Slide supporting material

Lesson 16: Different TCP
Versions, Analytical Details
and Implementation

Giovanni Giambene

Queuing Theory and Telecommunications:
Networks and Applications
2nd edition, Springer

All rights reserved

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Different TCP
Versions

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Congestion Control
Design Goals

Efficiency

TCP should achieve a high goodput by efficiently using network
resources

Fairness

Intra- and inter- protocols

All TCP flows sharing the same bottleneck link should have the
same percentage utilization of the bottleneck link

Friendliness is a concept similar to fairness, but applied to
different protocols (e.g., different TCP versions)

RTT

Intra-TCP protocol fairness should also be achieved among
competing TCP flows with different RTTs

Stability
The TCP cwnd behavior should reach a steady state.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Historical Notes on RFCs and
main TCP versions

1981: The basic/initial RFC for TCP is RFC 793. In this version, there is not
cwnd, but only rwnd. When a packet loss occurs we have to wait for an
RTO expiration, to recover the packet loss according to a Go-Back-N scheme.

1986: Slow Start and Congestion Avoidance algorithms defined by
Van Jacobson and firstly supported by TCP Berkeley version.

V. Jacobson, "Congestion Avoidance and Control®, Computer Communication Review, Vol. 18,
No. 4, pp. 314-329, August 1988.

1988: Slow Start, Congestion Avoidance, and Fast Retransmit (3
DUPACKS) supported by TCP Tahoe. Van Jacobson first implemented TCP
Tahoe in the 1988 BSD release (BSD stands for Berkeley Software
Distribution, a computing library used by UNIX systems).

1990: Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery supported by TCP Reno (RFC 2001). In 1990, Van Jacobson first
implemented TCP Reno in the 4.3BSD Reno release.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Historical Notes on RFCs and
main TCP versions (cont’d)

1996: Use of the SACK option for the selective recovery of packet losses
according to RFC 2018, followed then by RFC 2883.

1999: RFC 2582 is the first RFC describing TCP NewReno, then substituted
by RFC 3782. RFC 2582 also includes the slow-but-steady and impatient
variants of TCP NewReno with a differentiated management of RTO when
multiple packet losses occur in a window of data.

2004: RFC 3782 describes an improved TCP NewReno version (the careful

variant) with a better management of retransmissions after an RTO
expiration.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Reno

TCP Reno was defined by Van Jacobson in 1990 (RFC 2001). As soon as
three duplicated ACKs (DUPACKS) are received (i.e., four identical
ACKs are received), a segment loss is assumed and a Fast Retransmit /
Fast Recovery (FR/FR) phase starts:

ssthresh is set to cwnd/2 (i.e., flightsize/2);
The last unacknowledged segment is soon retransmitted (fast retransmit);

cwnd = ssthresh + ndup, where initially ndup = 3 due to three DUPACKS to start
the FR/FR phase. This inflates cwnd by the number of segments that have left the
network and that are cached at the receiver.

Each time another DUPACK arrives, increment cwnd by the segment size (cwnd =
cwnd + 1). This inflates the cwnd for the additional segment, which has left the
network. Then, transmit a packet, if allowed by the new cwnd value.

When the first non-DUPACK is received (an ACK acknowledging all packets sent or
even a ‘partial ACK’, acknowledging some progress in the sequence
number in the case of multiple packet losses in a window of data), cwnd
is set to ssthresh (window deflation) and the fast recovery phase ends.

Then, a new congestion avoidance phase starts.
© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Reno (cont’d)

TCP Reno may avoid drastic reduction in goodput when a packet loss
occurs (as it occurs with Tahoe).

TCP Reno performs well in the presence of sporadic packet
losses, but when there are multiple packet losses in the same
window of data FR/FR phase can be terminated before
recovering all losses (multiple FR/FR phases are used) and

an RTO may occur; this problem has been addressed by the TCP
NewReno version.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP NewReno

TCP NewReno is one of the most commonly-used congestion control algorithms.
TCP NewReno (initially defined in RFC 2582 and then refined by RFC 3782) is
based on an FR/FR algorithm started when there are 3 DUPACKSs.

In the presence of multiple packet losses in a window of data, RFC 2582
(year 1999) specified a mechanism (called “careful variant”), which avoids
unnecessary multiple FR/FR phases and manages all these losses in a
single FR/FR phase. Then, RFC 3782 (year 2004) has considered the “careful
variant” of the FR/FR algorithm as the reference one for TCP NewReno.

NewReno uses a ‘recover’ variable, representing the maximum order of the
segment sent when 3 DUPAKCs are received.

A partial ACK acknowledges some, but not all the outstanding packets at the start of the Fast
Recovery phase, as specified in the ‘recover’ variable.

A full ACK acknowledges all the outstanding packets at the start of the Fast Recovery phase.

S. Floyd, T. Henderson, A. Gurtov, "The NewReno Modification to TCP's Fast Recovery Algorithm”, RFC
3782, 2004.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP NewReno (cont’d)

With TCP Reno, the first partial ACK causes TCP to leave the FR/FR (Fast
Recovery) phase by deflating cwnd back to ssthresh. Instead, with TCP
NewReno, partial ACKs do not take TCP out of the FR/FR phase:
partial ACKs received during Fast Recovery are treated as an
indication that the packet immediately following the acknowledged
packet has been lost, and needs to be retransmitted.

