Slide supporting material

Lesson 7: M/G/1 Queuing
Systems Analysis

Giovanni Giambene

Queuing Theory and Telecommunications:
Networks and Applications
2nd edition, Springer

All rights reserved

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Motivations for the Use of
the M/G/1 Theory

The assumption of Poisson arrivals may be reasonable since
the Poisson model is a limiting condition of the binomial distribution.

Many potential customers decide independently about arriving.

Each oil’ them has a small probability of arriving in any particular time
interval.

Probability of one arrival in a small interval is approximately
proportional to the length of the interval itself.

The exponential distribution for the service time is no
longer a good approximation in current packet-switched
networks: layer 2 packets may have a fixed length; files may have
a length better modeled by a heavy-tailed distribution, e.g., Pareto
distribution. Then, a general service time has to be considered.

M/G/1 theory can be used for modeling different aspects of the
networks.
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M/G/1 Queues

In the M/G/1 theory, the arrival process is
Poisson with mean arrival rate A, but, the
service time is not exponentially distributed.

The service process has some memory: if there is a
request in service at a given instant, the residual
service time of the request has a distribution that
depends on the elapsed service time.

A similar theoretical method to that of M/G/1 queues
can be applied to solve G/M/1 ones.
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Imbedded Markov Chains

2-D system state for M/G/1 queues: S(t) = {n(t) , (t)}.
n(t): Number of requests in the system at instant t;

1(t): Elapsed time from the beginning of the service of the currently-
served request.

To simplify the study, the M/G/1 queue is analyzed at imbedding
instants (, this is as if we take snapshots of the system state at
instants éi when we obtain a mono-dimensional Markovian system
(imbedded Markov chain), as detailed below.

Different alternatives are available to select imbedding
instants ; (especially #1 and #3 below for M/G/1 cases):

Service completion instants;

Customer arrival instants (used in the G/M/1 case for the study of
the waiting part);

Regularly-spaced instants, for special cases with time-slotted service
as TDM systems (e.g., ATM): o

slot slot slot
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Imbedding to Service
Completion Instants

Imbedding at service completion instants: () = 0, Vi
since at instant ¢, a request has completed its service
and no new request has yet started its service.

n, denotes the number of requests in the queue soon after
the service completion of the i-th request (instant *).

a, denotes the number of requests arrived at the queue
during the service time of the i-th request (ending at instant

G-

At instants ;, the state becomes mono-dimensional:
S(G&)=n(g) =n,
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Imbedding to Service
Completion Instants (cont’d)

If n; = 0, at the subsequent instant of service completion the
foIIowmg balance is valid: n,,; = n,—1 + a,_,.

Note that amon all requests in the queue, we do not pose special
conditions on the request that has been served.

If n; = 0, we have to wait for the next arrival that is immediately
served so that at the next completion instant ;,;* the system just
contains the arrivals occurred during the service time of the last
request; we have: n, ., = a;,4.

New arrival

ni=0 Ni+1 n;= 0
Aj+1 aj+1
e > < -->
A 4 > time

Gi Girl Giv2 G i+

Departure instants
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System Description

N, =N — I(ni )+ Ay
where I(x) = 1, x > 0; I(x) = 0, x = 0 (Heaviside function).

The above difference equation describes the behavior of the M/G/1

queue at imbedding instants.

Since the variables at the instant (., only depend on the variables at
instant C;, the M/G/1 system is characterized by a discrete-
time Markov chain at imbedding instants (‘'semi-Markov
chain’), as shown below.

_-¥ -y _-v
- - -

!

Prob{a; =0} Prob{a, = 0} Prob{a; = 0}
Prob{a, = 0} 7

In general, the arrival process is state-dependent.

The definitions/characteristics of
both n, and a,; depend on the
selection of imbedding instants.

In general, the solution of the discrete-
time Markov chain (i.e., determining the
state probability distribution) requires a
matrlx-%eometric approach or writing
cut equilibriums and an iterative
solution approach.

We will use an approach in the z
domain by adding some assumptions.
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Solution in the z-Domain with
Additional Assumptions

Let us assume that the M/G/1 queue admits a steady state.

P, denotes the probability (at regime) to have n requests in the queue

We focus on the difference equation that is solved in the z-domain
(i.e., PGF) and we use the following assumptions:

Memoryless arrival process (a; is memoryless: i.e., a; independent of a,_y,
independent of a._,, etc.) . This is a more general condition than a Poisson
process: we use fhe ‘M’/ G /1 notation, where ‘M’ stands for a
general memoryless arrival process (e.g., a Bernoulli arrival process
of packets on a slot basis).

