
Lesson 16: Different TCP

Versions, Analytical Details

and Implementation

Giovanni Giambene

Queuing Theory and Telecommunications:

Networks and Applications

2nd edition, Springer

All rights reserved

Slide supporting material

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Different TCP

Versions

TCP Congestion Control

Design Goals

z Efficiency

y TCP should achieve a high goodput by efficiently using network
resources

z Fairness

y Intra- and inter- protocols

x All TCP flows sharing the same bottleneck link should have the
same percentage utilization of the bottleneck link

x Friendliness is a concept similar to fairness, but applied to
different protocols (e.g., different TCP versions)

y RTT

x Intra-TCP protocol fairness should also be achieved among
competing TCP flows with different RTTs

z Stability

y The TCP cwnd behavior should reach a steady state.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Historical Notes on RFCs and

main TCP versions

z 1981: The basic/initial RFC for TCP is RFC 793. In this version, there is not
cwnd, but only rwnd. When a packet loss occurs we have to wait for an
RTO expiration, to recover the packet loss according to a Go-Back-N scheme.

z 1986: Slow Start and Congestion Avoidance algorithms defined by
Van Jacobson and firstly supported by TCP Berkeley version.

y V. Jacobson, "Congestion Avoidance and Control“, Computer Communication Review, Vol. 18,
No. 4, pp. 314-329, August 1988.

z 1988: Slow Start, Congestion Avoidance, and Fast Retransmit (3
DUPACKs) supported by TCP Tahoe. Van Jacobson first implemented TCP
Tahoe in the 1988 BSD release (BSD stands for Berkeley Software
Distribution, a computing library used by UNIX systems).

z 1990: Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery supported by TCP Reno (RFC 2001). In 1990, Van Jacobson first
implemented TCP Reno in the 4.3BSD Reno release.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Historical Notes on RFCs and

main TCP versions (cont’d)

z 1996: Use of the SACK option for the selective recovery of packet losses
according to RFC 2018, followed then by RFC 2883.

z 1999: RFC 2582 is the first RFC describing TCP NewReno, then substituted
by RFC 3782. RFC 2582 also includes the slow-but-steady and impatient
variants of TCP NewReno with a differentiated management of RTO when
multiple packet losses occur in a window of data.

z 2004: RFC 3782 describes an improved TCP NewReno version (the careful
variant) with a better management of retransmissions after an RTO
expiration.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP Reno

z TCP Reno was defined by Van Jacobson in 1990 (RFC 2001). As soon as
three duplicated ACKs (DUPACKs) are received (i.e., four identical
ACKs are received), a segment loss is assumed and a Fast Retransmit /
Fast Recovery (FR/FR) phase starts:

y ssthresh is set to cwnd/2 (i.e., flightsize/2);

y The last unacknowledged segment is soon retransmitted (fast retransmit);

y cwnd = ssthresh + ndup, where initially ndup = 3 due to three DUPACKs to start
the FR/FR phase. This inflates cwnd by the number of segments that have left the
network and that are cached at the receiver.

y Each time another DUPACK arrives, increment cwnd by the segment size (cwnd =
cwnd + 1). This inflates the cwnd for the additional segment, which has left the
network. Then, transmit a packet, if allowed by the new cwnd value.

y When the first non-DUPACK is received (an ACK acknowledging all packets sent or
even a ‘partial ACK’, acknowledging some progress in the sequence
number in the case of multiple packet losses in a window of data), cwnd
is set to ssthresh (window deflation) and the fast recovery phase ends.

y Then, a new congestion avoidance phase starts.
© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP Reno (cont’d)

z TCP Reno may avoid drastic reduction in goodput when a packet loss
occurs (as it occurs with Tahoe).

z TCP Reno performs well in the presence of sporadic packet
losses, but when there are multiple packet losses in the same
window of data FR/FR phase can be terminated before
recovering all losses (multiple FR/FR phases are used) and
an RTO may occur; this problem has been addressed by the TCP
NewReno version.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP NewReno

z TCP NewReno is one of the most commonly-used congestion control algorithms.
TCP NewReno (initially defined in RFC 2582 and then refined by RFC 3782) is
based on an FR/FR algorithm started when there are 3 DUPACKs.

z In the presence of multiple packet losses in a window of data, RFC 2582
(year 1999) specified a mechanism (called “careful variant”), which avoids
unnecessary multiple FR/FR phases and manages all these losses in a
single FR/FR phase. Then, RFC 3782 (year 2004) has considered the “careful
variant” of the FR/FR algorithm as the reference one for TCP NewReno.

z NewReno uses a ‘recover’ variable, representing the maximum order of the
segment sent when 3 DUPAKCs are received.

y A partial ACK acknowledges some, but not all the outstanding packets at the start of the Fast
Recovery phase, as specified in the ‘recover’ variable.

y A full ACK acknowledges all the outstanding packets at the start of the Fast Recovery phase.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

