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Queuing Systems

Queuing systems are everywhere.,

For example, airplanes “queue up”, waiting for a runway so they
can land. Then, they line up again to take off.

People line up for tickets, to buy groceries, etc.

The Danish engineer A. K. Erlang founded queuing
theory by studying telephone switchboards in
Copenhagen for the Danish Telephone Company in the
early 1900s.
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Queuing Systems (cont’d)

The interest is here to study queuing systems and
related analytical methods for the study of
telecommunication networks.

In telecommunication networks, queuing theory
Is used every time a network resource is shared
by competing ‘service requests’.
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Queues in
Telecommunications

Every protocol in every node of a telecommunication network can
be modeled through an appropriate queuing process.

Queues can be applied at different OSI levels:

OSI Layer 1: Blocking phenomena of a traffic flow (i.e., a call) due to
unavailable resources in at least one link in the path from source to
destination.

OSI Layer 2: Queuing is generated by different packets sharing the
transmission resources of a link connecting two adjacent nodes (MAC,
multiplexing);

OSI Layer 3: There are layer 3 buffers for IP-level QoS support (e.g.,
DiffServ).
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Queuing Systems:
Terminology

In the study of queuing systems, there are also
different terms that have the same meaning and
can be used interchangeably.
Some interesting examples are:
Client/customer/service request/job/packet/message/call/etc.
Service/transmission/etc.

Server/transmitter/etc.

Queue/buffer/memory/etc.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Queuing System: Basic

Notations

A basic model for a delay/loss system (node or link) in

telecommunications:

Message,
packet,
cell
arrival
rate A

Mean time spent in system by a customer (service request) = T
Number of customers in the system at time t = N(t)

+
Pb

lost or
blocked

Delay box

N(t)

-

Fraction of arriving customers that are lost or blocked (congestion) = P,
Long-term mean arrival rate of customers = A
Average number of customers/second that pass through the system = throughput

Message,
packet,
Cell
departures

Throughput is A
under stability
condition
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Queuing System: Basic
Characteristics

Queues are special cases of stochastic processes, which are represented by a
state N(t) with discrete values, for instance denoting the number of queued
‘entities’ (called below ‘requests’). Queues are modeled by ‘chains’.

A queue is characterized by:
An arrival process of service requests (mean arrival rate denoted with ),
A waiting list of requests to be processed,
A discipline according to which requests are selected in the queue to be served,
A service process.

Waiting list

Arrival process

v Vv

. Departing customers

v

Servers
Service policy
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Kendall’s Notation for Queuing
Systems ‘A/BIS/AIE - service’

Integer numbers
- service
roomme A = interarrival time distribution or arrival process
G = General (i.e., not specified); M = Memoryless (Poisson);
B = service time distribution

G = General (i.e., not specified); M = Memoryless (exponential);
D = Deterministic

S = number of parallel servers, S=1,2,..(5>1)
A = number of available places in the queue (wait+service), A > S
E = limit on population, E > S

Service = denotes the discipline adopted to service the requests in
the queue; for instance, First Input First Output (FIFO), Last Input
First Output (LIFO), and Service In Random Order (SIRO).

Note: A and E are omitted if they are infinity.

D. G. Kendall, the English mathematician who first used the term ‘queuing system’ in the
paper: “Some Problems in the Theory of Queues”, Journal Royal Statistical Society, 1951
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Service Policy vs. Scheduling

Service policy refers to the order according to which requests are serviced
in @ queue. This order can also be dynamic if newly-arriving requests can change
the service order of previous ones in the queue.

1 3 2

—».—»

Head-Of-Line (HOL) packet

Scheduling refers to the case where many queues share a given server
(multiplexing context); the task of the scheduler is to select the next request
to be serviced among those in the queues.

Example: Round Robin (RR) etc.

J—

The service order can be static or dynamic.

Each queue may represent a different traffic class (in an end-host) " HEHE
or different end-hosts within a class. —_—

Overheads (e.g., headers, dead times) can be needed
in switching the server from one queue to the next one.

All queues sharing a given server —_—
behave globally as a single queue with a suitable service

policy.
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Main Performance
Parameters for a Queue

The distribution of the number of requests in the queue
(queue state distribution probability)

Mean number of requests in the queue, N

The distribution of the time spent from the arrival of a
request to the queue to the instant when the service of
this request completes.

Mean time spent to cross the queue (i.e., mean queue
delay), T.
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Queue Stability (Steady-
State)

A single-server queue system is stable if

arrival rate of requests < service rate of requests

For instance in an industrial production plant modeled as a global queue, stability
requires that the frequency A of the arrival of product requests be lower than
the rate of product completion, p:

A
plant =

p = A/p denotes the traffic intensity offered to the queue. In a single server
queue, stability requires that A < p or p < 1 Erl. p also denotes the ‘server
utilization factor’, that is the percentage of time (between 0 and 1) that the
sever is busy.

