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Introduction

We need to consider an intermediate level between
network layer (IP protocol layer) and applications; this is
the transport layer of the OSI model (layer 4).

The following ‘services’ can be optionally provided at the
transport level (but not all applications need all these
services): connection-orientation, same order delivery,
error-free data (reliability), flow control, byte-orientation,
and use of ports.
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Introduction (cont’d)

Connection-orientation. Even if the network layer provides a
connectionless service, the transport layer often provides a
connection-oriented service (in such a case a set up phase is
needed).

Same order delivery. The network layer does not generally
guarantee that data packets arrive in the same order they were
sent. However, the transport layer provides in order delivery.

Error-free data. The underlying network may be noisy and data
may be received corrupted. The transport layer deals with this
problem by means of a checksum of the received data to detect if
errors have occurred. Moreover, IP packets can be lost due to buffer
congestion and overflow at the routers. Transport layer may
retransmit corrupted packets or lost packets.
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Introduction (cont’d)

Flow control & congestion control. The amount of memory on a
computer is limited, and without flow control a powerful computer might
flood a computer with so much information that it cannot hold it all before
dealing with it. Nowadays, this is not a big issue because memory is cheap,
while bandwidth is expensive, but in earlier times of networks this was a
more critical issue. The flow control operated by the transport layer
allows the receiver to stop the transmission before it is
overwhelmed (layer 4). A similar concept applies to the congestion
control, but in this case the control is operated to avoid the
congestion of layer 3 buffers at intermediate routers in the network.

Byte orientation. Rather than dealing with packets, the transport layer
views a communication as a stream of bytes.

Ports. Ports are essentially ways to address multiple entities in the same
location. Computer applications will each listen to information on their own
ports; more than one network-based application can be running at the
same time and they are distinguished on the basis of different ports.
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Introduction (cont’d)

There are distinct protocols operating at transport layer. These
protocols are at least of three different types.

User Datagram Protocol (UDP) defined in RFC 768: itis a
connectionless transport layer protocol, which provides a simple and
unreliable delivery service for transaction-oriented services. UDP is
basically an interface between IP and upper-layer processes.

Transmission Control Protocol (TCP) introduced with RFC 793: it is a
complex protocol, which provides connection-oriented and reliable
data transfer to the application layer.

Multicast protocols are another important family of transport-layer protocols.
These protocols may be reliable (if they guarantee the correct delivery of
information to all recipients) or not and require a suitable approach at the
network layer. For instance, the NACK-Oriented Reliable Multicast (NORM)
protocol defined in RFC 5740 is an important example of reliable
multicast protocol.
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Ports

Different applications run on the same device connected to the
Internet. In order to distinguish among them, 16-bit port
numbers have been adopted to denote service endpoints.
Source and destination port numbers are specified in both TCP and
UDP headers.

Both TCP and UDP receive requests through transport layer ports
(TSAPs) from higher layer protocols, provide a service and send
requests through the network layer port (NSAP).

Application #1 Application #2 Application #n

TSAPs

Several TSAPs,
one NSAP

Transport layer pro

NSAP
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Ports (cont’d)

Port numbers are divided into three ranges (RFC 6335):
System Ports also called ‘well-known’ ports (0-1023),

User Ports (1024-49151),
Dynamic and/or Private Ports (49152-65535).

System Ports are assigned by IETF. User Ports are assigned by the Internet
Assigned Number Authority (IANA). Dynamic Ports are not assigned.

TCP and UDP ports are assigned separately, since the services
provided by TCP and UDP are different.

TCP well-known ports
Echo: 7
FTP (control): 20
FTP (data): 21
Telnet: 23
SMTP: 25

HTTP: 80
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Ports (cont’d)

Well-known port numbers are reserved across different
operating systems.

User Ports and Dynamic and/or Private Ports can be used for
‘ephemeral ports’, which are short-lived ports allocated
automatically by the TCP/IP software. They are used on the
client in a client-server communication to a well-known port on the
server. Moreover, ephemeral ports may also be used on servers.

Client Application Server Application

*ephemeral port ; server port
end-to-end dialogue

Transportprotocol — — — — — — = — = > Transport protocol

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Ports and Sockets

There is some confusion between ports and sockets, since they are
closely-related. A socket is identified by the binding of an
NSAP (IP address) and a TSAP (port number).

