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Modeling a Network: 

Network of Queues 
 

 



Introduction 

z The interest is in considering networks where nodes 
exchange traffic.   

 

y Open networks, where traffic can be received and sent outside 
the network. 
 

y Closed networks, where the traffic cannot be exchanged with 
external nodes. Closed networks are more related to the 
modeling of digital computing systems.  

 

z Our interest is on open networks that are well suited 
to model IP networks, where different nodes 
(modeled by means of queues) exchange data traffic 
in the form of variable-length messages.  

 

 
© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 



Store-and-Forward Networks 

and Model as Net. of Queues 

z The network is formed of nodes and links. 
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forward nodes) 

Network 



Model of Open Network of 

Queues 

z We consider a model, where the generic i-th node 
receives input traffic with mean rate li from outside 
the network and receives also traffic routed from other 
nodes of the network that contribute a total mean input 
rate indicated by Li. 
 

z Each arrival corresponds to a message with (in general) 
a random length.  
 

z The total arrival process at the i-th node is randomly 
split among the different outgoing links from the i-th 
node.  
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Model of Open Network of 

Queues (cont’d) 

z Each link is modeled by a buffer and a transmission 
line (i.e., one server) with a suitable capacity.  

 

y We consider queues with infinite rooms (i.e., no loss 
phenomena). 

 

z Let qij denote the split probability for the total traffic of 
the i-th node to be routed to the j-th node of the 
network;  1-Sqij denotes the probability that the 
traffic leaves the network at the i-th node.  

 

y Under stability assumptions, the traffic carried by the generic link 
from node i to node j is Liqij 
 

y qii can also be different from 0 if there is traffic looped back onto 
the same node. This modifies the burstiness characteristics of the 
input traffic. 
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Model of Open Network of 

Queues (cont’d) 

z In our generic network model, we consider the 
set of nodes labeled with numbers i from 1 
to N and the related set of links (modeled by 
queues) labeled with numbers k from 1 to 
L.  
 

z We can study this network at the level of 
nodes or at the level of links. 
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Model of Open Network of 

Queues (cont’d) 

z The generic i-th node can be described as depicted below. 
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This sum can be lower 
than 1, because there 
can be traffic that 
leaves the network at 
the node. 

Moreover qii can be 
greater than 0 if there 
is a traffic loop at the 
node. 



Characteristics of the Arrival 

Process 

z To study the characteristics of the arrival process at a queue we can 
refer to the Index of Dispersion for Counts (IDC), using to the number 
of arrivals in a given interval t, N(t). 
 

z IDC is the ratio between the variance of N(t) and the mean of 
N(t) referring to the same interval: 
 

 

 

 

 

 

 

 

z For a Poisson process IDC(t)  1,  t. An arrival process is peaked if 

IDC (t)> 1; an arrival process is smoothed if IDC(t) < 1. When IDC 
reduces, arrivals are more regularly spaced in time. The limiting case is 
when IDC = 0: the arrival process is deterministic. Conversely, when 
IDC > 1, arrivals tend to occur in bursts, thus entailing problems in 
terms of congestion and delays at the queues. 
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The Case of Poisson Input 

Traffic 

z In the case of Poisson arrivals of messages with mean rates li 
(uncorrelated from node to node), the total arrival process for 
the different nodes may lose the Poisson characteristic if:  

 

 

y There are traffic feedback loops causing a peaked arrival 
process. A network that allows (does not allow) feedback loops is 
cyclic (acyclic).  

 

x Acyclicity means that one message does not cross a network node 
more than once in its path from source to destination (i.e., no 
routing loops). 

 

 

y Queues with finite rooms drop arrivals exceeding their capacity; in 
this case, the circulating traffic is smoothed.  However, in this 
study we will not consider queues with finite rooms and 
packet losses. 
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Correlation in the Behavior 

of the Queues 

z There is a strong correlation in the behaviors of 
the queues in the network and this is due to: 

 

 

y The correlation of the arrival process and the service process 
due to feedback loops (cyclic network).  
 