S. Floyd, T. Henderson, A. Gurtov, “The NewReno Modification to TCP's Fast Recovery Algorithm”, RFC
3782, 2004.

TCP NewReno (cont’d)

z With TCP Reno, the first partial ACK causes TCP to leave the FR/FR (Fast
Recovery) phase by deflating cwnd back to ssthresh. Instead, with TCP
NewReno, partial ACKs do not take TCP out of the FR/FR phase:
partial ACKs received during Fast Recovery are treated as an
indication that the packet immediately following the acknowledged
packet has been lost, and needs to be retransmitted.

z When multiple segments are lost from a single window of data, NewReno can
recover them, retransmitting one segment per RTT until all lost segments from
that window are delivered correctly.

z The FR/FR phase is concluded when a full ACK is received.

z Then, a new congestion avoidance phase is performed with ssthresh equal
to half of the cwnd value just before the start of the FR/FR phase.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP NewReno Variants

z The Slow-but-Steady and Impatient variants of NewReno differ
in their Fast Recovery behavior, specifically with respect to when
they reset the RTO timer.

y The Slow-but-Steady variant resets timer RTO after receiving each partial
ACK and continues to make small adjustments to the cwnd value. The TCP
sender remains in the FR/FR mode until it receives a full ACK. Typically
no RTO occurs.

y The Impatient variant resets timer RTO only after receiving the first partial
ACK. Hence, in the presence of multiple packet losses, the Impatient variant can
conclude too long FR/FR phases by allowing timer RTO to expire so that all lost
segments are recovered according to a Go-Back-N approach and a slow start
phase.

y In RFC 3782, the Impatient variant is recommended over the Slow-but-
Steady variant.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Micro-Analysis and Macro-

Analysis of TCP Behavior

z Microanalysis is the study of the TCP behavior in terms of cwnd,
RTT, RTO, sequence number, and ACK number with the finest
time granularity (RTT basis) in order to verify the reaction of the
TCP protocol to the different cases and conditions.

z This study is opposed to the macroanalysis, which deals with the
evaluation of the macroscopic TCP behavior in terms of long-range
time averages, such as: average throughput, average goodput,
fairness, etc…

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Cwnd Sawtooth Behaviors

for Tahoe and Reno/NewReno

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

0

10

20

30

40

50

60

70

80

90

100

0
5

10
15
20
25
30
35
40
45

time in RTT units

p
a
c
k
e
ts

slow start

congestion

avoidance

B+BDP

congestion

avoidance

(B+BDP)/2

As an RTO

slow start

3 DUPACKs

cwnd NewReno

 cwnd Tahoe

 ssthresh

 As an RTO

Hp) Single TCP
flow; Sockets
buffers (rwnd)
> B+BDP;
initial ssthresh
< B+BDP; no
cross-traffic

Th) At regime,
cwnd oscillates
between B+BDP
and (B+BDP)/2
according to a
periodic
sawtooth
behavior.

The pipe is
fully-utilized
when BDP 
cwnd  B+BDP.

B = 20 pkts

BDP = 20
pkts

Initial
ssthresh = 16
pkts

Cwnd Sawtooth Behaviors

for Tahoe and Reno/NewReno

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

0

10

20

30

40

50

60

70

80

90

100

0
5

10
15
20
25
30
35
40
45

time in RTT units

p
a
c
k
e
ts

slow start

congestion

avoidance

B+BDP

congestion

avoidance

(B+BDP)/2

As an RTO

slow start

3 DUPACKs

cwnd NewReno

 cwnd Tahoe

 ssthresh

 As an RTO

Periodical losses due to buffer
overflow with mean rate (NewReno):

The cycle
time of cwnd
is equal to
(B+BDP)/2
in RTT units.
In LFN
networks this
cycle time
can be quite
long.

FR/FR phases are concentrated

in these short intervals

 2
3

8

BDPB
PLR


Hp) Single TCP

flow; Sockets
buffers (rwnd)
> B+BDP;
initial ssthresh
< B+BDP; no
cross-traffic

Th) At regime,
cwnd oscillates
between B+BDP
and (B+BDP)/2
according to a
periodic
sawtooth
behavior.

The pipe is
fully-utilized
when BDP 
cwnd  B+BDP.

Cwnd Sawtooth Behaviors …

z If rwnd > B+BDP, the quantity of bits injected by the source
up to time t, a(t), due to the TCP protocol can be approximately
determined as the integral of cwnd as a function of time:

y a(t) is the arrival curve.

z If the initial ssthresh value is bigger than BDP+B (actually just
BDP if it is the actual BDP based on RTT), the initial slow start phase
causes a significant traffic injection well beyond the capacity of the
network. This entails that the slow start phase ends with
multiple packet losses, a drop of cwnd, and possible RTO
expiration.

 © 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

     bits
0



t

dttcwndta

Cwnd Sawtooth Behaviors

for High Initial ssthresh

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Hp) Single TCP
flow; sockets
buffers (rwnd) >
B+BDP; initial
ssthresh >>
B+BDP; no cross-
traffic

Th) The initial
slow-start phase
experiences
many packet
losses.