When multiple segments are lost from a single window of data, NewReno can
recover them, retransmitting one segment per RTT until all lost segments from
that window are delivered correctly.

The FR/FR phase is concluded when a full ACK is received.

Then, a new congestion avoidance phase is performed with ssthresh equal
to half of the cwnd value just before the start of the FR/FR phase.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP NewReno Variants

The Slow-but-Steady and Impatient variants of NewReno differ
in their Fast Recovery behavior, specifically with respect to when
they reset the RTO timer.

The Slow-but-Steady variant resets timer RTO after receiving each partial
ACK and continues to make small adjustments to the cwnd value. The TCP
sender remains in the FR/FR mode until it receives a full ACK. Typically
no RTO occurs.

The Impatient variant resets timer RTO only after receiving the first partial
ACK. Hence, in the presence of multiple packet losses, the Impatient variant can
conclude too long FR/FR phases by allowing timer RTO to expire so that all lost
segments are recovered according to a Go-Back-N approach and a slow start
phase.

In RFC 3782, the Impatient variant is recommended over the Slow-but-
Steady variant.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Micro-Analysis and Macro-
Analysis of TCP Behavior

Microanalysis is the study of the TCP behavior in terms of cwnd,
RTT, RTO, sequence number, and ACK number with the finest
time granularity (RTT basis) in order to verify the reaction of the
TCP protocol to the different cases and conditions.

This study is opposed to the macroanalysis, which deals with the
evaluation of the macroscopic TCP behavior in terms of long-range
time averages, such as: average throughput, average goodput,
fairness, etc...

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Cwnd Sawtooth Behaviors
for Tahoe and Reno/NewReno

Hp) Single TCP
flow; Sockets 45 |
buffers (rwnd)

> B+BDP; 0 congesti S ~:‘E /T i /T
initial ssthresh - avoldajte / LA
< B+BDP; no / cong tiorlj' : / .:' /

cross-traffic 30 / VS s / B = 20 pkts
Th) Atregime, £ i / / / S/ , BDP =20

cwnd oscillates < ACKs V M Z J/ pkts
\ E-im.=.¥: 7 . L._._.K. Initial

between B+BDP § 20

e
N
N
=

s ! (B+BDP)2: : -

and (B+BDP)/2 VAR P ssthresh = 16
according to a 15 o b pkts
periodic ro : ok cwnd NewReno

10 """" cwnd Tahoe —
sawtooth slow start _:slow start :' _____ ssthresh
behavior. 5 } A s

- - / E.:As an RTO E.:AS an RTO

The pipe is 0 : :
fully-utilized o 10 20 3 40 5 60 70 80 9o 100
when BDP < time in RTT units

cwnd < B+BDP.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Cwnd Sawtooth Behaviors
for Tahoe and Reno/NewReno

Periodical losses due to buffer

Hp) Single TCP overflow with mean rate (NewReno): PLR = 8 5
flow; Sockets 45 /’\ 3(B + BDP)
buffers (rwnd) 0 ~ \ ~——.
> B+BDP; congestight ~:‘E /T B /T
initial ssthresh avodayfe /i LS /] theeyae
< B+BDP; no / conod rfg}" : / / time of cwnd
cross-traffic 30 / / / is equal to
Th) At regime, 9 / / S\ , (B+BDP)/2
cwnd oscillates £ /3 SUPACKs J/ M J/ In RTJ units.

< s InL
between B+BDP T 20 / ‘\J £ . =] ji—--f. .-k . orks this
and (B+BDP)/2 ©_/_ . _ T P\ : , cle time
according to a = : .
periodic = - N\ : ™ cwnd NewReno can be quite

10 " . - ST .]

sawtooth slow start F dowsare\. N oied (S:::E:ie'ls'shoe long.
behavior. 5 } i \= '\
The pipe is / i’/AsanRTO S\R ©
fully-utilized % 10 20 30 4 s 60 80 90 100
when BDP < time in RTT units FTR/FR phases are concentrated
cwnd < B+BDP. in these short intervals

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Cwnd Sawtooth Behaviors ...

If rwnd > B+BDP, the quantity of bits injected by the source
up to time t, a(t), due to the TCP protocol can be approximately
determined as the integral of cwnd as a function of time:

a(t)= jcwnd (t)dt |[bits]

o(t) is the arrival curve.

If the initial ssthresh value is bigger than BDP+B (actually just
BDP if it is the actual BDP based on RTT), the initial slow start phase
causes a significant traffic injection well beyond the capacity of the
network. This entails that the slow start phase ends with
multiple packet losses, a drop of cwnd, and possible RTO
expiration.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Cwnd Sawtooth Behaviors
for High Initial ssthresh

Hp) Single TCP
flow; sockets
buffers (rwnd) >
B+BDP; initial
ssthresh >>
B+BDP; no cross-
traffic

Th) The initial
slow-start phase
experiences
many packet
losses.