 

y The correlation in the behavior of the different nodes due to the 
fact that the same message is serviced at the different 
nodes crossed in the network along the path from source to 
destination. 
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Elementary Network of 

Queues with Feedback 

 

 

 

 

 

 

 

 

z The total input arrival process at the queue is bursty (not Poisson), 
with IDC greater than 1. 
 

z This elementary network of queues will be studied at the end of this 
lesson. 
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Poisson arrival 

process,  l L 

p 

-p 

In this feedback 
queue, input 
and output 
processes are 
continuous time 
(we do not 
consider slots 
as done in 
previous 
exercises). 

Let us assume that the 
mean service time << 1/l

Due to the feedback, these arrivals 
are spaced by the message service 
times. 



Traffic Rate Equations for a 

Network of Queues 

z Hypotheses: 
 

1. Stable queues 
 

2. No packet loss (i.e., infinite rooms in the queues) 
 

3. Stochastic routing at the nodes. 
 

The network can be cyclic or acyclic. 
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In order to write the following traffic 
rate equations, we work at the level of 
nodes (not queues / links). 



Traffic Rate Equations for a 

Network of Queues (cont’d) 

z Thesis: We can write the following balance for the total input 
traffic with rate Li for the i-th node (i.e., traffic rate equation for 
the i-th node): 

 

 

 
 

z This is a linear system of N equations in N unknown terms Li 
(input arrival rates from outside the network, li, and split 
probabilities qij are considered to be known). 
 

z Note that this system can be solved under general assumptions 
(it is not requested that the input traffic be Poisson). 
 

z Basically: one traffic rate equation can be written per each 
sum point in the network of queues. 
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Little Formula applied to the 

Whole Network 

z The Little theorem can be applied not only to a queue, but 
also to the whole network of queues.  
 

z In this case, we refer to the network modeled at the level of 
links that are queues in our model (k = 1, …, L). 
 

z Let k denote the mean number of messages in the k-th queue: k 
= k (rk), where rk = Liqij/mk and mk is the service rate of the queue. 
Let T denote the mean message delay from input to output 
of the network.  
 

z The Little theorem applied to the whole network can be 
expressed as 

 

 where                                            (ltot denotes the total mean 
arrival rate from outside the network). 
 

z We need to derive k (rk), as shown in the next slides. 
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Tandem Queues 
 

 



Burke Theorem for Tandem 

Queues 

z We study two tandem queues (or, in general, a network of tandem 
queues).  

 

 
 

 

 
 

z Hypotheses: 
 

1. Tandem queues: all messages leaving a queue are at the input of the 
next queue (the service completion instant for a queue is the message 
arrival instant at the next queue) 
 

2. Same hypotheses of the traffic rate equations (stability, no loss) 
 

3. Poisson arrival process from outside 
 

4. Exponentially distributed service times. 
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Burke Theorem for Tandem 

Queues (cont’d) 

z Under the stability assumption, the first queue admits an M/M/S 
model (Poisson arrivals/exponentially-distributed service times/S 
servers, infinite rooms). 

 

 

 
 
 

z Under stability conditions for the first queue, we can state that the mean output 
rate from the first queue is l, even without considering the specific characteristics 
of the first queue. 

 

z It is possible to prove that the whole output process from 
the first M/M/S queue is Poisson with mean rate l. 

 

y The time intervals between service completion instants are exponentially 
distributed with mean rate l. 
 

y In the following slide, we provide the proof in the case S = 1. 
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Burke Theorem for Tandem 

Queues (cont’d) 

z Let us consider a generic M/G/1 queue where g(t) denotes the 
service time probability density function [let G(s) denote the related 
Laplace transform]. Let P(s) denote the Laplace transform of the density 
function of the interarrival times between subsequent service completion 
events.  
 

z We determine P(s) by considering two cases: (i) non-empty 
queue; (ii) empty queue. 

 

y Derivation of P(s | non-empty queue): In this case, times between completion events 
have a probability density function g(t) with Laplace transform G(s): P(s | non-empty queue) 
 G(s). 
 

y Derivation of P(s | empty queue): in this case, we have to wait for the next arrival time 
that is characterized by an exponentially-distributed time (with mean rate l). Hence, the 
time to the next completion is the sum of two independent contributions: an interarrival time 
and a service time. In the Laplace domain, we have that P(s | empty queue) is given by the 
product of two contributions: P(s | empty queue)  [l/(l + s)]G(s). 