Impatient version: if
RTO = 2xRTTs = 1 s
(GEO satellite
scenario), there is an
RTO expiration if there
are more than 3
packet losses in a
window of data.

0

10

20

30

40

50

0

10
20
30
40
50
60
70

p
a
c
k
e
ts

TCP NewReno

(Slow-but-Steady)

0

10

20

30

40

50

0

10
20
30
40
50
60
70

p
a
c
k
e
ts

TCP Tahoe

ssthresh

cwnd

TCP NewReno

(Impatient)

ssthresh

cwnd

time in RTT units time in RTT units

The behaviors of these graphs are indicative.

As an RTO RTO

FR/FR

B = 20 pkts

BDP = 25
pkts

Initial
ssthresh =
64 pkts

Cwnd Sawtooth Behaviors

for High Initial ssthresh

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Hp) Single TCP
flow; sockets
buffers (rwnd) >
B+BDP; initial
ssthresh >>
B+BDP; no cross-
traffic

Th) The initial
slow-start phase
experiences
many packet
losses.

Impatient version: if
RTO = 2xRTTs = 1 s
(GEO satellite
scenario), there is an
RTO expiration if there
are more than 3
packet losses in a
window of data.

0

10

20

30

40

50

0

10
20
30
40
50
60
70

p
a
c
k
e
ts

TCP NewReno

(Slow-but-Steady)

0

10

20

30

40

50

0

10
20
30
40
50
60
70

p
a
c
k
e
ts

TCP Tahoe

ssthresh

cwnd

TCP NewReno

(Impatient)

ssthresh

cwnd

time in RTT units time in RTT units

The behaviors of these graphs are indicative.

As an RTO RTO

FR/FR

Traffic peaks with multiple
packet losses at both the
socket buffer and the
bottleneck link buffer.

B = 20 pkts

BDP = 25
pkts

Initial
ssthresh =
64 pkts

TCP with SACK Option

z TCP Reno and NewReno retransmit at most 1 lost packet per RTT
during the FR/FR phase, so that the pipe can be inefficiently used during
the recovery phase in the presence of multiple losses.

z With Selective ACK (SACK) enabled (RFCs 2018 and 2883), the receiver
informs the sender about all successfully-received segments: the
sender only retransmits lost segments.

z Support for SACK is negotiated at the beginning of a TCP connection
between sender and receiver. Both sender and receiver need to agree on
the use of SACK: use of the SACK-permit option in the three-way
handshake phase. SACK does not change the meaning of the ACK field in
TCP segments.

z A contiguous group of correctly-received bytes represents a block;
bytes just below the block and just above the block have not been received.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP Selective Acknowledgement Options”, RFC 2018, Oct. 1996

K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno and SACK TCP”, Computer Communication Review, July 1996

TCP with SACK Option

(cont’d)

z The SACK option has to be sent by the receiver to inform the sender of
non-contiguous blocks of data received and queued.

z If SACK is enabled, SACK options should be used in all ACKs not
ACKing the highest sequence number in the receiver queue. A SACK
option in the TCP header can permit to specify a maximum of 4 blocks.

z The implementation of SACK combined with TCP Reno by S. Floyd
requires a new state variable called ‘pipe’.

z Whenever the sender enters the fast recovery phase (after 3
DUPACKs received), it initializes ‘pipe’, as an estimate of how many
packets are outstanding in the network, and sets cwnd to half of its
current value.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Block #1 Block #2 Block #3 Block #4

hole = loss loss loss

Received

byte-stream

TCP with SACK Option

(cont’d)

z If pipe > cwnd, no packet can be sent, since the number of in-flight
data is larger than the cwnd value.

z Pipe is decremented by 1 when the sender receives a partial ACK
with a SACK option reporting that new data have been received.

z Whenever pipe becomes lower than cwnd, it is possible to send
packets, starting from the missing ones (holes as reported by SACK)
and then new ones. Thus, more than one lost packet can be
sent in one RTT.

z Pipe is incremented by 1 when the sender sends a new packet or
retransmits an old one.

z Exit fast recovery when a full ACK is received.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Example of NewReno Micro-

Analysis (GEO Satellite Case)

TCP Sender TCP Receiver Propagation delay = 250 ms

IBR = 2 Mbit/s (bottleneck link)

B denotes the max number
of TCP segments in the
buffer of the link

pkts
MTU

IBRRTT
BDP 84

8







pkts 32

bytes 1500

5002







threshinitial ss

MTU

msdelaynpropagatioRTDRTT

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Example of NewReno Micro-

Analysis

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

0 50 100 150 200 250 300
0

100

200

time in RTT units

p
a
c
k
e
ts

cwnd

ssthresh

bottleneck link queue length

50 100 150 200 250 300
0.5

1

1.5

2

time in RTT units

s
e
c
o
n
d
s

 RTT

RTO

0 50 100 150 200 250 300
0

2

4
x 10

4

time in RTT units

p
a
c
k
e
ts

arrival curve, sequence number curve

0 50 100 150 200 250
0

100

200

time in seconds

p
a
c
k
e
ts

cwnd

ssthresh

bottleneck link queue length

50 100 150 200 250 300
0.5

1

1.5

2

time in seconds

s
e
c
o
n
d
s

RTT

RTO

0 50 100 150 200 250
0

2

4
x 10

4

time in seconds

p
a
c
k
e
ts

 arrival curve, sequence number curve

We have not considered here the RTT
granularity due to ticks.