The socket is part of the operating system (kernel) of the
host and adopts some Application Programming Interfaces (based
on Berkeley Software Distribution, BSD, socket).

Several types of Internet sockets are available. For instance,
connectionless sockets using UDP and connection-oriented
sockets using TCP.

A FIFO buffer is part of the socket operating in the system
kernel between application and network layers at both
sender and receiver. Data received from the network are stored
in this buffer, from whence the application can read at its own pace.
As the application reads data at the receiver, the receiver buffer
space is freed up to accept new data from the network.
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Introduction to TCP
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An Example on How/When
TCP is Used

TCP is an end-to-end protocol that is invoked when we open the
Web browser (http protocol) and we type an URL (Uniform Resource
Locator) address, such as for instance www.wikipedia.org

The Web browser on the client uses the DNS service to identify the IP
address corresponding to the URL and then

It opens a TCP connection to that IP address using port 80
It sends (writes) a request for a reference page, that is ‘get index.html’
It waits for and receives (reads) the reply in the form of an html page.

The Web server at the provided IP address
It waits for the opening of a TCP connection
It waits for and receives (reads) the request in the form of ‘get index.html’
It sends (writes) the requested html page.
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TCP Basic Characteristics

Byte-streams. TCP data is organized as a stream of bytes: bytes
are counted, not datagrams. Nevertheless, TCP information is
delivered in blocks (packets), called segments.

Reliable delivery. Sequence numbers of bytes are used to
coordinate which data have been transmitted and received. TCP will
arrange for retransmissions if it determines that data have been
lost.

Network adaptation. TCP will dynamically infer the status of the
network and will adjust its throughput in order to avoid the
occurrence of congestion in the network.
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TCP Basic Characteristics
(cont’d)

Flow control. TCP controls the congestion of destination buffers in
order to avoid overflow events: fast senders will be stopped
periodically to keep up with slower receivers.

Full-duplex operation. TCP operates in a full-duplex way: a TCP
session entails two independent byte streams, traveling in
opposite directions between the two end-hosts. During
connection start and close phases, TCP can exhibit asymmetric
behaviors.

TCP is used by mice connections (e.g., HTTP) and by elephant
-heavy- ones (e.g., FTP).

At the receiver side, IP may receive the datagrams in a wrong order.
After IP passes the TCP segments to TCP, TCP reorganizes these
segments according to the correct order.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Generation of Packets from
Transport to MAC Layer

‘ Message, appliq'ation layer

I
I AN

v "
TCP segment‘ header ‘ payload
i v
] header ‘ payload ‘
v v
‘ header ‘ payload .
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TCP Segment Format

The following figure describes the format of TCP segments, organized in words
of 32 bits. The size of the TCP header without options is 20 bytes.

Source and destination ports (16 bits each): TCP port

numbers of both sender and receiver. < 32 bits >
Sequence number (32 bits): The sequence number of 4 S t Destination port
the first byte in the data part of the segment. ouree po estination p
Acknowledgment number (32 bits): If the ACK f;; Sequence number
control bit is set, such field contains the value of the & ACK number
sequence number of the next segment to be Dataoffset | Res | 9 %] 4 &[22 . .

. . o .. ata offset | Res | & G| &5 o| & £ Window size
transmitted. This field is intended to acknowledge <
the last segment received in order (cumulative Checksum Urgent pointer
ACK). ACKs are piggybacked in TCP segments. The v
mechanism of ACKs is detailed in the next slides. Options (plus padding)

Window (16 bits): The number of bytes beginning with
the one indicated in the acknowledgement field that the
receiver is able to accept due to the actual occupancy of
its buffer (receiver window for flow control). If a

host/receiver cannot accept more data, it advertises a Data
window equal to zero.

