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Queuing Systems 

z Queuing systems are everywhere.   
 

y For example, airplanes “queue up”, waiting for a runway so they 
can land. Then, they line up again to take off. 
 

y People line up for tickets, to buy groceries, etc.   

 

z The Danish engineer A. K. Erlang founded queuing 
theory by studying telephone switchboards in 
Copenhagen for the Danish Telephone Company in the 
early 1900s. 
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Queuing Systems (cont’d) 

z The interest is here to study queuing systems and 
related analytical methods for the study of 
telecommunication networks. 
 

z In telecommunication networks, queuing theory 
is used every time a network resource is shared 
by competing ‘service requests’. 
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Queues in 

Telecommunications 

 

 

z Every protocol in every node of a telecommunication network can 
be modeled through an appropriate queuing process. 
 

z Queues can be applied at different OSI levels: 
 

 

y OSI Layer 1: Blocking phenomena of a traffic flow (i.e., a call) due to 
unavailable resources in at least one link in the path from source to 
destination. 
 

 

y OSI Layer 2: Queuing is generated by different packets sharing the 
transmission resources of a link connecting two adjacent nodes (MAC, 
multiplexing); 
 

 

y OSI Layer 3: There are layer 3 buffers for IP-level QoS support (e.g., 
DiffServ). 



Queuing Systems: 

Terminology 

z In the study of queuing systems, there are also 

different terms that have the same meaning and 

can be used interchangeably. 
 

z Some interesting examples are: 
 

y Client/customer/service request/job/packet/message/call/etc. 
 

y Service/transmission/etc. 
 

y Server/transmitter/etc. 
 

y Queue/buffer/memory/etc. 
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Queuing System: Basic 

Notations 

z A basic model for a delay/loss system (node or link) in 
telecommunications: 

 

 

 

 

 

 

 
 

y Mean time spent in system by a customer (service request) = T 

y Number of customers in the system at time t = N(t) 

y Fraction of arriving customers that are lost or blocked (congestion) = Pb 

y Long-term mean arrival rate of customers =  

y Average number of customers/second that pass through the system = throughput 

   
Delay box 
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Queuing System: Basic 

Characteristics 

z Queues are special cases of stochastic processes, which are represented by a 
state N(t) with discrete values, for instance denoting the number of queued 
‘entities’ (called below ‘requests’). Queues are modeled by ‘chains’. 
 

z A queue is characterized by: 
 

y An arrival process of service requests (mean arrival rate denoted with ),  
 

y A waiting list of requests to be processed,  
 

y A discipline according to which requests are selected in the queue to be served,  
 

y A service process.  

 

Arrival process 

Waiting list 

Servers 

Service policy 

Departing customers 
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Kendall’s Notation for Queuing 

Systems ‘A/B/S/D/E - service ’ 

A/B/S/D/E  -  service : 
 

 A = interarrival time distribution or arrival process 

G = General (i.e., not specified); M = Memoryless (Poisson); 

 B = service time distribution 

G = General (i.e., not specified); M = Memoryless (exponential);     
D = Deterministic  

 S = number of parallel servers, S = 1, 2, … (S  1) 

 D = number of available places in the queue (wait+service), D  S 

 E = limit on population, E  S 
 

 Service = denotes the discipline adopted to service the requests in 
the queue; for instance, First Input First Output (FIFO), Last Input 
First Output (LIFO), and Service In Random Order (SIRO). 

 Note: D and E are omitted if they are infinity. 

D. G. Kendall, the English mathematician who first used the term ‘queuing system’ in the 
paper: “Some Problems in the Theory of Queues”, Journal Royal Statistical Society, 1951 

 
Integer numbers 

Letters or 

acronyms 
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Service Policy vs. Scheduling 

z Service policy refers to the order according to which requests are serviced 
in a queue. This order can also be dynamic if newly-arriving requests can change 
the service order of previous ones in the queue. 
 

 

 

 
 

z Scheduling refers to the case where many queues share a given server 
(multiplexing context); the task of the scheduler is to select the next request 
to be serviced among those in the queues.  

 

y Example: Round Robin (RR) etc. 
 

y The service order can be static or dynamic. 
 

y Each queue may represent a different traffic class (in an end-host) 

 or different end-hosts within a class. 
 

y Overheads (e.g., headers, dead times) can be needed 

 in switching the server from one queue to the next one. 
 

y All queues sharing a given server  

 behave globally as a single queue with a suitable service  

 policy. 
 

