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Random Variables

Taxonomy: Probability density function
(pdf) fy(x) and
Continuous value: domain Q Probability Distribution
Real axis (also a semi-axis) ‘ Function (PDF) Fy(x):
Segment

Prob{X < x}=j f (x)dx

Discrete values: domain {1, 2, ...}

Finite values ‘ Probability mass function:
Infinite values Prob{N =k} = p(k)
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Summary of Discrete
Distributions

Name Probability mass function, p(k) Mean Variance
1
Discrete Uniform plk)= Y& k=12,.,N N +1 N? -1
2 12
; p, k=1
Bernoulli k)= _
plk) {1—;;», o P p-p)
N
k)= k 1— V—k,
Binomial p( ) [k]p ( p) Np NP(I—P)
k=0,1,..,. N
ope . - 1 l1-p
Modified Geometric p(k)= p(l—py 1’ k=1,2, ... _ :
P P
k
Poisson plk)= %6_’0, k=12, .. P - P

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved




Summary of Continuous

Distributions

Probability density

Name T Mean Variance
Uniform : , a<x<b a+b (b-a)’
S(x)=1b-
a <x< b a 2 12
0, otherwise
Exponential _ | e , x20 1 1
f(x) = J) e
x>0 0, otherwise
Normal f(x)= 1 e_(x_'u}%sl 7 2
Pareto ( )_ J/k/ >k i J/kz
f X)=—"3 X< _ 2 ,
X >k X y—1 (y-1)(y-2)
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Discrete Random
Variables

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Probability Generating Function
(PGF) for Discrete Random Var.

The PGF is a transform for integer-valued discrete random variables
having all the same sign (e.g., N) for which we know the probability
mass function [e.g., Prob{N = k}]. The PGF is defined in the

complex domain (variable z € C) and is similar to a z-transform:

N(z)=E[zN]=Zk:szrob{N =k}, for|z|<1 Im(l)

Basic properties: / Re

N(z) is a power series with non-negative coefficients (probab.)

N(z=1)=> Prob{N =k}=1 (normalization) N(z=0)=Prob{N =0}<1
k
IN(z)<1 for |z/<1 (bound condition)

A complex function is characterized by a radius of convergence ¢: a complex
function (z domain) is convergent for |z| < ¢ and diverges for |z| > ¢. On the circle
|z| = ¢ there is at least one singularity. On the basis of the bound condition, the ¢

value of the PGF must be at least one: a PGF is convergent inside and on the
unit disc |z| < 1.

In z = 1 there can be a singularity that can be removed (Abel theorem).
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Special Cases of PGFs for
Deterministic Values

It is interesting to note that also “1” can be seen as z° and therefore it
is the PGF or the deterministic value “0".

Moreover, also z and z? are PGFs of the deterministic values “1” and
V2", respectively.
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Abel Theorem

A PGF is a power series with non-negative coefficients.

In the limiting case of a PGF with a radius of
convergence just equal to 1, the Abel theorem can
be applied to prove that N(z) has a finite limit for z > 1-
and due to the normalization condition the value of this

limit must be equal to 1:
limN(z)=1

z—1

This theorem will be applied to the M/G/1 case, where the PGF P(z) of

the state has a removable singularity by means of the Hépital rule at z
= 1.
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Mean Value: Use of the First
Derivative of PGF

The mean value of a random variable X is defined as:

jxf o (x)dx for a continuous variable
E[X]=4%
> xP{X =x foradiscrete variable

In the case of the discrete-value random variable X, we can obtain
E[X] from the derivative of the PGF X(z) of X as:

X'(z):%zk:szrob{X =k}=

= under the assumption of series uniform convergence =
> EX]=x
= Z— 2*Prob{X =k} = Zkzk-lprob{x =k}

karob — E[X] PGFs provide an easy way
to compute mean values.
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Mean Square Value: Use of the
Second Derivative of PGF

The mean square value of a random variable X is defined as:

j x* £, (x)dx for a continuous variable
E[x2]=1{=

Z x?P{X =x} fora discrete variable

In the case of the discrete-value random variable X, we can obtain
the mean square value of X from the second derivative of its PGF:

X"(z)= %Zkzk‘lProb{X =k}=
k

= under the assumptionof series uniform convergence = |:> ElX 2]2 X”(l)+ X .(1)

d
:§:k— “IProb{X =k :E:k k —1)z*Prob{X =k
2 'ProbiX =kj (k=2)z"ProbiX =kj PGFs provide an easy way to

= X" Zk Prob{X =kj—> kProb{X =k} compute mean square values.
kl
FlnaIIy, variance is obtained as:

Var[X]=E[(x ~ E[X]F |- E[x* |- {E[x}}* = x"@)+ x @)~ [x W]
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PGFs of Geometric and
Poisson Distributions

The discrete random variable N is geometrically distributed if its
probability mass function can be represented as:

Prob{N =k}=(1-q)g*, 0<qg<l k=0,12,...

