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In the Past...

In the world of telephony, traffic modeling was the basis of
initial analytical methods for performance evaluation:

Poisson arrival process

Exponentially distributed call (service) duration.

The strength of these types of traffic models is the

memoryless property of the exponential distribution
and the possibility to solve queues by means of
Markov chains (M/M/... queues).

Queuing literature was based on these assumptions that allowed a
very successful design of telephone networks.
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The Initial Discovery

In 1989, W. E. Leland and D. V. Wilson begun taking high-resolution
traffic traces at Bellcore US. New phenomena were highlighted on data
traffic:

Highly bursty traffic;
Burstiness on multiple time scales: burstiness remains after
aggregation on several time scales.

If we plot the number of packets arrived per time interval as a function
of time, then the plot looks “the same”, regardless of the size of
the interval we choose (fractal property).

Heavy-tailed distributions of file sizes and corresponding
transmission times (~ infinite variance or in any case very high
values of the variance).
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Fractals

A fractal is a rough or
fragmented geometric
shape that can be split
into parts, each of which
is (at least approximately)
a reduced-size copy of
the whole.

The traffic in the
network can have
fractal characteristics
in relation to time: as
we aggregate the traffic

on larger time scales, we : e .
g ! obtained with iterations and

achieve the same traffic tends to the snowflake fractal
profile. curve.
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The Koch curve (1904) is



Example of Traffic with
Fractal Property

The bits generated as a function of time on 1 s time basis, X.
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Example of Traffic with
Fractal Property

The bits generated as a function of time on 5 s time basis, X(),
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Example of Traffic with
Fractal Property

The bits generated as a function of time on 10 s time basis,

X(10),
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Example of Traffic with
Fractal Property

The bits generated as a function of time on 20 s time basis,

X(20),
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Important Literature on Self-
Similar Traffic

W. E. Leland, M. Taqqu, W. Willinger, D. Wilson, “*On the Self-Similar Nature of Ethernet Traffic”,
IEEE/ACM Trans. Networking, 1994.

V. Paxson, S. Floyd, “"Wide-Area Traffic: The Failure of Poisson Modeling”, IEEE/ACM Trans.
Networking, 1995.

M. Crovella, A. Bestavros, “Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes”,
IEEE/ACM Trans. Networking, 1997.

W. Willinger, M. S. Taqqu, R. Sherman, D. V. Wilson, “Self-Similarity Through High-Variability:
Statistical Analysis of Ethernet LAN Traffic at the Source Level”, IEEE/ACM Trans. Networking, Vol. 5,
No. 1, pp. 71-86,1997.
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Definitions

Let us consider a stochastic time series X = (X;; t = 1, 2,
3, ...) representing the amount of data generated in
consecutive time intervals of equal size.

If X, is a second-order stationary process, then the mean E(X,)
= p and the variance Var(X,) = 02 are time-independent,
and the autocorrelation depends only on the lag k between the
instants t+k and t as:

(k)= E[(X,., —Ai)(xt - )] Note: r(0) = 1

We define the m-aggregated series X(M = (X (M: n =1, 2, 3,
...) by averaging the original series X over non-overlapping

blocks of size m:

X|£m) _ x(k—l)m ot ka—l

m
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Definitions (cont’d)

Positive correlation in a process: big observation
usually followed by another big observation, or small
observation followed by small observation.

Traffic traces showed strong positive correlations on a
broad range of timescales.

Negative correlation in a process: big observation usually
followed by small, or small by big.

There is no correlation in a process if
observations are unrelated.

This is the case of a Poisson process that is known to be a
memoryless process.
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Historical Details

Harold E. Hurst was a hydrologist who began working on
the Nile river dam project in about 1907.

He spent 40 years studying almost 800 years of records
of Nile river.

Hurst observed that the records of flow or levels at the Roda
gauge, near Cairo, did not vary randomly, but showed series of
low-flow and high-flow over years.

His problem was: How much discharge could be set, such that
the Nile reservoir never overflowed or emptied ?

The Hurst parameter H is used to characterize the
fractal property of a process, in our case the
traffic flow.
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Long-Range Dependent Traffic:
Definition and Characteristics

Self-Similarity (SS)

X is self-similar if X and mi-H XM have the same variance and autocorrelation. H is
the Hurst parameter. This is the fractal property of the traffic. The original
traffic trace and its m-aggregations have the same bursty profile.

Long-Range Dependency (LRD)

>r(k) = «, i.e., autocorrelation is not summable [if r(k) < oo, the process
has a short-range dependence].

Its autocorrelation r(k) ~k=® as k — « (with 0 < B < 1), which means the process
follows a power law, rather than exponential decaying.