In an unstable queue:

Packets accumulate in the queue without a bound (packet delays increase
continuously).

Flow/admission control may be used to limit the packet arrival rate.
Prioritization of flows keeps delays bounded for the important traffic.
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Little Formula (1961)

Assumptions (the queuing system as a “black box"):
General G/G/X/Y queuing system

Boundary condition: The queue must become empty at some time instants
(this is assured if the queue is stable, as we assume below).

Conservation of customers: All arriving cdstomers (requests) will eventually
complete their service and will leave the system (i.e., there are no customers
lost).

The queuing system admits a steady-state: (i) the queue becomes empty
from time to time; (ii) the queuing system is described by an ergodic process
(time averages are equal to the corresponding statistical averages).

The Little formula relates T and N quantities for a queue (Zdenotes the
‘mean rate of requests accepted into the system’):

;_N

—— & N=AT
A

J. C. C. Little, "A Proof for the Queueing Formula: A = XW," Operations Res., Vol. 9, pp. 383-387, 1961
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Little Formula (cont’d)

The Little theorem can also be applied to a packet-switched
telecommunication network as a whole.

Note that a telecommunication network is formed of nodes and links.
Each node can be modeled as a set of queues representing the
transmission buffers (collecting different input traffic contributions)
on different output links.

S OO
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Little Formula (cont’d)

The Little formula can be used to relate the mean delay
experienced by a message (or packet) from the entrance to the exit
from the network, T, and the mean number of messages (or
packets) that are in the network, N, by means of the mean arrival
rate A of messages entering the network: T = N/A

Intuitively: since the Little formula is valid under very general
assumptions on the queuing discipline and since the state model of
a queue is unaffected by typical scheduling schemes, many queuing
disciplines (e.g., FIFO, SIRO, LIFO, PS, etc.) achieve the same
mean queue delay (while other moments of the delay do depend on
the queuing discipline); this intuitive results is supported by the
insensitivity property:

If the service discipline fulfills the insensitivity property assumptions, the queue state

distribution and the mean delay do not depend on the service type. Hence, ATgro) =
HTero) = HT5r0)- However, Var(Teg) < Var(Tsro) < Var(Tiieo)-
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Little Formula (cont’d)

- 0T =h M I

N N O)

The insensitivity property holds when
(hypotheses):

The service policy is independent of
the service time.

The service policy is non-preemptive (a
job that has started service will remain in
service until completes).

The service policy is work-conserving
(there are not server vacations).

r

t

The queue is stable.

nsensitivity property:

o to the exit
s (or
pan arrival

neral
re model of
ANy queuing
' Same

depend on
he queuing O,

e); this intuitive results is supported by the

If the service discipline fulfills the insensitivity property assumptions, the queue state
distribution and the mean delay do not depend on the service type. Hence, ATgro) =

HTsiro) = AT 1r0). However, Var(Tgrg) < Var(Tgro) < Var(T o).
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Little Formula Proof

We consider that attimet =0
the queue is idle.

Let us denote:

o(t) = number of requests arrived in
the interval (0, t);

B(t) = number of requests that
complete service in the interval (0, t);

t, = arrival instant of the i-th request;

ot) and B(t) have staircase graphs

a(t)

B(t)

|

number of requests arrived or
number of requests served
N w IS

t’ = departure instant (i.e., service t b Lt bt H
completion) of the i-th request.

We neglect the cases of multiple arrivals (or departures) - both a(t) and B(t)
have variations of value 1 corresponding to arrival or departure instants,
respectively.

Note that t; < t, < t; < .... Whereas, the ranking of the instants t,’, t,’, t5/ ...
depends on the adopted queuing policy (in the FIFO case t;'< t,' < t;' < ..,
but this is not necessary for the Little theorem).
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Little Formula Proof (cont’d)

The following relationships will be 5 _
used: g2
T, = t'- t represents the time spent in = @ 4
the system by the i-th request; 7 3 alt)
N(t) = a(t) - B(t) is the number of 3 & 3
requests in the queue at the instantt =5 2
> (. o3 B(t)
. .. SE 1
Let us consider a generic instant H, E 2
where a(t) = B(t), so that the system <= t b GG & G4t H
is empty (i.e., N(H) = 0). The time
average of the delay experienced by a
request arrived at the queue in the
interval (0, H) is:
aH)  alH), a(H)  a(H)
L ZTi “ (ti —1; ) Zl:ti - leti
T. = i=1 — _i= — _i= i=
" a(H) a(H) a(H)
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Little Formula Proof (cont’d)

The difference

a(H a(H

) aln)
t— 't
i=1 i=1

o(t)

is the highlighted area that can
also be expressed as

B(t)

|

number of requests served
N w IS

number of requests arrived or

H H
“a(t)—ﬂ(t)]dt = IN(t)dt ty b Lt Lt H
0 0

— 1 "
Ny = EIN(t)dt represents the time average of the number of requests in the
queue in‘the interval (0, H)

A, =a(H)/H represents the average arrival rate in the interval (0, H).
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Little Formula Proof (cont’d)

We have:
[N()dt L g —
T, = ) :a(H)xﬁlN(t)dt:f

By employing the ergodicity
assumption, we have that time
averages can be substituted by
statistical ones, here denoted as
T, N and 2, respectively, thus
obtaining the Little formula (qep).

number of requests arrived or

number of requests served

a(t)

N

|

B(t)

t

t

t) t3

t3’
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Markov Chains for
Queues Analysis
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A Markov Chain

The chain state at instant t ., X(t,.,), depends only
on the state at the previous instant t, X(t,).

