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Introduction 

z We need to consider an intermediate level between 
network layer (IP protocol layer) and applications; this is 
the transport layer of the OSI model (layer 4). 
 

z The following ‘services’ can be optionally provided at the 
transport level (but not all applications need all these 
services): connection-orientation, same order delivery, 
error-free data (reliability), flow control, byte-orientation, 
and use of ports. 
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Introduction (cont’d) 

z Connection-orientation. Even if the network layer provides a 
connectionless service, the transport layer often provides a 
connection-oriented service (in such a case a set up phase is 
needed). 
 

z Same order delivery. The network layer does not generally 
guarantee that data packets arrive in the same order they were 
sent. However, the transport layer provides in order delivery.  
 

z Error-free data. The underlying network may be noisy and data 
may be received corrupted. The transport layer deals with this 
problem by means of a checksum of the received data to detect if 
errors have occurred. Moreover, IP packets can be lost due to buffer 
congestion and overflow at the routers. Transport layer may 
retransmit corrupted packets or lost packets.  
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Introduction (cont’d) 

z Flow control & congestion control. The amount of memory on a 
computer is limited, and without flow control a powerful computer might 
flood a computer with so much information that it cannot hold it all before 
dealing with it. Nowadays, this is not a big issue because memory is cheap, 
while bandwidth is expensive, but in earlier times of networks this was a 
more critical issue. The flow control operated by the transport layer 
allows the receiver to stop the transmission before it is 
overwhelmed (layer 4). A similar concept applies to the congestion 
control, but in this case the control is operated to avoid the 
congestion of layer 3 buffers at intermediate routers in the network. 
 

z Byte orientation. Rather than dealing with packets, the transport layer 
views a communication as a stream of bytes. 
 

z Ports. Ports are essentially ways to address multiple entities in the same 
location. Computer applications will each listen to information on their own 
ports; more than one network-based application can be running at the 
same time and they are distinguished on the basis of different ports. 
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Introduction (cont’d) 

z There are distinct protocols operating at transport layer. These 
protocols are at least of three different types. 
 

y User Datagram Protocol (UDP) defined in RFC 768: it is a 
connectionless transport layer protocol, which provides a simple and 
unreliable delivery service for transaction-oriented services. UDP is 
basically an interface between IP and upper-layer processes.  
 

y Transmission Control Protocol (TCP) introduced with RFC 793: it is a 
complex protocol, which provides connection-oriented and reliable 
data transfer to the application layer. 
 

y Multicast protocols are another important family of transport-layer protocols. 
These protocols may be reliable (if they guarantee the correct delivery of 
information to all recipients) or not and require a suitable approach at the 
network layer. For instance, the NACK-Oriented Reliable Multicast (NORM) 
protocol defined in RFC 5740 is an important example of reliable 
multicast protocol. 
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Ports 

z Different applications run on the same device connected to the 
Internet. In order to distinguish among them, 16-bit port 
numbers have been adopted to denote service endpoints. 
Source and destination port numbers are specified in both TCP and 
UDP headers.  
 

z Both TCP and UDP receive requests through transport layer ports 
(TSAPs) from higher layer protocols, provide a service and send 
requests through the network layer port (NSAP).  
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Ports (cont’d) 

z Port numbers are divided into three ranges (RFC 6335):  

y System Ports also called ‘well-known’ ports (0-1023),  

y User Ports (1024-49151),  

y Dynamic and/or Private Ports (49152-65535). 
 

z System Ports are assigned by IETF. User Ports are assigned by the Internet 
Assigned Number Authority (IANA). Dynamic Ports are not assigned.  
 

z TCP and UDP ports are assigned separately, since the services 
provided by TCP and UDP are different. 
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TCP well-known ports UDP well-known ports 

Echo: 7 DNS: 53 

FTP (control): 20 TFTP: 69 

FTP (data): 21 NTP: 123 

Telnet: 23 SNMP: 161 

SMTP: 25 

HTTP: 80 



Ports (cont’d) 

z Well-known port numbers are reserved across different 
operating systems.  
 

z User Ports and Dynamic and/or Private Ports can be used for 
‘ephemeral ports’, which are short-lived ports allocated 
automatically by the TCP/IP software. They are used on the 
client in a client-server communication to a well-known port on the 
server. Moreover, ephemeral ports may also be used on servers. 
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Ports and Sockets 

z There is some confusion between ports and sockets, since they are 
closely-related. A socket is identified by the binding of an 
NSAP (IP address) and a TSAP (port number). 
 