Impatient version: if
RTO =2xRTTs =15
(GEO satellite
scenario), there is an
RTO expiration if there
are more than 3
packet losses in a

TCP Tahoe
70 70
— g —_— cwnd
— CWN = . Ssthresh
60 = = ssthresh 60

TCP NewReno

S0 50 (Slow-but-Steady)

B = 20 pkts
2 40 / L, 0 /r / BDP =25
o / 040
Q 9 / pkts
O O FRIFR / Initial
© ®© ,
o 30 T ° / QontoAg e /| ssthresh =

/ 30 | /
S 64 pkts
20] 20 /]

TCP NewRenao
10 10 (Impatient.)
uAs an RTO h RTO
0 | | I I O
O 10 20 30 40 50 0 10 20 30 40 50
time in RTT units time in RTT units

The behaviors of these graphs are indicative.

window of dat?@ 2013 Queuing Theory and Telecommunications.: Networks and Applications — All rights reserved

Cwnd Sawtodaffic peaks with multiple
for High Initic

Hp) Single TCP
flow; sockets
buffers (rwnd) >
B+BDP; initial
ssthresh >>
B+BDP; no cross-

traffic

Th) The initial
slow-start phase
experiences
many packet

losses.

Impatient version: if
RTO =2xRTTs =1s
(GEO satellite
scenario), there is an
RTO expiration if there
are more than 3
packet losses in a

70

packet losses at both the
socket buffer and the
bottleneck link buffer.

TCP

rarftfuc

60

50

—_— C
=~ ssthresh

/!

packets

/

/

yAs an RTO

20

30 40

time in RTT units

50

75

% —_— cwnd
60 = .« Ssthresh |
(TCP NewReno
(Tlavvar bk Ctaach
50 \ (SIOW=put-oteaday)
[% ' VWi
_g{,) 40 /
é FF:/FR /
30 / """"" i
20 A
TCP NewRenao
10 (lmpatient.)
h RTO
‘ 0

20 30 40 50
time in RTT units

The behaviors of these graphs are indicative.

window of dat?@ 2013 Queuing Theory and Telecommunications.: Networks and Applications — All rights reserved

p

B = 20 pkts
BDP = 25
pkts

Initial
ssthresh =

64 pkts

TCP with SACK Option

TCP Reno and NewReno retransmit at most 1 lost packet per RTT
during the FR/FR phase, so that the pipe can be inefficiently used during
the recovery phase in the presence of multiple losses.

With Selective ACK (SACK) enabled (RFCs 2018 and 2883), the receiver
informs the sender about all successfully-received segments: the
sender only retransmits lost segments.

Support for SACK is negotiated at the beginning of a TCP connection
between sender and receiver. Both sender and receiver need to agree on
the use of SACK: use of the SACK-permit option in the three-way
handshake phase. SACK does not change the meaning of the ACK field in
TCP segments.

A contiguous group of correctly-received bytes represents a block;
bytes just below the block and just above the block have not been received.

M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, "TCP Selective Acknowledgement Options”, RFC 2018, Oct. 1996
K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno and SACK TCP”, Computer Communication Review, July 1996

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP with SACK Option
(cont’d)

The SACK option has to be sent by the receiver to inform the sender of
non-contiguous blocks of data received and queued.

If SACK is enabled, SACK options should be used in all ACKs not
ACKing the highest sequence number in the receiver queue. A SACK
option in the TCP header can permit to specify a maximum of 4 blocks.

Block #1 Block #2 Block #3 Block #4 X Received
hole = loss loss loss byte-stream

The implementation of SACK combined with TCP Reno by S. Floyd
requires a new state variable called ‘pipe’.

Whenever the sender enters the fast recovery phase (after 3
DUPACKS received), it initializes ‘pipe’, as an estimate of how many
packets are outstanding in the network, and sets cwnd to half of its
current value.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP with SACK Option
(cont’d)
If pipe > cwnd, no packet can be sent, since the number of in-flight

data is larger than the cwnd value.

Pipe is decremented by 1 when the sender receives a partial ACK
with a SACK option reporting that new data have been received.

Whenever pipe becomes lower than cwnd, it is possible to send
packets, starting from the missing ones (holes as reported by SACK)
and then new ones. Thus, more than one lost packet can be
sent in one RTT.

Pipe is incremented by 1 when the sender sends a new packet or
retransmits an old one.

Exit fast recovery when a full ACK is received.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Example of NewReno Micro-
Analysis (GEO Satellite Case)

s

TCP Sender Propagation delay = 250 ms TCP Receiver
‘ IBR = 2 Mbit/s (bottleneck link) ‘

B denotes the max number
of TCP segments in the
buffer of the link

RTT ~ RTD = 2x propagation delay =500 ms

MTU =1500 bytes

Initial ssthresh = 32 pkts
RTT x IBR

BDP = =84 pkts
MTU x8

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

B = 84 pkts

Example of NewReno Micro-
Analysis

cwnd,.,
cwnd
200 ---- Zztzcraiser::k link queue length
2]
< 100 — 1! _,..—-""‘"/’\ _
O et R T T T Tt
g 74_/_ ,.....r._".':.--_-._._! R - e
0 o awsesttt r R T PPTTal
0 50 100 150 200 250 300
time in RTT units
2 —————— RTT
B 15 RTO J\ __,__,.J\
® 1Y = il | RSP P
L AP LL b :‘ I ___________ T
0.5 e L=
50 100 150 200 250 300
time in RTT units
X 104
4 r T r T
% { arrival curve, sequence number curve r
x 2
Q -—'—'—"'-'--_
0 r
0 50 100 150 200 250 300

time in RTT units

= BDP + B = 168 pkts

cwnd
200 T ssthresh
[| meemmeeees bottleneck link queue length]
2] o
@ L 1
2 100 D — e = ,..f:’_’ff_
g _._._._._.',"n.'.';'.-_-:: R
O L FR e . PO LA - b
0 50 100 150 200 250
time in seconds
2 ;
% 1.5 /_,_,..--"""\\ 'F'A_"/.. _._.;.- RTT | A
[) >
§ 1 i — ~ _,..--"":‘:T:— . i RTO | -
05 S VS N W el [-
' 50 100 150 200 250 300
time in seconds
4
x 1 T
4c arrival curve, sequence number curve \ L
2]
©
0k r L L L L
0 50 100 150 200 250

time in seconds

We have not considered here the RTT
granularity due to ticks.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Example of NewReno Micro-

