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Advanced ‘M’/G/1 cases

Synchronization effects for the service
of arrivals occurring at an empty queue

Advanced ‘M’/G/1 cases

taking into account: Compound arrivals

Batched service

; ; Packet completion instants
Packet level

(mean number End of the slot
of packets, N,)

Imbedding options End of the frame
Message level
(mean msg delay, T,,)
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Message completion instants



Advanced ‘M’/G/1 cases

These ‘M’/G/1 cases are modeled by generalized
difference equations as:

batched service (deterministic or random)
per imbedding interval if b > 1

i _{max{ni —b,0}+a,,, ifn >1

1+1?
i+1

+A, 1fn =0

\

a.

i1+1

service differentiation if A > 0

The above is a symbolic difference equation presented to
introduce new concepts, but not actually corresponding to a
given queuing system.
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message arrival

‘M°/G/1 Queue with Different %packets
Imbedding Options time

Let us refer to a queue with a compound Poisson arrival
process. Different imbedding options are available, also depending
on the presence of an output Time Division Multiplexing
(TDM)/TDMA service.

Imbedding at the end of the packet transmission time to study
the statistics of the buffer occupancy (like MAC layer performance). This
study requires to adopt the service differentiation approach. Notation:
MIGl/D/1.

In a TDM output case, we can also imbed the system at the end of
the output slot, thus avoiding any service differentiation issue.
Notation: MIG1/D/1.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



message arrival

‘M°/G/1 Queue with Different %packets
Imbedding Options time

In a TDMA case and asynchronous multiplexing, we can imbed the
system at the end of the frame with b slots, thus having a batched
service since we can service up to b packets per frame. Notation:
MIGl/pIbl/ 1.

Imbedding at the end of the message transmission time to
study the message delay distribution (like layer 3 performance).
Notation: M/G/1. We use the Pollaczek-Khinchin formula.

In the above cases #1, #2, #3, operating at the packet
level, the arrival process is not Poisson, and the
Kleinrock principle is not applicable due to the
simultaneous arrival of the packets of a message. Hence,

the 'M’/G/1 solution depends on the imbedding points,
but in all the cases we must have the same stability limit.

Instead, in the above case #4, the arrival process is Poisson and
we can apply Kleinrock principle and PASTA property.
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message arrival

Let us Re-examine E ks
Exercise #2 of Lesson #7 time

We consider a transmission line with a buffer (i.e., we have a
single-server queue) where messages arrive according to a Poisson
process with mean arrival rate A.

The arrival process and the transmission one are continuous-time.

All the packets of the same message arrive simultaneously: bulk
arrival process.

A message is formed of a random number ¢ of packets, each
requiring a time T to be transmitted. Message lengths are iid.

Let L(z) denote the PGF of the message length in packets that also
corresponds to the PGF of the message transmission time in T

time-units. Note that both inputs and outputs
A ; I ® are unslotted. We have thus 2 different
L(z)

imbedding options (cases #1 and #4).
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Solution #1: Chain Imbedded at
pkt Transmission Completion

Let n; denote the number of packets in the buffer at the end of the
transmission of the i-th packet; let a, denote the number of packets arrived
at the buffer during the service time of the i-th packet.

To study our MIL(@1/G/1 queue we write the following difference
equation:

Forn, >0, n,, = n,— 1+ a,, : classical M/G/1 equation.

Forn,=0, n,; = a;,; + ¢— 1: when n, = 0 we have to wait for the next group

arrival and for the service completion of the first arrived packet of the group of
length ¢ in order to go to the next imbedding instant with n,, ;. The difference
equation in this case is that typical of differentiated service times (see next
slides). However, considering that queuing phenomena when n, = 0 could have
negligible impact on the whole queue behavior, we make the following
approximation: n_, = a,,, for n, = 0. This allows to use the same difference

equation of the classical M/G/1 theory.

