are given as shown in Fig. 5.11. Here, the red and orange curves show
crossed output responses. Figure 5.12 shows �1 and �2 vs. ω. It can be seen from
these figures that the two-input and two-output control system is stabilized.
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Fig. 5.10 Modified Hall
diagram for Example 5.1 (PI
control). Nij : Nyquist curve
for path i → j

Next, the following PID parameters are applied:

Kp1 = 1.0, CI1 = 1.0, CD1 = 0.2,

Kp2 = 1.0, CI2 = 0.8, CD2 = 0.2.

The modified Hall diagram and Nyquist curves are as shown in Fig. 5.13, and the
step responses of each variable are given as shown in Fig. 5.14. As is clear from the
figure, the PID control system is well stabilized.

Fig. 5.11 Step responses for Example 5.1 (PI control)
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Fig. 5.12 �1 and �2 curves
for Example 5.1 (PI control)

Fig. 5.13 Modified Hall
diagram for Example 5.1
(PID control). Nij : Nyquist
curve for path i → j

Example 5.2 Next, consider the case of a 2 × 2 controlled systems with transmis-
sion delay,

G(s)=

⎡
⎢⎢⎣

0.2

(s + 0.5)(s + 1.0)

0.04

s + 0.3

0.04

s + 0.2

0.2

(s + 0.4)(s + 0.8)

⎤
⎥⎥⎦ . (5.62)

In this example, there are transmission delays L1 = 2.0 and L2 = 3.0. Therefore,
the PID algorithm is given as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uc1(k)=Kp1u1(k − 2)+CI1

k∑
j=0

u1(j − 2)+CD1�u1(k − 2),

uc2(k)=Kp2ui(k − 3)+CI2

k∑
j=0

u2(j − 3)+CD2�u2(k − 3).

(5.63)
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Fig. 5.14 Step responses for Example 5.1 (PID control)

Using the z-transform expression, the controller actions are written as⎧⎪⎪⎨
⎪⎪⎩
ûc1(z)=Kp1û1(z)z

−2 +CI1 · 1

1 − z−1
û1(z)z

−2 +CD1(1 − z−1)û1(z)z
−2,

ûc2(z)=Kp2û2(z)z
−3 +CI2 · 1

1 − z−1
û2(z)z

−3 +CD2(1 − z−1)û2(z)z
−3.

(5.64)
Thus, the PID controller matrix is given by

C(z)=
[
C1(z) 0

0 C2(z)

]
, (5.65)

where

C1(z)=Kpiz
−2 +CI1 · z−2

1 − z−1
+CD1z

−2(1 − z−1),

C2(z)=Kp2z
−3 +CI2 · z−3

1 − z−1
+CD2z

−3(1 − z−1).

First, the following PID parameters are considered (i.e., PI control):

Kp1 = 1.0, CI1 = 0.5, CD1 = 0.0,

Kp2 = 1.0, CI2 = 0.3, CD2 = 0.0.

The modified Hall diagram and Nyquist curves are given as shown in Fig. 5.15. The
step responses of each variable are as shown in Fig. 5.16. Figure 5.17 shows the
robust stability measures �1 and �2.

Next, the following PID control parameters are considered:

Kp1 = 1.0, CI1 = 0.5, CD1 = 0.2,
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Fig. 5.15 Modified Hall
diagram for Example 5.2 (PI
control). Nij : Nyquist curve
for path i → j

Kp2 = 1.0, CI2 = 0.3, CD2 = 0.2.

The modified Hall diagram and Nyquist curves are shown in Fig. 5.18. The step re-
sponses of each variable are as shown in Fig. 5.19. The responses are well stabilized
by the derivative action.

Figure 5.20 shows the robust stability measures �1 and �2. If considering a re-
stricted frequency range for the control system, �1 > 0 and �2 > 0 will be satisfied
in either of (5.17) and (5.20).

Fig. 5.16 Step responses for Example 5.2 (PI control)
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Fig. 5.17 �1 and �2 curves
for Example 5.2 (PI control)

Fig. 5.18 Modified Hall
diagram for Example 5.2
(PID control). Nij : Nyquist
curve for path i → j

Fig. 5.19 Step responses for Example 5.2 (PID control)
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Fig. 5.20 �1 and �2 curves
for Example 5.2 (PID control)

5.6 Model Reference Multi-Loop Control Systems

As was described in Chap. 4, model reference discretized control systems are con-
sidered here. Figure 5.21 shows the model reference control system extended to a
multi-loop feedback structure. Figure 5.22 is an equivalent expression for this struc-
ture. In this figure, disturbance d ′(k)= 0 is assumed for simplicity.

Here, G(z) is a controlled system (plant) matrix which is written by

G(z)=

⎡
⎢⎢⎢⎣
G11(z) G12(z) . . . G1n(z)

G21(z) G22(z) . . . G2n(z)
...

...
. . .

...

Gn1(z) Gn2(z) . . . Gnn(z)

⎤
⎥⎥⎥⎦ . (5.66)

Furthermore, in this chapter, the following model system is considered:

Gm(z)=

⎡
⎢⎢⎢⎣
Gm1(z) 0 . . . 0

0 Gm2(z) . . . 0
...

...
. . .

...

0 0 . . . Gmn(z)

⎤
⎥⎥⎥⎦ . (5.67)

Each model is given as

Gmi(z)= 1

1 +Ci1δ +Ci2δ2
.

It is assumed that the feedback compensator is also a diagonal matrix,

F (z)=

⎡
⎢⎢⎢⎣
F1(z) 0 . . . 0

0 F2(z) . . . 0
...

...
. . .

...

0 0 . . . Fn(z)

⎤
⎥⎥⎥⎦ , (5.68)
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Fig. 5.21 Model reference multi-loop control system

Fig. 5.22 Model reference multi-loop control system 2

where

Fi(z)= 1 +Ci1δ +Ci2δ
2

Kmi(1 + ci1δ + ci2δ2)
,

δ(ejωh)= j�(ω)= j
2

h
tan

(
ωh

2

)
, j = √−1. (5.69)

Using this expression, (5.67) and (5.68) can be written as follows:

Gmi(e
jωh)= P̃mi(j�)= Kmi

1 −Ci2�2 + jCi1�
, (5.70)

and

Fi(e
jωh)= F̃i(j�)= 1 −Ci2�

2 + jCi1�

Kmi(1 − ci2�2 + jci1�)
. (5.71)
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Fig. 5.23 Model reference multi-loop control system (equivalent expression)

Fig. 5.24 Approximate multi-loop PID control system

When the controllers are in high resolution (i.e., γ → 0), the model reference
control system as shown in Fig. 5.23 can be transformed into Fig. 5.24. Here, d ′ is
a disturbance signal generated by the discretization of controllers. Since Gm and F

are diagonal matrices, C and D are also diagonals:

C(δ)= diag{C1,C2, · · · ,Cn} (5.72)

D(δ)= diag{D1,D2, · · · ,Dn}, (5.73)

where Ci and Di are given by

Ci(δ)= 1 +Ci1δ +Ci2δ
2

Kmi(ci1δ + ci2δ2)
, (5.74)

Di(δ)= Kmi(1 + ci1δ + ci2δ
2)

1 +Ci1δ +Ci2δ2
. (5.75)
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Here, Ci(δ) can be considered to be a controller when ci2 � ci1 (i = 1,2, · · · , n).
If ci2 → 0, the controller is approximately written as

Ci(δ)= 1

κi
δ−1 + Ci1

κi
+ Ci2

κi
δ, (5.76)

where κi = Kmici1. When the sampling period is h → 0, δ becomes the Laplace
transform variable s. Therefore, the scheme will correspond to a traditional contin-
uous PID control.

In regard to the robust stability of a model reference control system as shown in
Fig. 5.23, the following equations are obtained:

v
†
1(k)= w1(k)+ Ke1(k),

û2(z)= r̂ ′
(z)+ F (δ)û3(z),

û3(z)= v̂†
1(z)+ Gm(δ)û2(z).

Therefore,

û2(z)= r̂ ′
(z)+ F (δ)(v̂

†
1(z)+ Gm(δ)û2(z)),

(I − F (δ)Gm(δ))û2(z)= r̂ ′
(z)+ F (δ)v̂

†
1(z),

and then,

û2(z)= (I − F (δ)Gm(δ))
−1r̂ ′

(z)+ (I − F (δ)Gm(δ))
−1F (δ)v̂†

1(z).

Thus, the following expressions can be given:

C(δ)= (I − F (δ)Gm(δ))
−1F (δ) (5.77)

D(δ)= F−1(δ). (5.78)

With respect to the multi-loop PID control structure as shown in Fig. 5.24, we obtain
the equation

ŷ(z)= G(δ)[C(δ)(ŵ1(z)+ Kê1(z)+ d̂
′
(z)+ D(δ)r̂ ′

(z)). (5.79)

Since ê(z)= r̂(z)− ŷ(z),7

ê(z)= r̂(z)− G(δ)C(δ)[ŵ(z)+ Kê(z)+ d̂(z)] − G(δ)C(δ)D(δ)r̂ ′
(z). (5.80)

On the other hand, from Fig. 5.6,

ê∗
(z)= (I + qδ)ê(z)

ŵ(z)= ŵ∗
(z)+ βqδê(z).

7For simplicity, the subscript 1, e.g., in e1, will be omitted hereafter.
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Then,

ê(z)= r̂(z)−G(δ)C(δ)[ŵ∗
(z)+βqδê(z)+Kê(z)+ d̂(z)]−G(δ)C(δ)D(δ)r̂ ′

(z),

and

[I + G(δ)C(δ)(K + βqδ)]ê(z)= r̂(z)− G(δ)C(δ)ŵ∗(z)− G(δ)C(δ)[d̂(z)+ D(δ)r̂ ′(z)].
(5.81)

Thus, H (β,q, δ) can be regarded as

H (β, q, δ)= [I + G(δ)C(δ)(K + βqδ)]−1G(δ)C(δ).

From the system as shown in Fig. 5.7,

w∗(k)= g∗(e∗†(k)),

e∗†(k)= ε(k)+ e∗(k).

Furthermore,

ê∗†
(z)= ε̂′

(z)+ (I + qδ)ê(z),

ê(z)= r̂ ′
(z)− ŷ′

(z),

and

ŷ′
(z)= H (β,q, δ)(ŵ∗

(z)+ d̂(z)).

The block diagram of the discrete control system shown in Fig. 5.7 can be trans-
formed into Fig. 5.8, where

W (β,q, δ)= (I +qδ)H (β,q, δ)= (I +qδ)[I +(K+βqδ)G(δ)C(δ)]−1G(δ)C(δ).

(5.82)
Consequently,

ê∗†
(z)= r̂ ′′

(z)− W (β,q, δ)(ŵ∗
(z)+ d̂(z)), (5.83)

where

r̂ ′′
(z)= ε̂(z)+ (I + qδ)r̂ ′

(z).

Thus, the robust stability of the model reference multi-loop control system can be
discriminated by inequalities (5.46) and (5.47), i.e.,
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⎢⎢⎢⎢⎣

‖e∗†
1 (k)‖2

‖e∗†
2 (k)‖2
...

‖e∗†
n (k)‖2

⎤
⎥⎥⎥⎥⎦ �

⎡
⎢⎢⎢⎣

‖r ′′
1 (k)‖2

‖r ′′
2 (k)‖2
...

‖r ′′
n (k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

|W11(ejωh)| |W12(ejωh)| . . . |W1n(ejωh)|
|W21(ejωh)| |W22(ejωh)| . . . |W2n(ejωh)|

...
...

. . .
...

|Wn1(ejωh)| |Wn2(ejωh)| . . . |Wnn(ejωh)|

⎤
⎥⎥⎥⎦

·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...

0 0 . . . βn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

‖e∗†
1 (k)‖2

‖e∗†
2 (k)‖2
...

‖e∗†
n (k)‖2

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

‖d ′
1(k)‖2

‖d ′
2(k)‖2
...

‖d ′
n(k)‖2

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.84)

and⎡
⎢⎢⎢⎣

1 − β1|W11(ejωh)| −β2|W12(ejωh)| . . . −βn|W1n(ejωh)|
−β1|W21(ejωh)| 1 − β2|W22(ejωh)| . . . −βn|W2n(ejωh)|

...
...

. . .
...

−β1|Wn1(ejωh)| −β2|Wn2(ejωh)| . . . 1 − βn|Wnn(ejωh)|

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

‖e∗†
1 (k)‖2

‖e∗†
2 (k)‖2
...

‖e∗†
n (k)‖2

⎤
⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎣

‖r ′′
1 (k)‖2

‖r ′′
2 (k)‖2
...

‖r ′′
n (k)‖2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

|W11(ejωh)| |W12(ejωh)| . . . |W1n(ejωh)|
|W21(ejωh)| |W22(ejωh)| . . . |W2n(ejωh)|

...
...

. . .
...

|Wn1(ejωh)| |Wn2(ejωh)| . . . |Wnn(ejωh)|

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

‖d ′
1(k)‖2

‖d ′
2(k)‖2
...

‖d ′
n(k)‖2

⎤
⎥⎥⎥⎦ .

(5.85)

5.7 Exercises

(1) From Fig. 5.4, determine the 2 × 2 loop transfer matrix which corresponds to
W (β,q, z) in Fig. 5.8.

(2) Show that if all principal minors in (5.15) and (5.48) are positive, all diagonal
elements become positive.

(3) Prove that if the solution of the left side of simultaneous equations (5.16) is
calculated using some numerical method as x1 < ∞, x2 <∞, · · · , xn < ∞ (in
regard to yj ≥ 0, J = 1,2, · · · , n and aij ≤ 0, i �= j ), then the matrix (5.15)
becomes an M-matrix.

(4) The colored area shown in Fig. 5.26 is given by the following (vector-matrix)
inequality: ⎡

⎣ 0.8 −0.3 −0.3
−0.1 0.8 −0.2
−0.1 −0.3 0.6

⎤
⎦

⎡
⎣x1
x2
x3

⎤
⎦ �

⎡
⎣3.6

3.9
2.6

⎤
⎦ .

Confirm that the matrix on the left side of the above inequality is an M-matrix,
and determine that x1 = x̃1 <∞, x2 = x̃2 <∞, and x3 = x̃3 <∞.
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(5) Replace x2 with x3 (x2 ↔ x3) and write the vector-matrix inequality that corre-
sponds to the above inequality in (4). Confirm that the matrix on the left side of
this inequality is an M-matrix.

(6) For a general vector-matrix expression, Ax � y, where

A =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣
x1
x2
...

xn

⎤
⎥⎥⎥⎦ , y =

⎡
⎢⎢⎢⎣
y1
y2
...

yn

⎤
⎥⎥⎥⎦ ,

show that the following operations are valid as described in [10] for simultane-
ous equations:

(a) interchanging two rows,
(b) multiplying each term in one row by a positive constant,
(c) adding a positive multiple of one row to another,

considering the influence on variables xi and yj (i, j = 1,2, · · · , n).
(7) Show that the condition of the M-matrix is not influenced by the above opera-

tions (a), (b), and (c) in general. (Refer to Exercises (5) and (6) in Chap. 4.)

Appendix A: Definition of Ostrowski’s M-Matrix

An M-matrix is a real square matrix A with the following properties [1, 2, 5–7]:

(1) A = ρI − P ,
P : a real square matrix with non-negative elements,
ρ: a positive number that is larger than the absolute value of all the eigenvalues
of P .

(2) In general, with respect to a real square matrix A with non-positive off-diagonal
elements,

(i) there exists x > 0 that satisfies Ax > 0;
(ii) A is nonsingular and all the elements of A−1 are non-negative;

(iii) the principal minors of A are positive.

Appendix B: Graphical Interpretation of M-Matrices

(1) For the first-order case, Δ1 = a11 > 0 is a trivial problem. Obviously,

x1 = ỹ1

a11
≤ y1

a11
. (5.86)

Therefore, if 0 < ỹ1 ≤ y1 <∞ and x1 ≥ 0, then 0 ≤ x1 <∞ is obtained.
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Fig. 5.25 A graphical
interpretation of a
two-dimensional M-matrix

(2) For the second-order case, the principal-minor condition

Δ2 =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ > 0 (5.87)

is interpreted graphically as shown in Fig. 5.25. The colored area is enclosed by
the following two line equations:{

L1 : a11x1 + a12x2 = ỹ1 ≤ y1

L2 : a21x1 + a22x2 = ỹ2 ≤ y2
(5.88)

and lines x1 = 0 and x2 = 0 (i.e., the area given by x1 ≥ 0 and x2 ≥ 0). Here,
a11 > 0 and a22 > 0, with a12 ≤ 0 and a21 ≤ 0 from the premises of M-matrices.
In the figure, the outside and inside lines, L1 and L2, become parallel when
Δ2 = 0 and ỹ1 �= ỹ2. As is obvious from (5.88),

x1 = 1

a11
(ỹ1 − a12x2) and x2 = 1

Δ2
(−a21ỹ1 + a11ỹ2). (5.89)

Therefore, if 0 < ỹ1 ≤ y1, 0 < ỹ2 < y2, and Δ2 > 0, then 0 ≤ x1 < ∞ and
0 ≤ x2 < ∞ are determined based on the premise of M-matrices (i.e., a11 > 0,
a22 > 0, a12 ≤ 0, and a21 ≤ 0). That is, (5.88) has a solution (intersection) in
the first quadrant.

