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Chapter 5

Anti-vibration mounting system

Coerenza tra Assi-Figure-Equazioni e TODO

1.

10.
11.
12.

quando il movimento avviene lungo 'asse verticale z, e.g. in Fig. (5.1), le =
vanno in z e di conseguenza usare z anche nelle eq; nota: aggiungere in Fig,
nella caption e in (5.0.1), anche F} o(¢)

. la Fig. (5.2) va modficata con un taglio che permette al lato vert di muoversi

lungo x ed aggiungendo z,(t) (oltre ai i, ...)

. Fig. (5.3) e Fig. (5.4) inalterate; la Fig. (5.5) ed il testo che segue vogliono

y — z; nota: ora kzy = mg dopo Fig. (5.6)

tutte le  in section (5.2.3) si salvano mettendo un riferimento esplicito alla
Fig. (5.2); ne segue pero che, in section (5.2.3.2), dobbiamo y — x, Y — x;
nella section (5.2.3.3), per non entrare in conflitto con la X, possiamo dire
che cambiamo leggermente la notazione e lasciamo a secondo membro la y.

. per quanto riguarda la section (5.3), per salvare il testo, ruotiamo Fig. (5.14),

Fig. (5.15), Fig. (5.16) Fig. (5.17)

. per le Fig. (5.20) e Fig. (5.21) # — z; attenzione, ho preparato nuovi schizzi

per essere coerenti con i valori nel nuovo nb, (Chap5-Figh-21- verifica.nb);
anche il grafico nel nb relativo alla Fig. (5.22) va ritoccato

in Fig. (5.24) bisogna cambiare solo y — z nella figura; nella caption atten-
zione, ora ruota intorno a y etc...

Conclusione: a me pare la soluzione meno indolore, ma manca anche il placet
di MD per la rotazione delle figure Fig. (5.14), Fig. (5.15), Fig. (5.16) e
Fig. (5.17)

dire che in questo capitolo usiamo le { }
p195 OK NBB (+2): il rosso, tolto!

pl95 OK NBB In this case... in rosso; togliere!

3
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13.
14.
15.
16.
17.

18.
19.
20.
21.
22.

23.

24.

25.

26.

27.
28.
29.
30.
31.
32.

33.

34.

35.

p195 OK NBB (-4): il rosso; togliere!

p196 nota 3, su frequency content; ora € un lusso; togliere!

p196 nota 4: richiesta NBB; OK, spiegato! discrete

p196 OK NBB, (-2) dopo section (5.1): modificato! e togliere! il rosso

pl197 in Fig. (5.2): manca z,(t); @ invece della barretta; decidere come indicare
il ground, coerente con le altre figure (5.1), (5.3), (5.4), (5.5), (5.14), (5.15),
(5.16), (5.17), (5.20), (5.21)

p197 nota 6, per Hooke NBB nota storica, indicato! rif e tolto! il rosso
p197 OK NBB (-6), The work; togliere! il rosso

pl97 nota NBB (pdp), togliere! perché x,(t) comparira in Fig. (5.2)
p199 nota 7 (pdp) ; GZ, aggiunto!

p201, aggiunto! rif a Puri in nota 8

p201 nota MD e NBB; e ideale: neanche nel vuoto siderale, in quanto trascura
I’attrito intrinseco interno; lasciare inalterato od aggiungere una nota wn ideal
conditions 7

p202 la Fig. (5.6) forse andrebbe meglio metterla insieme a Fig. (5.6), Fig. (5.9),
Fig. (5.10), Fig. (5.11) con un GridArray; in ogni modo sono bruttine; decidere!

p202 modificato! dopo If we recall...

p202 pdp, nota 9 NBB, molto incerto se fare un rimando alle Navier-Stokes;
toglierei!

p202 in Fig. (5.7); 1D - one dimension, decidere!

p204 NBB, migliorare la Fig. (5.8) e rimpolpare?

p204 pdp, modificata la frase con rinvio a (5.2.19)

p205, nota MD e GZ: non ricordo, toglierei!

p206, nota 10 NBB: OK, aggiunti! due esempi (galva e cannon)
p207, nota 11, messi! due rif, ;sceglierne uno?

p208, dubbio! se inserire nb (tipo per Balestra, Marocchi con uso di NonLin-
earFit); vedi Fig. (5.2.59); per esempio delcavendish-v7-21May2012-V804.nb
in E-Balestra oppure cavendish-62.nb in E-Marocchi

p209, OK alle tre note NBB: i rossi, togliere!

p209, qui si ripresenta il problema degli assi indicato in 5 TODO



36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

20.

ol.

02.

93.

o4.

99.

26.

57.

28.

p209, nota 11; messa! una piccola nota ...da migliorare!

p210, dopo (5.2.59), togliere! il marginpar; il nb ¢ quello a pdp Chap5-1-
1DOF...(ma verificare!)

p211, (+2) solito problema degli assi

p211, nota 12, mettere somewhere una definizione di harmonic; sin(wt) e
harmonic?; ma gia prima a p209

p212, per nota MD inserito! un the above ...

p213, modificato! r > /2

p213, solito problema notazione assi in (5.2.3.3)

p215 nel titolo (5.14) k andato! in springs

p216 giusto! il segno in (5.3.4); Meiro p255

p217 ;migliorare? l'impaginazione, troppi bianchi

p218 OK tre NBB, togliere! i rossi

p218, aggiunta appendice R sulle w; jletta e commentata?
p219, modificato! in nota 15 il rif al nb ...4DOF-2m2k-...

p215, p222, p224 e p225, problema dei pedici + tratteggio del ground in
(5.15)e (5.16), (5.17)

p225, ... The following graphs... Check il Check delle figure
p225, rivedere il commento di NBB Invece di radunare...
p226, OK due NBB, togliere! i rossi

p227, la Fig. (5.20) e da rifare come scritto nella caption (vedi mio schizzo a
matita); definire il senso positivo di ; ancora, coerenza tra C.G, in figura e
C,, nel testo

p227, check NBB platform angular mass...

p227, nota 16; si potrebbbe accennare ad latre coppie di coordinate; gz, da
fare

p227, ho girato! (pdp) la frase di NBB; togliere! i rossi
p228, invertito! ks con Iy in (5.3.78)

p228, ho tolto! la nota 19 (inoltre era spostata (7) a p229; abbiamo ga un
rimando alle w
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59.

60.
61.
62.
63.
64.
65.

66.
67.
68.
69.

70.
71.
72.

73.

74.
75.

76.

p229, la Fig. (5.21) ¢ da rifare coerente con il nuovo schizzo; dai conti risulta
che non ¢ coerente con IMGC; check! nuovi conti in Chapb-Figh-21-verifica.nb

p230, ora la nota NBB (a meta p circa) ¢ a posto; tolti! i rossi
p230, dubbio! se mettere il nb della nota 19; check! i nb in nota 21
p231, mancano le caption di Fig. (5.22) e Fig. (5.23); (gz)

p231, controllare! le conclusioni (pdp, -2)

p232, non capisco nota NBB (+3)

p232, la Fig. (5.24) va ritoccata: con grigi diversi, anche per i CG; manca il
vettore PP*; etc... dovrebbe ruotare intorno a y se accettiamo proposta al
punto 7 (rosso)

p232, OK nota NBB (-2), toglere! il rosso
p233, attenzione a R(r) in (5.4.1) vs Rr in (5.4.40)
p233, attenzione a A vs x; vedi anche nota a margine

p234, caption in Fig. (5.25) dopo averla rifinita; cercare modelli in Ward,
credo

p235, OK per NBB (pdp), togliere! i rossi
p236, OK per NBB In the same..., togliere! i rossi

p237, nota in rosso NBB; ¢ un problema di notazione, bisogna decidere tra
a,U, 0, ...; ;perché non lasciamo a 7

p238, nota NBB (+3), ritorna il problema sui tensori; a me pare illuminante
il caso del tensore di Inerzia (vedi section 14 in Brennon)

p238, OK per NBB (-2), togliere! i rossi

p241, e chiaro il collegamento con FEM?; inoltre, verificare! 1’aggancio con
Ansys (vedi Chap3 Ela)

p241 (-1), togliere! i rossi



In the Introduction, the small double arrow in Fig. (?7) indicates that the movement

of the analyzer has to satisfy two conditions. First, the p and 6 angles (pitch w~ss
and yaw, respectively) must be controlled accurately, i.e., the maximum Ap and

Af admissible must be kept within 1 nrad and 1 prad, respectively'. Second,
the parasitic vibrations caused by several sources of mechanical and/or acoustic
noise, must not perturb the signals monitored by the four detectors. It is therefore
mandatory to design an anti-vibration mounting ([?], [?]) to protect the kernel of

the experiment and avoid the corrugations of the x-ray and optical fringes.

