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Motivations for the Use of 

the M/G/1 Theory 

z The assumption of Poisson arrivals may be reasonable since 
the Poisson model is a limiting condition of the binomial distribution. 

 

y Many potential customers decide independently about arriving.  
 

y Each of them has a small probability of arriving in any particular time 
interval. 
 

 Probability of one arrival in a small interval is approximately 
proportional to the length of the interval itself. 

 

z The exponential distribution for the service time is no 
longer a good approximation in current packet-switched 
networks: layer 2 packets may have a fixed length; files may have 
a length better modeled by a heavy-tailed distribution, e.g., Pareto 
distribution. Then, a general service time has to be considered. 
 

z M/G/1 theory can be used for modeling different aspects of the 
networks.  
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M/G/1 Queues 

z In the M/G/1 theory, the arrival process is 
Poisson with mean arrival rate l, but, the 
service time is not exponentially distributed. 
 

 

y The service process has some memory: if there is a 
request in service at a given instant, the residual 
service time of the request has a distribution that 
depends on the elapsed service time. 
 

y A similar theoretical method to that of M/G/1 queues 
can be applied to solve G/M/1 ones. 
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Imbedded Markov Chains 

z 2-D system state for M/G/1 queues: S(t) = {n(t) , t(t)}.  
 
 

y n(t): Number of requests in the system at instant t; 
 

y t(t): Elapsed time from the beginning of the service of the currently-
served request. 

 

z To simplify the study, the M/G/1 queue is analyzed at imbedding 
instants i, this is as if we take snapshots of the system state at 
instants i when we obtain a mono-dimensional Markovian system 
(imbedded Markov chain), as detailed below. 
 

z Different alternatives are available to select imbedding 
instants i (especially #1 and #3 below for M/G/1 cases): 

 

1. Service completion instants; 
 

2. Customer arrival instants (used in the G/M/1 case for the study of 
the waiting part); 

 

3. Regularly-spaced instants, for special cases with time-slotted service 
as TDM systems (e.g., ATM): 

 slot slot slot 
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Imbedding to Service 

Completion Instants 

z Imbedding at service completion instants: t(i)  0, i 
since at instant i a request has completed its service 
and no new request has yet started its service. 
 

y ni denotes the number of requests in the queue soon after 
the service completion of the i-th request (instant i

+).  
 

y ai denotes the number of requests arrived at the queue 
during the service time of the i-th request (ending at instant 
i

-). 
 

y At instants i, the state becomes mono-dimensional:  
 

   S(i)  n(i) = ni 
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Imbedding to Service 

Completion Instants (cont’d) 

z If ni  0, at the subsequent instant of service completion the 
following balance is valid: ni+1 = ni – 1 + ai+1.  

 

y Note that among all requests in the queue, we do not pose special 
conditions on the request that has been served. 

 

z If ni = 0, we have to wait for the next arrival that is immediately 
served, so that at the next completion instant i+1

+ the system just 
contains the arrivals occurred during the service time of the last 
request; we have: ni+1 = ai+1.  
 
 
 
 
 
 
 

 

 

ni  0 

time 

i+1 i+2 j j+1 i 

ni+1 

ai+1 

nj = 0 

Departure instants 

New arrival 

aj+1 
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System Description 

 
 
 

 where I(x) = 1, x > 0; I(x) = 0, x = 0 (Heaviside function). 
 

z The above difference equation describes the behavior of the M/G/1 
queue at imbedding instants. 
 

z Since the variables at the instant i+1 only depend on the variables at 
instant i, the M/G/1 system is characterized by a discrete-
time Markov chain at imbedding instants (‘semi-Markov 
chain’), as shown below. 
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n = 0 

Prob{a1 = 0} 
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….. 
Prob{a2 = 0} Prob{a3 = 0} 
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n = 1 n = 2 

Prob{a1 = 1} Prob{a2 = 1} 

n = 3 

Prob{a3 = 1} 

Prob{a0 = 1} 

Prob{a0 = 2} 

Prob{a1 = 2} 

Prob{a1 = 3} 

Prob{a2 = 2} 

The definitions/characteristics of 
both ni and ai depend on the 
selection of imbedding instants. 
 