B = 84 pkts
cwndmax = BDP + B = 168 pkts

Example of NewReno Micro-

Analysis

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

B = 40 pkts

0 20 40 60 80 100 120 140 160 180
0

100

200

time in seconds

p
a
c
k
e
ts

cwnd

ssthresh

bottleneck link queue length

0 20 40 60 80 100 120 140 160 180
0.5

1

1.5

2

time in seconds

s
e
c
o
n
d
s

 RTT

RTO

0 20 40 60 80 100 120 140 160 180
0

2

4
x 10

4

time in seconds

p
a
c
k
e
ts

arrival curve, sequence number curve

0 50 100 150 200 250 300
0

100

200

time in RTT units

p
a
c
k
e
ts

cwnd

ssthresh

bottleneck link queue length

50 100 150 200 250 300
0.5

1

1.5

2

time in RTT units

s
e
c
o
n
d
s

 RTT

RTO

0 50 100 150 200 250 300
0

2

4
x 10

4

time in RTT units

p
a
c
k
e
ts

arrival curve, sequence number curve

cwndmax = BDP + B = 124 pkts

We have not considered here the RTT
granularity due to ticks.

Example of Tahoe Micro-

Analysis

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

B = 40 pkts

0 20 40 60 80 100 120 140 160 180
0

100

200

time in seconds

p
a
c
k
e
ts

cwnd

ssthresh

bottleneck link queue length

0 20 40 60 80 100 120 140 160 180
0.5

1

1.5

2

time in seconds

s
e
c
o
n
d
s

RTT

RTO

0 20 40 60 80 100 120 140 160 180
0

2

4
x 10

4

time in seconds

p
a
c
k
e
ts

arrival curve, sequence number curve

0 50 100 150 200 250 300
0

100

200

time in RTT units

p
a
c
k
e
ts

cwnd

ssthresh

bottleneck link queue length

50 100 150 200 250 300
0.5

1

1.5

2

time in RTT units

s
e
c
o
n
d
s

 RTT

RTO

0 50 100 150 200 250 300
0

2

4
x 10

4

time in RTT units

p
a
c
k
e
ts

arrival curve, sequence number curve

cwndmax = BDP + B = 124 pkts

We have not considered here the RTT
granularity due to ticks.

Example of Tahoe/NewReno

Macro-Analysis: avg. Th.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

The average throughput is derived as sum of cwnds on RTT basis

divided by the total time elapsed:

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6
th

ro
u
g
h
p
u
t

[b
it
/s

]

time in seconds

average throughput as a function of time

Tahoe

NewReno

 








n

i

i

n

i

i

RTT

cwnd

n

1

1

B = 84 pkts

Example of Tahoe/NewReno

Macro-Analysis: Efficiency

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Study of the efficiency as a function of the bottleneck link buffer size from

B = 0 to B = BDP = 84 pkts

 
IBR

B


0 10 20 30 40 50 60 70 80 90
0.7

0.75

0.8

0.85

0.9

0.95

1

bottleneck link buffer size [pkts]

T
C

P
 e

ff
ic

ie
n
c
y

NewReno

TahoeWhen B = 0, the
efficiency of TCP
NewReno is
minimum, 75%.
When B tends to
BDP, the efficiency
tends to 100% with
TCP NewReno.

Design of the Buffer of the

Bottleneck Link

z The optimal buffer B value is the minimum B value allowing to
maintain the pipe constantly filled so that cwnd never goes below
BDP (i.e., the pipe never becomes empty, and the link is
exploited at the maximum rate of IBR); a rule-of-thumb is to
consider B = BDP packets.

y At regime, cwnd of NewReno oscillates between 2BDP and BDP,
the pipe is always loaded at about IBR, and the buffer
occupancy oscillates between full and empty conditions.

y ssthresh is the TCP memory of recent congestion events. At
regime, ssthresh is equal to BDP. The regime ssthresh value can
represent an estimate of the system bandwidth.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Design of the Buffer of the

Bottleneck Link

z The optimal buffer B value is the minimum B value allowing to
maintain the pipe constantly filled so that cwnd never goes below
BDP (i.e., the pipe never becomes empty, and the link is
exploited at the maximum rate of IBR); a rule-of-thumb is to
consider B = BDP packets.

y At regime, cwnd of NewReno oscillates between 2BDP and BDP,
the pipe is always loaded at about IBR, and the buffer
occupancy oscillates between full and empty conditions.

y ssthresh is the TCP memory of recent congestion events. At
regime, ssthresh is equal to BDP. The regime ssthresh value can
represent an estimate of the system bandwidth.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

