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Random Variables 

 
z Taxonomy: 

 

y Continuous value: domain W 

x Real axis (also a semi-axis) 

x Segment 
 

y Discrete values: domain {1, 2, …} 

x Finite values 

x Infinite values 
 

 
 

 

 

Probability density function 
(pdf) fX(x) and 

Probability Distribution 
Function (PDF) FX(x): 

Probability mass function: 
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Summary of Continuous 

Distributions 
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Discrete Random 

Variables 



 

Im 

Re 

 

 1 

Probability Generating Function 

(PGF) for Discrete Random Var. 

z The PGF is a transform for integer-valued discrete random variables 
having all the same sign (e.g., N) for which we know the probability 
mass function [e.g., Prob{N = k}]. The PGF is defined in the 
complex domain (variable z  C) and is similar to a z-transform: 
 

 

z Basic properties: 
 

y N(z) is a power series with non-negative coefficients (probab.) 

 

 

 
 

y A complex function is characterized by a radius of convergence f: a complex 
function (z domain) is convergent for |z| < f and diverges for |z| > f. On the circle 
|z| = f there is at least one singularity. On the basis of the bound condition, the f 
value of the PGF must be at least one: a PGF is convergent inside and on the 
unit disc |z|  1. 
 

x In z = 1 there can be a singularity that can be removed (Abel theorem). 
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Special Cases of PGFs for 

Deterministic Values 

z It is interesting to note that also “1” can be seen as z0 and therefore it 
is the PGF or the deterministic value “0”. 
 

 

z Moreover, also z and z2 are PGFs of the deterministic values “1” and 
“2”, respectively. 
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Abel Theorem 

z A PGF is a power series with non-negative coefficients. 
 

z In the limiting case of a PGF with a radius of 
convergence just equal to 1, the Abel theorem can 
be applied to prove that N(z) has a finite limit for z  1- 
and due to the normalization condition the value of this 
limit must be equal to 1: 

 
 

y This theorem will be applied to the M/G/1 case, where the PGF P(z) of 
the state has a removable singularity by means of the Hôpital rule at z 
= 1. 
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Mean Value: Use of the First 

Derivative of PGF 

z The mean value of a random variable X is defined as: 

 

 

 

 

 

z In the case of the discrete-value random variable X, we can obtain 
E[X] from the derivative of the PGF X(z) of X as: 
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PGFs provide an easy way 

to compute mean values.  
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Mean Square Value: Use of the 

Second Derivative of PGF 

z The mean square value of a random variable X is defined as: 

 

 

 

 

z In the case of the discrete-value random variable X, we can obtain 
the mean square value of X from the second derivative of its PGF: 

 

 

 

 
 

 

z Finally, variance is obtained as: 
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PGFs provide an easy way to  

compute mean square values.  
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PGFs of Geometric and 

Poisson Distributions 

z The discrete random variable N is geometrically distributed if its 
probability mass function can be represented as: 

 

 

y PGF: 

 

 

z The discrete random variable N is Poisson distributed if its 
probability mass function can be represented as: 

 

 

y PGF: 
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PGFs of Bernoulli and 

Binomial Distributions 

z The discrete random variable N is Bernoulli distributed if its 
probability mass function can be represented as: 

 

 
y PGF: 

      N(z) = 1 - p + zp 
 

z The discrete random variable N is binomially distributed if its 
probability mass function can be represented as: 

 

 
y PGF: 
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N.B. Sum of iid Bernoulli  

random variables yields a 

Binomial random variable. 
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PGF: Sum of Independent 

Random Variables and Inversion 

z Let us consider two discrete independent random variables: X with 
distribution Prob{X = k} and PGF X(z) and Y with distribution Prob{Y = 
h} and PGF Y(z). We need to characterize the PGF of W = X + Y 

 

y The PGF W(z) is related to X(z) and Y(z) as follows: 

 

 

y Special case: sum of independent identically distributed (iid) random 
variables with Bernoulli distribution, yielding a Binomial distribution. 
 

z Inversion: for some derivations in the field of queuing theory a 
random variable N can be characterized in terms of its PGF N(z). It is 
therefore important to invert N(z) to derive the probability distribution 
Prob{N = k}. By definition, N(z) can be seen as a Taylor series 
expansion centered at z = 0 (i.e., MacLaurin series expansion). Hence, 
a simple inversion method can be based on the formulas to derive the 
coefficients of the MacLaurin series expansion as: 
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This method can be easily implemented in Matlab® 
as shown in Lesson No. 19. 