z The socket is part of the operating system (kernel) of the 
host and adopts some Application Programming Interfaces (based 
on Berkeley Software Distribution, BSD, socket).  
 

z Several types of Internet sockets are available. For instance, 
connectionless sockets using UDP and connection-oriented 
sockets using TCP. 
 

z A FIFO buffer is part of the socket operating in the system 
kernel between application and network layers at both 
sender and receiver. Data received from the network are stored 
in this buffer, from whence the application can read at its own pace. 
As the application reads data at the receiver, the receiver buffer 
space is freed up to accept new data from the network. 
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Introduction to TCP 



An Example on How/When 

TCP is Used 

z TCP is an end-to-end protocol that is invoked when we open the 
Web browser (http protocol) and we type an URL (Uniform Resource 
Locator) address, such as for instance www.wikipedia.org  
 

z The Web browser on the client uses the DNS service to identify the IP 
address corresponding to the URL and then 
 

y It opens a TCP connection to that IP address using port 80 
 

y It sends (writes) a request for a reference page, that is ‘get index.html’ 
 

y It waits for and receives (reads) the reply in the form of an html page. 
 

z The Web server at the provided IP address 
 

y It waits for the opening of a TCP connection 
 

y It waits for and receives (reads) the request in the form of ‘get index.html’ 
 

y It sends (writes) the requested html page. 

 A.A. 2013 - 2014 Siena  -  © 2014  All rights reserved  

http://www.wikipedia.org/


TCP Basic Characteristics 

z Byte-streams. TCP data is organized as a stream of bytes: bytes 
are counted, not datagrams. Nevertheless, TCP information is 
delivered in blocks (packets), called segments.  

 

z Reliable delivery. Sequence numbers of bytes are used to 
coordinate which data have been transmitted and received. TCP will 
arrange for retransmissions if it determines that data have been 
lost.  

 

z Network adaptation. TCP will dynamically infer the status of the 
network and will adjust its throughput in order to avoid the 
occurrence of congestion in the network.  
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TCP Basic Characteristics 

(cont’d) 

z Flow control. TCP controls the congestion of destination buffers in 
order to avoid overflow events: fast senders will be stopped 
periodically to keep up with slower receivers.  
 

z Full-duplex operation. TCP operates in a full-duplex way: a TCP 
session entails two independent byte streams, traveling in 
opposite directions between the two end-hosts. During 
connection start and close phases, TCP can exhibit asymmetric 
behaviors.  
 

z TCP is used by mice connections (e.g., HTTP) and by elephant 
-heavy- ones (e.g., FTP).  
 

z At the receiver side, IP may receive the datagrams in a wrong order. 
After IP passes the TCP segments to TCP, TCP reorganizes these 
segments according to the correct order. 
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TCP Segment Format 

z The following figure describes the format of TCP segments, organized in words 
of 32 bits. The size of the TCP header without options is 20 bytes. 
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z Source and destination ports (16 bits each): TCP port 
numbers of both sender and receiver.  
 

z Sequence number (32 bits): The sequence number of 
the first byte in the data part of the segment. 
 

z Acknowledgment number (32 bits): If the ACK 
control bit is set, such field contains the value of the 
sequence number of the next segment to be 
transmitted. This field is intended to acknowledge 
the last segment received in order (cumulative 
ACK). ACKs are piggybacked in TCP segments. The 
mechanism of ACKs is detailed in the next slides. 
 

z Window (16 bits): The number of bytes beginning with 
the one indicated in the acknowledgement field that the 
receiver is able to accept due to the actual occupancy of 
its buffer (receiver window for flow control). If a 
host/receiver cannot accept more data, it advertises a 
window equal to zero. 
 

z Checksum (16 bits): it is a parity check for the whole 
TCP segment that also covers the pseudo-header 
(source address, destination address, higher layer 
protocol code, and the TCP segment length). 

 



Cumulative ACKs for TCP 

and Packet Losses 

z Let us remark that TCP adopts a cumulative acknowledgement 
scheme: an ACK confirms the last segment received in order. 