In general, the solution of the discrete-
time Markov chain (i.e., determining the 
state probability distribution) requires a 
matrix-geometric approach or writing 
cut equilibriums and an iterative 
solution approach. 
 

We will use an approach in the z 
domain by adding some assumptions. 

 
In general, the arrival process is state-dependent. 
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Solution in the z-Domain with 

Additional Assumptions 

z Let us assume that the M/G/1 queue admits a steady state. 
 

 

y Pn denotes the probability (at regime) to have n requests in the queue 
 

z We focus on the difference equation that is solved in the z-domain 
(i.e., PGF) and we use the following assumptions: 

 

y Memoryless arrival process (ai is memoryless: i.e., ai independent of ai-1, 
independent of ai-2, etc.). This is a more general condition than a Poisson 
process: we use the ‘M’/G/1 notation, where ‘M’ stands for a 
general memoryless arrival process (e.g., a Bernoulli arrival process 
of packets on a slot basis). 
 

y Arrival process independent of the number of requests in the queue (ni 
and ai are independent). This assumption is not needed using the cut 
equilibrium or matrix-geometric approach. 
 
 
 

 where P(z) is the PGF of the state probability distribution, ni, and A(z) is the PGF 
of the number of arrivals in the service time of a request, ai. 
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Solution in the z-Domain with 

Additional Assumptions 
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On both sides we take triple sum 
on ni+1,ni, ai+1 by using the joint 
probability P(ni+1,ni, ai+1). The 
result shown here is obtained after 
manipulations based on 
independence assumptions and 
marginal distributions. 
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Solution in the z-Domain with 

Additional Assumptions 

z Let us assume that the M/G/1 queue admits a steady state. 
 

 

y Pn denotes the probability (at regime) to have n requests in the queue 
 

z We focus on the difference equation that is solved in the z-domain 
(i.e., PGF) and we use the following assumptions: 

 

y Memoryless arrival process (ai is memoryless: i.e., ai independent of ai-1, 
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process: we use the ‘M’/G/1 notation, where ‘M’ stands for a 
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 where P(z) is the PGF of the state probability distribution, ni, and A(z) is the PGF 
of the number of arrivals in the service time of a request, ai. 
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To obtain this result we do not 
pose special conditions on the 
service discipline apart the 
conditions for the 
applicability of the 
insensitivity property. 
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Solution in the z-Domain with 

Additional Assumptions 

z Let us assume that the M/G/1 queue admits a steady state. 
 

 

y Pn denotes the probability (at regime) to have n requests in the queue 
 

z We focus on the difference equation that is solved in the z-domain 
(i.e., PGF) and we use the following assumptions: 

 

y Memoryless arrival process (ai is memoryless: i.e., ai independent of ai-1, 
independent of ai-2, etc.). This is a more general condition than a Poisson 
process: we use the ‘M’/G/1 notation, where ‘M’ stands for a 
general memoryless arrival process (e.g., a Bernoulli arrival process 
of packets on a slot basis). 
 

y Arrival process independent of the number of requests in the queue (ni 
and ai are independent). This assumption is not needed using the cut 
equilibrium or matrix-geometric approach. 
 
 
 

 where P(z) is the PGF of the state probability distribution, ni, and A(z) is the PGF 
of the number of arrivals in the service time of a request, ai. 
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Subscripts are here 
omitted because we 
assume to study the 
probability distribution 
at regime, that is for i 
 . 
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Solution in the z-Domain 

(cont’d) 

z We can derive P(z) as: 
 
 
 

z In this P(z) formula we have an apparent singularity 
at z = 1, but we can apply the Abel theorem to state 
that it exists the lim of P(z) for z  1- -pole-zero 
cancellation- and should be necessarily equal to 1 for the 
normalization condition. Therefore, we can solve this 
limit by means of the Hôpital rule: 
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Solution in the z-Domain 