Comparison of Probability Mass 

Functions (Same Mean Value, 5) 
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Binomial

Poisson

Geometric

Matlab© code: 
 

X=0:1:10; 

l=length(X); 

A(1,X+1)=binopdf(X,10,0.5); 

A(2,X+1)=poisspdf(X,5); 

A(3,X+1)=geopdf(X,1/5); 

bar(X,A') 

legend('Binomial','Poisson','Geometric') 

xlabel('X value') 

ylabel('Probability') 

title('Discrete distributions with same 

mean = 5') 
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PGF: Compound Variables 

z We consider independent discrete random variables Ni (i = 1, 2, …, 
M) with probability mass functions Prob{Ni = k} and PGFs Ni(z). We 
are interested in characterizing the new random compound 
variable Y obtained as follows: 

 

 

 where M is a discrete random variable with probability mass 
function Prob{M = j} and PGF M(z). 

 

 
 

z Special cases: 
z   

y Sum of a geometric-distributed number of iid geometric-distributed variables 
yielding a geometric distribution;  
 

y Sum of a Poisson-distributed number of iid Bernoulli variables yielding a Poisson 
distribution. 
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Continuous Random 

Variables 
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The Exponential Distribution 

and the Memoryless Property 

z The continuous random variable X is exponentially distributed if 
it has the following probability density function (pdf) and probability 
distribution function (PDF): 

 
 

where m > 0 is the mean rate with the dimension of time-1 
 

z Mean value E[X] = 1/m  and mean square value E[X2] = 2/m2 

 

z Let us assume that Td , exponentially-distributed with mean rate m, 
is the duration of a phenomenon (e.g., phone call) started at time t 
= 0. We examine the same phenomenon at time t = t0 and we 
assume that it is still active: Td > t0 . We can prove that the 
residual length of the event, Tr = Td - t0, is still exponentially 
distributed with mean rate m. This is the memoryless property of 
the exponential distribution. The exponential distribution is the sole 
continuous random variable for which the memoryless property is 
valid. 
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Memoryless Property of the 

Exp. Distribution: an Example 

z Phone call started at time t = 0 and with exponentially-distributed 

length Td (mean rate m): 

 

 

 

 

 

 

 

 
 

z Assuming Td  > t0, the residual phone duration after time t0, Tr , has 
the same distribution of Td : 
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The min Property for the 

Exponential Distribution 

z Let us consider the minimum of variables Xi for i = 1, 2, …, n that 
are independent with exponential distributions and rates mi. Then, 
the new random variable mini {Xi} is still exponentially distributed 
with mean rate Si mi. 

z Let us examine the case with n = 2. In general, we have random 
variables X and Y for which we know the joint pdf fXY(x,y) and, of 
course, the related marginal pdfs. We need to characterize the 
distribution FW(w) of W = min{X, Y}: 

 

 

 

 

z If X and Y have independent exponential distributions FX(t) = 1-e-m1t 
and FY(t) = 1-e-m2t, then FW(w) = 1-e- (m1 + m2)t . 
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The Pareto Distribution and 

Heavy-Tailed Distributions 

z The continuous random variable X has a Pareto distribution if it has the 
following probability density and probability distribution functions: 

 

 

 where  is a real positive number (shape parameter) and k is a positive 
translation term. 

 

 The mean value is finite for  > 1: 
 

 The variance is finite for  > 2: 

 

z A random variable X is said to be heavy-tailed if its complementary 
distribution fulfills (definitely) the following condition that entails infinite 
variance: 

 

z The Pareto distribution is heavy-tailed if 0 <  ≤ 2. 
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Important note: the 
mean (variance) of a 
random variable can be 
infinite depending on 
the  value! 



Examples of Use of Distributions 

in Telecommunications 

z Geometric distribution: number of retransmission attempts with ARQ for 
the correct delivery of a packet, where each transmission attempt has an 
independent probability q to fail. 
 

 
 

z Poisson distribution: number of sessions generated by a user for a given 
application in a given interval of time. 
 
