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In the Past… 

z In the world of telephony, traffic modeling was the basis of 
initial analytical methods for performance evaluation: 
 

y Poisson arrival process 
 

y Exponentially distributed call (service) duration. 

 

z The strength of these types of traffic models is the 
memoryless property of the exponential distribution 
and the possibility to solve queues by means of 
Markov chains (M/M/… queues). 

 

y Queuing literature was based on these assumptions that allowed a 
very successful design of telephone networks. 
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The Initial Discovery 

z In 1989, W. E. Leland and D. V. Wilson begun taking high-resolution 
traffic traces at Bellcore US. New phenomena were highlighted on data 
traffic: 
 

y Highly bursty traffic; 
 

y Burstiness on multiple time scales: burstiness remains after 
aggregation on several time scales. 

 

x If we plot the number of packets arrived per time interval as a function 
of time, then the plot looks ‘‘the same’’, regardless of the size of 
the interval we choose (fractal property). 

 

y Heavy-tailed distributions of file sizes and corresponding 
transmission times ( infinite variance or in any case very high 
values of the variance). 
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Fractals 

z A fractal is a rough or 

fragmented geometric 

shape that can be split 

into parts, each of which 

is (at least approximately) 

a reduced-size copy of 

the whole. 
 

z The traffic in the 

network can have 

fractal characteristics 

in relation to time: as 

we aggregate the traffic 

on larger time scales, we 

achieve the same traffic 

profile. 
 

 

 

  

The Koch curve (1904) is 
obtained with iterations and 
tends to the snowflake fractal 
curve. 
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Example of Traffic with 

Fractal Property 

 

 

z The bits generated as a function of time on 1 s time basis, X. 
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Example of Traffic with 

Fractal Property 

 

 

z The bits generated as a function of time on 5 s time basis, X(5). 
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Example of Traffic with 

Fractal Property 

 

 

z The bits generated as a function of time on 10 s time basis, 

X(10). 
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Example of Traffic with 

Fractal Property 

 

 

z The bits generated as a function of time on 20 s time basis, 

X(20). 
 

The traffic  profile 
(burstiness) 
does not change  
by aggregating 
the traffic 
on wider time 
intervals. 
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Important Literature on Self-

Similar Traffic 

W. E. Leland, M. Taqqu, W. Willinger, D. Wilson, “On the Self-Similar Nature of Ethernet Traffic”, 
IEEE/ACM Trans. Networking, 1994. 
 

V. Paxson, S. Floyd, “Wide-Area Traffic:  The Failure of Poisson Modeling”, IEEE/ACM Trans. 
Networking, 1995.  
 

M. Crovella, A. Bestavros, “Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes”, 
IEEE/ACM Trans. Networking, 1997.  
 

W. Willinger, M. S. Taqqu, R. Sherman, D. V. Wilson, “Self-Similarity Through High-Variability: 
Statistical Analysis of Ethernet LAN Traffic at the Source Level”, IEEE/ACM Trans. Networking, Vol. 5, 
No. 1, pp. 71-86,1997. 
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Definitions 

z Let us consider a stochastic time series X = (Xt; t = 1, 2, 
3, …) representing the amount of data generated in 
consecutive time intervals of equal size. 
 

y If Xt is a second-order stationary process, then the mean E(Xt) 
= μ and the variance Var(Xt) = σ2 are time-independent, 
and the autocorrelation depends only on the lag k between the 
instants t+k and t as: 

 
 

y We define the m-aggregated series X(m) = (Xn
(m); n = 1, 2, 3, 

…) by averaging the original series X over non-overlapping 
blocks of size m: 

 

 
   

2

 
  tkt XXE

kr Note: r(0) = 1 

   

m

XX
X

kmmkm

k

11 ...  




© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Definitions (cont’d) 

z Positive correlation in a process: big observation 
usually followed by another big observation, or small 
observation followed by small observation. 

 

y Traffic traces showed strong positive correlations on a 
broad range of timescales. 

 

z Negative correlation in a process: big observation usually 
followed by small, or small by big. 
 

z There is no correlation in a process if 
observations are unrelated. 

 

y This is the case of a Poisson process that is known to be a 
memoryless process. 
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Historical Details 

z Harold E. Hurst was a hydrologist who began working on 
the Nile river dam project in about 1907. 
 

z He spent 40 years studying almost 800 years of records 
of Nile river. 

