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Different TCP 

Versions 



TCP Congestion Control 

Design Goals 

z Efficiency 
 

y TCP should achieve a high goodput by efficiently using network 
resources 

 

z Fairness  
 

y Intra- and inter- protocols 

x All TCP flows sharing the same bottleneck link should have the 
same percentage utilization of the bottleneck link 

x Friendliness is a concept similar to fairness, but applied to 
different protocols (e.g., different TCP versions) 

 

y RTT 

x Intra-TCP protocol fairness should also be achieved among 
competing TCP flows with different RTTs 

 

z Stability  
 

y The TCP cwnd behavior should reach a steady state. 
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Historical Notes on RFCs and 

main TCP versions 

z 1981: The basic/initial RFC for TCP is RFC 793. In this version, there is not 
cwnd, but only rwnd. When a packet loss occurs we have to wait for an 
RTO expiration, to recover the packet loss according to a Go-Back-N scheme. 
 

z 1986: Slow Start and Congestion Avoidance algorithms defined by 
Van Jacobson and firstly supported by TCP Berkeley version. 

 

y V. Jacobson, "Congestion Avoidance and Control“, Computer Communication Review, Vol. 18, 
No. 4, pp. 314-329, August 1988. 

 

z 1988: Slow Start, Congestion Avoidance, and Fast Retransmit (3 
DUPACKs) supported by TCP Tahoe. Van Jacobson first implemented TCP 
Tahoe in the 1988 BSD release (BSD stands for Berkeley Software 
Distribution, a computing library used by UNIX systems). 
 

z 1990: Slow Start, Congestion Avoidance, Fast Retransmit, and Fast 
Recovery supported by TCP Reno (RFC 2001). In 1990, Van Jacobson first 
implemented TCP Reno in the 4.3BSD Reno release.  
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Historical Notes on RFCs and 

main TCP versions (cont’d) 

z 1996: Use of the SACK option for the selective recovery of packet losses 
according to RFC 2018, followed then by RFC 2883. 
 

z 1999: RFC 2582 is the first RFC describing TCP NewReno, then substituted 
by RFC 3782. RFC 2582 also includes the slow-but-steady and impatient 
variants of TCP NewReno with a differentiated management of RTO when 
multiple packet losses occur in a window of data. 
 

z 2004: RFC 3782 describes an improved TCP NewReno version (the careful 
variant) with a better management of retransmissions after an RTO 
expiration. 
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TCP Reno 

z TCP Reno was defined by Van Jacobson in 1990 (RFC 2001). As soon as 
three duplicated ACKs (DUPACKs) are received (i.e., four identical 
ACKs are received), a segment loss is assumed and a Fast Retransmit / 
Fast Recovery (FR/FR) phase starts: 

 

y ssthresh is set to cwnd/2 (i.e., flightsize/2); 
 

y The last unacknowledged segment is soon retransmitted (fast retransmit); 
 

y cwnd = ssthresh + ndup, where initially ndup = 3 due to three DUPACKs to start 
the FR/FR phase. This inflates cwnd by the number of segments that have left the 
network and that are cached at the receiver. 
 

y Each time another DUPACK arrives, increment cwnd by the segment size (cwnd  = 
cwnd + 1). This inflates the cwnd for the additional segment, which has left the 
network. Then, transmit a packet, if allowed by the new cwnd value. 
 

y When the first non-DUPACK is received (an ACK acknowledging all packets sent or 
even a ‘partial ACK’, acknowledging some progress in the sequence 
number in the case of multiple packet losses in a window of data), cwnd 
is set to ssthresh (window deflation) and the fast recovery phase ends. 
 

y Then, a new congestion avoidance phase starts. 
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TCP Reno (cont’d) 

z TCP Reno may avoid drastic reduction in goodput when a packet loss 
occurs (as it occurs with Tahoe).  

 

z TCP Reno performs well in the presence of sporadic packet 
losses, but when there are multiple packet losses in the same 
window of data FR/FR phase can be terminated before 
recovering all losses (multiple FR/FR phases are used) and 
an RTO may occur; this problem has been addressed by the TCP 
NewReno version. 
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TCP NewReno 

z TCP NewReno is one of the most commonly-used congestion control algorithms. 
TCP NewReno (initially defined in RFC 2582 and then refined by RFC 3782) is 
based on an FR/FR algorithm started when there are 3 DUPACKs. 
 

z In the presence of multiple packet losses in a window of data, RFC 2582 
(year 1999) specified a mechanism (called “careful variant”), which avoids 
unnecessary multiple FR/FR phases and manages all these losses in a 
single FR/FR phase. Then, RFC 3782 (year 2004) has considered the “careful 
variant” of the FR/FR algorithm as the reference one for TCP NewReno. 
 

z NewReno uses a ‘recover’ variable, representing the maximum order of the 
segment sent when 3 DUPAKCs are received.  