 

 

z Bernoulli distribution: describes the success / failure probability of a 
transmission attempt for a bit or a packet. 
 

 
 

z Binomial distribution: describes the success / failure probability of a 
transmission attempt of a packet of bits with bit-to-bit memoryless error 
behavior (sum of independent identically-distributed Bernoulli variables). 
 
 

 

z Exponential distribution: duration of a classical phone call / lifetime of 
an electronic equipment / lifetime of a subatomic particle. 
 

 

 
 

z Pareto distribution: length of a file (discretized version of). It is used in 
the characterization of the self-similar Internet traffic. 
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Exercises/Homework 

 

z We have to invert the probability generating functions in simple 
cases to determine the related probability mass functions: 
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Stochastic Processes 



Stochastic Processes 

z A stochastic process X(t) is identified by a 
different distribution of X at different time 
instants t. A stochastic process is 
characterized by: 

 

y The state space, that is the set of all possible values that 
can be assumed by X(t). Such space can be continuous or 
discrete (in such a case the stochastic process is named 
chain). 
 

y Time variable: variable t can belong to a continuous set 
or to a discrete one. 
 

y Correlation characteristics among X(t) random variables 
at different instants t. 

 © 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 



Stochastic Processes 

(cont’d) 

z There are different examples of stochastic 
processes in telecommunications 
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Stationary Processes 

z Definition of mean: 
 

z Definition of autocorrelation: 
 

where X(t1), X(t2) are random variables obtained from the process X(t) at times t1 
and  t2 

 

z The strict-sense stationary process entails that its joint 
distribution on a set of time instants does not vary for their 
translation.  
 

z A random process is said to be wide-sense stationary, if its mean 
is constant and its autocorrelation only depends on the distance 
from instants (does not vary with a shift in the time origin): 
 

 

z In this course we will only consider strict-sense stationary 
processes. 
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Arrival Processes 

z Typical stochastic 
processes are related to 
the arrival of traffic in the 
networks: 
 

y Number of calls (or 
packets or sessions) arrived 
in a given time interval; 
 

y Interarrival time between 
two consecutive arrivals of 
calls (or packets or 
sessions). 
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Arrival Process / Point 

Process Characterization 

z Let us refer for the moment to continuous-time processes. An arrival 
process is a stochastic process, where transitions are only possible 
between adjacent increasing states.  
 

z An arrival process can be seen as a point process on the positive real 
axis, i.e., arrival of points on R+. An arrival process can be characterized in 
two different ways: 

 

y Number of arrivals in a generic interval t: We can group the arrivals (i.e., points on the 
positive real axis) counting the number of points falling on intervals of given size t, N(t). 

 

 

 
 
 

y Distribution of times between arrival (i.e., interarrival times), ta 
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Poisson Arrival Process 

z A Poisson process is characterized by a number of arrivals in a given 
interval of duration t, N(t), according to the following Poisson 
distribution with mean arrival rate l: 

 
 

z We have a Poisson arrival process with mean rate l if and only if 
the interarrival times are exponentially distributed with mean 
rate l (i.e., mean value 1/l): 
 

z Poisson arrivals in disjoint intervals are independent. 
 

z Each Poisson arrival carries (for instance) a voice call or a packet. 
The Poisson process is here used as a traffic generator. 
 

z A Poisson arrival process is compound if every Poisson arrival 
implies the instantaneous generation of a group of arrivals. 
 

y For instance: The arrival of IP packets segmented in a number of layer 2 packets (frames). 
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Poisson Arrival Process: 

Properties 
 

z Sum property: The sum of independent Poisson processes i =  1, 
2, …, n with mean rates li for i =  1, 2, …, n  is still a Poisson 
process with mean rate Si li.  