PGF: Geometric series
N(z)=3 2Prob{N =k}= 3" (1—q)zq) = -9
k=0 k=0 1-2zq

The discrete random variable N is Poisson distributed if its
probability mass function can be represented as:

k

Prob{Nzk}z%e‘p, p>0, k=0,12,..

Exponential series

PGF: +00 +00 k +00 k
N(z)=>z*Prob{N =k} Z(Zf') e ey 2]
k=0 .

k=0 k=0 kl
z-1)

_a P xe¥ — el
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PGFs of Bernoulli and
Binomial Distributions

The discrete random variable N is Bernoulli distributed if its
probability mass function can be represented as:

_{1, with probability p

10, with probability1— p
PGF:

Nz)=1-p+2zp

The discrete random variable N is binomially distributed if its
probability mass functionr’can be represented as:

mpk(l— p)™, O0<p<1 k=0,12,..n (E}ﬁlk)

Binomial coefficient

PGF:

n

Z)= Zn: z*Prob{N =k} = Z(EJ(Zp)k (L-p)™ =
N.B. Sum of iid Bernoulli k=0 k=0
random variables yields a

Binomial random variable. = (1— P+ Zp)n

= by invoking the binomial Newton formula =
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PGF: Sum of Independent
Random Variables and Inversion

Let us consider two discrete independent random variables: X with
distribution Prob{X = k} and PGF X(z) and Y with distribution Prob{Y =
h} and PGF Y(z). We need to characterize the PGF of W = X +Y

The PGF W(z) is related to X(z) and Y(z) as follows:

W(z)=X(2)v(2)

Special case: sum of independent identically distributed (iid) random
variables with Bernoulli distribution, yielding a Binomial distribution.

Inversion: for some derivations in the field of queuing theory a
random variable N can be characterized in terms of its PGF N(z). It is
therefore important to invert N(z) to derive the probability distribution
Prob{N = k}. By definition, N(z) can be seen as a Taylor series
expansion centered at z = 0 (i.e., MaclLaurin series expansion). Hence,
a simple inversion method can be based on the formulas to derive the
coefficients of the MacLaurin series expansion as:

Prob{N _ k}: ld_kk N(z This methgd can be easily implemented in Matlab®
k!dz o as shown in Lesson No. 19.
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Comparison of Probability Mass
Functions (Same Mean Value, 5)

Discrete distributions with same mean =5

0.25 T T T L T [ X
I sinomial
| |Poisson
I Geometric
0.2 -
0.15+
2
E
©
o]
e
o
0.1~
0.05 ‘ |
0 | I I
0 1 2 3 8 9 10

Matlab® code:

X=0:1:10;

I=length(X);
A(1,X+1)=binopdf(X,10,0.5);
A(2,X+1)=poisspdf(X,5);
A(3,X+1)=geopdf(X,1/5);

bar(X,A")
legend('Binomial’,'Poisson’,'Geometric")
xlabel(*X value")

ylabel('Probability")

title('Discrete distributions with same
mean = 5")
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PGF: Compound Variables

We consider independent discrete random variables N, (i = 1, 2, ...,
M) with probability mass functions Prob{N, = k} and PGFs N.,(z). We
are interested in characterizing the new random compound
variable Y obtained as follows:

M
Y=>N,
i=1

where M is a discrete random variable with probability mass
function Prob{M = j} and PGF M(z).

If random variables N, are iid: N,(z) = N(z) - Y(z)= Z[N (Z)]j Prob{M = jj=M [N (Z)]
j
Special cases:

Sum of a geometric-distributed number of iid geometric-distributed variables
yielding a geometric distribution;

Sum of a Poisson-distributed number of iid Bernoulli variables yielding a Poisson
distribution.
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Continuous Random
Variables
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The Exponential Distribution
and the Memoryless Property

The continuous random variable X is exponentially distributed if
it has the following probability density function (pdf) and probability
distribution function (PDF):

f ()= x>0 , F(t)=1-e* t>0
where p > 0 is the mean rate with the dimension of time-!
Mean value E[X] = 1/u and mean square value E[X?] = 2/u?

