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Exercise #1  

z We consider an ATM multiplexer receiving 2 synchronous input 
time-division traffic flows that have different priorities: 

y Each slot of the high-priority line carries an ATM cell with probability p; 

y Each slot of the low-priority line carries one message with probability q; 
each message is composed of a random number of cells according to 
the PGF L(z). The packet arrival process on the low-priority line is 
compound Bernoulli. 

z The ATM multiplexer stores the cells before transmission in a buffer 
of infinite capacity.  

z The output line is synchronous with the input lines: input and 
output slot durations are equal; each output slot is used to convey 
one input cell.  

z We have to study the mean delay experienced by the cells of 
the low-priority line due to the presence of the cells served of 
the high-priority line. 

 

 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 



Exercise #1  

z We consider an ATM multiplexer receiving 2 synchronous input 
time-division traffic flows that have different priorities: 

y Each slot of the high-priority line carries an ATM cell with probability p; 

y Each slot of the low-priority line carries one message with probability q; 
each message is composed of a random number of cells according to 
the PGF L(z). The packet arrival process on the low-priority line is 
compound Bernoulli. 

z The ATM multiplexer stores the cells before transmission in a buffer 
of infinite capacity.  

z The output line is synchronous with the input lines: input and 
output slot durations are equal; each output slot is used to convey 
one input cell.  

z We have to study the mean delay experienced by the cells of 
the low-priority line due to the presence of the cells served of 
the high-priority line. 

 

 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

This exercise could also be applied to 
any time-division transmission (e.g., 
downlink transmissions of wireless 
systems). 



Exercise #1 (cont’d)  

z This system admits a queuing model as depicted below: 
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Solution of Exercise #1  

z The presence of the high-priority traffic causes that output line slots 
are available for the low-priority traffic with probability 1 - p and 
unavailable with probability p. Hence, the equivalent service model 
for low-priority traffic is shown below: 

 

 

 

 

 

z Three different imbedding choices can be made, depending 
on the performance metric we need to measure. In the different 
cases, we have different meanings for ni and ai modeling the 
system. Since it is requested to determine the mean cell delay, we 
imbed the system at the end of the slots of the output TDM 
line. 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

 

 

Buffer 

Output line 

q L(z) 

#2 

Low-priority line 

p 



Solution of Exercise #1  

z The presence of the high-priority traffic causes that output line slots 
are available for the low-priority traffic with probability 1 - p and 
unavailable with probability p. Hence, the equivalent service model 
for low-priority traffic is shown below: 

 

 

 

 

 

z Three different imbedding choices can be made, depending 
on the performance metric we need to measure. In the different 
cases, we have different meanings for ni and ai modeling the 
system. Since it is requested to determine the mean cell delay, we 
imbed the system at the end of the slots of the output TDM 
line. 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

 

 

Buffer 

Output line 

q L(z) 

#2 

Low-priority line 

p 

The service of the high-priority traffic from line #1 

is unaffected by the service of the lower 

priority traffic from line #2. The high-priority traffic 
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Solution: Imbedding at the 

Slot End of the Output Line 

z Let ni denote the number of ATM cells in the buffer (from the low-priority 
line) at the end of the i-th slot of the output line. 
 

z Let ai denote the number of ATM cells (from the low-priority line) arrived at 
the buffer during the i-th slot. 

 

 
 

 where m is a random variable defined as: 

 

 

z We have obtained the same difference equation of the queue with 
feedback solved at the end of Lesson No. 9 (in that case, however, the 
arrival process is different, continuous time). 