 

y Let us consider the case n = 2. Then on a given interval t we have to sum the 
number of Poisson arrivals N1(t) and N2(t) with respective PGFs as N1(z) =el1t(z-1) 
and N2(z) = el2t(z-1). The total arrival process is N(t) = N1(t) + N2(t). Since N1(t) 
and N2(t) are independent processes, the PGF of N(t), N(z), is obtained as the 
product of the PGF N1(t) , N1(z), and that of N2(t), N2(z): N(z) = N1(z) x N2(z) = 
e(l1l2) t(z-1). Hence, we can deduce that N(z) is related to a Poisson arrival 
process with mean rate l1 + l2. 
 

z Random splitting property: The probabilistic division of a 
Poisson process with mean rate l in sub-processes with related 
probabilities pi for i =  1, 2, …, n generates Poisson processes with 
mean rates l pi , respectively. 
 

z These two properties are used to study         
the traffic in the networks. 
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Compound Arrival Processes: 

Continuous and Discrete Time 

 

z In the continuous-time case, all the packets of a message arrive together 
at the same instant; this is well suited to model the arrival of packets at a 
queue in a host (operating system). 
 

z In the discrete-time case, the packets of a message arrive in the same 
slot; this is well suited to model the transmission messages to a remote 
node in a store-and-forward network. 

z In both cases we have a packet-based traffic model. 

 

Continuous-time compound 

arrival process 

packets 

Time 

message arrival 

Discrete-time compound 

arrival process 

packets 

message arrival 

slot slot slot slot slot 

Messages have iid lengths from 
message to message 
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Traffic Engineering 

and Definition of 

Traffic Intensity 



Traffic Engineering: a 

Definition 

z Traffic engineering encompasses the application of scientific 
principles and technology to the measurement, modelling, 
characterisation, and control of multi-media multi-class traffic 
and the application of such knowledge and techniques to achieve 
specific performance objectives, including the planning of network 
capacity under QoS guarantee, and the efficient, reliable transfer of 
information. 

 
 

y The major objective of traffic engineering is to improve network 
performance while maintaining the QoS requirements through the 
optimisation of network resources. 
 

y The need to allocate and balance resources among different traffic 
classes to achieve the best use of network resources is a crucial traffic 
engineering problem.  
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Memorandum of Understanding, COST Action 290 “Traffic and QOS Management in  
Wireless Multimedia Networks: WI-QOST”, 2004. 



Traffic Generated by Sources 

z Traffic is generated by a source, that is an application 
running on a host. 

z The traffic generated by a source can be seen as a bit-rate as a 
function of time according to a stochastic process R(t). This is a 
fluid-flow model. We can therefore determine the mean, the 
variance, and, in general, the distribution of the bit-rate. 
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Time, t 

bit/s 
 

R(t), bit-rate curve 

   

t

dR
0

t curve Arrival 

Alternative traffic models 
could be packet-based (not 
fluid-flow). 



Traffic Characterization: 

Parameters 

z Different flows (generated by different 
applications) have distinct traffic patterns. 
 

z A given traffic pattern can be described using several 
traffic parameters (the only average rate is not enough): 
 

y Peak rate: maximum rate in any time interval 
 

y Average rate: long-term average 
 

y Burst size: duration of traffic peaks. 
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Traffic Parameters, 

Illustrated 

 

 

 

 

peak bit-rate 

average bit-rate 

   

burst 
size 

Time 

bit/s 
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z An example of the traffic bit-rate graph (fluid-flow) as a function of 
time: 



Traffic Patterns, an Example  

All traffic flows below have the same average bit-rate (10 kbit/s), but 
different maximum bit-rates and burst sizes. 

 

 

 

 

    

    

time 

100 kbit/s 

50 kbit/s 

10 kbit/s 

Constant-rate 
traffic 

Impulsive  
(bursty) 
traffic 

The burstiness of a traffic flow b is defined as the ratio of the peak bit-
rate and the mean bit-rate. In the previous examples, burstiness b is 1, 5 
and 10. 
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Traffic Intensity: Erlang 

z Traffic intensity is a basic parameter in traffic 
engineering. It represents a fundamental 
characteristic of a traffic flow when it arrives at a 
suitable service facility. 

 

y Let l denote the mean arrival rate of the traffic (packets or calls 
per second). 
 

y Let E[X] denote the mean service duration (e.g., transmission 
time) of each service request (packet or call). 
 

y Then, the traffic intensity  is obtained as  = lE[X] and it 
is measured in Erlangs (even if  is dimensionless). 

 

x  denotes the percentage of time the service facility is busy 
in serving this traffic. 

