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48
The series for cosx is

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ ...

If we wish to compute the value of the cosine function at x = 1 (i.e. 1 radian = 57.3 degrees)
then

cos1 = 1− 1

2!
+

1

4!
− 1

6!
+ ...

= 1−0.5+0.0417−0.0014+ ...

If we take n = 2 as a first approximation then

cos1 = 1−0.5+R2(1) = 0.5+R2(1)

Now we evaluate the error.
Since the general form of the remainder is

Rn(x) =
f (n+1)(ξ)
(n+1)!

xn+1

it follows that with n = 2 we have

R2(1) = ................

-------------------� 49
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8.1 Expansion of a Function in a Power Series

Objective: Concepts of power series, factorials, Maclaurin’s series, Taylor’s series, interval
of convergence.

READ: 8.1 Introduction
8.2 Expansion of a function in a power series
8.3 Interval of convergence of power series

Textbook pages 229–235
-------------------� 3

49R2(1) =
f (3)(�)

3!
=

sin�

6
, 0 < � < 1

We do not know the exact value of ξ, but we can be certain that the error will not exceed the value of
R2(1) with ξ = 1, since the sine function is monotonically increasing in the interval (0, 1).

Hence the error will not be greater than

|R2(1)| =
∣∣∣∣sin�

6

∣∣∣∣ =
∣∣∣∣ sin(1)

6

∣∣∣∣ =
0.842

6
≈ 0.14

Our approximation gave cos 1 = 0.5
The exact value is 0.5403
What is the actual error E?

E = . . . . . . . . . . . . . . . .
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Name at least three concepts which were newly introduced in this section:

(1) . . . . . . . . . . . . . . . . . .
(2) . . . . . . . . . . . . . . . . . .
(3) . . . . . . . . . . . . . . . . . .

-------------------� 4

50E = 0.5403−0.5 = 0.0403

Note: This is less than 0.14, which we predicted as the largest possible value.

The approximation for cos 1 can be improved if we take n = 4.

cosx ≈ 1− x2

2!
+

x4

4!

cos1 ≈ 1− 1

2!
+

1

4!
= 1−0.5+0.0417= 0.5417

What is the actual error E now?
E = . . . . . . . . . . . . .
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(1) Power series
(2) Maclaurin’s series
(3) Interval of convergence

Give three reasons for expanding a function in a power series:

(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-------------------� 5

51E = 0.5403−0.5417 = −0.0014

Note: The error is estimated to be less than

|R4(1)| =
∣∣∣∣∣f (5)(�)

5!

∣∣∣∣∣ =
∣∣∣∣− sin(�)

120

∣∣∣∣ ≤ 0.842

120
≈ 0.0070
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(1) The first terms of a power series are often suitable for obtaining an approximate value of

the function.
(2) Power series can be differentiated and integrated term by term.
(3) We can use power series to calculate the values of many functions.

The expression n! is read as . . . . . . . . . . . . . . . . . .
The expression n! means . . . . . . . . . . . . . . . . . .

-------------------� 6

52
Some remarks on human memory will follow. Do you want to skip them?.

-------------------� 57

During an oral exam the examiner asks a student:

Explain to me the relationship between differentiation and integration and write down the symbol
for the indefinite integral.

The student hesitates, and hesitates . . .
Finally the examiner states, ‘Integration is the inverse operation to differentiation. The general so-

lution of the integration is the indefinite integral. Here are two alternatives. How should it be written?’

A
∫

f (x)dx = F (x)

B
∫

f (x)dx = F (x)+C

The student replies: ‘Yes, solution B is the correct one. I understood that well at the time.’ To this the
examiner says: ‘But you didn’t know when I asked you just now.’
Who is right?
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factorial n

n! = 1×2×3× . . .× (n−1)n

Work out the following, simplifying where possible:

5! = . . . . . . . . . . . . . . .

7!
5!

= . . . . . . . . . . . . . . .

(n+1)!
n!

= . . . . . . . . . . . . . . .

9!
11!

= . . . . . . . . . . . . . . .

-------------------� 7

53
Both are right; things are a bit more complicated.

The student had understood the matter at the time of studying it. He quickly recognised the
correct solution again.

The examiner emphasised, and rightly so, that the question wasn’t answered without considerable
help. The student was neither in a position to describe the relationship nor to write down the symbol
actively.

Conclusion:

Recognition is easier than reproduction. But reproduction and application are the objectives of our
learning.

Anyone who believes that, a year from now, he will be able to reproduce everything he now under-
stands, is greatly mistaken.

-------------------� 54
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75! =120

7!
5!

=
1×2×3×4×5×6×7

1×2×3×4×5
= 6×7 = 42

(n+1)!
n!

=
1×2×3× . . .×n× (n+1)

1×2×3× . . .×n
= n+1

9!
11!

=
1×2×3× ..×9

1×2×3× . . .×10×11
=

1

110

You can sometimes simplify an expression involving factorials by cancelling factors common to both
numerator and denominator.

Did you make some mistakes?
Yes

-------------------� 8

No
-------------------� 11

54
In an experiment A. Miles (1960) gave 60 people 10 syllables each to learn. This learning
material was studied three times in succession. At two different intervals each person was
examined according to two different methods.