 

 (*) At the i-th imbedding instant i
+, the queue is empty, ni = 0. Hence, during the next slot no cell is 

transmitted and at the end of the next slot (instant i+1
-) the system contains the new requests ai+1, 

arrived in the current slot. With this type of imbedding instants, no service differentiation is 
needed for the case ni = 0. 
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Solution…  

z Let A(z) denote the PGF of number of cells arrived at the buffer 
in a slot from the low priority line: 
 

 

z We achieve the following expression for the PGF of the number of 
cells in the queue from the low-priority line, P(z): 

 

 

z Since P(z) has a singularity at z = 1, we can derive the mean 
number of cells in the buffer from the low-priority line, Np, by 
multiplying both sides of P(z) by the denominator and by 
differentiating twice: 
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Solution…  

z Stability condition for the high-priority line:  p < 1. 
 

z Stability condition for the low-priority line:  1 – p > qL’(1). 
The low priority cells ‘see’ the output slot available with probability 1 
– p; this quantity must be bigger than the mean number of cells 
arrived per slot, qL’(1). 
 

z For p = 0 we re-obtain the classical M/G/1 solution: 

 

 
z By means of the Little theorem we can derive the mean packet 

delay Tp dividing Np by the mean packet arrival rate of qL’(1) 
cells/slot that is equal to A’(1): 
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Exercise #2  

z Messages arrive at a node of a telecommunication 
network to be transmitted on an output line. From 
measurements we know that the arrival process and the 
service process are characterized as follows: 
 

y Interarrival times  are distributed so that E[2]  2E[]2. 
 

y The message service time, t, is characterized by a distribution so that 
E[t2]  E[t]2. 

 

z We have to determine the mean delay experienced by a 
message to cross the node. 
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Solution of Exercise #2  

z The interarrival times have mean square value and mean 
value that fulfill the typical relation of an exponential 
distribution with mean rate 1/E[]. Hence, we can 
assume that the message arrival process is Poisson. 
 

z The message service time has mean square value and 
mean value that fulfill the typical relation of a 
deterministic distribution (i.e., Var = 0).  
 

z We can study the node of the telecommunication 
network according to the M/D/1 theory by 
imbedding the chain at the instants of message 
transmission completion. 
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Solution (cont’d)  

z We can express the mean message delay by means of 
the Pollaczek-Khinchin formula: 

 

 

 where l = 1/E[] and x = t. System stability is assured 
if lx = t/E[] < 1 Erl. 
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Exercise #3  

z Let us consider a scheduler for multiple flows sharing an 
output line as follows. We refer to the transmission system 
outlined in the following Figure with N traffic flows (each modeled 
as an independent Poisson arrival of packets with mean rate l), 
which correspond to distinct buffers served by a shared transmission 
line. Let t denote the packet transmission time. 
 

z The transmission line cyclically serves the different buffers according 
to a type of Round Robin (RR) limited scheme: the line 
transmits one packet from a buffer (if it is not empty) and then 
instantaneously switches to service the next buffer (zero switch-
over times) according to a fixed service cycle.  
 

z We have to determine the mean delay experienced by a packet 
from its arrival at the system to its departure.  
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Exercise #3 (cont’d)  
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Solution of Exercise #3  

z Since the server (i.e., the transmission line) instantaneously 
switches from one buffer to the next one, we can model the 
entire system as a single equivalent global queue with a 
specific service discipline for the packets.  
 

z The arrival process to this ‘global’ (virtual) queue is the sum of 
independent Poisson arrivals; hence, it is still Poisson with mean 
rate Nl.  
 

z The transmission time of a packet is deterministic and equal to t.  
 

z Therefore, the equivalent global queue admits an M/D/1 
model.  
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Only if the switching times of the 
server from one queue to the other are 
null, we can model the whole system by 
means of an M/D/1 queue.  



Solution (cont’d)  

z We imbed the queue at the instants of packet transmission 
completions and we adopt the Pollaczek-Khinchin formula to express 
the mean packet delay T as: 

 

 

 

z This system is stable if lNt < 1 Erl. 

 

z Note that an M/G/1 queuing model with vacations is needed 
to study the case with non-zero-switch-over times from the service 
of a queue to the service of the next queue. 
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Thank you! 

 

giovanni.giambene@gmail.com 

 