In order to apply the M/G/1 theory we need to compute A(z) that
represents the PGF of the number of packets arrived at the buffer in the
service time of a packet (time T).
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Solution #1... Neglecting
Service Differentiation (...-a..forn=0)

The mean number of packets N, is:

N, ~ A'(D)+ > A" [packets]

- A@]

where: A(z)=>"[L(z)]"Prob{n message arrivals in T}=e*" -+ z < L(2)
"~ due to the compound
Alz=1)=4TL0) arrival process

A'(z=1)=[ATL'@Q)F + ATL" (1)

The stability of the buffer is assured if ATL'(1) < 1 Erlang. The
mean packet delay, T,, is obtained applying the Little theorem and
using the mean packet arrival rate given by AL'(1)

packets/second: . L@t (1%(1)
T, = ~T+
VI (Y 21— ATL ()]

[seconds]
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Solution #1b with Differentiated
Service Times (ni+1 =a,, ¥ Aforn = 0)

The chain is again imbedded at the end of packet transmission:

N,y =nN—-1+a,,ifn=0,

N,; = a,.* ifn,=0wherea,,*=a,,+w and w=¢-1 (sincea,*
> a.,,, this case is as if the service time was longer when the buffer is

empty as with ‘differentiated service times’). In terms of PGFs, A(z) does
not change with respect to the previous example and W(z) = L(2)/z.

We need to solve the new difference equation in the z-domaln and to
compute the derivatives of the PGF P(z) at z = 1. We have:

Lll(l) All(l)
N, =—5+AY)+——"= Il
p 2L'(1)+ ()+ 2[1_ A'(l)] [Ce S]
w \_/
Additional term due to  Classical M/G/1 terms
differentiation depending (as in solution #1) Note:

on the message length :
statistics; this term disappears Random variable L = PGF L(z)

if the messages are formed of Random variable -1 - PGF z1

a single packet L(z) = z.
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Solution #2: Chain Imbedded at

This is the same

msg Transmission Compl. o

Exercise #2 in
Lesson #7 !

Let n; denote the number of messages in the buffer at the end of
the transmission of the i-th message; let a; denote the number of
messages arrived at the buffer during the service time of the i-th
message.

We can write the following difference equation of the classical
M/G/1 type:

Forn,>0,n,;,=n-1+a_,

Forn, =0, n,; = a,;.

In order to apply the M/G/1 theory we need to compute A(z) that
represents the PGF of the number of messages arrived at the
buffer in the service time of a message.

Of course this case can be

ved by directly applyi .. (7 —1) =1 *
" the Pollaczek-Khinchin Alz)=Lle™ ] Alz=)=L@pT
formula. We have however This composition is exactly the A"(Z =1)= [/ﬂ' ]2 [L"(1)+ L'(l)]

computed A(z) to compare  gpposite of that used for solution #1
to that of solution 1
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Solution #2...

Let N, denote the mean number of messages in the queue:
" 2 n 1
AT L @WAT +[1T] L@+ @) [pkts]
21— A'@)] 2 —L'@)AT]
The stability condition is ATL'(1) < 1 Erlang.

Since the mean arrival rate of messages is A, we apply the Little theorem to derive
the mean message delay T,

N, ., ATF[L"@)+L'@
To =T =L@+ [2][1[— L{(i)/IT ]( e

Let us consider messages with modified-geometric distribution {so that
L”(1)=2[L'(1)]>-2L'(1)}. Hence, the mean message delay T,, results as:

r v ATTRee -ea)

2[1-L'(2)AT]

N, =AD+

Under the approximation considered in case #1 for the derivation of T,
we can prove that T, ~ T,,..
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Still on the Comparison
Between T, and T,

Under the common stability condition ATL'(1) < 1 Erlang, we
have obtained the following mean packet delay T, and mean
message delay T, with different imbedding options:

Y
) zT+l[T] L(@)+T A(l)

P 21— ATL'(1)]

[S] Sol. #1 (approximate)

(l)T [ ][L () (1)] [S] Sol. #2

21— L'(1)AT]

In general, we can see that T, #L'(1) T, due to the
queuing terms:

o ATLEE T AU L)