BDP  cwnd  B+BDP

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP Analysis

Square-Root Formula for TCP

Throughput/Goodput

z At regime, the average TCP throughput  (the average goodput g)
at network layer can be approximated by the square-root formula
below, which is valid under the following assumptions: B = 0, RTT
= constant (i.e., RTT  RTD), and neglecting RTO events.

 where p (p < 0.1, otherwise RTOs have impact) denotes the

segment loss rate, a is a coefficient, which depends on the TCP
version and type of losses (e.g., for NewReno with
random losses).

z Throughput/goodput of standard TCP is quite sensitive to the
increase in p.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

  














 
















 


s

bit
,

8
min1

s

bit
,

8
min IBR

pRTT

MTU
pIBR

pRTT

MTU a
g

a

M. Mathis, J.Semke, J. Mahdavi, T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”,
Computer Communications Review, Vol. 27, No. 3, July 1997.

1.31α 

Square-Root Formula for TCP

Throughput/Goodput

z At regime, the average TCP throughput  (the average goodput g)
at network layer can be approximated by the square-root formula
below, which is valid under the following assumptions: B = 0, RTT
= constant (i.e., RTT  RTD), and neglecting RTO events.

 where p (p < 0.1, otherwise RTOs have impact) denotes the

segment loss rate, a is a coefficient, which depends on the TCP
version and type of losses (e.g., for NewReno with
random losses).

z Throughput/goodput of standard TCP is quite sensitive to the
increase in p.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

  














 
















 


s

bit
,

8
min1

s

bit
,

8
min IBR

pRTT

MTU
pIBR

pRTT

MTU a
g

a

M. Mathis, J.Semke, J. Mahdavi, T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”,
Computer Communications Review, Vol. 27, No. 3, July 1997.

1.31α 

MTU is here measured in
bytes and RTT is here
expressed in seconds.

Square-Root Formula for TCP

Throughput/Goodput

z At regime, the average TCP throughput  (the average goodput g)
at network layer can be approximated by the square-root formula
below, which is valid under the following assumptions: B = 0, RTT
= constant (i.e., RTT  RTD), and neglecting RTO events.

 where p (p < 0.1, otherwise RTOs have impact) denotes the

segment loss rate, a is a coefficient, which depends on the TCP
version and type of losses (e.g., for NewReno with
random losses).

z Throughput/goodput of standard TCP is quite sensitive to the
increase in p.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

  














 
















 


s

bit
,

8
min1

s

bit
,

8
min IBR

pRTT

MTU
pIBR

pRTT

MTU a
g

a

M. Mathis, J.Semke, J. Mahdavi, T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm”,
Computer Communications Review, Vol. 27, No. 3, July 1997.

1.31α 

The minimum is needed
to avoid that a too low p
value causes this
quantity to go beyond
the physical limit of IBR.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
3

3.5

4

4.5

5

5.5

6

6.5

packet loss rate, p

g
o
o
d
p
u
t

[b
it
/s

]
in

 l
o
g
 s

c
a
le

curves for different RTT values

Square-Root Formula for TCP

Throughput/Goodput (cont’d)

RTT

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
3

3.5

4

4.5

5

5.5

6

6.5

packet loss rate, p

g
o
o
d
p
u
t

[b
it
/s

]
in

 l
o
g
 s

c
a
le

curves for different RTT values

Square-Root Formula for TCP

Throughput/Goodput (cont’d)

Note that with packet losses
on the link, cwnd will
typically be unable to reach
the maximum of BDP + B.
Packet losses cause sudden
cwnd reductions or RTO
events. Packet losses
significantly reduce goodput
and efficiency.

RTT

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Fairness for TCP

Traffic Flows

TCP Flows Sharing a

Bottleneck

z We consider multiple (two) TCP flows sharing a bottleneck link according to
the dumbbell topology.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

IP layer shared buffer

with capacity of B packets

TCP sender

Shared bottleneck with capacity IBR

TCP receiver

TCP sender

TCP receiver

Synchronized Losses for TCP

Flows Sharing a Bottleneck

z If the drop tail FIFO policy is
adopted for the buffer of the
bottleneck link, all TCP flows
experience buffer congestion at
the same time, thus having
synchronized packet losses.

y All these TCP flows reduce their
traffic injection at the same time
due to synchronized losses.

y There are intervals of time where
the bottleneck link is
significantly underutilized.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

550 600 650 700 750 800 850 900 950 1000
0

100

200

300

400

500

600

time

c
w

n
d

cwnd1

cwnd2

cwndtot = cwnd1 + cwnd2 (aggregate)

Synchronized losses

TCP NewReno flows

TCP Fairness

z Let us consider two TCP flows sharing a bottleneck link.

z The relative phases of the two cwnds have an impact on their behaviors.

z Let x1(x2) denote the cwnd of flow #1 (#2). The fairness of two TCP
flows sharing a bottleneck link can be studied by means of the graph of
x2 versus x1 under the constraint x1 + x2 ≤ cwndmax = B + BDP:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

T0

T1

Efficiency Line (x1 + x2 = cwndmax)

Fairness Line (x1 = x2)

TCP flow 1 cwnd, x1

TCP flow 2

cwnd, x2

Fairness and efficiency
may be two opposite
aspects to deal with.