To give an idea of a possible assembly forming an anti-vibration mounting, we
show in Fig. (5.1) a simplified model of a two-degree-of-freedom system in which

Figure 5.1: Two-degree of freedom anti-vibration mounting system. The elastic
supports (springs) are characterized by the stiffness coefficient k
and the dampers by the viscosity coefficient ¢. x1(t), z2(t) denote
the displacement of the masses from their condition of equilibrium,
along the vertical axis x; the movement of the ground is described
by z¢(t); Chap5-Fig-5-1-piattaforma.pdf

the mouvement of the masses m(t), mo(t), induced by the ground motion z4(t), is
confined along the vertical direction and no rotations are allowed. The system may
therefore be described by the following equations

my 0 i’l c1 + ¢ —co l"l ]{?1 + k‘g —k’z I k’ll'g *|>01£'Cg
.. + . + =
0 mo i) — C9 (&) i) — kQ k’g i) 0
(5.0.1)
where x1(t), z2(t) denote the displacements of the masses my, msy from their condition
of equilibrium, the constants ky, ks represent the spring (or stiffness) constants wes
and ¢, ¢y are called coefficients of viscous damping?. The search of the solutions of

the above equations aims to reduce the ratio zo(t)/x4(t) to the smallest (possible)
value by choosing adequately the quantities m, k and ¢ and taking into account

lthe remaining A roll angle is easily kept within 1 mrad

2the mechanism by which the vibration energy is gradually converted into heat or sound can
be modelled in different ways; here we consider only the damping arising when, for example, a
fluid flows around a surface
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the frequency content® of the perturbing signal z,(¢). Consequently, we start by
giving in section 5.1 some simple considerations on the elements constituting a
discrete mechanical system*. Then, in section 5.2.1, we consider the response of a
single degree of freedom (1-DOF) when no external excitation is present; for this
reason, we speak about free response. In section 5.2.3 we examine the response
of the same system when the excitation is in the form of initial displacements or
initial velocities or both; the excitation can also depend on forces which persist for
an extended period of time; we speak in this case of forced response. The study
of the influence of the ground motion is particularly important because we derive
a relationship between the natural frequency of the anti-vibration mounting and
the lowest frequency of z4(t) in order to have a reduction of the amplitude of the
disturbing signal. In section 5.3 we consider two-degree-of-freedom systems, either
when two masses my, mo can translate only along the vertical axis, or when a single
mass can translate along the vertical axis and rotate around its centre of mass. Two
methods, based on Newton’s second law and on Lagrange equations, will be used
to derive the governing equations and to consider the relevant natural frequencies.
Finally, in section 5.4 we examine the dynamic response of a rigid body (in practice,
a 4200-kg concrete block) representing an anti-vibrating mounting characterized
by six degrees of freedom; we use a matrix formulation and the solution of the
corresponding differential equations are illustrated in a Mathematica notebook and
compared with the results obtained through a finite element code.

Several notebooks illustrate different methods either to find out the natural frequen-
cies of the system or to investigate the dependence of the solution of the differential
equations on the parameters which characterize the system. Although the given
examples focus the attention on basic concepts which are preparatory to more
complex situations, they can supply useful information and hints during the design
phase.

5.1 Elements of a vibratory system

o e e o o To predict the dynamical behaviour of a system governed by Eq .(5.0.1), it is
pesante convenient to start at the beginnings by introducing some elementary concepts.
“® Therefore, let us consider in Fig. (5.2) the elements of one of the simplest vibratory

systems.

3qui ci vorrebbe un rimando ad una appendice dove si dice come ricava lo spettro, pensiamoci
se avremo tempo

4With discrete we refer to a large class of systems which can be described by lumping their
masses and moments of inertia
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[Eg(t) k Eﬂ
F(t)
O O
k

Figure 5.2: Elements of a mass-spring system in horizontal position; k,c, m
denote the spring, the damper (dashpot) and the mass, respec-
tively; F'(t) and z4(t) indicate excitations; Chap5-Fig-5-2-moriz-ab-
Bozza.pdf

The three basic elements, the mass, the spring and the damper are represented in a
rather idealized way. If the mass m is assumed to be a rigid body, it represents the
coupling between force F},, and acceleration & according to Newton’s law of motion

Fypy = mi. (5.1.1)

The spring k is assumed to be elastic and of negligible mass®. A spring force F,
exists if the spring is extended or compressed, that is, when there is a relative
displacement between the two ends x; and x5 of the spring. If the spring deformation
is proportional to the spring force, the spring obeys Hooke’s law® NBB

FS = ]{J(ZL‘Q - [L’l), (512)

where the constant of proportionality k is called stiffness or spring constant. The
units of k are newton per meter (N/m).

The element relating forces to velocities is assumed to be massless and is generally
known as viscous damper or dashpot. In practice, it can consist of a piston fitting
loosely in a cylinder filled with viscous fluid flowing around the piston. If the
damping force F}; is proportional to the velocities #; and &5 of the ends of the

dashpot, we can write
Fd = C(i’g — j?l), (513)

where the constant of proportionality is called coefficient of viscous damping c.
The units of ¢ are newton - second per meter (N s/m). The work done by moving s
the dashpot is converted into heat, so the damping element cannot be considered
conservative.

The excitations of the system from its rest position can be given in the form of
initial displacements and velocities, or in the form of externally applied forces to
the mass F'(t) and/or to the base z4(t).

per base intendiamo la
parete di sinistra?

Salso damping, due to internal friction, is negligible
6 The Hooke’s law is named after the British physicist Robert Hooke (1635-1703) and was
published as the solution Ut tensio sic vis of an anagram. For further details, see section (?7)
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Even if the previous discussion deals with translational motion, analogous relation-
ships can be derived for systems undergoing torsional vibrations.

5.1.1 Equivalence of Systems

Many other systems composed by spring and masses can be reduced to the simple
system of Fig. (5.2), thus representing an equivalent system to be studied. The
equivalence may be achieved by combining several springs into a single equivalent
spring. We can distinguish two main cases.

Case 1: Springs in parallel
When a force F' is applied to the two springs k; and ko in Fig. (5.3), the system

kl 551& k2 551&

kq ko
Ky ks
kq ko
Ost
]

l F F
(a) (b) (c)

Figure 5.3: Springs in parallel. Rao p24; da Chap5-Fig-5-5-paral-ab-Bozza.pdf

undergoes a static deflection dy; and two equivalent reactions F; = ks and
F, = kybs are generated. Hence, if we denote by k., the stiffness of an equivalent
spring representing the combined effect of k; and ks, the equilibrium equation

F = keqést = k15st ‘l— kgést (514)

yields
keq = k1 + ko. (5.1.5)

Case 2: Springs in series

Next we consider the two spring in Fig. (5.4). Under the action of the force F,
springs k; and ks undergo elongations d; and d9, respectively. Since both springs
are subjected to the same force F', we have

F = k161 F = koo. (5.1.6)
If ke, represents the equivalent spring constant, then we must have
F = kegost, (5.1.7)
and, from Eq. (5.1.6) and Eq. (5.1.7), we get

keqést == 1{3151 - /{3252 (518)
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F = k:151

k‘l kl

ks

6 %

k2 I ! % F:k252
A
F

(a) (b) (c)

Figure 5.4: Springs in series. Rao p25; da Chap5b-Fig-5-6-series-ab-Bozza.pdf

or
KeoOst KeoOst
0 = —2= and 6y = ==, 5.1.9
1 ]{)1 an 2 ]{2 ( )
If we substitute these values into the equation o, = d; + 2, we obtain
keoOst  KegOst
Ogt = —eqrst  eqrst 5.1.10
e T (5.1.10)
and we can write 1 1 1
— =+ — 5.1.11
by i Ky (511

5.2 Systems with a Single Degree of Freedom

From a general point of view, the equation governing the motion of the system in
Fig. (5.2), using Newton’s second law applied to the forces acting on the mass m,
can be written as

mi(t) = F(t) — Fy(t) — Fy(t) (5.2.1)

and, using Eq. (5.1.2) and Eq. (5.1.3), we have
mi(t) + ci(t) + kx(t) = F(t), (5.2.2)

having assumed that the spring is weightless.” The static equilibrium position of
the system, in the absence of external forces, coincides with the position in which
the spring is unstretched.

When the spring is stretched, the stored elastic potential energy can be found by
calculating the work necessary to obtain the given stretching x = x5 — 1, that is

Usta = —/ F, dz. (5.2.3)
0

“"We shall keep this assumption in the following
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In the case of a hookean linear spring, we get
v 1
Ut = — / (k) = ke (5.2.4)
0

If we were dealing with the system of Fig. (5.5), where the force of gravity has to
be considered, we would reach a slightly different conclusion.

