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Binomial Coefficient 

and Factorial 
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Binomial Coefficient and 

Factorial 

The Matlab® command to compute binomial coefficients is 
 

nchoosek(N,K)  

 

where N and K are non-negative integers.      

 

This is equal to N!/[K!(N-K)!], the number of combinations of N 
things taken K at a time. 

 

Note that factorial values can be computed in Matlab®  by means 
of the Gamma function: 
 

N! = gamma(N+1) 
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Generation of Random 

Variables 
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Linear Congruential Random 

Number Generator X  (0, 1) 

z The Linear Congruential Generator (LCG) represents one of the oldest and 
best-known pseudorandom number generator algorithms. It is easy to 
implement and fast. 
 

z The generator is defined by the recurrence relation: 

 

 

z where Xn is the sequence of pseudorandom values, and 
 

    m, m > 0 is the "modulus" 

    a, 0 < a < m  is the "multiplier" 

    c,  0 ≤ c < m  is the "increment" 

    X0, 0 ≤ X0 < m  is  the "seed" or “initial value“. 
 

z The period of a general LCG is at most m, and for some choices of a it can 
be much smaller than that. If c = 0, the generator is often called a 
multiplicative congruential method. In Matlab®, randn is based on 
multiplicative LCG, where the seed is determined by the clock. 

     

  mcaXX nn mod1 
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Generation of Random 

Variables 

z Use of the statistical toolbox of Matlab®: a lot of 
information can be acquired by typing “help stats”. 
 

z Some random number generators supported: 
 

y rand([1,v_max]) to generate an array of v_max values with 
uniform distribution between 0 and 1; 
 

y randn([1,v_max]) to generate an array of v_max values with 
Gaussian distribution, null mean value, and unitary variance; 
 

y exprnd(ones([1,v_max])/lambda) to generate an array of v_max 
values with exponential distribution and mean value 1/lambda. 
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Histograms 



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Histogram of Random 

Variables 

z Histograms are experimental tools to characterize the probability 
density functions (pdfs) of random variables. Let us consider a 
random variable X defined on real numbers.  
 

z We can divide the real axis in intervals (also called 
‘bins’) with the same size L. Then, we repeat n times the 
experiment characterizing random variable X, recording how 
many times the outcomes fall into a generic interval; let xj 
denote the outcome of the experiment at the j-th trial. We can 
thus show in a bar graph, called histogram, the number of times 
ni that xj falls into the generic i-th bin.  
 

z If the number of occurrences in each interval is divided by the 
total number n of trials we have the relative frequencies fi = 
ni/n.  
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Histogram of Random 

Variables (cont’d) 

z As the size L of the bins in abscissa reduces and the number of 
trials increases (i.e., n  ), the piecewise constant curve 
with horizontal segments of length L and height fi/L 
tends to be more smoothed and approaches the pdf of X. 
 

z There are different methods to determine the size of the bins in 
order to achieve a good smoothed histogram. The rule-of-
thumb by Freedman-Diaconis determines the bin size L 
as a function of the number of trials n as: 

 
 

 where IQR is the interquartile range, obtained as IRQ = Q3-Q1, 
where Q1 is the first and Q3 is the third quartile of the data: Q1 
= PDF-1(0.25) and Q3 = PDF-1(0.75), being PDF-1 the inverse of 
the Probability Distribution Function (PDF). 

      

3
1

2
-

 nIQRL

 



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Histogram of Random 

Variables (cont’d) 

z We have a vector of values assumed by a random variable and we 
need to derive some important measures, such as: mean, 
variance, and the pdf that can be approximated by means of a 
histogram (actually the corresponding piecewise constant curve). 
 

z “mean(.)” and “var(.)” Matlab® commands can be used. Moreover, 
the “hist(.)” function can be used to generate histograms, 
collecting the occurrences of a random variable in each bin. The 
histogram can be plotted by means of the “bar(.)” command of 
Matlab®. For instance, we use the command 

 

N = hist(Y,X) 
 

where X is a vector of the bins and Y is a vector of the random values.  