TCP Fairness Measure

z Jain fairness index F:

y If all the n TCP flows sharing a bottleneck link (with IBR)
achieve the same throughput (i = IBR/n), the fairness index
is maximum and equal to 1.

y The minimum fairness value is 1/n, obtained when all TCP
flows have i = 0, except one with i = IBR.

n: Number of flows

i : Average throughput of the i-
th flow

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved





















F
n

i

i

n

i

i

n
1

2

2

1

TCP NewReno Convergence

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

0

50

100

150

200

250

300

350

400

450

0

50

100

150

200

250

300

350

400

450

cwnd
1
 [packets]

c
w

n
d
 2
 [
p
a
c
k
e
ts

]

Synchronized

losses

Fairness Line

Starting point

Efficiency Line

Ending point

z The behavior of the point (x1, x2) for two
TCP flows of the same type (i.e., both Reno
or both NewReno) sharing the same bottleneck
is depicted below. This point oscillates below
the efficiency line and is expected to move
closer to the fairness line (x1 = x2) for a fair
sharing of resources.

z This is what we call a convergent behavior.

TCP Convergence Time

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

550 600 650 700 750 800 850 900 950 1000
0

50

100

150

200

250

300

350

400

450

Time [s]

c
w

n
d
 [

p
k
ts

]

TCP Newreno flow 1

TCP Newreno flow 2

The same graph as before, but now the cwnd
behaviors are shown as a function of time.

z The Convergence
time is the time
needed from a single
(elephant) TCP flow
saturating the
bottleneck link, to the
instant when a new
started TCP flow
reaches a fair sharing
of the bottleneck link
capacity (x1  x2).

z Convergence is not
assured in general
and depends on the
TCP version.

Synchronized losses

TCP NewReno Convergence

Time Analysis

z Hypotheses: (i) B = BDP; (ii) the second flow starts when the first
one has the maximum cwnd = 2BDP (worst-case); (iii) perfectly
synchronized losses; (iv) both flows are in the congestion avoidance
phase.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

2BDP

BDP+BDP/2

BDP/2
BDP

5BDP/4

 BDP/2
BDP/4

Time (RTT units)

c
w

n
d

 (
s
e

g
m

e
n

t
u

n
it

s
)

Cycle time =

BDP/2 in RTT

Units

Cycle time =

BDP/2 in RTT

Units

TCP NewReno Convergence

Time Analysis (cont’d)

z The duration of each cycle is BDP/2 in RTT units.

z At each cycle, the cwnd difference between the
two flows halves. Hence, log2(BDP) cycles are needed
to achieve convergence.

z The product of the number of cycles and the cycle
duration yields the TCP NewReno convergence time
TNewReno under our assumptions:

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

   units RTTlog
2

2NewReno BDP
BDP

T 

If BDP = 100 pkts (LFN), TNewReno  332 [RTTs]

RTT Fairness

z Different (say 2) TCP connections may experience quite different RTT
values, and a good TCP protocol should allow the different TCP flows to
fairly share the bottleneck link bandwidth, regardless of their RTT values.

z RTT fairness index = ratio of the average throughputs of the two
flows 1/2 with different RTTs, typically proportional to
RTT2/RTT1.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

RTT1

RTT2

Common bottleneck
link to the two flows

TCP source1

TCP source2

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP Versions for LFN

Networks (e.g., High-

Speed Networks or

Satellite Networks)

New TCP Versions for LFN

and Simulation Tools

z In the last few years, many TCP variants have been proposed to
address the under-utilization of LFN networks due to the
slow growth of cwnd. Some examples of these versions are: HS-
TCP, S-TCP, BIC, CUBIC, etc.. The cwnd behaviors of many of these
variants and more can be found at the following URL:
y http://netlab.caltech.edu/projects/ns2tcplinux/ns2linux/index.html

z Even if the cwnd growths of these new protocols are scalable and
good for LFNs, fairness and convergence are major issues.

y The main problem is to find a “suitable” growth function for cwnd.

z Very important free simulators for the networks (suitable for
simulating many TCP versions, routing, etc.) are ns-2 and the new
ns-3. More details can be found at the following links:
y http://nsnam.isi.edu/nsnam/index.php/User_Information

y http://www.nsnam.org/

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

http://netlab.caltech.edu/projects/ns2tcplinux/ns2linux/index.html
http://nsnam.isi.edu/nsnam/index.php/User_Information
http://www.nsnam.org/

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

where C (= 0.4) is a scaling factor, t is the elapsed time from the last cwnd (W)
reduction due to a packet loss at time t = 0, Wmax is the maximum cwnd (W) value
before the last reduction, and β is a constant used in a multiplicative decrease of cwnd
after a packet loss operated as follows: W(0)  Wmax  bWmax= (1  b Wmax. where b

= 0.2 so that 1  b  0.8.

accelerate

accelerate

slow down

CUBIC TCP: cwnd Behavior

Wmax

cwnd, W(t)

    max

3
WKtCtW 

3 max

C
W

K
b



time, t
t = 0

Concave region Convex region

z The cwnd growth function of CUBIC TCP depends on a cubic
law of the time elapsed since the last packet loss; the cwnd
grow time is independent of ACKs (and then on RTT).

y ACKs are still needed to understand the segments that have been
correctly received.

z Cwnd growth slows down as it gets closer to the value before last
reduction (= Wmax).

z K is the time needed to recover after a packet loss the same
Wmax value before the loss. The value of K has been
determined by imposing W(0) = C(K)3 + Wmax = Wmax 
bWmax.

z CUBIC TCP is the default TCP version in Linux kernels (2.6.19 or
above).