Figure 5.5: A mass-spring system in vertical position; appunti miei; da Chapb-
Fig-5-3-mvert-ab-Bozza.pdf

On the left of Fig. (5.5) we have omitted for simplicity the viscous effects and
the spring k, as already said, is assumed weightless. At the center, the mass m
hangs at the lower end of the spring and reaches its static equilibrium position
when mg = kyg. On the right of Fig. (5.5), the mass is further deflected a distance
y from its static equilibrium position; therefore, the application of the Newton’s
second law gives

Mot = Mg — k(Yst + V). (5.2.5)

If we remember that y,os = ys + y so that 4, = 3, we can write
mij = mg — kyg — ky = —ky. (5.2.6)

We are now interested in evaluating the net potential energy of the system when
the mass is extended from the equilibrium position y to the deflected position ;.
The gain of elastic energy is given by

1 1 1 1 1 1
Ueta = 5kYion = 595 = Sho + Sky” + kyay — Skyly = Shy® +mgy. - (5.2.7)
At the same time, the gravitational potential energy due to the change in elevation
of the mass amounts to Uy,q, = —mgy. Therefore,
L. L,
Usis = Uela + Ugrav = Eky +mgy — mgy = Eky ) (528)

and the net potential energy of the entire system depends only upon the stretching
of the spring from its equilibrium position. We conclude that when a mass oscillates
along a vertical direction, we can ignore the effect of gravity, provided that we
measure its displacement y from its static equilibrium position. When damping
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elements and external forces are taken into account, the equation of motion describ-
ing the vertical system will be the same as the one we found for the horizontal one.
The class of systems whose motion can be studied by means of Eq. (5.2.2) has a
single degree of freedom, namely, the variable y(t) or z(t). Systems with a single
degree of freedom will be the main subject of this section.



MD: NBB corretto? GZ
eanche nel vuoto siderale,
rimane 'attrito interno
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5.2.1 Free vibrations without damping

If we set ¢ and F(t) equal to zero in Eq. 5.2.2, the equation of motion becomes
mi(t) + kx(t) = 0. (5.2.9)
In order to solve the above equation we postulate solutions of the form
z(t)=Ce", (5.2.10)

where C' and s are constants to be determined. If we substitute Eq. (5.2.11) into
Eq. (5.2.9) we shall find

B\ /2
510 ==F <——) = +iw,, (5.2.11)
m
where
5\ /2
Wy, =27f = (—) (5.2.12)
m

is known as the natural angular frequency of the system, that is the frequency at
which the system naturally oscillates when perturbed from its static equilibrium
position® . The general solution of the differential equation is obtained by combining
the two particular solutions we just found (the eigenfunctions of the system)

x(t) = Cre™n + Che ™. (5.2.13)
By using the identities .
et — cosw,t £ i sinwyt, (5.2.14)
Eq. (5.2.13) becomes
z(t) = Ky coswyt + Ky sinw,t, (5.2.15)

where the values of the constants K; and K5 depend on the initial displacement
z(0) and initial velocity #(0). For example, if z(0) = zy and £(0) = 2o, we have
from Eq. (5.2.15)

and the solution of Eq. (5.2.9), subjected to the initial conditions (5.2.17), is given
by

x(t) = xo cos wyt + 20 gin wpt (5.2.18)
or, equivalently, by
z(t) = [ 2% + (@)2 cos(w,t — arctan 0 ). (5.2.19)
Wn ToWn,

An example of solutions of this kind is given in Fig. (5.6)

8If we do assume that the spring has a mass M, it can be shown that w = \/k/(m + M/3),
(7))
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Cosmesi di ChapS~Fig-5-8-zetaeq0.pdf ¢ =0 da fare

\ J
-0.2 0.2 0.4/ 06 | 08 / 1.0
/

/ /
/-0.5 \ \ /
/ \ |

/ \‘\ s/ \ /

// ~10 \\ /" \ | /”

N2 N \/

Figure 5.6: Undamped oscillations; da Book-Chap5-AntiVib-Fig&NB/Chap5-
Fig-5-8-zetaeq0.pdf

If we recall that for the vertical system of Fig. (5.5) kys; = mg, we obtain, for the
natural frequency

9.805 N 15.76
27T st st[mm] ’ 1073 -~ Amm ‘

(5.2.20)

The simple graphic of Fig. (5.7) shows the dependence of the natural frequency
of the system on the static equilibrium deflection y, expressed in millimetres and
permits to estimate what elongation a spring has to have in its static equilibrium
position to let the perturbed system oscillate with a certain frequency f. For
example, to have a natural frequency of 0.5 Hz (i.e., a natural period of 2 seconds),
the elongation of the spring, when the system is in static equilibrium, must be
about 1 meter.

f [Hz]
50.0¢

10.0¢
5.0t

1.0¢

: : : : -~ A [mm
1 10 100 1000 104A mm]
Figure 5.7: How the natural frequency of a 1D system depends on the exten-

sion of the spring; Book-Chap5-AntiVib-Fig&NB/Chap5-Fig-5-4-
deltastat.nb

5.2.2 Free vibrations with damping

To study the effect of the viscous” damping ¢ on the solution of Eq. (5.2.2), that ~ss
we repeat here for convenience,

mi(t) + ci(t) + ka(t) = F(t), (5.2.21)

9 To calculate ¢ we could refer to the Kelvin-Voigt model using Hagen-Poisuille equation.
Actually the viscoelasticity interpretation is poor because we miss an analytical solution of
Navier-Stokes equation... io I’ho inserita cosi puo avere senso un richiamo simile?




16 Anti-vibration mounting system

we consider the general case of free vibrations. In absence of external forces,
F(t) = 0, the equation of motion reduces to a homogeneous ordinary differential
equation with constant coefficients. By analogy with the undamped case, we assume

a solution in the form
z(t) = Ce™ (5.2.22)

where C' and s are constants to be determined. If we insert this function into
Eq. (5.2.21) we obtain
ms* +cs+k =0, (5.2.23)

the roots of which are

—c+Ve2—4dmk - 2k
PP s L — <i) 5 (5.2.24)
’ 2m 2m 2m m
These roots give the following solutions of Eq. (5.2.21)
z1(t) = Cre® and x9(t) = Cye™, (5.2.25)

and therefore the general solution of Eq. (5.2.21) is obtained by a combination of
the two solutions xy(t), z2(t),

z(t) = Cre®t + Coe™
more explicitly,

z(t)=Che [_Tﬂ%r (ﬁ)2_£]t + Cye [_Tni_ (%Y_#L}t

Y

where C, (5 are constants to be determined from the initial conditions.

It is convenient to express the above solutions in terms of a dimensionless parameter.
To this end we define the critical damping C as the value of the damping constant
¢ for which the radical in Eq. (5.2.24) becomes zero

( Ce )2 _k_y, (5.2.26)

2m m

that is,
C. = 2my | L 2mw, = 2V km, (5.2.27)
m

where w,, is the natural frequency of the undamped oscillation, defined in the
previous section. For any damped system, the damping ratio ( is defined as the
ratio of the damping constant to the critical damping constant

(=— (5.2.28)

If we use Eq. (5.2.28) and Eq. (5.2.27) we can write
c c C.

2m - a2m

= Cwy (5.2.29)
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and, hence
s12 = —Cwp £/ — 1w, = (=C £V = Dw, (5.2.30)

Then, the solution of the Eq. (5.2.21), divided by m and with F(t) = 0, takes the
form

B(t) 4+ 2Cwpi(t) + wiz(t) = 0, (5.2.31)

with the corresponding solutions
2(t) = Crel V@t 4 oo (V@ T)ent (5.2.32a)
_ <C’16V C—lwat 4 Che=V 42*1%1*) ebnt, (5.2.32b)

The nature of the solutions s; and s; depends on the value of ( which can be
represented in the complex plane. In Fig. (5.8) the horizontal and vertical axes

Figure 5.8: Rao pl134 The semicircle represents the locus of the roots s; and
s9 when 0 < ¢ < 1; rimpolpare !; da Chap5-Fig-5-7-radicis1s2.pdf

are chosen as the real and imaginary axes and we see immediately the effect of the
parameter ( on the behaviour of the system. We can consider quantitatively how
the response of the system depends on the damping ratio.