 

y A partial ACK acknowledges some, but not all the outstanding packets at the start of the Fast 
Recovery phase, as specified in the ‘recover’ variable. 
 

y A full ACK acknowledges all the outstanding packets at the start of the Fast Recovery phase. 
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S. Floyd, T. Henderson, A. Gurtov, “The NewReno Modification to TCP's Fast Recovery Algorithm”, RFC 
3782, 2004. 



TCP NewReno (cont’d) 

z With TCP Reno, the first partial ACK causes TCP to leave the FR/FR (Fast 
Recovery) phase by deflating cwnd back to ssthresh. Instead, with TCP 
NewReno, partial ACKs do not take TCP out of the FR/FR phase: 
partial ACKs received during Fast Recovery are treated as an 
indication that the packet immediately following the acknowledged 
packet has been lost, and needs to be retransmitted. 
 

z When multiple segments are lost from a single window of data, NewReno can 
recover them, retransmitting one segment per RTT until all lost segments from 
that window are delivered correctly. 
 

z The FR/FR phase is concluded when a full ACK is received. 
 

z Then, a new congestion avoidance phase is performed with ssthresh equal 
to half of the cwnd value just before the start of the FR/FR phase. 
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TCP NewReno Variants 

z The Slow-but-Steady and Impatient variants of NewReno differ 
in their Fast Recovery behavior, specifically with respect to when 
they reset the RTO timer.  

 

y The Slow-but-Steady variant resets timer RTO after receiving each partial 
ACK and continues to make small adjustments to the cwnd value. The TCP 
sender remains in the FR/FR mode until it receives a full ACK. Typically 
no RTO occurs.  
 

y The Impatient variant resets timer RTO only after receiving the first partial 
ACK. Hence, in the presence of multiple packet losses, the Impatient variant can 
conclude too long FR/FR phases by allowing timer RTO to expire so that all lost 
segments are recovered according to a Go-Back-N approach and a slow start 
phase. 
 

y In RFC 3782, the Impatient variant is recommended over the Slow-but-
Steady variant. 
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Micro-Analysis and Macro-

Analysis of TCP Behavior 

 

z Microanalysis is the study of the TCP behavior in terms of cwnd, 
RTT, RTO, sequence number, and ACK number with the finest 
time granularity (RTT basis) in order to verify the reaction of the 
TCP protocol to the different cases and conditions. 

 

z This study is opposed to the macroanalysis, which deals with the 
evaluation of the macroscopic TCP behavior in terms of long-range 
time averages, such as: average throughput, average goodput, 
fairness, etc… 
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Cwnd Sawtooth Behaviors 

for Tahoe and Reno/NewReno 
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Cwnd Sawtooth Behaviors 

for Tahoe and Reno/NewReno 
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Cwnd Sawtooth Behaviors … 

 

z If rwnd > B+BDP, the quantity of bits injected by the source 
up to time t, a(t), due to the TCP protocol can be approximately 
determined as the integral of cwnd as a function of time: 

 

 

 
 

y a(t) is the arrival curve. 

 

z If the initial ssthresh value is bigger than BDP+B (actually just 
BDP if it is the actual BDP based on RTT), the initial slow start phase 
causes a significant traffic injection well beyond the capacity of the 
network. This entails that the slow start phase ends with 
multiple packet losses, a drop of cwnd, and possible RTO 
expiration. 

 © 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 
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Cwnd Sawtooth Behaviors 

for High Initial ssthresh 
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Cwnd Sawtooth Behaviors 

for High Initial ssthresh 
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TCP with SACK Option 

z TCP Reno and NewReno retransmit at most 1 lost packet per RTT 
during the FR/FR phase, so that the pipe can be inefficiently used during 
the recovery phase in the presence of multiple losses.  
 

z With Selective ACK (SACK) enabled (RFCs 2018 and 2883), the receiver 
informs the sender about all successfully-received segments: the 
sender only retransmits lost segments.  
 

z Support for SACK is negotiated at the beginning of a TCP connection 
between sender and receiver. Both sender and receiver need to agree on 
the use of SACK: use of the SACK-permit option in the three-way 
handshake phase. SACK does not change the meaning of the ACK field in 
TCP segments. 
 

z A contiguous group of correctly-received bytes represents a block; 
bytes just below the block and just above the block have not been received.  