The Danish engineer Agner Krarup Erlang was a pioneer of the queuing theory. 
A. K. Erlang, “Solutions of Some Problems in the Theory of Probabilities of Significance  
in Automatic Telephone Exchanges”, Post Office Electrical Engineers Journal, Vol. 10, 1917.  
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We refer here to a packet-based 
traffic for the definition of the 
traffic intensity even if the 
definition could be modified to 
refer to fluid-flow traffic models. 
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QoS 



Types of Applications 

z Classical data applications are “elastic” and 
tolerate delays and losses and can adapt to 
congestion. 
 

z “Real-time” applications may be “inelastic”. 
 

z The terms “elastic” or “inelastic” have to 
be intended in relation to the bit-rate 
constraints of the application. 
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Different Characteristics for 

Traffic Flows 

z Bursty traffic (elastic traffic) creates difficulties for the network 
since it entails a low utilization of network resources for long times, 
but suddenly causes congestion in network buffers. This type of 
traffic (data traffic, non-real-time) is sensitive to packet losses. 
TCP-based traffic (e.g., HTTP, FTP) can be bursty. 
y b >> 1 

 

z Constant bit-rate traffic (inelastic traffic) is typical of real-
time, time-critical applications and needs high priority to be 
managed with low delays in network buffers. This type of traffic is 
less sensitive to packet losses depending on the robustness of the 
application codec. Voice/audio (MP3) and video (H.264) can be 
represented by constant bit-rate traffic. 
y b = 1 
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What is Quality of Service? 

z In the field of telephony, quality of service was 
defined by ITU-T in Recommendation E.800 
(1994 and subsequent revisions). 

 

y E. 800 defines QoS as “collective effect of service 
performance  which determines the degree of satisfaction of 
a user of the service”. 
 

z QoS has today a very broad scope from PHY 
layer issues to application level ones. 

 

z QoS entails the ability to provide different priority 
levels to different applications, users, or data flows, 
or to guarantee a certain level of performance to 
a data flow (e.g., a required throughput, mean 
delay, etc.). 
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ITU-T, "E.800: Definitions of terms related to quality of service", last revision  
on September 2008 (http://www.itu.int/rec/T-REC-E.800-200809-I/en). 



Some QoS Metrics 

z Main QoS metrics are: 

y Mean delay [s] to cross a node or to cross a whole network 

y Packet loss rate [%] at IP or MAC layers 

y Blocking probability [%] at PHY or MAC layer 

y Jitter (delay variation) 

 

With streaming (video and audio) traffic, a de-jittering buffer is needed on 
the receiver side to compensate for delay variations due to jitter. 

 

Further details on QoS parameters and approaches are provided in Lesson No. 
14 when dealing with QoS support in the Internet (IP networks). 
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Traffic Source Types, 

Requirements, Models  

 

Characteristics 
QoS 

Requirements 

 

Traffic Model 

Voice 

* Alternating talk- 

   spurts and silence     

   intervals.  

* Talk-spurts produce  

   constant packet-rate  

   traffic 

Delay < ~150 ms 

Jitter < ~30 ms 

Packet loss < ~1% 

* Two-state (on-off) Markov  

   Modulated Rate Process (MMRP) 

* Exponentially distributed time in 

   each state 

Video 

* Highly bursty traffic   

   (when encoded) 

* Long range  

   dependencies 

Delay < ~ 400 ms 

Jitter < ~ 30 ms 

Packet loss < ~1% 

K-state (on-off) Markov Modulated 
Rate Process (MMRP) 

Interactive 
FTP, 

Telnet, 

Web (HTTP) 

* Poisson type  

* Sometimes batch- 

   arrivals, or bursty,  

   or sometimes on-off 

Zero or near-zero 
packet loss  
Delay may be 
important 

Poisson, Poisson with batch arrivals, 
Two-state MMRP 
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For more details, see Lesson 
No. 17. 



QoS-Enforcing Approaches 

z QoS can be achieved by: 
 

y Resource reservation (e.g., integrated services in IP 
networks, as shown in Lesson No. 14) 
 

y Prioritization (e.g., differentiated services in IP networks, as 
shown in Lesson No. 14) 
 

z QoS can be applied: 
 

y Per flow: individual, unidirectional streams 
 

y Per aggregate: two or more flows belonging to the same 
traffic class have common QoS management and share 
resources. 
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Differentiated QoS Levels for 

the Applications 

z In ITU-T Recommendation G.1010, applications have been classified in 
8 groups according to error tolerance and delay requirements. 
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ITU-T Y.1541 

z As far as the traffic classification is concerned, we may 
refer to the categorization in ITU-T Y.1541 (“Network 
Performance Objectives for IP-Based Services”), which 
defines 8 QoS traffic classes at IP layer (even if in 
what follows we consider only 6 QoS traffic classes). 
 