Arrival process independent of the number of requests in the queue (n,
and g, are independent). This assumption is not needed using the cut
eqU|I|br|um or matrix-geometric approach.

2R, =X R YR ml) Pz A= R(z-DA@) ()

where P(z) is the PGF of the state probability distribution, n;, and A(z) is the PGF
of the number of arrivals in the service time of a request, a..
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Solution in the z-Domain with
Additional Assumptions

Let us assume that the M/G/1 queue admits a steady state.

P, denotes the probability (at regime) to have n requests in the queue
On both sides we take triple sum . .
: . s solved in the z-domain
on n. 4N, a.., by using the joint ptions:

probability P(n;,,n;, a;.1). The ss: i.e., a independent of a, ,,

result shown here is obtained after eneral condition than a Poisson
here ‘M’ stands for a

manipulations based on .g., a Bernoulli arrival process
independence assumptions and

i ictri I ' of requests in the queue (n,
marginal distributions. S not needed Using the cut

e F matrix-geometric approach.
Nis1 — mi—1(n;) 841
Zh: A Zk: Z a0 ZJ: A :> P(z)z- A(2)]=PR,(z-1)A(z) (*)

where P(z) is the PGF of the state probability distribution, n,, and A(z) is the PGF
of the number of arrivals in the service time of a request, a..
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Solution in the z-Domain with
Additional Assumptions

Let us assume that the M/G/1 queue admits a steady state.

P, denotes the probability (at regime) to have n requests in the queue

We focus on the difference equatt — 7 . ... ' '
(i.e., PGF) and we use the followi| 10 obtain this result we do not

Memoryless arrival process (a is | POSE special conditions on the

independent of a.,, etc.). This is| servi iscipline apart the
process: we use the 'M‘/G/1 no service discip p

general memoryless arrival p| cOnditions for the
of packets on a slot basis). applicability of the

Arrival process independent of th A
and a; are independent). This as lnsen5|t|v|ty property.

equilibrium or matrix-geometric approach. S
Miy1 — ni—1(n;) 811
Zh:Z P = Zklz a0 Zj:z Paa :> P(z)z- A(2)]=PR,(z-1)A@z) (*)

where P(z) is the PGF of the state probability distribution, n;, and A(z) is the PGF
of the number of arrivals in the service time of a request, a..
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Solution in the z-Domain with
Additional Assumptions

Let us assume that the M/G/1 queue admits a steady state.

P, denotes the probability (at regime) to have n requests in the queue

We fopcglg on ’E:Ihe differerp]cefeI uation thi Subscripts are here
l.e. t
(i.e ) and we use the following as omitted because we

Memoryless arrival process (a; is memo ,
independent of a, ,, etc.). This is a mord @5SUIME to StUdy the N

process: we use fhe ‘M’/G/1 notation probability distribution
general memoryless arrival procest . : . S
of packets on a slot basis). at regime, that is for |

Arrival process independent of the num| =2 -
and a; are independent). This assumptic

equilibrium or matrix-geometric approac?v_\/ -
Miy1 — ni—1(n;) 811
Zh:Z P = Zk:Z a0 Zj:z Paa :> P(z)z- A(2)]=PR,(z-1)A@z) (*)

where P(z) is the PGF of the state probability distribution, n;, and A(z) is the PGF
of the number of arrivals in the service time of a request, a..
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Solution in the z-Domain
(cont’d)

We can derive P(z) as:

z—-1
z—A(2)

In this P(z) formula we have an apparent singularity
at z = 1, but we can apply the Abel theorem to state
that it exists the lim of P(z) for z > 1- -pole-zero
cancellation- and should be necessarily equal to 1 for the
normalization condition. Therefore, we can solve this
limit by means of the Hopital rule:

lim P, 21 A(z) =1< P, xlim

71" 7 — A(Z) -1 ] — AI(Z)

P(z)=P,

A(2)

1o P =1-A()

Abel theorem + normalization Hopital rule
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Solution in the z-Domain
(cont’d)

Deriving with respect to z both sides of the z-equation (*) and computing
the result at z = 1, at the different orders of the derivative we obtain first
the empty queue probability P, and then the mean number of
requests in the queue N:

First derivative: P, = 1-A'(1) (normalization condition);

A" (1)

Second derivative: N =P(Q)=A@)+ 21— A@)]

The PGF of the state probability distribution P(z) only depends on
the PGF A(z) that, in turn, depends on the characteristics of the
arrival process, the imbedding instants, and the distribution of the
service time.