(1) Unaided recall: number of syllables reproduced without aid.
(2) Recognition: number of learned syllables which could be recognised from an extensive list.

They were tested immediately after this learning period and then 1 hour, 6 hours, 1 day, 4 days and 14
days later.

The diagram shows the results
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The symbol n! (read as factorial n) is an abbreviation for the product of the first n natural
numbers

n! = 1×2×3× . . .×n

What is (n−2)!?
(n−2)! = . . . . . . . . . . . . . .

-------------------� 9

55
Similar dependencies are also found in the case of meaningful subject matter. Free reproduc-
tion is more difficult than recognition.

In exam situations facts concerning specific questions must be actively reproduced. Inci-
dentally, this also goes for a large number of situations in which learned material has to be applied. As
in the experiment with meaningless syllables, with meaningful subject matter too the difference be-
tween the skill shown in unaided recall and that shown in recognition is still great. Here there exists the
possibility that we subjectively deceive ourselves: we often mistake those facts that we once studied,
but thereafter only recognise, for facts which have been well memorised.

This is often self-deception.
-------------------� 56
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9(n−2)! = 1×2×3× . . .× (n−3)(n−2)

Here are some more examples for you! Remember to simplify if you can.

(1)
n!

(n−2)!
= . . . . . . . . . . . . . . . . . . . . .

(2)
3!5!
6!

= . . . . . . . . . . . . . . . . . . . . .

(3)
100!
101!

= . . . . . . . . . . . . . . . . . . . . .

-------------------� 10

56
Let us assume that, through intensive reading, you have understood a fact. That is to say that
the terms can be actively reproduced and the operations which were learned can be carried
out. A well-known safeguard against forgetting things is revision — a process you are now
familiar with. At the end of every work section it is recommended that you go over the contents again
and try to write down all the keywords from memory before you stop for a break.

The second phase of revision is to check, after an interval of perhaps a week, whether you can
actively reproduce the most important contents of the previous lesson.

If you have difficulty here it is important that you repeat the lesson once more.
In order not to forget this, put a slip of paper into the textbook saying ‘Lesson must be repeated’.

-------------------� 57

Chapter 8 Taylor Series and Power Series

9



10(1)
n!

(n−2)!
=

1×2×3× . . .× (n−2)(n−1)n
1×2×3× . . .× (n−2)

= (n−1)n

(2)
3!5!
6!

=
1×2×3×1×2×3×4×5

1×2×3×4×5×6
=

1×2×3

6
= 1

(3)
100!
101!

=
1×2×3× . . .×100

1×2×3× . . .×100×101
=

1

101

In case of difficulties consult the textbook.
-------------------� 11

57
8.3 Expansion of a Function f (x) at an Arbitrary Position. Applications
of Series. Approximations

Objective: Evaluation of the first terms of a Taylor’s series at x0 �= 0, application of series.

READ: 8.5 Expansion of a function f (x) at an arbitrary position
8.6 Applications of series
8.6.1 Polynomials as approximations

Textbook pages 237–241
-------------------� 58
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Write down the general form of Maclaurin’s series for a function f (x). You may have to look
at the textbook again. If you do, don’t just look at it, write it down! This will help you to fix
it in your mind.

f (x)= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-------------------� 12

58
Having read the relevant section in the textbook write down the formula for Taylor’s series:

f (x) = . . . . . . . . . . . . .

-------------------� 59
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12f (x) = f (0)+f ′(0)
x

1!
+f ′′(0)

x2

2!
+f ′′′(0)

x3

3!
+ . . .

Use the series to expand cosx up to the term n = 4 in accordance with the steps below.

Step 1: Obtain derivatives f ′,f ′′,f ′′′,f (4).
Step 2: Calculate the values of the function and its derivatives at x = 0.
Step 3: Substitute the values of f (0), f ′(0), . . . ,f (4)(0) in Maclaurin’s series.

cosx ≈ . . . . . . . . . . . . .

-------------------� 13

59f (x) = f (x0)+f ′(x −x0)+
f ′′(x0)

2!
(x−x0)2 + . . .+

f (n)(x0)
n!

(x−x0)n + . . .

Suppose you needed to calculate sin 47◦ and you did not have tables or a scientific calculator at hand.
You must expand the sine function at an appropriate position.

Which ˛ (or x0) will be suitable?

˛0 = . . . . . . . . . . . . .
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13cosx ≈ 1− x2

2!
+

x4

4!

Correct
-------------------� 15

Wrong, further explanation required
-------------------� 14

60
˛0 = 45◦, i.e. x0 = �

4 , is a good choice because sin 45◦ is known from a simple triangle,
i.e. sin 45◦ = 1√

2
, and the values of the derivatives are known too. The differences (˛ −˛0),

or (x−x0), will be small.

What steps are needed to obtain the first four terms of the expansion?