 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

     

g(t)  g(t)  exp(l)  g(t)  

 

 

P0 1-P0 



Burke Theorem for Tandem 

Queues (cont’d) 

z We remove the conditioning on P(s) by means of the probability of an 
empty and of a non-empty M/G/1 queue, P0 and 1 – P0, respectively. We 
know that P0 = 1-lE[X], where E[X] is the mean value related to the 
density function g(t). 

 

 

 
 

z M/M/1 case: g(t) is exponentially-distributed with mean rate m, G(s) = 
m/(m+s) and E[X] = 1/m. Substituting these expressions in P(s), we have: 
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The completion process (output process) is 
Poisson with mean rate l [QED]. 
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Feedforward Networks 
 

 



Feedforward Networks 

z Feedforward networks are characterized as: same 
hypotheses of traffic rate equations + Poisson 
arrivals + exponentially distributed service times 
+ acyclicity. 
 

 

 

z The Poisson characteristic of the input processes is 
maintained within the network nodes using: (i) the 
random split model for distributing the traffic of a node 
on the different output links; (ii) the Burke theorem; 
(iii) independent Poisson input processes at the 
nodes; (iv) the sum of independent Poisson processes. 
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Feedforward Networks 

(cont’d) 

z Feedforward network example: 
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Feedforward Networks 

(cont’d) 

z For the sake of simplicity, let us consider from now on just 
one server per queue in the network. 
 

z Each queue is of the M/M/1 type with input traffic given by 
the solution of the traffic rate system. The joint state 
probability has a product form: the queues are independent (the 
number of messages in the queues are independent). 

 

P(n1, n2, …, nN) = P(n1)× P(n2)× … P(nN),  where P(ni) = (1-ri)ri
ni 

 

z Note that the presence of feedback paths in the networks destroys 
the Poisson characteristics of the flows and the Burke theorem 
cannot be applied. Nevertheless, the product form still holds 
under the assumptions that will be considered in the next 
slides for the Jackson theorem. 
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Cyclic/Acyclic Networks 

and the Jackson 

Theorem 
 

 



Jackson Theorem for 

Networks of Queues  

Hypotheses: 

1. An open network with independent Poisson arrivals of messages at each node 

2. Queues modeling the transmissions on links with infinite rooms (no packet loss), 
stable behavior, and single server 

3. Exponential service times at the nodes with FIFO discipline 

4.  Arrival process and service time process are independent 

5. Stochastic routing whereby the next node, after service completion, is chosen 
independently from message to message. 

Thesis: 

z The joint probability distribution of queue occupancies has a product form with 
the product of distributions of individual M/M/1 queues:  

 P(n1, n2, n3,…, nM) = (1-ρ1)ρ1
n1(1-ρ2)ρ2

n2(1-ρ3)ρ3
n3…(1-ρM)ρM

nM. 

z The mean number of requests in each queue and the related mean delay are 
according to the classical M/M/1 formula (Poisson processes in the network). 
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The Jackson network is 
an abstract concept! 
Especially assumption #4 
can be strong in a real 
network. 



Kleinrock Independence 

Assumption for Store-and-Forward Networks 

z In order to apply the Jackson theorem to store-and-forward 
networks, we consider to add the independence assumption, 
which was guessed by Kleinrock (1964).  

 

y In the queuing networks we have dealt with up to this point, we considered that 
the service times are associated with the servers and that servers are 
independent from queue to queue. In store-and-forward (real) networks, this 
is not possible since the service time depends on the length of the message, which 
is the same from queue to queue. This introduces dependencies between 
the arrival process and the service process. Feedback loops are a special 
case of this. 
 

y Independence assumption: the service time of a message is chosen 
independently each time it passes through a node. This permits to 
reapply assumption #4 of Jackson networks also to real networks. 
 

y This assumption could be strong and is more acceptable when there is a 
sufficient mix of different sources in the network and the network has a high 
number of nodes. This assumption has been verified by means of simulations. 
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The Kleinrock assumption operates “as if” we 
could remove feedback loops in the 
network of queues so that queues are 
decoupled and correlations in the 
network are removed! Then, it is as if the 
traffic flows in the network were Poisson!  