Checksum (16 bits): it is a parity check for the whole
TCP segment that also covers the pseudo-header
(source address, destination address, higher layer

protocol code, and the TCP segment length).
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Cumulative ACKs for TCP
and Packet Losses

Let us remark that TCP adopts a cumulative acknowledgement
scheme: an ACK confirms the last segment received in order.
In this representation, each TCP packet is labeled

with the number of the highest order byte carried.
This is not the sequence number.

sender 100020003000 4000 5000 time

ACK 2001
(DUPACK)

_ time
receiver

Lost pkt 3000

An ACK packet is a TCP segment sent in the return direction with respect to
the source-destination couple. An ACK packet is at least of 40 bytes (header)
at the IP level. If for some reasons packet 3000 is lost, the next ACK
sent after the reception of the segment with number 4000 is still
containing the ACK number 2001 (Duplicated ACK, DUPACK).
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Cumulative ACKs for TCP

and Packet Losses
This ACK and the following

Let us remark that TCP adopts a cumy ON€S are DUPACKS (as we
scheme: an ACK confirms the last seg| will show later, the TCP

In this represent) gliding window does not
with the number| == :
/—This is not the sq4 Slide with DUPACKS).

sender W
ACK 1001\, ACK 2001 ACK 2001
3. (DUPACK)
_ time
receiver
Lost pkt 3000

An ACK packet is a TCP segment sent in the return direction with respect to
the source-destination couple. An ACK packet is at least of 40 bytes (header)
at the IP level. If for some reasons packet 3000 is lost, the next ACK
sent after the reception of the segment with number 4000 is still
containing the ACK number 2001 (Duplicated ACK, DUPACK).
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Cumulative ACKs for TCP
and Out-of-Order Packets

With respect to the previous example, we have considered here that
for some reason packet 3000 is not lost, but just takes another path
to reach destination. Hence, this packet arrives out of order. This
causes some DUPACKSs.

sender 10002000 3000 4000 5000 time

receiver

The arrival of pkt 3000 is delayed

As soon as packet 3000 is correctly received, the cumulative ACK 4001 is sent,
thus recovering the right progress of the ACK numbers: packets 3000 and
4000 in the receiver buffer can be delivered to the higher layer.
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Cumulative ACKs for TCP

Packet 4000 is received out of
and 0 order: this packet is stored in the 2ts
socket of the receiver and not

With respe : - - idered here that
for some r dehve_rec] to higher Iayers_ until es another path
to reach d¢ the missing packet 3000 is of order. This
causes son recejved.
time
sender
ACK 1001 ACK 2001 ACK/200Y ACK 4001
(DUPACK)
time
receiver

The arrival of pkt 3000 is delayed

As soon as packet 3000 is correctly received, the cumulative ACK 4001 is sent,
thus recovering the right progress of the ACK numbers: packets 3000 and
4000 in the receiver buffer can be delivered to the higher layer.
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Retransmission Time-Out

When a packet is transmitted a Retransmission Time Out
(RTO) timer is started by the sender.

The RTO value is continuously updated on the basis of the
measure of the time needed to receive ACKs, called Round Trip
Time (RTT). RTO represents a filtered version of an estimate of RTT
with some margin, proportional to the RTT standard deviation.

If the ACK of a packet is not received before RTO expires, it is
assumed that a packet loss has occurred due to network
congestion (i.e., overflow in a buffer of a traversed node) and then
retransmissions are performed, because TCP is a reliable
protocol.

More details on RTT and the RTO
algorithm are provided later in this lesson.
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Start of the TCP end-to-end
Transfer: Three-Way Handshake

TCP uses special segments (with SYN flag set to 1 in the header) for
establishing a new e2e connection, synchronizing the use of both sequence
numbers and ACK numbers on both client and server sides.

When a TCP client wants to create a new connection with a
remote server, it sends a SYN segment. When the SYN flag
is set, it means that synchronization is requested with the Sender (client) Receiver (server)
remote server. The client also sends an initial client-side
sequence number (random value). Moreover, the TCP
header can also contain information on the client-
side MSS; this is achieved by using a suitable TCP option in
the header.

Comm.Request(SYN=1, SEQ=X)

Response(SYN=

When the server hears the connection request, the server
responds with a TCP segment with the SYN flag set to
1 containing in the ACK field the sequence number
received incremented by 1 (for validation) and
containing another initial server-side sequence
number (random value). The TCP header can also
contain information on the server-side MSS.

Confirmation(SYN=1, ACK=

The client responds back with a SYN segment where the
ACK field contains the sequence number received from the
server and incremented of 1.
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TCP Flow Control
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TCP Flow Control (RFC 793)

TCP implements a flow control algorithm based on a sliding
window approach.