 

 

 

 

 

 
 

 

 

z An ACK packet is a TCP segment sent in the return direction with respect to 
the source-destination couple. An ACK packet is at least of 40 bytes (header) 
at the IP level. If for some reasons packet 3000 is lost, the next ACK 
sent after the reception of the segment with number 4000 is still 
containing the ACK number 2001 (Duplicated ACK, DUPACK).  
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time 
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(DUPACK) 

 

In this representation, each TCP packet is labeled 
with the number of the highest order byte carried. 
This is not the sequence number. 



Cumulative ACKs for TCP 

and Packet Losses 

z Let us remark that TCP adopts a cumulative acknowledgement 
scheme: an ACK confirms the last segment received in order. 

 

 

 

 

 

 
 

 

 

z An ACK packet is a TCP segment sent in the return direction with respect to 
the source-destination couple. An ACK packet is at least of 40 bytes (header) 
at the IP level. If for some reasons packet 3000 is lost, the next ACK 
sent after the reception of the segment with number 4000 is still 
containing the ACK number 2001 (Duplicated ACK, DUPACK).  
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In this representation, each TCP packet is labeled 
with the number of the highest order byte carried. 
This is not the sequence number. 

This ACK and the following 
ones are DUPACKs (as we 
will show later, the TCP 
sliding window does not 
slide with DUPACKs). 



Cumulative ACKs for TCP 

and Out-of-Order Packets 

z With respect to the previous example, we have considered here that 
for some reason packet 3000 is not lost, but just takes another path 
to reach destination. Hence, this packet arrives out of order. This 
causes some DUPACKs.  

 

 

 

 

 

 
 

 
 

z As soon as packet 3000 is correctly received, the cumulative ACK 4001 is sent, 
thus recovering the right progress of the ACK numbers: packets 3000 and 
4000 in the receiver buffer can be delivered to the higher layer. 
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Cumulative ACKs for TCP 

and Out-of-Order Packets 

z With respect to the previous example, we have considered here that 
for some reason packet 3000 is not lost, but just takes another path 
to reach destination. Hence, this packet arrives out of order. This 
causes some DUPACKs.  

 

 

 

 

 

 
 

 
 

z As soon as packet 3000 is correctly received, the cumulative ACK 4001 is sent, 
thus recovering the right progress of the ACK numbers: packets 3000 and 
4000 in the receiver buffer can be delivered to the higher layer. 
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Packet 4000 is received out of 
order: this packet is stored in the 
socket of the receiver and not 
delivered to higher layers until 
the missing packet 3000 is 
received. 



Retransmission Time-Out 

z When a packet is transmitted a Retransmission Time Out 
(RTO) timer is started by the sender.  
 

z The RTO value is continuously updated on the basis of the 
measure of the time needed to receive ACKs, called Round Trip 
Time (RTT). RTO represents a filtered version of an estimate of RTT 
with some margin, proportional to the RTT standard deviation.   
 

z If the ACK of a packet is not received before RTO expires, it is 
assumed that a packet loss has occurred due to network 
congestion (i.e., overflow in a buffer of a traversed node) and then 
retransmissions are performed, because TCP is a reliable 
protocol. 
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More details on RTT and the RTO 
algorithm are provided later in this lesson. 



Start of the TCP end-to-end 

Transfer: Three-Way Handshake 

z TCP uses special segments (with SYN flag set to 1 in the header) for 
establishing a new e2e connection, synchronizing the use of both sequence 
numbers and ACK numbers on both client and server sides. 
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z When a TCP client wants to create a new connection with a 
remote server, it sends a SYN segment. When the SYN flag 
is set, it means that synchronization is requested with the 
remote server. The client also sends an initial client-side 
sequence number (random value). Moreover, the TCP 
header can also contain information on the client-
side MSS; this is achieved by using a suitable TCP option in 
the header.  
 

z When the server hears the connection request, the server 
responds with a TCP segment with the SYN flag set to 
1 containing in the ACK field the sequence number 
received incremented by 1 (for validation) and 
containing another initial server-side sequence 
number (random value). The TCP header can also 
contain information on the server-side MSS. 
 

z The client responds back with a SYN segment where the 
ACK field contains the sequence number received from the 
server and incremented of 1. 

 

 

Sender (client) Receiver (server) 

Comm.Request(SYN=1, SEQ=X) 

Response(SYN=1, ACK=X+1, SEQ=Y) 

Confirmation(SYN=1, ACK= Y+1) 
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TCP Flow Control 



TCP Flow Control (RFC 793) 

z TCP implements a flow control algorithm based on a sliding 

window approach.  
 