 

 

 

2 3 1 

Head-Of-Line (HOL) packet 
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Main Performance 

Parameters for a Queue 

z The distribution of the number of requests in the queue 
(queue state distribution probability) 
 

y Mean number of requests in the queue, N 

 

z The distribution of the time spent from the arrival of a 
request to the queue to the instant when the service of 
this request completes. 
 

y Mean time spent to cross the queue (i.e., mean queue 
delay), T. 



Queue Stability (Steady-

State) 

z A single-server queue system is stable if 

  arrival rate of requests < service rate of requests 
 

y For instance in an industrial production plant modeled as a global queue, stability 
requires that the frequency  of the arrival of product requests be lower than 
the rate of product completion, m: 

 

 

 

 

y r = /m denotes the traffic intensity offered to the queue. In a single server 
queue, stability requires that  < m or r < 1 Erl. r also denotes the ‘server 
utilization factor’, that is the percentage of time (between 0 and 1) that the 
sever is busy.  

 

z In an unstable queue: 
y Packets accumulate in the queue without a bound (packet delays increase 

continuously). 

y Flow/admission control may be used to limit the packet arrival rate. 

y Prioritization of flows keeps delays bounded for the important traffic. 
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Little Formula (1961) 

z Assumptions (the queuing system as a “black box”): 
 

 

 

y General G/G/X/Y queuing system  
 

 

 

y Boundary condition: The queue must become empty at some time instants 
(this is assured if the queue is stable, as we assume below). 
 

 

 

y Conservation of customers: All arriving customers (requests) will eventually 
complete their service and will leave the system (i.e., there are no customers 
lost).  
 

 

 

y The queuing system admits a steady-state: (i) the queue becomes empty 
from time to time; (ii) the queuing system is described by an ergodic process 
(time averages are equal to the corresponding statistical averages). 

 

z The Little formula relates T and N quantities for a queue (    denotes the 
‘mean rate of requests accepted into the system’): 

 
TN

N
T 






J. C. C. Little, "A Proof for the Queueing Formula: L = XW," Operations Res., Vol. 9, pp. 383-387, 1961 
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Little Formula (cont’d) 

z The Little theorem can also be applied to a packet-switched 
telecommunication network as a whole. 

 

 

y Note that a telecommunication network is formed of nodes and links. 
Each node can be modeled as a set of queues representing the 
transmission buffers (collecting different input traffic contributions) 
on different output links.  
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Little Formula (cont’d) 

 

z The Little formula can be used to relate the mean delay 
experienced by a message (or packet) from the entrance to the exit 
from the network, T, and the mean number of messages (or 
packets) that are in the network, N, by means of the mean arrival 
rate  of messages entering the network: T = N/ 
 

z Intuitively: since the Little formula is valid under very general 
assumptions on the queuing discipline and since the state model of 
a queue is unaffected by typical scheduling schemes, many queuing 
disciplines (e.g., FIFO, SIRO, LIFO, PS, etc.) achieve the same 
mean queue delay (while other moments of the delay do depend on 
the queuing discipline); this intuitive results is supported by the 
insensitivity property: 

 

y If the service discipline fulfills the insensitivity property assumptions, the queue state 
distribution and the mean delay do not depend on the service type. Hence,  E(TFIFO) = 
E(TSIRO) = E(TLIFO). However, Var(TFIFO) < Var(TSIRO) < Var(TLIFO). 
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Little Formula (cont’d) 

 

z The Little formula can be used to relate the mean delay 
experienced by a message (or packet) from the entrance to the exit 
from the network, T, and the mean number of messages (or 
packets) that are in the network, N, by means of the mean arrival 
rate  of messages entering the network: T = N/ 
 

z Intuitively: since the Little formula is valid under very general 
assumptions on the queuing discipline and since the state model of 
a queue is unaffected by typical scheduling schemes, many queuing 
disciplines (e.g., FIFO, SIRO, LIFO, PS, etc.) achieve the same 
mean queue delay (while other moments of the delay do depend on 
the queuing discipline); this intuitive results is supported by the 
insensitivity property: 

 

y If the service discipline fulfills the insensitivity property assumptions, the queue state 
distribution and the mean delay do not depend on the service type. Hence,  E(TFIFO) = 
E(TSIRO) = E(TLIFO). However, Var(TFIFO) < Var(TSIRO) < Var(TLIFO). 

 

The insensitivity property holds when 
(hypotheses):  

 The service policy is independent of 
the service time.  

 The service policy is non-preemptive (a 
job that has started service will remain in 
service until completes). 

 The service policy is work-conserving 
(there are not server vacations). 