Step 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-------------------� 61
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To express cos x in a power series according to Maclaurin’s expansion we have to proceed as
follows:

Step 1: Obtain the derivatives f (x) = cos x

f ′(x) = −sin x

f ′′(x) = −cos x

f ′′′(x) = sin x

f (4)(x) = cos x

Step 2: Obtain the values of the derivatives at x = 0

f (0) = 1

f ′(0) = 0

f ′′(0) = −1

f ′′′(0) = 0

f (4)(0) = 1

Step 3: Substitute the values of f ′(0), . . . ,f (4)(0) in Maclaurin’s series

f (x) ≈ f (0)+f ′(0)
x

1!
+f ′′(0)

x2

2!
+f ′′′(0)+

x3

3!
+f (4)(0)

x4

4!
+ . . .

cos x ≈ 1− 1

2!
x2 +

1

4!
x4

-------------------� 15

61
Step 1: Obtain the derivatives f ′(x),f ′′(x),f ′′′(x), etc. . .
Step 2: Calculate the values of the function and its derivatives at x = x0.
Step 3: Substitute the values f ′(x0),f ′′(x0), etc. in the Taylor’s series.

Now proceed to compute the first four terms of the expansion for sin 47◦. Remember that you must

express the angles in radians: x = ˛
�

180

sin 47◦ = . . . . . . . . .

-------------------� 62
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Use Maclaurin’s series to expand f (x) = 1

(1+x)2 up to the third term, i.e. n = 3.

What steps should you follow?

Step 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step 3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-------------------� 16

62
sin47◦ ≈ 1√

2
+

1√
2

(
2

�

180

)
− 1

2
√

2

(
2

�

180

)2 − 1

6
√

2

(
2

�

180

)3
up to n = 3

Correct
-------------------� 64

Error; detailed solution required
-------------------� 63
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Step 1: Obtain the derivatives f ′(x),f ′′(x),f ′′′((x)).
Step 2: Obtain the values of the function and its derivatives at x = 0.
Step 3: Substitute these values in Maclaurin’s series.

f (x) ≈
n=3

∑
n=0

f (n)(0)
n!

xn

Now execute the steps

f (x) =
1

(1+x)2

Step 1:

f ′(x) = . . . . . . . . . . . . .

f ′′(x) = . . . . . . . . . . . . .

f ′′′(x) = . . . . . . . . . . . . .

-------------------� 17

63
Here is the solution in detail.

Step 1: The derivatives are

f (x) = sin x f ′′(x) = −sin x

f ′(x) = cos x f ′′′(x) = −cos x

Step 2: The values of the function and its derivatives at x0 = 45
�

180

f (x0) =
1√
2

f ′′(x0) =
−1√

2

f ′(x0) =
1√
2

f ′′′(x0) =
−1√

2

Step 3: Substitute these values in Taylor’s series:

f (x) = f (x0)+f ′(x0)(x −x0)+
f ′′(x0)

2!
(x−x0)2 +

f ′′′(x0)
3!

(x−x0)3 + . . .

sin47◦ ≈ 1√
2

+
1√
2

(
2

�

180

)
− 1

2
√

2

(
2

�

180

)2 − 1

6
√

2

(
2

�

180

)3
up to n = 3

-------------------� 64
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17f ′(x) =
−2

(1+x)3

f ′′(x) =
6

(1+x)4

f ′′′(x) =
−24

(1+x)5

Correct
-------------------� 23

Wrong
-------------------� 18

64
We assume you have a simple (non-scientific) calculator. Calculate, as an approximation,

the value of sin 47◦ to five decimal places taking (a) the first two terms of the expansion and
(b) the first three terms of the expansion.

What are the errors in each case, knowing that the exact value (to five decimal places) of sin 47◦ =
0.73135?

(a) sin 47◦ = . . . . . . . . . . . . . error = . . . . . . . . . . . . .
(b) sin 47◦ = . . . . . . . . . . . . . error = . . . . . . . . . . . . .

-------------------� 65
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Where did you go wrong? We must try to analyse your error, but we can only do this if we
know the reason for your difficulties.

Never let errors rest; they have to be eliminated, because they cannot go away by them-
selves!

Even errors due to carelessness should not be allowed to increase.

Error found
-------------------� 23

Explanation of calculation
-------------------� 19

65
(a) 0.73179 error 0.00044
(b) 0.73136 error 0.00001

Now we give an example which is of special interest to mechanical engineers; other readers may skip
it and go to

-------------------� 76

The figure shows the slider crank mechanism as used in the
petrol and diesel engine as well as in reciprocating pumps and
compressors. There are hundreds of millions of such mecha-
nisms throughout the world. As it is a very important device
we propose to examine its kinematics.
Using simple geometry express the displacement x of the

slider (or piston) as a function of R, L, the crank angle θ and the connecting rod angle φ, as shown.

x = . . . . . . . . . . . . . . . . . . .

-------------------� 66
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19Your error may have occurred during differentiation of f (x) =
1

(1+x)2

To differentiate this function we can use the quotient rule (look it up again if you have
forgotten it), or we can write the function as f (x) = (1 + x)−2 and use the function of a
function rule. The latter form is much easier to apply in this instance.

f (x) = (1+x)−2 = u−2; u = 1+x

f ′(x) =
df

du
× du

dx
= −2u−3 ×1 = −2u−3

= −2(1+x)−3 =
−2

(1+x)3

Similarly f ′′(x) = +6(1+x)−4 =
6

(1+x)4

and f ′′′(x) = −24(1+x)−5 = − 24

(1+x)5

-------------------� 20

66x = R cos θ+L cos ϕ

It is more convenient in practice to express x as a function of R, L and θ only. Eliminate ϕ and obtain

x = . . . . . . . . . . . . .