 

y We refer to the socket buffer of the operating system between the 
application program and the network layer. The data received from the 
network is stored in this buffer. As the application reads data, the 
receiver buffer space is freed up to accept new data from the 
network.  
 

 

y The window field W (after identified as rwnd) in the TCP header 
specifies the size of the receiver buffer, less the amount of valid 
data stored in it. This is also called the receiver window  or advertised 
window. Hence, the TCP header permits to inform the sender of the degree 
of congestion at the receiver. 
 

 

y Since the window size field in the TCP header is 16 bits long, the maximum 
window size (i.e., room available in the socket buffer at the 
receiver) is 216 = 65536 bytes, corresponding to maximum 44 
Ethernet packets of 1500 bytes. 
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TCP Flow Control and the 

Sliding Window 

z The current window value W represents the maximum 
amount of data that can be sent (in-flight data, outstanding 
data) without having to wait for ACKs: 

 

1. Transmit all the new segments allowed by the current window value W. 
 

2. Wait for ACKs to arrive; several packets can be acknowledged with the same 
ACK due to the cumulative ACK scheme allowed by TCP. 
 

3. When an ACK arrives, shift the window to the position indicated by 
the ACK number and set the window size to the value advertised in 
the ACK window field; the transmission continues from the packet following 
the last transmitted one. 
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An Example of the Sliding 

Window Scheme 

z The sliding window scheme is at the byte level, but we refer below 
to packets. 

 

 

 

 

 

 

 
 

 

z In this example, the TCP sender can still transmit packets with sequence 
numbers 7 and 8 even without receiving new ACKs. The arrival of new ACKs 
allows the window to slide to the right to transmit more packets. 
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Sequence of packets:        1   2   3   4   5   6   7   8    9   10  
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receiver window, W = 5 

Do not 

transmit yet 



Flow Control: ACK Self-

Clocking Model 

TCP Sender 

Socket 

TCP Receiver 

Socket 
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1. Send a packet 
2. Receive data packet 

3. Send  ACK 
4. Receive ACK 

5. Send a new  

packet  
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RTT is the time from step #1 to step #4. 
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TCP Congestion 

Control 



Congestion Control 

z On October 1986, Internet had its first congestion collapse 
event. The network was totally congested, providing few bit/s of 
goodput per user. Most users gave up and reconnected later. 
 

z Congestion entails: 
 

y Packet losses due to buffer  

 overflows 
 

y Retransmissions to recover  

 packet losses 
 

y Drastic throughput reduction. 
 

 

z In 1986, Van Jacobson proposed a first congestion control 
and a flow control scheme that are integrated in the same 
mechanism, based on sliding windows.  

 
 

 

 

 

throughput 

load 
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with congestion control 

without congestion control 

= collapse 



 

RTT and RTD 

z Round Trip Time, RTT: this is the time for a packet to travel from source to 
destination and the time back to receive its ACK at the source. RTT includes 
the packet transmission time, queuing delays at the traversed nodes, the ACK 
packet transmission time, and the e2e physical propagation delay. 
 

 

z Round Trip propagation Delay, RTD, the minimum possible RTT, only 
accounting for the e2e physical propagation delay in the medium. RTD is 
much easier to determine than RTT; sometimes RTT is substituted by RTD.  
 

 

z The ping command of ICMP provides a measure of RTT: 
 

Execution of Ping to 193.205.7.1 with 32 bytes of data: 

Answer from 193.205.7.1: byte=32, RTT duration=129 ms, TTL = 116 

…… 

Answer from 193.205.7.1: byte=32, RTT duration=190 ms, TTL=116 

Statistics for the Ping to 193.205.7.1: 

    Packets: Transmitted = 4, Received = 4,  

    Lost  = 0 (0%), 

Approximated RTT in ms: 

    Minimum = 129 ms, Maximum =  190 ms, Average =  150 ms 
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Network Model for TCP 

Congestion Control Study 
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RTT  RTD + queuing delays 

In this model, we consider that the size 
of the socket buffers is sufficiently high 
that they do not limit the TCP traffic. 

Queuing delays are 
due to buffer 
congestion on the 
source-to-destination 
path. 