We refer to the socket buffer of the operating system between the
application program and the network layer. The data received from the
network is stored in this buffer. As the application reads data, the
receiver buffer space is freed up to accept new data from the
network.

The window field W (after identified as rwnd) in the TCP header
specifies the size of the receiver buffer, less the amount of valid
data stored in it. This is also called the receiver window or advertised
window. Hence, the TCP header permits to inform the sender of the degree
of congestion at the receiver.

Since the window size field in the TCP header is 16 bits long, the maximum
window size (i.e., room available in the socket buffer at the
receiver) is 216 = 65536 bytes, corresponding to maximum 44
Ethernet packets of 1500 bytes.
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TCP Flow Control and the
Sliding Window

The current window value W represents the maximum
amount of data that can be sent (in-flight data, outstanding
data) without having to wait for ACKs:

Transmit all the new segments allowed by the current window value W.

Wait for ACKs to arrive; several packets can be acknowledged with the same

ACK due to the cumulative ACK scheme allowed by TCP.

When an ACK arrives, shift the window to the position indicated by
the ACK number and set the window size to the value advertised in
the ACK window field; the transmission continues from the packet following
the last transmitted one.

A TCP flow is bi-directional

sender j

Data for B

I

g

A

=== | Data for A
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An Example of the Sliding
Window Scheme

The sliding window scheme is at the byte level, but we refer below

to packets. receiver window, W = 5

<€ >
Sequence of packets: 1 2 / 8 9 10
> € > € > >

Sent and Sent but not Open part of Do not
acknowledged acknowledged the window transmit yet
(in-flight These pkts can
data) still be sent.

In this example, the TCP sender can still transmit packets with sequence
numbers 7 and 8 even without receiving new ACKs. The arrival of new ACKs
allows the window to slide to the right to transmit more packets.
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Flow Control: ACK Self-
Clocking Model

Fast link - - Fast link

,> . Bottlenecklink ,” ~.
1. Send a packet / \ 7

/ \ / -\\ 2. Receive data packet
I I
‘ 1— .—\—>

\‘ Data packets separated
5. Send a new ‘ by the packet I
packet ! !
l ! transmission time | !
iTCP Sender| iTCP Receiver
Socket | Socket |
| I 1 I
1 I 1 I
\ I \ I
B \
4. Receive ACK———@ ; =8 @ ﬁ m 4 ACK
Y —/FACKS spaced of the packet “ ! '
Mo transmission time Mo

RTT is the time from step #1 to step #4.
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TCP Congestion
Control

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Congestion Control

On October 1986, Internet had its first congestion collapse
event. The network was totally congested, providing few bit/s of
goodput per user. Most users gave up and reconnected later.

Congestion entails:

Packet losses due to buffer
overflows

Retransmissions to recover
packet losses

Drastic throughput reduction.

throughput
A

with congestion control

without congestion control
= collapse

load

In 1986, Van Jacobson proposed a first congestion control
and a flow control scheme that are integrated in the same
mechanism, based on sliding windows.
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RTT and RTD

Round Trip Time, RTT: this is the time for a packet to travel from source to
destination and the time back to receive its ACK at the source. RTT includes
the packet transmission time, queuing delays at the traversed nodes, the ACK
packet transmission time, and the e2e physical propagation delay.

Round Trip propagation Delay, RTD, the minimum possible RTT, only
accounting for the e2e physical propagation delay in the medium. RTD is
much easier to determine than RTT; sometimes RTT is substituted by RTD.

The ping command of ICMP provides a measure of RTT:

Execution of Ping to 193.205.7.1 with 32 bytes of data:
Answer from 193.205.7.1: byte=32, RTT duration=129 ms, TTL = 116
Answer from 193.205.7.1: byte=32, RTT duration=190 ms, TTL=116
Statistics for the Ping to 193.205.7.1:

Packets: Transmitted = 4, Received = 4,

Lost = 0 (0%),
Approximated RTT in ms:

Minimum = 129 ms, Maximum = 190 ms, Average = 150 ms
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Network Model for TCP
Congestion Control Study

In this model, we consider that the size
of the socket buffers is sufficiently high
that they do not limit the TCP traffic.