Solution
-------------------� 68

Hints and explanation
-------------------� 67
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If you used the quotient rule you should have obtained the same result.

f ′(x) =
0× (1+x)2−2× (1+x)

(1+x)4
=

−2

(1+x)3

f ′′(x) =
0× (1+x)3− (−2)×3× (1+x)2

(1+x)6
=

6

(1+x)4

f ′′′(x) =
0× (1+x)4−6×4× (1+x)3

(1+x)8
=

−24

(1+x)5

The differentiation is clear
-------------------� 24

Still having difficulties in differentiating
-------------------� 21

67
Given: x = R cos θ+L cos ϕ

To eliminate ϕ use the fact that
L sin ϕ = R sin θ.
Remembering that
cos2 ϕ+ sin2 ϕ = 1, thus
we have

cosφ =
√

1− sin2φ

=

√
1−

(
R

L

)2

sin2 θ

Hence

x = R cos θ+L cos ϕ = ......................

-------------------� 68
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The nth term in Maclaurin’s series is

an =
f (n)(0)

n!

f (n)(0) is the value of the nth derivative of the function at x = 0.
Hence to obtain the series for f (x) we need the higher derivatives

f ′(x),f ′′(x), . . .,f (n)(x).

Since you are experiencing difficulties with the process of differentiating you should interrupt this
section of the work for the time being.

Read section 5.6 in the textbook to revise the concept of higher derivatives, and read again the
section regarding the quotient rule and the derivative of a function of a function (chain rule).

-------------------� 22

68x = R cos θ+L

√
1−

(
R

L

)2

sin2 θ

If your result does not agree with the one above go back to
-------------------� 67

The ratio
R

L
is small, usually about

1

3
or

1

4
.

Use the binomial expansion to obtain an approximate value for the square root term. (The first three
terms will be sufficient.) Then complete the expression for the displacement x of the slider.

x = R cos θ+L . . . . . . . . . . . . .

Solution
-------------------� 70

Hints and further explanations

-------------------� 69
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The function in our case is a quotient; to differentiate it we can, on the one hand, apply the
quotient rule. On the other hand, since the function can be written

f (x) = (1+x)−2 = u−2

we can also use the function of a function rule.
You need some practice in differentiating! Try to apply both rules to obtain the first four derivatives

of the function

f (x) =
1

(1+x)2

f ′(x) = . . . . . . . . . . . . . . . . . . .
f ′′(x) = . . . . . . . . . . . . . . . . . . .
f ′′′(x) = . . . . . . . . . . . . . . . . . . .
f (4)(x) = . . . . . . . . . . . . . . . . . . .

-------------------� 23

69We are asked to evaluate the first three terms of the binomial expansion of

√
1−

(
R

L

)2

sin2 θ

Step 1: The first three terms of the binomial expansion are

(1+x)n = 1+nx +
n(n−1)

2!
x2

Step 2:

√
1−

(
R

L

)2

sin2 θ =

(
1−

(
R

L

)2

sin2 θ

)1/2

hence n =
1

2
, x = −

(
R

L

)2

sin2 θ

Step 3: Substitute in the binomial expansion and obtain(
1−

(
R

L

)2

sin2 θ

)1/2

= 1− 1

2

(
R

L

)2

sin2 θ+
1
2 (−1

2 )
2

(
R

L

)4

sin4 θ

Step 4: The complete expression for the displacement x of the slider is

x = R cos θ+L
(
. . . . . . . . . . . . . . . . . . . . .

)
-------------------� 70
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23f ′(x) =
−2

(1+x)3

f ′′(x) =
6

(1+x)4

f ′′′(x) =
−24

(1+x)5

f (4)(x) =
120

(1+x)6

In case of further difficulties you should revise the calculation of derivatives using the study guide for
chapter 5.

-------------------� 24

70x = Rcosθ+L

(
1− 1

2

(
R

L

)2

sin2 θ− 1

8

(
R

L

)4

sin4 θ...

)

If your result is wrong
-------------------� 69

Note: in practice only the first two terms of the expansion are significant, except for very high perfor-
mance engines.

Use the first two terms of the expansion to obtain an expression for the acceleration ẍ of the slider.
Notation: ẍ = d2x/dt2 where t is the time. Remember that θ is also a function of time but θ̇ is

supposed to be constant.
ẍ = ................................

Solution found
-------------------� 73

Hints and detailed solution
-------------------� 71
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24The first three derivatives of the function f (x) =
1

(1+x)2
are

f ′(x) =
−2

(1+x)3
, f ′′(x) =

6

(1+x)4
, f ′′′(x) =

−24

(1+x)5

Thus step 1 is completed.

Step 2: Substituting x = 0 in each yields

f (0) = 1; f ′(0) = −2; f ′′(0) = 6; f ′′′(0) = −24

Step 3: Inserting these values in Maclaurin’s expansion we find

1

(1+x)2
≈ ................................................................................

-------------------� 25
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With the first two terms of the expansion we have

x = Rcosθ+L− L

2

(
R

L

)2

sin2 θ

We differentiate x twice to obtain the acceleration.