21— ATL'(1)] 21— ATL'(@)]
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Still on the Comparison
Between T aNd To remove the

approximation we

Under the common stability con should add a term ve
have obtained the following mean | | ”(1)/[2AL(1)2].

message delay T, with different in

AT+ttt Y L) ~—

Sol. #1 (approximate)

T, =T+

P 21— ATL'(1)] g

(l)T [ ][L () (1)] [S] Sol. #2

21— L'(1)AT]

In general, we can see that T, #L'(1) T, due to the
queuing terms:

AT T AU L)

21— ATL'(1)] 21— ATL'(@)]
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M/G/1 Queue with Feedback or
Randomly-Available Server

Let us consider a queue receiving packets according to a Poisson process with mean
rate A. Each packet needs a time T to be transmitted (deterministic service). Service
time is slotted (synchronized) with duration T. When a packet is transmitted, the
packet is erroneously received with probability 1-p ; in this case, a negative feedback

(ARQ) is immediately received by the sender that soon retransmits the paclﬁet. C

We imbed the queue at the slot end instants. slot slot slot
.—V
Let n; denote the number of packets in the 5

queue at the end of the i-th slot;

Let a; denote the number of packets arrived at

the queue during the i-th slot. 1 p
Variable X representing the service is a Bernoulli

random variable equal to 1 with probability p and equal to 0
with probability 1-p. X(z) = zp+ 1-p. E[X] = p.

n-X+a,, Iifn2=>1

We can thus write the following difference
n|+1 = { -
a,, ifn=0

equation modeling this queue:
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M/G/1 Queue with Feedback or

Rand0m|y-A This model is equivalent to consider
that the output server is available in a

Let us consider a queue rece| SIOt t0 send a packet with probability p

rate 2. Each packet needs a { gngd unavailable with probability 1-—p
time is slotted (synchronized)

packet is erroneously receive (ins_ensitivity _p,roperty),

(ARQ) is immediately received by the sender that soon retransmits the D

We imbed the queue at the slot end instants. slot slot slot
o———
Let n; denote the number of packets in the 5

queue at the end of the i-th slot;

Let a; denote the number of packets arrived at
the queue during the i-th slot.

1-p
Variable X representing the service is a Bernoulli
random variable equal to 1 with probability p and equal to 0

with probability 1-p. X(z) = zp+ 1-p. E[X] = p.

n-X+a,, Iifn2=>1
la,, ifn=0

i+1?

We can thus write the following difference
equation modeling this queue: Ni 4 —{
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M/G/1 Queue with Feedback or
Randomly-Available Server

Lt us  THis approach is correct, but does not permit to
rate .| model the synchronization delays in the

Ep;ﬁ;i service of packets arrived at an empty buffer.

scheme Otherwise, we could consider a different model of
we iml this system without slots for output

Let transmissions: transmissions are continuous-
9 time. We could thus avoid synchronization issues.
'tf: In this case, we should imbed the study at the
Va packet transmission end, thus using again the
ral Classical M/G/1 difference equation.

Wit

We can thus write the following difference W
equation modeling this queue: N, :{ i+ i =

a_, Ifn =0
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M/G/1 Queue ... (cont’d)

We solve the difference equation by transforming in the z-domain and using the
same method adopted for the classical M/G/1 study.

We obtain the following results for the PGF of the packets in the buffer, P(z), and
the mean number of packets in the queue:
P(Z): P p<1_ Z_l)A(Z) —P p(Z _1)A(Z) P = P— A'(l)’ A(Z) — eﬂT(z—l)

“1-X(zY)A@)  "z-[p+z(1- p)AQ) ° p
Note that for p =1 the

feedback is eliminated and
this expression yields
the classical M/G/1 result.

N = A'(l)-l- (1_ p)Al(l) + A”(l)
p—AQ 2p-AQ

] [pkts]

where the stability condition is now A’(1) = AT < p Erl.

Note: The mean packet delay T can be obtained by
Random variable X > PGF X(z) applying the Little theorem to the whole

Random variable -X 2 PGF X(z1) queuing system: T = N/A
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Thank you!

giovanni.giambene@gmail.com
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