%Yﬁ /\ %tﬁ
TCP sender

TCP receiver

Arrival of an IP

packet with nofe the
length ‘
MTU = MSS+ n path

TCPheader + IP layer
+IP header =  With capacity

= MSS + 40 Queuing delays are
bytes / ) due to buffer

RTT ~ RTD + queuing delays congestion on the

— source-to-destination
path.
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Bandwidth-Delay Product

An important parameter for the TCP behavior and performance is the
Bandwidth-Delay Product (BDP), defined as:

s oo a0

BDP represents the maximum number of packets that can be
in-flight (outstanding) in the pipe from source to destination.

BDP is computed practically substituting RTT with RTD.

If BDP has a high value (around 10 pkts according to RFC
1062 or around 100 pkts or more according to RFC 1323),
the network is said to be a "Long, Fat pipe Network” (LFN).

We consider a new (sliding) window, with size W,, for the
flow & congestion control integrated mechanisms; as before,
W, limits the injection of packets in the network.
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Bandwidth- RTD is used in this t
formula (instead of RTT)

when doing theoretical

An important parameter | INVESstigations. ance is the
Bandwidth-Delay Pr01utlv\—\//uvm1w—u=.—|n

IBRxRTT
P Sss vTop  PreadaroPees]

BDP represents the maximum number of packets that can be
in-flight (outstanding) in the pipe from source to destination.

BDP is computed practically substituting RTT with RTD.

If BDP has a high value (around 10 pkts according to RFC
1062 or around 100 pkts or more according to RFC 1323),
the network is said to be a “"Long, Fat pipe Network” (LFN).

We consider a new (sliding) window, with size W,, for the
flow & congestion control integrated mechanisms; as before,
W, limits the injection of packets in the network.
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Flow & Congestion Control,
Integrated

Flow control to avoid overloading receiver with too much data.

rwnd: receiver (advertised) window, set in the window size field in
the header of the TCP packet sent back as ACK. The maximum (initial)
rwnd value is 65535 (= 216-1) bytes.

rwnd is updated by the receiver depending on the occupancy of its
transport layer socket buffer: rwnd closes when new data are received
and rwnd re-opens when data are read from the socket buffer and
delivered to higher layers.

Congestion control to avoid overloading network with too much data.

cwnd: congestion window. It is continuously updated by the
sender on the basis of a congestion control algorithm, which permits to
infer the network congestion status on the basis of ACKs received.

The sender uses the sliding window W, = min (cwnd, rwnd) to
determine the amount of new data that can be injected into
the network (in-flight data) without having to wait for ACKs.
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The First Congestion Control
Algorithm

The TCP congestion control algorithm is managed by the sender to
control/limit the amount of data injected into the network towards a
destination (i.e., the receiver) without any coordination with
other hosts, but only on the basis of its perception of network
congestion on the basis of the ACKs received.

The classical TCP congestion control treats the network as a black
box and probes network resources by increasing gradually the
amount of injected data (W,) on the basis of the ACKs received.
The TCP congestion control algorithm conceived by Van
Jacobson in 1986 is composed of two phases:

‘slow start’ and
‘congestion avoidance’.

This first congestion control scheme was not included in an RFC, but
it was just implemented under the name of TCP Berkeley (UNIX).
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The First Congestion Control
Algorithm (cont’d)

Cwnd is updated by the sender at each ACK received, which
acknowledges new data.

The ‘slow start’ phase and the ‘congestion avoidance’ one are
performed on the basis of the value a cwnd threshold, ssthresh,
which is dynamically updated.

The initial default ssthresh value is typically set to the initial rwnd value,
i.e., 65535 bytes. In the following study, however, we will also consider lower
ssthresh values.

Note that cwnd, rwnd, W,, and ssthresh have values
expressed in bytes, but for the following considerations their
values are considered as converted in segment units. This
allows a simpler description even if not totally accurate, since the
actual congestion control behavior has a finer granularity.
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The First Congestion Control
Algorithm (cont’d)

Depending on the comparison of cwnd and ssthresh, ‘slow start’ or
‘congestion avoidance’ algorithms are used to increase cwnd.

If cwnd < ssthresh, the 'slow start’ algorithm is adopted: the
following cwnd update is performed at the receipt of a new ACK:

cwnd = cwnd + 1 [MSS unit].