5.2.2.1 Undamped system (¢ =0 or ¢ =0)

In this case, the solutions of the characteristic equation Eq. (5.2.23) are

k 1/2
S12 = + (E) = :I:an

and z(t) is represented by (5.2.19).
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5.2.2.2 Underdamped system (( <1 or ¢ < C,)

As the solutions of the characteristic equation are
S12 = <—Cii\/1—7§?) W,
we can write (5.2.32b) more conveniently as
x(t) = e Swnt (C’lei\/@w’"‘t + C’ge_i\/@“"t>
= e Cwnt <(C1 + Cy) cos\/1 — Cuwnt 4 i(Cy — Cy) sin \/1—7(%%25)
= e Swnl <él cos \/1—7@wnt + Cysin \/1—7(’%)”15)

= e Swnt <C~’1 cos wgt + 6'2 sin wdt> ,

MD: GZ: nb Mathematic

?

where wy = /1 — (Pw, is called the angular frequency of damped vibration and is
always less than the undamped angular frequency w,. The constants C; and C5
can be found by imposing the initial conditions x(0) = z and #(0) = 4o; we obtain

Gy = 29 and Cy — 0T CT0n (5.2.33)
Wd
Hence the solution becomes
x(t) = e Snt (wo cos wqt + Zo F CTon sin wdt) , (5.2.34)
Wd

or, equivalently

x(t) = Ae™“! cos <\/ 1 — Cwpt — ¢0) (5.2.35)

A=1/C2+C2 and ¢, = arctan (ég/él> : (5.2.36)

The combined result of a decreasing exponential and a sine wave is a damped sine
wave oscillating in the space between the exponential curve and its mirrored image,
as shown in Fig. (5.9)

where

Cosmesi di Chap5-Fig-5-9-zetaless1.pdf ¢ <1 dafare

-0.5]

-1.0] z

—1.5} 7

Figure 5.9: Free vibrations with ( < 1 Rao 132; Book-Chap5-AntiVib-
Fig&NB/Chap5-Fig-5-9-zetaless1.pdf
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5.2.2.3 Critically damped system (( =1 or ¢ = C.)

In this case the two roots s; and s, in Eq. (5.2.30) are equal

c C.

51232:—wn:—2m:—2m

(5.2.37)

If we let ¢ approach unity in the limit of Eq, (5.2.30), we have wy — 0, coswgt — 1,
sinwgt — wqt. Hence, the last of Eqgs. (5.2.33) yields

() = et ((31 v é2wdt) . (5.2.38)

If we apply the initial conditions z(0) = z and %(0) = 4o, we have

él = Xy
Cy = (do+ Town)/wa (5.2.39)
and, finally
z(t) = e~ [xo + (Lo + Town )] (5.2.40)

which represents an aperiodic response as shown in Fig. (5.10). It is interesting
to note that, for a given initial excitation a critically damped system reaches the
equilibrium position without oscillating in the fastest way'".

12}
[\

1.0

038 \

0.6 \

0.4

0.2]

0.2 0.4 0.6 0.8 1.0

Figure 5.10: Free vibrations with ( = 1, Rao 132; Book-Chap5-AntiVib-
Fig&NB/Chap5-Fig-5-10-zetaeql.pdf

5.2.2.4 Overdamped system (¢ > 1 or ¢ > C.)

The solutions of the characteristic equation Eq. (5.2.23) are

S19 = (—g + /2 1) Wy <0 (5.2.41)

with sy < s;. Then the solutions take the form

z(t) = (C’le\/ ¢-lwnt OQe—v@—Mnt) e¢wnt (5.2.42)

10For example, in a balistic galavanometer or in a barrel of a cannon the recoil mechanisms are
critically damped
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with

ToWp (x/CQ—l—i-C) + T

o = o (5.2.43)
-Town<\/C2— —C>—$'0
0, = (5.2.44)

RVICE|

An example of a typical solution of this kind is given in Fig. (5.11)

1.2
w0\

0.8} \
0.6
0.4

0.2]

0.2 0.4 0.6 0.8 1.0

Figure 5.11: Free vibrations with { > 1 Rao 133; Book-Chap5-AntiVib-
Fig&NB/Chap5-Fig-5-11-zetagreat1.pdf

5.2.2.5 Logarithmic decrement

Very often the amount of damping in a given system cannot be evaluated ana-
lytically''. However, in many practical cases in which damping is viscous and
the system is underdamped, we can experimentally observe the rate at which the
amplitude of the free damped vibrations decreases.
If we indicate with ¢; and t5 the times corresponding to two consecutive displace-
ments z; and x5 measured one period apart (e.g., in correspondence of the first two
maxima in Fig. (5.12)),
we can form the ratio

1 Ae ¥ cos(waty — do)

= . 5.2.45
Ty Ae”¥n"2 cos(waty — do) ( )

Because ty = t; + T}, where T,; = 27 /w, is the period of the damped vibration, we

have
cos(wate — ¢o) = cos(wgt1 + 2m — ¢g) = cos(wat1 — Pp), (5.2.46)

so that Eq. (5.2.45) reduces to

1 Ae~Cwnly ConT,
2 = Aocmmimy =€ (5.2.47)

Tn the case of a piston of diameter d and length L, with two holes of diameter D, assuming
that the oil has a viscosity 1 and density p, we have a damping constant ¢ = 4w Ln(d/D)* ([?],[?])
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Cosmesi di decremento logaritmico da fare

da DecrLog.nb

0.6
0.4 X Exp[- ¢ an t

0.2

-0.2

-0.4

-0.6

Figure 5.12: Two consecutive maxima of an underdamped system; Meiro p30
a mano; da Chap5b-Fig-5-12-DecrLog.pdf; 7 mio nb Mathematica
per Balestra-Marocchi ?

If we now introduce the notation

1 2T 2n(
0 =In— = (w,Ty = Cw, = 5.2.48
N

with 0 known as the logaritmic decrement, we can obtain ( by measuring two
consecutive displacements x; and x9; in fact,

¢ = 0 (5.2.49)

V(@2r)?2+ 62
When ( is small, Eq. (5.2.48) can be approximated by
§ ~ 21, (5.2.50)

as illustrated in Fig. (5.13)

Comesi di DeltaNLin.nb da fare

migliorare il grid

20 ¢ 1-8

\

0.2 0.4 0.6 0.8

Figure 5.13: Dependence of logarithmic decrement with damping; Rao 136 p30;
da Chap5b-Fig-5-13-deltaNLin.pdf
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5.2.3 Forced vibrations

The amplitude of the damped vibrations considered in the previous section decays
with time and after some time the system comes to rest, because there is a continuous
dissipation of energy. However, it is possible to keep up these vibrations applying a
force or imposing a displacement to the system. When the frequencies of the driving
and driven system are not the same, the amplitude corresponding to the natural
frequency of the oscillator dies out and it begins to oscillate with the frequency of
the impressed excitation. These are called forced vibrations. When the frequency
of the driving force is near or coincides with the natural frequency of the driven
oscillator, it appears the phenomenon of resonance. In this section we begin the
discussion with simple harmonic excitation'? due to their fundamental nature and
practical applications. The case of a periodic excitation can be reduced to that of a
harmonic excitation. We shall consider two cases: when the excitation is applied
directly to the mass and when the base on which the mass rests is subjected to a
shacking action.

5.2.3.1 Driving force applied directly to the mass m

If the driving function®®

(5.2.21) becomes

is given by F(t) = Fysinwyt, the equation of motion

mi + ct + kx = Fysinwyt, (5.2.51)

where w; is the angular driving frequency. If we divide Eq. (5.2.51) by m and
introduce the damping ratio { we obtain

F
i+ 2Cwni + wle = — sinwjt. (5.2.52)
m

If we neglect the transient solution, i.e., we limit ourselves to the search of the
steady-state solution, we let the solution of Eq. (5.2.52) have the form

r = Xsin(wst — ),
which leads to
& = Xwycos(wst — )
i = —Xw}sin(wst — ).
From Eq. (5.2.52) we get

F
- Xw]% sin(wst — @) + 2Cw, Xwy cos(wst — @) + w2 X sin(wst — ) = EO sinwyt,

(5.2.53)
and, exploiting the properties of the trigonometric functions,

— Xwi(sinwyt cos ¢ — coswyt sin )+ (5.2.54)

12A possible definition of simple harmonic motion is: a type of periodic motion where the
restoring force is directly proportional to the displacement of the object, but in the opposite
direction.