 

y Hurst observed that the records of flow or levels at the Roda 
gauge, near Cairo, did not vary randomly, but showed series of 
low-flow and high-flow over years.  
 

y His problem was: How much discharge could be set, such that 
the Nile reservoir never overflowed or emptied ? 

 

z The Hurst parameter H is used to characterize the 
fractal property of a process, in our case the 
traffic flow. 
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Long-Range Dependent Traffic: 

Definition and Characteristics 

z Self-Similarity (SS) 
 

y X is self-similar if X and m1-H X(m) have the same variance and autocorrelation. H is 
the Hurst parameter. This is the fractal property of the traffic. The original 
traffic trace and its m-aggregations have the same bursty profile. 
 

z Long-Range Dependency (LRD) 
 

y Sr(k) = , i.e., autocorrelation is not summable [if Sr(k) < , the process 
has a short-range dependence]. 
 

y Its autocorrelation r(k)  k–β as k   (with 0 < β < 1), which means the process 
follows a power law, rather than exponential decaying.  
 

y An SS process is LRD if 0.5 < H < 1 with β = 2(1H): self-similar processes 
are the simplest way to obtain LRD processes. 
 

y The degree of SS and LRD (autocorrelation) increases as H g 1. Whereas, a H 
value of 0.5 indicates the absence of long-range dependence (short 
range dependent processes as well as pure random processes have H = 
0.5). 
 

z Heavy-tailed distributions are involved in generating LRD traffic. 
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Graphical Tests for Self-

Similarity 

z There are different ways to graphically test the SS 
characteristics of a traffic trace. The method we consider 
here is the variance-time plot: 

 

y Rely on slowly-decaying variance of self-similar series. 
 

y The variance of X(m) is plotted versus m on a log-log plot 
 

x A slope –b greater than –1 is indicative of SS (and LRD): –b = 2(H – 
1) > –1  

 

 



Variance-Time Plot: Slope 

Yields the Hurst Parameter 
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Slope greater than 1 (and lower 
than 0) for SS processes; the 
relation with the Hurst parameter 
is as follows: slope = 2(H1) 

 

 

Slope = 1 for short-
range and memoryless 
processes (H = 0.5) 

m 1 10 100 10 10 10 10 
4 5 6 7 

0.0001 

0.001 

10.0 

0.01 

100.0 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

A power law Y =aXk  

becomes linear in a  

log Y - log X plot. 



Autocorrelation Function and 

LRD Property 
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Typical behavior of a long-range- 

dependent process r(k)  kb 

(0 < b < 1).  

Typical behavior of a short-range 

dependent process: r(k) has  

a rapid decay to 0 so that  

it is summable. 
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Key Concepts for LRD Traffic 

z Heavy tails in the file size entail high variance in the 
transmission times. 
 

z High variances of transmission times entail self-
similarity and long-range dependent behavior at the 
session level and traffic burstiness on multiple scales of 
aggregation.  
 

z Traffic burstiness causes higher queuing delays in the 
nodes of the networks (see the next example on the 
impact of H on the queue behavior). 

 



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Poisson vs. Self-Similar 

z A Poisson process  
 

y appears bursty when observed on a fine time scale; 
 

y flattens when aggregated on a coarse time scale. 
 

z A self-similar (fractal) process 
 

y When aggregated over wide time scales (i.e., considering X(m) 
for increasing m values), this traffic maintains its bursty profile 
(shaping is not effective in smoothing this traffic; a too long time is 
needed to reach the regime condition). This is different from a 
Poisson process where the aggregation of traffic leads to an 
almost-constant profile. 
 

z For emerging future networks, the Poisson model fails to capture 
the traffic characteristics. 
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Characteristics of Network 

Traffic 

z LAN, ATM, TCP/IP, 3G core network, and video VBR 
traffics are both SS and LRD. 
 

z The analysis of Ethernet traffic in terms of packets/time 
unit has shown that H is between 0.8 and 0.95. 
 

z Isolated voice sources are, on the contrary, well 
described by fluid-flow ON-OFF Markov models (short-
range dependent traffic). 
 

z The greater H, the longer the traffic correlation 
degree (traffic peaks last for longer intervals) and 
the worse the queuing performance. 
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SS Traffic and Queue 

Analysis 

z Three probability distributions play an important role in modeling SS 
traffic characteristics, such as Pareto, Lognormal, and Weibull. 
These distributions are heavy-tailed. 
 

z If we like to analyze Internet congestion using queuing theory, then 
we have to deal with the Pareto, Lognormal, and Weibull 
distributions. 
 

z Many of the available results from queuing theory require 
the existence of the Laplace transform of the underlying 
interarrival or service time distributions. 
 

z Pareto, Lognormal, and Weibull distributions do not have 
closed-form expressions for their Laplace transforms. This 
entails some problems in applying the results of the 
classical queuing theory. 