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

CUBIC TCP: cwnd Behavior

(cont’d)

I. Rhee, L. Xu, S. Ha, "CUBIC for Fast Long-Distance Networks", IETF Internet-Draft,
February 2007.

CUBIC TCP: Design Issues

z CUBIC exhibits the following properties:

y Stability: CUBIC TCP has a very slow cwnd increase in the
transition between the concave and convex growth regions,
which allows the network to stabilize before CUBIC starts looking
for more bandwidth.

y RTT fairness: CUBIC TCP achieves RTT fairness among flows
since the window growth is independent of RTT.

y Intra-protocol fairness: there is the convergence for the
cwnds of two competing CUBIC flows.

y CUBIC TCP exhibits however inter-protocol fairness issues
with other TCP versions, as shown in the following slide.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

CUBIC versus Other TCP

Versions

CUBIC

TCP Reno

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

z There is no convergence to a fair sharing of capacity:
serious inter-protocol fairness problems.

Classical CUBIC behavior

CUBIC TCP
is sharing
the
bottleneck
link with
TCP
NewReno.

Compound TCP (CTCP)

z Compound TCP (CTCP) aggressively adjusts the congestion window
(cwnd) to optimize TCP traffic injection in LFN networks.

z Compound TCP maintains two cwnd values: a TCP NewReno-like
(loss-based) window and a delay-based window.

z The size of the actual sliding window used is the sum of
these two windows.

z If the delay is low, the delay-based window rapidly increases to
improve the utilization of the network. Once queuing is experienced,
the delay window gradually decreases.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Multi-Homing and Multi-Path

TCP

z Multi-Path TCP (MP-TCP) is a new approach to improve TCP performance
exploiting multiple source-destination paths (e.g., RFCs 6182 and
6824, respectively of 2011 and 2013).
y Requirement: we need a multipath transport layer solution that is transparent to middleboxes,

that are network nodes with protocols up to transport (NATs, Firewalls, Gateways, PEPs, etc.)

z MP-TCP assumes that both sender and receiver are modified and that one or
both of them can have multiple IP addresses (multi-homing, multi-
addressed, multi-network adapter) to exploit different network paths.

y According to RFC 6824, MP-TCP improves the throughput if multiple paths can be used in
parallel for a destination or can make TCP robust in case of link disconnections (additional
path used as a backup).

y Each sub-flow is characterized by a suitable congestion control mechanism and a sub-flow
sequence number. Sub-flows are bound together by means of a token identifier.

z MP-TCP signaling is based on optional TCP header fields (signaling: set up
multiple sub-flows, reassembly of data, sub-flow termination, etc.).

z LHCNet (network for physics) is performing experiments with MP-TCP on
end hosts of its multi-Gbit network for load balancing purposes.

A.A. 2013 - 2014 Siena - © 2014 All rights reserved

MP-TCP and Mobility: HetNet

Scenario WiFi/3G/4G

A.A. 2013 - 2014 Siena - © 2014 All rights reserved

 Mobile client,

smartphone

WiFi AP

3G base station

MP-TCP
server

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP Versions

Implemented and

Measurements

W. Richard Stevens, "TCP/IP Illustrated, Vol 1: The Protocols", Addison-Wesley
Professional Computing Series, 2012.

TCP Versions and Operating

Systems

z Many TCP algorithms are supported by the major operating systems:

y TCP AIMD (*) and CTCP for the Windows family (e.g., Windows
XP/Vista/7/Server/8).

y TCP AIMD (*), BIC, CUBIC, HSTCP, Hybla, Illinois, STCP, Vegas, Veno,
Westwood+, and YeAH for the Linux family (e.g., RedHat, Fedora, Debian,
Ubuntu, SuSE).

y TCP NewReno is a common TCP version for UNIX (Berkeley Software
Distribution, BSD).

y The TCP version used in MAC OS X operating system is based on the BSD
version (FreeBSD 5 and therefore 4.4BSD) and is using TCP NewReno.