(cont’d) 

z Deriving with respect to z both sides of the z-equation (*) and computing 
the result at z = 1, at the different orders of the derivative we obtain first 
the empty queue probability P0 and then the mean number of 
requests in the queue N: 
 

 

y First derivative:            P0 = 1 – A(1)  (normalization condition); 
 

 

y Second derivative:  
 

 

z The PGF of the state probability distribution P(z) only depends on 
the PGF A(z) that, in turn, depends on the characteristics of the 
arrival process, the imbedding instants, and the distribution of the 
service time. 
 

y These results are insensitive to the service discipline adopted for the queue. 
 

y This solution is for a generalized queue (not only Poisson arrivals). 
 

y Stability condition is P0 > 0   A’(1) < 1 Erl; A’(1) is the traffic 

intensity. 
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Solution of the M/G/1 Queue 

for Poisson Arrivals 

z Assumptions: Poisson arrival process and 
system imbedded at the service completion 
instants. 
 

z A(z) can be computed considering the PGF of the 
number of arrivals in a given interval t,  A(z | t) = 
elt(z-1) and then removing the conditioning by means 
of the probability density function of the service time, 
g(t) [with corresponding Laplace transform G(s)]: 
 
 
 

or equivalently 
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Solution of the M/G/1 Queue 

for Poisson Arrivals (cont’d) 

z We obtain: A’(1)=lE[X] = traffic intensity r and 
A’’(1)=l2E[X2]. 
 

z Then, we can determine the mean number of 
requests in the system N as: 
 
 
 

z Then, the mean delay T is obtained dividing N by l 
according to the Little theorem: 
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M/D/1 Queue 

z In this system, arrivals are according to a Poisson process with 
mean rate l and have a fixed, constant service time, x. This is 
for instance the case of the transmission of packets of a given size 
on a link with constant capacity.  
 

z Imbedding points are at the end of the service of a request.  
 

z We can directly apply the Pollaczek-Khinchin formula to 
determine the mean delay as: 

 
 

 

z For completeness, we have also A(z) = elx(z-1)  and 
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M
[L(z)]

/D/1 Queue 

z This is a case with a bulk (or compound) Poisson arrival process with 
PGF of the message length L(z) in packets. The lengths of messages are iid. 

z Each packet transmission time is here denoted by T. 

z We are interested in determining the PGF of the number of packets in the 
buffer, P(z), and the mean packet delay. 

z We imbed the system at the end of a packet transmission. We can 
apply the M/G/1 theory with some approximation. We derive A(z), the PGF 
of the number of packets arrived in the service time of a packet: 

 

 

 
 

z We can write the classical M/G/1 difference equation with some 
approximation in the case ni = 0. The mean number of packets in the 
system Np and the mean delay for the transmission of a packet Tp are: 
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M
[L(z)]

/D/1 Queue 
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z Each packet transmission time is here denoted by T. 

z We are interested in determining the PGF of the number of packets in the 
buffer, P(z), and the mean packet delay. 

z We imbed the system at the end of a packet transmission. We can 
apply the M/G/1 theory with some approximation. We derive A(z), the PGF 
of the number of packets arrived in the service time of a packet: 

 

 

 
 

z We can write the classical M/G/1 difference equation with some 
approximation in the case ni = 0. The mean number of packets in the 
system Np and the mean delay for the transmission of a packet Tp are: 

 

   

      111''

11'

''2'

'

TLTLA

TLA

ll

l




   

   
    1

!

|

-- 




zLT

n

T

n

n

n

ee
n

T
zLzA

zLnzA

lll  

 )1('12

)1(''
)1('

A

A
AN p

-


 
 s

1'L

N
T

p

p
l


The Little theorem is here 
applied to a compound process  

The classical M/G/1 difference equation 
can be used as a first approximation: we  
consider ni+1  ai+1 for ni = 0 (i.e., we 
neglect the existence of the packets after 
the first one in a message arriving at an 
empty buffer). We can remove this 
approximation by using the M/G/1 theory 
with ‘different service times’, as shown in 
Lesson No. 9. 
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M
[L(z)]