Obtain ẋ =
dx

dt
first, remembering that

d
dt

sin2 θ =
(

d
d�

sin2 θ
)

dθ
dt

(function of a function rule):

ẋ = ............................

-------------------� 72
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1

(1+x)2
≈ 1−2x+

6

2!
x2 − 24

3!
x3 up to n = 3

≈ 1−2x+3x2 −4x3

Note: In many cases it is sufficient to determine the first three or four terms of Maclaurin’s series in
order to infer the form of the complete series. In our case we will have

1

(1+x)2
= 1−2x+3x2 −4x3 +5x4−6x5 +7x6 − . . .

-------------------� 26

72ẋ = −Rθ̇
(

sinθ
R

2L
sin2θ

)
A detailed explanation of this differentiation is given below. Skip it if you obtained this result.

We require
dx

dt
=

dx

dθ
dθ
dt

Now dx

dθ
= −R sinθ+0− L

2

(
R

L

)2 d
dθ

(sin2 θ)

but d
dθ

(sin2 θ) = 2sinθcosθ = sin2θ

therefore ẋ = −Rθ̇
(

sinθ+
R

2L
sin2θ

)

Now differentiate once more, remembering that

dθ̇
dt

= θ̈ = 0

ẍ = .......................................

-------------------� 73
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Consider the series

1

1−x
= 1+x +x2 +x3 + . . .

If we replace x by −x we find

1

1− (−x)
= 1+(−x)+ (−x)2 +(−x)3 + . . .

Thus we find the series for
1

1+x
= 1−x +x2 −x3 + . . .

Now consider the power series for ex .

ex = 1+x +
x2

2!
+

x3

3!
+ . . . =

∞

∑
n=0

xn

n!

Obtain the series for e−x

e−x = .........................................................................................................................................

-------------------� 27

73ẍ =
dẋ

dt
=

dẋ

dθ
dθ
dt

= −Rθ̇
(

cosθ+
R

L
cos2θ

)
θ̇

= −Rθ̇2
(

cosθ+
R

L
cos2θ

)

In case of difficulties go through the explanation again, beginning with frame 68.

-------------------� 74
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27e−x = 1−x +
x2

2!
− x3

3!
+

x4

4!
− ... =

∞

∑
n=0

(−1)n xn

n!

Express the function ln (1 + x) as a Maclaurin’s series up to n = 3.
What steps should you follow?

Step 1: ........................................................................................................................

Step 2: ........................................................................................................................

Step 3: ........................................................................................................................

-------------------� 28
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With the help of Maclaurin’s and Taylor’s series, as well as the binomial expansion, we can
derive approximate expressions for some functions. This is particularly helpful when dealing
with complicated expressions but we have to ensure that the error involved is kept within
limits which are acceptable in practice, e.g. 1%, 5% or 10%. It depends very much on the nature of the
problem and therefore no general rule can be given.

The table of approximations for typical functions at the end of section 8.6.3 in the textbook contains
the errors for the first and second approximations.

Give the first and second approximations for cos x using this table.

First approximation: cosx ≈........................

Second approximation: cosx ≈........................
-------------------� 75
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Step 1: Obtain the derivatives

f ′(x), f ′′(x), f ′′′(x)
Step 2: Obtain the values of the function and its derivatives at x = 0, i.e.

f (0), f ′(0), f ′′(0), f ′′′(0)
Step 3: Substitute in Maclaurin’s series

f (x) = f (0)+
f ′ (0)

1!
x +

f ′′ (0)
2!

x2 +
f ′′′ (0)

3!
x3 + . . .

Now execute the steps:
Step 1:
f (x) = ln(1+x)
f ′(x) = .........................
f ′′(x) = .........................
f ′′′(x) = .........................

Step 2:
f (0) = ..........................
f ′(0) = ..........................
f ′′(0) = ..........................
f ′′′(0) = ..........................

Step 3:
ln(1+x) ≈ .................

-------------------� 29

75First approximation: cosx ≈ 1− x2

2!

Second approximation: cosx ≈ 1− x2

2!
+

x4

4!

For small angles, i.e. small x, the first approximation for the cosine is

cosx ≈ 1− x2

2!
Let us consider the error made by using this ap-
proximation for x = 0.5 (radians).

cos0.5 = 0.8776(exact value)

P2 (0.5) = 1− 0.52

2
= 0.8750

The difference is cos(0.5) − P2(0.5) = 0.0026

thus the error is smaller than 3%.
Now compute the error, using the same approximation, when x = 0.75 radians.

cos0.75 = 0.7317 E = cos0.75−P2(0.75) = ..........................
-------------------� 76
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f (x) = ln(1+x) f (0) = 0

f ′ (x) =
1

1+x
f ′(0) = 1

f ′′ (x) =
−1

(1+x)2
f ′′(0) = −1

f ′′′ (x)=
2

(1+x)3
f ′′′(0) = 2

ln(1+x) ≈ x− x2

2 + x3

3 − . . .

Correct
-------------------� 34

Errors; explanation required
-------------------� 30

76E = 0.7317−0.7188= 0.0129

The function f (x) =
√

1+x is to be replaced by an approximate expression in the range 0 ≤ x ≤ 0.5
with an error not greater than 1%. Which is the simplest approximation that can be used?