On the other hand, from (5.88)

a11x1 = ỹ1 − a12x2 and Δ2x2 = −a21ỹ1 + a11ỹ2. (5.90)

Therefore, if the solution (x1, x2) calculated by the numerical method exists in
the first quadrant (the strictly positive orthant, i.e., x1 > 0 and x2 > 0), and 0 <
ỹ1 < ∞, 0 < ỹ2 < ∞, the principal-minor condition (5.87) must be satisfied.
That is, the corresponding matrix becomes an Ostrowski M-matrix.
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Fig. 5.26 A graphical
interpretation of a
three-dimensional M-matrix

(3) For the third-order case, the principal-minor condition

Δ3 =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ > 0 (5.91)

is interpreted graphically as shown in Fig. 5.26. The colored area is determined
(but not drawn in detail because of the three-dimensional expression) by the
following three plane equations:⎧⎪⎨

⎪⎩
P1 : a11x1 + a12x2 + a13x3 = ỹ1 ≤ y1

P2 : a21x1 + a22x2 + a23x3 = ỹ2 ≤ y2

P3 : a31x1 + a32x2 + a33x3 = ỹ3 ≤ y3

(5.92)

and planes x1 = 0, x2 = 0, and x3 = 0 (i.e., the area given by x1 ≥ 0, x2 ≥ 0,
and x3 ≥ 0). Here, a11 > 0, a22 > 0, and a33 > 0; a12 ≤ 0, a13 ≤ 0, a21 ≤ 0,
a23 ≤ 0, a31 ≤ 0, and a32 ≤ 0 from the premises of M-matrices.

In the figure, three of the edges are given from the following two plane equa-
tions that meet in a line in the positive orthant (i.e., the area determined by
x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0):{

P1 : a11x1 + a12x2 + a13x3 = ỹ1

P2 : a21x1 + a22x2 + a23x3 = ỹ2,
(5.93)

{
P2 : a21x1 + a22x2 + a23x3 = ỹ2

P3 : a31x1 + a32x2 + a33x3 = ỹ3,
(5.94)

{
P1 : a11x1 + a12x2 + a13x3 = ỹ1

P3 : a31x1 + a32x2 + a33x3 = ỹ3.
(5.95)
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From (5.92),

x1 = 1

a11
(ỹ1 − a12x2 − a13x3) ,

x2 = a11

Δ2

(
ỹ2 − a11a23 − a21a13

a11
x3

)
,

x3 = Δ2

Δ3
· ỹ3.

Thus, if 0 < ỹ1 < ∞, 0 < ỹ < ∞, 0 < ỹ3 < ∞, Δ2 > 0, and Δ3 > 0, then
0 ≤ x1 <∞, 0 ≤ x2 <∞, and 0 ≤ x3 <∞ are determined from the premise of
M-matrices.

On the other hand, from (5.92)

a11x1 = ỹ1 − a12x2 − a13x3

Δ2x2 = a11(ỹ2 − a11a23 − a21a13

a11
x3

Δ3x3 =Δ2ỹ3.

Therefore, if the solution (x1, x2, x3) calculated by the numerical method exists
in the strictly positive orthant (i.e., x1 > 0, x2 > 0, and x3 > 0), and 0 < ỹ1 <

∞, 0 < ỹ2, 0 < ỹ3, the principal-minor conditions (5.87) and (5.91) must be
satisfied. That is, the corresponding matrix becomes an Ostrowski’s M-matrix.
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Chapter 6
Interval Polynomials and Robust Performance

6.1 Introduction

In the previous chapters, control systems with discretized and nonlinear characteris-
tics have been considered. However, the problems of these nonlinear control systems
are generally difficult to analyze. Only the stability (input-output stability) problem
was discussed in the frequency domain, and the method of design from the stability
margin was presented. In this chapter, a nonlinear characteristic is treated as a set of
linear characteristics, in other words, as interval parameters.1 This concept is based
on the validity of Aizerman’s conjecture.

There are many works in the literature [1–3, 5, 7] in which the analysis and de-
sign of a control system with uncertainties and nonlinearities are discussed in the
concept of an interval system. In those studies, it is assumed that the physical pa-
rameters of controlled systems are uncertain and are accompanied by nonlinearity.
Therefore, the transfer function (and the state representation) is expressed by inter-
val parameters.

6.2 Sector Nonlinearities and Interval Systems

First, consider a multi-loop interval system, as shown in Fig. 6.1. Here, G(z) is a
multivariable dynamical system with interconnections (e.g., an interconnected plant
with some controllers), written as

G(z)=

⎡
⎢⎢⎢⎣
G11(z) G12(z) . . . G1n(z)

G21(z) G22(z) . . . G2n(z)
...

...
. . .

...

Gn1(z) Gn2(z) . . . Gnn(z)

⎤
⎥⎥⎥⎦ (6.1)

1Basically, the concept of an interval parameter is not different from that of a sector for a nonlinear
characteristic.
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Fig. 6.1 Multi-loop
nonlinear/interval feedback
system

and

C(z)=

⎡
⎢⎢⎢⎣
C1(z) 0 . . . 0

0 C2(z) . . . 0
...

...
. . .

...

0 0 . . . Cn(z)

⎤
⎥⎥⎥⎦ . (6.2)

Moreover, interval gains are written as

[K−,K+] =

⎡
⎢⎢⎢⎣

[K−
1 ,K

+
1 ] 0 . . . 0

0 [K−
2 ,K

+
2 ] . . . 0

...
...

. . .
...

0 0 . . . [K−
n ,K

+
n ]

⎤
⎥⎥⎥⎦ . (6.3)

Figures 6.2(a) and (b) show examples of sectors of discretized nonlinearity i.e.,
interval gains. The loop characteristics from e to y are given as

Fig. 6.2 Nonlinear characteristics and allowable sectors
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G(z)C(z)[K−,K+]

=

⎡
⎢⎢⎢⎣

[K−
1 ,K

+
1 ]C1G11 [K−

2 ,K
+
2 ]C2G12 . . . [K−

n ,K
+
n ]CnG1n

[K−
1 ,K

+
1 ]C1G21 [K−

2 ,K
+
2 ]C2G22 . . . [K−

n ,K
+
n ]CnG2n

...
...

. . .
...

[K−
1 ,K

+
1 ]C1Gn1 [K−

2 ,K
+
2 ]C2Gn2 . . . [K−

n ,K
+
n ]CnGnn

⎤
⎥⎥⎥⎦ , (6.4)

whereas the loop characteristics from u to v are given as

[K−,K+]C(z)G(z)

=

⎡
⎢⎢⎢⎣

[K−
1 ,K

+
1 ]C1G11 [K−

1 ,K
+
1 ]C1G12 . . . [K−

1 ,K
+
1 ]C1G1n

[K−
2 ,K

+
2 ]C2G21 [K−

2 ,K
+
2 ]C2G22 . . . [K−

2 ,K
+
2 ]C2G2n

...
...

. . .
...

[K−
n ,K

+
n ]CnGn1 [K−

n ,K
+
n ]CnGn2 . . . [K−

n ,K
+
n ]CnGnn

⎤
⎥⎥⎥⎦ . (6.5)

Thus, the characteristic equation of this multivariable control system is given by

det{I + G(z)C(z)[K−,K+]} = 0 (6.6)

or

det{I + [K−,K+]C(z)G(z)} = 0, (6.7)

where I is the identity matrix. Note that Eqs. (6.6) and (6.7) are equivalent when
C(z) and K̃ ∈ [K−,K+] are diagonal matrices with nonzero diagonal elements.

Operations of Interval Parameters For interval parameters [p−
� ,p

+
� ] (� =

1,2, · · · ), the following operations can be defined:

• Addition:

[p−,p+] := [p−
1 ,p

+
1 ] + [p−

2 ,p
+
2 ], (6.8)

where p− = p−
1 + p−

2 and p+ = p+
1 + p+

2 .
• Subtraction:

[p−,p+] := [p−
1 ,p

+
1 ] − [p−

2 ,p
+
2 ], (6.9)

where p− = p−
1 − p+

2 and p+ = p+
1 − p−

2 .
• Multiplication:

[p−,p+] := [p−
1 ,p

+
1 ] · [p−

2 ,p
+
2 ], (6.10)

where p− = p−
1 · p−

2 and p+ = p+
1 · p+

2 .
• Division:

[p−,p+] := [p−
1 ,p

+
1 ]

[p−
2 ,p

+
2 ] , (6.11)

where p− = p−
1 /p

+
2 and p+ = p+

1 /p
−
2 .
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Example 6.1 Consider a two-loop interval system having the following controlled
system (plant) and controller:

G(z)=
[
G11(z) G12(z)

G21(z) G22(z)

]
, C(z)=

[
C1(z) 0

0 C2(z)

]
. (6.12)

Then, the characteristic equation of the interval system is given by∣∣∣∣∣
1 +G11(z)C1(z)[K−

1 ,K
+
1 ] G12(z)C2(z)[K−

2 ,K
+
2 ]

G21(z)C1(z)[K−
1 ,K

+
1 ] 1 +G22(z)C2(z)[K−

2 ,K
+
2 ]

∣∣∣∣∣ = 0 (6.13)

or ∣∣∣∣∣
1 + [K−

1 ,K
+
1 ]C1(z)G11(z) [K−

1 ,K
+
1 ]C1(z)G12(z)

[K−
2 ,K

+
2 ]C2(z)G21(z) 1 + [K−

2 ,K
+
2 ]C2(z)G22(z)

∣∣∣∣∣ = 0. (6.14)

Therefore, each of the characteristic equations (6.13) and (6.14) can be written as:

1 + [K−
1 ,K

+
1 ]C1(z)G11(z)+ [K−

2 ,K
+
2 ]C2(z)G22(z)

+[K−
1 ,K

+
1 ] · [K−

2 ,K
+
2 ]C1(z)C2(z)G11(z)G22(z)

−[K−
1 ,K

+
1 ] · [K−

2 ,K
+
2 ]C1(z)C2(z)G12(z)G21(z)= 0. (6.15)

Here, [K−
1 ,K

+
1 ] · [K−

2 ,K
+
2 ] can be given as

[K−,K+] = [K−
1 K

−
2 ,K

+
1 K

+
2 ] = [K−

1 ,K
+
1 ] · [K−

2 ,K
+
2 ] (6.16)

from multiplication operation (6.10).
If the transfer function is expressed by the numerator and denominator polyno-

mials, Gij (z) (i, j = 1,2) can be written as:⎧⎪⎪⎨
⎪⎪⎩
G11(z)= N11(z)

D11(z)
, G12 = N12(z)

D12(z)
, G21(z)= N21(z)

D21(z)
, G22 = N22(z)

D22(z)
,

C1(z)= Nc1(z)

Dc1(z)
, C2(z)= Nc2(z)

Dc2(z)
.

The characteristic equation is given by

F̃ (z)=Dc1(z)Dc2(z)D11(z)D22(z)D12(z)D21(z)

+[K−
1 ,K

+
1 ]Nc1(z)N11(z)Dc2D22(z)D12(z)D21(z)

+[K−
2 ,K

+
2 ]Nc2(z)N22(z)Dc1D11(z)D12(z)D21(z)

+[K−,K+]Nc1(z)Nc2(z)N11(z)N22(z)D12(z)D21(z)

−[K−,K+]Nc1(z)Nc2(z)N12(z)N21(z)D11(z)D22(z)= 0. (6.17)

Equation (6.17) is a characteristic equation with interval coefficients. This type of
polynomials, F̃ (z), is called an interval polynomial.
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Example 6.2 Consider the following interconnected plant, which was described in
Example 5.2:

G(s)=

⎡
⎢⎢⎣

0.2

(s + 0.5)(s + 1.0)

0.02

s + 0.6
0.02

s + 0.4

0.2

(s + 0.4)(s + 0.8)

⎤
⎥⎥⎦ . (6.18)

By using computerized transformation, the following transfer functions with respect
to z are obtained:⎧⎪⎪⎨

⎪⎪⎩
G11(z)= 0.061z+ 0.037

z2 − 0.97z+ 0.22
, G12(z)= 0.036

z− 0.82
,

G21(z)= 0.035

z− 0.74
, G22(z)= 0.068z+ 0.046

z2 − 1.12z+ 0.30
.

(6.19)

The discrete controller is assumed to be of proportional-integral (PI) type and is
given as ⎧⎪⎪⎨

⎪⎪⎩
C1(z)=Kp1 +CI1 · 1

1 − z−1
,

C2(z)=Kp2 +CI2 · 1

1 − z−1
.

(6.20)

In this example, the PI parameters are chosen as Kp1 = CI1 = 1.0 and Kp2 = CI2 =
1.0. Therefore,

C1(z)= C2(z)= 2z− 1

z− 1
.

Since

N11(z)= 0.061z+ 0.037, N12(z)= 0.036

N21(z)= 0.035, N22(z)= 0.068z+ 0.046

D11(z)= z2 − 0.97z+ 0.22, D12(z)= z− 0.82

D21(z)= z− 0.74, D22(z)= z2 − 1.12z+ 0.30,

Nc1(z)=Nc2(z)= 2z− 1, Dc1(z)=Dc2(z)= z− 1,

as shown in (6.17), the following characteristic equation with interval parameters
can be defined:

F̃ (z)= (z− 1)2(z2 − 0.97z+ 0.22)(z2 − 1.12z+ 0.30)(z− 0.82)(z− 0.74)

+[K−
1 ,K+

1 ](2z− 1)(0.061z+ 0.037)(z− 1)(z2 − 1.12z+ 0.30)(z− 0.82)(z− 0.74)

+[K−
2 ,K+

2 ](2z− 1)(0.068z+ 0.046)(z− 1)(z2 − 0.97z+ 0.22)(z− 0.82)(z− 0.74)

+[K−,K+](2z− 1)2(0.061z+ 0.037)(0.068z+ 0.046)(z− 0.82)(z− 0.74)

+[K−,K+](2z− 1)2 × 0.036 × 0.035 × (z2 − 0.97z+ 0.22)(z2 − 1.12z+ 0.30)= 0.
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Thus, we obtain the following eighth-order characteristic equation:

F̃ (z)= z8 − 1.65z7 − 0.83z6 + 2.99z5 − 1.27z4 − 0.98z3 + 1.06z2 − 0.35z+ 0.04

+[K−
1 ,K+

1 ](0.12z7 − 0.44z6 + 0.57z5 − 0.26z4 − 0.085z3 + 0.14z2 − 0.052z+ 0.0067)

+[K−
2 ,K+

2 ](0.14z7 − 0.46z6 + 0.53z5 − 0.17z4 − 0.16z3 + 0.16z2 − 0.052z+ 0.0061)

+[K−,K+](0.022z6 − 0.037z5 + 0.012z4 + 0.004z3 + 0.0028z2 − 0.0046z+ 0.0011)

= 0. (6.21)

Here, K− = K−
1 K

−
2 and K+ = K+

1 K
+
2 . Note that each coefficient of (6.21) is

rounded to the nearest decimal number.

6.3 Characteristic Polynomials with Interval Parameters

In general, the transfer function and the characteristic polynomial of a discrete con-
trol system with uncertainty (and/or nonlinearity) is expressed by the following in-
terval polynomial:

F̃ (z)= ã0z
n + ã1z

n−1 + · · · + ãn−1z+ ãn, (6.22)

ãk ∈ [a−
k , a

+
k ], k = 0,1,2, · · · , n.

