
Lesson 19: Matlab
®
 Tools

for Teletraffic Engineering

Giovanni Giambene

Queuing Theory and Telecommunications:

Networks and Applications

2nd edition, Springer

All rights reserved

Slide supporting material

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Binomial Coefficient

and Factorial

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Binomial Coefficient and

Factorial

The Matlab® command to compute binomial coefficients is

nchoosek(N,K)

where N and K are non-negative integers.

This is equal to N!/[K!(N-K)!], the number of combinations of N
things taken K at a time.

Note that factorial values can be computed in Matlab® by means
of the Gamma function:

N! = gamma(N+1)

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Generation of Random

Variables

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Linear Congruential Random

Number Generator X  (0, 1)

z The Linear Congruential Generator (LCG) represents one of the oldest and
best-known pseudorandom number generator algorithms. It is easy to
implement and fast.

z The generator is defined by the recurrence relation:

z where Xn is the sequence of pseudorandom values, and

 m, m > 0 is the "modulus"

 a, 0 < a < m is the "multiplier"

 c, 0 ≤ c < m is the "increment"

 X0, 0 ≤ X0 < m is the "seed" or “initial value“.

z The period of a general LCG is at most m, and for some choices of a it can
be much smaller than that. If c = 0, the generator is often called a
multiplicative congruential method. In Matlab®, randn is based on
multiplicative LCG, where the seed is determined by the clock.

  mcaXX nn mod1 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Generation of Random

Variables

z Use of the statistical toolbox of Matlab®: a lot of
information can be acquired by typing “help stats”.

z Some random number generators supported:

y rand([1,v_max]) to generate an array of v_max values with
uniform distribution between 0 and 1;

y randn([1,v_max]) to generate an array of v_max values with
Gaussian distribution, null mean value, and unitary variance;

y exprnd(ones([1,v_max])/lambda) to generate an array of v_max
values with exponential distribution and mean value 1/lambda.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Histograms

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Histogram of Random

Variables

z Histograms are experimental tools to characterize the probability
density functions (pdfs) of random variables. Let us consider a
random variable X defined on real numbers.

z We can divide the real axis in intervals (also called
‘bins’) with the same size L. Then, we repeat n times the
experiment characterizing random variable X, recording how
many times the outcomes fall into a generic interval; let xj
denote the outcome of the experiment at the j-th trial. We can
thus show in a bar graph, called histogram, the number of times
ni that xj falls into the generic i-th bin.

z If the number of occurrences in each interval is divided by the
total number n of trials we have the relative frequencies fi =
ni/n.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Histogram of Random

Variables (cont’d)

z As the size L of the bins in abscissa reduces and the number of
trials increases (i.e., n  ), the piecewise constant curve
with horizontal segments of length L and height fi/L
tends to be more smoothed and approaches the pdf of X.

z There are different methods to determine the size of the bins in
order to achieve a good smoothed histogram. The rule-of-
thumb by Freedman-Diaconis determines the bin size L
as a function of the number of trials n as:

 where IQR is the interquartile range, obtained as IRQ = Q3-Q1,
where Q1 is the first and Q3 is the third quartile of the data: Q1
= PDF-1(0.25) and Q3 = PDF-1(0.75), being PDF-1 the inverse of
the Probability Distribution Function (PDF).

3
1

2
-

 nIQRL

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Histogram of Random

Variables (cont’d)

z We have a vector of values assumed by a random variable and we
need to derive some important measures, such as: mean,
variance, and the pdf that can be approximated by means of a
histogram (actually the corresponding piecewise constant curve).

z “mean(.)” and “var(.)” Matlab® commands can be used. Moreover,
the “hist(.)” function can be used to generate histograms,
collecting the occurrences of a random variable in each bin. The
histogram can be plotted by means of the “bar(.)” command of
Matlab®. For instance, we use the command

N = hist(Y,X)

where X is a vector of the bins and Y is a vector of the random values.