Correspondingly, cwnd doubles (exponential increase) on an RTT basis. In
spite of its name, the ‘slow start’ algorithm tries to enlarge (i.e., to open) the
congestion window in a sufficiently-fast (but controlled) way.

As soon as cwnd increases beyond ssthresh, the ‘congestion
avoidance’ algorithm is invoked: the following cwnd update is performed
at the receipt of a_ new ACK :

cwnd = cwnd + 1/cwnd [MSS unit].

For each block of cwnd segments sent/received in an RTT time, cwnd
increases of 1: cwnd has a linear increase on an RTT basis. This solution
permits to gently probe the bandwidth still available in the network.
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Slow Start: Exponential
cwnd Increase on RTT Basis

cwnd <« cwnd + 1 for each ACK received

1 RTT
cwnd =1 cwnd =2 cwnd = 4 ,
sender 2000 3000 4000 5000 6000 7000 time

ACK 200 v
ACK 1001
t
: X7 )

. ime
receiver

Exponential increase of the cwnd size (1, 2, 4, 8, etc.) and of the number of packets
sent on an RTT basis.
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Congestion Avoidance: Linear
cwnd Increase on RTT Basis

cwnd <« cwnd + 1 on RTT basis

1 RTT
A \ 1/
cwnd =1 cwnd =2 cwnd =3
sender 2000 3000 4000 5000 6000

time

/ time

Linear increase of the cwnd size (1, 2, 3, etc.) and of the number of packets sent
on an RTT basis.

receiver
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Cwnd Behavior

In the congestion avoidance phase:

If abscissa is expressed in RTT units, the cwnd behavior
is linear.

If abscissa is expressed in seconds, the cwnd behavior is
curved (increasing and concave down), especially if B >
BDP.

This is because RTT increases with cwnd due to
the increase in buffer congestion.
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RTO and Congestion Control

When RTO expires for a given packet:

ssthresh is set to one-half of the current minimum value between cwnd
and rwnd;

cwnd is reset to its initial value (i.e., 1 MSS) to force the ‘slow
start’ algorithm;

RTO is doubled;

The sender retransmits all packets starting from the one for
which RTO has expired (Go-Back-N approach).

The RTO mechanism drastically reduces the TCP traffic
injection since it resets cwnd.

When the overload condition disappears, the normal value of

RTO is restored. More details on the RTO algorithm are

provided at the end of this lesson.
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Congestion Control Study
Assumption (Model)

For the study of the TCP congestion control algorithm we
make the following simplifying assumptions:

All packets of a cwnd window are sent altogether asin a
burst.

All ACKs corresponding to the packets of a cwnd are
received altogether after an RTT.

The cwnd value is updated on an RTT basis.

The rwnd value is assumed to be so high (rwnd >> cwnd)
that it has no influence in determining the W, value: W, =
cwnd.

BDP is computed using RTD instead of RTT. BDP computed
with RTT is equivalent to (model) BDP+B, where BDP is
computed with RTD.
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An Example of cwnd Behavior

An example of cwnd behavior is shown
here as a function of time, expressed
in RTT units for initial ssthresh = 32
kB, MSS = 1 kB, and rwnd = «©

At the beginning of a TCP connection, during

the ‘slow start’ phase, cwnd has an
exponential increase (y = 2%, where x is in

d

Slow Start

cwn

RTT units); Slow Sie,rﬂ/ -
As soon as cwnd reaches the ssthresh value, Q. __ %
cwnd linearly increases (y = x+b) due to |

the ‘congestion avoidance’ algorithm. 2kB §=--3 :

We assume that when cwnd = 40 kB, a cwnd :'1 kB cwnd is red‘uced to=1kB mn
congestion event occurs in the network - RTT
(e.g., RTO expires for a given TCP segment): _ _

TCP sets ssthresh to half of last cwnd The TCP behavior described here corresponds to

TCP Berkeley. A similar cwnd behavior could be
obtained by TCP Tahoe, but in this case the
packet loss is recognized by DUPACKs before RTO

expires.
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value (i.e., ssthresh = 20 kB) and resets
cwnd to 1 to trigger a ‘slow start’
phase.



TCP Tahoe Version (1988)

TCP Tahoe adopts slow start and congestion avoidance.