In the following, (6.22) may be written simply as

F̃ (z)= [a−
0 , a

+
0 ]zn + [a−

1 , a
+
1 ]zn−1 + · · · + [a−

n−1, a
+
n−1]]z+ [a−

n , a
+
n ] = 0. (6.23)

Since the interval coefficients are not always independent of each other, the interval
polynomial is written in the form (see, e.g., [1, 2])

F̃ (z)= a0(p̃)z
n + · · · + an−1(p̃)z+ an(p̃), (6.24)

p̃ = (p̃1, p̃2, · · · , p̃m)T ,

where p̃� (� = 1,2, · · · ,m) are uncertain parameters. The coefficients of this type
of polynomial can be expressed as

ak(p̃)=
m∑
�=0

c�kp̃�, (6.25)

p̃� ∈ [p−
� ,p

+
� ], k = 0,1,2, · · · , n, m≤ n,

where coefficients c�k are real constants.
These polynomials can also be written affinely in the following general form:
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F̃ (z)=
n∑

k=0

(
m∑
�=0

c�kp̃�

)
zn−k,

=
m∑
�=0

p̃�F�(z)=
m∑
�=0

[p−
� ,p

+
� ]F�(z), (6.26)

where polynomial F�(z) is defined as

F�(z)=
n∑

k=0

c�kz
n−k. (6.27)

Note that if the argument of F�(z) is a constant when variable z traces on a contour
∂� in a z-plane (or in an s-plane), four polynomials can be defined with respect to
the sufficiency of the stability. In particular, if the argument is invariant in real or
imaginary numbers, the Kharitonov rectangle can be determined with respect to the
necessary and sufficient condition.2

Interval polynomial (6.21) is based on the expression of (6.26). Of course, the
expression contains (6.22) and (6.23), where

[p−
� ,p

+
� ] = [a−

� , a
+
� ]

F�(z)= zn−�, c�� = 1, c�k = 0, � �= k.

Segment Polynomials The discrimination of the stability based on expression
(6.26) with many uncertain parameters is a considerably complicated problem.
When variable z traces on a circular contour, e.g., ∂� as shown in Fig. 6.4, the
mapping of F̃ (z) becomes a set of rotated polytopes (parallelotopes) [4, 14]. The
robust stability of the above interval system cannot be discriminated by its vertex
polynomials (i.e., the weak Kharitonov theorem is not satisfied). Thus, as was de-
scribed in [10], the concept of a set of segment polynomials is applied here.

First, consider the following (simple) interval polynomial (i.e., a polynomial with
only one interval set coefficient):

F̃ (z)=
m∑
�=0

p̃�F�(z), (6.28)

p̃h ∈ [p−
h ,p

+
h ], p̃� = p�, � �= h,

h, �= 0,1,2, · · · ,m.
This type of polynomial, (6.28), is called a segment polynomial.

The segment polynomial can be written in the following form:

F̃ (z)= λF+(z)+ (1 − λ)F−(z), (6.29)

2See Appendix A.
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where λ is a real number, λ ∈ [0, 1]. Therefore, at both ends of (6.28), the polyno-
mials are expressed as follows:

F+(z)=
m∑
�=0

p̃�F�(z), (6.30)

p̃h = p+
h , p̃� = p�, � �= h,

F−(z)=
m∑
�=0

p̃�F�(z), (6.31)

p̃h = p−
h , p̃� = p�, � �= h.

As for the above segment polynomial, when considering the algebraic equation
F̃ (z) = 0, segments of the characteristic root locus can be drawn on the z-plane.
On the other hand, when considering mapping F̃ (z) for contour z ∈ ∂� as shown in
Fig. 6.4, a set of line segments will be drawn on a complex F -plane.

6.4 Sectorial D-Stability

The sectorial D-stability for a continuous-time system can be discriminated by the
following radial lines on the complex s-plane:

s = (γ + j)ω, γ = tanφ, j = √−1, (6.32)

where φ is an inclination angle of the imaginary axis (the angular frequency ω-axis),
and parameter γ is chosen as:3{

γ < 0 when ω : 0 → +∞
γ > 0 when ω : −∞ → 0.

Since the complex roots of the algebraic equation with real coefficients are conju-
gates, it is sufficient to consider either of these cases. Thus, only the case of γ < 0
will be considered in this chapter.

As was described in the previous chapters, the contour that corresponds to (6.32)
should be considered in the z-plane as follows:

z= e(γ+j)ωh, (6.33)

where h is a sampling period. The discrimination of the D-stability by finite calcu-
lations cannot be achieved when a transcendental function (6.33) is used. Therefore,

3Note that the symbol γ is used differently from the resolution value in Chap. 2.
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Fig. 6.3 Sectorial and pseudo-sectorial areas in the s- and z-planes

Fig. 6.4 Pseudo-sectorial
area for discrete control
system

by applying a bilinear approximation (i.e., a rational function), the following con-
tour and pseudo-sectorial area will be considered hereafter:

z= x + jy = 1 + (γ + j)θ

1 − (γ + j)θ
, (6.34)

where θ = ωh

2
. Figures 6.3(a) and (b) show a sectorial (stable) area in the s-plane

and a pseudo-sectorial area in the z-plane. On the other hand, Fig. 6.4 shows shifted
circles (blue) and pseudo-sectorial loci (red) in the z-plane that correspond to secto-
rial lines in the s-plane.
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Lemma 6.1 The locus of complex function (6.34) of θ is traced on the following
shifted (off-axis) circle in the z-plane:

x2 + (y − γ )2 = γ 2 + 1. (6.35)

Proof The real and imaginary parts of (6.34) are expressed as follows:

x(θ)= 1 − (1 + γ 2)θ2

1 − 2γ θ + (1 + γ 2)θ2
,

y(θ)= 2θ

1 − 2γ θ + (1 + γ 2)θ2
.

Thus, (6.35) is easily obtained. The proof is omitted. �

Equation (6.34) is also expressed in the form

z=  · ejφ + jγ, (6.36)

where  = √
1 + γ 2 is the radius of the shifted circle and

φ = tan−1
(

2(1 + γ 2)θ − γ (1 + (1 + γ 2)θ2)

1 − (1 + γ 2)θ2

)

is an argument of the original circle. Moreover, (6.36) can be rewritten as

z=  · 1 + jv

1 − jv
+ jγ = A+Bv

1 − jv
, (6.37)

where

v = tan

(
φ + tan−1 γ

2

)
, A=  + jγ, B = γ + j .

In these transformations, the following relation between nondimensional and dis-
torted frequencies holds as shown in Fig. 6.5:

v : 0 → +∞, when u : 0 → +∞ (ω : 0 → +∞)

v : −∞ → 0, when u : −∞ → 0 (ω : −∞ → 0).

By applying the above transformation (6.37) to (6.28), the following numerator
polynomial for the distorted frequency v can be obtained:

(1 − jv)nF̃ (z)

=
m∑
i=1

p̃i

(
n∑

�=0

ci,�(A+Bv)n−�(1 − jv)�

)
. (6.38)
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Fig. 6.5 Distorted frequency
v vs. ω

Since (6.38) is a polynomial with complex coefficients, it can be written in the form

!̃(jv)= (1 − jv)nF̃ (z)= P̃ (v)+ jQ̃(v), (6.39)

where

P̃ (v)= ã0,0v
n + · · · + ã0,n−1v + ã0,n, (6.40)

Q̃(v)= b̃0,0v
n + · · · + b̃0,n−1v + b̃0,n. (6.41)

The coefficients in (6.40) and (6.41) can be calculated from the expansion of
(6.73) in Appendix B.

6.5 Four Corner Polynomials

Using expression (6.29), Eq. (6.39) is rewritten as

!̃(jv)= (1 − jv)n(λF+(z)+ (1 − λ)F−(z))

= (λP+(v)+ (1 − λ)P−(v))

+ j (λQ+(v)+ (1 − λ)Q−(v)). (6.42)

The real and imaginary parts of (6.42) can be given as follows:

P̃ (v)= λP+(v)+ (1 − λ)P−(v),

Q̃(v)= λQ+(v)+ (1 − λ)Q−(v).

Here, the extreme polynomials are expressed as:
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Fig. 6.6 Four corner points
and rectangles

P+(v)= a+
0,0v

n + · · · + a+
0,n−1v + a+

0,n,

Q+(v)= b+
0,0v

n + · · · + b+
0,n−1v + b+

0,n, (6.43)

P−(v)= a−
0,0v

n + · · · + a−
0,n−1v + a−

0,n,

Q−(v)= b−
0,0v

n + · · · + b−
0,n−1v + b−

0,n. (6.44)

Thus, the following four corner points (vertices) can be given, and rectangles along
with line segments (edges) can be drawn in the !-plane as shown in Fig. 6.6:

V 1 = (P+, Q+), V 2 = (P−, Q−),

V 3 = (P−, Q+), V 4 = (P+, Q−),

where the latter two points are additional ones. (In these expressions, note that poly-
nomials P and Q and coefficients a0,� and b0,� with superscript + do not always
denote larger values than those with superscript −.)

Then, the following four pairs of polynomials can be defined in regard to i =
1,2,3,4:

P (i)(v)= a
(i)
0,0v

n + · · · + a
(i)
0,n−1v + a

(i)
0,n, (6.45)

Q(i)(v)= b
(i)
0,0v

n + · · · + b
(i)
0,n−1v + b

(i)
0,n, (6.46)

where

P (1)(v)= P+(v), Q(1)(v)=Q+(v),

P (2)(v)= P−(v), Q(2)(v)=Q−(v),

P (3)(v)= P−(v), Q(3)(v)=Q+(v),

P (4)(v)= P+(v), Q(4)(v)=Q−(v).
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For an expression of polynomials with complex coefficients, the following can be
given:

!(i)(jv)= P (i)(v)+ jQ(i)(v), (i = 1,2,3,4). (6.47)

Note that, as for the edges in the F -plane, two additional polynomials with constant
coefficients cannot generally be determined.

6.6 Division Algorithm

A division algorithm (Sturm’s theorem) is applied in order to realize finite calcula-
tions [11, 12]. Here, the following notation is used in regard to the real and imagi-
nary parts of (6.47):

f
(i)
0 (v)= P (i)(v), f

(i)
1 (v)=Q(i)(v), (i = 1,2,3,4).

The division algorithm gives the following results [6, 13, 15]:

f
(i)
2k−2(v)= q

(i)
2k−1(v)f

(i)
2k−1(v)− f

(i)
2k (v),

f
(i)
2k−1(v)= q

(i)
2k (v)f

(i)
2k (v)− f

(i)
2k+1(v), (6.48)

k = 1,2, · · · , n.
If f (i)

0 (v) and f
(i)
1 (v) are n-th-order functions of v, then f

(i)
2 (v), f

(i)
3 (v), · · · , f (i)

2n
are expressed as follows:

f
(i)
2h (v)= a

(i)
h,hv

n−h + · · · + a
(i)
h,n−1v + a

(i)
h,n

f
(i)
2h+1(v)= b

(i)
h,hv

n−h + · · · + b
(i)
h,n−1v + b

(i)
h,n

· · · (6.49)

f
(i)
2n = a(i)n,n, h= 1,2, · · ·n− 1.

Here, each coefficient can be given by the following sequential operations:

a(i)q,p = b
(i)
q−1,p

⎛
⎝a

(i)
q−1,q−1

b
(i)
q−1,q−1

⎞
⎠ − a

(i)
q−1,p,

b(i)q,p = a
(i)
q,p+1

⎛
⎝b

(i)
q−1,q−1

a
(i)
q,q

⎞
⎠ − b

(i)
q−1,p,

(q = 1,2, · · · , n, p = q, q + 1, · · · , n− 1)

· · · (6.50)

a(i)n,n = b
(i)
n−1,n

(
a
(i)
n−1,n−1

b
(i)
n−1,n−1

)
− a

(i)
n−1,n.
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Thus, as for !̃(jv), the change in the argument, 2γπ , for polynomial F̃ (z) be-
comes (2μ−n)π by adding the change in the argument, −nπ , for (1 − jv)n. When
P (i)/Q(i) (or −Q(i)/P (i)) is considered, the number of sign changes that cross zero
for v : −∞ → +∞ is n− 2μ.

If the number of sign changes that cross the zero of f
(i)
0 (v)/f

(i)
1 (v) for v :

v1 → v2 is expressed as N(i)(v1, v2) and the number of sign changes of sequence
f
(i)
0 (v), f

(i)
1 (v), · · · , f (i)

2n is expressed as V (i)(v), the following relationship is ob-
tained:

N(i)(v1, v2)= V (i)(v1)− V (i)(v2). (6.51)

Since the condition is N(i)(−∞,+∞)= n− 2μ,

V (i)(−∞)− V (i)(+∞)= n− 2μ (6.52)

is obtainable. The condition for (6.52) corresponds to observing whether or not the
following ratios are negative (the details were described in [10]):

lim
v→+∞

f
(i)
1 (v)

|v|f (i)
2 (v)

, · · · , lim
v→+∞

f
(i)
2n−1(v)

|v|f (i)
2n (v)

. (6.53)

Suppose that the number of negative ratios is N and the number of positive ratios is
P . Thus, P −N = n− 2μ can be obtained from (6.52). Since P +N = n, N = μ

is given.
For a segment polynomial with complex coefficients (6.47), the following lemma

and theorem can be given using the result of (6.53).

Lemma 6.2 When the coefficient ratios

b
(i)
0,0

a
(i)
1,1

,
b
(i)
1,1

a
(i)
2,2

, · · · , b
(i)
n−1,n−1

a
(i)
n,n

(6.54)

are calculated for an extreme polynomial !(i)(v) (i = 1 or 2), the number of
ratios (6.54) that will be negative, μ, is equal to the number of characteristic
roots for the polynomial in the specified contour (6.34). Here, a(i)q,p and b

(i)
q−1,q−1

(q = 1,2, · · · , n) are calculated by using the sequential operations (6.50).

Proof This lemma is a necessary and sufficient condition in regard to the existing
area of characteristic roots for the extreme polynomial. The proof is easily shown
using (6.53). �

Based on the above premise, the following condition for the D-stability of
discrete-time interval systems is given with regard to the segment polynomial (6.28):



6.7 Multiple Edges and Rectangles 197

Theorem 6.1 When the coefficient ratios

b
(i)
0,0

a
(i)
1,1

,
b
(i)
1,1

a
(i)
2,2

, · · · , b
(i)
n−1,n−1

a
(i)
n,n

(6.55)

are calculated for each of the four corner polynomials !(i)(v) (i = 1,2,3,4), the
following condition gives a sufficiency of the D-stability of the discrete-time interval
systems in question. If the number of ratios (6.55) that will be negative, μ, is equal
to the system order, n, all the characteristic roots of the segment polynomial (6.28)
exist in the specified contour (6.34). That is, if the number of ratios (6.55) that will
be negative is not changed for the four corner polynomials, μ = n, the robust D-
stability of the discrete-time control system is satisfied.

Proof This theorem is a sufficient condition in regard to the existing area of charac-
teristic roots for a segment polynomial. The proof is obvious from the zero exclusion
of the Kharitonov-like rectangle that is composed of the four corner points (6.45)
and (6.46). That is, none of the edges of the rectangle pass through the origin. As a
natural consequence, the line segment in the !-plane (and also in the F -plane) does
not pass through the origin [4]. �

6.7 Multiple Edges and Rectangles

Theorem 6.1 can also be applied to a discrete-time interval system with multiple
uncertainties as shown in (6.26). When a complex variable z is fixed (frozen), a
polytope (a parallelotope) is drawn on the !-plane as shown in Fig. 6.7. For an in-
terval polynomial expressed by (6.26), the number of vertices is 2m, and the number
of edges becomes m ·2m−1. Obviously, the number of additional vertices is given by
2 ×m · 2m−1. Thus, the number of total vertices that should be checked for interval
polynomial (6.26) is given by

N = 2m + 2m · 2m−1 = (m+ 1) · 2m. (6.56)

In other words, (m + 1) · 2m−2 sets of the following four vertices (polynomials)
should be checked:

V
(j)

1 = (P (j)+, Q(j)+), V
(j)

2 = (P (j)−, Q(j)−),

V
(j)

3 = (P (j)−, Q(j)+), V
(j)

4 = (P (j)+, Q(j)−),

j = 1,2, · · · , (m+ 1) · 2m−2. (6.57)

By applying this concept, we have the following theorem for an interval system
with multiple uncertainties.
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Fig. 6.7 Multiple edges and
rectangles

Theorem 6.2 When the coefficient ratios

b
(i)
0,0

a
(i)
1,1

,
b
(i)
1,1

a
(i)
2,2

, · · · , b
(i)
n−1,n−1

a
(i)
n,n

(6.58)

are calculated for each of the (m+ 1) · 2m corner polynomials, the following con-
dition gives a sufficiency of the D-stability of discrete-time interval systems with the
multiple uncertainties in question. If the number of ratios (6.58) that will be neg-
ative, μ, is equal to the system order, n, all the characteristic roots of the interval
polynomial (6.26) exist in the specified contour (6.34). That is, if the number of
ratios (6.58) that will be negative is not changed for any of the vertex polynomi-
als, μ = n, the robust D-stability of the discrete-time control system with multiple
uncertainties is satisfied.

