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Introduction

The interest is in considering networks where nodes
exchange traffic.

Open networks, where traffic can be received and sent outside
the network.

Closed networks, where the traffic cannot be exchanged with
external nodes. Closed networks are more related to the
modeling of digital computing systems.

Our interest is on open networks that are well suited
to model IP networks, where different nodes
(modeled by means of queues) exchange data traffic
in the form of variable-length messages.
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Store-and-Forward Networks
and Model as Net. of Queues

The network is formed of nodes and links.

Node #1 Node #2
Node #1 Node #2

@

Node #3 Node #4

Network Model of the system as a

network of queues (store-and-
forward nodes)
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Model of Open Network of
Queues

We consider a model, where the generic i-th node
receives input traffic with mean rate ); from outside
the network and receives also traffic routed from other
nodes of the network that contribute a total mean input
rate indicated by A..

Each arrival corresponds to a message with (in general)
a random length.

The total arrival process at the i-th node is randomly
split among the different outgoing links from the i-th
node.
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Model of Open Network of
Queues (cont’d)

Each link is modeled by a buffer and a transmission
line (i.e., one server) with a suitable capacity.

We consider queues with infinite rooms (i.e., no loss
phenomena).

Let g;; denote the split probability for the total traffic of
the i-th node to be routed to the j-th node of the
network; 1-Zq;; denotes the probability that the
traffic leaves the network at the i-th node.
Under stability assumptions, the traffic carried by the generic link
from node i to node j is Aq;

g; can also be different from 0 if there is traffic looped back onto
the same node. This modifies the burstiness characteristics of the

input traffic.
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Model of Open Network of
Queues (cont’d)

In our generic network model, we consider the
set of nodes labeled with nhumbers i from 1
to N and the related set of links (modeled by

queues) labeled with numbers k from 1 to
L.

We can study this network at the level of
nodes or at the level of links.
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Model of Open Network of
Queues (cont’d)

The generic i-th node can be described as depicted below.

Traffic leaving the
network at the i-th
node

Output traffic destined
. to other nodes

Input traffic from
outside the network i }m Aj

N
Link from
»node i to Z qij < 1
j=1

'/ nodej
Link from g;A 1hmmwmf/ This sum can be lower
Eggz:to Juees -y than 1, because there
FAE can be traffic that
Input traffic from leaves the network at
other nodes of the the node.
network

o Moreover g; can be
This point corrésponds to the layer 3 .

routing processor decision that is greater than 0 if there
considered carried out in a negligible time is a trafﬁc |00p at the

node.
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Characteristics of the Arrival
Process

To study the characteristics of the arrival process at a queue we can
refer to the Index of Dispersion for Counts (IDC), using to the number
of arrivals in a given interval t, N(t).

IDC is the ratio between the variance of N(t) and the mean of
N(t) referring to the same interval:
smoothed peaked

_ Var [N (t )] jprocess | process

CENGL .- i

Determ. Poisson

For a Poisson process IDC(t) = 1, V t. An arrival process is peaked if
IDC (t)> 1; an arrival process is smoothed if IDC(t) < 1. When IDC
reduces, arrivals are more regularly spaced in time. The limiting case is
when IDC = 0: the arrival process is deterministic. Conversely, when
IDC > 1, arrivals tend to occur in bursts, thus entailing problems in
terms of congestion and delays at the queues.
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The Case of Poisson Input
Traffic

In the case of Poisson arrivals of messages with mean rates A,
(uncorrelated from node to node), the total arrival process for
the different nodes may lose the Poisson characteristic if:

There are traffic feedback loops causing a peaked arrival
process. A network that allows (does not allow) feedback loops is
cyclic (acyclic).

Acyclicity means that one message does not cross a network node
more than once in its path from source to destination (i.e., no
routing loops).

Queues with finite rooms drop arrivals exceeding their capacity; in
this case, the circulating traffic is smoothed. However, in this
study we will not consider queues with finite rooms and
packet losses.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Correlation in the Behavior
of the Queues

There is a strong correlation in the behaviors of
the queues in the network and this is due to:

The correlation of the arrival process and the service process
due to feedback loops (cyclic network).

