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Binomial Coefficient
and Factorial
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Binomial Coefficient and
Factorial

The Matlab® command to compute binomial coefficients is

nchoosek(N,K)
where N and K are non-negative integers.

This is equal to N!/[K!(N-K)!], the number of combinations of N
things taken K at a time.

Note that factorial values can be computed in Matlab® by means
of the Gamma function:

N! = gamma(N+1)
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Generation of Random
Variables
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Linear Congruential Random
Number Generator X < (0, 1)

The Linear Congruential Generator (LCG) represents one of the oldest and
best-known pseudorandom number generator algorithms. It is easy to
implement and fast.

The generator is defined by the recurrence relation:

X ., =(aX, +c) modm

where X, is the sequence of pseudorandom values, and

m, m > 0 is the "modulus”

a, 0 < a < m is the "multiplier"

¢ 0 < c< m isthe "increment"

Xor 0 £ Xy < m is the "seed" or “initial value™.

The period of a general LCG is at most /7, and for some choices of g it can
be much smaller than that. If ¢ = 0, the generator is often called a
multiplicative congruential method. In Matlab®, randn is based on
multiplicative LCG, where the seed is determined by the clock.
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Generation of Random
Variables

Use of the statistical toolbox of Matlab®: a lot of
information can be acquired by typing “help stats”.

Some random number generators supported:

rand([1,v_max]) to generate an array of v_max values with
uniform distribution between 0 and 1;

randn([1,v_max]) to generate an array of v_max values with
Gaussian distribution, null mean value, and unitary variance;

exprnd(ones([1,v_max])/lambda) to generate an array of v_max
values with exponential distribution and mean value 1/lambda.
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Histograms
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Histogram of Random
Variables

Histograms are experimental tools to characterize the probability
density functions (pdfs) of random variables. Let us consider a
random variable X defined on real numbers.

We can divide the real axis in intervals (also called
‘bins’) with the same size L. Then, we repeat n times the
experiment characterizing random variable X, recording how
many times the outcomes fall into a generic interval; let x
denote the outcome of the experiment at the j-th trial. We can
thus show in a bar graph, called histogram, the number of times
n; that x; falls into the generic i-th bin.

If the number of occurrences in each interval is divided by the
total number n of trials we have the relative frequencies f; =
n./n.
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Histogram of Random
Variables (cont’d)

As the size L of the bins in abscissa reduces and the number of
trials increases (i.e., n — ), the piecewise constant curve
with horizontal segments of length L and height f;/L
tends to be more smoothed and approaches the pdf of X.

There are different methods to determine the size of the bins in
order to achieve a good smoothed histogram. The rule-of-
thumb by Freedman-Diaconis determines the bin size L
as a function of the number of trials n as:

L=2xIQRxn /3
where IQR is the interquartile range, obtained as IRQ = Q3-Q1,
where Q1 is the first and Q3 is the third quartile of the data: Q1

= PDF-1(0.25) and Q3 = PDF-1(0.75), being PDF-! the inverse of
the Probability Distribution Function (PDF).
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Histogram of Random
Variables (cont’d)

We have a vector of values assumed by a random variable and we
need to derive some important measures, such as: mean,
variance, and the pdf that can be approximated by means of a
histogram (actually the corresponding piecewise constant curve).

“*mean(.)” and “var(.)” Matlab® commands can be used. Moreover,
the “hist(.)"” function can be used to generate histograms,
collecting the occurrences of a random variable in each bin. The
histogram can be plotted by means of the “bar(.)” command of
Matlab®. For instance, we use the command

N = hist(Y,X)

where X is a vector of the bins and Y is a vector of the random values.

This command returns the occurrences of Y in the bins with centers
specified by X. The first bin includes data between —« and the first center
and the last bin includes data between the last center and +«.
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Histogram of Random
Variables (cont’d)

histogram.m

clear all

% We consider that the stored vector statis.txt contains the values assumed by the

% random variable for which we would like to determine the histogram.

% The values of the random variable are stored in ASCII format in statis.txt.