This command returns the occurrences of Y in the bins with centers 
specified by X. The first bin includes data between - and the first center 
and the last bin includes data between the last center and +. 
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Histogram of Random 

Variables (cont’d) 

     

clear all 

% We consider that the stored vector statis.txt contains the values assumed by the 

% random variable for which we would like to determine the histogram. 

% The values of the random variable are stored in ASCII format in statis.txt. 

% We read the values in statis.txt as follows: 

% load statis 

% However, in the example below we use a random variable ‘statis’ generated by Matlab according to  

% an exponential distribution (alternatives are provided for uniform and normal distributions) with 

% v_max samples 

v_max=1000; 

%statis=randn([1,v_max]); % for a Gaussian random variable with null mean and unitary variance 

%statis=rand([1,v_max]); % for a uniform random variable from 0 to 1  

lambda=2; statis=exprnd(ones([1,v_max])/lambda); % for an exponentially-distributed random  

%variable with mean value 1/lambda 

% 

N=40;  % N this is the number of classes (bins) to be used for the histogram 

%  If the number of samples of the random variable is 1000, N should not be greater than 100 in order  

%  to have a sufficiently-reliable estimate of the frequency of each class. 

histogram.m 
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Histogram of Random 

Variables (cont’d) 

     

[Y,X] = hist(statis,N); % This histogram command saves in Y the number of occurrences of the classes in X 

L=X(2)-X(1); % This is needed to derive the amplitude of each class (all classes have the same bin size) 

tot=sum(Y.*L); 

Z=Y./tot; % Normalization of Y values so that the area below the graph is 1: Z represents a probability density function, pdf 

subplot(211) 

bar(X,Z)  

xlabel('value') 

ylabel('pdf') 

% Determination of the Probability Distribution Function, PDF, as an integral (made on rectangles) of the pdf 

l=length(Z); 

PDF(1)=Z(1)*L; 

for i =2:l 

  PDF(i)=PDF(i-1)+Z(i)*L; 

end 

% As an alternative we could simply use:   PDF=cumsum(Z*L); 

subplot(212) 

plot(X,PDF,'-r') 

xlabel('value') 

ylabel('PDF') 

mean(statis) % Computation of the mean of statis 

var(statis)  % Computation of the variance of statis 
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Histogram of Random 

Variables (cont’d) 

z These are the results (i.e., pdf and PDF) we achieve for the 
exponential distribution with l = 2. 
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Confidence Intervals: 

Reliability of Results 
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Simulations and Random 

Numbers 

z The expression "Monte Carlo (MC) method" is very general.  
 

z MC methods are stochastic techniques, meaning they are based 
on the use of random numbers and statistics to investigate 
problems.  

 

y You can find MC methods used in everything from economics to 
nuclear physics to traffic engineering problems. 

 

z Computer-generated numbers are not really random, since 
computers are deterministic. But, given a number to start 
with, the seed, a number of mathematical operations can be 
performed on the seed in order to generate unrelated 
pseudorandom numbers (e.g., the LCG method show at the 
beginning of this lesson). 

 

y For a given seed, we have a given sequence of values assumed by a 
random variable. 

     



Confidence Intervals: 

Reliability of Results 

z We repeat the simulations for a better reliability 
of results using each time a different seed. Let us 
suppose to make J independent runs to evaluate a given 
quantity of an experiment, and let li, i = 1, …, J  be the 
results obtained.  
 

z The mean value is computed as: 

 

 

z The standard deviation is computed as: 
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

lmean  li /Ji1

J


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Confidence Intervals: 

Reliability of Results (cont’d) 

z The probability that the value of the random variable falls into the 
interval                                            is equal to tolevel (typical 
values of tolevel are 0.90, 0.95, 0.99) where 

  

 

 and  a = Quantile[StudentTDistribution(J–1),  1–(1–tolevel/2)] is 
tabulated as shown in the next slide depending on tolevel and J. 