The stochastic process evolution is characterized only by its
state value at the present instant, but not on the time
already spent in this state. This memoryless characteristic is
guaranteed only by state sojourn times exponentially-
distributed in the case of a continuous-time chain
(geometric distribution for a discrete-time chain).
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Birth-Death Markov Chains

A Markov chain represents a birth-death process when the
state transitions in the chain occur only among adjacent
states: from state i we can directly go only to state i+1 or i-1.

X

1l
A Markov chain of the birth-death type can be used to model a queue
with Poisson arrivals and exponential service times. These types of

queues are denoted by symbols like M/M/.../... , according to the
Kendall’s notation.

Queuing system Birth-death Markov chain model
—F—=c 0 &6 -
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Birth-Death Markov Chains: State
Probability Distribution

An-2 An-1 An We should write and solve
differential equations
RN modeling the system

dynamics and then to take
the limit for ¢ to infinity to
study the regime

/ condition. This leads to
: the flow equilibrium
Hn-1 Hp Hn+1 conditions written below.

Node equilibrium

If the state space is finite (i.e., finite rooms in , the queue is
always stable for any traffic intensity value.

If the ergodic condition is fulfilled, the chain
probabilities Pnét; é= probability that the s
on time = dP,(t)/dt = 0 and P.(t) = P,.
Then, the following cut equilibrium conditions €an be written:

its a steady state; at regime, state
em is in stgté n at time t) do not depend
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Birth-Death Markov Chains: State
Probability Distribution (cont’d)

Under stability condition (we impose ergod|C|ty), we solve recursively the cut
equilibrium conditions fori =0, 1, ...

—

A
cutlbalance : 4,P, = i,P, = P, =P,
)
A A A
cut 2 balance : 4,P, = u,P, > P, =—%+P =—*+-2P,
) ) My Hy
: ,1_1 .
cutibalance: 4, ,P, =P =P ="2P, = OH
n=1 lun

Vi>1

All state probabilities are expressed as functions of both the transitional rates and the
probability of state ‘0’, P,. Therefore, we impose the normalization condition in
order to obtain P,

ZF’. OZO/ 1:>P(1+21:Hﬂnlj 1:P0_1+Zi_[ -

i=1 n=1 /un
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In case of a queuing system with

Q u e u e Pe rfo rm a n ce S servers, p still denotes the mean

number of busy servers > p< S

Paramete rs [Erl] is the stability condition.

If the Markov chain models a queuing system, we can
determine the following quantities once the state
probability distribution has been solved obtaining P,
values:

Mean number of requests in the queue > N=>nP, =P'(1)

n=0

>~z

Mean delay to cross the queue (Little theorem) > T =

where 4 denotes the mean rate of requests entering the system,
obtained as XAP,

Since T is the sum of mean service time (x) and mean wait
time (w), T = x + w, we multiply both members by 1 :

_ Mean number of requests in service = mean number of busy servers
AT @ @ = traffic intensity p in absence of blocking

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved
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The M/M/1 Queue

M/M/1 queue: Poisson Waiting list
arrivals of requests (mean \

rate 1), exponentially- Server
distributed service time POISSON Process 'M
(mean rate ), single

server, infinite rooms, and

infinite population of users. Service policy

The state of the system is the number of requests in the
queue (including the served one).

We can model the M/M/1 queue as a special case of a birth-death
Markov chain with ; = A and p; = p. Stability is assured by the
ergodicity condition: p = A/u < 1 Erlang.
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The M/M/1 Queue (cont’d)

Markov chain model for the M/M/1 queue:

}\H )‘/ 7\1 DY
@ﬁ N

Service part Wait + service part
From cut equilibrium and normalization conditions, we have:

2\ L
o § R = PO[_j =Rp' fori=12,... Let P(z) denote the PGF of the
% g # state probability distribution, P;:
1 o o
S 4‘% P, = 010 =———=1-p (normalization) P(2)=3 (- p)o'z = 1-p
QW 1+ Zpi Zpi p = (1-P,) is valid in general for G/G/1 - 1-zp
© 0o i=1 i=0 Py > 0 is a stability condition
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The M/M/1 Queue (cont’d)

The state probability is geometrically distributed.