BLoosely speaking, since Fourier analysis tells us that any function can be written in terms of
sinusoidal functions, we can limit our discussion with a single term and exploit the principle of
superposition
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+2X (wpwy(coswyt cos ¢ + sinwyt sin @)+
F
+Xw? (sinwyt cos ¢ — coswyt sin @) = ~sin wit,
m
and grouping the common terms we have

sin wyt[—Xw? cos ¢ + Xw? cos ¢ + 2X (wnwy sin @]+ (5.2.55)

F
coswft[Xw? sin g — Xw? sin ¢ + 2X (w,wy cos ] = =0 sin wyt.
m

Equating the coefficients of coswyt and sinwyt

F
X(w? —w]%)cosgp%—ZXCwnwf sing = — (5.2.56)
m
X (w; — w}) sin g — 2X (wywy cos p = 0, (5.2.57)
and squaring and summing the Eq. (5.2.56) and Eq. (5.2.57) we obtain
Fi
X2 (w? — w?)? + 4X2C02w? = (22)? 5.2.58
(W — P+ AXCWE = () (5.2.58)
and
(w2 — w) tan ¢ — 2(w,wy = 0, (5.2.59)
from which we deduce the amplitude X
Fo
X = m (5.2.60)
V(@2 = w02)? + 4R
and the phase
2Cwpw
Eq. (5.2.60) can be simplified if we put r = -
Iy Iy
X = m = m = (5.2.62)
Iy Iy
m k

k1= r2)2 + AC2? N V=22 + 4C27“2;

m
We observe that in the limit 7? < 1, the response is independent on the mass; for
r = 1, the amplitude of the resonance depends inversely on the damping constant ¢
and for 72 > 1 the response is independent on the spring constant. Analogously,

we have w
20 pwy _r

tan o = A T2 (5.2.63)
wh
Therefore, if we consider only the steady-state solution we can write
£ 2
z(t) = k sin (wft — arctan cr 2) . (5.2.64)
V(1 —7r2)2 + 4022 1—r

The notebook Chap5-1-1D0F-Under-Harmonic-Force.nb illustrates the behaviour
of the amplitude X and phase ¢ for different values of r.

inserire un esempio pratic
pud avere senso?
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5.2.3.2 Influence of ground motion

In many instances, for example during the execution of very accurate measurements,
it is necessary to consider the effects of the vibrations of the base on which the
system rests. Let Y;(t) = Y sinwst denote the displacement of the base and y(t)
the displacement of the mass from its static equilibrium position at time ¢. The
equation of motion can be written in the form

mij+ c(y — Ys) + k(y — Y:) = 0. (5.2.65)
The following relations
Y, = Y sinwyt
Y, = Ywyscoswyt

yield
mij + cy + ky = kY sinwgt 4+ cwsY coswyt, (5.2.66)

or, equivalently,
i+ 20wy + Wiy = WY sinwgt + 2(w,w;Y coswyt. (5.2.67)

This means that the excitation of the base is equivalent to applying two different
harmonic driving forces to the free system!'*. Then, by splitting Eq. 5.2.67 into two
equivalent equations, we can solve them separately exploiting the results obtained
in Eq. (5.2.64). Therefore we have,

Eq. A: i+ 20wy + Wiy = WY sinwyt
Eq. B: i+ 2Cwy + Wiy = 2CwpwyY coswyt.

With the help of Eq. (5.2.62), since w?Y is equivalent to %, in the case of Eq. A
the amplitude of the steady-state solution is
WY Y

w?%\/(l - 7'2)2 + 4627“2 - \/<1 — 72)2 + 4<27”2. (5268)

and, in the case of Eq. B, being 2¢w,w; equivalent to F'/m, the amplitude is"

2QwpwY B 2¢rY
w,%\/(l —1r2)2 4 4(?r? \/(1 —7“2)2—1-4(27"2'

(5.2.69)

If we apply the principle of superposition, the solution of Eq. (5.2.67) is

Y sin(wt — 1) + 20rY
V(1 —12)2 44022 fro e V(1 —12)2 4 4¢2r2

where ¢; is obtained from Eq. (5.2.63).

cos(wgt — 1) (5.2.70)

14hut the sum of two harmonic forces is still an harmonic force
Shere we observe that if the right hand side of Eq. (5.2.51) is Fpcoswyt, it is sufficient to
replace Fjsinwyt in Eq. (5.2.64)
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Letting .
Y = (5.2.71)
V(1 —12)2 4 4¢2r2

into the Eq. (5.2.70), we obtain
Y sin(wst — 1) + 2¢rY cos(wst — 1) (5.2.72)
that, as we are going to show, can be written also as
Y™ sin(wet — @). (5.2.73)

Now, to find out the relationship between the above Y* and Y, we exploit again the
properties of the trigonometric functions in equating Eq. (5.2.72) and Eq. (5.2.73)

Y (sinw;t cos p; — coswytsingy) + 2¢rY (coswyt cos p; + sinwyt sin ;) =

Y™ (sinwyt cos ¢ — coswytsin @) .

(5.2.74)
By grouping the terms sinw;t and coswyt
(Y cospy + 2¢rY sin ) sinwst + (2¢rY cos ¢, — Y sin) coswst = (52.75)
(Y*cos@)sinwst — (Y sin @) coswyt , -
we obtain
Y cos i + 2(rY sinp; = Y* cos ¢ (5.2.76)
2(rY cosp; — Y sinp; = —Y*sin@. (5.2.77)
By squaring and summing the above equations, we have
Y24V =Y (5.2.78)
and B
Y21 +4¢r?) =Y* (5.2.79)

Recalling the value of Y in Eq. (5.2.71) we get the amplitude of the oscillation

*2 Y
= <\/(1 —12)2 4+ 4¢%r2?

Therefore, the amplitude Y* becomes

. 1+4<’2 2
Y* = Y\/(1£r2)2+r422r2' (5.2.81)

Y2(1+ 4¢%2)
(1 —1r2)2 +4¢2r%

(5.2.80)

) (1+4¢%r7) =

Furthermore, from Eq. (5.2.76) and Eq. (5.2.77), we have

. 2(r
tang = 2(r cosp; — s?n 2 2¢r — tan ¢, _ 20T — 172 _ (5.2.82)
cospr +2¢rsing;  14+2(rtang; 14 2(r-2~

1—r2

MD: definizione di Y*
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20r — 2(r3 — 2(r B —2(r3
L —r24+4¢C2r2 14 (4¢2 —1)r2’

from which

2073
1+ (42— 12
Finally, the solution of Eq. (5.2.65) takes the form

1+ 4252 203
y(t) = Y\/(l E Tj;)QC—f-CngTQ sin (wft — arctan T (4§2T_ 1)7‘2) ) (5.2.84)

(5.2.83)

tanp =

The notebook Chap5-2-1D0F-Under-Harmonic-Motion-Base.nb illustrates the be-
haviour of the amplitude X and phase ¢ for different values of r. It illustrates why
an anti-vibration mounting must have a natural angular frequency w,, such that the
ratio r = wy/w, is > v/2 in order to reduce the amplitude of the ground motion.

5.2.3.3 Complex vector representation of harmonic motion

D MDC 2 Notas e, We can obt.aln the response .to harmonic excitation glso by using .co.mplex vector
i cambierei & con £ e di representation of the excitation and of the response itself. Then, if in the case of

conseguenza y con Y

oppure Z: da discutere; ginygojdal excitation we introduce in the right hand side of the slightly modified

1oltre, userei wy invece di

“ Bq (5.2.67),

i+ 2wt + wir = wly + 2¢w,y, (5.2.85)
the notation
y = Ysinwt = (IYe™"), (5.2.86)
the response of the system can be represented by
2(t) = X (iw)e™ (5.2.87)
#(t) = iwX (iw)e™! (5.2.88)
#(t) = —wX (iw)e™". (5.2.89)

By substituting these expressions into Eq. (5.2.85), we have
— W Xe™ 4 2iww, X e + w2 Xe™ = WY e + 2iCww,Y ™! (5.2.90)

from which we obtain the amplitude X (iw)

w2 + 2iCwwy, _y 1+ 2iC 2

2 ; 2 2
w2 + 2iCww, —w 1+ 2i¢ 2 — <£>

Wn

X(iw) =Y (5.2.91)

that can be transformed into the form
X (iw) = a(w) + ib(w) = Va2 + b2e™. (5.2.92)
We can now calculate the modulus of X (iw)

1+ 2i¢r 1 — 2iCr B
(1—r2)+2i¢r ~ (1—r2) —2iCr

X (iw)]? = X (iw) - X*(iw) =Y (5.2.93)
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o  1+4¢*?
(1—r2)2 +4¢22°
For the phase, after some manipulations in Eq. (5.2.91),

