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Advanced ‘M’/G/1 cases 

Advanced ‘M’/G/1 cases 

taking into account: 
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(mean msg delay, Tm) 
Message completion instants 

Packet level 

(mean number 

of packets, Np) 

Packet completion instants 

End of the slot 
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Advanced ‘M’/G/1 cases 

z These ‘M’/G/1 cases are modeled by generalized 
difference equations as: 

 

 

 

 

 

 

y The above is a symbolic difference equation presented to 
introduce new concepts, but not actually corresponding to a 
given queuing system. 
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batched service (deterministic or random) 
per imbedding interval if b > 1 

service differentiation if  > 0 
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‘M’/G/1 Queue with Different 

Imbedding Options 

z Let us refer to a queue with a compound Poisson arrival 
process.  Different imbedding options are available, also depending 
on the presence of an output Time Division Multiplexing 
(TDM)/TDMA service. 

 

 

1. Imbedding at the end of the packet transmission time to study 
the statistics of the buffer occupancy (like MAC layer performance). This 
study requires to adopt the service differentiation approach. Notation: 
M[G]/D/1. 

 

2. In a TDM output case, we can also imbed the system at the end of 
the output slot, thus avoiding any service differentiation issue. 
Notation: M[G]/D/1. 

 

message arrival  

time  

 
   

packets  
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‘M’/G/1 Queue with Different 

Imbedding Options 

 

3. In a TDMA case and asynchronous multiplexing, we can imbed the 
system at the end of the frame with b slots, thus having a batched 
service since we can service up to b packets per frame. Notation: 
M[G]/D[b]/1. 
 

4. Imbedding at the end of the message transmission time to 
study the message delay distribution (like layer 3 performance). 
Notation: M/G/1. We use the Pollaczek-Khinchin formula. 
 

z In the above cases #1, #2, #3, operating at the packet 
level, the arrival process is not Poisson, and the 
Kleinrock principle is not applicable due to the 
simultaneous arrival of the packets of a message. Hence, 
the ‘M’/G/1 solution depends on the imbedding points, 
but in all the cases we must have the same stability limit. 
 

z Instead, in the above case #4, the arrival process is Poisson and 
we can apply Kleinrock principle and PASTA property. 

message arrival  

time  

 
   

packets  
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Let us Re-examine    

Exercise #2 of Lesson #7 

z We consider a transmission line with a buffer (i.e., we have a 
single-server queue) where messages arrive according to a Poisson 
process with mean arrival rate l. 
 

z The arrival process and the transmission one are continuous-time. 
 

z All the packets of the same message arrive simultaneously: bulk 
arrival process. 
 

z A message is formed of a random number l of packets, each 

requiring a time T to be transmitted. Message lengths are iid. 
 

z Let L(z) denote the PGF of the message length in packets that also 
corresponds to the PGF of the message transmission time in T 
time-units.  

 
  

      
    

l 

L(z) 

message arrival  

time  

 
   

packets  

Note that both inputs and outputs  

are unslotted. We have thus 2 different  

imbedding options (cases #1 and #4). 
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Solution #1: Chain Imbedded at 

pkt Transmission Completion 

z Let ni denote the number of packets in the buffer at the end of the 
transmission of the i-th packet; let ai denote the number of packets arrived 
at the buffer during the service time of the i-th packet.  
 

z To study our M[L(z)]/G/1 queue we write the following difference 
equation: 

y For ni > 0, ni+1 = ni – 1 + ai+1 : classical M/G/1 equation. 

y For ni = 0, ni+1 = ai+1 + l – 1: when ni = 0 we have to wait for the next group 

arrival and for the service completion of the first arrived packet of the group of 
length l in order to go to the next imbedding instant with ni+1. The difference 

equation in this case is that typical of differentiated service times (see next 
slides). However, considering that queuing phenomena when ni = 0 could have 
negligible impact on the whole queue behavior, we make the following 
approximation: ni+1 = ai+1, for ni = 0. This allows to use the same difference 
equation of the classical M/G/1 theory. 

 

z In order to apply the M/G/1 theory we need to compute A(z) that 
represents the PGF of the number of packets arrived at the buffer in the 
service time of a packet (time T). 
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Solution #1… Neglecting 

Service Differentiation (n
i+1

 = a
i+1 

for n
i
 = 0) 

z The mean number of packets Np is: 

 

 

 

 where: 
 

 

 

 

z The stability of the buffer is assured if lTL’(1) < 1 Erlang. The 
mean packet delay, Tp, is obtained applying the Little theorem and 
using the mean packet arrival rate given by lL’(1) 
packets/second:  
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Solution #1b with Differentiated 

Service Times (n
i+1

 = a
i+1

 +  for n
i
 = 0) 

The chain is again imbedded at the end of packet transmission: 

ni+1 = ni – 1 + ai+1, if ni  0,  

ni+1 = ai+1*, if ni = 0 where ai+1* = ai+1 + w  and  w = l – 1 (since ai+1* 

> ai+1 , this case is as if the service time was longer when the buffer is 
empty as with ‘differentiated service times’). In terms of PGFs, A(z) does 
not change with respect to the previous example and W(z) = L(z)/z. 
 

We need to solve the new difference equation in the z-domain and to 
compute the derivatives of the PGF P(z) at z = 1. We have: 
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Classical M/G/1 terms 

(as in solution #1)  

 Additional term due to 
differentiation depending 
on the message length 

statistics; this term disappears 
if the messages are formed of 

a single packet L(z) = z. 