 The queue is stable. 
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Little Formula Proof 

 

z We consider that at time t = 0 
the queue is idle.  

z Let us denote: 
y a(t) = number of requests arrived in 

the interval (0 , t); 

y b(t) = number of requests that 
complete service in the interval (0 , t); 

y ti = arrival instant of the i-th request; 

y ti’ = departure instant (i.e., service 
completion) of the i-th request. 
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z We neglect the cases of multiple arrivals (or departures)  both a(t) and b(t) 

have variations of value 1 corresponding to arrival or departure instants, 
respectively.  

z Note that t1 < t2 < t3 < …. Whereas, the ranking of the instants t1’, t2’, t3’, … 
depends on the adopted queuing policy (in the FIFO case t1’< t2’ < t3’ < …, 
but this is not necessary for the Little theorem).  

a(t) and b(t) have staircase graphs 
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Little Formula Proof (cont’d) 

 

z The following relationships will be 
used: 
y Ti = ti’- ti represents the time spent in 

the system by the i-th request; 

y N(t) = a(t) - b(t) is the number of 
requests in the queue at the instant t 
 0. 

z Let us consider a generic instant H, 
where a(t) = b(t), so that the system 
is empty (i.e., N(H) = 0). The time 
average of the delay experienced by a 
request arrived at the queue in the 
interval (0 , H) is:  

 

 

 

 

t1 

a(t) 

t2 t3 t2’ t1’ t4’ H 
t 

1 

2 

3 

4 

t4 t3’ 

b(t) 

n
u

m
b

er
 o

f 
re

q
u

es
ts

 a
rr

iv
ed

 o
r 

n
u

m
b

er
 o

f 
re

q
u

es
ts

 s
er

v
ed

 

 

 

 

 
 

 

   

 H

tt

H

tt

H

T

T

H

i

i

H

i

i

H

i

ii

H

i

i

H
aaa

aaaa










 11

'

1

'

1



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Little Formula Proof (cont’d) 

 

z The difference  

 

 

 

is the highlighted area that can 
also be expressed as 
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z                        represents the time average of the number of requests in the 
queue in the interval (0 , H) 

 

z                    represents the average arrival rate in the interval (0 , H).  
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Little Formula Proof (cont’d) 

 

z We have:  

 

 

 

 

 

z By employing the ergodicity 
assumption, we have that time 
averages can be substituted by 
statistical ones, here denoted as 
T, N and , respectively, thus 
obtaining the Little formula (QED).  

 

 

 
 

 

 

 

 

t1 

a(t) 

t2 t3 t2’ t1’ t4’ H 
t 

1 

2 

3 

4 

t4 t3’ 

b(t) 

n
u

m
b

er
 o

f 
re

q
u

es
ts

 a
rr

iv
ed

 o
r 

n
u

m
b

er
 o

f 
re

q
u

es
ts

 s
er

v
ed

 

      

 

   
 

H

H

H

H

H

N
dttN

HH

H

H

dttN

T
aa

 


0

0 1



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Markov Chains for 

Queues Analysis 



A Markov Chain 

z The chain state at instant tn+1, X(tn+1), depends only 
on the state at the previous instant tn, X(tn). 

 

 

y The stochastic process evolution is characterized only by its 
state value at the present instant, but not on the time 
already spent in this state. This memoryless characteristic is 
guaranteed only by state sojourn times exponentially- 
distributed in the case of a continuous-time chain 
(geometric distribution for a discrete-time chain). 
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Birth-Death Markov Chains 

z A Markov chain represents a birth-death process when the 
state transitions in the chain occur only among adjacent 
states: from state i we can directly go only to state i+1 or i1. 

 

 
 

y A Markov chain of the birth-death type can be used to model a queue 
with Poisson arrivals and exponential service times. These types of 
queues are denoted by symbols like M/M/…/… , according to the 
Kendall’s notation. 
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Birth-Death Markov Chains: State 

Probability Distribution 

z Ergodic condition:  
 

z If the state space is finite (i.e., finite rooms in the queue), the queue is 
always stable for any traffic intensity value. 
 

z If the ergodic condition is fulfilled, the chain admits a steady state; at regime, state 
probabilities Pn(t) (= probability that the system is in state n at time t) do not depend 
on time  dPn(t)/dt = 0  and Pn(t) = Pn.  
 

z Then, the following cut equilibrium conditions can be written:    
 

iPi = mi+1Pi+1   for i = 0, 1, … 
 

 

nnknthatsok m  ,:
 

Sufficient condition for  

stability 
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mn 
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Node equilibrium 
 

Cut equilibrium 

  We should write and solve 
differential equations 
modeling  the system 
dynamics and then to take 
the limit for t  to infinity to 
study the regime 
condition. This leads to 
the flow equilibrium 
conditions written below. 
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Birth-Death Markov Chains: State 