/D/1 Queue 

z This is a case with a bulk (or compound) Poisson arrival process with 
PGF of the message length L(z) in packets. The lengths of messages are iid. 

z Each packet transmission time is here denoted by T. 

z We are interested in determining the PGF of the number of packets in the 
buffer, P(z), and the mean packet delay. 

z We imbed the system at the end of a packet transmission. In order 
to apply the M/G/1 theory, we need to derive A(z), the PGF of the 
number of packets arrived in the time to serve one packet: 

 

 

 
 

z We can write the classical M/G/1 difference equation with some 
approximation in the case ni = 0. The mean number of packets in the 
system Np and the mean delay for the transmission of a packet Tp are: 
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The Little theorem is here 
applied to a compound process  

The same system admits another M/G/1 
model working at the level of 
messages; imbedding points are now at 
the end of message service times 
(transmissions). This is a trivial application 
of the Pollaczek-Khinchin formula: A(z) = 
elT(z-1) . 

 

These two models for the same system 
are both interesting: the M[L(z)]/D/1 model 
characterizes the system at the level of 
packets (number, delay); instead, the 
M/G/1 model characterizes the system at 
the level of messages (number, delay). 
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M/G/1 Delay Distribution in the 

FIFO Case with Poisson Arrivals 

z At service completion instant, the n requests left in the system 
are those arrived during the system delay TD experienced by a 
request served.  

z The probability distribution for n coincides with the state probability 
distribution with PGF P(z). 

z Being fTD(t) the density function of the system delay [TD(s) being 
the Laplace transform], we can write in the z-domain: 

 
 

 Substituting the P(z) expression for the M/G/1 queue and using the 
inverse transform z = 1 – s/l, we obtain the Laplace transform 
of the delay distribution: 
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Random variable TD and PGF P(z) are thus related .... 
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M/G/1 Delay Distribution in the 

FIFO Case with Poisson Arrivals 

z At service completion instant, the n requests left in the 
system are those arrived during the system delay TD 
experienced by a request from input to output.  

z The probability distribution for n coincides with the state probability 
distribution with PGF P(z). 

z Being fTD(t) the density function of the system delay [TD(s) being 
the Laplace transform], we can write in the z-domain: 
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The actual unknown term is fTD(t). 
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Delay Distribution Analysis for 

the M
[L(z)]

/D/1 Case with FIFO 

z In the FIFO case with a bulk (compound) Poisson arrival 
process with PGF of the message length in packets L(z), the PGF of 
the number of packets in the buffer, P(z), and the Laplace transform 
of the probability density function of the packet system delay, 
TDp(s), are related by means of the condition s = l[1- L(z)]. 
 

z If L(z) is the PGF of a modified geometric distribution with 
mean value L we have [where L-1(.) is the inverse function of L(z)]: 

 

 

 
z This expression z = z(s) can be substituted in P(z) of the M/G/1 

solution to obtain TDp(s) as: 
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M/G/1 Theory Generalization  

z Kleinrock principle (also by P. J. Burke): for queuing 
systems where the state changes at most by +1 or −1 (we 
refer here to the actual variations in the number of 
requests in the queue, not to what are the state 
changes between imbedding points), the system 
distribution as seen by an arriving customer will be the same 
as that seen by a departing customer. 
 

y Hence, the state probability distribution by imbedding the queue at 
the departure instants is equal to the state probability distributions at 
arrival instants. 
 

z Due to the PASTA property, the state probability distribution 
at arrival instants is valid at generic instants (random 
observer). 
 

 The state probability distribution at the service completion 
instants coincides with the distribution of the continuous-
time system (random observer). 

 L. Kleinrock. Queueing Systems. New York: Wiley, 1975 
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at arrival instants is valid at generic instants (random 
observer). 
 

 The state probability distribution at the service completion 
instants coincides with the distribution of the continuous-
time system (random observer). 