Let us assume that 7, exponentially-distributed with mean rate ,
is the duration of a phenomenon (e.g., phone call) started at time ¢
= 0. We examine the same phenomenon at time = {,and we
assume that it is still active: 7,> t,. We can prove that the
residual length of the event, 7, = 7,- ¢, is still exponentially
distributed with mean rate p. This is the memoryless property of
the exponential distribution. The exponential distribution is the sole
continuous random variable for which the memoryless property is
valid.
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Memoryless Property of the
Exp. Distribution: an Example

Phone call started at time t = 0 and with exponentially-distributed
length 7, (mean rate p): f ()=, t20

Start of 7;
the call :
Td

0 4

Assuming 7, > t, the residual phone duration after time ¢, 7., has
the same distribution of 7:

fi (t)=re™, t=0
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The min Property for the
Exponential Distribution

Let us consider the minimum of variables X. fori =1, 2, ..., n that
are independent with exponential distributions and rates ;. Then,
the new random variable min; {X} is still exponentially distributed
with mean rate X, .
Let us examine the case with n = 2. In general, we have random
variables X and Y for which we know the joint pdf fy,(x,y) and, of
course, the related marginal pdfs. We need to characterize the
distribution F,(w) of W = min{X, Y}:
Ry (W)= Prob <w}=Probf{x <w}U{y <w}}
= Prob{X < wj}+Prob{y <w}-Prob{{X <w}
—F, (W)+F, (W)~ Prob{X <w.¥.<w
= Fy (W) +F, (W) Fy (W)= F, (w)

n

Joint distribution

If X and Y have independent exponential distributions Fy(t) = 1-enit
and F,(t) = 1-e+%, then F(w) = 1-e (11 + n2t
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The Pareto Distribution and
Heavy-Tailed Distributions

The continuous random variable X has a Pareto distribution if it has the
following probability density and probability distribution functions:

fx(x):}ky X > k Fx(x):l—(5j7 X >k

N X

where vy is a real positive number (shape parameter) and K is a positive
translation term.
Important note: the

The mean value is finite for y > 1: E[X]=A1 mean (variance) of a
r- random variable can be

The variance is finite for y > 2: var[x]= ( 17;2((2 2 i':":';iflzﬂ;ﬁendi"g on
y =1y - :

A random variable X is said to be heavy-tailed if its complementary
distribution fulfills (definitely) the following condition that entails infinite

variance:
Prob{X > x}oc x7, where 0 < y <2

The Pareto distribution is heavy-tailed if 0 < y < 2.
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Examples of Use of Distributions
in Telecommunications

Geometric distribution: number of retransmission attempts with ARQ for
the correct delivery of a packet, where each transmission attempt has an
independent probability g to fail.

Poisson distribution: number of sessions generated by a user for a given
application in a given interval of time.

Bernoulli distribution: describes the success / failure probability of a
transmission attempt for a bit or a packet.

Binomial distribution: describes the success / failure probability of a
transmission attempt of a packet of bits with bit-to-bit memoryless error
behavior (sum of independent identically-distributed Bernoulli variables).

Exponential distribution: duration of a classical phone call / lifetime of
an electronic equipment / lifetime of a subatomic particle.

Pareto distribution: length of a file (discretized version of). It is used in
the characterization of the self-similar Internet traffic.
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Exercises/Homework

We have to invert the probability generating functions in simple
cases to determine the related probability mass functions:

0, with probability%

Alz)=Z+2+2 hasdistrib.: A=13, withprobability ;

5, with probability%

o Poisson
_ a2(z-1) ictrii - _kl_ & 42 _ ) ) ;
B(z)=¢e has distrib.: Prob{B=k}= a e? fork=0,1,2,.. distribution
- Translated
C(z)=2z%*""  hasdistrib.: Prob{C =k}= k_2) e fork=2,34,.. Poisson
distribution
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Stochastic Processes
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Stochastic Processes

A stochastic process X(t) is identified by a
different distribution of X at different time
instants t. A stochastic process is
characterized by:

The state space, that is the set of all possible values that
can be assumed by X(t). Such space can be continuous or
discrete (in such a case the stochastic process is named
chain).