Probability Distribution (cont’d) 

z Under stability condition (we impose ergodicity), we solve recursively the cut 
equilibrium conditions for i = 0, 1, …: 
 
 
 
 
 
 
 
 
 
 
 

z All state probabilities are expressed as functions of both the transitional rates and the 
probability of state ‘0’, P0. Therefore, we impose the normalization condition in 
order to obtain P0 
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Queue Performance 

Parameters 

z If the Markov chain models a queuing system, we can 
determine the following quantities once the state 
probability distribution has been solved obtaining Pi 
values: 
 

y Mean number of requests in the queue    
 

 

 

y Mean delay to cross the queue (Little theorem)    

 

 
 

y Since T is the sum of mean service time (x) and mean waiting 
time (w), T = x + w, we multiply both members by     : 
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where     denotes the mean rate of requests entering the system, 

obtained as SiPi 



wxT     
Mean number of requests in service  = mean number of busy servers 

= traffic intensity r in absence of blocking 

In case of a queuing system with 
S servers, r still denotes the mean 
number of busy servers  r < S 

[Erl] is the stability condition. 
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The M/M/1 Queue 

z M/M/1 queue: Poisson 
arrivals of requests (mean 
rate ), exponentially- 
distributed service time 
(mean rate m), single 
server, infinite rooms, and 
infinite population of users.  

 

 

 

Waiting list 

Server 

Service policy 

Poisson process m 

z The state of the system is the number of requests in the 
queue (including the served one).  
 

z We can model the M/M/1 queue as a special case of a birth-death 
Markov chain with i   and mi  m. Stability is assured by the 
ergodicity condition: r = /m < 1 Erlang. 
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The M/M/1 Queue (cont’d) 

 

z Markov chain model for the M/M/1 queue: 

 

 

 

 

 

 

 

z From cut equilibrium and normalization conditions, we have: 
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The M/M/1 Queue (cont’d) 

 

z The state probability is geometrically distributed.  
 

z The ergodicity condition that assures stability (r < 1 Erlang) 
entails P0 > 0: if the queue is stable it must be empty sometimes. 
 

z The mean number of requests in the queue and the mean delay 
(Little theorem) are: 

 

 
z The ergodicity condition for stability allows that both N and T have 

finite values.  
 

z The state probability distribution (and, hence, N) as well as T do not 
depend on the service discipline (insensitivity property). 
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The M/M/1 Queue (cont’d) 

 

Behaviors of N and T: 

 

 

 

 

 

 
 

z When the traffic intensity approaches the maximum (1 Erl), the mean number of 
requests in the system and the mean system delay tend to infinity. 
 

z When the traffic intensity tends to 0, the system tends to be empty and the mean 

system delay approaches 1/m ( mean service time).  
 

z Important consideration (performance – efficiency trade-off): increasing the 
utilization of the resources we have necessarily an increase of (buffer) congestion 
and delays. 
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M/M/1 Queue with Different 

Service Disciplines 
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M/M/1 queue with different service disciplines

 

 

M/M/1 - SPT (service priority according to shortest service time)

M/M/1 - SRPT (SPT + preemption)

M/M/1 with Little th. (FIFO, LIFO, Random, etc.)

SPT = Shortest Processing 
Time 

SRPT = Shortest Remaining  
Processing Time 
(preemptive) 
 

For SPT and SRPT service 
disciplines (based on the 
knowledge of the service 
duration of each request) 
the insensitivity 
property cannot be 
applied: M/M/1-SPT 
has a different state 
probability distribution 
(and mean number of 
requests) than M/M/1-
FIFO. 
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M/M/1 Queue with Different 

Service Disciplines 
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M/M/1 queue with different service disciplines

 

 

M/M/1 - SPT (service priority according to shortest service time)

M/M/1 - SRPT (SPT + preemption)

M/M/1 with Little th. (FIFO, LIFO, Random, etc.)

SPT = Shortest Processing 
Time 

SRPT = Shortest Remaining  
Processing Time 
(preemptive) 
 

For SPT and SRPT service 
disciplines (based on the 
knowledge of the service 
duration of each request) 
the insensitivity 
property cannot be 
applied: M/M/1-SPT 
has a different state 
probability distribution 
(and mean number of 
requests) than M/M/1-
FIFO. 