The correlation in the behavior of the different nodes due to the
fact that the same message is serviced at the different
nodes crossed in the network along the path from source to
destination.
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Elementary Network of
Queues with Feedback

Due to the feedback, these arrivals
are spaced by the message service

Let us assume that the times.
mean service time << 1/A ll
AN In this feedback

\A'”
queue, input
and output
processes are
continuous time
(we do not
consider slots
D as d_one in
. previous

exercises).

Poisson arriv e

process, L N\ 1 -
Y @

\ A ®]

v

The total input arrival process at the queue is bursty (not Poisson),
with IDC greater than 1.

This elementary network of queues will be studied at the end of this
lesson.
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Traffic Rate Equations for a
Network of Queues

Hypotheses:
Stable queues
No packet loss (i.e., infinite rooms in the queues)
Stochastic routing at the nodes.

The network can be cyclic or acyclic.

In order to write the following traffic
rate equations, we work at the level of
nodes (not queues / links).
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Traffic Rate Equations for a
Network of Queues (cont’d)

Thesis: We can write the following balance for the total input
traffic with rate A, for the i-th node (i.e., traffic rate equation for
the i-th node):

N
Ay =2+ A0 i={1,2 .. N}
j=1

This is a linear system of N equations in N unknown terms A;
(input arrival rates from outside the network, X;, and split
probabilities g; are considered to be known).

Note that this system can be solved under general assumptions
(it is not requested that the input traffic be Poisson).

Basically: one traffic rate equation can be written per each
sum point in the network of queues.
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Little Formula applied to the
Whole Network

The Little theorem can be applied not only to a queue, but
also to the whole network of queues.

In this case, we refer to the network modeled at the level of
links that are queues in our model (k= 1, ..., L).

Let 5, denote the mean number of messages in the k-th queue: 3,
= 3y (pk), Where p, = Aq;/u and py is the service rate of the queue.
Let T denote the mean message delay from input to output
of the network.

The Little theorem applied to the whole network can be

expressed as T 2 Sw
/’Ltot

where o = de and Zﬂ« (At denotes the total mean
arrival rate from outside the network)

We need to derive 3, (p,), as shown in the next slides.
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Tandem Queues
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Burke Theorem for Tandem
Queues

We study two tandem queues (or, in general, a network of tandem
queues).

Queue #1 Queue #2

Poisson arrival
process, A

Hypotheses:

Tandem queues: all messages leaving a queue are at the input of the
next queue (the service completion instant for a queue is the message
arrival instant at the next queue)

Same hypotheses of the traffic rate equations (stability, no loss)
Poisson arrival process from outside
Exponentially distributed service times.
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Burke Theorem for Tandem
Queues (cont’d)

Under the stability assumption, the first queue admits an M/M/S
model (Poisson arrivals/exponentially-distributed service times/S

servers, infinite rooms).
Queue #1 Queue #2

Poisson arrival
process, A

\é
M/M/S queue

Under stability conditions for the first queue, we can state that the mean output
rate from the first queue is X, even without considering the specific characteristics
of the first queue.

It is possible to prove that the whole output process from
the first M/M/S queue is Poisson with mean rate ).

The time intervals between service completion instants are exponentially
distributed with mean rate .

In the following slide, we provide the proof in the case S = 1.
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Burke Theorem for Tandem
Queues (cont’d)

Let us consider a generic M/G/1 queue where g(t) denotes the
service time probability density function [let G(s) denote the related
Laplace transform]. Let P(s) denote the Laplace transform of the density
function of the interarrival times between subsequent service completion
events.

We determine P(s) by considering two cases: (i) non-empty
queue; (ii) empty queue.
Derivation of P(s | non-empty queue): In this case, times between completion events

have a probability density function g(t) with Laplace transform G(s): P(s | non-empty queue)
= G(S)

Derivation of P(s | empty queue): in this case, we have to wait for the next\arrival time
that is characterized by an exponentially-distributed time (with mean rate ). Hence, the
time to the next completion is the sum of two independent contributions: an interarrival time
and a service time. In the Laplace domain, we have that P(s | empty queue) is giyen by the
product of two contributions: P(s | empty queue) = [ /(A + s)]xG(s).