Time variable: variable t can belong to a continuous set
or to a discrete one.

Correlation characteristics among X(t) random variables
at different instants t.
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Stochastic Processes
(cont’d)

There are different examples of stochastic
processes in telecommunications

Nnolse

= 10
WWHT— 0 dB With Respect
=-10 to RMS Value
=-20
=-30

. 5 i 0 5.5 1 15
Transmitted ... | i seconds |
signal 0 10 20 30

X, in wavelength
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Stationary Processes

Definition of mean: E[X (t)]= [ xx pdfy (x)dx = sz, (t)
Definition of autocorrelation: Ry (t,, t,) = E[X (t, )X (t,)]

where X(t;), X(t,) are random variables obtained from the process X(t) at times t,
and t,

The strict-sense stationary process entails that its joint
distribution on a set of time instants does not vary for their
translation.

A random process is said to be wide-sense stationary, if its mean
is constant and its autocorrelation only depends on the distance
from instants (does not vary with a shift in the time origin):

E[X (t)] = Hx = constant Ry (tl’ L, ) =Ry (ti -t ) =Ry (T)

In this course we will only consider strict-sense stationary
processes.
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Arrival Processes

Typical stochastic
processes are related to
the arrival of traffic in the ﬁ
networks:

Number of calls (or
packets or sessions) arrived
in a given time interval;

Interarrival time between
two consecutive arrivals of
calls (or packets or
Sessions).
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Arrival Process / Point
Process Characterization

Let us refer for the moment to continuous-time processes. An arrival
process is a stochastic process, where transitions are only possible
between adjacent increasing states.

An arrival process can be seen as a point process on the positive real
axis, i.e., arrival of points on R*. An arrival process can be characterized in
two different ways:

Number of arrivals in a generic interval t: We can group the arrivals (i.e., points on the
positive real axis) counting the number of points falling on intervals of given size t, N(t).

1 N(t) B Prob{N(t=k} distribution
T et O O O
<>

t
Distribution of times between arrival (i.e., interarrival times), t,
Interarrival

_ time, t,

f,(t) probability )
density function

\ time axis

arrival instants
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Poisson Arrival Process

A Poisson process is characterized by a number of arrivals in a given
interval of duration t, N(t), according to the following Poisson
distribution with mean arrival rate A:

k
Prob{N(t)=k}= % e, forany interval of duration t

We have a Poisson arrival process with mean rate X if and only if
the interarrival times are exponentially distributed with mean
rate A (i.e., mean value 1/A): ¢ ()= ze, t>0

Poisson arrivals in disjoint intervals are independent.

Each Poisson arrival carries (for instance) a voice call or a packet.
The Poisson process is here used as a traffic generator.

A Poisson arrival process is compound if every Poisson arrival
implies the instantaneous generation of a group of arrivals.
For instance: The arrival of IP packets segmented in a number of layer 2 packets (frames).
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Poisson Arrival Process:
Properties

Sum property: The sum of independent Poisson processesi = 1,
2, ..., n with mean rates A, fori = 1, 2, ..., n is still a Poisson
process with mean rate . A.

Let us consider the case n = 2. Then on a given interval t we have to sum the
number of Poisson arrivals N,(t) and N,(t) with respective PGFs as N,(z) =eMtz-1)
and N,(z) = e*(z-1), The total arrival process is N(t) = N,(t) + N,(t). Since N,(t)
and N,(t) are independent processes, the PGF of N(t), N(z), is obtained as the
product of the PGF N,(t) , N;(z), and that of N,(t), N,(2): N(z) = N;(z) x N»(2) =
e(1+2)z-1), Hence, we can deduce that N(z) is related to a Poisson arrival
process with mean rate &, + .

Random splitting property: The probabilistic division of a
Poisson process with mean rate A in sub-processes with related
probabilities p, for i = 1, 2, ..., n generates Poisson processes with

mean rates A p; , respectively. P:
These two properties are used to study A P2
the traffic in the networks. \pi
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Compound Arrival Processes:
Continuous and Discrete Time

message arrival message arrival
Messages have iid lengths from packets
packets message to message
: slot|slotslot| slot|slot
! sttt i o
> >
Continuous-time compound Discrete-time compound
arrival process arrival process

In the continuous-time case, all the packets of a message arrive together
at the same instant; this is well suited to model the arrival of packets at a
queue in a host (operating system).