% We read the values in statis.txt as follows:

% load statis

% However, in the example below we use a random variable ‘statis’ generated by Matlab according to
% an exponential distribution (alternatives are provided for uniform and normal distributions) with

% v_max samples

v_max=1000;

%statis=randn([1,v_max]); % for a Gaussian random variable with null mean and unitary variance
%statis=rand([1,v_max]); % for a uniform random variable from 0 to 1

lambda=2; statis=exprnd(ones([1,v_max])/lambda); % for an exponentially-distributed random
%variable with mean value 1/lambda

%

N=40; % N this is the number of classes (bins) to be used for the histogram

% If the number of samples of the random variable is 1000, N should not be greater than 100 in order
% to have a sufficiently-reliable estimate of the frequency of each class.
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Histogram of Random
Variables (cont’d)

[Y,X] = hist(statis,N); % This histogram command saves in Y the number of occurrences of the classes in X
L=X(2)-X(1); % This is needed to derive the amplitude of each class (all classes have the same bin size)
tot=sum(Y.*L);
Z=Y./tot; % Normalization of Y values so that the area below the graph is 1: Z represents a probability density function, pdf
subplot(211)
bar(X,Z)
xlabel('value')
ylabel('pdf")
% Determination of the Probability Distribution Function, PDF, as an integral (made on rectangles) of the pdf
I=length(2);
PDF(1)=Z(1)*L;
for i =2:l
PDF(i)=PDF(i-1)+Z(i)*L;
end
% As an alternative we could simply use: PDF=cumsum(Z*L);
subplot(212)
plot(X,PDF,'-r")
xlabel('value')
ylabel('PDF'")
mean(statis) % Computation of the mean of statis
var(statis) % Computation of the variance of statis
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Histogram of Random
Variables (cont’d)

These are the results (i.e., pdf and PDF) we achieve for the
exponential distribution with A = 2.
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Confidence Intervals:
Reliability of Results
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Simulations and Random
Numbers

The expression "Monte Carlo (MC) method" is very general.

MC methods are stochastic techniques, meaning they are based

on the use of random numbers and statistics to investigate
problems.

You can find MC methods used in everything from economics to
nuclear physics to traffic engineering problems.

Computer-generated numbers are not really random, since
computers are deterministic. But, given a number to start
with, the seed, a number of mathematical operations can be
performed on the seed in order to generate unrelated
pseudorandom numbers (e.g., the LCG method show at the
beginning of this lesson).

For a given seed, we have a given sequence of values assumed by a

random variable.
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Confidence Intervals:
Reliability of Results

We repeat the simulations for a better reliability
of results using each time a different seed. Let us
suppose to make J independent runs to evaluate a given
quantity of an experiment, and let ;, i = 1, ..., J be the
results obtained.

The mean value is computed as:
Aoean = 2o, Pl
The standard deviation is computed as:

1 = Jz;lzl(ﬂ’l = Anean )2 /(J —1)
d = 7
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Confidence Intervals:
Reliability of Results (cont’d)

The probability that the value of the random variable falls into the
interval [Ane..(1—-tolint/2), 4....(1+tolint/2)] is equal to folevel (typical
values of tolevel/are 0.90, 0.95, 0.99) where

tolint =~ o A

mean

and o = Quantile[StudentTDistribution(J-1), 1-(1-tolevel/2)] is
tabulated as shown in the next slide depending on fo/eve/and J.

The amplitude of the confidence interval is ax\A,, around the
central, mean value.

Relatively-large confidence intervals [measured in percentage as
+1000ryy / (2hnean)] highlight non-reliable results.
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Confidence Intervals:
Reliability of Results (cont’d)

The following table gives the values of o as function of the number
of independent results (J repetitions) and of the tolerance level
tolevel. For instance, we need to use a = 2.306 for the 95-th
percentile confidence intervals with 9 repetitions.

J tolevel=90% tolevel=95% tolevel=99%
3 2.920 4.303 9.925
4 2.353 3.182 5.841
5 2132 2.776 4.604
6 2015 2.570 4.032
7 1.943 2.447 3.707
8 1.895 2.365 3.500
9—1866 @ 3.355

10 1.833 2.262 3.250
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Confidence Intervals:
Reliability of Results (cont’d)

The “errorbar(.)” command of Matlab® can be used to
plot graphs with reliability intervals.

For instance:

errorbar(X,Y,E)

plots Y with error bars [Y-E Y+E].
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Confidence Intervals: an
Example

intervals_confidence.m
% Simulation with 9 repeated runs (results) for each point