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP Selective Acknowledgement Options”, RFC 2018, Oct. 1996 

K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno and SACK TCP”, Computer Communication Review, July 1996  



TCP with SACK Option 

(cont’d) 

z The SACK option has to be sent by the receiver to inform the sender of 
non-contiguous blocks of data received and queued. 
 

z If SACK is enabled, SACK options should be used in all ACKs not 
ACKing the highest sequence number in the receiver queue. A SACK 
option in the TCP header can permit to specify a maximum of 4 blocks.  
 

 

 
 

z The implementation of SACK combined with TCP Reno by S. Floyd 
requires a new state variable called ‘pipe’.  
 

z Whenever the sender enters the fast recovery phase (after 3 
DUPACKs received), it initializes ‘pipe’, as an estimate of how many 
packets are outstanding in the network, and sets cwnd to half of its 
current value. 
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TCP with SACK Option 

(cont’d) 

z If pipe > cwnd, no packet can be sent, since the number of in-flight 
data is larger than the cwnd value. 
 

z Pipe is decremented by 1 when the sender receives a partial ACK 
with a SACK option reporting that new data have been received. 
 

z Whenever pipe becomes lower than cwnd, it is possible to send 
packets, starting from the missing ones (holes as reported by SACK) 
and then new ones. Thus, more than one lost packet can be 
sent in one RTT. 
 

z Pipe is incremented by 1 when the sender sends a new packet or 
retransmits an old one. 
 

z Exit fast recovery when a full ACK is received. 
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Example of NewReno Micro-

Analysis (GEO Satellite Case) 

   

TCP Sender TCP Receiver Propagation delay = 250 ms 

IBR = 2 Mbit/s (bottleneck link) 

B denotes the max number 
of TCP segments in the 
buffer of the link 
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Example of NewReno Micro-

Analysis 
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We have not considered here the RTT 
granularity due to ticks. 

B = 84 pkts 
cwndmax = BDP + B = 168 pkts 



Example of NewReno Micro-

Analysis 
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Example of Tahoe Micro-

Analysis 
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Example of Tahoe/NewReno 

Macro-Analysis: avg. Th. 
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The average throughput is derived as sum of cwnds on RTT basis  

divided by the total time elapsed: 
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Example of Tahoe/NewReno 

Macro-Analysis: Efficiency 
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Study of the efficiency as a function of the bottleneck link buffer size from 

B = 0 to B = BDP = 84 pkts 
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Design of the Buffer of the 

Bottleneck Link 

z The optimal buffer B value is the minimum B value allowing to 
maintain the pipe constantly filled so that cwnd never goes below 
BDP (i.e., the pipe never becomes empty, and the link is 
exploited at the maximum rate of IBR); a rule-of-thumb  is to 
consider B = BDP packets. 

 

y At regime, cwnd of NewReno oscillates between 2BDP and BDP, 
the pipe is always loaded at about IBR, and the buffer 
occupancy oscillates between full and empty conditions. 
 

y ssthresh is the TCP memory of recent congestion events. At 
regime, ssthresh is equal to BDP. The regime ssthresh value can 
represent an estimate of the system bandwidth. 
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BDP   cwnd  B+BDP 
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TCP Analysis 



Square-Root Formula for TCP 

Throughput/Goodput 

z At regime, the average TCP throughput  (the average goodput g) 
at network layer can be approximated by the square-root formula 
below, which is valid under the following assumptions: B = 0, RTT 
= constant (i.e., RTT  RTD), and neglecting RTO events. 

 

 
 

  
 where p (p < 0.1, otherwise RTOs have impact) denotes the 

segment loss rate, a is a coefficient, which depends on the TCP 
version and type of losses (e.g.,                    for NewReno with 
random losses). 

z Throughput/goodput of standard TCP is quite sensitive to the 
increase in p. 
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below, which is valid under the following assumptions: B = 0, RTT 
= constant (i.e., RTT  RTD), and neglecting RTO events. 