These results are insensitive to the service discipline adopted for the queue.
This solution is for a generalized queue (not only Poisson arrivals).
Stability condition is P, > 0 < A’(1) < 1 Erl; A'(1) is the traffic

intensity.
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Solution of the M/G/1 Queue
for Poisson Arrivals

Assumptions: Poisson arrival process and
system imbedded at the service completion
instants.

A(z) can be computed considering the PGF of the
number of arrivals in a given interval t, A(z | t) =
eM(z-1) and then removing the conditioning by means
of the probability density function of the service time,
g(t) [with corresponding Laplace transform I'(s)]:

v s to z domain
A(z) = [e*“Vg(t)dt =T(s =—A(z-1)) transform:
_ 0 s = -Mz-1)
or equivalently
A{ sj Z to s domain inverse
z=1-=|=T(s)
y) transform:

Z = 1-S/A
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Solution of the M/G/1 Queue
for Poisson Arrivals (cont’d)

We obtain: A'(1)=AE[X] = traffic intensity p and
A"(1)=A2E[X2].

Then, we can determine the mean number of
requests in the system N as:

Queuing term

N = A1)+

Then, the mean del idihg N by A
according to the Li

Service part

Pollaczek-Khinchin formula
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M/D/1 Queue

In this system, arrivals are according to a Poisson process with
mean rate A and have a fixed, constant service time, x. This is
for instance the case of the transmission of packets of a given size
on a link with constant capacity.

Imbedding points are at the end of the service of a request.

We can directly apply the Pollaczek-Khinchin formula to
determine the mean delay as:
AX?

T =X+
2[1- Ax]
For completeness, we have also A(z) = e™#1) and

7 _ 1)eﬂx(z—1)
7 _ e&x(z—l)

P(z)= (1—/1x)(
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MIL()]/D/1 Queue

This is a case with a bulk (or compound) Poisson arrival process with
PGF of the message length L(z) in packets. The lengths of messages are iid.

Each packet transmission time is here denoted by T.

We are interested in determining the PGF of the number of packets in the
buffer, P(z), and the mean packet delay.

We imbed the system at the end of a packet transmission. We can
apply the M/G/1 theory with some approximation. We derive A(z), the PGF
of the number of packets arrived in the service time of a packet:

Az|n)=L"(2) A'(1)=ATL()

A2)=2 (@) gor _gorars = AtQ)=[ATLOF +ATL @)

n!

We can write the classical M/G/1 difference equation with some
approximation in the case n, = 0. The mean number of packets in the
system N, and the mean delay for the transmission of a packet T, are:

N )= Al (1) 4 A" (1) T = N p [S] The _Little theorem is here
2[1 _A (1)] P ﬂ,L (1) applied to a compound process
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ML@]/D/1 Queue

The classical M/G/1 difference equation
can be used as a first approximation: we ;a1 process with
consider n.,; ~ a,,, forn. = 0 (i.e., we 1s of messages are iid.
neglect the existence of the packets after
the first one in @ message arriving at an oer of packets in the
empty buffer). We can remove this .

. . i iInsmission. We can
approximation by using the M/G/1 theory , gerive A(z), the PGF
with ‘different service times’, as shown in i a packet:

Lesson No. 9. L J)=ATLQ)

A'(1)=[ATLQF +ATL (@)

We can write the classical M/G/1 difference equation with some
approximation in the case n, = 0. The mean number of packets in the
system N, and the mean delay for the transmission of a packet T, are:

N o = A (]_) + AT (1) N p [ ] The Little theorem is here

2[]_— A (]_)] Tp = f(l) applied to a compound process
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ML@]/D/1 Queue

The same system admits another M/G/1
N ~model working at the level of
This is a case with a jyaggages; imbedding points are now at
PGF of the message
the end of message service times