X (iw) = Y(l + 2i¢r)(1 — 2i¢r — r?) _ Yl — 2iCr — 1% + 2iCr + 4¢C3%r? — 2i¢r? _
(1 —172)2 4+ 4¢?r? (1 —72)2 4+ 4¢2r?
(5.2.94)
[ 1 — 12+ 42 , 2(r3 ]
—1
(1—7r2)2+4¢r2 (1 —1r2)2+4¢2r2 0
we get
—2(r3
t = 5.2.95
TR A o) (5:2.95)
or 2
”
= —arct . 5.2.96
) arcan1+(4§2—1)r2 ( )
Finally, we obtain again the solution of Eq. (5.2.85)
x(t) = S[X (iw)e™'] = | X (iw)| S[e“e™!] = | X (iw)] sin(wt + @) = (5.2.97)

v 14422 ) ; . 20r3
sin [ wt — arctan )
(1 —7r2)2 +4¢2r2 1+ (4¢2 — 1)r?
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5.3 Systems with Two Degrees of Freedom

We can now make a further step towards the system depicted in Fig. (5.1) which,
we repeat, is a simplified model of a real anti-vibration mounting. For pedagogic
reasons we shall consider two distinct two-degree-of-freedom systems. The first
(section 5.14) is relevant to the case of two masses my, my which can move only
along the vertical axis and the governing equations will be derived through the
second Newton’s law and the Lagrange method; these equations are preparatory to
the analysis of the natural modes (section 5.3.1.3). In the second system (section
5.3.2) we have only one mass m but a rotation § around one axis passing through
its centre of mass is allowed. Several notebooks in this Chapter examine the effects
of the damping coefficient and the dependence of the response on the frequency
of the disturbing ground motion z,(t). Some numerical examples simulates the
response when the elements have definite values.

5.3.1 Two masses and three springs

We start with the more symmetric system of Fig. (5.14), owing to the presence of
an additional spring k3 and damper c3 which make slightly simpler the analysis of
the eigenfrequencies and eigenmodes.

Fi(t) Fy(t)

ki

0 " 0o

Figure 5.14: A two-degree-of-freedom system; correggere in figura due pedici
di ¢; Chap5b-Fig-5-14-2m3k-ab-Bozza.pdf

At any instant of time, let the displacement of the masses be x; and x5 from the
position of equilibrium. The displacement is assumed positive when it is directed
along the axis of gravity and the damping is viscous. We can follow two paths to
write the equations of motion.

5.3.1.1 Newton’s method

We apply Newton’s second law to each of the masses. For example, the spring k;
exerts a force —kixq, on mass m; and the spring ks, owing to the elongation x; — o,
exerts a force —kqo(z1 — x2) again on m;. Analogously, the dashpot ¢; exerts a force
—c121 on mass my and the dashpot ¢y, owing to the difference of velocities &7 — &3,
exerts a force —cy(#1 — @) again on m;. If we consider also the external forces
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Fi(t) and Fy(t), the equation on motion for the masses m; and my are

mi fl + C1 $'1 + Co (il — 1'12) + ]{51 I + ]{32 (331 — xz) = F1 (t) (5.3.1&)
mZi‘Q + 633‘32 + Co (x2 - xl) + k?g T2 + k?z (ZEQ — 1‘1) = F2 (t) (531b)

or, in matrix notation,

mq 0 ('L.’l + c1 + ¢ — Co jfl + kl + kQ —]{72 1
0 mo jQ — C9 Co + C3 .%.'2 —kfg kg + k?g T2

(M]{z}+[Cl{a}+[K]{z}={F@}. (5.3.3)

5.3.1.2 Lagrange’s method

Lagrange’s equations, for non conservative forces and for n degrees of freedom, can
be stated as

doT oT n oV
dtdg  0q  Og
where ¢; and ¢; are the generalized coordinates and velocities, respectively. @;
represent non conservative forces and some of them deserve special consideration,

namely, those those due to viscous damping. If the damping forces are proportional
to the generalized velocities, the Rayleigh’s dissipation function, in the form

R = % DY crstnds (5.3.5)

r=1 s=1

= Qi i=1,2,...,n (5.3.4)

can be introduced. In this way, as we can derive viscous damping forces in a manner
analogous to that for conservative forces, we can write

OR
i’

Qi = i=1,2... (5.3.6)

and Eq. (5.3.4) becomes

dor or oV  0OR

1106 og  9a 94

— Qi i=12 .. (5.3.7)
where this time the terms (); denote only impressed forces.
In the case of Fig. (5.14) we

1 1

T = —my it + ~myd) (5.3.8)
2 2
1 .92 1 .92 .92 1 .92
R =-c1i] + zc (8] — &3) + = c3d5 (5.3.9)

2 2 2
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1 1 1
V = —klx% + —kg(l'l — x2)2 -+ 5

(5.3.10)

If we introduce these expressions into Eq. (5.3.7), and derive with respect to z;, we

obtain

djory
dt\on, ) — ™M
oT
= =0
81‘1
ov
a_{L'l = k1.21:1+k:2(a:1—:v2)
R _ s + ¢y (i — dg)
8:%1 - 141 2 1 2).

which yield the equation relevant to m;

m1iy + (¢p + )iy + (k1 + ko) xy — codo — koxe = Fi(t).

Similarly, if we derive with respect to x5, we have

d (0T B .

di\oi, ) — P
oT
omy
oV
6_@ = k?3l’2—/€2(131—332)
IR _ Cc3dy — Co (7 — To)
P 3 T 2 (21 2).

which, for mo, leads to

mgi’z + (CQ + Cg)ig + (kg + kg)l'Q — Cgi'l — k)giL‘l = F2<t)

We have thus reobtained the system (5.3.1).

5.3.1.3 Free vibration analysis

(5.3.11)
(5.3.12)
(5.3.13)

(5.3.14)

(5.3.15)

(5.3.16)
(5.3.17)
(5.3.18)

(5.3.19)

(5.3.20)

The search of the natural frequencies and modes of vibrations of systems with
two or more degrees of freedom is - as expected - not as direct as in the case
of one-degree-of-freedom. Their determination is important for two important
reasons. On one hand, the general motion of the system is the superposition of

the modes of vibration, each one characterized by its natural frequency.

On the

other end, in order to realize an effective anti-vibrating mounting, it is mandatory
that its natural frequencies are distant from the frequencies of the impressed forces

(directly on the masses or through the support).
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The search of the natural frequencies requires that all the external and dissipative
forces are set to zero, that is, F; = F» = 0 and ¢; = ¢ = ¢3 = 0. Hence, the
equation of motion from Eq.(5.3.1) reduces to

{ midy + (ky + k) @1 — kpan = (5.3.21)

0
mgi’é — ]{521‘1 + (k’g + kg)!lfg = O,

or, in matrix notation

([ M]{i}+[K]{2z}={0}. (5.3.22)

We are now facing the problem of determining the nature of the solution of the
system (5.3.22).

Let us assume'® it is possible to have harmonic motion of m; and ms with the same
frequency w and with the same phase angle ¢; thenwe can take the solutions of the
system (5.3.21) as

1 (t) = Xy sin(wt + ) a2 (t) = Xg sin(wt + ), (5.3.23)

where X; and X, denote the maximum amplitude of z;(t) and xo(t).
Substituting Eqs. (5.3.23) into the system (5.3.21), and dividing out the factor

sin(wt + ¢), we obtain
[—m1 w2 + (k’l + kg)]Xl - k‘g X2 =0 (5324)
— kQX]_ + [—m2w2 + (kg + /@)]Xg =0. (5325)

The non-trivial solutions of X; and X5 can be found by imposing the determinant
of the coefficients of X; and X5 equal to zero

—m1w2 + (kl + kg) —/{2

— ky —ma? + (k4 k) | (5.3.26)

or,
1 Mo w4 — [m2 (k’l + kg) + my (k‘g + k‘g)]w2 + [(k‘l + k’g)(kg + ]{33) - k‘%] %50327)

The roots wy and wy of Eq. (5.3.27) are called the angular natural frequencies of
the system and are given by

o} g Grtmrlzlm, (5.3.25)
1 \/{(kl + ka)my + (K + ks)ma]® | (y + Ka)(ke + kg)a_ggé)
2 mimg mi Moy \
Under matrix form, Eq. (5.3.24) and Eq. (5.3.25) can be written as
([K] = [M]){X} =0 (5.3.30)

16 A small digression about this assumption is in Appendix 77
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and, pre-multiplying by [M~!], we obtain
((MYK] - *[IDN{X} =0 (5.3.31)

or

([D] = AID{X} =0, (5.3.32)
whose eigenvalues A are obtained imposing the determinant equal to zero.

In the notebook Chap5-3-2D0F-2m2k-IMGC-only-eigenval-eigenfun.nb the eigen-
values and eigenmodes are first calculated symbolically and, successively, determined
for a real case in which ks is set, to zero. It is interesting to compare these results
with those obtained in section 5.3.2, when the two masses are allowed to rotate
around their centers of mass'’.