Analysis
B = 40 pkts

packets

seconds

cwnd, ., = BDP + B = 124 pkts
max
cwnd cwnd
———— ————— thresh
200 o~ ssthresh _ 200 ssthres .
""""" bottleneck link queue length * e bottleneck link queue length
100 s cand | et e 100 1 o | e |
sl =l I DS ce e NS VO By — e e e e
7‘4:_._._..7_“..-1'1 T N B . BRI o 7(':‘:‘_ ___‘..‘u'.! TG JUETT ES T S P
0 PTLLL L veannnsesn®®®? T T, : H [0) A SR T L et { P T L S W Py
0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180
time in RTT units time in seconds
D | mrmmam RTT 2 | T RTT
15 RTO B 15 RTO
0.5 et : ey S L e : =t ke 7 0.5 T il Vb A W Pt L T T A
50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180
time in RTT units time in seconds
X 104 X 104
4 - - : 4 ; ; i i i
é 5 arrival curve, sequence number curve ﬁ 2 [arrival curve, sequence number curve —_—
& ,_.-—'—'_'_'_‘_'-F'-— Q B e
g . g —
0 r 0 ; : r r
0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180

time in RTT units time in seconds

We have not considered here the RTT
granularity due to ticks.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

B = 40 pkts

Example of Tahoe Micro-
Analysis

cwnd, ., = BDP + B = 124 pkts
max
cwnd cwnd
200, T ssthresh 200 =TT ssthresh
12 R I bottleneck link queue length [S bottleneck link queue length
(0] s] . e
% 100 o o " ¥ 100 o _— o o
(o] 7/ _________ R [——— e ——— '] 7‘{,,—4 . _._._.-._._:_ - -y y—— i pp———
o R - T [AN ALl I A orreLil [N T O | ————— ECAl F AN Pt | B RETL I B N PPCLLY
0 s Leeet B A o) AU SO A ' T 3 b e e Eaesst
0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180
time in RTT units time in seconds
2 mEemem=m—— RTT 2 T T
8 15 RTO 8 15 —rmemin RTT
L e 1 LY et e 2] " 1 STl | IRl B e
0.5 o ss=? L - . —=" * -t 0.5 L —— . = + m— T -
50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180
time in RTT units time in seconds
X 104 X 104
4 : : r r 4 ; ; ; F F F
é) arrival curve, sequence number curve ﬁ) arrival curve, sequence number curve -
Q —— [3) P,
0 C 0 : C C C
0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180

time in RTT units time in seconds

We have not considered here the RTT
granularity due to ticks.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Example of Tahoe/NewReno
Macro-Analysis: avyg. Th.

The average throughput is derived as sum of cwnds on RTT basis
divided by the total time elapsed:

x 10° average throughput as a function of time

Zn:czwndi ‘]
1_,(n) 3 1.8 — —

l Zn:RTTi +o /|
B = 84 pkts

Tahoe
NewReno

= =
N B
\

~—

throughput [bit/s]

o o
(o2} (o]
\

©
N

o
(V)

o

50 100 150 200 250
time in seconds

o

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Example of Tahoe/NewReno
Macro-Analysis: Efficiency

Study of the efficiency as a function of the bottleneck link buffer size from
B =0to B =BDP = 84 pkts

1;

e —
_TI(B) _—
n IBR 0.95 // -
/ ///
0.9 / //
When B = 0,the ¢, // Tance
efficiency of TCP ¢ 7
NewReno is " os /
minimum, 75%. /
When B tends to 0.75
BDP, the efficiency /
tends to 100% with o7~ - - . -
TCP NeWRenO- bottleneck link buffer size [pkts]

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Design of the Buffer of the
Bottleneck Link

The optimal buffer B value is the minimum B value allowing to
maintain the pipe constantly filled so that cwnd never goes below
BDP (i.e., the pipe never becomes empty, and the link is

exploited at the maximum rate of IBR); a rule-of-thumb is to
consider B = BDP packets.

At regime, cwnd of NewReno oscillates between 2BDP and BDP,
the pipe is always loaded at about IBR, and the buffer
occupancy oscillates between full and empty conditions.

ssthresh is the TCP memory of recent congestion events. At

regime, ssthresh is equal to BDP. The regime ssthresh value can
represent an estimate of the system bandwidth.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Design of the Buffer of the
Bottleneck Link

BDP < cwnd < B+BDP

The optimal buffer B value is the
maintain the pipe constantly filled so that cwnd never goes below
BDP (i.e., the pipe never becomes empty, and the link is
exploited at the maximum rate of IBR); a rule-of-thumb is to
consider B = BDP packets.