The ergodicity condition that assures stability (p < 1 Erlang)
entails P, > 0: if the queue is stable it must be empty sometimes.

The mean number of requests in the queue and the mean delay
(Little theorem) are:

= i dP(Z) o, N
N =>"i(1-p)o' = S AN .
iZ:O‘,'( Pl == s ;

.
u—A

The ergodicity condition for stability allows that both N and T have
finite values.

The state probability distribution (and, hence, N) as well as T do not
depend on the service discipline (insensitivity property).
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The M/M/1 Queue (cont’d)

Behaviors of N and T:

p (increasing 1) o H

When the traffic intensity approaches the maximum (1 Erl), the mean number of
requests in the system and the mean system delay tend to infinity.

When the traffic intensity tends to 0, the system tends to be empty and the mean
system delay approaches 1/u (= mean service time).

Important consideration (performance — efficiency trade-off): increasing the
utilization of the resources we have necessarily an increase of (buffer) congestion
and delays.
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M/M/1 Queue with Different
Service Disciplines

, M/M/1 queue with different senice disciplines SPT = Shortest Processing
10 E:::::::::::E:::::::::::f‘,:::::::::::f::::::::::::E:::::::::::f,:::::::::::E:::::::::::f,:::::::::::f:::::::::::f‘,::::::::::; Time
m;mﬁ zglis(esr\;?ipggg]sggs)rdmg to shortest senice time) : SRPT = Shortest Rema/n/ng
M/M/1 with Little th. (FIFO, LIFO, Random, etc.) - Processing Time
”””””””””””””””””””””””””””””””””””””””””””””””””””””””””” 7 (preemptive)
10" | |
%  f For SPT and SRPT service
z disciplines (based on the
8 knowledge of the service
S duration of each request)
10 e ee——— the insenSitiVity
- & property cannot be
7 applied: M/M/1-SPT
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1. has a different state
. probability distribution

%9 01 02 03 04 05 06 07 os os 1 (and mean number of
traffic intensity, p [Erl] requests) than M/M/l_
FIFO.
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M/M/1 Queue with Different

Let us consider a queue where packets of two
sizes arrive: very short packets (ron-
congestive traffic) and very long packets. If we
service first short packets (SPT case), they
experience a low mean delay, while the mean
delay of long packets is practically unaffected.
Otherwise, if we service first long packets
(non-SPT case, LPT), their mean delays do not
improve in a significant way, while the mean
delay of short packets drastically increases.
Hence, the SPT approach typically permits
to reduce the mean packet delay with

\__Ad

SPT = Shortest Processing
Time

SRPT = Shortest Remaining
Processing Time
(preemptive)

For SPT and SRPT service
disciplines (based on the

knowledge of the service

duration of each request)
the insensitivity

respect to non-SPT schemes.

——

sroperty cannot be
applied: M/M/1-SPT
has a different state
. probability distribution
%5 o1 02 03 04 05 06 07 08 09 1 (and mean number of
traffic intensity, p [Erl] requests) than M/M/]_-
FIFO.
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Intuitive Comparison of
Different Scheduling Schemes

Hp) We have some packets in a buffer and they 1 Mean packet delay for the 5 packets according
have two different sizes (transmission times): 1 to their service order in 3 different cases.
and 10. Different service orders can be applied to 1 1

these packets. FIFO order

12 Mean delay =10.2
|

14
SPT order 2

- 3 Mean delay —cF.
10

14
LPT order 11

12 Meandelay =12
11 :
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The M/M/S Queue

We consider a queue with a Poisson arrival process
(mean rate 1), exponential service time (mean rate )
and S servers. The birth rate is always equal to A (V i),
while the death rate depends on the state.

For the generic state i < S, there are i simultaneously-served
requests; by invoking the memoryless property of the
exponential distribution, each served request has a residual
duration exponentially-distributed with mean rate u. Therefore,
the time for the death transition to the state i — 1 is the
minimum among i times exponentially-distributed with mean
rate u; this minimum is still exponentially-distributed with mean
rate w, = iu.

For a generic state with i > S, the mean completion rate is p;
equal to Sy (we have saturated the capacity for states i > S).
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The M/M/S Queue (cont’d)

Waiting list
2 Servers

Poisson process

Service policy
Markov chain model for the M/M/S queue:

}‘/ Q\U }\‘/ R 7\‘ 7\1 }\d R
ooRoEY RO
k REEX | K REEX

it 2u 3u Su Su Sp

Service part Wait + service part
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The M/M/S Queue (cont’d)

The ergodicity condition for the stability of the queue is A/(Su) < 1 =

traffic intensity p = A/u < S Erlangs; note that p/S is the utilization factor of
a single server.