Bandwidth-Delay Product 

z An important parameter for the TCP behavior and performance is the 
Bandwidth-Delay Product (BDP), defined as: 

 
 

 
 

z BDP represents the maximum number of packets that can be 
in-flight (outstanding) in the pipe from source to destination. 
 

z BDP is computed practically substituting RTT with RTD. 
 

z If BDP has a high value (around 10 pkts according to RFC 
1062 or around 100 pkts or more according to RFC 1323), 
the network is said to be a “Long, Fat pipe Network” (LFN). 
 

z We consider a new (sliding) window, with size Wt, for the 
flow & congestion control integrated mechanisms; as before, 
Wt limits the injection of packets in the network. 
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Bandwidth-Delay Product 

z An important parameter for the TCP behavior and performance is the 
Bandwidth-Delay Product (BDP), defined as: 

 
 

 
 

z BDP represents the maximum number of packets that can be 
in-flight (outstanding) in the pipe from source to destination. 
 

z BDP is computed practically substituting RTT with RTD. 
 

z If BDP has a high value (around 10 pkts according to RFC 
1062 or around 100 pkts or more according to RFC 1323), 
the network is said to be a “Long, Fat pipe Network” (LFN). 
 

z We consider a new (sliding) window, with size Wt, for the 
flow & congestion control integrated mechanisms; as before, 
Wt limits the injection of packets in the network. 
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RTD is used in this 
formula (instead of RTT) 
when doing theoretical 
investigations. 



Flow & Congestion Control, 

Integrated 

z Flow control to avoid overloading receiver with too much data. 

y rwnd: receiver (advertised) window, set in the window size field in 
the header of the TCP packet sent back as ACK. The maximum (initial) 
rwnd value is 65535 (= 216-1) bytes. 

y rwnd is updated by the receiver depending on the occupancy of its 
transport layer socket buffer: rwnd closes when new data are received 
and rwnd re-opens when data are read from the socket buffer and 
delivered to higher layers. 

 

z Congestion control to avoid overloading network with too much data. 

y cwnd: congestion window. It is continuously updated by the 
sender on the basis of a congestion control algorithm, which permits to 
infer the network congestion status on the basis of ACKs received. 

 

z The sender uses the sliding window Wt = min (cwnd, rwnd) to 
determine the amount of new data that can be injected into 
the network (in-flight data) without having to wait for ACKs. 
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The First Congestion Control 

Algorithm 

z The TCP congestion control algorithm is managed by the sender to 
control/limit the amount of data injected into the network towards a 
destination (i.e., the receiver) without any coordination with 
other hosts, but only on the basis of its perception of network 
congestion on the basis of the ACKs received. 
 

z The classical TCP congestion control treats the network as a black 
box and probes network resources by increasing gradually the 
amount of injected data (Wt) on the basis of the ACKs received. 
The TCP congestion control algorithm conceived by Van 
Jacobson in 1986 is composed of two phases: 

 

y ‘slow start’ and  
 

y ‘congestion avoidance’.  
 

y This first congestion control scheme was not included in an RFC, but 
it was just implemented under the name of TCP Berkeley (UNIX). 
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The First Congestion Control 

Algorithm (cont’d) 

z Cwnd is updated by the sender at each ACK received, which  
acknowledges new data.  
 

z The ‘slow start’ phase and the ‘congestion avoidance’ one are 
performed on the basis of the value a cwnd threshold, ssthresh, 
which is dynamically updated.  

 

y The initial default ssthresh value is typically set to the initial rwnd value, 
i.e., 65535 bytes. In the following study, however, we will also consider lower 
ssthresh values. 
 

z Note that cwnd, rwnd, Wt, and ssthresh have values 
expressed in bytes, but for the following considerations their 
values are considered as converted in segment units. This 
allows a simpler description even if not totally accurate, since the 
actual congestion control behavior has a finer granularity. 
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The First Congestion Control 

Algorithm (cont’d) 

z Depending on the comparison of cwnd and ssthresh, ‘slow start’ or 
‘congestion avoidance’ algorithms are used to increase cwnd.  

 

y If cwnd < ssthresh, the ‘slow start’ algorithm is adopted: the 
following cwnd update is performed at the receipt of a new ACK:  

cwnd = cwnd + 1   [MSS unit].  

 Correspondingly, cwnd doubles (exponential increase) on an RTT basis. In 
spite of its name, the ‘slow start’ algorithm tries to enlarge (i.e., to open) the 
congestion window in a sufficiently-fast (but controlled) way. 
 

y As soon as cwnd increases beyond ssthresh, the ‘congestion 
avoidance’ algorithm is invoked: the following cwnd update is performed 
at the receipt of a new ACK :  

cwnd = cwnd + 1/cwnd   [MSS unit].  
 