Kleinrock Application of the 

Jackson Th. to Store-and-Forward Networks 

Hypotheses: 
 

1. An open network with independent Poisson arrivals at each node. 

2. Single-server queues modeling the transmissions on links with infinite 
rooms, stable behavior, and single server. 

3. Exponential service times at the nodes with FIFO discipline. 

4.  Kleinrock independence assumption. 

5. Stochastic routing at each node. 
 

Thesis: Jackson theorem can be applied and then 

z Each queue behaves as it was M/M/1 (a product-form expression 
is valid for the joint state probability distribution). 

z Of course, the node model can be adopted and traffic rate equations 
are used to determine the total arrival rates of messages Li at the 
different nodes; we know the arrival rates Liqij on the different links. 

z The mean total delay T to cross the network can be derived by means of 
the Little theorem, as explained in the following slides. 
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Kleinrock Application of 

Jackson Theorem (cont’d) 

 

 

z Let us denote: 


y mk the mean completion rate for the k-th link 


y ak the mean arrival rate for the k-th link (if this link connects, let us 
say, node i to node j, ak =Liqij), 
 

y dk the mean delay for the queue of the k-th link 
 

y tk the propagation delay on the transmission line of the k-th link. 
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Kleinrock Application of 

Jackson Theorem (cont’d) 

z Little theorem applied to the k-th link (including the 
propagation delay in the mean delay on the link) to express the 
mean number of messages on this link: 
 

k = ak(dk + tk) 
 

z Little theorem applied the whole network to derive the mean 
(total, input-output) message delay T: 

 

 

 where dk can be expressed by considering the M/M/1 
characterization of the queue (Jackson theorem): 
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Analysis of a Queue with 

Feedback 

z We consider a special case for queuing networks: a queue with 
one server where a request that completes its service can 
reenter the queue with probability p with no delay. The 
arrival of messages from outside is according to a Poisson process 
with mean rate l. The message service time is exponentially-
distributed with mean rate m. The requests that complete the 
service have a form of stochastic routing according to which they 
may be fed back to the queue (cyclic network). 
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Analysis of a Queue with 

Feedback 

z We consider a special case for queuing networks: a queue with 
one server where a request that completes its service can 
reenter the queue with probability p with no delay. The 
arrival of messages from outside is according to a Poisson process 
with mean rate l. The message service time is exponentially-
distributed with mean rate m. The requests that complete the 
service have a form of stochastic routing according to which they 
may be fed back to the queue (cyclic network). 
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The Kleinrock assumption 
applied here is critical 
since the network is so 
small! There is a strong 
correlation between 
arrival process and 
service process. 

The Poisson characterization 
for the total input process is 
also heavy in this case.  

We will solve this problem in three different ways using either the M/G/1 theory 
or the Jackson theorem with the Kleinrock assumption. 



Feedback Queue Studied 

with the Jackson Theorem 

z We can apply the traffic rate equation to the system (= queue with 
stochastic feedback) to express the total mean arrival rate L (= 
mean output rate from the queue under stability assumption) as: 

 

 

z Under the Kleinrock assumption (the service time of a message is 
exponentially distributed and independently regenerated each time 
the message is fed back to the queue), we apply the Jackson 
theorem so that the queue admits an M/M/1 model.  

 

y The queue is studied as if its input traffic was Poisson (however, the input traffic 
is not Poisson, but peaked, bursty) 
 

y The mean delay d experienced by a message entering the queue is (M/M/1 
model): 
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Queue stability is assured if L/m < 1 Erlang 
(ergodicity condition). 