 L. Kleinrock. Queueing Systems. New York: Wiley, 1975 

For a compound Poisson process the 
generalization considered here is not 
applicable. The Kleinrock principle is not 
applicable. 
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M/G/1 Theory Generalization  

z Kleinrock principle (also by P. J. Burke): for queuing 
systems where the state changes at most by +1 or −1 (we 
refer here to the actual variations in the number of 
requests in the queue, not to what are the state 
changes between imbedding points), the system 
distribution as seen by an arriving customer will be the same 
as that seen by a departing customer. 
 

y Hence, the state probability distribution by imbedding the queue at 
the departure instants is equal to the state probability distributions at 
arrival instants. 
 

z Due to the PASTA property, the state probability distribution 
at arrival instants is valid at generic instants (random 
observer). 
 

 The state probability distribution at the service completion 
instants coincides with the distribution of the continuous-
time system (random observer). 

 L. Kleinrock. Queueing Systems. New York: Wiley, 1975 

In the case of a Bernoulli arrival 
process on a slot basis (for which we 
can apply the ‘M’/G/1 theory), the 
BASTA analogous property holds, so that 
we can reapply the generalization result 
below. 
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M/G/1 Theory Generalization 

(cont’d)  

z As a further proof of the generalization of the state probability 
distribution of M/G/1 at generic instants, we could use the following 
heuristic considerations. 
 

z The Pollaczek-Khinchin formula can also be applied to the M/M/1 
queue (imbedding points at the service completion instants), where 
mean and mean square values of the service time X are so related 
(exponential distribution case): E[X2] = 2E[X]2. 
 
 
 
 
 

 
z We note that we obtain again the classical M/M/1 result that is 

valid at any instant, not only at imbedding points. 
 
 

 
 

  

 
 

  
     

  
 

 XE

XE

XE

XEXEXE

XE

XE
XET

XE

XE
XET

ll

ll

l

l

l

l

-


-

-


-


-


1112

2

12

222

2

exponential service time 
classical M/M/1 result 



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Numerical Inversion Method 

for P(z) 

z The PGF P(z) of an M/G/1 queue has typically an expression that cannot be 
inverted to obtain the state probability distribution. A numerical inversion 
method is needed. 
 

z As explained in Lesson No. 3, P(z) can be seen as a Taylor series expansion 
centered at z = 0 (i.e., MacLaurin series expansion). Hence, a simple 
inversion method can be obtained looking at the definition of P(z) : 
 

   
0

!

1
Prob


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z

k

k

zP
dz

d

k
kX This method can be easily implemented in Matlab 

as shown in Lesson No. 19. 
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M/G/1 Theory and Heavy-Tailed-

Distributed Service Times 

z Heavy-tailed (Pareto) distributions for the service time are frequent in 
modern traffic. One disadvantage of using these distributions is that their 
Laplace transforms often have no closed-form expressions and are thus not 
easy to manipulate. 
 

z The M/G/1 state probability distribution depends on A(z), the PGF of the 
number of arrivals in a service time. Moreover, the mean delay is given by 
the Pollaczek-Khinchin formula, which requires to use mean and mean 
square values of the service time. With heavy-tailed distributions, we 
can have infinite mean and/or variance, which may entail some 
paradoxical situations for the queues, as discussed below referring to 
the Pareto distribution case with shape parameter g. 
 

z In the M/Pareto/1 case, we need to have a finite mean value of the 
Pareto service time (thus entailing g > 1) in order to have a stable queue. 
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M/Pareto/1 Queue 

z If 1 < g ≤ 2, the Pareto service time has finite mean and infinite variance (i.e., 
heavy tails). This entails that the queue is stable (there exists the state probability 
distribution as well as the distribution of the delay), but the mean delay is infinite. 
Hence, this is a very special (degenerate) case, where the infinite mean 
delay does not imply the instability of the queue!  
 

z The PGF of the state probability distribution, P(z), depends on A(z) computed as 
follows: 

 

 
 