Proof This theorem is a sufficient condition in regard to the existing area of char-
acteristic roots for the interval polynomial. The proof is obvious from the result in
Theorem 6.1, in which none of the edges of the rectangles pass through the origin.
Consequently, as mentioned in the proof of Theorem 6.1, none of the edges of the
parallelotope (a set of line segments) in the !-plane and in the F -plane pass through
the origin. �

In Theorem 6.2, (m + 1) · 2m−2 sets of four vertex calculations are necessary
for the discrimination of the roots area. However, if the maximum and minimum of
the real and imaginary parts of the vertex polynomials are determined, the sufficient
condition of the robust D-stability is reduced to the following corollary.

Corollary 6.1 If the maximum and minimum of the vertex polynomials are deter-
mined as

P̂+ = max
j

P (j)+ and P̂− = min
j

P (j)−,
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Fig. 6.8 Outline of root areas

the four vertices

V̂ 1 = (P̂+, Q̂+), V̂ 2 = (P̂−, Q̂−),

V̂ 3 = (P̂−, Q̂+), V̂ 4 = (P̂+, Q̂−) (6.59)

constitute a rectangle that covers all the (m+ 1) · 2m vertices, as shown in Fig. 6.7.

The most simple case of this corollary will correspond to the Kharitonov and
Kharitonov-like rectangles. Note that the above discrimination method contains the
Routh-Hurwitz criterion for continuous-time systems (see Appendix B).

Example 6.3 Consider the following interval polynomial with three uncertain pa-
rameters:

F̃ (z)= z3 + ã1z
2 + ã2z+ ã3, (6.60)

ã1 ∈ [−1.82,−1.76], ã2 ∈ [1.19,1.25], ã3 ∈ [−0.31,−0.25].
Since m = 3, the number of total vertices to be checked for (6.60) is obtained as
N = 32 from (6.56). (Of course, the number of sets of four vertices is 8 from (6.57).)
Based on Theorem 6.2, the coefficient ratios (6.58) were calculated for each of the
32 corner polynomials. The result shows that all the characteristic roots of interval
polynomial (6.60) exist in the specified contour (6.34) when γ = ±0.25. That is,
μ= 3 was obtained for any of the sequential calculations. Figure 6.8 shows the out-
line of the areas of the true roots. In this case, a series of polytopes (parallelotopes)
with 8 sets of four vertices for ! becomes as shown in Fig. 6.9(b) when γ = −0.25.
The D-stability is guaranteed in the specified area as shown in Fig. 6.4. For refer-
ence, a series of parallelotopes for F̃ is also shown in Fig. 6.9(a).

On the other hand, when γ = ±0.3, the D-stability is not guaranteed. The calcu-
lation result of 32 μ’s is given as follows:
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Fig. 6.9 Series of polytopes and rectangles for F̃ - and !-functions (γ = −0.25)

3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3.

Furthermore, when γ = ±0.35, the calculation result becomes

3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3.

In this case, the series of polytopes (parallelotopes) with 8 sets of four vertices for !
is as shown in Fig. 6.10(b). A series of parallelotopes for F̃ is shown in Fig. 6.10(a).

Example 6.4 Consider an interval polynomial expressed in the following general
form:

F̃ (z)= F0(z)+ p̃1F1(z)+ p̃2F2(z)+ p̃3F3(z), (6.61)

p̃1 ∈ [0.95,1.05], p̃2 ∈ [−0.55,−0.45], p̃3 ∈ [0.1,0.2],
where

F0(z)= 0.25z2 + 0.125z, F1(z)= z3 − z2,

F2(z)= z2 − z, F3(z)= z− 1.

Theorem 6.2 can also be applied to this type of interval polynomial in Example 6.1.
The result shows that all the roots of interval polynomial (6.61) exist in the con-
tour (6.34) when γ = ±0.25. That is, μ = 3 is obtained for any of the sequential
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Fig. 6.10 Series of polytopes and rectangles for F̃ and ! functions (γ = −0.35)

Fig. 6.11 Outline of root
areas

calculations. Figure 6.11 shows the outline of the areas of the true roots. In this ex-
ample, a series of polytopes with 8 sets of four vertices for ! becomes as shown
in Fig. 6.12(b) when γ = −0.25. The D-stability is guaranteed in the specified area
as shown in Fig. 6.4. A series of parallelotopes for F̃ is also shown in Fig. 6.12(a).
However, when γ = 0.3, the D-stability is not guaranteed. The calculation result of
32 μ’s is given as

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3.

Note that Corollary 6.1 cannot be applied to these examples, because the four ver-
tices (6.59) are not expressed in the four polynomials.
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Fig. 6.12 Series of polytopes and rectangles for F̃ - and !-functions (γ = −0.3)

Fig. 6.13 Model reference
multi-loop interval system

The concept of the discrimination method was extended to segment polynomials
of a discrete-time control system and to the circular D-stability, which corresponds
to the sectorial D-stability for a continuous-time control system. By applying a di-
vision algorithm to a set of the four corners of segment polynomials, a sufficient
condition for the roots area, which is enclosed by a specified (circular) contour in a
unit circle on a z-plane, was given. As a result, the discrimination of the roots area
by finite calculations became possible. Although this result is only a sufficient con-
dition, the discrimination method proposed here will be useful in designing robust
control systems.

6.8 Robust Control System Design

Figure 6.13 is a model reference feedback system in which the discretized nonlinear
elements in Fig. 5.16 are replaced by interval gains. As was shown in Chap. 5,
when the model system and the feedback compensator can be considered linear (or
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Fig. 6.14 Multi-loop PID control interval system

high-resolution) systems, the model reference feedback system [9] becomes a multi-
loop proportional-integral-derivative (PID) control system as shown in Fig. 6.14.
Obviously, the stability of the interval system is the same as that shown in Fig. 6.1.
The characteristic equation of the multi-loop control system is given by

det{I + G(z)C(z)[K−,K+]} = 0 (6.62)

and equivalently

det{I + [K−,K+]C(z)G(z)} = 0. (6.63)

Therefore, the robust stabilization of model reference control systems with inter-
val gains results in the roots area discrimination problem for (6.62) (or (6.63)) as
described in this chapter.

The design of control systems containing many physical elements is not easy,
because there are uncertainties, i.e., nonlinearities, in the connected devices. There-
fore, a control system designer would like the connection of those elements (the
control system structure) to be easy to see. Thus, the traditional block diagram (or
signal flow graph [8]) becomes important in the analysis and design of control sys-
tems. Therefore, in this book, we do not treat some of the mathematically organized
methods, such as quadratic forms and optimal and H∞ control design techniques.

6.9 Exercises

(1) Show the relationship between characteristic equation F̃ (z) = 0 and F̃ (δ) = 0,
where

F̃ (z)= z3 − [1.3,1.2]z2 + [0.7,0.8]z− [0.2,0.1]
and

δ = 2

h
· z− 1

z+ 1
.

(2) Show the relationship between pseudo-sectorial loci in the z-plane and sectorial
lines in the s-plane.
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(3) With respect to the 2 × 2 feedback system shown in Fig. 5.4, determine the
(interval) characteristic equation when Nd1(e1)/e1 and Nd2(e2)/e2 are replaced
with interval gains [K−

1 ,K
+
1 ] and [K−

2 ,K
+
2 ], respectively.

(4) Show that the characteristic equations (6.6) and (6.7) are equivalent when C(z)

and K̃ ∈ [K−,K+] are diagonal matrices with nonzero diagonal elements.
(5) Prove Lemma 6.2 using (6.53).
(6) Show that if and only if four (corner) polynomials⎧⎪⎪⎪⎨

⎪⎪⎪⎩
F (1)(s)= a+

0 s
3 + a+

1 s
2 + a−

2 s + a−
3

F (2)(s)= a−
0 s

3 + a+
1 s

2 + a+
2 s + a−

3

F (3)(s)= a+
0 s

3 + a−
1 s

2 + a−
2 s + a+

3

F (4)(s)= a−
0 s

3 + a−
1 s

2 + a+
2 s + a+

3

are stable, the interval polynomial

F̃ (s)= [a−
0 , a

+
0 ]s3 + [a−

1 , a
+
1 ]s2 + [a−

2 , a2k]s + [a−
3 , a

+
3 ]

is stable.
(7) Show that the Routh series and Hurwitz determinant can be derived directly

from

F(s)= a0s
n + a1s

n−1 + · · · + an−1s + an

by applying the division algorithm to{
f0(s)= a0s

n + a2s
n−2 + · · ·

f1(s)= a1s
n−1 + a3s

n−3 + · · · .

Appendix A: Kharitonov Rectangles

With respect to continuous-time systems, consider the following characteristic poly-
nomials [7]:

F̃ (s)= ã0s
n + ã1s

n−1 + · · · + ãn−1s + ãn, (6.64)

ãk ∈ [a−
k , a

+
k ], k = 0,1,2, · · · , n.

Considering the imaginary axis, i.e., s = jω, Eq. (6.64) can be given as

F̃ (jω)= [P−(ω),P+(ω)] + j [Q−(ω),Q+(ω)]. (6.65)

When n is odd,

P−(ω)= a−
n − a+

n−2ω
2 + · · · + (−1)(n−1)/2a+

1 ω
n−1

P+(ω)= a+
n − a−

n−2ω
2 + · · · + (−1)(n−1)/2a−

1 ω
n−1
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Q−(ω)= a−
n−1ω− a+

n−3ω
3 + · · · − (−1)(n−1)/2a+

0 ω
n

Q+(ω)= a+
n−1ω− a−

n−3ω
3 + · · · − (−1)(n−1)/2a−

0 ω
n.

On the other hand, when n is even,

P−(ω)= a−
n − a+

n−2ω
2 + · · · − (−1)n/2a+

0 ω
n

P+(ω)= a+
n − a−

n−2ω
2 + · · · − (−1)n/2a−

0 ω
n

Q−(ω)= a−
n−1ω− a+

n−3ω
3 + · · · + (−1)n/2a+

1 ω
n−1

Q+(ω)= a+
n−1ω− a−

n−3ω
3 + · · · + (−1)n/2a−

1 ω
n−1.

For a third-order system, (6.65) can be written directly as follows:

F̃ (s)= [a−
0 , a

+
0 ]s3 + [a−

1 , a
+
1 ]s2 + [a−

2 , a
+
2 ]s + [a−

3 , a
+
3 ].

Therefore,

F̃ (jω)= [a−
3 , a

+
3 ] − [a−

1 , a
+
1 ]ω2 + j{[a−

2 , a
+
2 ]ω− [a−

0 , a
+
0 ]ω3}. (6.66)

When considering ω > 0, the following vertices are obtained:

P−(ω)= a−
3 − a+

1 ω
2

P+(ω)= a+
3 − a−

1 ω
2

Q−(ω)= a−
2 ω− a+

0 ω
3

Q+(ω)= a+
2 ω− a−

0 ω
3.

Of course, when ω < 0, the following vertices are obtained:

P−(ω)= a−
3 − a+

1 ω
2

P+(ω)= a+
3 − a−

1 ω
2

Q−(ω)= a+
2 ω− a−

0 ω
3

Q+(ω)= a−
2 ω− a+

0 ω
3

although they are conjugated with each other.

Example 6.5 Consider the following (monic) interval polynomial (the highest co-
efficient a0 = 1):

F̃ (s)= s3 + [1.6,2.4]s2 + [1.6,2.4]s + [0.8,1.2].
Obviously, when ω > 0,

P−(ω)= 0.8 − 2.4ω2
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Fig. 6.15 Kharitonov rectangles and roots area

P+(ω)= 1.2 − 1.6ω2

Q−(ω)= 1.6ω−ω3

Q+(ω)= 2.4ω−ω3.

And, when ω < 0,

P−(ω)= 0.8 − 2.4ω2

P+(ω)= 1.2 − 1.6ω2

Q−(ω)= 2.4ω−ω3

Q+(ω)= 1.6ω−ω3.

Figure 6.15(a) shows the trace of Kharitonov rectangles when ω : − ωc → ωc.
From the figure, one can see that the stability of the interval system is determined
by only the four vertices of the rectangular array. The robust stability condition is
necessary and sufficient for interval (uncertain) systems. In this example, a view of
the root areas is shown in Fig. 6.15(b).

Appendix B: Roots of Polynomials and Sturm’s Theorem

The basic concept of Sturm’s theorem is given as follows [6, 13]. Let f (x) be a
“real” polynomial.4 Denote it by f0(x) and its derivative f ′(x) by f1(x). Applying

4First, it is assumed that variable x and the value of f (i.e., coefficients ai of the polynomial) are
real.
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Euclid’s division algorithm, the following sequence is obtained:

f0(x)= q1(x)f1(x)− f2(x),

f1(x)= q2(x)f2(x)− f3(x),

... (6.67)

fn−2(x)= qn−1(x)fn−1(x)− fn(x),

fn−1(x)= qn(x)fn,

where fi(x) is of degree lower than that of fi−1(x) for 1 ≤ i ≤ n. The signs of
the remainders are negated from those in the algorithm. Note that the divisor fk
that yields a zero remainder is the greatest common divisor of f (x) and f ′(x). The
sequence f0, f1, · · · , fn is called a Sturm sequence for the polynomial f .

Sturm’s Theorem The number of distinct (simple) zeros of a polynomial f (x) in
x ∈ (x1, x2) is equal to the excess of the number of changes of sign in the sequence
f0(x1), · · · , fn−1(x1), fn(x1) over the number of changes of sign in the sequence
f0(x2), · · · , fn−1(x2), fn(x2).

In other expressions, if the number of sign changes that cross the zero of
f0(x)/f1(x) for x : x1 → x2 is defined as N(x1, x2) and the number of sign changes
of sequence f0(x2), · · · , fn−1(x2), fn(x2) is defined as V (x), we obtain the rela-
tionship

N(x1, x2)= V (x1)− V (x2). (6.68)

Here, f (x) can be multiplied by a positive constant or a factor involving x provided
that the factor remains positive in x ∈ (x1, x2). Moreover, there is no common divisor
between f0(x) and f1(x), because the zeros of f (x) are distinct.

Example 6.6 (Real Roots) Consider the following polynomial to apply Sturm’s
theorem [16]:

f (x)= x3 − 1.5x2 − 0.16x − 0.24.

The first step polynomials f0 and f1 are given as:

f0(x)= x3 − 1.5x2 − 0.16x − 0.24,

f1(x)= 3x2 + 3x − 0.16.

Therefore, the results of the division algorithm are obtained as follows:

f2(x)= 0.607x + 0.213,

f3(x)= 0.844.

Table 6.1 lists the signs of each Sturm sequence, and the number of sign changes is
given in Table 6.2. From these tables, we obtain, for example,
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Table 6.1 Sign changes of
sequence fi (i = 1,2,3,4) −∞ −2 −1 0 1 2 ∞

f0 − − + − + + +
f1 + + − − + + +
f2 − − − + + + +
f3 + + + + + + +

Table 6.2 The number of
sign changes N(x1, x2)

−∞ −2 −1 0 1 2 ∞

f0/f1 1 1 1 0 0 0 0

f1/f2 1 1 0 1 0 0 0

f2/f3 1 1 1 0 0 0 0

V (xi) 3 3 2 1 0 0 0

N(−2,2)= V (−2)− V (2)= 3,

N(−1,2)= V (−1)− V (1)= 2,

N(0,1)= V (0)− V (1)= 1.

This result is clear from Fig. 6.16.

Complex Roots Problem The Sturm sequence can be extended to a complex roots
problem. Consider the following circle as a closed contour in the complex plane:

z=  ejφ + x0 + jy0, (φ : −π → π), (6.69)

Fig. 6.16 Cubic curve and Sturm sequences (f (x)= x3 + 1.5x2 − 0.16x − 0.24)
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Fig. 6.17 Circular contours (f (z)= z2 + z+ 1, x0 = −0.5, (a) y0 = 0.1,  = 1.5, (b) y0 = 0.866,
 = 0.3)

where  , (x0, y0), and φ are the radius, the center, and the angle of rotation of a
specified circle, respectively. The problem of a sectorial area in the complex plane
can be considered in a large circle ∂�, as shown in Fig. 6.3(a).5

Figures 6.17(a), (b) show examples of the circular contour in a complex plane.
The circular contour (6.36) can also be written as the following rational function:

z=  · 1 + jv

1 − jv
+ x0 + jy0 = A+Bv

1 − jv
, (6.70)

where

v = tan

(
φ

2

)
and A and B are complex constants written as A =  + x0 + jy0 and B = y0 +
j ( − x0). Clearly, the relationship between variables φ and v is

φ = −π; v = −∞,

φ = 0; v = 0,

φ = +π; v = +∞.