P, T g(t) Tg(t)T 1-P, Texp(ki g(t)T
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Burke Theorem for Tandem
Queues (cont’d)

We remove the conditioning on P(s) by means of the probability of an
empty and of a non-empty M/G/1 queue, P, and 1 — P,, respectively. We
know that P, = 1-AE[X], where E[X] is the mean value related to the
density function g(t).

P(s)=P(s|emptyqueue)P, + P(s| non —emptyqueue 1- P, )=
A
- 1-AE[X E|X
2G(s)1- 2E[X )+ GlsE[X]
M/M/1 case: g(t) is exponentially-distributed with mean rate u, G(s) =
u/(pn+s) and E[X] = 1/u. Substituting these expressions in P(s), we have:

P(s)= LK [1—2,E[x]+@/uz[x]}: A K {1_i+ﬂi}:
A+S u+Ss A

A :> The completion process (output process) is

A+s Poisson with mean rate A [QED].
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Feedforward Networks
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Feedforward Networks

Feedforward networks are characterized as: same
hypotheses of traffic rate equations + Poisson
arrivals + exponentially distributed service times
+ acyclicity.

The Poisson characteristic of the input processes is
maintained within the network nodes using: (i) the
random split model for distributing the traffic of a node
on the different output links; (ii) the Burke theorem;
(iii) independent Poisson input processes at the
nodes; (iv) the sum of independent Poisson processes.
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Feedforward Networks
(cont’d)

Feedforward network example:

Node #1 Mode #2
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Feedforward Networks
(cont’d)

For the sake of simplicity, let us consider from now on just
one server per queue in the network.

Each queue is of the M/M/1 type with input traffic given by
the solution of the traffic rate system. The joint state
probability has a product form: the queues are independent (the
number of messages in the queues are independent).

P(ny, n,, ..., ny) = P(n,)x P(n,)x ... P(ny), where P(n) = (1-p,)p;"

Note that the presence of feedback paths in the networks destroys
the Poisson characteristics of the flows and the Burke theorem
cannot be applied. Nevertheless, the product form still holds
under the assumptions that will be considered in the next
slides for the Jackson theorem.
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Cyclic/Acyclic Networks
and the Jackson
Theorem
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Jackson Theorem for
Networks of Queues

Hypotheses:

An open network with independent Poisson arrivals of messages at each node

Queues modeling the transmissions on links with infinite rooms (no packet loss),
stable behavior, and single server

Exponential service times at the nodes with FIFO discipline
Arrival process and service time process are independent

Stochastic routing whereby the next node, after service completion, is chosen
independently from message to message.

Thesis:
The joint probability distribution of queue occupancies has a product form with
the product of distributions of individual M/M/1 queues:
P(ny, Ny, N3,..., Ny) = (1-p1)P " (1-p2)P,"4(1-p3)Ps™...(1-pw)pw™.
The mean number of requests in each queue and the related mean delay are
according to the classical M/M/1 formula (Poisson processes in the network).

J. R. Jackson, "Jobshop-like Queueing Systems", in Management Science, Vol. 10, No. 1, pp. 131-142, October 1963.
J. E Hayes, T. V. J. Ganesh Babu. Modeling and Analysis of Telecommunications Networks. John Wiley & Sons, NJ, 2004
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Jackson Theorem for

Networks of Quo:~-

The Jackson network is
|
Hypotheses: an abstract concept!

An open network with independent Pg Especially assumption #4

Queues modeling the transmissions orf Can be strong in a real
stable behavior, and single server network.