This command returns the occurrences of Y in the bins with centers
specified by X. The first bin includes data between - and the first center
and the last bin includes data between the last center and +.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Histogram of Random

Variables (cont’d)

clear all

% We consider that the stored vector statis.txt contains the values assumed by the

% random variable for which we would like to determine the histogram.

% The values of the random variable are stored in ASCII format in statis.txt.

% We read the values in statis.txt as follows:

% load statis

% However, in the example below we use a random variable ‘statis’ generated by Matlab according to

% an exponential distribution (alternatives are provided for uniform and normal distributions) with

% v_max samples

v_max=1000;

%statis=randn([1,v_max]); % for a Gaussian random variable with null mean and unitary variance

%statis=rand([1,v_max]); % for a uniform random variable from 0 to 1

lambda=2; statis=exprnd(ones([1,v_max])/lambda); % for an exponentially-distributed random

%variable with mean value 1/lambda

%

N=40; % N this is the number of classes (bins) to be used for the histogram

% If the number of samples of the random variable is 1000, N should not be greater than 100 in order

% to have a sufficiently-reliable estimate of the frequency of each class.

histogram.m

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Histogram of Random

Variables (cont’d)

[Y,X] = hist(statis,N); % This histogram command saves in Y the number of occurrences of the classes in X

L=X(2)-X(1); % This is needed to derive the amplitude of each class (all classes have the same bin size)

tot=sum(Y.*L);

Z=Y./tot; % Normalization of Y values so that the area below the graph is 1: Z represents a probability density function, pdf

subplot(211)

bar(X,Z)

xlabel('value')

ylabel('pdf')

% Determination of the Probability Distribution Function, PDF, as an integral (made on rectangles) of the pdf

l=length(Z);

PDF(1)=Z(1)*L;

for i =2:l

 PDF(i)=PDF(i-1)+Z(i)*L;

end

% As an alternative we could simply use: PDF=cumsum(Z*L);

subplot(212)

plot(X,PDF,'-r')

xlabel('value')

ylabel('PDF')

mean(statis) % Computation of the mean of statis

var(statis) % Computation of the variance of statis

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Histogram of Random

Variables (cont’d)

z These are the results (i.e., pdf and PDF) we achieve for the
exponential distribution with l = 2.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

value

p
d
f

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

value

P
D

F

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Confidence Intervals:

Reliability of Results

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Simulations and Random

Numbers

z The expression "Monte Carlo (MC) method" is very general.

z MC methods are stochastic techniques, meaning they are based
on the use of random numbers and statistics to investigate
problems.

y You can find MC methods used in everything from economics to
nuclear physics to traffic engineering problems.

z Computer-generated numbers are not really random, since
computers are deterministic. But, given a number to start
with, the seed, a number of mathematical operations can be
performed on the seed in order to generate unrelated
pseudorandom numbers (e.g., the LCG method show at the
beginning of this lesson).

y For a given seed, we have a given sequence of values assumed by a
random variable.

Confidence Intervals:

Reliability of Results

z We repeat the simulations for a better reliability
of results using each time a different seed. Let us
suppose to make J independent runs to evaluate a given
quantity of an experiment, and let li, i = 1, …, J be the
results obtained.

z The mean value is computed as:

z The standard deviation is computed as:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved



lmean  li /Ji1

J





lsd 
li - lmean 

2
/ J -1 

i1

J


J

Confidence Intervals:

Reliability of Results (cont’d)

z The probability that the value of the random variable falls into the
interval is equal to tolevel (typical
values of tolevel are 0.90, 0.95, 0.99) where

 and a = Quantile[StudentTDistribution(J–1), 1–(1–tolevel/2)] is
tabulated as shown in the next slide depending on tolevel and J.

z The amplitude of the confidence interval is a×lsd around the

central, mean value.

z Relatively-large confidence intervals [measured in percentage as
100alsd / (2lmean)] highlight non-reliable results.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

)]2/tolint1(),2/tolint1([- meanmean ll

mean

sd

l

l
atolint

Confidence Intervals:

Reliability of Results (cont’d)

z The following table gives the values of a as function of the number
of independent results (J repetitions) and of the tolerance level
tolevel. For instance, we need to use a = 2.306 for the 95-th
percentile confidence intervals with 9 repetitions.