In the discrete-time case, the packets of a message arrive in the same
slot; this is well suited to model the transmission messages to a remote
node in a store-and-forward network.

In both cases we have a packet-based traffic model.
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Traffic Engineering
and Definition of
Traffic Intensity
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Traffic Engineering: a
Definition

Traffic engineering encompasses the application of scientific
principles and technology to the measurement, modelling,
characterisation, and control of multi-media multi-class traffic
and the application of such knowledge and techniques to achieve
specific performance objectives, including the planning of network
capacity under QoS guarantee, and the efficient, reliable transfer of
information.

The major objective of traffic engineering is to improve network
performance while maintaining the QoS requirements through the
optimisation of network resources.

The need to allocate and balance resources among different traffic
classes to achieve the best use of network resources is a crucial traffic
engineering problem.

Memorandum of Understanding, COST Action 290 “Traffic and QOS Management in
Wireless Multimedia Networks: WI-QOST”, 2004.
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Traffic Generated by Sources

Traffic is generated by a source, that is an application
running on a host.

The traffic generated by a source can be seen as a bit-rate as a
function of time according to a stochastic process R(t). This is a
fluid-flow model. We can therefore determine the mean, the
variance, and, in general, the distribution of the bit-rate.

- _ Alternative traffic models
bit/s R(t), bit-rate curve could be packet-based (not
fluid-flow).

Arrival curve (t) = j R(r)dz Time, t

0
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Traffic Characterization:
Parameters

Different flows (generated by different
applications) have distinct traffic patterns.

A given traffic pattern can be described using several
traffic parameters (the only average rate is not enough):

Peak rate: maximum rate in any time interval

Average rate: long-term average

Burst size: duration of traffic peaks.
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Traffic Parameters,
lllustrated

An example of the traffic bit-rate graph (fluid-flow) as a function of
time:

peak bit-rate

bit/s
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Traffic Patterns, an Example

All traffic flows below have the same average bit-rate (10 kbit/s), but
different maximum bit-rates and burst sizes.

10 kbit/s
Constant-rate R
traffic - time
50 kbitis
100 kbit/s
Impulsive
(bursty)
traffic

»
»

The burstiness of a traffic flow (3 is defined as the ratio of the peak bit-
rate and the mean bit-rate. In the previous examples, burstiness B is 1, 5
and 10.
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Traffic Intensity: Erlang

Traffic intensity is a basic parameter in traffic
engineering. It represents a fundamental
characteristic of a traffic flow when it arrives at a

suitable service facility.

Let A denote the mean arrival rate of the traffic (packets or calls
per second).

Let E[X] denote the mean service duration (e.g., transmission
time) of each service request (packet or call).

Then, the traffic intensity p is obtained as p = AE[X] and it
is measured in Erlangs (even if p is dimensionless).

p denotes the percentage of time the service facility is busy
in serving this traffic.

The Danish engineer Agner Krarup Erlang was a pioneer of the queuing theory.
A. K. Erlang, “Solutions of Some Problems in the Theory of Probabilities of Significance
in Automatic Telephone Exchanges”, Post Office Electrical Engineers Journal, Vol. 10, 1917.
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We refer here to a packet—based\
traffic for the definition of the
trafﬁc intensity even if the

characteristic of a traf /a
suitable service facility.

Let A denote the mean arrival rate of the traffic (packets or calls
per second).

Let E[X] denote the mean service duration (e.g., transmission
time) of each service request (packet or call).

Then, the traffic intensity p is obtained as p = AE[X] and it
is measured in Erlangs (even if p is dimensionless).

p denotes the percentage of time the service facility is busy
in serving this traffic.
The Danish engineer Agner Krarup Erlang was a pioneer of the queuing theory.

A. K. Erlang, “Solutions of Some Problems in the Theory of Probabilities of Significance
in Automatic Telephone Exchanges”, Post Office Electrical Engineers Journal, Vol. 10, 1917.
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Types of Applications

Classical data applications are “elastic” and
tolerate delays and losses and can adapt to
congestion.

“Real-time” applications may be “inelastic”.
The terms “elastic” or “inelastic” have to

be intended in relation to the bit-rate
constraints of the application.