19”4

5S),

Exponential service times at the nodes e
Arrival process and service time process are independent

Stochastic routing whereby the next node, after service completion, is chosen

independently from message to message.
Thesis:

The joint probability distribution of queue occupancies has a product form with

the product of distributions of individual M/M/1 queues:
P(ny, ny, Nns,..., Ny) = (1-p1)p;"(1-p,)P,"2(1-p3)ps"3...(1-puw)ow™.

The mean number of requests in each queue and the related mean delay are
according to the classical M/M/1 formula (Poisson processes in the network).

J. R. Jackson, "Jobshop-like Queueing Systems", in Management Science, Vol. 10, No. 1, pp. 131-142, October 1963.
J. E Hayes, T. V. J. Ganesh Babu. Modeling and Analysis of Telecommunications Networks. John Wiley & Sons, NJ, 2004
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Kleinrock Independence
ASSU m ption for Store-and-Forward Networks

In order to apply the Jackson theorem to store-and-forward
networks, we consider to add the independence assumption,
which was guessed by Kleinrock (1964).

In the queuing networks we have dealt with up to this point, we considered that
the service times are associated with the servers and that servers are
independent from queue to queue. In store-and-forward (real) networks, this
is not possible since the service time depends on the length of the message, which
is the same from queue to queue. This introduces dependencies between
the arrival process and the service process. Feedback loops are a special
case of this.

Independence assumption: the service time of a message is chosen
independently each time it passes through a node. This permits to
reapply assumption #4 of Jackson networks also to real networks.

This assumption could be strong and is more acceptable when there is a
sufficient mix of different sources in the network and the network has a high
number of nodes. This assumption has been verified by means of simulations.
L. Kleinrock. Communication Nets: Stochastic Message Flow and Delay. Dover Books on Engineering, NY, 2007
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Kleinrock Independence
ASSU m ptiOI‘I for Store-and-Forward Networks

In order_to annlv the lackson theorem ta store-and-farward

network
which W

In the
the s
inde
IS not
is the
the g

The Kleinrock assumption operates “as if” we
could remove feedback loops in the
network of queues so that queues are
decoupled and correlations in the
network are removed! Then, it is as if the
traffic flows in the network were Poisson!

‘hat
re

;, this
which
N
)ecial

case of this.

Independence assumption: the service time of a message is chosen

independently each time it passes through a node. This permits to
reapply assumption #4 of Jackson networks also to real networks.

This assumption could be strong and is more acceptable when there is a

sufficient mix of different sources in the network and the network has a high

number of nodes. This assumption has been verified by means of simulations.
L. Kleinrock. Communication Nets: Stochastic Message Flow and Delay. Dover Books on Engineering, NY, 2007
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Kleinrock Application of the
Jackson Th. to store-and-Forward Networks

Hypotheses:

An open network with independent Poisson arrivals at each node.

Single-server queues modeling the transmissions on links with infinite
rooms, stable behavior, and single server.

Exponential service times at the nodes with FIFO discipline.
Kleinrock independence assumption.
Stochastic routing at each node.

Thesis: Jackson theorem can be applied and then
Each queue behaves as it was M/M/1 (a product-form expression
is valid for the joint state probability distribution).
Of course, the node model can be adopted and traffic rate equations
are used to determine the total arrival rates of messages A, at the
different nodes; we know the arrival rates Aq; on the different links.

The mean total delay T to cross the network can be derived by means of
the Little theorem, as explained in the following slides.

L. Kleinrock. Communication Nets: Stochastic Message Flow and Delay. Dover Books on Engineering, NY, 2007.
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Kleinrock Application of
Jackson Theorem (cont’d)

Let us denote:

w, the mean completion rate for the k-th link

o, the mean arrival rate for the k-th link (if this link connects, let us
say, node i to node j, oy =Aqj),

d, the mean delay for the queue of the k-th link

1, the propagation delay on the transmission line of the k-th link.
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Kleinrock Application of
Jackson Theorem (cont’d)

Little theorem applied to the k-th link (including the
propagation delay in the mean delay on the link) to express the
mean number of messages on this link:

I = ou(di+ 1)

Little theorem applied the whole network to derive the mean
(total, input-output) message deIay T:

Zak d +Z'k

tot k=1

where d, can be expressed by considering the M/M/1
characterization of the queue (Jackson theorem):
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Analysis of a Queue with
Feedback

We consider a special case for queuing networks: a queue with
one server where a request that completes its service can
reenter the queue with probability p with no delay. The
arrival of messages from outside is according to a Poisson process
with mean rate L. The message service time is exponentially-
distributed with mean rate u. The requests that complete the
service have a form of stochastic routing according to which they
may be fed back to the queue (cyclic network).