 

z The amplitude of the confidence interval is a×lsd around the 

central, mean value. 
 

z Relatively-large confidence intervals [measured in percentage as 
100alsd / (2lmean)] highlight non-reliable results. 
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Confidence Intervals: 

Reliability of Results (cont’d) 

z The following table gives the values of a as function of the number 
of independent results (J repetitions) and of the tolerance level 
tolevel. For instance, we need to use a = 2.306 for the 95-th 
percentile confidence intervals with 9 repetitions. 

 
 

J  tolevel=90%            tolevel=95%         tolevel=99% 

3  2.920   4.303   9.925 

4  2.353   3.182   5.841 

5  2.132   2.776   4.604 

6  2.015   2.570   4.032 

7  1.943   2.447   3.707 

8  1.895   2.365   3.500 

9  1.860   2.306   3.355 

10  1.833   2.262   3.250 
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Confidence Intervals: 

Reliability of Results (cont’d) 

The “errorbar(.)” command of Matlab® can be used to 
plot graphs with reliability intervals. 

 

For instance: 
 

errorbar(X,Y,E) 

 

plots Y with error bars [Y-E Y+E]. 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

    



Confidence Intervals: an 

Example 
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% Simulation with 9 repeated runs (results) for each point 

 

X=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.92 0.94]; 

delay_sim(1, :)=[0.0150    0.0150    0.0150    0.0150    0.0148    0.0149    0.0151    0.0150  0.0150]; 

delay_sim(2, :)=[0.0166    0.0167    0.0165    0.0167    0.0167    0.0167    0.0167    0.0166  0.0167]; 

delay_sim(3, :)=[0.0186    0.0185    0.0183    0.0187    0.0186    0.0187    0.0185    0.0187  0.0190]; 

delay_sim(4, :)=[0.0210    0.0209    0.0206    0.0210    0.0210    0.0212    0.0209    0.0213  0.0211]; 

delay_sim(5, :)=[0.0236    0.0239    0.0231    0.0238    0.0239    0.0239    0.0237    0.0242  0.0241]; 

delay_sim(6, :)=[0.0277    0.0274    0.0271    0.0278    0.0279    0.0279    0.0275    0.0280  0.0280]; 

delay_sim(7, :)=[0.0336    0.0334    0.0308    0.0338    0.0338    0.0339    0.0330    0.0339  0.0337]; 

delay_sim(8, :)=[0.0449    0.0446    0.0390    0.0445    0.0453    0.0453    0.0446    0.0459  0.0453]; 

delay_sim(9, :)=[0.0968    0.0924    0.0500    0.0975    0.0953    0.0970    0.0933    0.1102  0.0992]; 

delay_sim(10, :)=[0.1231   0.1157    0.0692    0.1177    0.1156    0.1235    0.1221    0.1385  0.1257]; 

delay_sim(11, :)=[0.1650   0.1577    0.1605    0.1597    0.1643    0.1614    0.2016    0.1786  0.2538]; 

intervals_confidence.m 



Confidence Intervals: an 

Example (cont’d) 
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% calculating confidence intervals 

% coefficient alpha (renamed below k) for 9 repeated runs  

k=2.306; 

for tt=1:11 

    sum_del=0; 

for j=1:9 

    sum_del=sum_del + ((delay_sim(tt, j)-mean(delay_sim(tt, :)))^2)/8; 

end 

    sd_del=sqrt(sum_del)/sqrt(9); 

    Conf_Del(tt)=sd_del*k/2; 

    Del(tt)=mean(delay_sim(tt, :)); 

end 

errorbar(X, Del, Conf_Del, '--r') 

xlabel('\lambda T_{frame} [Erl]') 

ylabel('T_{tot} [s]') 

grid 



Confidence Intervals: an 

Example (cont’d) 
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Iterative Methods for 

Markov Chains 
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Erlang-B Formula 

Computation, M/M/S/S 

z The blocking probability Pb of an M/M/S/S queuing systems with 
input traffic of r Erlang is expressed by the formula below: 