 For each block of cwnd segments sent/received in an RTT time, cwnd 
increases of 1: cwnd has a linear increase on an RTT basis. This solution 
permits to gently probe the bandwidth still available in the network. 
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Slow Start: Exponential 

cwnd Increase on RTT Basis 
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cwnd = 1 cwnd = 2 

ACK 2001 

2000 3000 4000 5000 6000 7000 

cwnd = 4 

cwnd  cwnd + 1 for each ACK received 
1 RTT 

 

Exponential increase of the cwnd size (1, 2, 4, 8, etc.) and of the number of packets 
sent on an RTT basis. 



Congestion Avoidance: Linear 

cwnd Increase on RTT Basis 
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Linear increase of the cwnd size (1, 2, 3, etc.) and of the number of packets sent 
on an RTT basis. 



Cwnd Behavior 

 

z In the congestion avoidance phase: 
 

y If abscissa is expressed in RTT units, the cwnd behavior 
is linear. 
 

y If abscissa is expressed in seconds, the cwnd behavior is 
curved (increasing and concave down), especially if B > 
BDP. 

 

x This is because RTT increases with cwnd due to 
the increase in buffer congestion. 
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RTO and Congestion Control 

 

z When RTO expires for a given packet: 

1.  ssthresh is set to one-half of the current minimum value between cwnd 
and rwnd; 

2.  cwnd is reset to its initial value (i.e., 1 MSS) to force the ‘slow 
start’ algorithm; 

3. RTO is doubled; 

4. The sender retransmits all packets starting from the one for 
which RTO has expired (Go-Back-N approach).  

z The RTO mechanism drastically reduces the TCP traffic 
injection since it resets cwnd. 

z When the overload condition disappears, the normal value of 
RTO is restored. 
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More details on the RTO algorithm are 
provided at the end of this lesson. 



Congestion Control Study 

Assumption (Model) 

z For the study of the TCP congestion control algorithm we 
make the following simplifying assumptions: 

 

y All packets of a cwnd window are sent altogether as in a 
burst. 
 

y All ACKs corresponding to the packets of a cwnd are 
received altogether after an RTT. 
 

y The cwnd value is updated on an RTT basis. 
 

y The rwnd value is assumed to be so high (rwnd >> cwnd) 
that it has no influence in determining the Wt value: Wt  
cwnd. 
 

y BDP is computed using RTD instead of RTT. BDP computed 
with RTT is equivalent to (model) BDP+B, where BDP is 
computed with RTD. 
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An Example of cwnd Behavior 

z An example of cwnd behavior is shown 
here as a function of time, expressed 
in RTT units for initial ssthresh = 32 
kB, MSS = 1 kB, and rwnd =  

 

y At the beginning of a TCP connection, during 
the ‘slow start’ phase, cwnd has an 
exponential increase (y = 2x, where x is in 
RTT units); 
 

y As soon as cwnd reaches the ssthresh value, 
cwnd linearly increases (y = x+b) due to 
the ‘congestion avoidance’ algorithm.  
 

y We assume that when cwnd = 40 kB, a 
congestion event occurs in the network 
(e.g., RTO expires for a given TCP segment): 
TCP sets ssthresh to half of last cwnd 
value (i.e., ssthresh = 20 kB) and resets 
cwnd to 1 to trigger a ‘slow start’ 
phase. 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

 

 

cwnd = 1 kB 

cwnd = 40 kB and an RTO occurs 

time 
in 

RTT 

The ssthresh 
value is reduced 
from 32 kB to 20 

kB 

cwnd is reduced to = 1 kB 
c

w
n

d
 

40 kB 

32 kB 

20 kB 

16 kB 

8 kB 

4 kB 

2 kB 

1 kB 

SSllooww  SSttaarrtt  

CC
oo

nn
gg

ee
ss

tt ii
oo

nn
  AA

vv
oo

ii dd
aa

nn
cc

ee
  

SSllooww  SSttaarrtt  

CC
oo

nn
gg

ee
ss

tt ii
oo

nn
  AA

vv
oo

ii dd
aa

nn
cc

ee
  

= RTT 

The TCP behavior described here corresponds to 

TCP Berkeley. A similar cwnd behavior could be 

obtained by TCP Tahoe, but in this case the 

packet loss is recognized by DUPACKs before RTO 

expires. 