Let us consider a queue where packets of two 
sizes arrive: very short packets (non-
congestive traffic) and very long packets. If we 
service first short packets (SPT case), they 
experience a low mean delay, while the mean 
delay of long packets is practically unaffected. 
Otherwise, if we service first long packets 
(non-SPT case, LPT), their mean delays do not 
improve in a significant way, while the mean 
delay of short packets drastically increases. 
Hence, the SPT approach typically permits 
to reduce the mean packet delay with 
respect to non-SPT schemes. 
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Intuitive Comparison of 

Different Scheduling Schemes 

    

     

FIFO  order 

1 
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SPT  order 
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LPT  order 
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Mean delay =10.2 

Mean delay =4.8 

Mean delay = 12 

 

 

Hp) We have some packets in a buffer and they 
have two different sizes (transmission times): 1 
and 10. Different service orders can be applied to 
these packets. 

Mean packet delay for the 5 packets according 
to their service order in 3 different cases. 
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The M/M/S Queue 

z We consider a queue with a Poisson arrival process 
(mean rate ), exponential service time (mean rate m) 
and S servers. The birth rate is always equal to  ( i), 
while the death rate depends on the state.  

y For the generic state i  S, there are i simultaneously-served 
requests; by invoking the memoryless property of the 
exponential distribution, each served request has a residual 
duration exponentially-distributed with mean rate m. Therefore, 
the time for the death transition to the state i – 1 is the 
minimum among i times exponentially-distributed with mean 
rate m; this minimum is still exponentially-distributed with mean 
rate mi = im.  

y For a generic state with i > S, the mean completion rate is mi 
equal to Sm (we have saturated the capacity for states i ≥ S). 
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The M/M/S Queue (cont’d) 

 

 

 

 

z Markov chain model for the M/M/S queue: 
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The M/M/S Queue (cont’d) 

z The ergodicity condition for the stability of the queue is /(Sm) < 1   
traffic intensity r = /m < S Erlangs; note that r/S is the utilization factor of 
a single server.  
 

z From cut equilibrium and normalization conditions, we have: 
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The M/M/S Queue (cont’d) 

z State probabilities Pn need to be calculated in an iterative way due 
to both the presence of factorial terms and, in general, the ratios of 
very high numbers when n is sufficiently high. The recursive process 
starts by computing P1/P0; this result is used to compute P2/P0 , and 
so on. The terms Pi/P0 are progressively summed together to derive 
P0 by means of the normalization condition. 
 

z The probability that a new arrival finds all the servers busy (thus it 
is queued), PC, is given by: 
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Erlang-C formula 

This formula depends 
on the application of 
an important property 
for Poisson  processes, 
that is the PASTA 
property described in 
next slide. 
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The PASTA Property (Only 

for Poisson Arrivals) 

z The PASTA (Poisson Arrivals See Time Averages) 
property was defined by R. W. Wolff. 

 

y For M/-/-/- queues where the arrival process is Poisson, the 
probability that an arrival finds the chain in the state n is equal to 
the time percentage that the chain is in the state n (this is equal 
to the steady state probability Pn due to the ergodicity). 
 

y The PASTA property does not apply to state-dependent Poisson 
arrival processes or to non-Poisson arrival processes. 
 

y The PASTA property is not generally true. For instance, let us 
consider a D/D/1 queuing system, which is empty at time 0, with 
arrivals at times 1, 3, 5 s and with service times 1 s (there is a cycle 
length of 2 s): every arriving customer finds an empty system, 
whereas the fraction of time the system is empty is ½. 

 

R. W. Wolff, “Poisson Arrivals See Time Averages”, Operational Research, Vol. 30, No. 2, 
March-April 1982. 

R. W. Wolf, “Poisson Arrivals See Time Averages”, Operational Research, Vol. 30, No. 2, March-
April 1982. 

 

Time spent in the generic state n: 
 

 

The percentage of time for which the system is in the 

state n is equal to the state probability Pn  

A new Poisson arrival finds 

the system in state n according 

to probability Pn  (PASTA) 
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March-April 1982. 
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0 2 4 6 8 

D/D/1 

queue 

status 

1 

The new arrivals find an empty system so that for 
them it is like P0 = 1. However, the queue is empty 
for 50% of time, thus yielding P0 = 0.5. 
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The M/M/S/S Queue 

z In this queue we have only S rooms in the system and S servers; 
there are no waiting rooms in this queue. If a new arrival finds the 
system busy (i.e., with S requests in service) it is not admitted  
(blocked) in the system. 
 

z Let PB denote the probability that a new arrival finds the system 
busy and is blocked. Hence, we can prove that PB denotes the 
‘refused’ traffic flow and 1PB) denotes the ‘admitted’ traffic flow 
into the queue. 

 

 

 

 

Waiting list = 0 
Servers 

Service policy 

Poisson process 

m 
PB 

Blocked traffic 
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The M/M/S/S Queue (cont’d) 

z This queue has S+1 states from i = 0 to S. Birth and death rates are 
derived from the M/M/S queue. The ergodicity condition for the 
queue stability is always fulfilled since there is a finite number 
of states. 