Poisson arrival
process, A A ® 1-p
i)

P
P = q;
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Analysis of a Queue with
Feedback

We consider a special case for queuing networks: a queue with
one server where a request that completes its service can
reenter the queue with probability p with no delay. The
arrival of messages from outside is according to a Poisson process
with mean rate L. The message service time is exponentially-
distributed with mean rate u. The requests that complete the
service have a form of stochastic routing according to which they

may be fed back to the queue (cyclic network). e .
€ KleINroCK assumption

Poisson arrival applied here is critical
rocess, A A 1 —p since the network is so
P D— O g > small! There is a strong
The Poisson characterization H co:_'relation between
for the total input process is arrlv_al process and
also heavy in this case. D service process.

We will solve this problem in three different ways using either the M/G/1 theory
or the Jackson theorem with the Kleinrock assumption.
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Feedback Queue Studied
with the Jackson Theorem

We can apply the traffic rate equation to the system (= queue with
stochastic feedback) to express the total mean arrival rate A (=
mean output rate from the queue under stability assumption) as:

A=A+Ap = A= iﬁ
1-p
Under the Kleinrock assumption (the service time of a message is
exponentially distributed and independently regenerated each time
the message is fed back to the queue), we apply the Jackson
theorem so that the queue admits an M/M/1 model.

The queue is studied as if its input traffic was Poisson (however, the input traffic
is not Poisson, but peaked, bursty)

The mean delay d experienced by a message entering the queue is (M/M/1

model): d 1 Queue stability is assured if A/u < 1 Erlang

Cu-A (ergodicity condition).
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Feedback Queue Studied
with the Jackson Theorem

From the Little theorem applied to the whole system we have:

T:%xAdzix L A X 1 = 1 X 1 =

1 1-p 1
1-p ull-p)-2 wul-p)-2
This mean message delay T can be explained as follows:

A message entering the system from outside crosses the queue (due to the
stochastic feedback) for a number of times with modified geometric distribution
and mean value equal to 1/(1-p).

Each time the message goes through the queue it experiences a mean M/M/1
delay that is equal to (1-p)/[u(1-p)-A].

The product of the above terms yields the mean message delay T.
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Feed h This is again an M/M/1 mean delay term, where each

-th t request (message) has a service time with exponential
Wi distribution and mean rate u(1-p) and that the arrival
process is Poisson with mean rate A.

From the L| Let us recall (see Section 4.3.2.2 of the book) that the
composition of exponential (mean rate u) and modified
T -| geometric (parameter 1-p) random variables is still
exponentially distributed with mean rate u(1-p).

— 7 =P

1 1-p 1
1-p wl-p)-2  ul-p)-2
This mean message delay T can be explained as follows:

A message entering the system from outside crosses the queue (due to the
stochastic feedback) for a number of times with modified geometric distfibution
and mean value equal to 1/(1-p).

Each time the message goes through the queue it experiences a mean M/M/1
delay that is equal to (1-p)/[u(1-p)-A].

The product of the above terms yields the mean message delay T«
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Feedback Queue Studied
with M/G/1 Theory

After a message transmission, the message is instantaneously fed
back to the queue with probability p. We can consider as if the
message was put again at the head of the queue, since this does
not alter the mean message delay: under the insensitivity
property, different service disciplines yield the same mean
message delay.