From cut equilibrium and normalization conditions, we have:
cutlbalance: AP, = 4P, = P, = 4 P, = ok,
y7]
. Ao _p
cut 2balance : AP, =2uP, > P, =—P, =—F,
2u 2

cut S balance : AP, , =SuP, = P, P, =% P
. 2’ ps+1
cut S +1balance : AP, =SuP, , = P, s = Sgr 0
5 _ 1 _ 1 _ 1
0~ T s w i TSl i S
1+ZH n-1 ,07 e ,07+L
i1 n1 My vl L S'SI i I S!(S _,0)

— © 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



The M/M/S Queue (cont’d)

State probabilities P, need to be calculated in an iterative way due
to both the presence of factorial terms and, in general, the ratios of
very high numbers when n is sufficiently high. The recursive process
starts by computing P,/P; this result is used to compute P,/P, , and
so on. The terms P,/P, are progressively summed together to derive
P, by means of the normalization condition.

The probability that a new arrival finds all the servers busy (thus it
is queued), P, is given by:

Sp° This formula depends
" © p S'(S ) on the application of
-Yp =Py "= S T P an important property
is is Py Si P N Sp°® for Poisson processes,
~ I S!(S _ ,0) that is the PASTA

property described in
El‘lang-c formula next slide.
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The PASTA Property (Only
for Poisson Arrivals)

The PASTA (Poisson Arrivals See Time Averages)
property was defined by R. W. Wolff.

For M/-/-/- queues where the arrival process is Poisson, the
probability that an arrival finds the chain in the state n is equal to
the time percentage that the chain is in the state n (this is equal
to the steady state probability P, due to the ergodicity).

A new Poisson arrival finds
the system in state n according
to probability P, (PASTA)

Time spent in the generic state n:

The percentage of time for which the system is in the
state n is equal to the state probability P,
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The PASTA Property (Only
for Poisson Arrivals)

The PASTA (Poisson Arrivals See Time Averages)
property was defined by R. W. Wolff.

For M/-/-/- queues where the arrival process is Poisson, the
probability that an arrival finds the chain in the state n is equal to
the time percentage that the chain is in the state n (this is equal
to the steady state probability P, due to the ergodicity).

The PASTA property does not apply to state-dependent Poisson
arrival processes or to non-Poisson arrival processes.

The PASTA property is not generally true. For instance, let us
consider a D/D/1 queuing system, which is empty at time 0, with
arrivals at times 1, 3, 5 s and with service times 1 s (there is a cycle
length of 2 s): every arriving customer finds an empty system,
whereas the fraction of time the system is empty is .

R. W. Wolff, “Poisson Arrivals See Time Averages”, Operational Research, Vol. 30, No. 2,
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The PASTA Property (Only
for Poisson Arrivals)

Tha DPACSTA (Dnicenn Arrivale CSee Time Avaranec)

D/D/l 1 """" AN T AN T AN T AN
queue T
Y _____ V______ V. _____ V. L_______
status p) 4 6 3 lal to
: : qual to

The new arrivals find an empty system so that for

them it is like P, = 1. However, the queue is empty

for 50% of time, thus yielding P, = 0.5. -on

The PASTA property is not generally true. For instance, let us
consider a D/D/1 queuing system, which is empty at time 0, with
arrivals at times 1, 3, 5 s and with service times 1 s (there is a cycle
length of 2 s): every arriving customer finds an empty system,
whereas the fraction of time the system is empty is .

R. W. Wolff, “Poisson Arrivals See Time Averages”, Operational Research, Vol. 30, No. 2,
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The M/M/S/S Queue

In this queue we have only S rooms in the system and S servers;
there are no waiting rooms in this queue. If a new arrival finds the
system busy (i.e., with S requests in service) it is not admitted
(blocked) in the system.

Let P; denote the probability that a new arrival finds the system
busy and is blocked. Hence, we can prove that AP; denotes the
‘refused’ traffic flow and A(1-Pg) denotes the ‘admitted’ traffic flow

into the queue.
Waiting list =0

A Servers
Poisson process E

1
Blocked traffic Service policy
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The M/M/S/S Queue (cont’d)

This queue has S+1 states from i = 0 to S. Birth and death rates are
derived from the M/M/S queue. The ergodicity condition for the
queue stability is always fulfilled since there is a finite number

of states.
?\‘ 7\‘ 7\‘ eo oo 7\;
o 2u 3u Su

By exploiting the same derivations made in the M/M/S case, we can
obtain the following state probability distribution:

P :P_ip0 where P, = 1 This is a truncated
-l > P Poisson distribution.

io I!
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The M/M/S/S Queue (cont’d)

Since the mean arrival rate does not depend on the state, applying
the PASTA property we obtain the probability that a new request is
blocked and refused due to the unavailability of rooms in the queue,
Pg, as the probability that the queue is in the state S, P

&  Erlang-B formula
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Iterative Method for Erlang-
B Computation

The Erlang-B formula depends on S and p. This formula cannot be
directly computed when the number of servers, S, is high due to the
presence of factorial terms.