Each packet transmi : :
We are interested in (Er@ansmissions). This is a trivial application

buffer, P(z), and the Of the Pollaczek-Khinchin formula: A(z) =

We imbed the sys eAT(z-1)

to apply the M/G/1 t

number of packets ¢

(z|n)— L"(2) These two models for the same system
ZL” /1T ' are both interesting: the MIL@1/D/1 model

n' characterizes the system at the level of
We can write the cle pgckets (number, delay); instead, the

approximation in
system N, and the r M/G/1 model characterizes the system at

N, = A the level of messages (number, delay).
Al_]_ A U_)J P /,“_ (1 L-1 dpplied w d COMmpounu process
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M/G/1 Delay Distribution in the
FIFO Case with Poisson Arrivals

At s Arrival instant of red VStem
are packet at the queue Buffer ad
reqL finding pther packets
inside
The — > ® > ability
d ISty After time Tp, [the
Bein system delay aing
h experienced by|the red
the packet Buffer Completion instant of red
packet leaving n packets _ _
\/ arrived at the queue in the [S =—4 (Z 1)]
. meanwhile. These are also
Sub the packets in the queve at  ng the
- the imbedding instant as
INV¢ modeled by PGF P(z) sform
of th :
Random variable Tp and PGF P(z) are thus related ....
(Z—=1JA(Z] oS ~-euing
T.(s)= P(Z] v, =R =TI'(s) delay
£=s z-A(2) | ., S—A+AL(S)
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M/G/1 Delay Distribution in the
FIFO Case with Poisson Arrivals

At service completion instant, the n requests left in the
system are those arrived during the system delay T,
experienced by a request from input to output.

The probability distribution for n coincides with the state probability
distribution with PGF P(z).

Being f5(t) the density function of the system delay [T(s) being
the Laplace transform], we can write in the Z- domam

The actual unknown term is fo(t). jeﬁ FE (t)dt =Ty [s =—A(z—1)]

Substituting the P(z) expression for the M/G/1 queue and using the
inverse transform z = 1 — s/A, we obtain the Laplace transform

of the delay distribution:
Queuing
=T'(s)¢ delay
z=1-s/A
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Delay Distribution Analysis for
the Mt21/D/1 Case with FIFO

In the FIFO case with a bulk (compound) Poisson arrival
process with PGF of the message length in packets L(z), the PGF of
the number of packets in the buffer, P(z), and the Laplace transform

of the probability density function of the pack elay,
Tpp(S), are related by means of the conditiaQ s = A[1- L(Z)].

ersion_ () =

: Z:L_l 1—— =

This expression z = z(s) can be substituted in P(z) of the M/G/1

solution to obtain Tp,(s) as: i
T, (s)=[—ATL'(1)] >XE

p

(s—A)L—[s(L-1)- AL]xe ™
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M/G/1 Theory Generalization

Kleinrock principle (also by P. J. Burke): for queuing
systems where the state changes at most by +1 or —1 gwe
refer here to the actual variations in the number o
requests in the queue, not to what are the state
changes between imbedding points), the system
distribution as seen by an arriving customer will be the same
as that seen by a departing customer.

Hence, the state probability distribution by imbedding the queue at

the departure instants is equal to the state probability distributions at
arrival instants.

Due to the PASTA property, the state probability distribution
at arrival instants is valid at generic instants (random
observer).

The state probability distribution at the service completion
instants coincides with the distribution of the continuous-

time system (random observer).
L. Kleinrock. Queueing Systems. New York: Wiley, 1975

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



M/G/1 Theory Generalization

Kleinrock principle (also by P. J. Burke): for queuing
systems where the state changes at most by +1 or —1 gwe
refer here to the actual variations in the number o

change For a compound Poisson process the
dlsmbtl generalization considered here is not 1€ Same
as ¥ a applicable. The Kleinrock principle is not ,
enc . jeue a
the d¢ applicable. utions at
arriva

Due to the PASTA property, the state probability distribution
at arrival instants is valid at generic instants (random
observer).

The state probability distribution at the service completion
instants coincides with the distribution of the continuous-

time system (random observer).
L. Kleinrock. Queueing Systems. New York: Wiley, 1975
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M/G/1 Theory Generalization

Ki

Sy
re|

ch
dig
as

In the case of a Bernoulli arrival
process on a slot basis (for which we

re can apply the ‘M’/G/1 theory), the

BASTA analogous property holds, so that
we can reapply the generalization result
below.

jueuing

1 or —1 gwe
Enber o

2 state
ystem

| be the same

the queue at
distributions at

arrival |n§c\/

Due to the PASTA property, the state probability distribution
at arrival instants is valid at generic instants (random
observer).