(*) AIMD can be considered quite close to NewReno.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP Versions and Operating

Systems (cont’d)

z Both Windows and Linux users can change their TCP algorithms
and settings by means of a line of command. Linux users can even
design and then add their own TCP algorithms.

z Under Vista/Windows 7, the following prompt command is available to
verify/to modify TCP settings:

netsh int tcp show global

z CTCP is enabled by default in Server 2008 and disabled by default in
computers running Windows Vista and Windows 7. CTCP can be enabled
(disabled) by means of a suitable command (Vista/Windows 7):

netsh interface tcp set global congestionprovider=ctcp

(netsh interface tcp set global congestionprovider=default)

z The change of TCP version has impact only if this is done on the TCP
sender.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP Versions and Operating

Systems (cont’d)

z Example of use of the prompt command “netsh int tcp show
global”:

z It is possible to set different options, such as window
scaling to enlarge the rwnd range, timestamp options to
improve the RTT estimate, ECN, etc.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

TCP Versions and Operating

Systems (cont’d)

z Example of use of the prompt command “netsh int tcp show
global”:

z It is possible to set different options, such as window
scaling to enlarge the rwnd range, timestamp options to
improve the RTT estimate, ECN, etc.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Without the possibility to enlarge the rwnd
(window) range, the limit to the TCP throughout
would be 216/RTT bytes.

TCP Versions and Operating

Systems (cont’d)

z Example of use of the prompt command “netsh int tcp show
global”:

z It is possible to set different options, such as window
scaling to enlarge the rwnd range, timestamp options to
improve the RTT estimate, ECN, etc.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

A timestamp is an optional field in the TCP header that contains
the current value of the clock of the sender. In particular, the
sender places a timestamp value in each segment sent. The
receiver reflects this value in the ACK, thus allowing an accurate
RTT calculation at the sender for every ACK. This is useful
because current implementations measure RTT only once per
window of data and this could not be accurate for LFN
networks.

TCP Versions and Operating

Systems (cont’d)

z The different operating systems use distinct settings for
some basic TCP parameters as follows:

y Microsoft Windows XP: Initial cwnd of 1460 bytes and maximum
possible (initial) rwnd of 65535 bytes.

y Microsoft Windows 7: Initial cwnd of 2920 bytes (i.e., more than one
segment) and maximum possible rwnd of 65535×22 bytes by means of
the window scaling option according to RFC 1323.

y Ubuntu 9.04: Initial cwnd of 1460 bytes and maximum possible rwnd of
65535×25 bytes.

y MAC OS X Leopard 10.5.8: Initial cwnd of 1460 bytes and maximum
possible rwnd of 65535×23 bytes.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

R. Dunaytsev. TCP Performance Evaluation over Wired and Wired-cum-Wireless Networks. PhD thesis, TUT
Tampere, 2010.

Testing TCP Performance:

Iperf

z Iperf is a free tool to measure TCP goodput (bandwidth), allowing
the tuning of various parameters. Iperf reports bandwidth, delay
variation, and datagram loss.

z Developed by the National Laboratory for Applied Network Research
(NLANR) project, iperf is now maintained and developed on Sourceforge at
http://sourceforge.net/projects/iperf

z The –s option sets the server (TCP receiver)

z The –c option with the IP address of the server sets the client (TCP
sender)

z The –w option can be used to set a particular TCP window size (socket
buffer size). This value should be ‘aligned’ with BDP for an optimal TCP
goodput performance.

z The –h option is used for the help of the commands.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

http://sourceforge.net/projects/iperf

Testing TCP Performance:

Iperf

z Iperf is a free tool to measure TCP goodput (bandwidth), allowing
the tuning of various parameters. Iperf reports bandwidth, delay
variation, and datagram loss.

z Developed by the National Laboratory for Applied Network Research
(NLANR) project, iperf is now maintained and developed on Sourceforge at
http://sourceforge.net/projects/iperf

z The –s option sets the server (TCP receiver)

z The –c option with the IP address of the server sets the client (TCP
sender)

z The –w option can be used to set a particular TCP window size (socket
buffer size). This value should be ‘aligned’ with BDP for an optimal TCP
goodput performance.

z The –h option is used for the help of the commands.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

For instance if one system is connected with Gigabit Ethernet
(@ 1Gbit/s), but the other one with Fast Ethernet (@100Mbit/s)
and the measured round trip time is 150 ms, then the window
size (socket buffer size) should be set to 100 Mbit/s x 0.150 s /
8 = 1875000 bytes ( BDP), so setting the TCP window to a
value of 2 MBytes would be a good choice.

http://sourceforge.net/projects/iperf

Testing TCP Performance:

Iperf (cont’d)

z The configuration of this experiment is show below:

z We have to run Iperf on both server (TCP receiver) and client
(TCP sender) to exchange traffic and measure the TCP performance.

y We run ‘iperf -s’ on the server to enable it to receive traffic sent from the client via TCP.

y Then, we run ‘iperf -c <IP address> on the client to send data to the server by means of
TCP.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Client running Iperf

Server running Iperf

ephemeral port 62688 server port 5001

TCP

TCP

end-to-end dialogue

<IP geographical

Address> of

the server

Testing TCP Performance:

Iperf (cont’d)

z Iperf performs repeated file transfers for 10 s and measures the resulting
average capacity (bandwidth).

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

 rwnd = 8 kB for
the operating
system.

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved

Thank you!

giovanni.giambene@gmail.com