J tolevel=90% tolevel=95% tolevel=99%

3 2.920 4.303 9.925

4 2.353 3.182 5.841

5 2.132 2.776 4.604

6 2.015 2.570 4.032

7 1.943 2.447 3.707

8 1.895 2.365 3.500

9 1.860 2.306 3.355

10 1.833 2.262 3.250

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Confidence Intervals:

Reliability of Results (cont’d)

The “errorbar(.)” command of Matlab® can be used to
plot graphs with reliability intervals.

For instance:

errorbar(X,Y,E)

plots Y with error bars [Y-E Y+E].

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Confidence Intervals: an

Example

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

% Simulation with 9 repeated runs (results) for each point

X=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.92 0.94];

delay_sim(1, :)=[0.0150 0.0150 0.0150 0.0150 0.0148 0.0149 0.0151 0.0150 0.0150];

delay_sim(2, :)=[0.0166 0.0167 0.0165 0.0167 0.0167 0.0167 0.0167 0.0166 0.0167];

delay_sim(3, :)=[0.0186 0.0185 0.0183 0.0187 0.0186 0.0187 0.0185 0.0187 0.0190];

delay_sim(4, :)=[0.0210 0.0209 0.0206 0.0210 0.0210 0.0212 0.0209 0.0213 0.0211];

delay_sim(5, :)=[0.0236 0.0239 0.0231 0.0238 0.0239 0.0239 0.0237 0.0242 0.0241];

delay_sim(6, :)=[0.0277 0.0274 0.0271 0.0278 0.0279 0.0279 0.0275 0.0280 0.0280];

delay_sim(7, :)=[0.0336 0.0334 0.0308 0.0338 0.0338 0.0339 0.0330 0.0339 0.0337];

delay_sim(8, :)=[0.0449 0.0446 0.0390 0.0445 0.0453 0.0453 0.0446 0.0459 0.0453];

delay_sim(9, :)=[0.0968 0.0924 0.0500 0.0975 0.0953 0.0970 0.0933 0.1102 0.0992];

delay_sim(10, :)=[0.1231 0.1157 0.0692 0.1177 0.1156 0.1235 0.1221 0.1385 0.1257];

delay_sim(11, :)=[0.1650 0.1577 0.1605 0.1597 0.1643 0.1614 0.2016 0.1786 0.2538];

intervals_confidence.m

Confidence Intervals: an

Example (cont’d)

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

% calculating confidence intervals

% coefficient alpha (renamed below k) for 9 repeated runs

k=2.306;

for tt=1:11

 sum_del=0;

for j=1:9

 sum_del=sum_del + ((delay_sim(tt, j)-mean(delay_sim(tt, :)))^2)/8;

end

 sd_del=sqrt(sum_del)/sqrt(9);

 Conf_Del(tt)=sd_del*k/2;

 Del(tt)=mean(delay_sim(tt, :));

end

errorbar(X, Del, Conf_Del, '--r')

xlabel('\lambda T_{frame} [Erl]')

ylabel('T_{tot} [s]')

grid

Confidence Intervals: an

Example (cont’d)

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

l T
frame

 [Erl]

T
to

t [
s
]

Graph of
simulation results
with 95-percentile
confidence
intervals

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Iterative Methods for

Markov Chains

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Erlang-B Formula

Computation, M/M/S/S

z The blocking probability Pb of an M/M/S/S queuing systems with
input traffic of r Erlang is expressed by the formula below:

z The Erlang-B formula cannot be directly computed when the
number of servers, S, is high due to the presence of factorial terms.

z An iterative method has been adopted to compute the Erlang-B
formula for increasing number of resources S as shown in the next
slide.