At regime, cwnd of NewReno oscillates between 2BDP and BDP,
the pipe is always loaded at about IBR, and the buffer
occupancy oscillates between full and empty conditions.

ssthresh is the TCP memory of recent congestion events. At
regime, ssthresh is equal to BDP. The regime ssthresh value can
represent an estimate of the system bandwidth.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Analysis

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Square-Root Formula for TCP
Throughput/Goodput

At regime, the average TCP throughput I" (the average goodput y)
at network layer can be approximated by the square-root formula
below, which is valid under the following assumptions: B = 0, RTT
= constant (i.e., RTT = RTD), and neglecting RTO events.

F:min{MTUXS\F,IBR} [@} 7=(1—p)xmin{MTUX8\/E,IBR} [ﬂ}
RTT P S RTT P S

where p (p < 0.1, otherwise RTOs have impact) denotes the
segment loss rate, o is a coefficient, which depends on the TCP

version and type of losses (e.q., Ja =1.31 for NewReno with
random losses).

Throughput/goodput of standard TCP is quite sensitive to the
increase in p.

M. Mathis, J.Semke, J. Mahdavi, T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”,
Computer Communications Review, Vol. 27, No. 3, July 1997.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Square-Root Formula for TCP
Throughput/Goodput

MTU is here measured in
A bytes and RTT is here ? throughput T" (the average goodput y)
al expressed in seconds. PProximated by the square-root formula
he following assumptions: B = 0, RTT
= e, = KID), and neglecting RTO events.

I =min) WYX & g [@} y=(1- p)xmin MTYX8 @ \gp [@}
RTT P S RTT P S

where p (p < 0.1, otherwise RTOs have impact) denotes the
segment loss rate, o is a coefficient, which depends on the TCP

version and type of losses (e.q., Ja =1.31 for NewReno with
random losses).

Throughput/goodput of standard TCP is quite sensitive to the
increase in p.

M. Mathis, J.Semke, J. Mahdavi, T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”,
Computer Communications Review, Vol. 27, No. 3, July 1997.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Square-Root Formula for TCP
TlovasalastlEgodput

The minimum is needed
to avoid that a too low p

value causes this CP throughput T (the average goodput v)
quantity to go beyond |approximated by the square-root formula
the physical limit of IBR. r the following assumptions: B = 0, RTT
TD), and neglecting RTO events.

MTUXS\F,IBR} [@} 7:(1—p)xmin{MTUX8\/E,IBR} [@}
RTT P S RTT P S

where p (p < 0.1, otherwise RTOs have impact) denotes the
segment loss rate, o is a coefficient, which depends on the TCP
version and type of losses (e.q., Ja =1.31 for NewReno with
random losses).

Throughput/goodput of standard TCP is quite sensitive to the
increase in p.

M. Mathis, J.Semke, J. Mahdavi, T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”,
Computer Communications Review, Vol. 27, No. 3, July 1997.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

' =min

Square-Root Formula for TCP
Throughput/Goodput (cont’d)

6.5_ L L L L L L L L

curves for different RTT values

B\
AN

ERN
4.5\
Bl i\
G\

goodput [bit/s] in log scale

D

3.5

3 C r r r r r r r r L
0 001 002 003 004 005 006 0.07 0.08 0.09
packet loss rate, p

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Square-Root Formula for TCP
Throughput/Goodput (cont’d)

6.5¢

B
4

goodput [bit/s] in log scale

D

w
ol

3

Note that with packet losses
on the link, cwnd will
typically be unable to reach
the maximum of BDP + B.
 aeewane PaCket losses cause sudden
A - cwnd reductions or RTO

/ events. Packet losses
significantly reduce goodput
and efficiency.

C r r r r r r T

r r [
0 001 002 003 004 005 006 0.07 0.08 0.09
packet loss rate, p

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Fairness for TCP
Traffic Flows

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Flows Sharing a
Bottleneck

We consider multiple (two) TCP flows sharing a bottleneck link according to

TCP receiver
A

with capaci
TCP sender

[]

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

\ 4
TCP receiver

[]

Synchronized Losses for TCP
Flows Sharing a Bottleneck

If the drop tail FIFO policyis .. TCPNewRenoflows
adopted for the buffer of the

bottleneck link, all TCP flows
experience buffer congestion at \
the same time, thus having 4001~ |
synchronized packet losses. [

an

ool cwndtotIA\cwnd1 + cwnd, (aggreqa\;e)

1
|
|

€ 300- cwnd i
All these TCP flows reduce their ! I I
traffic injection at the same time 200 - ! ,
due to synchronized losses. 1
\ I /cwnd, \
100 -~ g
There are intervals of time where \ /
the bottleneck link is Nl /]
significantly underutilized. 850 600 650 700 &0 800 850 7000 950 1000

(me

Synchronized losses

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Fairness

Let us consider two TCP flows sharing a bottleneck link.
The relative phases of the two cwnds have an impact on their behaviors.
Let x;(x,) denote the cwnd of flow #1 (#2). The fairness of two TCP

flows sharing a bottleneck link can be studied by means of the graph of
X, versus X, under the constraint x, + x, < cwnd,,, = B + BDP:

TCPflow 2 | : - _
cwnd, x, Fairness Line (x; = X,)

Fairness and efficiency
may be two opposite
aspects to deal with.

Efficiency Line (x, + X, = cwnd)

TCP flow 1 cwnd, x;
© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Fairness Measure

Jain fairness index o:

- 2
D= "= n: Number of flows

LI r; : Average throughput of the i-
n) T, th flow

If all the n TCP flows sharing a bottleneck link (with IBR)
achieve the same throughput (T'; = IBR/n), the fairness index
Is maximum and equal to 1.