Consider the following characteristic polynomial in general:

F(z)= a0z
n + a1z

n−1 + · · · + an−1z+ an. (6.71)

5The discrimination of the number of roots in a specified area is equivalent to the Routh-Hurwitz
criterion.
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If (6.69) is substituted into (6.71), a numerator polynomial with complex coeffi-
cients is obtained:

!(jv)= (1 − jv)nF (jv)= P(v)+ jQ(v). (6.72)

Here, polynomials P(v) and Q(v) can be written as

P(v)= a0,0v
n + · · · + a0,n−1v + a0,n,

Q(v)= b0,0v
n + · · · + b0,n−1v + b0,n. (6.73)

Therefore, argument change 2μπ for polynomial F(z) becomes (2μ − n)π for
!(jv) by adding change −nπ in the argument of (1−jv)n. When P/Q (or −Q/P )
is considered, the number of sign changes that cross zero for v : −∞ → +∞ is
n− 2μ.

The coefficients in (6.73) are calculated by

!(jv)=
n∑

k=0

ak(A+Bv)n−k(1 − jv)k (6.74)

from (6.69). This equation is expanded as

n∑
m=0

n∑
k=0

n−m∑
l=k−m

ak

(
n− k

n−m− l

) (
k

l

)
(−j)lAm−k+lBn−m−lvn−m,

and thus we can obtain

a0,m + jb0,m =
n∑

k=0

n−m∑
l=k−m

ak

(
n− k

n−m− l

) (
k

l

)
(−j)lAm−k+lBn−m−lvn−m,

where (
k

l

)
= kCl

denotes a combination symbol.
By setting f0(v)= P(v) and f1(v)=Q(v), the following division algorithm can

be executed:

f2κ−2(v)= q2κ−1(v)f2κ−1(v)− f2κ (v), (6.75)

κ = 1,2, · · · , n.
If f0(v) and f1(v) are of the n-th order for v, then f2(v), f3(v), · · · , f2n are ex-
pressed as:

f2(v)= a1,1v
n−1 + · · · + a1,n

f3(v)= b1,1v
n−1 + · · · + b1,n
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· · · (6.76)

f2n−2(v)= an−1,n−1v + an−1,n

f2n−1(v)= bn−1,n−1v + bn−1,n

f2n = an,n.

Here, each coefficient can be given by the following sequential operations:

a1,p = b0,p

(
a0,0

b0,0

)
− a0,p,

b1,p = a1,p+1

(
b0,0

a1,1

)
− b0,p,

(p = 1,2, · · · , n) (6.77)

· · ·
aq,p = bq−1,p

(
aq−1,q−1

bq−1,q−1

)
− aq−1,p,

bq,p = aq,p+1

(
bq−1,q−1

aq,q

)
− bq−1,p,

(p = q, · · · , n)
· · ·

an,n = bn−1,n

(
an−1,n−1

bn−1,n−1

)
− an−1,n,

(aq,n+1 = 0).

If the number of sign changes which cross the zero of f0(v)/f1(v) for v :
v1 → v2 is expressed as N(v1, v2) and the number of sign changes of sequence
f0(v), f1(v), · · · , f2n is expressed as V (v), the following relationship is obtained:

N(v1, v2)= V (v1)− V (v2). (6.78)

Since the condition is N(−∞,+∞)= n− 2μ,

V (−∞)− V (+∞)= n− 2μ (6.79)

is obtainable.
On the other hand, the following expressions are derived from (6.76):

lim
v→−∞

f0(v)

f1(v)
= a0,0

b0,0
,

lim
v→−∞

f1(v)

|v|f2(v)
= −b0,0

a1,1
,
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...

lim
v→−∞

f2n−1(v)

|v|f2n(v)
= −bn−1,n−1

an,n
,

lim
v→+∞

f0(v)

f1(v)
= a0,0

b0,0
, (6.80)

lim
v→+∞

f1(v)

|v|f2(v)
= b0,0

a1,1
,

...

lim
v→+∞

f2n−1(v)

|v|f2n(v)
= bn−1,n−1

an,n
,

The condition of (6.78) corresponds to observing whether the following ratios (ra-
tios to the polynomial of different orders) are negative or not:

lim
v→+∞

f1(v)

|v|f2(v)
= b0,0

a1,1
,

lim
v→+∞

f3(v)

|v|f4(v)
= b1,1

a2,2
,

... (6.81)

lim
v→+∞

f2n−1(v)

|v|f2n(v)
= bn−1,n−1

an,n
,

because ratios to the polynomial of same order (i.e., a0,0
b0,0

,
a1,1
b1,1

, . . .) are canceled
based on (6.79). Suppose that the number of negative ratios is N and the number
of positive ratios is P . Thus, P −N = n− 2μ can be obtained from (6.79). Since
P +N = n, N = μ is given.

Example 6.7 (Quadratic Equation) As a simple example, consider the following
quadratic polynomial:

F(z)= z2 + z+ 1. (6.82)

First, a specified circle is assumed to be x0 = −0.5, y0 = 0.1, and  = 1.5, as shown
in Fig. 6.17(a). Then, numerator polynomials P(v) and Q(v) written as

!(jv)= (1 − jv)2F(jv)= P(v)+ jQ(v)

are given as

P(v)= f0(v)= −2.99v2 + 2.99,

Q(v)= f1(v)= 0.3v2 + 3.02v − 0.3.
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Fig. 6.18 Mapping f (jv) and !(jv) for the specified circle

By setting f0(v) = P(v), f1(v) = Q(v), the following results are obtained
from (6.76):

f0(v)= −2.99v2 + 2.99,

f1(v)= 0.30v2 + 3.02v − 0.30,

f2(v)= −30.1v − 5.98, (6.83)

f3(v)= −2.96v − 0.30,

f4 = 2.93.

Since the sequence of fractions, (6.81), is given as

b0,0

a1,1
= 0.30

−30.1
< 0,

b1,1

a2,2
= −2.96

2.93
< 0,

the number of roots in the specified circle is μ= 2.
The discriminating procedure given above can be interpreted as follows. The

specified contour encircles two roots of the quadratic equation. As a result, the map-
ping curve is as shown in Fig. 6.18(a). Thus, the argument change of !(jv) be-
comes 4π − 2π = 2π by adding a change of −2π to the argument of (1 − jv)2.
Figure 6.18(b) shows the ! curve for this case.

On the other hand, when a circle is chosen as x0 = −0.5, y0 = 0.8, and  = 0.4,
as shown in Fig. 6.17(b), numerator polynomials P(v) and Q(v) are given by

P(v)= f0(v)= −0.27v2 + 0.27,

Q(v)= f1(v)= 0.64v2 + 0.10v + 0.64.
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The Sturm sequence is given as

f0(v)= −0.27v2 + 0.27,

f1(v)= 0.64v2 + 0.10v − 0.30,

f2(v)= −0.04v − 0.54, (6.84)

f3(v)= 8.09v − 0.64,

f4 = 0.54.

Since the sequence of fractions, (6.81), is given as

b0,0

a1,1
= 0.64

−0.04
< 0,

b1,1

a2,2
= 8.09

0.54
> 0,

the number of roots in the specified circle is μ= 1.

Example 6.8 (Cubic Equation) Consider the following cubic polynomial:

F(z)= z3 + 2z2 + 2z+ 1. (6.85)

A specified circle is chosen as x0 = −0.5, y0 = 0.1, and  = 1.5. Then, numerator
polynomials P(v) and Q(v) written as

!(jv)= (1 − jv)3F(jv)= P(v)+ jQ(v)

are given as

P(v)= −0.599v3 − 9.03v2 − 0.303v + 5.95,

Q(v)= −2.96v3 + 0.603v2 + 9.06v + 0.899.

By setting f0(v) = P(v), f1(v) = Q(v), the following results are obtained
from (6.76):

f0(v)= −0.599v3 − 9.03v2 − 0.303v + 5.95,

f1(v)= −2.96v3 + 0.603v2 + 9.06v + 0.899,

f2(v)= 9.152v2 + 2.1364v − 5,7681, (6.86)

f3(v)= −1.294v2 − 7.1945v − 0.899,

f4(v)= 48.749v + 12.127, (6.87)

f5(v)= 6.8726v + 0.899,

f6 = −5.7497.

Since the sequence of fractions, (6.81), is given as

b0,0

a1,1
= −2.96

9.152
< 0,

b1,1

a2,2
= −1.294

48.749
< 0,

b2,2

a3,3
= 6.8726

−5.7497
< 0,

the number of roots in the specified circle is μ= 3.
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Routh-Hurwitz Criterion Finally, the relationship between the above results
based on Sturm’s theorem and the classical Routh-Hurwitz criterion is presented.
In general, a characteristic equation for continuous-time systems is written as

F(s)= a0s
n + a1s

n−1 + · · · + an−1s + an = 0, (6.88)

where s is the Laplace transform variable and ai (i = 1,2, · · · , n) are real coef-
ficients. The stability of a control system having characteristic equation (6.88) is
discriminated by a contour on the imaginary axis and a large half-contour in the
right half-plane (RHP) or left half-plane (LHP) and its mapping in the F -plane.

On the imaginary axis s = jω (ω : −∞ → ∞),

F(jω)= P(ω)+ jQ(ω). (6.89)

The real and imaginary parts of (6.89) are given as follows.

(1) When n= 1,5,9, · · · ,

P (1)(ω)= a1ω
n−1 − a3ω

n−3 + a5ω
n−5 − · · · ,

Q(1)(ω)= a0ω
n − a2ω

n−2 + a4ω
n−4 − · · · .

(2) When n= 2,6,10, · · · ,

P (2)(ω)= −a0ω
n + a2ω

n−2 − a4ω
n−4 + · · · ,

Q(2)(ω)= a1ω
n−1 − a3ω

n−3 + a5ω
n−5 − · · · .

(3) When n= 3,7,11, · · · ,

P (3)(ω)= −a1ω
n−1 + a3ω

n−3 − a5ω
n−5 + · · · ,

Q(3)(ω)= −a0ω
n + a2ω

n−2 − a4ω
n−4 + · · · .

(4) When n= 4,8,12, · · · ,

P (4)(ω)= a0ω
n − a2ω

n−2 + a4ω
n−4 − · · · ,

Q(4)(ω)= −a1ω
n−1 + a3ω

n−3 − a5ω
n−5 + · · · .

If the following polynomials are considered:

f0(ω)= a0ω
n − a2ω

n−2 + a4ω
n−4 − · · ·

f1(ω)= a1ω
n−1 − a3ω

n−3 + a5ω
n−5 − · · · , (6.90)

the four cases of polynomials obviously become

P (1)(ω)= f1(ω), Q(1)(ω)= f0(ω)

P (2)(ω)= −f0(ω), Q(2)(ω)= f1(ω)
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P (3)(ω)= −f1(ω), Q(3)(ω)= −f0(ω)

P (4)(ω)= f0(ω), Q(4)(ω)= −f1(ω).

Based on the above premise, the following division algorithm is executed:

fk−1(ω)= qk(ω)fk(ω)− fk+1(ω), (6.91)

k = 1,2, · · · , n.

Then, f2(ω), f3(ω), · · · , fn are obtained as follows:

f0(ω)= a0,0ω
n + a0,2ω

n−2 + a0,4ω
n−4 + · · ·

f1(ω)= a1,1ω
n−1 + a1,3ω

n−3 + a1,5ω
n−5 + · · ·

f2(ω)= a2,2ω
n−2 + a2,4ω

n−4 + · · ·
f3(ω)= a3,3ω

n−3 + a3,5ω
n−5 + · · ·

· · · (6.92)

fn = an,n.

For an easier understanding, polynomials f0(ω) and f1(ω) are also written in (6.92).
Here, a0,0 = a0, a0,2 = −a2, a0,4 = a4, · · · and a1,1 = a1, a1,3 = −a3, a1,5 = a5,
· · · . Moreover, each coefficient can be given by the following sequential operations:

a2,p = a1,p+1

(
a0,0

a1,1

)
− a0,p

(p = 2,4, · · · )
· · · (6.93)

aq,p = aq−1,p+1

(
aq−2,q−2

aq−1,q−1

)
− aq−2,p

(q = 3,4, · · · , p = q, q + 2, · · · )
· · ·

an,n = an−1,n+1

(
an−2,n−2

an−1,n−1

)
− an−2,n.

In regard to the four cases, the following Sturm sequences are obtained.

(1) In this case, f0(ω)/f1(ω) = Q(1)(ω)/P (1)(ω) should be calculated (when
considering a large contour in the RHP). Since a0,0 = a0, a0,2 = −a2,
a0,4 = a4, · · · , a1,1 = a1, a1,3 = −a3, a1,5 = a5, · · · , the following coefficients
(Routh’s series) are obtained:
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a2,2 = −a3

(
a0

a1

)
+ a2, a2,4 = a5

(
a0

a1

)
− a4, · · ·

a3,3 = a2,4

(
a1

a2,2

)
+ a3, a3,5 = a2,6

(
a1

a2,2

)
− a5, · · ·

a4,4 = a3,5

(
a2,2

a3,3

)
− a2,4

· · · .

(2) In this case, f0(ω)/f1(ω) = −P (2)(ω)/Q(2)(ω) is assumed to be calculated
(when considering a large contour in the RHP). Since a0,0 = −a0, a0,2 = a2,
a0,4 = −a4, · · · , a1,1 = a1, a1,3 = −a3, a1,5 = a5, · · · , the following series are
obtained:

a2,2 = −a3

(
a0

a1

)
+ a2, a2,4 = a5

(
a0

a1

)
− a4, · · ·

a3,3 = a2,4

(
a1

a2,2

)
+ a3, a3,5 = a2,6

(
a1

a2,2

)
− a5, · · ·

a4,4 = a3,5

(
a2,2

a3,3

)
− a2,4

· · · .

In either case (1) or (2), the top of Routh’s series can be written as

a1,1 = a1

a2,2 =
∣∣∣∣a1 a3
a0 a2

∣∣∣∣�a1

a3,3 =
∣∣∣∣∣∣
a1 a3 a5
a0 a2 a4
0 a1 a3

∣∣∣∣∣∣�
∣∣∣∣a1 a3
a0 a2

∣∣∣∣

a4,4 =

∣∣∣∣∣∣∣∣
a1 a3 a5 a7
a0 a2 a4 a6
0 a1 a3 a5
0 a0 a2 a4

∣∣∣∣∣∣∣∣
�

∣∣∣∣∣∣
a1 a3 a5
a0 a2 a4
0 a1 a3

∣∣∣∣∣∣
· · · (6.94)

an,n = an, (because am = 0 for m> n).

Each term of (6.94) corresponds to a Hurwitz determinant and its principal mi-
nors.

However, in regard to the remaining two cases, the following Sturm’s se-
quences are calculated.
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(3) In this case, if f0(ω)/f1(ω) = Q(3)(ω)/P (3)(ω) is calculated as above for (1),
the following series are obtained:

a2,2 = a3

(
a0

a1

)
− a2, a2,4 = −a5

(
a0

a1

)
+ a4, · · ·

a3,3 = −a2,4

(
a1

a2,2

)
− a3, a3,5 = −a2,6

(
a1

a2,2

)
+ a5, · · ·

a4,4 = a3,5

(
a2,2

a3,3

)
− a2,4

· · · .

(4) In this case, if f0(ω)/f1(ω)= −P (4)(ω)/Q(4)(ω) is calculated as above for (2),
the following series are obtained:

a2,2 = a3

(
a0

a1

)
− a2, a2,4 = −a5

(
a0

a1

)
+ a4, · · ·

a3,3 = −a2,4

(
a1

a2,2

)
− a3, a3,5 = −a2,6

(
a1

a2,2

)
+ a5, · · ·

a4,4 = a3,5

(
a2,2

a3,3

)
− a2,4

· · · .

In either case (3) or (4), the top of Routh’s series can be written as

a1,1 = −a1

a2,2 = −
∣∣∣∣a1 a3
a0 a2

∣∣∣∣�a1

a3,3 = −
∣∣∣∣∣∣
a1 a3 a5
a0 a2 a4
0 a1 a3

∣∣∣∣∣∣�
∣∣∣∣a1 a3
a0 a2

∣∣∣∣

a4,4 = −

∣∣∣∣∣∣∣∣
a1 a3 a5 a7
a0 a2 a4 a6
0 a1 a3 a5
0 a0 a2 a4

∣∣∣∣∣∣∣∣
�

∣∣∣∣∣∣
a1 a3 a5
a0 a2 a4
0 a1 a3

∣∣∣∣∣∣
· · · (6.95)

an,n = −an.

Each term of (6.95) corresponds to a Hurwitz determinant and its principal minors.
Although it is different from (6.94) in sign, the number of sign changes is invariant
(i.e., zero).
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Chapter 7
Relation to Discrete Event Systems

7.1 Introduction

In the final chapter, the relationship between feedback control systems and finite
state (more simply, finite value) control systems is described. The event-driven types
of discrete systems are particularly important. There are many of those types of sys-
tems, e.g., manufacturing systems, industrial robots, computer networks, etc. How-
ever, the analysis and design of these discrete control systems have not been estab-
lished, because the systems have severe nonlinear characteristics and do not respond
continuously in time. In this chapter, the dynamics and stability of finite state and
discrete event systems will be clarified.