X=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.92 0.94];

delay_sim(1, :)=[0.0150 0.0150 0.0150 0.0150 0.0148 0.0149 0.0151 0.0150 0.0150];
delay_sim(2, :)=[0.0166 0.0167 0.0165 0.0167 0.0167 0.0167 0.0167 0.0166 0.0167];
delay_sim(3, :)=[0.0186 0.0185 0.0183 0.0187 0.0186 0.0187 0.0185 0.0187 0.0190];
delay_sim(4, :)=[0.0210 0.0209 0.0206 0.0210 0.0210 0.0212 0.0209 0.0213 0.0211];
delay_sim(5, :)=[0.0236 0.0239 0.0231 0.0238 0.0239 0.0239 0.0237 0.0242 0.0241];
delay_sim(6, :)=[0.0277 0.0274 0.0271 0.0278 0.0279 0.0279 0.0275 0.0280 0.0280];
delay_sim(7, :)=[0.0336 0.0334 0.0308 0.0338 0.0338 0.0339 0.0330 0.0339 0.0337];
delay_sim(8, :)=[0.0449 0.0446 0.0390 0.0445 0.0453 0.0453 0.0446 0.0459 0.0453];
delay_sim(9, :)=[0.0968 0.0924 0.0500 0.0975 0.0953 0.0970 0.0933 0.1102 0.0992];
delay_sim(10, :)=[0.1231 0.1157 0.0692 0.1177 0.1156 0.1235 0.1221 0.1385 0.1257];
delay_sim(11, :)=[0.1650 0.1577 0.1605 0.1597 0.1643 0.1614 0.2016 0.1786 0.2538];
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Confidence Intervals: an
Example (cont’d)

% calculating confidence intervals
% coefficient alpha (renamed below k) for 9 repeated runs
k=2.306;
for tt=1:11
sum_del=0;
for j=1:9
sum_del=sum_del + ((delay_sim(tt, j)-mean(delay_sim(tt, :)))"2)/8;
end
sd_del=sqrt(sum_del)/sqrt(9);
Conf_Del(tt)=sd_del*k/2;
Del(tt)=mean(delay_sim(tt, :));
end
errorbar(X, Del, Conf_Del, '--r')
xlabel("\lambda T_{frame} [Erl]")
ylabel("T_{tot} [s]")
grid
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Confidence Intervals: an
Example (cont’d)
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Iterative Methods for
Markov Chains
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Erlang-B Formula
Computation, M/M/S/S

The blocking probability P, of an M/M/S/S queuing systems with
input traffic of p Erlang is expressed by the formula below:

i Erlang-B formula

The Erlang-B formula cannot be directly computed when the
number of servers, S, is high due to the presence of factorial terms.

An iterative method has been adopted to compute the Erlang-B

formula for increasing number of resources S as shown in the next
slide.
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Erlang-B Formula
Computation, M/M/S/S (cont’d)

Iterative method to compute the Erlang-B formula:
erlangb.m

R(p.0)=1 function erlangb=erlangb(a,c)
1 i ris=1;
Pb(P'S) pr(p,S—l) for i=1:c
ris=1/(1+i/(a*ris));
end
erlangb=ris;
return

In the next slide we show a Matlab® script to compute the server
utilization p(1 - P,)/S of an M/M/S/S queuing system where p is
the maximum traffic load allowing P, < 1% for a certain S.
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Erlang-B: Optimization of
Resources with a Constraint

utilization.m
clear all

rho=5:1:100; %input traffic intensity in Erlangs
|=length(rho);
req=0.01; %requirement on the blocking probability, 1%
for j=1:1
load=rho(j);
S=0;
Pb=1;
while Pb>req
S=S+1; % while cycle on the number of servers
Pb=erlangb(load,S); % use of the ERLANG-B formula in a function
end
u(j)=load*(1-erlangb(load,S))/S;
end
plot(rho,u,’-")
xlabel('offered traffic intensity, \rho')
ylabel('server utilization")

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Erlang-B: Optimization of
Resources with a Constraint
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Numerical Inversion
of Probability
Generating Functions
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Numerical Inversion of
Generating Functions

Let us consider for instance the following PGF:

We can immediately invert this PGF to obtain the
following distribution:
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© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Numerical Inversion of
Generating Functions

The inversion of this PGF can also be obtained by noting
that a PGF can be seen as a Taylor series expansion
centred at z = 0 (i.e., MaclLaurin series expansion):

k
Prob{X =k}= %:? X(z

z=0

We can use the Matlab® symbolic toolbox to
compute the derivatives of X(z) at z = 0 as detailed in
the following code:
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Numerical Inversion of
Generating Functions (cont’d)

We consider the Matlab® command to differentiate
diff(S,'v', n)

This command allows us to differentiate n times
expression S with respect to the symbolic variable v.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Numerical Inversion of
Generating Functions (cont’d)

The Matlab® script code below is used to invert the PGF:

inversion_PGF.m

clear all

syms z
Xz=(1/4)+(1/4)*z+(1/4)*z~2+(1/4)*z"3;
for i=2:5

prob(i)=eval(diff(Xz,'z',i-1))/gamma(i);

end

prob(1)=eval(Xz2);

z=0;

p=eval(prob);
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Numerical Inversion of
Generating Functions (cont’d)