The Impact of H on Queue 

Performance 

z The queue length distribution 
 

y Has an exponential decrease with traditional Poisson traffic (H = 0.5); 
 

y Decreases much more slowly with SS traffic: queue length distributions 
have SS and LRD characteristics. 

 

z The network could have a bad performance if we do not take 
SS&LRD traffic characteristics into due account in the design phase. 
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Short-Range-

Dependent Traffic 

Models 
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Web Traffic Characteristics 

z As for Web traffic, we have to consider that it uses HTTP (Hyper Text 
Transfer Protocol) over TCP (Transmission Control Protocol). 
 

z It is complicated to use models or real traffic traces for TCP-based traffic, 
since they should account for the feedback nature of TCP with the 
related round trip time. 
 

z To overcome these difficulties, the Markovian model in the next slide has 
been proposed (ETSI, 3GPP) to describe the arrival process of IP packets 
due to Web downloading traffic. 
 

z For a more recent model for Web traffic (HTTP traffic), we can consider the  
PackMime-HTTP model that has been developed in the ns-2 simulation 
environment. This bursty traffic generator is characterized by a single 
parameter that represents the connection arrival rate per HTTP source 
cloud. Web site: 
http://www.cs.odu.edu/~mweigle/research/netsim/packmime-nsdoc.pdf 
 

z Recent statistics on the Web traffic (2010) are avaiable at the following 
Web site: https://developers.google.com/speed/articles/web-metrics 

 

http://www.cs.odu.edu/~mweigle/research/netsim/packmime-nsdoc.pdf
http://www.cs.odu.edu/~mweigle/research/netsim/packmime-nsdoc.pdf
http://www.cs.odu.edu/~mweigle/research/netsim/packmime-nsdoc.pdf
https://developers.google.com/speed/articles/web-metrics
https://developers.google.com/speed/articles/web-metrics
https://developers.google.com/speed/articles/web-metrics


© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Web Traffic Characteristics 

z As for Web traffic, we have to consider that it uses HTTP (Hyper Text 
Transfer Protocol) over TCP (Transmission Control Protocol). 
 

z It is complicated to use models or real traffic traces for TCP-based traffic, 
since they should account for the feedback nature of TCP with the 
related round trip time. 
 

z To overcome these difficulties, the Markovian model in the next slide has 
been proposed (ETSI, 3GPP) to describe the arrival process of IP packets 
due to Web downloading traffic. 
 

z For a more recent model for Web traffic (HTTP traffic), we can consider the  
PackMime-HTTP model that has been developed in the Ns-2 simulation 
environment. This bursty traffic generator is characterized by a single 
parameter that represents the connection arrival rate per HTTP source 
cloud. Web site: 
http://www.cs.odu.edu/~mweigle/research/netsim/packmime-nsdoc.pdf 
 

z Recent statistics on the Web traffic (2010) are avaiable at the following 
Web site: https://developers.google.com/speed/articles/web-metrics 

 

According to the data of year 2010, the 
average size of a Web page is 320 kB, the 
average number of objects (gets) per 
Web page is 44.5, the average number of 
hosts to connect to retrieve objects when 
accessing a Web page is 7. 

http://www.cs.odu.edu/~mweigle/research/netsim/packmime-nsdoc.pdf
http://www.cs.odu.edu/~mweigle/research/netsim/packmime-nsdoc.pdf
http://www.cs.odu.edu/~mweigle/research/netsim/packmime-nsdoc.pdf
https://developers.google.com/speed/articles/web-metrics
https://developers.google.com/speed/articles/web-metrics
https://developers.google.com/speed/articles/web-metrics
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Web Downloading Traffic 

Model 

z Web traffic is generated according to an ON-OFF Markov 
model (UMTS 30.03): 
 
 
 
 
 
 
 
 
 
 
 

z This is a 2-state MMPP traffic  
 source of IP datagrams. 