S i

S

Sb

i
S

PP

0i !
!

r

r

Erlang-B formula

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Erlang-B Formula

Computation, M/M/S/S (cont’d)

z Iterative method to compute the Erlang-B formula:

z In the next slide we show a Matlab® script to compute the server
utilization r(1 - Pb)/S of an M/M/S/S queuing system where r is
the maximum traffic load allowing Pb < 1% for a certain S.

 

   1,
1

,

1

10,

-




SP

i

SP

P

bb

b

rrr

r function erlangb=erlangb(a,c)

ris=1;

for i=1:c

 ris=1/(1+i/(a*ris));

end

erlangb=ris;

return

erlangb.m

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Erlang-B: Optimization of

Resources with a Constraint

clear all

rho=5:1:100; %input traffic intensity in Erlangs

l=length(rho);

req=0.01; %requirement on the blocking probability, 1%

for j=1:l

load=rho(j);

S=0;

Pb=1;

while Pb>req

 S=S+1; % while cycle on the number of servers

 Pb=erlangb(load,S); % use of the ERLANG-B formula in a function

end

u(j)=load*(1-erlangb(load,S))/S;

end

plot(rho,u,‘-')

xlabel('offered traffic intensity, \rho')

ylabel('server utilization')

utilization.m

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Erlang-B: Optimization of

Resources with a Constraint

This is the resulting
graph of the server
utilization

r(1 - Pb)/S

of an M/M/S/S
system for both Pb
< 1% and Pb < 5%
as a function of r.

0 10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

offered traffic intensity, r

s
e
rv

e
r

u
ti
liz

a
ti
o
n

Pb < 1%

Pb < 5%

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Numerical Inversion

of Probability

Generating Functions

Numerical Inversion of

Generating Functions

z Let us consider for instance the following PGF:

z We can immediately invert this PGF to obtain the
following distribution:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

  32

4

1

4

1

4

1

4

1
zzzzX 



























4

1
Prob,3

4

1
Prob,2

4

1
Prob,1

4

1
Prob,0

X

Numerical Inversion of

Generating Functions

z The inversion of this PGF can also be obtained by noting
that a PGF can be seen as a Taylor series expansion
centred at z = 0 (i.e., MacLaurin series expansion):

z We can use the Matlab® symbolic toolbox to
compute the derivatives of X(z) at z = 0 as detailed in
the following code:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

   
0

!

1
Prob





z

k

k

zX
dz

d

k
kX

Numerical Inversion of

Generating Functions (cont’d)

We consider the Matlab® command to differentiate

diff(S,’v‘, n)

This command allows us to differentiate n times
expression S with respect to the symbolic variable v.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Numerical Inversion of

Generating Functions (cont’d)

z The Matlab® script code below is used to invert the PGF:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

clear all

syms z

Xz=(1/4)+(1/4)*z+(1/4)*z^2+(1/4)*z^3;

for i=2:5

prob(i)=eval(diff(Xz,'z',i-1))/gamma(i);

end

prob(1)=eval(Xz);

z=0;

p=eval(prob);

inversion_PGF.m

Numerical Inversion of

Generating Functions (cont’d)

z Let us consider another example to invert the following
PGF P(z) related to the number of requests in an M/D/1
queue:

z This PGF cannot be inverted in a closed form and the
proposed Matlab® approach can be used to numerically
determine the distribution Pk corresponding to P(z):

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

   
   

 1

11
1

-

-

-

-
-

z

z

ez

ez
zP

r

r

r

Numerical Inversion of

Generating Functions (cont’d)

z The resulting M/D/1 state probability distribution for r =
0.5 Erlangs is shown in the graph below:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

P
k

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Numerical Solution of

Equations

Numerical Solution of

Equations

The numerical solution of non-linear systems of equations is
supported by the following Matlab® command of the Optimization
toolbox:

X=fsolve(FUN,X0)

The “fsolve(.)” method uses the vector X0 as starting point and tries
to solve the equations in FUN (equations of the form ‘FUN = 0’). fsolve
adopts an iterative method to return a solution vector X of the
equations in FUN.