 

 Note:  

Random variable L   PGF  L(z) 

Random variable –1  PGF  z1 
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Solution #2: Chain Imbedded at 

msg Transmission Compl. 

z Let ni denote the number of messages in the buffer at the end of 
the transmission of the i-th message; let ai denote the number of 
messages arrived at the buffer during the service time of the i-th 
message.  
 

z We can write the following difference equation of the classical 
M/G/1 type: 

y For ni > 0, ni+1 = ni – 1 + ai+1  

y For ni = 0, ni+1 = ai+1. 
 

z In order to apply the M/G/1 theory we need to compute A(z) that 
represents the PGF of the number of messages arrived at the 
buffer in the service time of a message. 
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This composition is exactly the  

opposite of that used for solution #1  

Of course this case can be 
solved by directly applying 

the Pollaczek-Khinchin 
formula. We have however 
computed A(z) to compare 

to that of solution 1   

This is the same 
case of 

Exercise #2 in 
Lesson #7 ! 
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Solution #2… 

z Let Nm denote the mean number of messages in the queue:  

 
 
 

z The stability condition is lTL’(1) < 1 Erlang.  
 

z Since the mean arrival rate of messages is l, we apply the Little theorem to derive 
the mean message delay Tm: 

 
 

z Let us consider messages with modified-geometric distribution {so that 
L’’(1)=2[L’(1)]22L’(1)}. Hence, the mean message delay Tm results as: 
 
 
 
 

 Under the approximation considered in case #1 for the derivation of Tp, 
we can prove that Tp  Tm. 
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Still on the Comparison 

Between T
p
 and T

m 

z Under the common stability condition  lTL’(1) < 1 Erlang, we 
have obtained the following mean packet delay Tp and mean 
message delay Tm with different imbedding options: 

 

 

 

 

 
 

z In general, we can see that Tm  L’(1) Tp  due to the 
queuing terms: 
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Sol. #1 (approximate) 



© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

Still on the Comparison 
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p
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z Under the common stability condition  lTL’(1) < 1 Erlang, we 
have obtained the following mean packet delay Tp and mean 
message delay Tm with different imbedding options: 

 

 

 

 

 
 

z In general, we can see that Tm  L’(1) Tp  due to the 
queuing terms: 
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Sol. #2 

Sol. #1 (approximate) 

To remove the 
approximation we 
should add a term 
L’’(1)/[2lL’(1)2]. 
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M/G/1 Queue with Feedback or 

Randomly-Available Server 

z Let us consider a queue receiving packets according to a Poisson process with mean 
rate l. Each packet needs a time T to be transmitted (deterministic service). Service 
time is slotted (synchronized) with duration T. When a packet is transmitted, the 
packet is erroneously received with probability 1p ; in this case, a negative feedback 
(ARQ) is immediately received by the sender that soon retransmits the packet. 
 

z We imbed the queue at the slot end instants.  
 

y Let ni denote the number of packets in the 

 queue at the end of the i-th slot;  
 

y Let ai denote the number of packets arrived at  

 the queue during the i-th slot.  
 

y Variable X representing the service is a Bernoulli  

 random variable equal to 1 with probability p and equal to 0  

 with probability 1p. X(z) = zp+ 1p. E[X] = p. 
 

z We can thus write the following difference  

 equation modeling this queue: 
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M/G/1 Queue with Feedback or 

Randomly-Available Server 

z Let us consider a queue receiving packets according to a Poisson process with mean 
rate l. Each packet needs a time T to be transmitted (deterministic service). Service 
time is slotted (synchronized) with duration T. When a packet is transmitted, the 
packet is erroneously received with probability 1p ; in this case, a negative feedback 
(ARQ) is immediately received by the sender that soon retransmits the packet. 
 

z We imbed the queue at the slot end instants. 
 

y Let ni denote the number of packets in the 

 queue at the end of the i-th slot;  
 

y Let ai denote the number of packets arrived at  

 the queue during the i-th slot.  
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This model is equivalent to consider 
that the output server is available in a 
slot to send a packet with probability p 
and unavailable with probability 1p 
(insensitivity property). 
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M/G/1 Queue with Feedback or 

Randomly-Available Server 

z Let us consider a queue receiving packets according to a Poisson process with mean 
rate l. Each packet needs a time T to be transmitted (deterministic service). Service 
time is slotted (synchronized) with duration T. When a packet is transmitted, with 
probability 1p it is sent instantaneously back to the queue (due to an error - ARQ 
scheme). 
 

z We imbed the queue at the slot end instants.  
 

y Let ni denote the number of packets in the 

 queue at the end of the i-th slot;  
 

y Let ai denote the number of packets arrived at  

 the queue during the i-th slot.  
 

y Variable X representing the service is a Bernoulli  

 random variable equal to 1 with probability p and equal to 0  

 with probability 1p. X(z) = zp+ 1p. E[X] = p. 
 

z We can thus write the following difference  

 equation modeling this queue: 
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This approach is correct, but does not permit to 
model the synchronization delays in the 
service of packets arrived at an empty buffer.  

Otherwise, we could consider a different model of 
this system without slots for output 
transmissions: transmissions are continuous-
time. We could thus avoid synchronization issues. 
In this case, we should imbed the study at the 
packet transmission end, thus using again the 
classical M/G/1 difference equation. 
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M/G/1 Queue … (cont’d) 

z We solve the difference equation by transforming in the z-domain and using the 
same method adopted for the classical M/G/1 study.  

 

z We obtain the following results for the PGF of the packets in the buffer, P(z), and 
the mean number of packets in the queue: 

 

 

 

 

 

  

 where the stability condition is now A’(1) = lT < p Erl. 

 

Note:  

Random variable X   PGF  X(z) 

Random variable –X  PGF  X(z1) 
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Note that for p =1 the  

feedback is eliminated and  

this expression yields 

the classical M/G/1 result. 

The mean packet delay T can be obtained by 
applying the Little theorem to the whole 
queuing system: T = N/l 
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Thank you! 

 

giovanni.giambene@gmail.com 

 