TCP Tahoe Version (1988) 

z TCP Tahoe adopts slow start and congestion avoidance.  
 

z Moreover, if the sender receives 3 DUPACKs, Tahoe assumes that 
there was a packet loss and reacts as if an RTO expiration 
occurred: Tahoe performs a “fast retransmit” phase, ssthresh  
cwnd/2, cwnd   1 and restarts from a slow start phase, forgetting 
everything on the segments sent after the lost one (Go-Back-N). 
This approach may reduce the throughput too much. 
 

z A packet loss is not decided at the first DUPACK, but at the third one 
in order not to react too fast, especially because the IP network is 
connectionless and out-of-sequence packets could be 
misinterpreted as packet losses. 
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Cwnd Behavior with TCP 

Tahoe 
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We refer to our network model with B, 
BDP, IBR, etc.  
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cwnd  = 1 pkt 

cwndmax  = B + BDP 

3 DUPACKs 

ssthresh 

Where 
this BPD 
is 
computed 
with RTD. 

From a given time 
onwards, the cwnd 
behavior is periodic, 
with period Tcycle. 

Tcycle 



TCP Congestion Control: 

Some Reference Versions 

TCP 

Tahoe 

(1988) 

TCP Reno 

RFC 2001 

(1990) 

TCP NewReno 

RFC 2582 (1999) & 

RFC 3782 (2004) 

SACK 

RFC 2018 

(1996) 

TCP 

Vegas 

(1994) 
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TCP 

RFC 793 

(1981) 

TCP 

Berkeley 

(1986) 



TCP Performance: 

Throughput and Goodput 

z The TCP performance is measured in two different ways: 
 

y Throughput (sender-side): the bit-rate R(t) injected in the 
network by the TCP sender. 
 

y Goodput (receiver-side): the bit-rate corresponding to the 
correctly-received segments at the TCP receiver. 

 

z We can also consider average values of throughput, G , 
and goodput, g. 
 

z If there are frequent packet losses in the network it may 
happen that 
 

Average throughput G >> Average goodput g. 
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Throughput 

z The instantaneous throughput R(t) and the average 
throughput G can be characterized as: 

 

 

 

 
z If cwnd is measured in packets, G is obtained in TCP 

segments/s (or segments/RTT unit). 
 

z If cwnd is too small (G « IBR), the network capacity is 
underutilized. While, if cwnd is too high, there can be 
congestion and packet losses. 

 
 
 tRTT

tcwnd
tR 
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Throughput 

z The instantaneous throughput R(t) and the average 
throughput G can be characterized as: 

 

 

 

 
z If cwnd is measured in packets, G is obtained in TCP 

segments/s (or segments/RTT unit). 
 

z If cwnd is too small (G « IBR), the network capacity is 
underutilized. While, if cwnd is too high, there can be 
congestion and packet losses. 

 
 
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tcycle depends on BDP where 
RTT can be approximated by 
RTD [RTT is almost constant 
and equal to RTD only if B  0]. 



Average Goodput 

(Measurements) and Efficiency 

z The average goodput can be measured as follows: 

 

 

 
 

z Efficiency h can be measured as average goodput g 
divided by IBR: 
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IBR

g
h 

T

T


  time toup order)(in  received packets
g

If there are no packet losses due to the medium (but just the periodical 
packet losses due to buffer congestion) we have: G  g. 



TCP Deadlock 
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Traffic jam as an  

illustration of TCP deadlock. 

z Deadlocks are complex events, 
which cause a bock in the data 
transmission, with a condition that 
resembles traffic jam in the streets. 
 

 

z Deadlock events may happen under 
special circumstances in the TCP case, 
where sender and receiver are 
both waiting for the other to 
finish, so that none of them can send 
new data.  
 

 

z Some TCP deadlock events are due to 
implementation (known) problems.  



TCP Deadlock (cont’d) 

z A first deadlock case 
 

y The following case refers to a slow receiver. If the receiver 
buffer is full of data, then it sends an ACK to the sender 
containing a window size rwnd = 0. This stops sender 
transmissions. The receiver sends a window update segment 
(with rwnd > 0) when it has space available in its buffer. If 
this window update segment is lost, then a deadlock occurs.  
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TCP Deadlock (cont’d) 

z A second deadlock case 
 

y Another deadlock problem could be caused by a circular-wait 
condition between sender and receiver due to the adoption of 
the Nagle algorithm  (RFC 896) jointly with the delayed 
acknowledgment scheme (RFC 813).  
 

x The Nagle algorithm limits the number of outstanding 
small segments (segments smaller than MSS) to one in order to 
avoid inefficiency. The delayed acknowledgment strategy 
prevents a receiver from acknowledging small segments 
by delaying ACKs until they can be piggybacked onto either a 
data segment or a window update packet.  