 The integral in A(z) cannot be expressed in a closed form. It can be 
represented by means of the incomplete Gamma function, G(a, y): 

 

 

 

z If g > 2, the Pareto distribution has finite mean and finite variance so that the mean 
delay is finite. In this case, the Pareto distribution is not heavy-tailed. 
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M/G/1 Mean Number of Requests 

for Different Serv. Time Distrib. 

z Let us compare the mean delay of an M/G/1 queue for different service distributions 
with the same mean arrival rate l and mean service time E[x]. Let r = lE[x] 
< 1 Erl denote the traffic intensity. 
 

z The different service time distributions are characterized by the coefficient of variation 
Cv:                    . The exponential distribution has Cv = 1. 
 

 

z The coefficient of variation Cv is 0 for a deterministic  random variable, is 1 
for an exponential distribution, is greater than 1 for the hyper-exponential 
distribution, and tends to ∞ for heavy-tailed distributions. 
 

z Let us compare the mean number of requests in the system for exponential and 
general service times (i.e., M/M/1 vs. M/G/1): 
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Comparison …. (cont’d) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

z At a parity of r, the mean waiting time of the M/G/1 queue increases with 
Cv

2, the square coefficient of variation of the service time. 
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Weibull k = 0.2 (C
v
2 = 251)

Weibull k = 0.5 (C
v
2 = 5)

Exponential (Weibull k = 1, C
v
2 = 1)

Rayleigh (Weibull k = 2, C
v
2 = 0.26)

Deterministic (C
v
2 = 0) Cv

2 

The Weibull distribution 
is used since varying 
parameter k, we can 
obtain distributions with 
different Cv

2 values from 
low values (< 1) to high 
values (> 1). 
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First Exercises on M/G/1 

Theory 



Exercise #1 

 

z We have a buffer of a transmission line that receives 
messages coming from two independent processes: 
 

y First traffic: Poisson message arrival process with mean rate l1 
and exponentially-distributed service time with mean rate m1; 
 

y Second traffic: Poisson message arrival process with mean rate 
l2 and exponentially-distributed service time with mean rate m2. 
 

z Assuming m1  m2, we have to determine the mean delay 
from the message arrival (total arrival process sum of 
both processes) to the buffer to its transmission 
completion. 
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Solution of Exercise #1 

 

z The first and the second arrival processes are at the input of the 
buffer. Since they are independent Poisson processes, their sum is 
still Poisson with mean rate l1 + l2.  

z The service time probability density function, f(t), is not 
exponential; it can be derived as weighted sum of the probability 
density functions related to the two different input flows: 

 

 

z We model this buffer by means of an M/G/1 queue: we imbed the 
chain at the instants of message transmission completion and we 
use the Pollaczek-Khinchin formula. 
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Exercise #2 

 

z We consider a link with a transmission buffer where messages 
arrive according to a Poisson process with mean arrival rate l.  
 

z Each message is formed of a random number of packets, 
each requiring a time T to be transmitted (compound 
Poisson process). L(z) denotes the PGF of the message 
length in packets that also corresponds to the PGF of the 
message transmission time in T units. 
 

z Note:  

y All the packets of the same message arrive simultaneously.  

y The arrival process and the transmission one are continuous-
time (non-time-slotted). 

 

z It is requested to determine the mean message delay for a 
generic L(z) by selecting suitable imbedding instants. 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 



Exercise #2 

 

z We consider a link with a transmission buffer where messages 
arrive according to a Poisson process with mean arrival rate l.  
 

z Each message is formed of a random number of packets, 
each requiring a time T to be transmitted (compound 
Poisson process). L(z) denotes the PGF of the message 
length in packets that also corresponds to the PGF of the 
message transmission time in T units. 
 

z Note:  

y All the packets of the same message arrive simultaneously.  

y The arrival process and the transmission one are continuous-
time (non-time-slotted). 

 

z It is requested to determine the mean message delay for a 
generic L(z) by selecting suitable imbedding instants. 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

The arrival process at the 
packet level is compound 
Poisson; instead, the same 
arrival process is simply 
Poisson at the message level. 