In case of multiple solutions, the solution determined by the fsolve
method depends on the starting point selected in X0.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Numerical Solution of

Equations (cont’d)

z The fsolve Matlab® routine permits to solve sets of non-
linear equations using the (quasi-)Newton method.

z The Newton method uses an iterative process to approximate one
root of a function ƒ(x), i.e., ƒ(x) = 0.
y The specific root that the process locates depends on the initial value x0.

y It is useful to determine initially the number of solutions allowed by the problem.

z Newton method in one variable: given a function ƒ(x) and its
derivative ƒ '(x), we begin with a first guess x0 for a root of the
function. Provided that the function ƒ(x) has a “reasonable
behavior”, a better approximation of the root is x1 obtained as:

z Geometrically, x1 is the intersection with the x-axis of a line
tangent to ƒ(x) at ƒ(x0).

 
 0

0
01

' xf

xf
xx -

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Numerical Solution of

Equations (cont’d)

z The process is repeated according to the equation below
until a sufficiently-accurate root is reached (a relative error
stop criterion is used):

 
 n

n
nn

xf

xf
xx

'
1 -

x0 x1

ƒ(x)

Tangent

to ƒ(x)

in ƒ(x0).

Numerical Solution of

Equations: a First Example

z We have to solve the following transcendent equation
F(s) in the unknown s:

z We can use an iterative method and the “fsolve(.)”
function in Matlab®:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

      0/1/1 - -- rsrs sss eFe

r=0.5;

save dati r

sigma=fsolve('dm1' , 0)

function dm1 = dm1(s)

load dati

dm1 = s-exp((s-1)/r);

return

cover.m
dm1.m

Equation in s (here s
variable) of the form F(s)
= 0

Numerical Solution of

Equations: a First Example

z To improve the accuracy of the solution (up to 10-6) we
need to use ‘optimset’ in the “fsolve(.)” command as
follows:

sigma=fsolve('dm1' , 0, optimset('TolFun',1e-6))

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Numerical Solution of

Equations: WiFi Analysis

z Let us consider another example related to the saturated analysis of
the WiFi access as shown in Lesson No. 10.

z t is the probability that a station transmits in a randomly-chosen
slot time. A transmission occurs when the backoff time counter is
equal to zero, regardless of the backoff stage:

z p is the collision probability for a general transmission attempt: the
probability that a transmitted packet encounters a collision, is the
probability that, in the same time slot, at least one station of the
n– 1 remaining ones transmits:





m

i

ib
0

0,t

  1
11

-
--

n
p t

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Numerical Solution of Equat.:

WiFi Analysis (cont’d)

z p and t equations form a system of non-linear equations
that can be expressed as follows:

z This system admits a single solution that depends on
parameters:

y Initial contention window, W

y Number of WiFi stations, n

y Number of backoff stages, m.

 
     

 







--

--

-


-1
11

21121

212

n

m

p

ppWWp

p

t

t

Numerical Solution of Equat.:

WiFi Analysis (cont’d)

z We can use the “fsolve(.)” function in Matlab® (iterative method) to
determine the solution for the system in p and t:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

W=32;

m=16; % a lower value is used in the standard

enne=1:1:50;

l=length(enne);

for i=1:l

 n=enne(i);

 save dati W m n

 collision(i)=fsolve('wifi' , 0);

end

plot(enne,collision,'-b')

xlabel('number of stations, n')

ylabel('collision probability, p')

grid

function wifi = wifi(p)

load dati

tau=2*(1-2*p)/((1-
2*p)*(W+1)+p*W*(1-(2*p)^m));

wifi = p-1+(1-tau)^(n-1);

return

cover2.m wifi.m

Numerical Solution of Equat.:

WiFi Analysis (cont’d)

z The graph below shows the resulting behavior of p as a
function of n:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of stations, n

c
o
lli

s
io

n
 p

ro
b
a
b
ili

ty
,

p

W=8

W=16

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Thank you!

giovanni.giambene@gmail.com