Feedback Queue Studied 

with the Jackson Theorem 

z From the Little theorem applied to the whole system we have: 

 

 

 

 

 

z This mean message delay T can be explained as follows:  
 

y A message entering the system from outside crosses the queue (due to the 
stochastic feedback) for a number of times with modified geometric distribution 
and mean value equal to 1/(1-p).  
 

y Each time the message goes through the queue it experiences a mean M/M/1 
delay that is equal to (1-p)/[m(1-p)-l].  
 

y The product of the above terms yields the mean message delay T. 
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Feedback Queue Studied 

with the Jackson Theorem 

z From the Little theorem applied to the whole system we have: 

 

 

 

 

 

z This mean message delay T can be explained as follows:  
 

y A message entering the system from outside crosses the queue (due to the 
stochastic feedback) for a number of times with modified geometric distribution 
and mean value equal to 1/(1-p).  
 

y Each time the message goes through the queue it experiences a mean M/M/1 
delay that is equal to (1-p)/[m(1-p)-l].  
 

y The product of the above terms yields the mean message delay T. 
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This is again an M/M/1 mean delay term, where each 
request (message) has a service time with exponential 
distribution and mean rate m(1-p) and that the arrival 
process is Poisson with mean rate l.  

Let us recall (see Section 4.3.2.2 of the book) that the 
composition of exponential (mean rate m) and modified 
geometric (parameter 1-p) random variables is still 
exponentially distributed with mean rate m(1-p). 

 



Feedback Queue Studied 

with M/G/1 Theory 

z After a message transmission, the message is instantaneously fed 
back to the queue with probability p. We can consider as if the 
message was put again at the head of the queue, since this does 
not alter the mean message delay: under the insensitivity 
property, different service disciplines yield the same mean 
message delay. 
 

z We can determine the mean message delay as an application of the 
M/G/1 theory, imbedding the study at the instants when messages 
leave the system. We can use the Pollaczek-Kinchin formula as: 

 

 
 where Y denotes the total (equivalent) ‘message service 

time’, characterized as detailed in the next slide. 
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Feedback Queue Studied 

with M/G/1 Theory (cont’d) 

z Due to the feedback, the same message is transmitted N times 
before it leaves the queuing system. Let Xi denote the service time 
of a message at its i-th pass through the queue. Then, the 
equivalent service time Y of a message is obtained as follows: 
 

 

z In a real system, we could expect that the service time of a 
message is the same at each pass through the queue. Hence, 
Xi  X and Y = N × X. Considering that N and X are independent 
random variables, we can easily prove that  
y E[Y] = E[n] × E[X] = 1/[m(1 –  p)]  

y E[Y2] = E[n2] × E[X2] = 2(1 + p)/[m2(1 –  p)2] 
 

z Therefore, applying the Pollaczek-Kinchin formula, we obtain with 
this approach an exact result for the mean message delay T 
as: 
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Feedback Queue and M/G/1 

Theory + Kleinrock Assumpt. 

z Instead, using the Kleinrock assumption, the message service 
time is ‘restarted’ at each pass through the queue so that in               
Xi are iid, exponentially distributed with mean rate m and N has a 
modified geometric distribution with parameter (1–p).  

z Y is now given by the composition of an exponential 
distribution and a modified geometric distribution; hence, Y 
is exponentially distributed with mean rate m(1– p). Therefore, 
the Pollaczek-Kinchin formula simplifies, because the whole system 
behaves as an M/M/1 queue. The mean message delay T 
becomes: 

 

z It is quite interesting to note that this is the same result obtained by 
applying the Jackson theorem with the Kleinrock assumption. This 
results is approximated. 
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Final Considerations on 

Feedback Queue Analysis 

z We can thus estimate the approximation entailed by the Kleinrock 
assumption in this case: 
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Of course, the stability limits are the same in both cases, but the mean delays  

are not the same. 



Network Planning Issues 

z Network planning and dimensioning with QoS support is a process 
involving the following steps:  

 

y Identification of network node location;  
 

y Definition of the link topology;  
 

y Adoption of a routing strategy accounting for external input traffics;  
 

y Capacity allocation to the links so that suitable QoS metrics (end-to-end delay, 
jitter, and packet loss rate) are fulfilled.  

 

z These steps are interrelated. 
y Capacity allocation to links depends on the traffic loads on the links and, then, 

on traffic routing. However, traffic routing can also be adapted to account for 
traffic bottlenecks, which result from capacity shortage on some links.  