 
 

 

y In the activity phase (ACT) traffic is generated as: 
 

x A geometrically-distributed number of datagrams 

(mean mNd = 25) is produced. 
 

x Exponentially distributed interarrival times, mean mDd 

= 1/(2q) s; parameter q allows modulating the 

burstiness of the traffic source. 
 

x Each datagram has a truncated Pareto distribution in 

bytes (mean length Lw  pkts).  
 

y In the inactivity phase (IDLE) no traffic is 

produced: the time spent in this state is 

exponentially distributed with mean mDpc (= 4 s). 

 

  
IDLE   

ACT 

 
 

  

 
 m Nd 

m Dd 
 
1 

 

Dpc  ( m ) 
-1 

A. Andreadis, G. Benelli, G. Giambene, B. Marzucchi, "A Performance Evaluation Approach for GSM-based Information Services", 
IEEE Transactions on Vehicular Technology, Vol. 52 , No. 2, pp. 313-325, March 2003. 
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Fluid-Flow Traffic Model for 

Video Sources 

z Video sources (real-time, conversational or streaming class) generate traffic 
according to a fluid-flow model with bit-rate modulated by a discrete-time 
Markov chain. A time slot is used as the basis of the traffic generation. 

z A video source can be obtained as the superposition of M ON-OFF 
minisources (a minisource in the ON state produces a constant bit-rate 
equal to A). 
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The time interval spent in ON (OFF) 
state by a minisource is geometrically- 
distributed with mean p (q). 
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Fluid-Flow Traffic Model for 

Video Sources (cont’d) 

z Each mini-source in ON produces a constant bit-rate A [bit/s]: 

 

 

 

 
 We have assumed: / = 16. 

 

 One IP-video packet is generated every 10 - 20 ms (video 
frame). 
 

 M = 10 or even greater. 
 

 All these parameters can be derived through a fitting process 
with a real video trace (according to different possible standards 
and formats). 
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O. Casals, C. Blondia, “Performance Analysis of Statistical Multiplexing of VBR Sources”, in Proc. of INFOCOM’92, pp. 828-838, 1992. 
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Long-Range-

Dependent Traffic 

Model 
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M/Pareto Model 

z A typical SS and LRD traffic source is given by the 
M/Pareto model. 
 

y M/Pareto traffic is generated as Poisson arrivals (mean rate l) of 
overlapping bursts.  
 

y The arrival of packets during a burst is constant for its duration 
with rate r packets/s.  
 

y The duration of each burst is a random variable, according to a 
Pareto distribution (parameter g) with finite mean and infinite 
variance in order to have heavy tails. 

 

z This traffic model corresponds to an M/G/ 
system (Poisson arrivals of bursts/General burst 
duration/infinite bursts can be simultaneously 
present). 
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M/Pareto Model (cont’d) 

z Let l denote the mean arrival rate of bursts according to a Poisson process: 
 
 
 
 

z The Pareto distribution has complementary distribution as: 
 
 

 
 

 if 0 < g < 2 (and d > 0), the Pareto distribution is heavy-tailed and we need to have 
1 < g < 2 in order for this traffic source to generate self-similar traffic with Hurst 
parameter in (0.5, 1). 

 
z The mean of X is dg/(g1) s and its variance is infinite.  

 

z The mean number of packets within one burst is rdg/(g1). 
 

z The mean traffic produced by an M/Pareto source is rdgl/(g1) in packets/s. 
 

z The M/Pareto model generates SS traffic with Hurst parameter H = (3g)/2. 

 

   t
n

e
n

t
ntA ll 

!

)(
Prob

 

 




















otherwise,1

,
Prob

d
d

g

x
x

xX



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Final Comments on Traffic 

Models 

z FTP session arrivals are well modeled by Poisson 
processes. 
 

z A number of WAN traffic characteristics are well modeled 
by heavy-tailed distributions. 
 

z The packet arrival process for typical Internet 
applications as well as the aggregate Internet traffic is 
self-similar. 

T. B. Fowler. “A Short Tutorial on Fractals and Internet Traffic”, Telecommunication Review,  Vol. 10, 1999. 
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Thank you! 

 

giovanni.giambene@gmail.com 

 