Use the table of approximations for typical functions given in the textbook.
� First approximation

-------------------� 77

� Second approximation
-------------------� 78
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Step 1: The first derivative of the function ln(1+x) can be obtained by the chain rule.

f (x) = ln(1+x) = lng where g = 1+x

then f (x) =
1

g
g′ =

1

1+x
since g′ = 1

The next derivatives are obtained in the same way or by using the quotient rule;

hence f ′′ (x) =
1

(1+x)2
.

f ′′′(x) = ...............................
-------------------� 31

77
Wrong

The first approximation for (1+x)1/ 2 is 1+ 1
2x; it has an error not exceeding 1% in the range

0 ≤ x ≤ 0.32

The second approximation 1+ 1
2x− 1

8x2 has an error not exceeding 1% in the range

0 ≤ x ≤ 0.66

which more than meets the requirement. Hence only the second approximation is acceptable.
Look back at the table of approximations for typical functions in the textbook to check this statement.

-------------------� 78
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31f ′′′ (x) =
2

(1+x)3

Step 2: Obtain the values of the function and its derivatives at x = 0.

f ′(0) = ln(1+0) = 0

f ′ (0) =
1

1+0
= 1

f ′′ (0) = − 1

(1+0)2
= −1

f ′′′ (0) =
2

(1+0)3
= 2

Step 3: Substitute these values in Maclaurin’s series. (In case of difficulties return to the textbook to
check the formula.)

f (x) = ln(1+x) = 0+1×x+
−1

2!
x2 +

2

3!
x3 + ...

= x− x2

2
+

x3

3
− ...

-------------------� 32

78
Correct

Approximations are frequently used to compute particular values of the exponential, logarithmic and
trigonometrical functions when tables or scientific calculators are not available. To illustrate this point
suppose that in a particular problem the value of e0.2 is required, i.e. the value of ex0 where x0 = 0.2:

ex = 1+x +
x2

2!
+

x3

3!
+ . . .

As a first approximation we have

ex0 ≈ 1+x0 = 1+0.2 = 1.2

As a second approximation we have

ex0 ≈ 1+x0 +
x02

2
= .......................................

-------------------� 79
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A quite powerful expansion is the binomial expansion.
You know from the textbook:

(a+x)n = an +nan−1x +
n(n−1)

2!
an−2x2 +

n(n−1)(n−2)
3!

an−3x3 + . . .

The exponent n may be a fraction.
Obtain the following expansions by applying this formula:

(1)
√

1+x = · · · · · · · · · · · · · · ·

(2)
√

1+x2 = · · · · · · · · · · · · · · ·

(3) 1√
1−x3

= · · · · · · · · · · · · · · ·

Solutions found
-------------------� 34

Hints and detailed explanation required
-------------------� 33

79
1.22

Fractions whose denominator does not differ greatly from unity can easily be calculated by means of
an approximation.
Example:

1

0.94
=

1

1−0.06

Using the expansion for
1

1−x
we have

1

1−x
≈ ..............................,

1

1−0.06
≈ ..............................

What is the percentage error E? Use the table!
� E < 1%

� E < 10%
-------------------� 80
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Each one of the given problems can be solved by applying the general form of the binomial
series.

We compare the given problem with the general formula for (a + b)n in order to find the
actual substitutions for a, b and n.

Problem (1):
√

1+x = (1+x)1/ 2 yields a = 1, b = x, n =
1

2

Problem (2):
√

1+x2 = (1+x2)1/ 2 yields a = 1, b = x2, n =
1

2

Problem (3):
1√

1+x
3

= (1+x3)−1/ 2 yields a = 1, b = x3, n = −1

2

Now try again:
√

1+x = ...............................√
1+x2 = ...............................

1√
1+x3

= ...............................

-------------------� 34

80
1

1−x
≈ 1+x;

1

1−0.06
≈ 1.06

E < 1% for all x in the range 0 ≤ x ≤ 0.1

Approximate:
1√
0.6

=
1√

1−0.4
In the table you will find the approximation for the function

1√
1+x

You can use this expansion if you substitute x by −x. Thus

1√
1+(−x)

≈ ................................

-------------------� 81
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34(1)
√

1+x = 1+
1

2
x +

1

2

(
−1

2

)
1

2!
x2 +

1

2
·
(
−1

2

)(
−3

2

)
· 1

3!
x3 + ...

= 1+
x

2
− x2

8
+

x3

16
− ...

(2)
√

1+x2 = 1+
x2

2
− x4

8
+

x6

16
− ...

(3)
1√

1−x3
= 1+

(
−1

2

)
(−x3)+

(
−1

2

)(
−3

2

)
1

2!
(−x3)2

+
(
−1

2

)(
−3

2

)(
−5

2

)
1

3!
(−x3)3 + ...

= 1− x3

2
+

3

8
x6 − 5

16
x9 + ...

Note: By this method many functions can be reduced to a binomial series.

If f (u) = sinu then the general form of this function as a series is

f (u) =
∞

∑
n=0

..............................

sinu = ...........................

-------------------� 35
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1√

1+(−x)
≈ 1+

x

2
+

3

8
x2

Now calculate
1√

1−0.4
= ...........................

� The error is less than 1%

� The error is less than 10%

� The error exceeds 10%

Use the table in the textbook!
-------------------� 82
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35f (u) =
∞

∑
n=0

f (n)(0)un

n!

sin = u− u3

3!
+

u5

5!