 

z Network planning is a very complex optimization process and the 
analysis carried out here provides a useful tool to allocate 
the capacity to links in the network once nodes, input traffic 
and routing are defined. 
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Mixed Exercises on the 

Last Part of the Course 
 

 



Exercise #1 

z With reference to the queuing network below, we have to determine the 
stability conditions for the different queues and the mean delay experienced 
by a message from input to output, considering: 

 

 

y Input traffic flows at the different queues from outside are Poisson independent with mean 
rates l1 and l2 for queues #1 and #2, respectively. 
 

 

y The message service times are independent for the two queues and exponentially 
distributed with the same mean rate m (Kleinrock assumption). 
 

 

y Queues have an infinite capacity. 
 

 

y At the output of queue #2 there is a random splitting: with probability p (q) the arriving 
message is fed back to queue #1 (queue #2). 
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Solution of Exercise #1 

z Let L1 and L2 denote the mean total arrival rates for queues #1 and 
#2, respectively. We have the situation below for the mean rates in 
the network: 

 

 

 

 

 
z Arrival rates L1 and L2 can be determined by writing traffic rate 

equations for each sum point in the network: 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

       

 

m 

+ 
l 

pL 

  

(1- p -q)L 

 

Queue #1 

m 

Queue #2 

+ 

q L 

 

l 

L L L 

 

 













--


L

--

-
L






LLL

LL

qp

qp

pp

q

p

1

1

1

21
2

12
1

2122

211

ll

ll

l

l



Solution (cont’d) 

z We apply the Kleinrock assumption. Then, the conditions of 
the Jackson theorem are fulfilled for our network: queue #1 
can be studied by means of an M/M/1 model with mean arrival rate 
L1 and queue #2 can be studied by means of an M/M/1 model with 
mean arrival rate L2. 
 

z Queues #1 and #2 are stable under the following conditions: r1 = 
L1/m < 1 Erlang and r2 = L2/m < 1 Erlang. 
 

z The mean number of messages in queues #1 and #2 can be 
obtained as functions of r1 and r2 as: 

 

z The mean message delay from input to output, T, can be obtained 
by applying the Little theorem to the whole system: 
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Exercise #2 

z Let us consider an FTP file transfer that is based on 
TCP Tahoe. We are requested to plot the congestion 
window (cwnd) behavior has a function of time 
[expressed in RTT units] until 16 RTTs, under the 
following conditions: 

 

 

y Bottleneck buffer size B = 15 pkts 
 

y Sockets buffers much larger than B+BDP 
 

y Bandwidth-Delay Product BDP = 15 pkts 
 

y Initial ssthresh value = 16 packets 
 

y All the packets of a cwnd are transmitted altogether and their ACKs are 
received altogether in an RTT time (model). 

 

How many packets have been transmitted until time = 5 RTTs ? 
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Exercise #2 

z Let us consider an FTP file transfer that is based on 
TCP Tahoe. We are requested to plot the congestion 
window (cwnd) behavior has a function of time 
[expressed in RTT units] until 16 RTTs, under the 
following conditions: 

 

 

y Bottleneck buffer size B = 15 pkts 
 

y Sockets buffers much larger than B+BDP 
 

y Bandwidth-Delay Product BDP = 15 pkts 
 

y Initial ssthresh value = 16 packets (this is not the default value) 
 

y All the packets of a cwnd are transmitted altogether and their ACKs are 
received altogether in an RTT time (model). 

 

How many packets have been transmitted until time = 5 RTTs ? 
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B = BDP is the optimal 
setting for the 
bottleneck link buffer 
that permits to fully 
exploit the capacity of 
the bottleneck link. 