Some authors have attempted to perform stability analyses of finite state and dis-
crete event systems [6, 8]. However, many of them only discuss and define the sta-
bility (e.g., asymptotic, exponential, and Lyapunov stability) for specified discrete
event systems. Thus, at the end of this chapter, a general description of the stability
problem of finite state and discrete event systems will be proposed in connection
with that of continuous feedback systems.

7.2 Finite State and Event-Driven Systems

As was described in Chap. 1, finite state systems can be written as [2, 3]:1

x(k + 1)= f (x(k),u(k)) (7.1)

y(k)= g(x(k + 1)) (7.2)

x(k) ∈ Zn, u(k) ∈ Zm, y(k) ∈ Zn, f : Zn ×Zm → Zn, g : Zn → Zn,

where Z is the set of (finite) integer numbers. In this expression, time-driven types

1In this chapter, variables u and y are generalized in multivariables u and y.

Y. Okuyama, Discrete Control Systems,
DOI 10.1007/978-1-4471-5667-3_7, © Springer-Verlag London 2014
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Fig. 7.1 State trajectory of a
discrete event system

of discrete systems are considered in principle, although input sequence u(k) can
correspond to an event-sequence vector. It is assumed that the state (or each value)
of a control system continually changes as time changes. Even if the state is finite,
those types of systems are regarded as being “time-driven.” That is, k ∈ Z+(= N) is
considered to be an independent variable that corresponds to an elapsed time t .

On the other hand, in “event-driven” systems, it is only the occurrence of an asyn-
chronously generated discrete “event” that forces instantaneous state transitions [1].
A typical state trajectory for such a system is shown in Fig. 7.1. The state transitions
that are called events may be labeled with alphabetical elements in the graph. These
labels usually indicate the physical phenomena that caused the change in state. For
example, in a manufacturing system, events of interest are “part accepted”, “ma-
chine finished processing”, “machine deadlocked”; in a communication protocol,
typical events are “packet received”, “packet sent”, “time out” [8]. As shown in the
figure, these events do not always occur at equal intervals of time.

In previous chapters, sampling at equal intervals was assumed in the feedback
control systems. Moreover, the analysis and design of controlled systems (plants)
was devoted to (Laplace or z) transformed variables. In other words, the character-
istic of the frequency responses was considered in the analysis and design of some
kinds of (discrete) control systems. However, a frequency response analysis cannot
be applied to systems of unequal time intervals as shown in Fig. 7.1, even if the
system is time-driven.

7.3 State and Event Trajectories

In this section, the concepts of “state trajectories” and “event trajectories” will be
defined. The many areas in which discrete event systems arise and the different as-
pects of behavior relevant to each area have led to a variety of discrete event system
models. For example, a common simplifying assumption is to ignore the times of
occurrence of the events and consider only the order in which they occur. This leads
to “logical” discrete event system models. In these models, a system trajectory is
specified simply by listing (in order) the events that occur along the original sample
path. In a logical model, the trajectory shown in Fig. 7.1 is reduce to the string of
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events {abcdb · · ·} (the event trajectory). However, in some applications the timing
information is essential and must be included in the model. This leads to a “timed”
discrete event system model. In general, discrete event systems can be accurately
modeled as

G= (X ,E, fe, ϕ,Ev), (7.3)

where X is the set of states

x ∈ X := {x0, x1, x2, · · · }
and E is the set of events

e ∈ E := {e1, e2, e3, · · · }.
State transitions are defined by the operators

fe :X → X . (7.4)

An event e may only occur if it is in the set defined by the enable function,

ϕ :X →P(E)− ∅, (7.5)

where P(E) denotes the power set of E .
A state trajectory is written as any sequence

{xk} ∈XN (7.6)

such that

xk+1 = f e(xk), (7.7)

for all k ∈N := {0,1,2, · · · ,N}. Although (7.7) corresponds to (7.1), the subscripts
k of xk and e of f e denote a “logical” time determined by an event occurring and an
event-driven function, respectively. In (7.6), XN is the set of state sequences, e.g.,

XN = {{x0, x1}, {x1, x2, x3}, · · · }.
On the other hand, an event trajectory is any sequence

{ek} ∈ EN (7.8)

such that there exists a state trajectory, {xk} ∈ XN, where for every k ∈ N, ek ∈
ϕ(xk). Here, EN is the set of event sequences, e.g.,

EN = {{e1, e1, e2}, {e2, e3}, · · · }.
The set of all such event trajectories is denoted by E ⊂ EN. In the model of discrete
event systems (7.3), Ev ⊂ E represents the set of “valid” event trajectories that are
physically possible in G. When the initial state is x0 ∈ X , it is written as Ev(x0).
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Fig. 7.2 Vending machine

Furthermore, Ea ⊂ Ev denotes the set of “allowed” event trajectories [6]. Note
that there can be only one state trajectory corresponding to a given event trajectory.
However, an event trajectory that produces a given state trajectory is not unique in
general.

In the following subsection, some examples of discrete event systems are pro-
vided.

7.3.1 Vending Machine

The first example is a simple vending machine. The set of states is defined as

X = {x0, x1, x2} = {0,1,2},

where x = 0,1,2 denote the stored amount in the machine by coins (e.g., a 1 or 2
euro coin). The set of events is given by

E = {e1, e2}.

Here e1(e2) denotes a 1 (2) euro coin being inserted into the coin slot. The state
transition graph is as shown in Fig. 7.2. When three euros are stored in this machine,
the item (e.g., ticket) is obtained as an output. The sets of event trajectories are given
as {

(1) {e1, e1, e1}, {e1, e2}, {e2, e1},
(2) {e1, e1, e2}, {e2, e2}.

Here, in case (2), one euro will be returned as change. Thus, the sets of state trajec-
tories become the following three cases:

{x0, x1, x2, x0}, {x0, x1, x0}, {x0, x2, x0}.

Note that the case of x0 �= {x0} = ∅ should not be considered in this example.
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Fig. 7.3 Machine with a
single buffer

7.3.2 Buffer Machine

The second example is that of a single buffer machine. As shown in Fig. 7.3, the
machine processes only one part at a time. The set of states can be assigned as

X = {x0, x1, x2, · · · } = {0,1,2,3, · · · }. (7.9)

Suppose that the event set is given by E = {e1, e2, e3}, where

• e1 = “a part arrives”
• e2 = “the machine has finished processing a part”
• e3 = “the machine has finished processing a part and a part arrives at the same

time”.

The state transition function is defined by

xk+1 = fe1(xk)= xk + 1

xk+1 = fe2(xk)= xk − 1

xk+1 = fe3(xk)= xk.

Here, the enable function is defined by

ϕ(x)= {e1, e2, e3}
if the buffer is not empty (i.e., x > 0), and

ϕ(x)= {e1, e3}
if the buffer is empty (i.e., x = 0).
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Fig. 7.4 State transition of
the buffer machine

Fig. 7.5 Two-computer load
balancing system

A graphical representation of the machine is shown in Fig. 7.4. The circles rep-
resent the states and the events are labeled the arrows which represent the state
transition. If a set of valid event trajectories is given by

{e1, e1, e2, e2, e1, e1, e2, e2, · · · } ⊂ Ev,

the sets of state trajectories are obtained as

{x0, x1, x2, x1, x0, x1, x2, · · · } or {x1, x2, x3, x2, x1, x2, x3, · · · } · · · .
If a set of event trajectories is given by

{e2, e2, e1, e1, e2, e2, · · · },
the set of state trajectories is obtained, for instance, when the initial state x0 ≥ x2 =
2,

{x2, x1, x0, x1, x2, x1, x0, · · · }.
However, when x0 < x2 = 2, the set of trajectories is not obtained because of a
deadlock.

7.3.3 Load Balancing System

The next example concerns a load balancing network by two computers, each of
which has the task of processing identical jobs (i.e., parallel processing). As shown
in Fig. 7.5, the jobs are stored in buffers; each computer can sense the other com-
puter’s buffer level and can pass jobs to the other computer. There is a load balancing
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mechanism on each computer that seeks to balance (equalize) the load between the
two computers.

In this example, the set of states is defined as X = N2 (i.e., two-dimensional vec-
tors of natural numbers), e.g., x = [x1, x2]T = [1,5]T . This means that Computer 1
has one job and Computer 2 has five jobs. The set of the event is given by

E = {e�12, e
�
21, e

0}, � ∈N, (7.10)

where

• e�12 = “pass � jobs from Computer 1 to Computer 2”
• e�21 = “pass � jobs from Computer 2 to Computer 1”
• e0 = “pass no jobs” (null event).

The enable function is written as

ϕ(x)=

⎧⎪⎨
⎪⎩

{e1
12, e

2
12, · · · , e�12} if x1 > x2 and �= 1

2 |x1 − x2|
{e1

21, e
2
21, · · · , e�21} if x2 > x1 and �= 1

2 |x1 − x2|
{e0} otherwise.

This means that if the difference of the number of jobs for each computer is “even,”
then � jobs are passed from one computer to another.

The state transition function is given by[
x1
k+1

x2
k+1

]
= fe�12

(xk)=
[
x1
k − �

x2
k + �

]
[
x1
k+1

x2
k+1

]
= fe�21

(xk)=
[
x1
k + �

x2
k − �

]
[
x1
k+1

x2
k+1

]
= fe0(xk)=

[
x1
k

x2
k

]
.

7.4 Petri Nets

In this section, Petri net systems are introduced. A Petri net is a special case of
discrete event system. It is constructed by the following sets:

• P = {p1,p2, · · · }; a finite set of places (represented with circles)
• T = {τ1, τ2, · · · }; a finite set of transitions (represented with line segments)
• F ⊂ (P × T )∪ (T ×P); a set of arcs (represented with arrows)
• W : F → {1,2,3, · · · }; a weight function (represented with numbers labeling

arcs)
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Fig. 7.6 Petri net systems

• Mk : P → N; a marking at time k (represented with dark dots, i.e., tokens, in
places).

The marking (in other words, state) of a Petri net is written as

Mk = [Mk(p1),Mk(p2), · · · ]T , (7.11)

where Mk(pi) denotes the marking (i.e., the number of tokens) at place pi ∈ P .
A transition τj ∈ T is said to be enabled if

Mk(pi)≥ W(pi, τj ), i, j = 1,2, · · · (7.12)

for all pi ∈ P such that (pi, τj ) ∈ F . If a transition τj is enabled (fires) at time k,
the next marking is given by

Mk+1(pi)= Mk(pi)+W(τj ,pi)−W(pi, τj ), i, j = 1,2, · · · (7.13)

where (τj ,pi) ∈F and (pi, τj ) ∈ F .

7.4.1 Simple Petri Net and Graph

Graphical representations of Petri nets are, e.g., as shown in Figs. 7.6(a), (b), and (c).
Figure 7.6(a) is a basic element of the graph that is composed of three places, one
token, and one transition. If the initial situation is as shown in the graph, the marking
is expressed as

M0 = [M0(p1),M0(p2),M0(p3)]T = [0,1,0]T ,
and the weighting functions are given as follows:

W(p1, τ1)= 1, W(p2, τ1)= 1, W(τ1,p3)= 1, other combinations = 0.
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Fig. 7.7 Petri net of a
production network

Since M0(p2) ≥ W(p2, τ1), the transition τ1 fires. Thus, the next marking will be
given as

M1 = [0,0,1]T .
Next, consider an example of recurrent types of Petri nets as shown in Fig. 7.6(b),

(c). In this case, the initial marking is expressed as

M0 = [M0(p1),M0(p2),M0(p3)]T = [2,2,0]T ,
and the weighting functions are:

W(p1, τ1)= 1, W(p2, τ1)= 2, W(τ1,p3)= 1, · · · .
Since the following hold:

M0(p1)≥W(p1, τ1) and M0(p2)≥ W(p2, τ1),

the transition τ1 fires. Thus, the next marking will be given by

M1 = [1,0,1]T

as shown in Fig. 7.6(c).
Furthermore, when considering the next step (τ2 fires), the marking becomes

M2 = [1,1,0]T .

7.4.2 Production Network

Consider a production network that consists of two groups of machines, two buffers,
and an inspection test unit, as shown in Fig. 7.7.

• M(p1) is the number of parts waiting to be processed by a machine in Group 1,
• M(p2) is the number of parts being processed by some machine in Group 1,
• M(p3) is the number of parts in Buffer 1,
• M(p4) is a part counter for Buffer 1,
• and so on in regard to Group 2 and Buffer 2,
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• M(p9) and M(P10) are used to store parts and to limit the number of parts in
the inspection unit, respectively.

In order to study how the production network behaves, we will consider an example.
The initial marking is given as

M0 = [2,0,0,1,2,0,0,1,1,0]T

in the production network as shown in Fig. 7.7. Since

M0(p1)≥ W(p1, τ1),

τ1 fires, and then in Group 1,

M1(p1)= M0(p1)+W(τ1,p1)−W(p1, τ1)= 2 + 0 − 1 = 1

M1(p2)= M0(p2)+W(τ1,p2)−W(p2, τ1)= 0 + 1 − 0 = 1.

Thus, the marking of the Petri net is given as

M1 = [1,1,0,1,2,0,0,1,1,0]T .
Furthermore, if τ2 fires, the next marking is given as follows:

M2 = [2,0,1,0,2,0,0,1,1,0]T .

7.4.3 Network Computers

Consider a network of computers arranged in a “ring.” This type of network is rep-
resented by the extended Petri net as shown in Fig. 7.8. Each place pi ∈ P indicates
a computer node in the network, and the state of the computer is given by M(pi).
Communications between the nodes are represented with transitions (e.g., transi-
tions τ1 and τ2 represent different ways to communicate to node 2). The transition
τ11 simply represents a null event, where if there are no tokens in any place it will
fire.

If the marking is given as shown in Fig. 7.8, the τ2, τ4, τ6, τ8, and τ10 fire, in se-
quence. However, if τ1 fired first, then only τ4, τ6, τ8, τ10, and τ2, · · · will fire. If the
odd-numbered transitions fire for a nonzero initial marking, the network will even-
tually settle into a pattern where the even-numbered transitions fire in sequence an
infinite number of times (the odd-numbered transitions drain the network of tokens).

7.5 Feedback/Supervisory Control and Stability Concepts

The relationship between continuous feedback control for time-driven systems and
supervisory control for event-driven systems is described in this section [10]. The
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Fig. 7.8 Petri net of a
network of computers

Fig. 7.9 Feedback and
supervisory control

discrete event system as described so far is simply a spontaneous generator of event
strings without a means of external control. In order to model the control of discrete
event systems, the set of events is partitioned into controllable and uncontrollable
events: E = Ec ∪ Eu [8]. Control of a discrete event system G consists of switch-
ing the control input through a sequence of elements u1, u2, · · · , in response to the
observed string of previously generated events. This type of controller is called a
supervisor S, as shown in Fig. 7.9. In introducing the concept of a supervisor, it
will be necessary to distinguish between the “plant” (the object to be controlled) in
control theory and the controlling agent in discrete event (or automata) theory.

Here, the difference between time-driven and event-driven systems is discussed
from a viewpoint of stability [6, 7]. The motion (dynamic behavior) of a discrete
event system G which begins at x0 is defined as

xk :=X(x0,Ek, k), (7.14)

where Ek denotes the sequence of events e0, e1, e2, · · · , ek−1. Based on this expres-
sion for dynamic behavior, some of the stability concepts will now be described.

Stability in the Sense of Lyapunov A closed invariant set Xm ⊂ X of G is called
stable in the sense of Lyapunov if for any ε > 0 it is possible to find some δ > 0
such that

ρ(x0,Xm) < δ ⇒ ρ(xk,Xm) < ε, ∀Ek = {e0, e1, e2, · · · , ek−1}. (7.15)
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Here, ρ(x,y) denotes a metric.2 Although the expression of definition (7.15) may
be mathematically strict, it is not always easy to analyze the stability of discrete
event systems. Thus, definitions of stability based on the Lyapunov function are
presented.

The motions of G are uniformly bounded with respect to a set of allowed event
trajectories, if the following condition is satisfied:

ψ1(ρ(x,Xm))≤ V (x)≤ψ2(ρ(x,Xm)), (7.16)

where V (x) is a nonincreasing function for x0 ∈ S(Xm; r), and ψ1, ψ2 are strictly
increasing functions that satisfy ψi : [0,∞) → R+(i = 1,2). Here, V (x) corre-
sponds to a Lyapunov function for a continuous-time system, and S(Xm; r) is the
r-neighborhood of an arbitrary set Xm ⊂ X .3

Asymptotic Stability If the following limit exists as k → ∞:

ρ(xk,Xm)→ 0, (7.17)

then the closed invariant set Xm is called asymptotically stable with respect to a set
of allowed event trajectories.

By using a Lyapunov function, the following condition can be given:

V (xk+1)− V (xk)≤ −ψ3(ρ(xk),Xm), ∀x0 ∈ S(Xm; r), ∀Ek, (7.18)

where ψ3 : [0,∞)→ R+.

Exponential Stability Moreover, if the metric can be written as

ρ(xk,Xm)≤ ζe−αkρ(x0,Xm), 0 < ζ <∞, α > 0, (7.19)

the closed invariant set Xm is called exponentially stable with respect to a set of
allowed event trajectories.

By using a Lyapunov function V (x) and three positive constants (c1, c2, and c3),
the conditions can be given as follows. Corresponding to (7.16) and (7.18), we have

c1(ρ(x,Xm))≤ V (x)≤ c2(ρ(x,Xm)), (7.20)

and

V (xk+1)− V (xk)≤ −c3(ρ(xk),Xm), ∀x0 ∈ S(Xm; r), ∀Ek, (7.21)

where c3 < c2. The relationship between the above conditions and (7.19) is shown
below.

2See Appendix A and compare it with the norms in Appendix A of Chap. 2.
3See also Appendix A.
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Since (1/c2)V (xk)≤ ρ(xk,Xm),

V (xk+1)− V (xk)≤ −(c3/c2)V (xk).

Therefore,

V (xk+1)≤
(

1 − c3

c2

)
V (xk).

The recurrent operations give the following result:

V (x)≤
(

1 − c3

c2

)k

V (x0).

From (7.20),

c1 · ρ(x0,Xm)≤
(

1 − c3

c2

)k

V (x0).

On the other hand,

V (xk)≤ c2 · ρ(x0,Xm).

Therefore, we have the following inequality:

ρ(xk,Xm)≤ c2

c1

(
1 − c3

c2

)k

ρ(x0,Xm). (7.22)

From (7.22) parameters α and ζ in (7.19) can be determined for k → ∞, because
the following is valid:

e−αk = lim
ν→∞

(
1 − αk

ν

)ν

.

That is, ζ = c2/c1 and α = (c2ν)/(c3k) can be assigned for any k, ν = 1,2, · · · .
Hence, the system is exponentially stable.

7.6 Multiple Metrics and Stability

The metric (or Lyapunov function) that has so far been considered in this chapter
is a scalar number. However, those metrics do not always have clear physical and
practical meanings. Although metrics ρ1 and ρ2, and norms, i.e.,

ρ1(x,y)=
n∑

i=1

|xi − yi |

ρ2(x,y)=
(

n∑
i=1

|xi − yi |2
)1/2
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or

‖x‖1 =
n∑

i=1

|xi |

‖x‖2 =
(

n∑
i=1

|xi |2
)1/2

may be meaningful, the inequality assumption becomes too severe. The stability
condition that is derived based on these metrics will be a weak one. Therefore, in
this last section, a vector of metrics (or norms) and a norm of time sequence (state
trajectory) are considered. Their notation is given in Appendix B.

If the elapsed time tk is explicitly considered as shown in Fig. 7.1, a state trajec-
tory of the discrete event system in (7.1) and (7.7) can be written as:

x(tk+1)= f e(x(tk))= f (x(tk), e(tk)), (7.23)

f e : Zn → Zn, f : Zn ×Zm → Zn,

by corresponding e = u ∈ Zm. Moreover, assume that the nominal system is the
following linear time-dependent discrete system with transition matrix �:

x(tk+1)= �(tk+1, tk)x(tk)+ f (x(tk), e(tk)), (7.24)

� ∈ Zn×n, f : Zn ×Zm → Zn

k = 0,1,2, · · · ,∞.

Here, the following vectors of �1 norms that are defined for each element of state
vector x are defined:

‖xi(tk)‖1 =
∞∑
k=0

|xi(tk)|, i = 1,2, · · · , n (7.25)

and

‖x(tk)‖�1 =

⎡
⎢⎢⎢⎣

‖x1(tk)‖1
‖x2(tk)‖1

...

‖xn(tk)‖1

⎤
⎥⎥⎥⎦ . (7.26)

From the recurrence equation (7.24),

x(tk)= �(tk, t0)x(t0)+
k∑

l=1

�(tk, tl)f (x(tl−1), e(tl−1)), (7.27)

k = 0,1,2, · · · ,∞,

where transition matrix �(tk, tl) is assumed to be
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(1) �(tk, ti )�(ti , tl)= �(tk, tl)

(2) �(tk, tk)= I .

With respect to f (·, ·) in (7.27), the following matrix can be considered:

�(tk))=

⎡
⎢⎢⎢⎣
ψ11(tk) ψ12(tk) . . . ψ1n(tk))

ψ21(tk) ψ22(tk) . . . ψ2n(tk)
...

...
. . .

...

ψn1(tk) ψn2(tk) . . . ψnn(tk)

⎤
⎥⎥⎥⎦ , (7.28)

where

ψij (tk)= fij (x(tk), e(tk))

xj (tk)
. (7.29)

Therefore, (7.27) is rewritten as

x(tk)= �(tk, t0)x(t0)+
k∑

l=1

�(tk, tl)�(tl−1)x(tl−1), (7.30)

where the following equality is defined:

fi(x(tk), e(tk)) :=
n∑

j=1

fij (x(tk), e(tk)) (7.31)

for f (·, ·)= [f1, f2, · · · , fn] [4]. Note that a special case of (7.31) is

fi(x(tk), e(tk))=
{
fij (x(tk), e(tk)), for j = i

0, for j �= i
(7.32)

and thus (7.28) and (7.29) are written as a diagonal matrix as follows:

�(tk))=

⎡
⎢⎢⎢⎣
ψ11(tk) 0 . . . 0

0 ψ22(tk) . . . 0
...

...
. . .

...

0 0 . . . ψnn(tk)

⎤
⎥⎥⎥⎦ , (7.33)

where

ψii(tk)= fi(x(tk), e(tk))

xi(tk)
. (7.34)

If the upper bound of the absolute value of each element in (7.28) is given by

|ψij (tk)| = |fij (x(tk), e(tk))|
|xj (tk)| ≤ ψ̄ij , (7.35)
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the following matrix with non-negative elements can be defined:

�̄ :=

⎡
⎢⎢⎢⎣
ψ̄11 ψ̄12 . . . ψ̄1n

ψ̄21 ψ̄22 . . . ψ̄2n
...

...
. . .

...

ψ̄n1 ψ̄n2 . . . ψ̄nn

⎤
⎥⎥⎥⎦ . (7.36)

Here, when (7.33) and (7.34) are applied, (7.35) and (7.36) should be rewritten as
follows:

|ψii(tk)| = |fi(x(tk), e(tk))|
|xi(tk)| ≤ ψ̄ii (7.37)

and

�̄ :=

⎡
⎢⎢⎢⎣
ψ̄11 0 . . . 0

0 ψ̄22 . . . 0
...

...
. . .

...

0 0 . . . ψ̄nn

⎤
⎥⎥⎥⎦ . (7.38)

On the other hand, by using (7.25) and (7.26) the following inequalities are ob-
tained from (7.30):

‖x(tk)‖�1 � ‖�(tk, t0)x(t0)‖�1 +
∥∥∥ k∑
l=1

�(tk, tl)�(tl−1)x(tl−1)

∥∥∥
�1

� ‖�(tk, t0)‖�1 |x(t0)| +
(

k∑
l=1

|�(tk, tl)|
)

�̄ · ‖x(tk)‖�1 , (7.39)

where � denotes the inequality symbol for each element of a vector. Then,

[
I −

(
k∑

l=1

|�(tk, tl)|
)

�̄

]
‖x(tk)‖�1 � ‖�(tk, t0)‖�1 |x(t0)|. (7.40)

Since the first term on the right side of (7.27) is a (nominal) linear discrete system,
the norm �(tk, t0)x(t0) can be assumed to be bounded. Thus, if the matrix

A = I −
(

k∑
l=1

|�(tk, tl)|
)

ψ̄ (7.41)

is Ostrowski’s M-matrix for k → ∞, all the elements of ‖x(tk)‖�1 become
bounded [4, 5]. Hence, we can say that the discrete system is stable.
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7.7 Exercises

(1) Draw the state transition graph for a vending machine with four states and three
events. Show the event and state trajectories.

(2) Consider a machine with two buffers that can only process one part of one type
at a time.

(i) Define the set of states and events.
(ii) Draw the state transition graph for the buffer machine.

(3) Produce a Petri net model of the single buffer machine that is modeled in
Sect. 7.3.2.

(4) Describe a candidate for a Lyapunov (nonincreasing and non-negative) function
in Sect. 7.6.

(5) Describe the difference between sectors (7.35) and (7.37).
(6) Show that the matrix condition (7.41) is invariant, when considering (7.39) in

the �∞ space, i.e.,

‖xi(tk)‖∞ = sup
k∈Z

|xi(tk)|

and

‖x(tk)‖�∞ =

⎡
⎢⎢⎢⎣

‖x1(tk)‖∞
‖x2(tk)‖∞

...

‖xn(tk)‖∞

⎤
⎥⎥⎥⎦ .

(7) Show that the vector-matrix expression with non-negative elements as shown in
Appendix B can also be defined for multiple metrics or Lyapunov functions.

Appendix A: Metric Space and Invariant Set

{X ;ρ} is a metric space [9] if

• ρ(x,y)= ρ(y,x) for all x,y ∈X (i.e., the metrics are commutative) and
• ρ(x,z) ≤ ρ(x,y) + ρ(y,z) for all x,y,z ∈ X (i.e., the triangle inequality is

satisfied).

If x = [x1, · · · , xn]T ∈ Rn and y = [y1, · · · , yn]T ∈ Rn, the examples of metrics are
given as

• ρ1(x,y)=
n∑

i=1

|xi − yi |

• ρ2(x,y)=
(

n∑
i=1

|xi − yi |p
)1/p
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• ρ∞(x,y)= sup
i

|xi − yi |.

The concept of a metric can be extended to the distance from point x to an arbitrary
set Xs ⊂ X as follows:

ρ(x,Xs) := inf{ρ(x,x′) : x′ ∈ Xs}.

Moreover, the r-neighborhood of subset Xs is defined as

S(Xs; r) := {x : 0 < ρ(x,Xs) < r},

where r > 0.
A set is called invariant with respect to the model G, if all motions originating

in the set remain in the set. Mathematically, the set Xm ⊂ X is an invariant set with
respect to G, if x0 ∈ Xm implies xk :=X(x0,Ek, k) ∈ Xm for all k ∈ N and all event
sequences Ek . (That is, all invariant sets are closed with respect to {X ;ρ}.)

Appendix B: Absolute Value of Each Element of Vector-Matrix

In order to simplify the expression, the notation of a matrix that is composed of the
absolute value of each element is defined as follows:4

|�(tk)| :=

⎡
⎢⎢⎢⎣

|ψ11(tk)| |ψ12(tk)| . . . |ψ1n(tk)|
|ψ21(tk)| |ψ22(tk)| . . . |ψ2n(tk)|

...
...

. . .
...

|ψn1(tk)| |ψn2(tk)| . . . |ψnn(tk)|

⎤
⎥⎥⎥⎦ .

For a vector of the absolute value of each element, the following notation is defined:

|x(tk)| := [|x1(tk)|, |x2(tk)|, · · · , |xn(tk)|]T .

Note that each non-negative element can be replaced by some metric or norm in
Euclidean space. Furthermore, each non-negative element can be replaced by some
norm in a function space, e.g., (7.25), generally,

‖xi(tk)‖�p =
( ∞∑
k=0

|xi(tk)|p
)1/p

4In mathematics, since vectors, norms, quadratic forms, and function spaces are regarded as im-
portant, these definitions may be despised.
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and

‖x(tk)‖�p

⎡
⎢⎢⎢⎣

‖x1(tk)‖�p
‖x2(tk)‖�p

...

‖xn(tK)‖�p

⎤
⎥⎥⎥⎦

in a vector representation. Regarding matrices, for example, we can define the fol-
lowing norm:

‖�(tk)‖�1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∞∑
k=0

|ψ11(tk)|
∞∑
k=0

|ψ12(tk)| . . .

∞∑
k=0

|ψ1n(tk)|
∞∑
k=0

|ψ21(tk)|
∞∑
k=0

|ψ22(tk)| . . .

∞∑
k=0

|ψ2n(tk)|
...

...
. . .

...
∞∑
k=0

|ψn1(tk)|
∞∑
k=0

|ψn2(tk)| . . .

∞∑
k=0

|ψnn(tk)|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These expressions can be defined for continuous systems as follows:

‖xi(tk)‖Lp =
(∫ ∞

k=0
|xi(τ )|pdτ

)1/p

and

‖x(tk)‖Lp

⎡
⎢⎢⎢⎣

‖x1(tk)‖Lp

‖x2(tk)‖Lp

...

‖xn(tK)‖Lp

⎤
⎥⎥⎥⎦ .

For a matrix expression, for example, in an L1 space,

‖�(τ )‖L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ ∞

k=0
|ψ11(τ )|dτ

∫ ∞

k=0
|ψ12(τ )|dτ . . .

∫ ∞

k=0
|ψ1n(τ )|dτ∫ ∞

k=0
|ψ21(τ )|dτ

∫ ∞

k=0
|ψ22(τ )|dτ . . .

∫ ∞

k=0
|ψ2n(τ )|dτ

...
...

. . .
...∫ ∞

k=0
|ψn1(τ )|dτ

∫ ∞

k=0
|ψn2(τ )|dτ . . .

∫ ∞

k=0
|ψnn(τ)|dτ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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ERRATUM

Errata and Comments

The following ‘red’ letters are errata that should be corrected (or inserted).

Chapter 1: Mathematical Descriptions and Models

1. Page 5: Eq. (1.10),

y(k + n)+ · · · + an−1y(k + 1)+ any(k)

= b0u(k + n)+ · · · + bn−1u(k + 1)+ bnu(k)

2. Page 6: Eq. (1.18),

y(k)= [
bn − anb0 bn−1 − an−1b0 . . . b1 − a1b0

]
⎡
⎢⎢⎢⎣
x1(k)

x2(k)
...

xn(k)

⎤
⎥⎥⎥⎦ + b0u(k).

3. Fig. 1.5: Time sequences of the solution for Example 1.6
4. Below Fig. 1.5: Note that the response is delayed by one step as shown in

Fig. 1.5 if y(k + 1) = x1(k) (i.e., y(k) = x1(k − 1)) is applied to the com-
puter program for (1.55). This response corresponds to the result of Exer-
cise (7).

5. Page 7: Eq. (1.21),

x(k)= Ax(k − 1)+ Bu(k − 1),

The online version of the original chapters can be found under doi:10.1007/978-1-4471-5667-3.

Y. Okuyama, Discrete Control Systems,
DOI 10.1007/978-1-4471-5667-3_8, © Springer-Verlag London 2014
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6. Page 13: Eq. (1.35),

y(k + n)+ · · · + an−1y(k + 1)+ any(k)

= b0u(k + n)+ · · · + bn−1u(k + 1)+ bnu(k).

7. Page 13: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Z{y(k + n)} = znŷ(z)− (y(0)zn + · · · + y(n− 1)z)

· · ·
Z{an−1y(k + 1)} = an−1(zŷ(z)− y(0)z)

Z{any(k)} = anŷ(z).

8. Page 13: For simplicity, the initial conditions are assumed to be zero (i.e.,
y(0)= y(1)= · · · = y(n− 1)= 0 and also u(0)= u(1)= · · · = u(n− 1)= 0).

Comments:
There would be no contradiction, because y(κ) and u(κ) in (1.35) defined for
κ = k + n (κ ≥ n). However, in a computer simulation, backward expressions
(1.19), (1.21), and (1.40) should be used.

9. Page 13: Eq. (1.36),

(zn+a1z
n−1 +· · ·+an−1z+an)ŷ(z)= (b0z

n+b1z
n−1 +· · ·+bn−1z+bn)û(z).