 

 
 

  
 where p (p < 0.1, otherwise RTOs have impact) denotes the 

segment loss rate, a is a coefficient, which depends on the TCP 
version and type of losses (e.g.,                    for NewReno with 
random losses). 

z Throughput/goodput of standard TCP is quite sensitive to the 
increase in p. 
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MTU is here measured in 
bytes and RTT is here 
expressed in seconds. 



Square-Root Formula for TCP 

Throughput/Goodput 

z At regime, the average TCP throughput  (the average goodput g) 
at network layer can be approximated by the square-root formula 
below, which is valid under the following assumptions: B = 0, RTT 
= constant (i.e., RTT  RTD), and neglecting RTO events. 

 

 
 

  
 where p (p < 0.1, otherwise RTOs have impact) denotes the 

segment loss rate, a is a coefficient, which depends on the TCP 
version and type of losses (e.g.,                    for NewReno with 
random losses). 

z Throughput/goodput of standard TCP is quite sensitive to the 
increase in p. 
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The minimum is needed 
to avoid that a too low p 
value causes this 
quantity to go beyond 
the physical limit of IBR. 
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Square-Root Formula for TCP 

Throughput/Goodput (cont’d) 

RTT 
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Square-Root Formula for TCP 

Throughput/Goodput (cont’d) 

Note that with packet losses 
on the link, cwnd will 
typically be unable to reach 
the maximum of BDP + B. 
Packet losses cause sudden 
cwnd reductions or RTO 
events. Packet losses 
significantly reduce goodput 
and efficiency. 

RTT 
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Fairness for TCP 

Traffic Flows 



TCP Flows Sharing a 

Bottleneck 

z We consider multiple (two) TCP flows sharing a bottleneck link according to 
the dumbbell topology. 
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IP layer shared buffer  

with capacity of  B  packets 

TCP sender 

 

Shared bottleneck with capacity IBR 

TCP receiver 

 

TCP sender 

 

TCP receiver 

 

   



Synchronized Losses for TCP 

Flows Sharing a Bottleneck 

z If the drop tail FIFO policy is 
adopted for the buffer of the 
bottleneck link, all TCP flows 
experience buffer congestion at 
the same time, thus having 
synchronized packet losses. 
 

y All these TCP flows reduce their 
traffic injection at the same time 
due to synchronized losses. 
 
 

y There are intervals of time where 
the bottleneck link is 
significantly underutilized. 
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TCP Fairness 

z Let us consider two TCP flows sharing a bottleneck link. 

z The relative phases of the two cwnds have an impact on their behaviors. 

z Let x1(x2) denote the cwnd of flow #1 (#2). The fairness of two TCP 
flows sharing a bottleneck link can be studied by means of the graph of 
x2 versus x1 under the constraint x1 + x2 ≤ cwndmax = B + BDP: 
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T0 

T1 

Efficiency Line (x1 + x2 = cwndmax) 

Fairness Line (x1 = x2) 

TCP flow 1 cwnd,  x1 

TCP flow 2 

cwnd,  x2 

 

 
Fairness and efficiency  
may be two opposite  
aspects to deal with. 



TCP Fairness Measure 

 

z Jain fairness index F: 

 

 

 

 

 

 
 

 

y If all the n TCP flows sharing a bottleneck link (with IBR) 
achieve the same throughput (i = IBR/n), the fairness index 
is maximum and equal to 1. 
 

y The minimum fairness value is 1/n, obtained when all TCP 
flows have i = 0, except one with i = IBR. 

 

n: Number of flows 

i : Average throughput of the i-
th flow 
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TCP NewReno Convergence 
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Synchronized 

losses 

Fairness Line 

Starting point 

Efficiency Line 

Ending point 

z The behavior of the point (x1, x2) for two 
TCP flows of the same type (i.e., both Reno 
or both NewReno) sharing the same bottleneck 
is depicted below. This point oscillates below 
the efficiency line and is expected to move 
closer to the fairness line (x1 = x2) for a fair 
sharing of resources. 
 

 

 

z This is what we call a convergent behavior. 

  



TCP Convergence Time 
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TCP Newreno flow 1

TCP Newreno flow 2

The same graph as before, but now the cwnd 
behaviors are shown as a function of time. 
 