Solution of Exercise #2 

 

z Let us imbed the system at the instants of message 
transmission completion: this is the best option to measure 
the performance at the message level (imbedding at the 
end of packet transmission is not suitable to determine the 
mean message delay). 

z Let ni represent the number of messages in the buffer at the end of 
the transmission of the i-th message; let ai denote the number of 
messages arrived at the buffer during the service time of the i-th 
message.  

z We have a classical M/G/1 queue with Poisson arrival process. 
Then, we directly apply the Pollaczek-Khinchin formula to derive 
the mean message delay: 
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Exercise #3 (ATM-like case, 

‘M’/D/1 queue)  

 

z Let us consider that fixed-size packets arrive at a transmission 
buffer from two TDM input lines: line #1 and line #2. The 
transmission of packets from the buffer is according to a TDM 
output line. 

 

y Input and output slots have the same duration. Input TDM lines are synchronous 
each other and synchronous with the output line as well.  
 

y A slot of the input line #1 carries a packet with probability p; a slot of the input 
line #2 carries a packet with probability q. A packet needs a slot to arrive and to 
be stored in the buffer before it can be sent (store-and-forward case). 
 

y The arrival processes on the two lines are memoryless and independent. 

 

z It is requested to determine the mean delay that a packet 
experiences from the arrival at the buffer to the end of its 
transmission. This is a first example of discrete-time system 
that we solve by means of an ‘M’/D/1 queue. 
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Solution of Exercise #3  

 

z We study this discrete-time system by imbedding at the end of 
the slots of the output TDM line.  
 

z Let ni denote the number of packets in the buffer at the end of the 
i-th slot. Let ai denote the number of packets arrived from the two 
input lines in the buffer during the i-th slot (we consider here the 
sum of the independent input processes from lines #1 and #2).  
 

z We can write the following balance: ni+1 = ni-1+ai+1 for ni > 0 and 
ni+1 = ai+1 for ni = 0. This is the classical difference equation of 
M/G/1 systems. 
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 TDM line #1 

 TDM line #2 

Each input line contributes a Bernoulli 

arrival process on a slot basis.  

We consider a classical assumption for this 
type of systems: a packet must have 
completely arrived (1 slot) before its 
transmission can start, according to the store-
and-forward approach. 

 

 



Solution of Exercise #3 

(cont’d) 
 

z The mean number of packets in the buffer is: 

 

 
 

 where A(z) is related to the sum of two independent processes (product in 
the z-domain of the PGFs): 

 

 
 

 

z The stability condition is A’(1) = p + q < 1 Erlang 
 

z The mean packet delay is derived from N by using the Little theorem: we 
divide N by is A’(1),  the mean number of packets arrived per slot.  

 

y For time-slotted systems, we consider the PGF of the number of arrivals in a slot A(z). 
Then, A’(1) represents the mean number of arrivals per slot. Therefore, we can apply the 
Little theorem dividing the mean number of requests by A’(1): T = N/A’(1) is expressed in 
slot units.  
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Solution of Exercise #3 

(cont’d) 

 

z The mean packet delay is: 

 

 
 

  

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

  

 

   

    
 slots    

1
1

)1('12

)1('
)1(''

1
)1(' qpqp

pq

A

A
A

A

N
T

--


-


 



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Further Application 

Examples of the M/G/1 

Theory to 

Telecommunications 
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ARQ Scheme for 

Reliable Transmissions 

on a Link 
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Analysis of an ARQ Scheme 

z We consider a transmission system with a buffer. The transmitter is used to send 
packets on a radio channel. We know that: 

 

y Packets arrive in groups of messages (bulk arrival process) 

y Messages arrive according to exponentially-distributed intervals with mean value equal to Ta 
in seconds. 

y The length lm of a message in packets is according to the following distribution 
(uncorrelated from message to message): 

y The buffer has infinite capacity. 

y The radio channel causes a packet to be erroneously received with probability p; packet 
errors are uncorrelated from packet to packet. 

y An ARQ scheme is adopted. 

y Round trip propagation delays to receive ACKs are negligible with respect to the 
deterministic packet transmission time, T (note *): if the transmission of a packet is 
unsuccessful its retransmission is soon reattempted. 

y A packet sojourns in the buffer until its ACK is received. 