We can determine the mean message delay as an application of the
M/G/1 theory, imbedding the study at the instants when messages
leave the system. We can use the Pollaczek-Kinchin formula as:

E[Y?)
(1-2E[Y))

T=E[Y]+ >

where Y denotes the total (equivalent) ‘message service
time’, characterized as detailed in the next slide.
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Feedback Queue Studied
with M/G/1 Theory (cont’d)

Due to the feedback, the same message is transmitted N times

before it leaves the queuing system. Let X; denote the service time

of a message at its i-th pass through the queue. Then, the N
equivalent service time Y of a message is obtained as follows: Y =) _X;

i=1

In a real system, we could expect that the service time of a
message is the same at each pass through the queue. Hence,
X;=Xand Y = N x X. Considering that N and X are independent
random variables, we can easily prove that

E[Y] = E[n] x E[X] = 1/[n(1 - p)]

E[Y2] = E[n?] x E[X?] = 2(1 + p)/[n*(1 — p)’]

Therefore, applying the Pollaczek-Kinchin formula, we obtain with
this approach an exact result for the mean message delay T
as: 1, AP

T__ ul-p)
11— p)- A
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Feedback Queue and M/G/1
Theory + Kleinrock Assumpt.

Instead, using the Kleinrock assumption, the message service
time is ‘restarted’ at each pass through the queue so that in Y=>X,
X; are iid, exponentially distributed with mean rate pand N hasa
modified geometric distribution with parameter (1-p).

Y is now given by the composition of an exponential
distribution and a modified geometric distribution; hence, Y
is exponentially distributed with mean rate pu(1— p). Therefore,
the Pollaczek-Kinchin formula simplifies, because the whole system
behaves as an M/M/1 queue. The mean message delay T

becomes: 1

T=
ul-p)-2
It is quite interesting to note that this is the same result obtained by

applying the Jackson theorem with the Kleinrock assumption. This
results is approximated.
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Final Considerations on
Feedback Queue Analysis

We can thus estimate the approximation entailed by the Kleinrock
assumption in this case:

1{ P
T = /Ll(l— p) T = 1
ﬂ(w u(l—p)-A4
M/G/1 approach M/G/1 approach or
without the Kleinrock assumption Jackson theorem

with the Kleinrock assumption

Of course, the stability limits are the same in both cases, but the mean delays
are not the same.
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Network Planning Issues

Network planning and dimensioning with QoS support is a process
involving the following steps:

Identification of network node location;
Definition of the link topology;
Adoption of a routing strategy accounting for external input traffics;

Capacity allocation to the links so that suitable QoS metrics (end-to-end delay,
jitter, and packet loss rate) are fulfilled.

These steps are interrelated.

Capacity allocation to links depends on the traffic loads on the links and, then,
on traffic routing. However, traffic routing can also be adapted to account for
traffic bottlenecks, which result from capacity shortage on some links.

Network planning is a very complex optimization process and the
analysis carried out here provides a useful tool to allocate
the capacity to links in the network once nodes, input traffic
and routing are defined.
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Mixed Exercises on the
Last Part of the Course
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Exercise #1

With reference to the queuing network below, we have to determine the
stability conditions for the different queues and the mean delay experienced
by a message from input to output, considering:

Input traffic flows at the different queues from outside are Poisson independent with mean
rates A, and A, for queues #1 and #2, respectively.

The message service times are independent for the two queues and exponentially
distributed with the same mean rate u (Kleinrock assumption).

Queues have an infinite capacity.

At the output of queue #2 there is a random splitting: with probability p (q) the arriving

message is fed back to queue #1 (queue #2). q
,”QGeue#EN*\ ,”Q:eue#EN*\
/ N V4 AY
V4 \ / \
/] \ v I \
A I 1 I 1 1-p-q
\ 1\ "\ [ g
\ / A /
\ noz \ |4
N d A Y 7’
~ ’ ~ ’
Saa=" sz Sac="
p
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Solution of Exercise #1

Let A, and A, denote the mean total arrival rates for queues #1 and
#2, respectively. We have the situation below for the mean rates in
the network: qA;