This is the reason why an iterative method has been developed to
compute the Erlang-B formula for increasing number of resources S:
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The M/M/S/S Queue (cont’d)

The mean arrival rate (arrivals accepted into the system) is obtained
as:

S-1 S-1

A=Y AR =213 R=401-R)
i 0

Hence, there is difference between the mean input arrival rate A
and the mean rate 4 of arrivals accepted into the system (this is
the rate to be used in the Little formula).

The mean number of requests N in the system can be derived as:

i S—

S ) S P 1pi S-1
N=DiR=2i%-R=p2 "R =p> R=pl-F)
i—0

i=1 i=1 . i=0 i!
T _E_p(l_PS)_ 1

We can apply the Little theorem as: 2 Al-R) u

T coincides with the mean service time since
there is no waiting time in this queue.
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Erlang-B Table and its Use

in Traffic Engineering

.0204

Servers
S 1.0% 1.2% 1.5%
1 .0101 .0121 .0152
2 .153 .168 .190
3 .455 .489 .535
4 .869 .922 .992
5 1.36 1.43 1.52
6 1.91 2.00 2.11
7 2.50 2.60 2.74
8 3.13 3.25 3.40
9 3.78 3.92 4.09
10 4.46 4.61 4.81
11 5.16 5.32 5.54
12 5.88 6.05 6.29
13 < A A1 A.20 Z. 08
14 7.35 7.56 7.82
15 8.11 8.33 8.61
16 8.88 9.11 9.41
17 9.65 9.89 10.2
18 10.4 10.7 11.0
19 11.2 11.5 11.8
20 12.0 12.3 12.7
21 12.8 13.1 13.5
22 13.7 14.0 14.3
23 14.5 14.8 15.2
24 15.3 15.6 16.0
25 16.1 16.5 16.9
26 17.0 17.3 17.8
27 17.8 18.2 18.6
28 18.6 19.0 19.5
29 19.5 19.9 20.4

2%

223
.602
1.09
1.66
2.28
2.94
3.63
A3t
5.08
5.84
6.61 \

7.40
8.20
9.01
9.83
10.7
11.5
12.3
13.2
14.0
14.9
15.8
16.6
17.5
18.4
19.3
20.2
21.0

3%

.0309

.282
715
1.26
1.88
2.54
3.25
3.99
4.75
5.53
6.33
7.14
7.97
8.80
9.65
10.5
114
12.2
13.1
14.0
14.9
15.8
16.7
17.6
18.5
194
20.3
21.2
22.1

Bloking probability

5% 7%

.0526
381
.899
1.52
2.22
2.96
3.74
A
5.37
6.22
7.08
7.95
8.83
9.73
10.6
11.5
12.5
134
14.3
15.2
16.2
17.1
18.1
19.0
20.0
20.9
21.9
22.9
23.8

.0753
470
1.06
1.75
2.50
3.30
4.14
5.00
5.88
6.78
7.69
8.61
9.54
10.5
11.4
12.4
13.4
14.3
15.3
16.3
17.3
18.2
19.2
20.2
21.2
22.2
23.2
24.2
25.2

10%
11
.595
1.27
2.05
2.88
3.76
4.67
5.60
6.55
7.51
8.49
9.47
10.5
11.5
12.5
13.5
14.5
15.5
16.6
17.6
18.7
19.7
20.7
21.8
22.8
23.9
24.9
26.0
27.1

15%
.176
.796
1.60
2.50
3.45
4.44
5.46
6.50
7.55
8.62
9.69
10.8
11.9
13.0
14.1
15.2
16.3
17.4
18.5
19.6
20.8
21.9
23.0
24.2
25.3
26.4
27.6
28.7
29.9

20%
.250
1.00
1.93
2.95
4.01
5.11
6.23
7.37
8.52
9.68
10.9
12.0
13.2
14.4
15.6
16.8
18.0
19.2
20.4
21.6
22.8
24.1
25.3
26.5
27.7
28.9
300
3

3Pb(,0’5)=

30%
429
1.45
2.63

39
5.19
6.51
7.86
9.21
10.6
12.0
13.3
14.7
16.1
17.5
18.9
20.3
21.7
23.1
24.5
25.9
27.3
28.7
30.1
31.6
33.0
34.4

40%
.667
2.00
3.48
5.02
6.60
8.19
9.80
11.4
13.0
14.7
16.3
18.0
19.6
21.2
22.9
24.5
26.2
27.8
29.5
31.2
32.8
34.5
36.1
37.8
39.4
41.1

50%
1.00
2.73
4.59
6.50
8.44
10.4
12.4
14.3
16.3
18.3
20.3
22.2
24.2
26.2
28.2
30.2
32.2
34.2
36.2
38.2
40.2
42.1
44.1
46.1
48.1
50.1

S

P

S n
N P
SZ(; -

Problem:

To determine
the number of
servers S with
input traffic
intensity of 7
Erlang and
requirement of
blocking
probability
lower than or
equal to 2%.