 

 
 

 

 

z The Erlang-B formula cannot be directly computed when the 
number of servers, S, is high due to the presence of factorial terms.  
 

z An iterative method has been adopted to compute the Erlang-B 
formula for increasing number of resources S as shown in the next 
slide. 
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Erlang-B Formula 

Computation, M/M/S/S (cont’d) 

z Iterative method to compute the Erlang-B formula: 

 

 

 

 

 

 

 

 
 
 

z In the next slide we show a Matlab® script to compute the server 
utilization r(1 - Pb)/S of an M/M/S/S queuing system where r is 
the maximum traffic load allowing Pb < 1% for a certain S. 
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r function erlangb=erlangb(a,c) 

ris=1; 

for i=1:c 

 ris=1/(1+i/(a*ris)); 

end 

erlangb=ris; 

return 

erlangb.m 
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Erlang-B: Optimization of 

Resources with a Constraint 

clear all 

rho=5:1:100; %input traffic intensity in Erlangs 

l=length(rho); 

req=0.01; %requirement on the blocking probability, 1% 

for j=1:l 

load=rho(j);  

S=0; 

Pb=1; 

while Pb>req 

   S=S+1;  % while cycle on the number of servers 

   Pb=erlangb(load,S); % use of the ERLANG-B formula in a function 

end 

u(j)=load*(1-erlangb(load,S))/S; 

end 

plot(rho,u,‘-') 

xlabel('offered traffic intensity, \rho') 

ylabel('server utilization') 

  

 

 

     

utilization.m 
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Erlang-B: Optimization of 

Resources with a Constraint 

     

This is the resulting 
graph of the server 
utilization  
 

r(1 - Pb)/S   
 

of an M/M/S/S 
system for both Pb 
< 1% and  Pb < 5% 
as a function of r. 
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Numerical Inversion 

of Probability 

Generating Functions 



Numerical Inversion of 

Generating Functions 

z Let us consider for instance the following PGF: 

 

 
 

z We can immediately invert this PGF to obtain the 
following distribution: 
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Numerical Inversion of 

Generating Functions 

z The inversion of this PGF can also be obtained by noting 
that a PGF can be seen as a Taylor series expansion 
centred at z = 0 (i.e., MacLaurin series expansion): 

 

 

 

 

z We can use the Matlab® symbolic toolbox to 
compute the derivatives of X(z) at z = 0 as detailed in 
the following code: 
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Numerical Inversion of 

Generating Functions (cont’d) 

We consider the Matlab® command to differentiate 

 

diff(S,’v‘, n)  

 

This command allows us to differentiate n times 
expression S with respect to the symbolic variable v. 
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Numerical Inversion of 

Generating Functions (cont’d) 

z The Matlab® script code below is used to invert the PGF: 
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clear all 

syms z 

Xz=(1/4)+(1/4)*z+(1/4)*z^2+(1/4)*z^3; 

for i=2:5 

prob(i)=eval(diff(Xz,'z',i-1))/gamma(i); 

end 

prob(1)=eval(Xz); 

z=0; 

p=eval(prob); 

inversion_PGF.m 



Numerical Inversion of 

Generating Functions (cont’d) 

z Let us consider another example to invert the following 
PGF P(z) related to the number of requests in an M/D/1 
queue: 

 

 

 

z This PGF cannot be inverted in a closed form and the 
proposed Matlab® approach can be used to numerically 
determine the distribution Pk corresponding to P(z): 
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Numerical Inversion of 

Generating Functions (cont’d) 

z The resulting M/D/1 state probability distribution for r = 
0.5 Erlangs is shown in the graph below: 
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Numerical Solution of 

Equations 



Numerical Solution of 

Equations 

The numerical solution of non-linear systems of equations is 
supported by the following Matlab® command of the Optimization 
toolbox: 

 

X=fsolve(FUN,X0) 

 

The “fsolve(.)” method uses the vector X0 as starting point and tries 
to solve the equations in FUN (equations of the form ‘FUN = 0’). fsolve 
adopts an iterative method to return a solution vector X of the 
equations in FUN.  
 