The state probability distribution at the service completion
instants coincides with the distribution of the continuous-

time system (random observer).
L. Kleinrock. Queueing Systems. New York: Wiley, 1975
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M/G/1 Theory Generalization
(cont’d)

As a further proof of the generalization of the state probabilitY
distribution of M/G/1 at generic instants, we could use the following
heuristic considerations.

The Pollaczek-Khinchin formula can also be applied to the M/M/1
queue (imbedding points at the service completion instants), where
mean and mean square values of the service time X are so related
(exponential distribution case): E[X2] = 2E[X]2.

JE[X?]

T=ElXJ 21— 2E[X]]

22E[X]  E[X]-2E[X[ +1E[X]  E[X]
2h-AE[X]] [L-AE[X]] 1-JE[X]

classical M/M/1 result

= T=E[X]+

exponential service time

We note that we obtain again the classical M/M/1 result that is
valid at any instant, not only at imbedding points.
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Numerical Inversion Method
for P(z)

The PGF P(z) of an M/G/1 queue has typically an expression that cannot be
inverted to obtain the state probability distribution. A numerical inversion
method is needed.

As explained in Lesson No. 3, P(z) can be seen as a Taylor series expansion
centered at z = 0 (i.e., MacLaurin series expansion). Hence, a simple
inversion method can be obtained looking at the definition of P(z2) :

Prob{x — k}zii p(z This method can be easily implemented in Matlab

kidz“ * 7 as shown in Lesson No. 19.
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M/G/1 Theory and Heavy-Tailed-
Distributed Service Times

Heavy-tailed (Pareto) distributions for the service time are frequent in
modern traffic. One disadvantage of using these distributions is that their
Laplace transforms often have no closed-form expressions and are thus not
easy to manipulate.

The M/G/1 state probability distribution depends on A(z), the PGF of the
number of arrivals in a service time. Moreover, the mean delay is given by
the Pollaczek-Khinchin formula, which requires to use mean and mean
square values of the service time. With heavy-tailed distributions, we
can have infinite mean and/or variance, which may entail some
paradoxical situations for the queues, as discussed below referring to
the Pareto distribution case with shape parameter 1.

In the M/Pareto/1 case, we need to have a finite mean value of the
Pareto service time (thus entailing y > 1) in order to have a stable queue.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



M/Pareto/1 Queue

If 1 <y < 2, the Pareto service time has finite mean and infinite variance (i.e.,
heavy tails). This entails that the queue is stable (there exists the state probability
distribution as well as the distribution of the delay), but the mean delay is infinite.
Hence, this is a very special (degenerate) case, where the infinite mean
delay does not imply the instability of the queue!

The PGF of the state probability distribution, P(z), depends on A(z) computed as
follows:

i f gt ?;ldt K7 j ety rigy ™S j e
k

The integral in A(z) cannot be expressed in a closed form. It can be
represented by means of the /ncomplete Gamma function, T'(a, y):

s=A(1-z)

= 7k’ J'e‘“t‘“dt = y(sky T(=, sk)( , where I'(a,y)= Ie '3t
k

s=A(1-2)

If y > 2, the Pareto distribution has finite mean and finite variance so that the mean
delay is finite. In this case, the Pareto distribution is not heavy-tailed.
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M/G/1 Mean Number of Requests
for Different Serv. Time Distrib.

Let us compare the mean delay of an M/G/1 queue for different service distributions
with the same mean arrival rate A and mean service time E[x]. Let p = LE[X]
< 1 Erl denote the traffic intensity.

The different service time distributions are characterized by the coefficient of variation
C,: c2_Var[X] . The exponential distribution has C, = 1.
- E[XT

The coefficient of variation C, is 0 for a deterministic random variable, is 1
for an exponential distribution, is greater than 1 for the hyper-exponential
distribution, and tends to o for heavy-tailed distributions.