Moreover, if the sender receives 3 DUPACKS, Tahoe assumes that
there was a packet loss and reacts as if an RTO expiration
occurred: Tahoe performs a “fast retransmit” phase, ssthresh «
cwnd/2, cwnd <« 1 and restarts from a slow start phase, forgetting
everything on the segments sent after the lost one (Go-Back-N).
This approach may reduce the throughput too much.

A packet loss is not decided at the first DUPACK, but at the third one
in order not to react too fast, especially because the IP network is
connectionless and out-of-sequence packets could be
misinterpreted as packet losses.
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Cwnd Behavior with TCP
Tahoe

We refer to our network model with B, cwnd.., = B + BDP
BDP, IBR, etc. ¥ P ==
40 / //A////
% :;;%?r?c: congestion 4 Where
20 avoidance thIS BPD
/ |/ "
% 25 | cqmputed
S \\.\ssthresh with RTD.
g_ 20 - = =l W R N =
15 = e I B ) X\
TC de From a given time
NI S R A Y onwards, the cwnd
v start Slow start behavior is periodic,
> e . with period Tgqe.
3 DUPACKs |
y 10 3~ 66 70 80 96 100
cwnd =1 pkt time in RTT units
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TCP Congestion Control:
Some Reference Versions

TCP Reno
0 | RFC 2001
(1990)
SACK TCP
RFC 2018 Vegas
(1996) ’ 1994
TCP TCP NewReno (1994)
(1988) RFC 3782 (2004)
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TCP Performance:
Throughput and Goodput

The TCP performance is measured in two different ways:

Throughput (sender-side): the bit-rate R(t) injected in the
network by the TCP sender.

Goodput (receiver-side): the bit-rate corresponding to the
correctly-received segments at the TCP receiver.

We can also consider average values of throughput, T",
and goodput, v.

If there are frequent packet losses in the network it may
happen that

Average throughput I' >> Average goodput y.
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Throughput

The instantaneous throughput R(t) and the average
throughput I" can be characterized as:

1 segments
R(t)= cwnd (t) [=— jcwnd (t)at { tlal }
RTT(t) Toce 10, RTT units
Instantaneous throughput Average throughput on a cwnd cycle

If cwnd is measured in packets, I' is obtained in TCP
segments/s (or segments/RTT unit).

If cwnd is too small (I" « IBR), the network capacity is
underutilized. While, if cwnd is too high, there can be
congestion and packet losses.
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Throughput toyce depends on BDP where

RTT can be approximated by
RTD [RTT is almost constant

The instantaneous throu Il @l e R @iy 07 15 = L)

throughput I" can be chaﬁre\/
~cwnd(t) 1 segments

R(t)= ['=—— | cwnd(t)dt { _ }
t RTT(t) Toyete TC{ |e ) RTT units
Instantaneous throughput Average throughput on a cwnd cycle

If cwnd is measured in packets, I' is obtained in TCP
segments/s (or segments/RTT unit).

If cwnd is too small (I" « IBR), the network capacity is
underutilized. While, if cwnd is too high, there can be
congestion and packet losses.
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Average Goodput
(Measurements) and Efficiency
The average goodput can be measured as follows:

Z packetsreceived (in order) uptotimeT
T

7/:

Efficiency n can be measured as average goodput vy
divided by IBR:

/4

" IBR

If there are no packet losses due to the medium (but just the periodical
packet losses due to buffer congestion) we have: T" ~ .
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TCP Deadlock

Deadlocks are complex events,
which cause a bock in the data
transmission, with a condition that
resembles traffic jam in the streets.

Deadlock events may happen under
special circumstances in the TCP case,
where sender and receiver are
both waiting for the other to
finish, so that none of them can send
new data.

Some TCP deadlock events are due to
implementation (known) problems.

) B > g

-"—“g@@@
G

Traffic jam as an
illustration of TCP deadlock.
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TCP Deadlock (cont’d)

A first deadlock case

The following case refers to a slow receiver. If the receiver
buffer is full of data, then it sends an ACK to the sender
containing a window size rwnd = 0. This stops sender
transmissions. The receiver sends a window update segment
(with rwnd > 0) when it has space available in its buffer. If
this window update segment is lost, then a deadlock occurs.
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TCP Deadlock (cont’d)

A second deadlock case

Another deadlock problem could be caused by a circular-wait
condition between sender and receiver due to the adoption of

the Nagle algorithm (RFC 896) jointly with the delayed
acknowledgment scheme (RFC 813).