In case of multiple solutions, the solution determined by the fsolve 
method depends on the starting point selected in X0. 
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Numerical Solution of 

Equations (cont’d) 

z The fsolve Matlab® routine permits to solve sets of non-
linear equations using the (quasi-)Newton method. 
 

z The Newton method uses an iterative process to approximate one 
root of a function ƒ(x), i.e., ƒ(x) = 0. 
y The specific root that the process locates depends on the initial value x0. 

y It is useful to determine initially the number of solutions allowed by the problem. 
 

z Newton method in one variable: given a function ƒ(x) and its 
derivative ƒ '(x), we begin with a first guess x0 for a root of the 
function. Provided that the function ƒ(x) has a “reasonable 
behavior”, a better approximation of the root is x1 obtained as: 

 

 

z Geometrically, x1 is the intersection with the x-axis of a line 
tangent to ƒ(x) at ƒ(x0). 
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Numerical Solution of 

Equations (cont’d) 

z The process is repeated according to the equation below 
until a sufficiently-accurate root is reached (a relative error 
stop criterion is used): 
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in ƒ(x0). 



Numerical Solution of 

Equations: a First Example 

z We have to solve the following transcendent equation 
F(s) in the unknown s:  

 

 

z We can use an iterative method and the “fsolve(.)” 
function in Matlab®: 
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      0/1/1 - -- rsrs sss eFe

r=0.5;  

save dati r 

sigma=fsolve('dm1' , 0) 

function dm1 = dm1(s) 

load dati 

dm1 = s-exp((s-1)/r); 

return 

 

cover.m 
dm1.m 

Equation in s (here s 
variable) of the form F(s) 
= 0  



Numerical Solution of 

Equations: a First Example 

z To improve the accuracy of the solution  (up to 10-6) we 
need to use ‘optimset’ in the “fsolve(.)” command as 
follows: 

 

 

 

sigma=fsolve('dm1' , 0, optimset('TolFun',1e-6)) 
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Numerical Solution of 

Equations: WiFi Analysis 

z Let us consider another example related to the saturated analysis of 
the WiFi access as shown in Lesson No. 10. 
 

z t is the probability that a station transmits in a randomly-chosen 
slot time. A transmission occurs when the backoff time counter is 
equal to zero, regardless of the backoff stage: 

 

 

 

z p is the collision probability for a general transmission attempt: the 
probability that a transmitted packet encounters a collision, is the 
probability that, in the same time slot, at least one station of the   
n– 1 remaining ones transmits: 
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Numerical Solution of Equat.: 

WiFi Analysis (cont’d) 

z p and t equations form a system of non-linear equations 
that can be expressed as follows: 

 

 

 

 

z This system admits a single solution that depends on 
parameters:  

 

y Initial contention window, W 
 

y Number of WiFi stations, n  
 

y Number of backoff stages, m.  
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Numerical Solution of Equat.: 

WiFi Analysis (cont’d) 

z We can use the “fsolve(.)” function in Matlab® (iterative method) to 
determine the solution for the system in p and t: 
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W=32; 

m=16; % a lower value is used in the standard 

enne=1:1:50; 

l=length(enne); 

for i=1:l 

    n=enne(i); 

    save dati W m n 

    collision(i)=fsolve('wifi' , 0); 

end 

plot(enne,collision,'-b') 

xlabel('number of stations, n') 

ylabel('collision probability, p') 

grid 

function wifi = wifi(p) 

load dati 

  

tau=2*(1-2*p)/((1-
2*p)*(W+1)+p*W*(1-(2*p)^m)); 

  

wifi = p-1+(1-tau)^(n-1); 

 

return 

 

cover2.m wifi.m 



Numerical Solution of Equat.: 

WiFi Analysis (cont’d) 

z The graph below shows the resulting behavior of p as a 
function of n:  
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Thank you! 

 

giovanni.giambene@gmail.com 

 