 

z The Convergence 
time is the time 
needed from a single 
(elephant) TCP flow 
saturating the 
bottleneck link, to the 
instant when a new 
started TCP flow 
reaches a fair sharing 
of the bottleneck link 
capacity (x1  x2). 
 

z Convergence is not 
assured in general 
and depends on the 
TCP version.  

Synchronized losses 



TCP NewReno Convergence 

Time Analysis 

z Hypotheses: (i) B = BDP; (ii) the second flow starts when the first 
one has the maximum cwnd = 2BDP (worst-case); (iii) perfectly 
synchronized losses; (iv) both flows are in the congestion avoidance 
phase. 
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TCP NewReno Convergence 

Time Analysis (cont’d) 

z The duration of each cycle is BDP/2 in RTT units. 
 

z At each cycle, the cwnd difference between the 
two flows halves. Hence, log2(BDP) cycles are needed 
to achieve convergence. 
 

z The product of the number of cycles and the cycle 
duration yields the TCP NewReno convergence time 
TNewReno under our assumptions: 
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   units  RTTlog
2

2NewReno BDP
BDP

T 

If BDP = 100 pkts (LFN), TNewReno  332 [RTTs] 



 

RTT Fairness 

 

z Different (say 2) TCP connections may experience quite different RTT 
values, and a good TCP protocol should allow the different TCP flows to 
fairly share the bottleneck link bandwidth, regardless of their RTT values. 
 

z RTT fairness index = ratio of the average throughputs of the two 
flows 1/2 with different RTTs, typically proportional to 
RTT2/RTT1. 
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TCP Versions for LFN 

Networks (e.g., High-

Speed Networks or 

Satellite Networks) 



New TCP Versions for LFN 

and Simulation Tools 

 

z In the last few years, many TCP variants have been proposed to 
address the under-utilization of LFN networks due to the 
slow growth of cwnd. Some examples of these versions are: HS-
TCP, S-TCP, BIC, CUBIC, etc.. The cwnd behaviors of many of these 
variants and more can be found at the following URL:  
y http://netlab.caltech.edu/projects/ns2tcplinux/ns2linux/index.html 

 

z Even if the cwnd growths of these new protocols are scalable and 
good for LFNs, fairness and convergence are major issues. 
 

y The main problem is to find a “suitable” growth function for cwnd. 
 

z Very important free simulators for the networks (suitable for 
simulating many TCP versions, routing, etc.) are ns-2 and the new 
ns-3. More details can be found at the following links: 
y http://nsnam.isi.edu/nsnam/index.php/User_Information 

y http://www.nsnam.org/ 
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where C  (= 0.4) is a scaling factor, t is the elapsed time from the last cwnd (W) 
reduction due to a packet loss at time t = 0, Wmax is the maximum cwnd (W) value 
before the last reduction, and β  is a constant used in a multiplicative decrease of cwnd 
after a packet loss operated as follows: W(0)  Wmax  bWmax= (1  b Wmax. where b 

= 0.2 so that 1  b  0.8. 

accelerate 

accelerate 

slow down 

CUBIC TCP: cwnd Behavior 
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z The cwnd growth function of CUBIC TCP depends on a cubic 
law of the time elapsed since the last packet loss; the cwnd 
grow time is independent of ACKs (and then on RTT). 
 

y ACKs are still needed to understand the segments that have been 
correctly received. 

 

z Cwnd growth slows down as it gets closer to the value before last 
reduction (= Wmax). 
 

z K is the time needed to recover after a packet loss the same 
Wmax value before the loss. The value of K has been 
determined by imposing W(0) = C(K)3 + Wmax = Wmax  
bWmax. 
 

z CUBIC TCP is the default TCP version in Linux kernels (2.6.19 or 
above). 

 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

CUBIC TCP: cwnd Behavior 

(cont’d) 

I. Rhee, L. Xu, S. Ha, "CUBIC for Fast Long-Distance Networks", IETF Internet-Draft, 
February 2007. 



CUBIC TCP: Design Issues 

z CUBIC exhibits the following properties: 
 

y Stability: CUBIC TCP has a very slow cwnd increase in the 
transition between the concave and convex growth regions, 
which allows the network to stabilize before CUBIC starts looking 
for more bandwidth.  
 

y RTT fairness: CUBIC TCP achieves RTT fairness among flows 
since the window growth is independent of RTT. 
 

y Intra-protocol fairness: there is the convergence for the 
cwnds of two competing CUBIC flows. 
 

y CUBIC TCP exhibits however inter-protocol fairness issues 
with other TCP versions, as shown in the following slide. 
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CUBIC versus Other TCP 

Versions 

CUBIC

TCP Reno
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z There is no convergence to a fair sharing of capacity: 
serious inter-protocol fairness problems. 