An SS process is LRD if 0.5 < H < 1 with B = 2(1-H): self-similar processes
are the simplest way to obtain LRD processes.

The degree of SS and LRD (autocorrelation) increases as H - 1. Whereas, a H
value of 0.5 indicates the absence of long-range dependence (short
range dependent processes as well as pure random processes have H =
0.5).

Heavy-tailed distributions are involved in generating LRD traffic.
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Graphical Tests for Self-
Similarity

There are different ways to graphically test the SS
characteristics of a traffic trace. The method we consider
here is the variance-time plot:

Rely on slowly-decaying variance of self-similar series.

The variance of X(™) s plotted versus m on a log-log plot

A slope —B greater than —1 is indicative of SS (and LRD): -3 = 2(H —
1) > -1
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Variance-Time Plot: Slope
Yields the Hurst Parameter
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Autocorrelation Function and
LRD Property

+1

Typical behavior of a long-range-
dependent process r(k) ~ kP
(0<p<1).

Typical behavior of a short-range
dependent process: r(k) has

a rapid decay to 0 so that
it is summabile.

r(k)

° lag k 100
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Key Concepts for LRD Traffic

Heavy tails in the file size entail high variance in the
transmission times.

High variances of transmission times entail self-
similarity and long-range dependent behavior at the
session level and traffic burstiness on multiple scales of
aggregation.

Traffic burstiness causes higher queuing delays in the

nodes of the networks (see the next example on the
impact of H on the queue behavior).
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Poisson vs. Self-Similar

A Poisson process

appears bursty when observed on a fine time scale;

flattens when aggregated on a coarse time scale.

A self-similar (fractal) process

When aggregated over wide time scales (i.e., considering X(™)
for increasing m values), this traffic maintains its bursty profile
(shaping is not effective in smoothing this traffic; a too long time is
needed to reach the regime condition). This is different from a

Poisson process where the aggregation of traffic leads to an
almost-constant profile.

For emerging future networks, the Poisson model fails to capture
the traffic characteristics.
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Characteristics of Network
Traffic

LAN, ATM, TCP/IP, 3G core network, and video VBR
traffics are both SS and LRD.

The analysis of Ethernet traffic in terms of packets/time
unit has shown that H is between 0.8 and 0.95.

Isolated voice sources are, on the contrary, well
described by fluid-flow ON-OFF Markov models (short-
range dependent traffic).

The greater H, the longer the traffic correlation
degree (traffic peaks last for longer intervals) and
the worse the queuing performance.
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SS Traffic and Queue
Analysis

Three probability distributions play an important role in modeling SS
traffic characteristics, such as Pareto, Lognormal, and Weibull.
These distributions are heavy-tailed.

If we like to analyze Internet congestion using queuing theory, then
we have to deal with the Pareto, Lognormal, and Weibull
distributions.

Many of the available results from queuing theory require
the existence of the Laplace transform of the underlying
interarrival or service time distributions.

Pareto, Lognormal, and Weibull distributions do not have
closed-form expressions for their Laplace transforms. This
entails some problems in applying the results of the
classical queuing theory.
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The Impact of H on Queue
Performance

The queue length distribution
Has an exponential decrease with traditional Poisson traffic (H = 0.5);

Decreases much more slowly with SS traffic: queue length distributions
have SS and LRD characteristics.

The network could have a bad performance if we do not take
SS&LRD traffic characteristics into due account in the design phase.
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Short-Range-
Dependent Traffic
Models

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Web Traffic Characteristics

As for Web traffic, we have to consider that it uses HTTP (Hyper Text
Transfer Protocol) over TCP (Transmission Control Protocol).

It is complicated to use models or real traffic traces for TCP-based traffic,
since they should account for the feedback nature of TCP with the
related round trip time.

To overcome these difficulties, the Markovian model in the next slide has

been proposed (ETSI, 3GPP) to describe the arrival process of IP packets
due to Web downloading traffic.

For a more recent model for Web traffic (HTTP traffic), we can consider the
PackMime-HTTP model that has been developed in the ns-2 simulation
environment. This bursty traffic generator is characterized by a single
parameter that represents the connection arrival rate per HTTP source
cloud. Web site:
http://www.cs.odu.edu/~mweigle/research/netsim/packmime-nsdoc.pdf

Recent statistics on the Web traffic (2010) are avaiable at the following
Web site: https://developers.google.com/speed/articles/web-metrics
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Web Traffic Characteristics

As for Web traffic, we have to consider that it uses HTTP (Hyper Text
Transfer Protocol) over TCP (Transmission Control Protocol).