We have now to determine the values of X; and X5 which are dependent on the
natural frequencies w; and we. We shall denote with X {1), X5 () the values of X 1 and
X5 corresponding to w; and with X1(2), X5 ) the values of X, and X, corresponding
to wo. Furthermore, as above system is homogeneous, only the ratios

(1) (2)
X X
r = 0 and ro = BT (5333)
x M x®
can be found.
The Egs. (5.3.24,5.3.25) give, when w = w?,
xY - (k
[ mq wl (k’l + kz)]X - k‘g Xél) =0 21 = il wl L +\/%22;
Xl( ) ko
XM k
ke, xW k k X(l) =0 - 22 _ 2 (5335
2 X1+ [—maw? + (kg + k3)] X1(1) T + (ks 1 ) )
and, when w = w?
x® - (k
[ mq u}2 (k)l + k’g)] X(z) — k’QX =0 .. %2) = i WQ ! +\/%2é
X3 ko
X2 k
—ky X ky + ks)] X3P =0 - 220 = 2 (5-3.37
2 A1 +[ m2w2 ( 2 + 3)] Xl(g) _m2w2 (k‘g + k) )

We remark that the two express1ons for 1 are equal and similarly the two expressions
for ro. The ratios X /X and X /X determine the shape assumed by the
system during the synchronous motion with frequen(:les wy and wy, respectively.
The resulting pair of values (XQ( )X (1)) and (X2 , X (2)) are known as the natural
modes of vibration or modal vectors of the system and can be represented as

X(l) X(l)
2 1 Xy

17see the notebook Chap5-4-4D0F-2m2k-BaseMotion-Lagr+NDSolve-Damp-Y-Symb.nb
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and

@ @
X3 — L = 1 . 5.3.39
{ X2(2) } { Ty X1(2) ( )

Then, the free vibration solution for the first mode can be expressed as

(1) 1)

xy (t X7 sin (w t +

x0 = ¢ O st + o) (5.3.40)
xs ' (1) ry Xy sin (wi t + 1)

and, for the second mode, as

22 (1) X sin (wa t + ¢2)

x? — %2) = 1(2) _ (5.3.41)
xs (1) ro Xo sin (wot + p9)

where the constants Xfl), XI(Q), 1, 2, have to be determined through the initial

conditions.

Before considering how it is possible to let the system vibrate only on its first mode
or on its second mode, it is convenient to examine more general initial conditions.
In this case, both modes are excited and the resulting motion obtainable from the
solution of Eq. (5.3.21) consists of the superposition of the two normal modes given
by (5.3.40) and (5.3.41), that is

x(t) = xV () + xP () = (5.3.42)

vV () 22 |

X{V sin(wit + @1) + X{7 sin(wst + ) (5.3.44)
Xél) sin(w t + ¢1) + XéQ) sin(wy t + ¢2)

where, owing to the presence of r1 and 79, only four unknowns ( X 1(1), X 1(2), 1 and

¢2 ) have to be determined

X{l) sin(wi t + 1) + X{Q) sin(wat + ¥2) (5.3.45)
7"1X1(1) sin(wi t + ¢1) + 7’2Xf2) sin(wa t + ¥2).
If we apply the four initial conditions, we have
wi|,_g= 1 (0) = XV sin o1 + XV si 5.3.46
o= 1 =N $1 1 S P2 (5.3.46)

x’1|t:0: 71 (0) = wy Xl(l) coS Y1 + wo X{Q) sin s (5.3.47)
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I2}t:0: 29 (0) = 1y Xl(l) sin 1 + 79 X1(2) sin o (5.3.48)

{L:Q‘t:(): T9 (0) = wyr Xfl) Cos 1 + wWaTs XI(Z) COS P9 (5.3.49)

JFrom Egs. (5.3.46) and 5.3.48 we have

0) — 0 0) — 2(0
X® sin gy = 72(0) = 1 (0) XWsin g = 2 11(0) = 22(0) (5.3.50)
o — T o — T

and, from Egs. (5.3.47) and 5.3.47, we have

LL’Q(O) — T 371(0)
) (7”2 - 7’1)

1(0) — 25(0
Xl(l) cos p1 = ra1(0) = % ) (5.3.51)
wy (r2 — 71)

Xf) COS g =

Therefore,
X1(1) - To i r1 \/(7“2 21(0) — 22(0))% + I afl(O)wg nlOr (5.3.52)
X1(2) - T 1 r1 \/(372<0) — r121(0))* + (22(0) _wgl Rl (5.3.53)

w1(7’2$1(0) - $2(0>)
Tg.i?l(O) — IL’Q(O)

wa(w2(0) — r121(0))
]32(0) — T .T1<O)
(5.3.54)
Finally, from these equations, we see what kind of initial condition have to be
applied to let the system oscillate only on its first mode X {1), namely, we have to
set to zero the terms in Eq. (5.3.53),

tan o, = and tan @y =

UREORE o3

Similarly, for the second natural mode X {2), we have to set equal to zero the terms
in Eq. (5.3.52).

In the next subsection, we give a simple example to clarify the role of the initial
conditions.
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5.3.1.4 Natural frequencies and modes of a simple two-degree-of-freedom
system

Let us now solve numerically the case relevant to the system in the following figure
where m; = my and the springs have the same stiffness coefficient k. To find the

my=m mo =M

]{ZQZHIC

mi AW

}_> 1(t)

Figure 5.15: System with m; = me and k1 = ko = ks = k. Meiro p335 - da
Chapb-Fig-5-15-mugu-ab-Bozza.pdf

natural frequencies, the modes and the displacement vector {x(¢)} when the initial
conditions are x(0) = {1 0} and %X(0) = {0 0}, we apply the equations Eq. (5.3.21)
which become

m$1+2]€$1—]€$220
With the following assumption,
x; (t) = X;sin(wt + @) i=1,2, (5.3.57)
from Eq. 5.3.56 we obtain
J— 2 — 1 —
{[-=mw* + 2k]X; — kXo} sin(wt + ¢) =0 (5.3.58)

{—kX, +[-mw? + 2k] Xy} sin(wt + ) = 0.

The natural frequencies are determined by imposing the relevant determinant equal
to zero, that is,

— 2 _
( m“’_;%) (_mw2’i2k) — 0 (5.3.59)
From the characteristic polynomial
m?w' — 4kmw® + 3k* = 0 (5.3.60)
we obtain the roots
o= ZEm V4IZ;”2 L % (5.3.61)
oo HRme VAR Z Sk 3R 5

m2 m
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If we substitute these results into Eqgs.(5.3.34) and (5.3.36), we have

—mw? + 2k

r o= %:1 (5.3.63)
—mwd + 2k

ry = %:_1. (5.3.64)

The natural modes follow from Egs. (5.3.40) and (5.3.41)

(1) & k
X,/ sin \/it +
xW (1) = L Wt + o) (5.3.65)
X0 sin (/50 + o)
x®@ sin CL
x? (1) = syt L (5.3.66)

—X1(2) sin(u%t + QOQ)

We notice that, when the system vibrates in its first mode, the amplitudes of
the two masses are equal; it follows that the length of the middle spring remains
constant and the motions of m; and ms are in phase. When the system vibrates in
its second mode, the displacements of the two masses have opposite sign and same
magnitude; in this case the motions of m; and my are 180° out of phase and the
centre of the middle spring remains stationary for all time t.

The two modes are illustrated in Fig. (5.16) and (5.17)

Figure 5.16: First natural mode. Tipo Meiro p336 - da Chap5-Fig-5-16-firstm-
ab-Bozza.pdf

To illustrate how the solution of Eq. (5.3.56) can be represented by a superposition
of its natural modes, we recall the initial conditions

x(0) = { ﬁ;gg; } = { é } (5.3.67)

and
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Figure 5.17: Second natural mode. Tipo Meiro p336 - da Chaph-Fig-5-17-
secondm-ab-Bozza.pdf

x(0) = { 228% } = { 8 } (5.3.68)

¢ From Egs. (5.3.52) and (5.3.53) we have

xV = % (5.3.69)
x® = % (5.3.70)

and, from Eqgs.(5.3.54),
tang, = m/2 e tan gy = /2. (5.3.71)

Therefore, the solution of Eq. (5.3.56), with the relevant initial conditions, is given

by
} 1 sin \/gt+7r/2 +1sin(y/2t+7/2
= (5.3.72)
5 sin \/gt—i—w/Z — 4 sin( /22t +7/2
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The following graphs show the single natural modes and the resultant superposition
when m = 5 kg and & = 10000 N/m.