 

y There is the risk the sender will not send small segments due to the 
Nagle algorithm and the receiver will not send ACKs because of the 
delayed ACK algorithm.  
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RTO Algorithm, 

Details 



Retransmission TimeOut 

(RTO), Calculation 

z RTO should be greater than RTT, but not much bigger than RTT in 
order not to waste time to react to congestion. Hence, an accurate 
dynamic determination of RTO is needed. 
 

z When a packet is sent a timer is started; when the ACK corresponding to 
the same sequence number is received an RTT measure is obtained. Let 
RTT(i) denote the i-th RTT measure. 
 

z The current RTO value (RFC 6298) is updated by the TCP sender using 
two state variables based on RTT measures: SRTT (Smoothed 
RTT, an average RTT value) and RTTVAR (RTT VARiation, a sort 
of standard deviation of RTT).  

 

 

 

 

 

 where K = 4, a  = 1/8, b  = 1/4, G represents the clock granularity (tick). 
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Retransmission Timeout 

(RTO), Calculation (cont’d) 

z In many implementations, RTT is not measured for every segment 
received, but typically only for one segment per window of 
data. 
 

z RTT is measured as a discrete variable (granularity), in multiples 
of a “tick”. 
 

z 1 tick = 500 ms in many implementations. 
 

z According to the Karn and Partridge algorithm (RFC 6298), RTT 
measurements are not taken when an RTO or a packet 
retransmission occurs, because these RTT measures would be 
inaccurate. 
 

z RTO should be at least 2 clock ticks (= 1 s). Instead, the 
maximum RTO value is 60 s. 
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Retransmission Timeout 

(RTO), Calculation (cont’d) 

z Large variations in the RTT (typically due to 
queuing phenomena) increase the deviation 
RTTVAR(i), leading to a larger RTO value. 
 

z Whenever an RTO expiration occurs, RTO is increased by 
some factor before retransmitting the non-ACKed data.  

 

 

y Typically, RTO is doubled at each expiration according to 
an exponential backoff algorithm. When the overload 
condition disappears, TCP reduces its RTO to its normal 
SRTT-based value. 
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RTO Behavior Example (GEO 

Satellite RTD of 0.5 s) 

© 2013 Queuing Theory and Telecommunications: Networks and Applications – All rights reserved 

0 5 10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time in RTT units

RTO

measured RTT

satellite scenario

In doing this 
graph, continuous 
values have been 
considered for 
both RTT and RTO 
(no ticks). 
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UDP 



UDP Basic Characteristics 

z UDP is a connectionless transport protocol. 
 

 

y A UDP application sends messages without establishing and then 
closing a connection. 
 

 

y UDP requires a smaller overhead than TCP, especially when the 
total size of the messages is small. 

 

 

z UDP does not guarantee a reliable delivery of data. 
 

 

y UDP messages can be lost or duplicated, or they may arrive out 
of order. Moreover, UDP messages can arrive faster than the 
receiver can process them because there is no flow control 
mechanism. 
 

 

y Application programmers using UDP have to consider and tackle 
these issues themselves. 
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UDP Basic Characteristics 

(cont’d) 

z The UDP protocol (defined in RFC 768) is extremely simple. Data 
from the application layer are handed down to the transport layer 
and encapsulated into a small UDP datagram. The datagram is sent 
to the host with no mechanisms to guarantee the safe arrival at the 
destination device. This check is left to the application layer if 
reliability is needed.  

 

z UDP provides simple functions beyond that of IP, as: 
 

y Port Numbers. UDP uses16-bit port numbers to let multiple processes to use 
UDP services on the same host. 
 

y Checksum. UDP checksums its data and a pseudo-header in order to verify 
their integrity. A packet failing checksum is simply discarded, with no 
further action taken (i.e., no retransmission is requested). 
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UDP Packet Format 

32 bits 

Source Port Destination Port 

UDP length UDP checksum (optional) 

Data 
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Thank you! 
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