© 2013 Queuing Theory and Telecommunications: Networks and Applications — All rights reserved



Different Characteristics for
Traffic Flows

Bursty traffic (elastic traffic) creates difficulties for the network
since it entails a low utilization of network resources for long times,
but suddenly causes congestion in network buffers. This type of
traffic (data traffic, non-real-time) is sensitive to packet losses.
TCP-based traffic (e.qg., HTTP, FTP) can be bursty.

p>>1

Constant bit-rate traffic (inelastic traffic) is typical of real-
time, time-critical applications and needs high priority to be
managed with low delays in network buffers. This type of traffic is
less sensitive to packet losses depending on the robustness of the
application codec. Voice/audio (MP3) and video (H.264) can be
represented by constant bit-rate traffic.

B=1
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What is Quality of Service?

In the field of telephony, quality of service was
defined by ITU-T in Recommendation E.800
(1994 and subsequent revisions).

E. 800 defines QoS as “collective effect of service
performance which determines the degree of satisfaction of
a user of the service”.

QoS has today a very broad scope from PHY
layer issues to application level ones.

QoS entails the ability to provide different priority
levels to different applications, users, or data flows,
or to guarantee a certain level of performance to
a data flow (e.qg., a required throughput, mean
delay, etc.).

ITU-T, "E.800: Definitions of terms related to quality of service", last revision
on September 2008 (http://www.itu.int/rec/T-REC-E.800-200809-1/en).
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Some QoS Metrics

Main QoS metrics are:
Mean delay [s] to cross a node or to cross a whole network
Packet loss rate [%] at IP or MAC layers
Blocking probability [%] at PHY or MAC layer

Jitter (delay variation)

With streaming (video and audio) traffic, a de-jittering buffer is heeded on
the receiver side to compensate for delay variations due to jitter.

Further details on QoS parameters and approaches are provided in Lesson No.
14 when dealing with QoS support in the Internet (IP networks).
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Traffic Source Types,
Requirements, Models

QoS
Characteristics | Requirements Traffic Model

* Alternating talk-

spurts and silence * Two-state (on-off) Markov
pur ! Delay < ~150 ms ( )

. intervals. _ Modulated Rate Process (MMRP)
Voice Jitter < ~30 ms . L L
* Talk-spurts produce * Exponentially distributed time in
Packet loss < ~1%
constant packet-rate each state
traffic

* Highly bursty traffic

Delay < ~ 400
(when encoded) eay ms

K-state (on-off) Markov Modulated

Video * Long range Jitter < ~ 30 ms Rate Process (MMRP)
. Packet loss < ~1%
dependencies
Interactive | * Poisson type Zero or near-zero
FTP, * Sometimes batch- packet loss Poisson, Poisson with batch arrivals,
Telnet, arrivals, or bursty, _Delay may be Two-state MMRP
Web (HTTP) or sometimes on-off Important

For more details, see Lesspn
No. 17.
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QoS-Enforcing Approaches

QoS can be achieved by:

Resource reservation (e.g., integrated services in IP
networks, as shown in Lesson No. 14)

Prioritization (e.g., differentiated services in IP networks, as
shown in Lesson No. 14)

QoS can be applied:
Per flow: individual, unidirectional streams

Per aggregate: two or more flows belonging to the same
traffic class have common QoS management and share
resources.
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Differentiated QoS Levels for
the Applications

In ITU-T Recommendation G.1010, applications have been classified in
8 groups according to error tolerance and delay requirements.

3 Error Conversational Voicel/video Streaming audio Fax
= tolerant | voice and video messaging and video
=
w0
C
)
wn
| -
e Transactions
*— Command/controll (eg E-commerce, Messaging,
L Error (eg i ging Background
intoleran (eg Telnet, WWW browsing, Downloads e Eial aoival
interactive games Email access) | (eg FTP, stillimage) g
Interactive Responsive Timely Non-critical
(delay <<1 sec) (delay ~2 sec) (delay ~10 sec) (delay >>10 sec)
v Time criticality
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ITU-T Y.1541

As far as the traffic classification is concerned, we may
refer to the categorization in ITU-T Y.1541 (“Network
Performance Objectives for IP-Based Services”), which
defines 8 QoS traffic classes at IP layer (even if in
what follows we consider only 6 QoS traffic classes).