The minimum fairness value is 1/n, obtained when all TCP
flows have T'; = 0, except one with T, = IBR.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP NewRence C:oanvarnancao

450

The behavior of the point (x,, x,) for two
TCP flows of the same type (i.e., both Reno
or both NewReno) sharing the same bottleneck
is depicted below. This point oscillates below

400
Starting

Synchronized 3%

0SSES g

250

cwnd, [packets]

point

the efficiency line and is expected to move
closer to the fairness line (x; = x,) for a fair
sharing of resources.

This is what we call a convergent behavior.

~.
N,

g point "~
N\

|

Efficiency-Line

\b

| | | | | |

100

150 200 250 300 350 400 450
cwnd, [packets]

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Convergence Time

The same graph as before, but now the cwnd
behaviors are shown as a function of time.

The Convergence B R T
- . . Lt n = TCP Newreno flow 1 ||
tlme IS the t|me 400: e TCP Newreno flow 2 ||

needed from a single ,
(elephant) TCP flow 350

[
H

: . ’,,
saturating the ol "
bottleneck link, to the et :

instant when a new g2s0- : ot -
started TCP flow g .

reaches a fair sharing I
of the bottleneck link 150

capacity (X; = X,).

Convergence is not
assured in general

and depe_nds on the %0 e0 es0 700 70 800 850
TCP version. TiMSG

Synchronized losses

100

P F

P
900

950 1000

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP NewReno Convergence
Time Analysis

Hypotheses: (i) B = BDP; (ii) the second flow starts when the first
one has the maximum cwnd = 2BDP (worst-case); (iii) perfectly

synchronized |

osses; (iv) both flows are in the congestion avoidance

) .
¥ phase.
g 2§DP
= BDP+BDP/2
“E’ 5BDP/4
S /
q, -
" ~
"~ PR -
€ BDP - 8P/ | BEP/
3
U »
Time (RTT units)
‘Cycle time = :Cycle time =
BDP/2 in RTT BDP/2in RTT
Units Units

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP NewReno Convergence
Time Analysis (cont’d)

The duration of each cycle is BDP/2 in RTT units.

At each cycle, the cwnd difference between the
two flows halves. Hence, log,(BDP) cycles are needed
to achieve convergence.

The product of the number of cycles and the cycle
duration yields the TCP NewReno convergence time
Tnewreno UNer our assumptions:

T —?Iogz(BDP) [RTT units]

NewReno ~—

If BDP = 100 pkts (LFN), Tyewgeno ~ 332 [RTTS]

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

RTT Fairness

Common bottleneck
link to the two flows

TCP source,

L

TCP source,

Different (say 2) TCP connections may experience quite different RTT
values, and a good TCP protocol should allow the different TCP flows to
fairly share the bottleneck link bandwidth, regardless of their RTT values.

RTT fairness index = ratio of the average throughputs of the two
flows I'; /T, with different RTTs, typically proportional to
RTT,/RTT,.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Versions for LFN
Networks (e.g., High-
Speed Networks or
Satellite Networks)

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

New TCP Versions for LFN
and Simulation Tools

In the last few years, many TCP variants have been proposed to
address the under-utilization of LFN networks due to the
slow growth of cwnd. Some examples of these versions are: HS-
TCP, S-TCP, BIC, CUBIC, etc.. The cwnd behaviors of many of these
variants and more can be found at the following URL:
http://netlab.caltech.edu/projects/ns2tcplinux/ns2linux/index.html

Even if the cwnd growths of these new protocols are scalable and
good for LFNs, fairness and convergence are major issues.

The main problem is to find a “suitable” growth function for cwnd.

Very important free simulators for the networks (suitable for

simulating many TCP versions, routing, etc.) are ns-2 and the new

ns-3. More details can be found at the following links:
http://nsnam.isi.edu/nsnam/index.php/User Information
http://www.nsnam.org/

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

http://netlab.caltech.edu/projects/ns2tcplinux/ns2linux/index.html
http://nsnam.isi.edu/nsnam/index.php/User_Information
http://www.nsnam.org/

CUBIC TCP: cwnd Behavior

accelerat

Convex region

(@)
)
-
0
Q
<
()
1
(]
-]
)
=

time, t

slowi down

W(t)=Ct-K) +W

(g

where C (= 0.4) is a scaling factor, t is the elapsed time from the last cwnd (W)
reduction due to a packet loss at time t = 0, W, _, is the maximum cwnd (W) value
before the last reduction, and B is a constant used in a multiplicative decrease of cwnd
after a packet loss operated as follows: W(0) « W, ., — BW, = (1 = B) W, .- Where 3
=0.2sothat1 -p3=0.8.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

accelerate

CUBIC TCP: cwnd Behavior
(cont’d)

The cwnd growth function of CUBIC TCP depends on a cubic
law of the time elapsed since the last packet loss; the cwnd
grow time is independent of ACKs (and then on RTT).

ACKs are still needed to understand the segments that have been
correctly received.

Cwnd growth slows down as it gets closer to the value before last
reduction (= W__.).

K is the time needed to recover after a packet loss the same
W, .., value before the loss. The value of K has been
determined by imposing W(0) = C(-K)* + W__. =W, ..—
meax'

CUBIC TCP is the default TCP version in Linux kernels (2.6.19 or
above).