A power series (such as Maclaurin’s) does not always converge for all values of the variable. The
interval of convergence can be determined in a way similar to that shown by the examples in the
textbook.

Important series such as the exponential functions ex , e−x and the trigonometric functions sinx,
cosx are convergent for all values of x.

We will now consider the solution of an example on convergence in detail. You may skip it if you
wish.
Example on convergence

-------------------� 36

I will skip it
-------------------� 38

82
1√

1−0.4
=≈ 1.26; truevalue = 1.291

The error is less than 10%, but more than 1%.

Calculate
√

1.4 using an approximation with an error less than 1%.
Solution

-------------------� 84

Hints and detailed solution
-------------------� 83
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Determine the interval of convergence for the following series

ln(1+x) = x− x2

2
+

x3

3
− x4

4
+ . . .± xn

n
. . .

This series converges for all values of x if and only if

x < R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣
Obtain ∣∣∣∣ an

an+1

∣∣∣∣ = ........................ . . .

-------------------� 37
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We wish to compute

√
1.4.

We transform the number under the square root sign in order to obtain an expression which
is included in the table of approximations.

√
1.4 =

√
1+0.4

In the table we find
√

1+x ≈ 1+
x

2
; for x = 0.4 the error exceeds 1%

√
1+x ≈ 1+

x

2
− x2

8
; for x = 0.4 the error exceeds 1%

Now calculate

√
1+0.4 = ...........................

-------------------� 84
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∣∣∣∣ an

an+1

∣∣∣∣ =
n+1

n
= 1+

1

n

Now obtain the radius of convergence

R = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = lim
n→∞

∣∣∣∣1+
1

n

∣∣∣∣ = . . . . . . . . . . . . . . .

The answer is: R = 1

Hence the series for ln(1 + x) will converge for −1 < x < 1. The end points are not included, of
course. (ln(0) is not even defined.)

-------------------� 38

84
√

1+0.4 ≈ 1+
0.4

2
− 0.42

8
= 1.18

Have a break!
You should by now be able to decide for yourself when to have a break and how long it should last.
Furthermore, you should stick to the duration you have fixed for it.

Remember to do something quite different during a break; you must give your brain a rest!
After your break

-------------------� 85
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8.2 APPROXIMATE VALUES OF FUNCTIONS

Objectives: Concepts of approximate polynomials, remainder.

READ: 8.4 Approximate values of functions
Textbook pages 235–237

-------------------� 39

85
INTEGRATION BY MEANS OF SERIES

READ: 8.6.2 Integration of functions when expressed as power series
8.6.3 Expansion in a series by integrating

Textbook pages 242–244
-------------------� 86
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Let the expansion of a function into a power series be broken off after n terms.
What are the names of the two parts of this power series?

f (x)= a0 +a1x +a2x2 + . . .+anxn︸ ︷︷ ︸+an+1xn+1 + ...︸ ︷︷ ︸
................................ ...............................

-------------------� 40
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If an integral cannot be solved by any of the well-known methods, and provided that the series
is convergent, it is useful to expand a function in a series and to integrate the series.

Calculate the value of
∫ 0.53

0

√
1+x3dx = ................................

Solution
-------------------� 89

Hints and further explanation wanted
-------------------� 87
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approximate polynomial Pn(x) of the nth degree
remainder: Rn(x)

We shall now deal with the approximate polynomial.
Given the series

ex = 1+x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ . . .

Write down the first four approximate polynomials:

P1(x) = .............................

P2(x) = .............................

P3(x) = .............................

P4(x) = .............................
-------------------� 41

87To solve
∫ 0.53

0

√
1+x3dx proceed as follows:

We expand the integrand in a series. To do this we can use the binomial expansion which
was derived in section 8.2 of the textbook.
Hence the series for (1+x3)1/ 2 is

(1+x3)1/ 2 = ............................... |x| < 1

Now we integrate term by term∫ x

0
(1+x3)1/ 2dx = ...............................

-------------------� 88
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P1(x) = 1+x

P2(x) = 1+x +
x2

2!

P3(x) = 1+x +
x2

2!
+

x3

3!

P4(x) = 1+x +
x2

2!
+

x3

3!
+

x4

4!

The figure shows the graph of the function

y = ex

Draw on the diagram the first approximation

P1(x) = 1+x

-------------------� 42

88(1+x3)1/ 2 = 1+
1

2
x3 − 1

8
x6 +

1

16
x9 − 5

128
x12 + ... provided |x| < 1∫ x

0
(1+x3)1/ 2dx = x +

x4

8
− x7

56
+

x10

160
− 5x13

1664
+ ... provided |x| < 1

At this stage we introduce the limits for x, i.e. x = 0 and x = 0.53 so that

∫ 0.53

0
(1+x3)1/ 2dx = .....................................

-------------------� 89
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The approximation P1(x) = 1+x is a straight line which is tangential to the curve of y = ex at x = 0.
At x = 0 the slopes of the function and of the polynomial are the same.

The coefficient a1 of the approximate polynomial P1(x) = a0 +a1x = 1+x was chosen to satisfy
the first derivative of the function ex . A better approximation to the function in the neighbourhood of
x = 0 is

P2(x) = 1+x +
x2

2!
The graph of this function is a .................................