With Y.1541, traffic classes refer to
Application layer characteristics,

Connectivity requirements (queuing mechanisms at nodes and
routing types),

Mean delay, loss percentage, and delay jitter (delay
variation) tolerance.
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ITU-T Y.1541 Traffic Classes

IP layer
classification
o : Network
QoS class Applications Node mechanism :
A techniques
0 Real-time, jitter sensitive, high Constrained routing
interaction (VoIP) ) _ - and distance
> Separate queue with preferential servicing, :
O Real-time, jitter sensitive, traffic grooming LSS CETRIENTE
C 1 . 4 routing and
()] interaction (\VoIP) i
o distances
| -
5 : :
- 2 Data transfer, high interaction Constraln_ed routing
3 and distance
CCD Separate queue, drop priority Less constrained
e 3 Data transfer, interaction routing and
aB distances
Error non sensitive (bulk data,
4 video Long queue, drop priority Any route/path
streaming)
Any route/path
5 Traditional IP-based Separate queue (lowest
applications priority)
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ITU-T Y.1541 Requirements

Network
parameter

Condition

QoS Classes

Class 0

Class 1

Class 2

Class 3

Class 4

Class 5

IPTD
(1P Packet
Transfer
Delay)

Less than

100 ms

400 ms

100 ms

400 ms

1s

Unspecified

IPDV
(IP Packet
Delay
Variation)

Less than

50 ms

50 ms

Unspecified

Unspecified

Unspecified

Unspecified

IPLR
(IP Packet
Loss Ratio)

Less than

1x10°3

1x10°3

1x10°3

1x10°3

1x10°3

Unspecified

IPER
(IP Packet
Error Ratio)

Less than

1x104

Unspecified

GEO satellite networks cannot guarantee the requested QoS levels to
Class 0 and 1 services due to the high latency.
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QoS Support Techniques

QoS support requires the adoption of coherent solutions at
the different layers of the OSI protocol stack.

PHY: Selection of appropriate modulation and coding level to
guarantee a certain Bit Error-Rate (BER) at the receiver.

MAC: Call Admission Control (CAC), traffic-class-based queuing, traffic
shaping/policing, scheduling, prioritization.

Network: DiffServ (or IntServ), IP traffic routing, Explicit Congestion
Notification (ECN), IP buffer management techniques (e.g., RED).

Transport: Network layer buffer size selection, TCP acceleration
techniques (e.g., use of proxies).

Application: Codec selection.
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QoS versus QoE

QoS is ensuring that network elements apply consistent
treatments to traffic flows as they traverse the network.

Quality of Experience (QoOE) is subjective and relates
to the QoS actually perceived by a user. This applies to
voice, multimedia, and data.

ITU-T Recommendation P.10/G.100, defines QoE as “the
overall acceptability of an application or service, as perceived
subjectively by the end-user”.

QoE includes complete end-to-end system effects (client,
terminal, network, and service infrastructure).

Overall acceptability may be influenced by user expectations and
context.
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QoS versus Efficiency

System efficiency and QoS support are essential
requirements, but they can represent conflicting
needs.

System efficiency is an important requirement for network
operators to provide services at competitive costs.

QoS support is mandatory for end users who do not care about
resource utilization, but expect a good service level.
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QoS vs. Efficiency: Cross-
Layer Air Interface Design

Cross-layer air interface design is
a novel approach that modifies
the classical ISO/OSI protocol
stack to achieve an efficient use
of resources with QoS support. — 5 X-SAP

Signaling and protocol send
coordination is achieved also gpp
between non-adjacent layers
through new X-SAPs.

G. Giambene, S. Kota, "Cross-layer Protocol Optimization for Satellite Communications Networks: A Survey",
International Journal of Satellite Communications and Networking, Vol. 24, pp. 323-341, September-October 2006.

G. Giambene (Editor). Resource Management in Satellite Networks: Optimization and Cross-Layer Design. Springer,
2007, ISBN 978-0-387-36897-9, New York, NY

ETSI TR 102 676 (“Satellite Earth Stations and Systems (SES); Broadband Satellite Multimedia (BSM); Performance
Enhancing Proxies (PEPs)”, 2009.

ITU-R "Cross-layer QoS Provisioning in IP-based Hybrid Satellite-Terrestrial Networks", Document 4B/196, Question
ITU-R 287/4, 22 September 2011.
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Thank you!
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