z With Y.1541, traffic classes refer to  
 

y Application layer characteristics,  
 

y Connectivity requirements (queuing mechanisms at nodes and 
routing types), 
 

y Mean delay, loss percentage, and delay jitter (delay 
variation) tolerance. 
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QoS class Applications Node mechanism 
Network 

techniques 

0 
Real-time, jitter sensitive, high 

interaction (VoIP) 
Separate queue with preferential servicing, 

traffic grooming 

Constrained routing 

and distance 

1 
Real-time, jitter sensitive, 

interaction (VoIP) 

Less constrained 

routing and 

distances 

2 Data transfer, high interaction 

Separate queue, drop priority 

Constrained routing 

and distance 

3 Data transfer, interaction 

Less constrained 

routing and 

distances 

4 
Error non sensitive (bulk data, 

video 

streaming) 
Long queue, drop priority Any route/path 

5 
Traditional IP-based 

applications 
Separate queue (lowest 

priority) 

Any route/path 

ITU-T Y.1541 Traffic Classes 

IP layer 
classification 

P
ri
o
ri
ty

, 
u
rg

e
n
cy
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ITU-T Y.1541 Requirements 

Network 

parameter 
Condition 

QoS Classes 

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 

IPTD 

(IP Packet 

Transfer 

Delay) 

Less than 100 ms 400 ms 100 ms 400 ms 1 s Unspecified 

IPDV 

(IP Packet 

Delay 

Variation) 

Less than 50 ms  50 ms Unspecified Unspecified Unspecified Unspecified 

IPLR 

(IP Packet 

Loss Ratio) 
Less than 1 × 10–3 1 × 10–3 1 × 10–3 1 × 10–3 1 × 10–3 Unspecified 

IPER 

(IP Packet 

Error Ratio) 
Less than 1 × 10–4 Unspecified 

GEO satellite networks cannot guarantee the requested QoS levels to 
Class 0 and 1 services due to the high latency. 



QoS Support Techniques 

z QoS support requires the adoption of coherent solutions at 
the different layers of the OSI protocol stack. 
 

y PHY: Selection of appropriate modulation and coding level to 
guarantee a certain Bit Error-Rate (BER) at the receiver. 
 

y MAC: Call Admission Control (CAC), traffic-class-based queuing, traffic 
shaping/policing, scheduling, prioritization. 
 

y Network: DiffServ (or IntServ), IP traffic routing, Explicit Congestion 
Notification (ECN), IP buffer management techniques (e.g., RED). 
 

y Transport: Network layer buffer size selection, TCP acceleration 
techniques (e.g., use of proxies). 
 

y Application: Codec selection. 
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QoS versus QoE 

z QoS is ensuring that network elements apply consistent 
treatments to traffic flows as they traverse the network. 
 

z Quality of Experience (QoE) is subjective and relates 
to the QoS actually perceived by a user. This applies to 
voice, multimedia, and data. 

 

y ITU-T Recommendation P.10/G.100, defines QoE as “the 
overall acceptability of an application or service, as perceived 
subjectively by the end-user”. 
 

y QoE includes complete end-to-end system effects (client, 
terminal, network, and service infrastructure). 
 

y Overall acceptability may be influenced by user expectations and 
context. 
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QoS versus Efficiency 

z System efficiency and QoS support are essential 
requirements, but they can represent conflicting 
needs. 
 

y System efficiency is an important requirement for network 
operators to provide services at competitive costs. 
 

y QoS support is mandatory for end users who do not care about 
resource utilization, but expect a good service level.  
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QoS vs. Efficiency: Cross-

Layer Air Interface Design 

z Cross-layer air interface design is 
a novel approach that modifies 
the classical ISO/OSI protocol 
stack to achieve an efficient use 
of resources with QoS support. 
 

z Signaling and protocol 
coordination is achieved also 
between non-adjacent layers 
through new X-SAPs. 
 

 

Transport layer

Data link layer

Physical layer

     send receive

status

     get      set

…..
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Thank you! 
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