’’ -_— -~

7 Queue#l S 7 Queue#2 >

/ \ / \
I \ v 1 \
A Ay Ay Ay 1 (I-p-qQ A,
\ 1\t 1 g
\ 7 A \ 7
\ L4 \ Loz
\\ ,/ \\ ,/
_____ - A Saan="

Arrival rates A, and A, can be determined by writing traffic rate
equations for each sum point in the network:

(A _ /12p+(1_ p)ﬂ’l

{Alzﬂ“l—i_pAz N ' 1-p-q

A, =1, +A; +0A, A = A+ A,

| ° 1-p-g
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Solution (cont’d)

We apply the Kleinrock assumption. Then, the conditions of
the Jackson theorem are fulfilled for our network: queue #1
can be studied by means of an M/M/1 model with mean arrival rate
A4 and queue #2 can be studied by means of an M/M/1 model with
mean arrival rate A.,.

Queues #1 and #2 are stable under the following conditions: p; =
A4/n < 1 Erlang and p, = A,/u < 1 Erlang.

The mean number of messages in queues #1 and #2 can be

obtained as functions of p; and p,as: \ - A N -2
1-p 1-p,

The mean message delay from input to output, T, can be obtained
by applying the Little theorem to the whole system:
T N, + N,
A+ 4,
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Exercise #2

Let us consider an FTP file transfer that is based on
TCP Tahoe. We are requested to plot the congestion
window (cwnd) behavior has a function of time
[expressed in RTT units] until 16 RTTs, under the

following conditions:

Bottleneck buffer size B = 15 pkts
Sockets buffers much larger than B+BDP
Bandwidth-Delay Product BDP = 15 pkts

Initial ssthresh value = 16 packets

All the packets of a cwnd are transmitted altogether and their ACKs are
received altogether in an RTT time (model).

How many packets have been transmitted until time = 5 RTTs ?
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Exercise #2

B = BDP is the optimal

Let us consider an FTP fil( Setting for the N
TCP Tahoe. We are requ¢ bottleneck link buffer  p
window (cwnd) behavior Hthat permits to fully
[expressed in RTT units] y €xploit the capacity of
following conditions: the bottleneck link.

Bottleneck buffer size B = 15 pkts
Sockets buffers much larger than B+
Bandwidth-Delay Product BDP = 15 pkts

Initial ssthresh value = 16 packets (this is not the default value)

All the packets of a cwnd are transmitted altogether and their ACKs are
received altogether in an RTT time (model).

How many packets have been transmitted until time = 5 RTTs ?
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Solution of Exercise #2

The cwnd behavior has first a slow start phase with exponential increase and after
(i.e., when cwnd > ssthresh) a congestion avoidance phase with linear behavior.
There is no cwnd drop event in the interval of observation since the maximum
allowed cwnd value is B+DBP = 30 pkts. We have the same behavior of cwnd in this
initial phase for both TCP Tahoe and TCP NewReno.

30
" 25 —_cwnd
3 ssthresh . __—
<2 20 —
o /
5 T ~:=y="=-=. In 5 RTTs, the number
jo of transmitted TCP packets is determined
£ 10 / as the cumulative sum of cwnd values
= / in packets at the 1st, 2nd, ... and 5t RTT as
0 yd 142+4+8+16 = 31 pkts
tl |
09 2 4 6 8§ 10 12 14 16

time in RTT units
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Exercise #3

Let us consider an FTP data transfer (TCP ‘elephant’ flow), referring
to the network model in the next Figure. We adopt a scenario with
IP packets (MTU) of 1500 bytes, with Information Bit-Rate (IBR) of
the bottleneck link equal to 600 kbit/s, and with physical Round Trip
Time (RTT) equal to 0.5 s (GEO satellite scenario). It is requested to
derive the Bandwidth-Delay Product (BDP) and to plot the behaviors
of both congestion window (cwnd) and slow start threshold
(ssthresh) up to the time of 25 RTTs for both TCP Tahoe and TCP
NewReno, under the following conditions:

Bottleneck link buffer capacity B = 20 pkts;

Sockets buffers much bigger than B+BDP;

Initial ssthresh value equal to 32 pkts;

All the packets of a cwnd are transmitted altogether and their ACKs are
received altogether in an RTT time (model).