 

 

 

 
 

 

z By exploiting the same derivations made in the M/M/S case, we can 
obtain the following state probability distribution: 
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The M/M/S/S Queue (cont’d) 

z Since the mean arrival rate does not depend on the state, applying 
the PASTA property we obtain the probability that a new request is 
blocked and refused due to the unavailability of rooms in the queue, 
PB, as the probability that the queue is in the state S, PS: 
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Erlang-B formula 

 



z The Erlang-B formula depends on S and r. This formula cannot be 
directly computed when the number of servers, S, is high due to the 
presence of factorial terms.  
 

z This is the reason why an iterative method has been developed to 
compute the Erlang-B formula for increasing number of resources S: 
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Iterative Method for Erlang-

B Computation 
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The M/M/S/S Queue (cont’d) 

z The mean arrival rate (arrivals accepted into the system) is obtained 
as: 

 

 

z Hence, there is difference between the mean input arrival rate  
and the mean rate      of arrivals accepted into the system (this is 
the rate to be used in the Little formula). 

 

z The mean number of requests N in the system can be derived as: 

 

 
 

z We can apply the Little theorem as: 
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Erlang-B Table and its Use 

in Traffic Engineering 

  

Servers            Bloking probability 
 S 1.0% 1.2% 1.5% 2% 3% 5%    7% 10% 15% 20% 30% 40% 50% 
 1 .0101 .0121 .0152 .0204 .0309 .0526 .0753 .111 .176 .250 .429 .667 1.00 
 2 .153 .168 .190 .223 .282 .381 .470 .595 .796 1.00 1.45 2.00 2.73 
 3 .455 .489 .535 .602 .715 .899 1.06 1.27 1.60 1.93 2.63 3.48 4.59 
 4 .869 .922 .992 1.09 1.26 1.52 1.75 2.05 2.50 2.95 39 5.02 6.50 
 5 1.36 1.43 1.52 1.66 1.88 2.22 2.50 2.88 3.45 4.01 5.19 6.60 8.44 
 6 1.91 2.00 2.11 2.28 2.54 2.96 3.30 3.76 4.44 5.11 6.51 8.19 10.4 
 7 2.50 2.60 2.74 2.94 3.25 3.74 4.14 4.67 5.46 6.23 7.86 9.80 12.4 
 8 3.13 3.25 3.40 3.63 3.99 4.54 5.00 5.60 6.50 7.37 9.21 11.4 14.3 
 9 3.78 3.92 4.09 4.34 4.75 5.37 5.88 6.55 7.55 8.52 10.6 13.0 16.3 
 10 4.46 4.61 4.81 5.08 5.53 6.22 6.78 7.51 8.62 9.68 12.0 14.7 18.3 
 11 5.16 5.32 5.54 5.84 6.33 7.08 7.69 8.49 9.69 10.9 13.3 16.3 20.3 
 12 5.88 6.05 6.29 6.61 7.14 7.95 8.61 9.47 10.8 12.0 14.7 18.0 22.2 
 13 6.61 6.80 7.05 7.40 7.97 8.83 9.54 10.5 11.9 13.2 16.1 19.6 24.2 
 14 7.35 7.56 7.82 8.20 8.80 9.73 10.5 11.5 13.0 14.4 17.5 21.2 26.2 
 15 8.11 8.33 8.61 9.01 9.65 10.6 11.4 12.5 14.1 15.6 18.9 22.9 28.2 
 16 8.88 9.11 9.41 9.83 10.5 11.5 12.4 13.5 15.2 16.8 20.3 24.5 30.2 
 17 9.65 9.89 10.2 10.7 11.4 12.5 13.4 14.5 16.3 18.0 21.7 26.2 32.2 
 18 10.4 10.7 11.0 11.5 12.2 13.4 14.3 15.5 17.4 19.2 23.1 27.8 34.2 
 19 11.2 11.5 11.8 12.3 13.1 14.3 15.3 16.6 18.5 20.4 24.5 29.5 36.2 
 20 12.0 12.3 12.7 13.2 14.0 15.2 16.3 17.6 19.6 21.6 25.9 31.2 38.2 
 21 12.8 13.1 13.5 14.0 14.9 16.2 17.3 18.7 20.8 22.8 27.3 32.8 40.2 
 22 13.7 14.0 14.3 14.9 15.8 17.1 18.2 19.7 21.9 24.1 28.7 34.5 42.1 
 23 14.5 14.8 15.2 15.8 16.7 18.1 19.2 20.7 23.0 25.3 30.1 36.1 44.1 
 24 15.3 15.6 16.0 16.6 17.6 19.0 20.2 21.8 24.2 26.5 31.6 37.8 46.1 
 25 16.1 16.5 16.9 17.5 18.5 20.0 21.2 22.8 25.3 27.7 33.0 39.4 48.1 
 26 17.0 17.3 17.8 18.4 19.4 20.9 22.2 23.9 26.4 28.9 34.4 41.1 50.1 
 27 17.8 18.2 18.6 19.3 20.3 21.9 23.2 24.9 27.6 30.2 35.8 42.8 52.1 
 28 18.6 19.0 19.5 20.2 21.2 22.9 24.2 26.0 28.7 31.4 37.2 44.4 54.1 
 29 19.5 19.9 20.4 21.0 22.1 23.8 25.2 27.1 29.9 32.6 38.6 46.1 56.1 
 