I. Rhee, L. Xu, S. Ha, "CUBIC for Fast Long-Distance Networks", IETF Internet-Draft,
February 2007.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

CUBIC TCP: Design Issues

CUBIC exhibits the following properties:

Stability: CUBIC TCP has a very slow cwnd increase in the
transition between the concave and convex growth regions,
which allows the network to stabilize before CUBIC starts looking
for more bandwidth.

RTT fairness: CUBIC TCP achieves RTT fairness among flows
since the window growth is independent of RTT.

Intra-protocol fairness: there is the convergence for the
cwnds of two competing CUBIC flows.

CUBIC TCP exhibits however inter-protocol fairness issues
with other TCP versions, as shown in the following slide.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

CUBIC versus Other TCP
Versions

CUBIC TCP 10000

is sharing 9000 T 1 / /1” CUBIgyl/ 4 / 1
8000 | 7 I — — .
| V/J, g e
| (s

bottleneck
link with

the

TCP

NewReno. |

7000 |

| N -
6000 | ~eoon .

| Classical CUBIC behavior
5000 | | .

4000 | | .

-
-

cwnd

3000 || .
2000 | | 4
TCP Reno
1000 | / 4

0

0 20 40 60 80 100 120 140 160
Time (s)

There is no convergence to a fair sharing of capacity:
serious inter-protocol fairness problems.

© 2013 Queuing Theory and Telecommunications. Networks and Applications — All rights reserved

Compound TCP (CTCP)

Compound TCP (CTCP) aggressively adjusts the congestion window
(cwnd) to optimize TCP traffic injection in LFN networks.

Compound TCP maintains two cwnd values: a TCP NewReno-like
(loss-based) window and a delay-based window.

The size of the actual sliding window used is the sum of
these two windows.

If the delay is low, the delay-based window rapidly increases to

improve the utilization of the network. Once queuing is experienced,
the delay window gradually decreases.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Multi-Homing and Multi-Path
TCP

Multi-Path TCP (MP-TCP) is a new approach to improve TCP performance
exploiting multiple source-destination paths (e.g., RFCs 6182 and
6824, respectively of 2011 and 2013).

Requirement: we need a multipath transport layer solution that is transparent to middleboxes,
that are network nodes with protocols up to transport (NATs, Firewalls, Gateways, PEPs, etc.)

MP-TCP assumes that both sender and receiver are modified and that one or
both of them can have multiple IP addresses (multi-homing, multi-
addressed, multi-network adapter) to exploit different network paths.

According to RFC 6824, MP-TCP improves the throughput if multiple paths can be used in
parallel for a destination or can make TCP robust in case of link disconnections (additional
path used as a backup).

Each sub-flow is characterized by a suitable congestion control mechanism and a sub-flow
sequence number. Sub-flows are bound together by means of a token identifier.

MP-TCP signaling is based on optional TCP header fields (signaling: set up
multiple sub-flows, reassembly of data, sub-flow termination, etc.).

LHCNet (network for physics) is performing experiments with MP-TCP on

end hosts of its multi-Gbit network for load balancing purposes.
A.A. 2013 - 2014 Siena - © 2014 All rights reserved

MP-TCP and Mobility: HetNet
Scenario WiFi/3G/4G

(9)

3G base station

/
/
/
/

Mobile client\ S~

N\

smartphone %, __=~"" MP-TC
WiFi AP

A.A. 2013 - 2014 Siena - © 2014 All rights reserved

TCP Versions
Implemented and
Measurements

W. Richard Stevens, "TCP/IP Illustrated, Vol 1: The Protocols", Addison-Wesley
Professional Computing Series, 2012.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Versions and Operating
Systems

Many TCP algorithms are supported by the major operating systems:

TCP AIMD (*) and CTCP for the Windows family (e.g., Windows
XP/Vista/7/Server/8).

TCP AIMD (*), BIC, CUBIC, HSTCP, Hybla, Illinois, STCP, Vegas, Veno,
Westwood+, and YeAH for the Linux family (e.g., RedHat, Fedora, Debian,
Ubuntu, SuSE).

TCP NewReno is a common TCP version for UNIX (Berkeley Software
Distribution, BSD).

The TCP version used in MAC OS X operating system is based on the BSD
version (FreeBSD 5 and therefore 4.4BSD) and is using TCP NewReno.

(*) AIMD can be considered quite close to NewReno.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Versions and Operating
Systems (cont’d)

Both Windows and Linux users can change their TCP algorithms
and settings by means of a line of command. Linux users can even
design and then add their own TCP algorithms.

Under Vista/Windows 7, the following prompt command is available to
verify/to modify TCP settings:
netsh int tcp show global
CTCP is enabled by default in Server 2008 and disabled by default in
computers running Windows Vista and Windows 7. CTCP can be enabled
(disabled) by means of a suitable command (Vista/Windows 7):
netsh interface tcp set global congestionprovider=ctcp
(netsh interface tcp set global congestionprovider=default)

The change of TCP version has impact only if this is done on the TCP
sender.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Versions and Operating
Systems (cont’d)

Example of use of the prompt command “netsh int tcp show
global”:

C:s>netszsh interface tocp show global
Querying active state...

enabled
enabled
dizahled
ctcp
dizahled
dizahbhled

RHeceive—S5ide Scaling State

Chimney Offload State

Receive Window Auto—Tuning Level
Add-0On Congestion Control Provider
ECH Capability