Solution of Exercise #2 

 

z The cwnd behavior has first a slow start phase with exponential increase and after 
(i.e., when cwnd > ssthresh) a congestion avoidance phase with linear behavior. 
There is no cwnd drop event in the interval of observation since the maximum 
allowed cwnd value is B+DBP = 30 pkts. We have the same behavior of cwnd in this 
initial phase for both TCP Tahoe and TCP NewReno. 
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In 5 RTTs, the number 

of transmitted TCP packets is determined  

as the cumulative sum of cwnd values  

in packets at the 1st, 2nd, …, and 5th  RTT  as 

1+2+4+8+16  = 31 pkts 



Exercise #3 

z Let us consider an FTP data transfer (TCP ‘elephant’ flow), referring 
to the network model in the next Figure. We adopt a scenario with 
IP packets (MTU) of 1500 bytes, with Information Bit-Rate (IBR) of 
the bottleneck link equal to 600 kbit/s, and with physical Round Trip 
Time (RTT) equal to 0.5 s (GEO satellite scenario). It is requested to 
derive the Bandwidth-Delay Product (BDP) and to plot the behaviors 
of both congestion window (cwnd) and slow start threshold 
(ssthresh) up to the time of 25 RTTs for both TCP Tahoe and TCP 
NewReno, under the following conditions: 

 

 

y Bottleneck link buffer capacity B = 20 pkts; 

y Sockets buffers much bigger than B+BDP; 

y Initial ssthresh value equal to 32 pkts; 

y All the packets of a cwnd are transmitted altogether and their ACKs are 
received altogether in an RTT time (model). 
 

z It is requested to redo the exercise with initial ssthresh = 64 pkts. 
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Solution of Exercise #3 

 

 

 

 

 

 

 

 

z The BDP for the data transfer in this exercise results as: 

 

 
 

z cwnd reaches the maximum value of B+BDP = 45 pkts 
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TCP sender  

Information Bit-Rate, IBR 

TCP receiver 

Round Trip Time, RTT 
Bottleneck link in the 

network 

 

IP layer buffer 

with capacity of B packets 

  

 

pkt
MTU

IBRRTT
BDP 25




RTT is here approximated 

by RTD. 



Solution for Initial ssthresh = 

32 pkts 
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Solution for Initial ssthresh = 

64 pkts 
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Exercise #4 

z Let us consider an IP access network using IntServ as QoS support 
method. In particular the Guaranteed Service is adopted. Let us 
consider that a traffic source (with fluid flow model) accessing the 
network is regulated according to the following token bucket T-
Spec parameters (r, p, b) = (1 kbit/s, 5 kbit/s, 400 bits) [1 token 
= 1 bit]. 

 

z Considering the approach with arrival curve, service curve, and 
departure curve, we have to determine the minimum service 
rate R to guarantee a delay lower than or equal to Dmax = 
100 ms (we refer to a case where the propagation delay is 
negligible with respect to Dmax). 
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Solution of Exercise #4 

z In this study we consider a fluid-flow 
model for the traffic generated by the 
source: 1 token is needed for the 
transmission of 1 bit (no packets); if 
the bucket contains N tokens, N bits 
can be sent at maximum rate p. 
 

z If the bucket is full, new tokens are 
discarded. 
 

z The input traffic to the network has a 
resulting bit-rate with corresponding 
arrival curve a(t). 

 

 

Tokens enter the bucket  
at rate r 

Bucket depth 
b: capacity of 
the bucket 
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transmission 
with rate  p 

Traffic 
source 



Solution (cont’d) 
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Solution (cont’d) 

z It has been proved that the delay D to cross the node 
(modeling the access network) is bounded as D ≤ b/R. Let 
us consider the condition with equality D  b/R. Then, we adopt 
the following formula to determine R: 

 

 
z Moreover, we consider that R has to fulfill the  

 following constraint:  

 

 

z So R = b/Dmax = 4 kbit/s fulfills the constraint and is the minimum 
R value to guarantee a delay lower than Dmax. There is some 
approximation in this, but we consider that this is acceptable. 
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Then we select the  

minimum value for R to  

fulfill Dmax, that is R = 
b/Dmax. 



Solution (cont’d) 

z For the sake of completeness, let us recall that the system is 
characterized by bounded delay (Dmax) and bounded buffer size 
(maximum buffer occupancy Bmax) determined as follows (exact 
formulas): 

 

 

 

 

 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

rR
R

b

rp

Rp

R

b
TtD b 









-

-
- if,*max

rRb
rp

Rp
bRTpTB bb 









-

-
- if,max



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Thank you! 

 

giovanni.giambene@gmail.com 

 