 

z We have to determine the mean number of packets in the buffer and the mean delay 
that a packet experiences from its arrival at the buffer to its last and successful 
transmission. 

 

     ...,2,1,1 pkts Prob
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-

nqqnl
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m

(*) The extension of this study to a case with high propagation delays is straightforward in the ARQ stop-and-
wait case. 
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Analysis of an ARQ Scheme: 

A Model with Feedback 

 

Buffer 

Packet arrival process 

l = 1/Ta messages/s 

Radio channel that 

introduces random 

packet errors with 

probability p and 

negligible (*) 

propagation delays 

Transmitter Receiver 

Error 

check 

No error 

ACK 

z Bulk arrival process:  
y Messages arrive according to a Poisson process with mean rate l = 1/Ta [messages/s].  
y Each message contains a number of packets with modified geometric distribution with 

parameter q; 1/q = mean length of a message in packets. 

 
z Service process: 

y Due to the errors introduced by the channel, each packet requires a modified geometrically 
distributed number of slots (with parameter 1-p) to be transmitted; 1/(1-p) = mean time in 
slot units to successfully transmit a packet. 

y Each slot has duration T.  

 
(*) The extension of this study to a case with high propagation delays is straightforward in the ARQ stop-and-
wait case. 
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Solution 

z The arrival process is compound Poisson, but we can still use the ‘M’/G/1 
theory. In this case, we have an M[Geom]/Geom/1 system. 
 

z We imbed the chain to the instants of successful packet transmission 
(i.e., without error); a packet could be transmitted many times to achieve a 
successful delivery. We can write as a first approximation the classical M/G/1 
difference equation with ni and ai. The details of this approximation (related to 
the bulk arrival process) will be clarified in Lesson No. 9. 
 

z A(z) denotes the PGF of the number of packets arrived in the time required to 
successfully transmit a packet, Ts. In the derivation of A(z) three random 
variables need to be taken into account: 
y Number of messages arrived in T; 

y Number of packets conveyed by each message; 

y Time necessary in slots to successfully transmit a packet by means of ARQ (neglecting the 
round trip propagation delay, all the ARQ schemes are almost equivalent), Ts. 

 

z PGF of the message length in packets 
 

z PGF of the time in slot to successfully transmit a packet 
 

z The input traffic intensity is: 
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The queue notation is also 
related to the type of 
imbedding instants selected. 
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Note that we could even imbed the queue at 
the end of successful message 
transmissions thus obtaining a queue of the 
M/Geom/1, where the Geom service time is the 
result of the geometric number of packets per 
message composed with the geometric 
distribution of the packet service time in slots. 
The mean message delay is thus given by the 
Pollaczek-Khinchin formula. N.B. The composition 
of two random variables with modified geometric 
distributions has still a modified geometric 
distribution with mean value given by the 
product of the mean values of the composing 
geometric variables. 
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Solution (cont’d) 

z The PGF of the number of packets arrived in the time to serve one 
packet, A(z), is obtained by considering the twofold composition of 
PGFs: 

 

 

 

 
 

 

z The buffer stability is assured if A’(z = 1) < 1 Erlang  lT/[q(1-p)] 
< 1 Erlang.  
 

z The mean number of packets in the ARQ sender buffer Np and the 
mean delay for the correct transmission of a packet Tp are: 
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by means of the Little theorem 

The derivatives of this compound 

function A(z) can be obtained by leaving 

Ts(z) and L(z) in ‘implicit forms’, because 

this allows easier derivatives by using 

Ts(1) = 1, Ts‘(1) =1/(1-p), L(z) = 1, L’(1) 
= 1/q. 
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This is the PGF of the 

number of packets arrived in T. 
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Thank you! 
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