RFC 1323 Timestamps

It is possible to set different options, such as window
scaling to enlarge the rwnd range, timestamp options to
improve the RTT estimate, ECN, etc.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Versions and Operating
Systems (cont’d)

Example of use of the prompt command “netsh int tcp show
global”:

C:s>netszsh interface tocp show global
Querying active state...

enabled
enabled
dizahled
ctcp
dizahled
dizahbhled

DM WOl pioiirl il

RFC 1323 Timesta

It is possible to set erent options, such as window
scaling to enlarge the rwnd range, timestamp options to
improve the RTT estimate, ECN, etc.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Versions and Operating
Systems (cont’d)

Example of use of the prompt command “netsh int tcp show

glob A timestamp is an optional field in the TCP header that contains
the current value of the clock of the sender. In particular, the
sender places a timestamp value in each segment sent. The
receiver reflects this value in the ACK, thus allowing an accurate
RTT calculation at the sender for every ACK. This is useful
because current implementations measure RTT only once per

window of data and this could not be accurate for LFN
networks.

It is possible to set different options, s as window

scaling to enlarge the rwnd range, timestamp options to
improve the RTT estimate, ECN, etc.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

TCP Versions and Operating
Systems (cont’d)

The different operating systems use distinct settings for
some basic TCP parameters as follows:

Microsoft Windows XP: Initial cwnd of 1460 bytes and maximum
possible (initial) rwnd of 65535 bytes.

Microsoft Windows 7: Initial cwnd of 2920 bytes (i.e., more than one
segment) and maximum possible rwnd of 65535x22 bytes by means of
the window scaling option according to RFC 1323.

Ubuntu 9.04: Initial cwnd of 1460 bytes and maximum possible rwnd of
65535x%2° bytes.

MAC OS X Leopard 10.5.8: Initial cwnd of 1460 bytes and maximum
possible rwnd of 65535x23 bytes.

R. Dunaytsev. 7CP Performance Evaluation over Wired and Wired-cum-Wireless Networks. PhD thesis, TUT
Tampere, 2010.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Testing TCP Performance:
Iperf

Iperf is a free tool to measure TCP goodput (bandwidth), allowing
the tuning of various parameters. Iperf reports bandwidth, delay
variation, and datagram loss.

Developed by the National Laboratory for Applied Network Research
(NLANR) project, iperf is now maintained and developed on Sourceforge at
http://sourceforge.net/projects/iperf

The —s option sets the server (TCP receiver)

The —c option with the IP address of the server sets the client (TCP
sender)

The —w option can be used to set a particular TCP window size (socket
buffer size). This value should be ‘aligned” with BDP for an optimal TCP
goodput performance.

The —h option is used for the help of the commands.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

http://sourceforge.net/projects/iperf

Testing TCP Performance:
Iperf

Iperf is a free tool to measure TCP goodput (bandwidth), allowing
the tuning of various parameters. Iperf reports bandwidth, delay
variation, and datagram loss.

Devell FOr instance if one system is connected with Gigabit Ethernet
(NLAN (@ 1Gbit/s), but the other one with Fast Ethernet (@100Mbit/s)
http:/| @and the measured round trip time is 150 ms, then the window
size (socket buffer size) should be set to 100 Mbit/s x 0.150 s /
The = 8 = 1875000 bytes (~ BDP), so setting the TCP window to a
The — value of 2 MBytes would be a good choice.

send(

The —w option can be used to set a particular TCP window size (socket
buffer size). This value should be ‘aligned” with BDP for an optimal TCP
goodput performance.

The —h option is used for the help of the commands.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

http://sourceforge.net/projects/iperf

Testing TCP Performance:
Iperf (cont’d)

The configuration of this experiment is show below:

Client running Iperf Server running Iperf
ephemeral port 62688 server port 5001
end-to-end dialogue
TCP € ———————= > TCP
<IP geographical
Address> of
the server

We have to run Iperf on both server (TCP receiver) and client
(TCP sender) to exchange traffic and measure the TCP performance.

We run ‘iperf -s’ on the server to enable it to receive traffic sent from the client via TCP.

Then, we run ‘iperf -c <IP address> on the client to send data to the server by means of
TCP.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Testing TCP Performance:
Iperf (cont’d)

Iperf performs repeated file transfers for 10 s and measures the resulting
average capacity (bandwidth).

Server listening on TCP port 5861 rwnd —_ 8 kB for

TCP window size: 8.00 KByte (defaultl

[26B8]1 1 1 193.285.%7.285 «t SHAAL ted with 193.285.7.282 st 1223 1
the operating
[26B8]1] ©B.8—-10.8 sec T6.7 MBytez 81.1 HMhits-sec

system.

C:wProgrammi~iperf >iperf —c 193 _.205.7.202

Client connecting to 193.205.7.2082, TCP port 58681
TCP window size: 8.00 KByte (defaultl

[156]1 local 193.2685.7.285% port 56847 connected with 193.285.7.2082 port 5861
[ID] Interval Transfer Banduwidth
[156]1 HB.8-18.8 =ec 184 MBytes 8%.3 HMhits-=zec

C:~Programmi~iperf iperf —c 123.2685.7.282

Client connecting to 193.2685.7.2682, TCP port 5861
TCPF window size: §.880 KBute (defaultl

[156]1 local 193.2685.7.285% port 56849 connected with 193.285.7.2082 port 5861
[ID] Interval Transfer Bandwidth

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

Thank you!

giovanni.giambene@gmail.com

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved

