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Exercise #1

We consider an ATM multiplexer receiving 2 synchronous input
time-division traffic flows that have different priorities:
Each slot of the high-priority line carries an ATM cell with probability p;

Each slot of the low-priority line carries one message with probability q;
each message is composed of a random number of cells according to
the PGF L(z). The packet arrival process on the low-priority line is
compound Bernoulli.
The ATM multiplexer stores the cells before transmission in a buffer
of infinite capacity.
The output line is synchronous with the input lines: input and
output slot durations are equal; each output slot is used to convey
one input cell.

We have to study the mean delay experienced by the cells of
the low-priority line due to the presence of the cells served of
the high-priority line.
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This exercise could also be applied to
any time-division transmission (e.g.,
downlink transmissions of wireless
systems).

We consider an ATM multiptexer receiving 2 synchronous input
time-division traffic flows that have different priorities:

Each slot of the high-priority line carries an ATM cell with probability p;

Each slot of the low-priority line carries one message with probability q;
each message is composed of a random number of cells according to
the PGF L(z). The packet arrival process on the low-priority line is
compound Bernoulli.
The ATM multiplexer stores the cells before transmission in a buffer
of infinite capacity.
The output line is synchronous with the input lines: input and
output slot durations are equal; each output slot is used to convey
one input cell.

We have to study the mean delay experienced by the cells of
the low-priority line due to the presence of the cells served of
the high-priority line.

Exercis
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Exercise #1 (cont’d)

This system admits a queuing model as depicted below:
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Input lines The arrivals from line #1 have a
non-preemptive priority
with respect to those from line #2.
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Solution of Exercise #1

The presence of the high-priority traffic causes that output line slots
are available for the low-priority traffic with probability 1 — p and
unavailable with probability p. Hence, the equivalent service model
for low-priority traffic is shown below:
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Three different imbedding choices can be made, depending
on the performance metric we need to measure. In the different
cases, we have different meanings for n, and a. modeling the
system. Since it is requested to determine the mean cell delay, we

imbed the system at the end of the slots of the output TDM
line.
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Solution of Exercise #1

The service of the high-priority traffic from line #1
is unaffected by the service of the lower
T

1 priority traffic from line #2. The high-priority traffic P'°
ur has no waiting delay, since it is immediately served
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™0 at the arrival [A”(1) is equal to zero for this traffic].
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Three different imbedding choices can be made, depending
on the performance metric we need to measure. In the different
cases, we have different meanings for n, and a. modeling the
system. Since it is requested to determine the mean cell delay, we

imbed the system at the end of the slots of the output TDM
line.
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Solution: Imbedding at the
Slot End of the Output Line

Let n, denote the number of ATM cells in the buffer (from the low-priority
line) at the end of the i-th slot of the output line.

Let a. denote the number of ATM cells (from the low-priority line) arrived at

the buffer during the i-th slot.
.o n-m+a._,, n >0
" la,, n =0

i+1?

where m is a random variable defined as:
_{1, with Prob.1— p

|0, withProb. p

We have obtained the same difference equation of the queue with
feedback solved at the end of Lesson No. 9 (in that case, however, the
arrival process is different, continuous time).

(*) At the i-th imbedding instant &+, the queue is empty, n, = 0. Hence, during the next slot no cell is
transmitted and at the end of the next slot (instant &, ,-) the system contains the new requests a, ,,
arrived in the current slot. With this type of imbedding instants, no service differentiation is
needed for the case n; = 0.
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Solution...

Let A(z) denote the PGF of number of cells arrived at the buffer
in a slot from the low priority line:

A(z)=1-q+qL(z)

We achieve the following expression for the PGF of the number of
cells in the queue from the low-priority line, P(z):
p(z)=p, 1= PI2-D)AQ) » _1-p—A(l) Stability limit according
" z-[1-p+2p]AQ2) ’ 1-p to the condition P,>0.

Since P(z) has a singularity at z = 1, we can derive the mean
number of cells in the buffer from the low-priority line, N, by
multiplying both sides of P(z) by the denominator and by

differentiating twice: Traffic intensity in cells/slot
N, =P'(1)= A1) o ‘; al ()/> cells]

Additional waiting term due to the
fact that resou<5c5§3355/%q;
available (prob. p).

Due to the availability of
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Solution...

Stability condition for the high-priority line: p < 1.

Stability condition for the low-priority line: 1 —-p > gL'(1).
The low priority cells ‘see’ the output slot available with probability 1
— p; this quantity must be bigger than the mean number of cells
arrived per slot, gL'(1).

For p = 0 we re-obtain the classical M/G/1 solution:
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By means of the Little theorem we can derive the mean packet
delay T, dividing N, by the mean packet arrival rate of qL'(1)
cells/ slot thatis equal to A’(1)

"(Q)
N ///() [slots]

Tp— =1+
AL T 1-p- qL(l) "o p-ar]

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved




Exercise #2

Messages arrive at a node of a telecommunication
network to be transmitted on an output line. From
measurements we know that the arrival process and the
service process are characterized as follows:

Interarrival times v are distributed so that E[v?] = 2E[v]-.

The message service time, t, is characterized by a distribution so that
E[<2] ~ E[1]>.

We have to determine the mean delay experienced by a
message to cross the node.
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Solution of Exercise #2

The interarrival times have mean square value and mean
value that fulfill the typical relation of an exponential
distribution with mean rate 1/E[v]. Hence, we can
assume that the message arrival process is Poisson.

The message service time has mean square value and
mean value that fulfill the typical relation of a
deterministic distribution (i.e., Var = 0).

We can study the node of the telecommunication
network according to the M/D/1 theory by
imbedding the chain at the instants of message
transmission completion.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Solution (cont’d)

We can express the mean message delay by means of
the Pollaczek-Khinchin formula:

2
T, =X+ X
2[1— Ax]

where A = 1/E[v] and x = 1. System stability is assured
if Ax = t/E[v] < 1 Erl.
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Exercise #3

Let us consider a scheduler for multiple flows sharing an
output line as follows. We refer to the transmission system
outlined in the following Figure with N traffic flows (each modeled
as an independent Poisson arrival of packets with mean rate 1),
which correspond to distinct buffers served by a shared transmission
line. Let t denote the packet transmission time.

The transmission line cyclically serves the different buffers according
to a type of Round Robin (RR) limited scheme: the line
transmits one packet from a buffer (if it is not empty) and then
instantaneously switches to service the next buffer (zero switch-
over times) according to a fixed service cycle.

We have to determine the mean delay experienced by a packet
from its arrival at the system to its departure.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Exercise #3 (cont’d)
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Solution of Exercise #3

Since the server (i.e., the transmission line) instantaneously
switches from one buffer to the next one, we can model the
entire system as a single equivalent global queue with a
specific service discipline for the packets.

The arrival process to this ‘global’ (virtual) queue is the sum of
independent Poisson arrivals; hence, it is still Poisson with mean
rate NA.

The transmission time of a packet is deterministic and equal to .

Therefore, the equivalent global queue admits an M/D/1
model.
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Solution of Exercise #3

Since the server (i.e., the transmission line) instantaneously
switches from one buffer to the next one, we can model the
entire system as a single equivalent global aueue with a

specific service dis Only if the switching times of the

. server from one queue to the other are
The arrival process tq
independent Poisson null, we can model the whole system by
rate NA. means of an M/D/1 queue.

The transmission tich
Therefore, the equivalent global queue admits an M/D/1
model.
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Solution (cont’d)

We imbed the queue at the instants of packet transmission
completions and we adopt the Pollaczek-Khinchin formula to express
the mean packet delay T as:

ANT?
=7+
2[1- AN7]

This system is stable if ANt < 1 Erl.

Note that an M/G/1 queuing model with vacations is needed
to study the case with non-zero-switch-over times from the service
of a queue to the service of the next queue.
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Thank you!
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