 

Problem: 
 

z To determine 
the number of 
servers S with 
input traffic 
intensity of 7 
Erlang and 
requirement of 
blocking 
probability 
lower than or 
equal to 2%. 
 

z Using the table, 
S = 13 servers 
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Erlang-B Formula Behavior 
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The Erlang-B Formula in 

Extended Cases 

z It is possible to prove that the M/M/S/S state probability distribution 
is also valid for an M/G/S/S queue with the same input traffic 
intensity; this is another insensitivity property concerning  the 
statistics of the service time (only the mean value has impact 
through the input traffic intensity r). 
 

y The Erlang-B formula can also be adopted in the general M/G/S/S 
case. This is an important generalization of the Erlang-B formula, since in 
current systems sessions arrive according to Poisson processes, but their 
duration is not exponentially distributed. 

     

S. M. Ross. Stochastic Processes. John Wiley and Sons, 1983. 
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M/M/ and M/G/ Queues 

z The M/M/ queue is the limiting case of the M/M/S/S queue (or the 
M/M/S case) for S  . Similarly, the M/G/ queue can be seen as 
the limiting case of the M/G/S/S queue for S  , and, therefore, 
can be studied by means of the equivalent M/M/ queue (i.e., with 
the same traffic intensity r). 
 

z We use the state probability distribution of the M/M/S/S case and 
we take the limit for S   so that we solve the M/M/ queue as: 

 

 

 

z The state probability of the M/M/ M/G/ queue is Poisson-
distributed. 
 

z These queues are suitable to model traffic sources. 
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Equivalencies for M/M/S/S, 

M/M/,M/G/S/S, and M/G/ 

  

M/M/S/S M/G/S/S  and  M/D/S/S 

M/M/ M/G/  and  M/D/ 

 

equivalent  
with same r 

 

equivalent  
with same r 

  limit for  
S  

limit for  
S  
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The M/D/ Example 

z Let us consider an S-Aloha case. There is a (total) Poisson process 
with mean rate L and a fixed service duration T (= packet 
transmission time). We know that the number of arriving packets on 
a slot is according to a Poisson distribution with parameter G = 
LT; this is consistent with an M/D/ model of the system where 
G = r. Then, the probability distribution of the number of arriving 
packets on a slot results as: 
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Queue Examples and Special 

Cases: a Summary 

z Multiplexer models (single server): M/M/1/K, M/M/1, M/G/1, M/D/1 
 

z Trunking models (classical telephony, S servers): M/M/S/S, M/G/S/S 
 

z User ‘application’ traffic (infinite servers): M/M/, M/G/, M/D/ 
 

z Special cases: 
 

y Bulk arrivals: more than one arrival can occur at a given instant 
(compound arrival process). The symbol denoting the arrival process has 
an exponent, describing the statistics of the bulk arrivals. For instance, 
M[Geom]/G/1 for a geometrical number of ‘objects’ arriving together. This 
could be true in the following cases: (i) IP packets fragmented to fit 
layer 2 frame format (MAC layer queue); (ii) Web page with many objects. 
 

y Batched service: some arrived objects are serviced together (e.g., TDMA 
transmissions). The letter of the service process has an exponent 
describing the length of the batch. For instance, M/D[b]/1, for a 
deterministic service with b ‘objects’ together. This is the case of a TDMA 
transmission system with b slots per frame allocated to the service of 
packet arrivals. 
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Exercises 
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Exercise #1 

A radio link adopts four equivalent parallel transmitters for redundancy 

reasons. The operational characteristics of the transmitters require that each of 

them be switched off (for maintenance or recovery actions) according to a 

Poisson process with a mean interarrival time 1 of 1 month. The technician 

that performs maintenance and recovery actions requires an exponentially-

distributed time with mean duration  m1 of 12 hours in order to fix the 

problem. We consider that two technicians are available. This exercise 

requires: 

z To define a suitable model for the system; 

z To determine the probability distribution of the number of non-working 

transmitters at a generic instant; 

z To express the probability that no transmitter is working on this radio link. 
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Solution of Exercise #1 