It is requested to redo the exercise with initial ssthresh = 64 pkts.
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Solution of Exercise #3

[ ] (]

:l. Information Bit-Rate, IBR T

Bottleneck link in the o
network Round Trip Time, RTT

IP layer buffer
with capacity of B packets

The BDP for the data transfer in this exercise results as:

RTT x IBR _o5  pkt RTT is here approximated
by RTD.

BDP =

cwnd reaches the maximum value of B+BDP = 45 pkts

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Solution for Initial ssthresh =
32 pkts

50

45

40

35
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S0 ~———— behavior is
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Solution for Initial ssthresh =
64 pkts

The initial
sshthresh
value of
32 pkts is
better
than 64
pkts in
terms of
delivered
packets
as a
function
of time.

70

60

50

40

packets

30

20

10

Multiple packet losses in a window of data

TCP Tahoe

— CWNA

ssthresh

B+BDP

/

3 DUP

with Gg-Back-N

0 |

10

20 30
time in RTT units

40

50

70

e

(64 — B — BDP = 19 pkts)

— CWNO
ssthresh

'CP NewReno
( ow-but-Steady)

TCP NewReno
(Impatient )

Single RTO and Go-
Back-N

0

10

20 30 40 50

time in RTT units

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Exercise #4

Let us consider an IP access network using IntServ as QoS support
method. In particular the Guaranteed Service is adopted. Let us
consider that a traffic source (with fluid flow model) accessing the
network is regulated according to the following token bucket T-
Spec parameters (r, p, b) = (1 kbit/s, 5 kbit/s, 400 bits) [1 token
= 1 bit].

Considering the approach with arrival curve, service curve, and
departure curve, we have to determine the minimum service
rate R to guarantee a delay lower than or equal to A, =
100 ms (we refer to a case where the propagation delay is
negligible with respect to A .,)-
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Solution of Exercise #4

Tokens enter the bucket
at rater

Bucket depth
- b: capacity of
the bucket

_/ Max allowed
Traffic ‘ transmission
source > with rate P

In this study we consider a fluid-flow
model for the traffic generated by the
source: 1 token is needed for the
transmission of 1 bit (no packets); if
the bucket contains N tokens, N bits
can be sent at maximum rate p.

If the bucket is full, new tokens are
discarded.

The input traffic to the network has a
resulting bit-rate with corresponding
arrival curve o(t).
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Solution (cont’d)

Input bit-rate
and related———
a/(t), according to

(r, p, b)

We assume: r < R < p slope R Service curve, o(t)
at the rateR

Access to the Output bit-rate
network with rate R and related

p(t)

bits (incr.)
N slope r
Arrival curve, o(t)

bp/(p—r) Output curve, B(t)

D = (maximum) delay experienced by the

bits generated by the traffic source
Xis the point of the arrival

curve corresponding to the
largest buffer occupancy
B, ax @nd max delay D, ..

time
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Solution (cont’d)

It has been proved that the delay D to cross the node
(modeling the access network) is bounded as D < b/R. Let
us consider the condition with equality D ~ b/R. Then, we adopt

the following formula to determine R: Then we select the
b

D=—<A_ = R> O minimum value for R to
Amx  fulfill A, thatis R =

Moreover, we consider that R has to fulfill the b/ Amax:

following constraint:

r:1@<R< p:5@
S S

So R = b/A,.« = 4 kbit/s fulfills the constraint and is the minimum
R value to guarantee a delay lower than A.,. There is some
approximation in this, but we consider that this is acceptable.
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Solution (cont’d)

For the sake of completeness, let us recall that the system is
characterized by bounded delay (D,,.,) and bounded buffer size
(maximum buffer occupancy B,.,) determined as follows (exact

formulas):
D :t*—Tb:Ex(p stg, if R>T
R p-r R

B_ = pr—Rszbx[p_R]Sb, if R>T
p—r
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Thank you!

giovanni.giambene@gmail.com
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