Classical CUBIC behavior 

CUBIC TCP 
is sharing 
the 
bottleneck 
link with 
TCP 
NewReno. 



Compound TCP (CTCP) 

z Compound TCP (CTCP) aggressively adjusts the congestion window 
(cwnd) to optimize TCP traffic injection in LFN networks. 
 

z Compound TCP maintains two cwnd values: a TCP NewReno-like 
(loss-based) window and a delay-based window.  
 

z The size of the actual sliding window used is the sum of 
these two windows.  
 

z If the delay is low, the delay-based window rapidly increases to 
improve the utilization of the network. Once queuing is experienced, 
the delay window gradually decreases. 
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Multi-Homing and Multi-Path 

TCP 

z Multi-Path TCP (MP-TCP) is a new approach to improve TCP performance 
exploiting multiple source-destination paths (e.g., RFCs 6182 and 
6824, respectively of 2011 and 2013). 
y Requirement: we need a multipath transport layer solution that is transparent to middleboxes, 

that are network nodes with protocols up to transport (NATs, Firewalls, Gateways, PEPs, etc.) 
 

 

 

z MP-TCP assumes that both sender and receiver are modified and that one or 
both of them can have multiple IP addresses (multi-homing, multi-
addressed, multi-network adapter) to exploit different network paths. 
 

 

 

y According to RFC 6824, MP-TCP improves the throughput if multiple paths can be used in 
parallel for a destination or can make TCP robust in case of link disconnections (additional 
path used as a backup). 
 

y Each sub-flow is characterized by a suitable congestion control mechanism and a sub-flow 
sequence number. Sub-flows are bound together by means of a token identifier. 

 

 

 

z MP-TCP signaling is based on optional TCP header fields (signaling: set up 
multiple sub-flows, reassembly of data, sub-flow termination, etc.). 
 

z LHCNet (network for physics) is performing experiments with MP-TCP on 
end hosts of its multi-Gbit network for load balancing purposes. 

 
A.A. 2013 - 2014 Siena  -  © 2014  All rights reserved  



MP-TCP and Mobility: HetNet 

Scenario WiFi/3G/4G 

A.A. 2013 - 2014 Siena  -  © 2014  All rights reserved  
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TCP Versions 

Implemented and 

Measurements 

W. Richard Stevens, "TCP/IP Illustrated, Vol 1: The Protocols", Addison-Wesley 
Professional Computing Series, 2012. 



TCP Versions and Operating 

Systems 

z Many TCP algorithms are supported by the major operating systems: 
 

y TCP AIMD (*) and CTCP for the Windows family (e.g., Windows 
XP/Vista/7/Server/8). 
 

y TCP AIMD (*), BIC, CUBIC, HSTCP, Hybla, Illinois, STCP, Vegas, Veno, 
Westwood+, and YeAH for the Linux family (e.g., RedHat, Fedora, Debian, 
Ubuntu, SuSE).  
 

y TCP NewReno is a common TCP version for UNIX (Berkeley Software 
Distribution, BSD). 
 

y The TCP version used in MAC OS X operating system is based on the BSD 
version (FreeBSD 5 and therefore 4.4BSD) and is using TCP NewReno. 

 
(*) AIMD can be considered quite close to NewReno. 
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TCP Versions and Operating 

Systems (cont’d) 

z Both Windows and Linux users can change their TCP algorithms 
and settings by means of a line of command. Linux users can even 
design and then add their own TCP algorithms. 
 

z Under Vista/Windows 7, the following prompt command is available to 
verify/to modify TCP settings: 
 

netsh int tcp show global 
 

z CTCP is enabled by default in Server 2008 and disabled by default in 
computers running Windows Vista and Windows 7. CTCP can be enabled 
(disabled) by means of a suitable command (Vista/Windows 7): 
 

 

 

netsh interface tcp set global congestionprovider=ctcp 
 

(netsh interface tcp set global congestionprovider=default) 
 

z The change of TCP version has impact only if this is done on the TCP 
sender. 
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TCP Versions and Operating 

Systems (cont’d) 

z Example of use of the prompt command “netsh int tcp show 
global”: 

 

 

 

 

 

 

 

 

z It is possible to set different options, such as window 
scaling to enlarge the rwnd range, timestamp options to 
improve the RTT estimate,  ECN, etc. 
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TCP Versions and Operating 

Systems (cont’d) 

z Example of use of the prompt command “netsh int tcp show 
global”: 

 

 

 

 

 

 

 

 

z It is possible to set different options, such as window 
scaling to enlarge the rwnd range, timestamp options to 
improve the RTT estimate,  ECN, etc. 
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Without the possibility to enlarge the rwnd 
(window) range, the limit to the TCP throughout 
would be 216/RTT bytes. 