Let us compare the mean number of requests in the system for exponential and
general service times (i.e., M/M/1 vs. M/G/1):

JE[X] 2E[x?] (ZE[X]P(c? +1) c2-1
=— b - . N =AEIX [+ ————-=JE|X Y =N 1+ AE[X v
M/M/1 1—2,E[X] VS M/G/1 [ ]+ 2(1—/1E[X ]) [ ]+ 2(1—Z,E[X ]) M/M/1 + [ 2
Var| X Var| X
We have: Numi <Nwen < Cv2 = ﬁ >1  Nywi >Nyen & Cv2 = E[)E]z] <1
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Comparison .... (cont’d)

Comparison of M/G/1 with different distributions

10 ‘ ‘ ‘ ‘ .
- Weibull k = 0.2 (C2 = 251)
4
10 = Weibull k = 0.5 (CZ = 5) E
- Exponential Weibul k=1, C2=1) | —
10" = v
S Rayleigh (Weibull k = 2, CZ = 0.26) IS
- \ /
10° =+ Deterministic (CZ = 0) \ C2 /]

mean number of requests in the system

0.2 03 04 05 0.6
traffic intensity, p [Erl]

0.7

0.8

0.9

1

Weibull distribution:

£, ()= %(éjuewk . 120

The Weibull distribution
is used since varying
parameter k, we can
obtain distributions with
different C,? values from
low values (< 1) to high
values (> 1).

At a parity of p, the mean waiting time of the M/G/1 queue increases with
C.? the square coefficient of variation of the service time.
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First Exercises on MI/G/1
Theory
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Exercise #1

We have a buffer of a transmission line that receives
messages coming from two independent processes:

First traffic. Poisson message arrival process with mean rate 1,
and exponentially-distributed service time with mean rate p;;

Second traffic. Poisson message arrival process with mean rate
A, and exponentially-distributed service time with mean rate p,.

Assuming pu; # W,, we have to determine the mean delay
from the message arrival (total arrival process sum of
both processes) to the buffer to its transmission
completion.
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Solution of Exercise #1

The first and the second arrival processes are at the input of the
buffer. Since they are independent Poisson processes, their sum is
still Poisson with mean rate A; + A,.

The service time probability density function, f(t), is not
exponential; it can be derived as weighted sum of the probability
density functions related to the two different input flows:

f(t)— A it A, ot Hyper-exponential service
B N I T time distribution (C, > 1)

We model this buffer by means of an M/G/1 queue: we imbed the
chain at the instants of message transmission completion and we
use the Pollaczek-Khinchin formula.

2 E[X]= AL, A 1
T = E[X ]+ 2[]91(_,; sz[))é[)]( ]] where M+d, o 4L+4, w,
—(4, +
1 2 E[XZ]: A 2 A, y 2

X +
Stability: (A, + A,)E[X] = A/uy + A/, < 1 Erl M+dy () A+l (u,)

The intensities of the two traffic flows sum.
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Exercise #2

We consider a link with a transmission buffer where messages
arrive according to a Poisson process with mean arrival rate A.

Each message is formed of a random number of packets,
each requiring a time T to be transmitted (compound
Poisson process). L(z) denotes the PGF of the message
length in packets that also corresponds to the PGF of the
message transmission time in T units.

Note:

All the packets of the same message arrive simultaneously.

The arrival process and the transmission one are continuous-
time (non-time-slotted).

It is requested to determine the mean message delay for a
generic L(z) by selecting suitable imbedding instants.
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Exercise #2

The arrival process at the
packet level is compound _
Poisson; instead, the same ion buffer where messages
arrival process is simply ss with mean arrival rate A.

Poisson at the message level. |m number of packets,
€ach res__d a ume 1 to be transmitted (compound
Poisson process). L(z) denotes the PGF of the message
length in packets that also corresponds to the PGF of the
message transmission time in T units.

Note:

All the packets of the same message arrive simultaneously.

The arrival process and the transmission one are continuous-
time (non-time-slotted).

It is requested to determine the mean message delay for a
generic L(z) by selecting suitable imbedding instants.
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Solution of Exercise #2

Let us imbed the system at the instants of message
transmission completion: this is the best option to measure
the performance at the message level (imbedding at the
end of packet transmission is not suitable to determine the
mean message delay).

Let n, represent the number of messages in the buffer at the end of
the transmission of the i-th message; let a; denote the number of
messages arrived at the buffer during the service time of the i-th
message.

We have a classical M/G/1 queue with Poisson arrival process.
Then, we directly apply the Pollaczek-Khinchin formula to derive

the mean message delay: Mean square value of the
T o N message transmission time
T =L@QT+ ZUC §1)+ L) [seconds|
Mean value of the message = ) 21-L'@AT]
transmission time The stability condition is ATL(1) < 1 Erl
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Exercise #3 (ATM-like case,
‘M’/D/1 queue)

Let us consider that fixed-size packets arrive at a transmission
buffer from two TDM input lines: line #1 and line #2. The
transmission of packets from the buffer is according to a TDM

output line.