Using the table,
S = 13 servers
are needed.
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Erlang-B Formula Behavior
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The Erlang-B Formulia in
Extended Cases

It is possible to prove that the M/M/S/S state probability distribution
is also valid for an M/G/S/S queue with the same input traffic
intensity; this is another insensitivity property concerning the
statistics of the service time (only the mean value has impact
through the input traffic intensity p).

The Erlang-B formula can also be adopted in the general M/G/S/S
case. This is an important generalization of the Erlang-B formula, since in
current systems sessions arrive according to Poisson processes, but their
duration is not exponentially distributed.

S. M. Ross. Stochastic Processes. John Wiley and Sons, 1983.
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M/M/> and M/G/x> Queues

The M/M/« queue is the limiting case of the M/M/S/S queue (or the
M/M/S case) for S — oo. Similarly, the M/G/« queue can be seen as
the limiting case of the M/G/S/S queue for S — «, and, therefore,
can be studied by means of the equivalent M/M/«x queue (i.e., with
the same traffic intensity p).

We use the state probability distribution of the M/M/S/S case and
we take the limit for S — « so that we solve the M/M/«x queue as:

1

P.:'[_)—P0 where P, =

i || 0 pi :e—P
The state probability of the M/M/x (M/G/x) queue is Poisson-

distributed.

These queues are suitable to model traffic sources.
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Equivalencies for M/M/S/S,
M/M/xo,M/G/S/S, and M/G/x

e

M/M/S/S

limit for ﬁ

S >

&

M/M/x

equivalent
with same p

< 4

equivalent
with same p

< 4

>

M/G/S/S and M/D/S/S

limit for
S 5w

M/G/o and M/D/x

/
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The M/D/xx Example

Let us consider an S-Aloha case. There is a (total) Poisson process
with mean rate A and a fixed service duration T (= packet
transmission time). We know that the number of arriving packets on
a slot is according to a Poisson distribution with parameter G =
AT; this is consistent with an M/D/« model of the system where
G = p. Then, the probability distribution of the number of arriving

packets on a slot results as:
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Queue Examples and Special
Cases: a Summary

Multiplexer models (single server): M/M/1/K, M/M/1, M/G/1, M/D/1
Trunking models (classical telephony, S servers): M/M/S/S, M/G/S/S
User ‘application’ traffic (infinite servers): M/M/wx, M/G/x, M/D/x

Special cases:

Bulk arrivals: more than one arrival can occur at a given instant
(compound arrival process). The symbol denoting the arrival process has
an exponent, describing the statistics of the bulk arrivals. For instance,
MlGeoml/G/1 for a geometrical number of ‘objects’ arriving together. This
could be true in the following cases: (i) IP packets fragmented to fit
layer 2 frame format (MAC layer queue); (ii) Web page with many objects.

Batched service: some arrived objects are serviced together (e.g., TDMA
transmissions). The letter of the service process has an exponent
describing the length of the batch. For instance, M/DIPl/1, for a
deterministic service with b ‘objects’ together. This is the case of a TDMA
transmission system with b slots per frame allocated to the service of
paccléet arrivals.
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Exercises
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Exercise #1

A radio link adopts four equivalent parallel transmitters for redundancy
reasons. The operational characteristics of the transmitters require that each of
them be switched off (for maintenance or recovery actions) according to a
Poisson process with a mean interarrival time A-1 of 1 month. The technician
that performs maintenance and recovery actions requires an exponentially-
distributed time with mean duration p-! of 12 hours in order to fix the

problem. We consider that two technicians are available. This exercise
requires:

To define a suitable model for the system;

To determine the probability distribution of the number of non-working
transmitters at a generic instant;

To express the probability that no transmitter is working on this radio link.
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Solution of Exercise #1

The system can be modeled as a Markov chain with five states denoting the
number of non-working transmitters: 0, 1, ..., 4. We exploit the
memoryless property of the exponential distribution for both the
interarrival times of the recovery actions for a transmitter with mean rate A (=
1 action/month) and the repairing times with mean rate u (= 1/12
repairing/hour). The transition from the generic state j (0 <j < 4) to the state
with j+1 non-working transmitters is the minimum among 4-j independent
times with exponential distribution and mean rate X; such time is still
exponentially distributed with mean rate (4-j)\. As for the transitions from
states j (1 < j < 4) to states with j—1 non-working transmitters, these are
performed after time intervals that are the minimum between two
independent, exponentially distributed times with mean rate pu (i.e., the times
required by the two technicians to fix their problems); hence, these transitions
occur after a time interval exponentially-distributed with mean rate 2u. Of
course the transition from state j = 1 to state j = 0 has an exponentially-
distributed time with mean rate p.
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Solution of Exercise #1

(cont’d)

We obtain a Markov chain model like that used for an M/M/2/4/4 queue:

40 3 20 A
L . R
u 2p 2p 2p

We can state cut equilibrium conditions:
cutlbalance : 44P, = 4P, = P, = 4& P,
y7]

2
cut 2 balance : 3AP, =2uP, = P, = 2_/1 P = %(i} P,
U

3
cut 3balance : 24P, = 24P, = P, :g—’1P2 = 4X3X2[i} P,
U

2° y7,

cut 4 balance : AP, =2uP, =P, =—P, = .
2u 2

| n
in general Pn:% £ P, forO<n<4
2" (4—n) u

A _4><3><2><1(/1 )
Y7,

Since we consider a
finite-state chain,
there are no stability
problems.
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Solution of Exercise #1
(cont’d)

Finally, we impose the normalization condition:

1
. i 4 [AJ
_l’_ - .
n=1 2n—l(4_ n)! H

The percentage of time for which no transmitter is working, is given by P,.

P, =
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Exercise #2

We have a transmission line to send the messages that arrive at a buffer with
infinite capacity. Each message can wait for service for a maximum time
(deadline); otherwise it is discarded from the buffer. We model the maximum
waiting time of a message as a random variable with exponential distribution
and mean rate y. Messages arrive according to a Poisson process with mean

rate A and their transmission time is exponentially distributed with mean rate
u. We need to determine:

A suitable queuing model for the system;

The mean number of messages in the transmission buffer.
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Solution of Exercise #2

If messages have no deadline, this system can be described by a classical
M/M/1 queue with mean arrival rate X and mean completion rate p.

In our case we model the system with a chain where the state denotes the
number of messages in the system. The mean arrival rate is A; but some
considerations have to be made for the transitions from state j to state j — 1.

When there is a served message and another is in the waiting list, this
message can wait for receiving service for a time exponentially distributed with
mean rate y. Therefore, the transition from statej = 2tostatej=1is
characterized by the minimum between two times exponentially
distributed with mean rates u (due to a service completion) and y
(due to a deadline expiration), respectively. Hence, such transition
occurs after an exponentially-distributed time with mean rate p + y. In general,
the transition from state j to state j — 1 occurs with mean rate u + (j — 1)y.
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Solution of Exercise #2
(cont’d)

We obtain a Markov chain model of the M/M/... type:

7\‘ }\J }\J e s oo
. - o

This Markov chain is always stable, since the ergodicity condition is definitely

verified: A/[u + (j — 1)y] < 1 Erl for any j greater than a given value. By
means of the cut equilibrium conditions, we have:

cutlbalance : AP, = 4P, = P, = 4 P,
MU

hph 2

H+y © puty
A Pzzi A A P,
“+2y Mty p+2y

cut 2 balance : AP, = (u+y)P, = P, =

P

cut 3balance : AP, =(u+2y)P, = P, =

in
n-1

[T(u+iy)

i=0

in general P, =P,
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Solution of Exercise #2
(cont’d)

Finally, the normalization condition is:

1

1+Zn1
T +iy)

i=0

P, =

The mean number of messages in the buffer can be expressed as:

- S P
N :ann = P°nz=1:n /Po

n=1
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Exercise #3 on the Erlang-B
Formula

An Internet Service Provider (ISP) has to dimension a Point of Presence (POP) in the

territory which can manage up to S simultaneous Internet connections (due to the

limited humber of available IP addresses or due to a limited processing capability). If

a new Internet connection is generated by a user towards that POP and there are
already S other connections in progress, the new connection request is blocked. We
have to determine S guaranteeing that the blocking probability Pz < 3%. We know
that:

Each user generates Internet connections according to a Poisson process with mean rate A
Internet sessions have a duration that is generally-distributed

Each POP subscriber is connected on average for 1 hour a day (thus contributing a load of about 41
mErlang)

We consider 100 subscribers/POP.

Users are finite, but we apply the conservative approximation of an infinite
number of users at a parity of (max) offered load p. Hence, we consider the
queuing system of the M/G/S/S type that can be studied by the equivalent M/M/S/S

queue with the same p: by means of the PASTA property, P; is given by the Erlang-B

formula. .
R (,0 , S)= ,O—n where p =100 [users] x 41 [MJ =4.1Erlang
o POP user
s> L
= n

S
=0

According to the Erlang-B table S = 9
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Exercise #3 on the Erlang-B
Formula
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M/G/S/S/o with peak load p. hcess with mean rate A

Then/ M/G/S/S/OO iS StUdied by means Of the contributing a load of about 41
equivalent M/M/S/S queue with the same load

p.

tion of an infinite

p. ce, we consider the
queuing system of the M/G/S/S type that can be studied by the equivalent M/M/S/S
queue with the same p: by means of the PASTA property, Pg is given by the Erlang-B
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S!Zp POP user
~ nl According to the Erlang-B table S = 9
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Thank you!

giovanni.giambene@gmail.com
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