10. Page 14: Eq. (1.38), The z-transform with respect to κ = k + 2 is given as

(z2 − z+ 0.5)ŷ(z)− y(0)z2 − y(1)z+ y(0)z= (z+ 1)û(z)− u(0)z.

and

(z2 − z+ 0.5)ŷ(z)− y(0)z2 − y(1)z+ y(0)z= z(z+ 1)

z− 1
− u(0)z

11. Page 18:

z2 + z)

z3 − 2z2 + 1.5z− 0.5
⇒ z2 + z

z3 − 2z2 + 1.5z− 0.5

12. Page 18:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
x1(k + 1)

x2(k + 1)

]
=

[−a1 1

−a2 0

] [
x1(k)

x2(k)

]
+

[
b1

b2

]
u(k),

y(k)= x1(k), where a1 = −1, a2 = 0.5, and b1 = b2 = 1

Tips:
The z-transforms of the above equations are given as:[

z− 1 −1

0.5 z

] [
x̂1(z)

x̂2(z)

]
=

[
û(z)

û(z)

]
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Then, [
x̂1(z)

x̂2(z)

]
= 1

z2 − z+ 0.5

[
z 1

0.5 z− 1

] [
z/(z− 1)

z/(z− 1)

]
.

Thus,

ŷ(z)= x̂1(z)= z2 + z

(z2)− z+ 0.5)(z− 1)
= z2 + z

z3 − 2z2 + 1.5z− 0.5
.

13. Page 19: The caption in Fig. 1.6,
Fig. 1.6 Block diagram for Example 1.6, where a1 = 1, a2 = −0.5, and
b1 = b2 = 1

14. Page 23: Eq. (1.68),

G1(z) := Z̃{G1(s)} = K0

1 − z−1
+ K1

1 − ep1hz−1
+ · · · + Kn

1 − epnhz−1
.

15. Page 24: In Table 1.2, The fourth line in ‘Discrete time’,

epkh ⇒ khepkh

16. Page 25: Eq. (1.76),

�(τ ) := eAτ = I + Aτ + A2τ 2

2! + · · · ,

where

I =
[

1 0

0 1

]

17. Page 26: Eqs. (1.78), (1.79), and (1.80),

My first manuscript was written as follows:{
x(k + 1)= �(h)x(k)+ �(h)u(k), �(h)= ∫ h

0 �(τ )Bdτ

y(k)= Cx(k).

{
zx̂(z)= �x̂(z)+ �û(z)

ŷ(z)= Cx̂(z).

ŷ(z)= C[I − �z−1]−1�z−1û(z).

These expressions might be preferable to (1.78), (1.79), and (1.80).
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Fig. 1.23 Frequency shifting and spectrum

Chapter 2: Discretized Feedback Systems

1. Page 50: Eq. (2.7),

−βe2 ≤ g(e)e ≤ βe2.

2. Page 56: In Eq. (2.25),

e∗†(z) ⇒ ê∗†(z)

3. Page 69: Eq. (2.62),

N∑
k,l=1,k �=l

|x(k)|2|y(l)|2 − 2
N∑

k,l=1,k �=l

|x(k)y(k)| · |x(l)y(l)|

=
N∑

k,l=1,k �=l

|x(k)y(l)− x(l)y(k)|2,

4. Page 71: In the last line
· · · and the inequality problem is proved.

Chapter 3: Robust Stability Analysis

1. Page 75: Eq. (3.8),

‖e(k)‖2 ≤ ‖r(k)‖2 + sup
|z|=1

|G(z)|(ρ · ‖e(k)‖2 + ‖d(k)‖2).
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2. Page 94: Eq. (3.46) in Theorem 3.3,

η(q0,ω0)− max
q

min
ω

η(q,ω)

3. Page 94: The verification of robust stability using the above modified Hall dia-
gram (off-axis M-circles) is based on the following theorem.

Chapter 4: Model Reference Feedback and PID Control

1. Page 114: In Eqs. (4.16), (4.17), (4.20), and (4.21),

GI (s) ⇒ G1(s)

GI (z) ⇒ G1(z).

2. Page 117: In Eq. (4.22),

f̂ (z) ⇒ F(z).

3. Page 117: In the first line under Fig. 12,
· · · , characteristic equation of the nominal feedback system is given as

4. Page 132:

ỹ
(3)
3 = ỹ

(2)
3 − a

(2)
32

a
(2)
22

ỹ
(2)
2 , ⇒ ỹ

(3)
3 = ỹ

(1)
3 − a

(1)
31

a
(1)
11

ỹ
(1)
1 − a

(2)
32

a
(2)
22

ỹ
(2)
2 ,

5. Page 140: In Exercise (3), determine the characteristic equation of the nominal
system, F(z)= 0, for Example 4.1 (A) · · · .

6. Page 140: (4) Show that the approximate PID control system in Fig. 4.18 is
obtained from the model-reference feedback system in Fig. 4.17, when Dm(·)
and Df (·), are in high resolution.

Chapter 5: Multi-Loop Feedback Systems

1. Page 153:

ỹ(n)n = ỹ(n−1)
n − a

(n−1)
n,n−1

a
(n−1)
n−1,n−1

y
(n−1)
n−1

⇒ ỹ(n)n = ỹ(1)n − a
(1)
n1

a
(1)
11

ỹ
(1)
1 − a

(2)
n2

a
(2)
22

ỹ
(2)
2 − · · · − a

(n−1)
n,n−1

a
(n−1)
n−1,n−1

ỹ
(n−1)
n−1

2. Page 153: · · · , where y(j)j ⇒ ·· · , where 0 <ỹ(j)j ≤ y
(j)
j
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3. Page 153: · · · all principal minors of matrix A ⇒ ·· · all principal minors of
matrix (5.15)

4. Page 163:

ỹ(n)n = ỹ(n−1)
n − a

(n−1)
n,n−1

a
(n−1)
n−1,n−1

y
(n−1)
n−1

⇒ ỹ(n)n = ỹ(1)n − a
(1)
n1

a
(1)
11

ỹ
(1)
1 − a

(2)
n2

a
(2)
22

ỹ
(2)
2 − · · · − a

(n−1)
n,n−1

a
(n−1)
n−1,n−1

ỹ
(n−1)
n−1

5. Page 163: · · · , where y(j)j ⇒ ·· · , where 0 <ỹ(j)j ≤ y
(j)
j

6. Page 163: · · · all principal minors of matrix A ⇒ ·· · all principal minors of
matrix (5.48)

7. Page 177:

yj ≥ 0, J = 1,2, · · · , n and aij ≤ 0, i �= j

⇒ ỹj ≥ 0, j = 1,2, · · · , n and aij ≤ 0, i �= j

Chapter 6: Interval Polynomials and Robust Performance

1. Page 186: Equation (6.17) should be written as follows:

F̃ (z)=Dc1(z)Dc2(z)D11(z)D22(z)D12(z)D21(z)

+[K−
1 ,K

+
1 ]Nc1(z)N11(z)Dc2(z)D22(z)D12(z)D21(z)

+[K−
2 ,K

+
2 ]Nc2(z)N22(z)Dc1(z)D11(z)D12(z)D21(z)

+[K−,K+]Nc1(z)Nc2(z)N11(z)N22(z)D12(z)D21(z)

−[K−,K+]Nc1(z)Nc2(z)N12(z)N21(z)D11(z)D22(z)= 0.

2. Page 191: Fig. 6.3 · · · for discrete control system ⇒ Fig. 6.3 · · · for discrete
control systems

3. Page 192:

φ = tan−1
(−γ + 2(1 + γ 2)θ − γ (1 + γ 2)θ2

1 − (1 + γ 2)θ2

)
The proof of Lemma 6.1 is given as follows:

x2 + (y − γ )2 = [1 − (1 + γ 2)θ2]2 + [−γ + 2θ(1 + γ 2)− γ (1 + γ 2)θ2]2

[1 − 2γ θ + (1 + γ 2)θ2]2

= (1 + γ 2)[1 + (1 + γ 2)θ4 − 2θ2 + 4(1 + γ 2)θ2 + γ 2(1 + γ 2)θ4 − 4γ θ − 4γ (1 + γ 2)θ3 + 2γ 2θ2]
[1 − 2γ θ + (1 + γ 2)θ2]2
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= (1 + γ 2)[1 + 4γ 2θ2 + (1 + γ 2)2θ4 − 4γ θ − 4γ (1 + γ 2)θ3 + 2(1 + γ 2)θ2]
[1 − 2γ θ + (1 + γ 2)θ2]2

= 1 + γ 2.

Thus, Lemma 6.1 has been proved. �
4. Page 204:

F̃ (s)= [a−
0 , a

+
0 ]s3 + [a−

1 , a
+
1 ]s2 + [a−

2 , a
+
2 ]s + [a−

3 , a
+
3 ]

Chapter 7: Relation to Discrete Event Systems

1. Page 228: Fig. 7.6 Petri net systems ⇒ Fig. 7.6 Petri net systems
(In the following figures, transitions τi are written in ti )

2. Page 232: In (7.21),

∀x0 ∈ S(Xm; r) ⇒ ∀x0 ∈ S(Xm; r)
3. Page 234: Their notation is · · · ⇒ The notations are · · ·
4. Page 234:

‖xi(tk)‖�1 =
∞∑
k=0

|xi(tk)|

and

‖x(tk)‖�1 =

⎡
⎢⎢⎢⎣

‖x1(tk)‖�1‖x2(tk)‖�1
...

‖xn(tk)‖�1

⎤
⎥⎥⎥⎦ .

5. Page 235: In (7.28) and (7.33),

�(tk)) ⇒ �(tk)

6. Page 236:

I −
(

k∑
l=1

|�(tk, tl)|
)

ψ̄ ⇒ I −
(

k∑
l=1

|�(tk, tl)|
)

�̄

7. Page 237: · · · and three events. ⇒ ·· · and two events.
8. Page 239:

‖x(tk)‖�p=

⎡
⎢⎢⎢⎣

‖x1(tk)‖�p
‖x2(tk)‖�p

...

‖xn(tk)‖�p

⎤
⎥⎥⎥⎦
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9. Page 239: The equations for continuous-time systems should be corrected as
follows:

‖xi(τ )‖Lp =
(∫ ∞

0
|xi(τ )|pdτ

)1/p

.

and

‖x(τ )‖Lp=

⎡
⎢⎢⎢⎣

‖x1(τ )‖Lp

‖x2(τ )‖Lp

...

‖xn(τ )‖Lp

⎤
⎥⎥⎥⎦ ,

furthermore,

‖�(τ )‖L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ ∞

0
|ψ11(τ )|dτ

∫ ∞

0
|ψ12(τ )|dτ . . .

∫ ∞

0
|ψ1n(τ )|dτ∫ ∞

0
|ψ21(τ )|dτ

∫ ∞

0
|ψ22(τ )|dτ . . .

∫ ∞

0
|ψ2n(τ )|dτ

...
...

. . .
...∫ ∞

0
|ψn1(τ )|dτ

∫ ∞

0
|ψn2(τ )|dτ . . .

∫ ∞

0
|ψnn(τ)|dτ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Index

1. Page 242: Four discrete-type equation ⇒ Forward discrete-time equation
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Backward difference, 54, 57, 58, 111, 126, 128
Backward difference equation, 8
Backward discrete-time equation, 7
Bilinear approximation, 112, 113, 191
Bilinear operator, 88, 110, 157
Bilinear transformation, 54, 82, 104, 121
Binary arithmetic, 31
Bounded-inputs and bounded-outputs stable,

73, 77, 133, 148, 152, 154, 163
Buffer machine, 225

C
C-language, 140
Canonical form, 6
Cascade connected system, 15
Cauchy residue theorem, 16
Characteristic equation, 37
Characteristic polynomials with interval

parameter, 188
Circle criterion, 74, 76
Complementary sensitivity function, 97
Complex roots, 208
Complex variable function, 142
Computerized digital system, 27
Continuous saddle point, 95, 97
Continuous value, 3
Continuous-time, 3
Continuous-time systems, 77

Controllable canonical form, 6
Controller algorithm, 112

D
D-stability, 190, 196, 199, 201
Derivative time, 110
Determinant, 36
Diagonal matrix, 36
Difference equation, 7
Direct difference method, 111, 113
Discrete equation, 4
Discrete event system, 222
Discrete model, 121
Discrete-time, 3
Discrete-time system, 27
Discrete-value, 3
Discrete-value system, 27
Discretization process, 26, 28, 46
Discretized nonlinear characteristic, 124
Discretized nonlinear control system, 79
Discretized PID control, 109
Discretized PID control system, 156
Discretized sigmoid, 133
Distorted frequency, 82, 94, 97, 111, 122, 192
Division algorithm, 17, 195
Dynamic system, 2

E
Eigenvalue, 37
Eigenvector, 37
Euclidean norm, 39
Event sequence, 223, 224, 238
Event trajectory, 223
Event-driven system, 221
Event-driven type, 4
Exogenous, 5, 55, 73
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Exponential stability, 232
Exponentially stable, 90

F
Feedback compensator, 120
Feedback connection, 15, 28
Feedback system, 15
Final value theorem, 12
Finite state system, 4, 221
Finite word length, 31
Forced term, 14
Forward difference, 8
Four corner points, 194
Four corner polynomials, 193
Four discrete-type equation, 4
Fourier Transform, 100
Fourier-Plancherel Transform, 99
Function space, 37

G
Gain margin, 93, 97, 98, 114
Gain-crossover point, 96

H
Hölder inequality, 70
Hall diagram, 93, 104
Hardy space, 40
High resolution, 63
Holding circuit, 23, 118
Homogeneous equation, 5, 9
Homogeneous solution, 13
Hurwitz determinant, 204, 217

I
Ideal sampler, 22
Identity matrix, 36
Initial condition, 5, 13
Initial value theorem, 12
Inner product, 59, 68, 127
Input-output stability, 73, 147, 154
Input side discretization, 48
Integer grid coordinates, 28
Integral time, 110
Interval parameter, 185
Interval polynomial, 188
Interval system, 183
Inverse matrix, 36
Inverse transformation, 16, 40

J
Jordan curve, 16, 40

K
Kharitonov rectangle, 189, 204

L
�p space, 38, 68
Lp space, 38, 68
�2-stable, 74
L2-stable, 77
Laplace transform, 21
Load balancing system, 226
Logarithmic quantizer, 47
Lyapunov function, 232

M
M-circle, 92
M-matrix, 131, 152, 163, 177
Mealy machine, 4
Metric, 38, 232, 237
Microprocessor, 31
Minkowski inequality, 70, 71
Model reference control system, 129, 172
Model-reference feedback control, 119
Modified Hall diagram, 92
Modified Nichols diagram, 96
Moore machine, 4
Mp , 93
Multi-loop system, 149
Multi-nonlinearity, 131
Multiple edges, 197

N
Network computer, 230
Neutral point, 53
Nichols diagram, 96, 106
Nominal gain, 50
Nonlinear function, 2
Nonlinear operator, 2
Nonlinear time-varying system, 88
Nonminimum phase system, 85
Nonsingular matrix, 37
Norm, 38, 68
Norm inequality, 57
Normed space, 38

O
Observable canonical form, 6
Off-axis M-circles, 94
Operator δ, 54, 110
Output side discretization, 49

P
Parallelotope, 189, 197
Parseval identity, 75, 101, 150
Partial fraction expansion, 24, 143
Passivity theorem, 88
Peak value, 95
Petri nets, 227
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Phase margin, 93, 96, 114
Phase trace, 57, 114, 134
Phase-crossover point, 95
PI controller, 116, 140
PID control, 109
PID controller, 110
Plancherel theorem, 101
Polynomial operation, 140
Polynomial with complex coefficients, 193
Polytope, 189, 197
Popov criterion, 61, 87
Popov stability, 61
Production network, 229

Q
Quadratic form, 37

R
Real roots, 207
Rectangular pulse, 21
Regular matrix, 37
Residue, 16
Resolution, 27
Resolution value, 26, 46, 133
Robust control system design, 202
Robust stability, 81
Round-down discretization, 46, 58
Rounding, 32
Routh series, 204
Routh-Hurwitz criterion, 199, 215

S
Sampled-data control system, 45
Sampling and holding process, 20
Sampling period, 20, 26
Sampling theorem, 42
Schwarz inequality, 69
Second-order lag system, 121
Second-order model, 122
Sector parameter, 50
Sectorial D-stability, 190
Segment polynomial, 189

Shannon sampling theorem, 43
Shifting theorem, 13
Sigmoid function, 29, 48, 121
Simultaneous linear equations, 35
Small gain theorem, 74, 81
Space discretization, 26
State, 3
State sequence, 223
State transition function, 225
State transition graph, 224
State-space representation, 18, 25, 34
Static system, 2
Sturm sequence, 207, 214
Sturm theorem, 195, 206
Sum of trapezoidal areas, 59, 127
Supervisor, 231
System, 1

T
Time delay, 118
Time invariance, 2
Time-driven type, 4
Transfer function, 15
Transition matrix, 25, 234
Transmission delay, 43, 136
Trapezoidal areas, 59, 127
Triangular matrix, 36
Truncated input, 78
Truncation, 32, 78

U
Uncertain parameter, 188
Unit impulse function, 22
Unity matrix, 36

V
Vending machine, 224

Z
z-transform, 11, 12, 40
Zero-order hold, 20, 45, 114
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