Input and output slots have the same duration. Input TDM lines are synchronous
each other and synchronous with the output line as well.

A slot of the input line #1 carries a packet with probability p; a slot of the input
line #2 carries a packet with probability g. A packet needs a slot to arrive and to
be stored in the buffer before it can be sent (store-and-forward case).

The arrival processes on the two lines are memoryless and independent.

It is requested to determine the mean delay that a packet
experiences from the arrival at the buffer to the end of its
transmission. This is a first example of discrete-time system
that we solve by means of an ‘M’/D/1 queue.
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Solution of Exercise #3

Each input line contributes a Bernoulli

i . Buffer
arrival process on a slot basis.

I B
TDM line #1 : :
I B ' "
TDM line #2 Output line
Input lines

We study this discrete-time system by imbedding at the end of
the slots of the output TDM line.

Let n; denote the number of packets in the buffer at the end of the
I-th slot. Let a, denote the number of packets arrived from the two
input lines in the buffer during the i-th slot (we consider here the
sum of the independent input processes from lines #1 and #2).

We can write the following balance: n,,; = n—1+a,,; for n, > 0 and

n,; = a,; for n, = 0. This is the classical difference equation of
M/G/1 systems.
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Solution of Exercise #3

Each input line contributes a Bernoulli
arrival process on a slot basis. ——

. We st
the sl

-~ Letn,

of

f the

i-th sl two
input | the
sum o

- Wecca

N =
M/G/1 systems.
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Solution of Exercise #3

Each input line contributes a Bernoulli

arrival process on a slot basis. Buffer

I B
TDM line #1 : :
I B ' "
TDM line #2 Output line
Input lines

We study th|s dlscrete t|me system by imbedding at the end of

We con5|der a cIassmaI assumpt|on for this

type of systems: a packet must have e buffer at the end of the
completely arrived (1 slot) before its kets arrived from the two
transmission can start, according to the store- pt (we consider here the
and-forward approach. rom lines #1 and #2).

e the following balance: n.,; = n—1+a,, for n, > 0 and
n.,; = a,.; for n, = 0. This is the classical difference equation of
M/G/1 systems.
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Solution of Exercise #3
(cont’d)

The mean number of packets in the buffer is:

A'(D)

A )

[pkts]

where A(z) is related to the sum of two independent processes (product in
the z-domain of the PGFs):
Az) =(-p+2zp)L-q+2q)=(1-p)L-q)+2z[p—q)+ql- p)|+2°pg =
=A +ZA +7°A
A)=A+2A,=p+q  A(1)=2A,=2pq

The stability condition is A'(1) = p+ g < 1 Erlang

The mean packet delay is derived from N by using the Little theorem: we
divide N by is A'(1), the mean number of packets arrived per slot.

For time-slotted systems, we consider the PGF of the number of arrivals in a slot A(z).
Then, A'(1) represents the mean number of arrivals per slot. Therefore, we can apply the
Little theorem dividing the mean number of requests by A’'(1): T = N/A'(1) is expressed in
slot units.
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Solution of Exercise #3
(cont’d)

The mean packet delay is:

A( 1/
- N 4 A g, P4 [slots]
A1) 2i-A®] * (p+qll-p-q)
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Further Application
Examples of the M/G/1

Theory to
Telecommunications
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ARQ Scheme for
Reliable Transmissions
on a Link
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Analysis of an ARQ Scheme

We consider a transmission system with a buffer. The transmitter is used to send
packets on a radio channel. We know that:

Packets arrive in groups of messages (bulk arrival process)

Messages arrive according to exponentially-distributed intervals with mean value equal to T,
in seconds.

The length |, of a message in packets is according to the following distribution
(uncorrelated from message to message): Prob{l, =npktsj=q(l—-q)"", nef,2,..}

The buffer has infinite capacity.

The radio channel causes a packet to be erroneously received with probability p; packet
errors are uncorrelated from packet to packet.

An ARQ scheme is adopted.

Round trip propagation delays to receive ACKs are negligible with respect to the
deterministic packet transmission time, T (note *): if the transmission of a packet is
unsuccessful its retransmission is soon reattempted.

A packet sojourns in the buffer until its ACK is received.