It is complicated to use models or real traffic traces for TCP-based traffic,
since they should account for the feedback nature of TCP with the

related round trip.time

To overcome these
been proposed (ET]
due to Web downlg

For a more recent 1
PackMime-HTTP
environment. This |
parameter that repi

cloud. Web site:

According to the data of year 2010, the
average size of a Web page is 320 kB, the
average number of objects (gets) per
Web page is 44.5, the average number of
hosts to connect to retrieve objects when
accessing a Web page is 7.

http://www.cs.odu.edu/~mwerse <n/netsim/packmime-nsdoc.pdr

Recent statistics on the Web traffic (2010) are avaiable at the following
Web site: https://developers.google.com/speed/articles/web-metrics
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Web Downloading Traffic
Model

Web traffic is generated according to an ON-OFF Markov
model (UMTS 30.03): (Mope)

In the activity phase (ACT) traffic is generated as:

A geometrically-distributed number of datagrams
(mean myy = 25) is produced.

Exponentially distributed interarrival times, mean mpy

. (MgMpa)
= 1/(2q) s; parameter q allows modulating the "
burstiness of the traffic source.
Each datagram has a truncated Pareto distribution in 102 |

bytes (mean length L, pkts).

In the inactivity phase (IDLE) no traffic is
produced: the time spent in this state is
exponentially distributed with mean mp,,. (= 4 s).

This is a 2-state MMPP traffic
source of IP datagrams. ¢ i ¥

A. Andreadis, G. Benelli, G. Giambene, B. Marzucchi, "A Performance Evaluation Approach for GSM-based Information Services",
IEEE Transactions on Vehicular Technology, Vol. 52 , No. 2, pp. 313-325, March 2003.

Pareto distr.
Geometric distr.

Probabllity mass funct.
g
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Fluid-Flow Traffic Model for
Video Sources

Video sources (real-time, conversational or streaming class) generate traffic
according to a fluid-flow model with bit-rate modulated by a discrete-time
Markov chain. A time slot is used as the basis of the traffic generation.

A video source can be obtained as the superposition of M ON-OFF
minisources (a minisource in the ON state produces a constant bit-rate
equal to A).

MB 1-a-(M-1)B  (M-1)B B

a 2a Ma
The time interval spent in ON (OFF) 1 2
state by a minisource is geometrically- a= o b= q

distributed with mean p (q).
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Fluid-Flow Traffic Model for
Video Sources (cont’d)

Each mini-source in ON produces a constant bit-rate A [bit/s]:

mean bit-rate standard deviation of
of a video source ( j the bit-rate of a video source

We have assumed: y/c = 16.

One IP-video packet is generated every 10 - 20 ms (video
frame).

M = 10 or even greater.

All these parameters can be derived through a fitting process
with a real video trace (according to different possible standards
and formats).

0. Casals, C. Blondia, “Performance Analysis of Statistical Multiplexing of VBR Sources”, in Proc. of INFOCOM92, pp. 828-838, 1992.
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Long-Range-
Dependent Traffic
Model
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M/Pareto Model

A typical SS and LRD traffic source is given by the
M/Pareto model.

M/Pareto traffic is generated as Poisson arrivals (mean rate 1) of
overlapping bursts.

The arrival of packets during a burst is constant for its duration
with rate r packets/s.

The duration of each burst is a random variable, according to a
Pareto distribution (parameter y) with finite mean and infinite
variance in order to have heavy tails.

This traffic model corresponds to an M/G/x
system (Poisson arrivals of bursts/General burst
duration/infinite bursts can be simultaneously
present).
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M/Pareto Model (cont’d)

Let & denote the mean arrival rate of bursts according to a Poisson process:

(A"
n!

e—/lt

Prob{A(t)=n}=

The Pareto distribution has complementary distribution as:

X\’ S5
Prob{X > x}=45 ) X=
1 otherwise

if 0 <y < 2 (and & > 0), the Pareto distribution is heavy-tailed and we need to have
1 <y < 2 in order for this traffic source to generate self-similar traffic with Hurst

parameter in (0.5, 1).

The mean of X is 8y/(y-1) s and its variance is infinite.

The mean number of packets within one burst is rdy/(y-1).

The mean traffic produced by an M/Pareto source is rdyL/(y—1) in packets/s.
The M/Pareto model generates SS traffic with Hurst parameter H = (3—y)/2.
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Final Comments on Traffic
Models

FTP session arrivals are well modeled by Poisson
Processes.

A number of WAN traffic characteristics are well modeled
by heavy-tailed distributions.

The packet arrival process for typical Internet
applications as well as the aggregate Internet traffic is
self-similar.

T. B. Fowler. “A Short Tutorial on Fractals and Internet Traffic”, 7elecommunication Review, Vol. 10, 1999.
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Thank you!

giovanni.giambene@gmail.com
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