-------------------� 43
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∫ 0.53

0
(1+x3)1/ 2dx = 0.53+

0.534

8
− 0.537

56
+ . . . ≈ 0.5398

Calculate the value of the integral

y =
∫ 0.4

0
sinx

√
1+x3dx

to four decimal places.
It cannot be solved by a well-known method. Thus it is useful to express the integrand as a power

series and to integrate term by term:

y =
∫ 0.4

0
sinx

√
1+x3dx = ..........................

Solution found
-------------------� 91

Further explantion wanted
-------------------� 90
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parabola

Draw on the diagram the approximation

P2(x) = 1+x +
x2

2

-------------------� 44
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The integrand is a product. Both factors are series which you have encountered already:

sinx(1+x3)1/ 2 = (x − x3

6
+

x5

120
− . . .︸ ︷︷ ︸)(1+ 1

2x3 − 1
8x6 + . . .︸ ︷︷ ︸)

Series forsinx which Binomial series for

you can look up
√

1+x3 = (1+x3)1/ 2

These series are both convergent for |x| < 1. We now multiply the two series and obtain a new series:

sinx(1+x3)1/ 2 = x− x3

6
+

x4

2
+

x5

120
− ...

We integrate term by term, giving

y =
∫ 0.4

0

(
x − x3

6
+

x4

2
+

x5

120
− ...

)
dx =

[
x2

2
− 1

24
x4 +

1

10
x5 +

1

720
x6 − ...

]0.4

0

=
1

2
(0.4)2 − 1

24
(0.4)4 +

1

10
(0.4)5 +

1

720
(0.4)6 − ...

= .......................................

-------------------� 91
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The parabola is a better approximation to ex . It has the same slope at x = 0 as well as the same
curvature, i.e. the second derivatives of the function and the polynomial are the same at x = 0.
f ′′(0) = ......................... P ′′

2 (0) = .........................
-------------------� 45

91
y = 0.080

We conclude this section by using an integral to obtain the expansion in a series for a given function.
We use an example which has been solved previously in a different way:

Obtain a power series for ln(1+x), knowing that

ln(1+x) =
∫

1

1+x
dx

ln(1+x) = .....................

Solution found
-------------------� 93

Hints and detailed solution
-------------------� 92
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f ′′(0) = e0 = 1, P ′′

2 (x) = 1

The third approximation to ex is given by P3(x) = 1+x +
x2

2
+

x3

6
.

It is a polynomial of the third degree, which is even better than the two previous ones.

The diagram shows the graph of the function

f (x) = ex

with the four approximations

P1(x), P2(x), P3(x) and P4(x).

It demonstrates quite clearly that the higher the
degree of the approximate polynomial the more
closely the approximations fit the graph.

-------------------� 46
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The required series is obtained by expanding the integrand in a series using the binomial
expansion. We have

1

1+x
= (1+x)−1 = 1−x +x2 −x3 −x4 − . . .

Hence

ln(1+x) =
∫ x

0
(1+x)−1dx =

∫ x

0
(1−x +x2 −x3 +x4 − . . .)dx

= ...............................

-------------------� 93
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We cut off the series for ex after n = 4 so that

ex ≈ 1+x +
x2

2!
+

x3

3!
+

x4

4!
There is an error whose value can be estimated by the expression

Rn =
f (n+1)(¸)
(n+1)!

xn+1

It is called ..................

In our case f (x) = ex

R4 = ..................

-------------------� 47

93ln(1+x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− ... provided−1 < x ≤ 1

Finally, a few comments on how to plan your work. In an experiment school children were
presented with a subject to study on their own. The children were divided into two groups.

Experimental group: A work plan was given to the pupils according to which the written
subject matter had to be worked out.

Control group: These pupils were given the material with only general instructions.
Immediately after the lesson, as well as 10 days later, the children were tested to determine to what

extent the subject matter could be reproduced:

Reproduction With plan Without plan

after the lesson 65% 61%

10 days later 46% 26%

-------------------� 94
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The remainder (or Lagrange’s form of the remainder)

R4 =
eξx5

5!
, 0 < ξ < x

You should remember that when you cut off a series after n terms you automatically create an error.
This error can be estimated. It will be as small as you like since you can yourself fix the order of the
approximation in a practical situation.

If you would like to do an example on evaluating the error, one is coming up!
I would rather carry on

-------------------� 52

I would like to do the example
-------------------� 48

94
The children who had learned in accordance with the plan had learned more efficiently. The
results lend themselves to generalisation. Study planning is

(a) situation analysis(how much time is available, what is your own personal capacity?);
(b) analysis of aim (what must be learned, how well must it be learned, which are the priorities and

where do they lie?).
By means of a study plan, which is basically a time schedule and an analysis of objectives, a com-

plex task can be divided up, and priorities can be established.
Such a form of work planning can already be made with the help of a simple pocket calendar.
This study guide aids you to plan and divide up your work. That is why it is so effective. In the

long term, however, you should attempt to take on this job yourself. There are not always study guides
around!

of Chapter 8

Chapter 8 Taylor Series and Power Series

47

Please continue on page 1 
(bottom half)