We have to determine the mean number of packets in the buffer and the mean delay
that a packet experiences from its arrival at the buffer to its last and successful

transmission.
(*) The extension of this study to a case with high propagation delays is straightforward in the ARQ stop-and-
wait case.
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Analysis of an ARQ Scheme:
A Model with Feedback

eo______Transmitter

Receiver
Buffer Radio channel that
; : introduces random ;
_ | packet errors with | :
A=1T, messages/si probability p and 5 Error | Noefror
g negligible (*) ; check i
Packet arrival processi propagation delays

ACK

Bulk arrival process:
Messages arrive according to a Poisson process with mean rate A = 1/T, [messages/s].

Each message contains a number of packets with modified geometric distribution with
parameter q; 1/g = mean length of a message in packets.

Service process:

Due to the errors introduced by the channel, each packet requires a modified geometrically

distributed number of slots (with parameter 1-p) to be transmitted; 1/(1-p) = mean time Iin
slot units to successfully transmit a packet.

Each slot has duration T.

(*) The extension of this study to a case with high propagation delays is straightforward in the ARQ stop-and-
wait case.
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= The queue notation is also
SOIUtIOI\ related to the type of

imbedding instants selected.

The arrival process is compound Wcan still use the ‘M’/G/1
theory. In this case, we have an MlGéeoml/Geom/1 system.

We imbed the chain to the instants of successful packet transmission
(i.e., without error); a packet could be transmitted many times to achieve a
successful delivery. We can write as a first approximation the classical M/G/1
difference equation with n, and a,. The details of this approximation (related to
the bulk arrival process) will be clarified in Lesson No. 9.

A(z) denotes the PGF of the number of packets arrived in the time required to
successfully transmit a packet, T.. In the derivation of A(z) three random
variables need to be taken into account:

Number of messages arrived in T;

Number of packets conveyed by each message;

Time necessary in slots to successfully transmit a packet by means of ARQ (neglecting the
round trip propagation delay, all the ARQ schemes are almost equivalent), T,

i L(z)=
PGF of the message length in packets L(2) 1-z(1-q)

PGF of the time in slot to successfully transmit a packet T (z)= 21(1_ p)
1 1 —Zp
The input traffic intensity is: o AT x—
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Solution

The arrival process is compound Poisson, but we can still use the ‘M’/G/1
theory. In this case, we have an MlGeoml/Geom/1 system.

We imbed th€ chain to the instants of successful packet transmission
(i.e., withc Or); a packet could be transmitted many times to achieve a
successful dglivery. We can wi Note that we could even imbed the queue at
difference equatigh with n; anc the end of successful message
the bulk arrival'process) will b gransmissions thus obtaining a queue of the
A(z) denotes the PGRof the ni M/Geom/1, where the Geom service time is the
successfully transmit a’racket, result of the geometric number of packets per
variables need to be taken message composed with the geometric

Number of messages arrived ilN| distribution of the packet service time in slots.

_'F';;q”;f;ig:fk?rfsslc;’tr;";yggczSf The mean message delay is thus given by the

round trip progagation delay, all t Pollaczek-Khinchin formula. N.B. The composition
of two random variables with modified geometric
distributions has still a modified geometric
PGF of the time in slot to succ distribution with mean value given by the

_ o L product of the mean values of the composing
The input traffic intensity is: geometric variables.
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The derivatives of this compound
function A(z) can be obtained by leaving
T.(z) and L(z) in ‘implicit forms’, because
this allows easier derivatives by using
Ts(11/) =1, T,(1) =1/(1-p), L(z) = 1, L(1)
= q.

Solution (cont’d)

The PGF of the number of pacCkets arrived in the time to serve one

packet, A(z), is obtained My considering the twofold composition of
PGFs:

1 1
A(Z):Ts[] A(l)—l_px/iTxa

2
. AT 2p 1 AT 2(1-q)
Thisé:PGF of the A (1):{ } {(1 + }f 2

X
2
_ 1— 1—
number of packets arrived in T. g p) P P g

The buffer stability is assured if A'(z = 1) < 1 Erlang = AT/[q(1-p)]
< 1 Erlang.

The mean number of packets in the ARQ sender buffer N, and the

mean delay for the correct transmission of a packet T, are:
by means of the Little theorem

A"

_ A aN,
gy S
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Thank you!

giovanni.giambene@gmail.com
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