The Nagle algorithm limits the number of outstanding
small segments (segments smaller than MSS) to one in order to
avoid inefficiency. The delayed acknowledgment strategy
prevents a receiver from acknowledging small segments

by delaying ACKs until they can be piggybacked onto either a
data segment or a window update packet.

There is the risk the sender will not send small segments due to the

Nagle algorithm and the receiver will not send ACKs because of the
delayed ACK algorithm.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



RTO Algorithm,
Details
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Retransmission TimeOut
(RTO), Calculation

RTO should be greater than RTT, but not much bigger than RTT in
order not to waste time to react to congestion. Hence, an accurate
dynamic determination of RTO is needed.

When a packet is sent a timer is started; when the ACK corresponding to
the same sequence number is received an RTT measure is obtained. Let
RTT(i) denote the i-th RTT measure.

The current RTO value (RFC 6298) is updated by the TCP sender using
two state variables based on RTT measures: SRTT (Smoothed
RTT, an average RTT value) and RTTVAR (RTT VARiation, a sort
of standard deviation of RTT).

RTTVAR(i +1)=(1— 8)xRTTVAR(i)+ B=|SRTT(i)- RTT (i)
SRTT(i+1)=(1-a)xSRTT(i)+axRTT(i) Low-pass filters
RTO(i +1) = SRTT (i +1)+ max{G, K x RTTVAR(i +1)}
whereK =4, a =1/8, B = 1/4, G represents the clock granularity (tick).
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Retransmission Timeout
(RTO), Calculation (cont’d)

In many implementations, RTT is not measured for every segment

received, but typically only for one segment per window of
data.

RTT is measured as a discrete variable (granularity), in multiples
of a “tick”.

1 tick = 500 ms in many implementations.

According to the Karn and Partridge algorithm (RFC 6298), RTT
measurements are not taken when an RTO or a packet

retransmission occurs, because these RTT measures would be
Inaccurate.

RTO should be at least 2 clock ticks (= 1 s). Instead, the
maximum RTO value is 60 s.
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Retransmission Timeout
(RTO), Calculation (cont’d)

Large variations in the RTT (typically due to
queuing phenomena) increase the deviation
RTTVAR(i), leading to a larger RTO value.

Whenever an RTO expiration occurs, RTO is increased by
some factor before retransmitting the non-ACKed data.

Typically, RTO is doubled at each expiration according to
an exponential backoff algorithm. When the overload
condition disappears, TCP reduces its RTO to its normal
SRTT-based value.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



RTO Behavior Example (GEO
Satellite RTD of 0.5 s)
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In doing this
graph, continuous
values have been
considered for
both RTT and RTO
(no ticks).
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UDP
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UDP Basic Characteristics

UDP is a connectionless transport protocol.

A UDP application sends messages without establishing and then
closing a connection.

UDP requires a smaller overhead than TCP, especially when the
total size of the messages is small.

UDP does not guarantee a reliable delivery of data.

UDP messages can be lost or duplicated, or they may arrive out
of order. Moreover, UDP messages can arrive faster than the
receiver can process them because there is no flow control
mechanism.

Application programmers using UDP have to consider and tackle
these issues themselves.
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UDP Basic Characteristics
(cont’d)

The UDP protocol (defined in RFC 768) is extremely simple. Data
from the application layer are handed down to the transport layer
and encapsulated into a small UDP datagram. The datagram is sent
to the host with no mechanisms to guarantee the safe arrival at the
destination device. This check is left to the application layer if
reliability is needed.

UDP provides simple functions beyond that of IP, as:

Port Numbers. UDP uses16-bit port humbers to let multiple processes to use
UDP services on the same host.

Checksum. UDP checksums its data and a pseudo-header in order to verify
their integrity. A packet failing checksum is simply discarded, with no
further action taken (i.e., no retransmission is requested).

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



UDP Packet Format

A

Y

32 bits

Data
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Thank you!

giovanni.giambene@gmail.com
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