Let us consider another example to invert the following
PGF P(z) related to the number of requests in an M/D/1
queue:

7 1)~
P(o)=(1-p) R

This PGF cannot be inverted in a closed form and the
proposed Matlab® approach can be used to numerically
determine the distribution P, corresponding to P(z):
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Numerical Inversion of
Generating Functions (cont’d)

The resulting M/D/1 state probability distribution for p =
0.5 Erlangs is shown in the graph below:
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Numerical Solution of
Equations

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Numerical Solution of
Equations

The numerical solution of non-linear systems of equations is
supported by the following Matlab® command of the Optimization
toolbox:

X=fsolve(FUN,X0)

The “fsolve(.)” method uses the vector X0 as starting point and tries
to solve the equations in FUN (equations of the form '‘FUN = Q). fsolve
adopts an iterative method to return a solution vector X of the
equations in FUN.

In case of multiple solutions, the solution determined by the fsolve
method depends on the starting point selected in XO.
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Numerical Solution of
Equations (cont’d)

The fsolve Matlab® routine permits to solve sets of non-
linear equations using the (quasi-)Newton method.

The Newton method uses an iterative process to approximate one
root of a function f(x), i.e., f(x) = 0.

The specific root that the process locates depends on the initial value x,.

It is useful to determine initially the number of solutions allowed by the problem.

Newton method in one variable: given a function f(x) and its
derivative f '(x), we begin with a first guess x, for a root of the
function. Provided that the function f(x) has a “reasonable
behavior”, a better approximation of the root is x, obtained as:

X =X~

Geometrically, x, is the intersection with the x-axis of a line
tangent to F(x) at £(x,).

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Numerical Solution of
Equations (cont’d)

The process is repeated according to the equation below

until a sufficiently-accurate root is reached (a relative error
stop criterion is used):

oy ) Tangent
ntl = A fl(xn) to f(X)
in £(x,)-
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Numerical Solution of
Equations: a First Example

We have to solve the following transcendent equation
F(c) in the unknown o:

oc=e"Vr o F(a) —o—el"Vr -

We can use an iterative method and the “fsolve(.)”
function in Matlab®:

cover.m
r=0.5; dml.m
save dati r function dm1 = dmi(s)
sigma=fsolve('dm1', 0) load dati

dml = s-exp((s-1)/r);
Equation in ¢ (here s /return
variable) of the form F(c)
=0
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Numerical Solution of
Equations: a First Example

To improve the accuracy of the solution (up to 10-°) we
need to use ‘optimset’ in the “fsolve(.)” command as
follows:

sigma=fsolve('dm1', 0, optimset('TolFun',1e-6))
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Numerical Solution of
Equations: WiFi Analysis

Let us consider another example related to the saturated analysis of
the WiFi access as shown in Lesson No. 10.

1 is the probability that a station transmits in a randomly-chosen
slot time. A transmission occurs when the backoff time counter is
equal to zero, regardless of the backoff stage:

T= Zm:bi’o
i=0

p is the collision probability for a general transmission attempt: the
probability that a transmitted packet encounters a collision, is the
probability that, in the same time slot, at least one station of the
n— 1 remaining ones transmits:

p=1-(1-7)"
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Numerical Solution of Equat.:
WiFi Analysis (cont’d)

p and t equations form a system of non-linear equations
that can be expressed as follows:

2(1-2p) _ .
1-2p)W +1)+ pw it (2p)"]
p=1-(-7)"

T =

N

This system admits a single solution that depends on
parameters:

Initial contention window, W
Number of WiFi stations, n
Number of backoff stages, m.
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Numerical Solution of Equat.:
WiFi Analysis (cont’d)

We can use the “fsolve(.)” function in Matlab® (iterative method) to
determine the solution for the system in p and r:
cover2.m

wifi.m
e _ _ function wifi = wifi(p)
mM=16; % a lower value is used in the standard :
load dati

enne=1:1:50;
|=length(enne);
for i=1:l tau=2*(1-2*p)/((1-

n=enne(i); 2*p)*(W+1)+p*W*(1-(2*p)~m));

save dati W m n

collision(i)=fsolve('wifi' , 0); wifi = p-1+(1-tau)™(n-1);
end
plot(enne,collision,'-b") return

xlabel('number of stations, n')
ylabel('collision probability, p")
grid
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Numerical Solution of Equat.:
WiFi Analysis (cont’d)

The graph below shows the resulting behavior of p as a
function of n:
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Thank you!

giovanni.giambene@gmail.com
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