The system can be modeled as a Markov chain with five states denoting the 

number of non-working transmitters: 0, 1, …, 4. We exploit the 

memoryless property of the exponential distribution for both the 

interarrival times of the recovery actions for a transmitter with mean rate  (= 

1 action/month) and the repairing times with mean rate m (= 1/12 

repairing/hour). The transition from the generic state j (0  j < 4) to the state 

with j+1 non-working transmitters is the minimum among 4j independent 

times with exponential distribution and mean rate ; such time is still 

exponentially distributed with mean rate (4j). As for the transitions from 

states j (1 < j  4) to states with j1 non-working transmitters, these are 

performed after time intervals that are the minimum between two 

independent, exponentially distributed times with mean rate m (i.e., the times 

required by the two technicians to fix their problems); hence, these transitions 

occur after a time interval exponentially-distributed with mean rate 2m. Of 

course the transition from state j = 1 to state j = 0 has an exponentially-

distributed time with mean rate m.  
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Solution of Exercise #1 

(cont’d) 

We obtain a Markov chain model like that used for an M/M/2/4/4 queue: 

 

 

 

 

We can state cut equilibrium conditions: 
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Since we consider a 
finite-state chain, 
there are no stability 
problems. 
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Solution of Exercise #1 

(cont’d) 

Finally, we impose the normalization condition: 

 

 

 

The percentage of time for which no transmitter is working, is given by P4. 
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Exercise #2 

We have a transmission line to send the messages that arrive at a buffer with 

infinite capacity. Each message can wait for service for a maximum time 

(deadline); otherwise it is discarded from the buffer. We model the maximum 

waiting time of a message as a random variable with exponential distribution 

and mean rate g. Messages arrive according to a Poisson process with mean 

rate  and their transmission time is exponentially distributed with mean rate 

m. We need to determine: 

z A suitable queuing model for the system; 

z The mean number of messages in the transmission buffer. 
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Solution of Exercise #2 

If messages have no deadline, this system can be described by a classical 

M/M/1 queue with mean arrival rate  and mean completion rate m. 

In our case we model the system with a chain where the state denotes the 

number of messages in the system. The mean arrival rate is ; but some 

considerations have to be made for the transitions from state j to state j  1.  

When there is a served message and another is in the waiting list, this 

message can wait for receiving service for a time exponentially distributed with 

mean rate g. Therefore, the transition from state j = 2 to state j = 1 is 

characterized by the minimum between two times exponentially 

distributed with mean rates m (due to a service completion) and g 

(due to a deadline expiration), respectively. Hence, such transition 

occurs after an exponentially-distributed time with mean rate m + g. In general, 

the transition from state j  to state j  1 occurs with mean rate m + (j  1)g.  
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Solution of Exercise #2 

(cont’d) 

We obtain a Markov chain model of the M/M/… type: 

 

 

 

 

This Markov chain is always stable, since the ergodicity condition is definitely 

verified:  /[m + (j  1)g] < 1 Erl for any j greater than a given value. By 
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Solution of Exercise #2 

(cont’d) 

Finally, the normalization condition is: 

 

 

 

 

The mean number of messages in the buffer can be expressed as: 
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Exercise #3 on the Erlang-B 

Formula 

 

z An Internet Service Provider (ISP) has to dimension a Point of Presence (POP) in the 
territory which can manage up to S simultaneous Internet connections (due to the 
limited number of available IP addresses or due to a limited processing capability). If 
a new Internet connection is generated by a user towards that POP and there are 
already S other connections in progress, the new connection request is blocked. We 
have to determine S guaranteeing that the blocking probability PB  3%. We know 
that: 

 

y Each user generates Internet connections according to a Poisson process with mean rate  
 

y Internet sessions have a duration that is generally-distributed 
 

y Each POP subscriber is connected on average for 1 hour a day (thus contributing a load of about 41 
mErlang) 
 

y We consider 100 subscribers/POP. 
 

z Users are finite, but we apply the conservative approximation of an infinite 
number of users at a parity of (max) offered load r. Hence, we consider the 
queuing system of the M/G/S/S type that can be studied by the equivalent M/M/S/S 
queue with the same r: by means of the PASTA property, PB is given by the Erlang-B 
formula. 
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The M/G/S/S/P queue is approximated as 
M/G/S/S/ with peak load r. 

Then, M/G/S/S/ is studied by means of the 
equivalent M/M/S/S queue with the same load 
r. 
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Thank you! 
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