TCP Versions and Operating 

Systems (cont’d) 

z Example of use of the prompt command “netsh int tcp show 
global”: 

 

 

 

 

 

 

 

 

z It is possible to set different options, such as window 
scaling to enlarge the rwnd range, timestamp options to 
improve the RTT estimate,  ECN, etc. 
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A timestamp is an optional field in the TCP header that contains 
the current value of the clock of the sender. In particular, the 
sender places a timestamp value in each segment sent. The 
receiver reflects this value in the ACK, thus allowing an accurate 
RTT calculation at the sender for every ACK. This is useful 
because current implementations measure RTT only once per 
window of data and this could not be accurate for LFN 
networks.  



TCP Versions and Operating 

Systems (cont’d) 

z The different operating systems use distinct settings for 
some basic TCP parameters as follows: 
 

y Microsoft Windows XP: Initial cwnd of 1460 bytes and maximum 
possible (initial) rwnd of 65535 bytes. 
 

y Microsoft Windows 7: Initial cwnd of 2920 bytes (i.e., more than one 
segment) and maximum possible rwnd of 65535×22 bytes by means of 
the window scaling option according to RFC 1323. 
 

y Ubuntu 9.04: Initial cwnd of 1460 bytes and maximum possible rwnd of 
65535×25 bytes. 
 

y MAC OS X Leopard 10.5.8: Initial cwnd of 1460 bytes and maximum 
possible rwnd of 65535×23 bytes. 
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R. Dunaytsev. TCP Performance Evaluation over Wired and Wired-cum-Wireless Networks. PhD thesis, TUT 
Tampere, 2010. 



Testing TCP Performance: 

Iperf 

z Iperf is a free tool to measure TCP goodput (bandwidth), allowing 
the tuning of various parameters. Iperf reports bandwidth, delay 
variation, and datagram loss. 
 

z Developed by the National Laboratory for Applied Network Research 
(NLANR) project, iperf is now maintained and developed on Sourceforge at 
http://sourceforge.net/projects/iperf 
 

z The –s option sets the server (TCP receiver) 
 

z The –c option with the IP address of the server sets the client (TCP 
sender) 
 

z The –w option can be used to set a particular TCP window size (socket 
buffer size). This value should be ‘aligned’ with BDP for an optimal TCP 
goodput performance. 
 

z The –h option is used for the help of the commands. 
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For instance if one system is connected with Gigabit Ethernet 
(@ 1Gbit/s), but the other one with Fast Ethernet (@100Mbit/s) 
and the measured round trip time is 150 ms, then the window 
size (socket buffer size) should be set to 100 Mbit/s x 0.150 s / 
8 = 1875000 bytes ( BDP), so setting the TCP window to a 
value of 2 MBytes would be a good choice.  

http://sourceforge.net/projects/iperf


Testing TCP Performance: 

Iperf (cont’d) 

z The configuration of this experiment is show below: 

 

 

 

 

 

 

 

 

 

z We have to run Iperf on both server (TCP  receiver) and  client 
(TCP sender) to exchange traffic and measure the TCP performance.  

 

y We run ‘iperf -s’ on the server to enable it to receive traffic sent from the client via TCP. 
 

y Then, we run ‘iperf -c <IP address> on the client to send data to the server by means of 
TCP. 
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Client running Iperf 

 

Server running Iperf 

 

  
ephemeral port 62688 server port 5001 

TCP 

 

TCP 

 

end-to-end dialogue 

<IP geographical  

Address> of  

the server  



Testing TCP Performance: 

Iperf (cont’d) 

z Iperf performs repeated file transfers for 10 s and measures the resulting 
average capacity (bandwidth). 
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 rwnd = 8 kB for 
the operating 
system. 

 



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Thank you! 

 

giovanni.giambene@gmail.com 

 