Xo(t) [m]
X; = 0.5 Sin[20 /5 t+7/2]
1.0f
0.5
-0.5¢
-1.0t X, = —0.5 Sin[20 /15 t+7/2]

Figure 5.18: Solution z1(¢); creato con Chapb-Fig-5-18-2m3k-paral-
antiparal.nb

Xo(t) [m]
1ol X, = 0.5 Sin[20 \/5 t+7/2]
0.5

~0.5}

-1.0f X, = 0.5 Sin[20 /15 t+7/2]

Figure 5.19: Solution x2(t); creato con Chap5b-Fig-5-18-2m3k-paral-
antiparal.nb

e NB - Invece di radunare qui i nb, potremmo metterlt nei punti dove st illustra la
teoria relativa: forse pero € meglio sequire il filo logico della teoria e poi alla fine
avere dei riferimenti? non spezza troppo il filo del discorso?

It is now time to illustrate the notebooks anticipated at the beginning of the section
(5.3). The notebooks Chap5-5-2D0F-2m2k-IMGC-Imped-damp-N-direct-method.nb
and Chap5-6-2D0F-2m2k-IMGC-Imped-damp-Y-direct-method.nb use the com-
plex vector representation (also known under the name of so called Impedence
Method to examine how the position and the amplitude of the response of systems
with 2 DOF (undamped and damped, respectively), depend on the frequency of
the harmonic motion of the base.

In Chap5-7-2D0F-2m2k-IMGC-Base-Motion-fs-1-Decoupling-CYMC-Damp-N.nb we

show how it is possible to decouple the equations of motion by introducing the

modal matrix C, whose columns are the eigenmodes of the undamped system.

Finally, the notebook Chap5-8-2D0F-2m2k-BaseMotion-Lagr-Symb-Manipulate-6-parameters.nt
xee show how the responses x1(t), x2(t) depend upon the several parameters previously

seen mgy, ma, ki, ks, c1,co and on the frequency of the base motion.

nee  Although these notebooks are only relevant to two-degree-of-freedom systems, they
can supply useful hints during the design phase of anti-vibration mountings.
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5.3.2 Motion of one platform with two degrees of freedom

To see the effect of the rotation of a rigid slab of total mass m around an axis
passing trough its centre of mass C),, instead of considering only a translation along
a vertical axis, we consider the platform in Fig. (5.20)

&1 k’l ]{?2 Co

F(z — 2,) (0 I

C1 (Zl — Zg)

kQ(ZZ — Zg)
CQ(ZQ — Zg)

Figure 5.20: The translation z(t) is positive when directed downwards and
the rotation ¥(t) is positive when clockwise. La figura é da rifare
(vedi mio schizzo) coerentemente con la posizione delle molle-dash
pot, e dei valori di 1,15 nei nb !; da Chap-Fig-5-20-plat2dof-ab-
Bozza.pdf

where the springs ki, ks and the dashpots ¢y, co the springs &y, ks and the dashpots
c1, C9, respectively.are at distances [, and [, from C,,, respectively. E questo il
senso?] The platform angular mass J is about C,,; the displacement consist of the
vertical translation x(t) of C,, and the rotation J(¢) around C,,. The translation is
measured from the equilibrium position and the angular displacement is supposed
small; the motion of the ground is represented by x,(t).

Therefore, the force equilibrium equation in the vertical direction and the moment

NBB
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equation around the centre of gravity (C.G.) can be written as'®

mi = —ky(x1 —x,) — ko (g —xy) — 1 (&1 — &y) — c2 (22 — Ty) (5.3.73)
= —ki(x —Lo—ay) — ko(x + a0 —xy)— (5.3.74)
e (& — LD —id,) — (& — 10 — ) (5.3.75)
JoU = ky(x — L0 —2y)ly — kol + Iy — xy) Iy + (5.3.76)
cr(d — L0 —dg)ly — cold + Lo —iy)ly. (5.3.77)

nee  As we are interested in calculating the natural frequencies and the mode shapes,
we have to neglect in the previous equation the dissipative forces and the external
forces due to the ground motion. Therefore, we can write

m 0 I + k‘l -+ l{?g - (k?l ll - kQ lg) T . 0
0 Jo |9 —(kily — koly) k12 + ko2 9~ 10 [
(5.3.78)

It can be seen that Egs. (5.3.78) become uncoupled if the term kil; — ksly is equal
to zero. In this system the mass matrix is diagonal.

If we assume harmonic solutions for free vibrations

r = Xsin(wt + ¢) (5.3.79)
¥ = Osin(wt + ¢), (5.3.80)
we have
(—mw® + ki + k) X — (kily — ko 1)© = 0 (5.3.81)
— (ki ly — koly) X + (=Jow® + kil} + ky[5)© = 0, (5.3.82)

and the natural frequencies are determined by imposing the relevant determinant
equal to zero, that is,

' (— mw2 + kl + kg) — (klll — kglz)

— (kily — kal2) (— Jow? + k12 + kyl3) ‘ = 0. (5.3.83)

From the characteristic polynomial

k + kf] k l + kzl 1
4 2 1 141 2 2
k k l l O. 5-3-84

we obtain the roots

1/ ky+ky kP+kaE\ 1 [k +k  Kkl®+ kol2\? 1

2 1 2 191 209 1 2 191 209

= — — — —— Ak ko (1 + 15)2.

W12 2( m * Jo >$2\/( m * Jo ) Jom tka(lh + 1)
(5.3.85)

8accenniamo al fatto che vi sono almeno due altre coppie di coordinate ? Thompson p139, Rao

p345, Tse p155, mie dispense
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From Egs.(5.3.82), we have

oW kqly — kol
rno= - = T (5.3.86)
X J0w1 + klll + leQ
0o® kyly — koly
— — . 5.3.87
"2 XO T w4 k2 + kol (5.3.87)

This means that, when X(M(¢) = 1m, O = r;, that is, there is a first node,
at 1/tanr; meters from the centre of mass around which the mass oscillates;
similarly, there is a second node at 1/ tanry meters from the centre of mass. The
two modes, in the case of an undamped platform with the following parameters
(m = 4200, J = 1070, k; = ke = 20000, [; = 0.65,1y = 0.70)), are shown in Fig. (5.21)
In interpreting these results, the first mode is mostly vertical with rather small

ll . 12

Figure 5.21: da rifare secondo mio schizzo; bisogna mantenere la scala ed essere
coerenti con i nb che verranno citati; i conti nello schizzo vengono

da Chap5b-Figh-21- verifica-V901.nb

rotations, whereas in the second mode rotation is more evident. The values of w;
and wy are derived in the third of the following books.

The next step requires to calculate the natural frequencis of the platform to verify
that they do not overlap with the frequency content of the ground motion'’. To
this end, we write the general solution of (5.3.78) as
2(t) = XWsin(wit + ¢1) + X sin(wyt + o) (5.3.88)
D(t) = 1 XY sin(wit + 1) + 72 XD sin(wat + @) (5.3.89)

and, in the first of the following notebooks, Chap5-9-2D0F-1m1k-BaseMotion-Lagr-IMGC4000-0p85-
we use the Lagrangian formalism to determine the resonances of an undamped

19The main components of the frequency spectrum of the ground motion are centered near 3
and 7 Hz, as measured by means of suitable seismometers
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platform. The search of the possible resonances is mandatory during the design
phase of the anti-vibration mounting system.

In the second Chap5-10-2D0F-1m1k-BaseMotion-Lagr+NDSolve-Symb-Manip-9-parameters.nb,
we examine the influence on x(t) and ¥(t) of the parameters in the equations (5.3.75)

and (5.3.77) when the platform is damped.

In the third Chap5-11-2D0F-1m1k-Eigenval-Eigenfun.nb we re-consider the case

of an undamped platform with the usual parameters and with the following initial

conditions

2(0) =01 = XWsin g + XP sin o, (5.3.90)
000) =0 =X sin g + X sin @, (5.3.91)
0) =0 = w XM cos @1 + wy XP cos iy (5.3.92)
9(0) =0 = rw XY cos @1 + rows XP cos p,. (5.3.93)

Here, we have done step by step the calculations whose main objective is to find out
the modulations of z(¢) and ¥(¢). By direct inspection from the third and fourth
equation we obtain cos ¢; = 0 = cos o from which ¢; = o = 7. Then, from
the first and second equation, we have

XM = 0.09961 (5.3.94)
X® = 0.0003845. (5.3.95)

Therefore, the Egs. (5.3.88, 5.3.89) take the form

xz(t) = 0.09961cosw;t + 0.0003845 cos ws t (5.3.96)
9(t) = —0.01228 coswy t + 0.01228 cosws t. (5.3.97)

Let us now consider the motion of the centre of mass x(t); as we have w; = 3.08
and wy = 4.13 we have® wy — w; = Aw = 1.05, then

z(t) = 0.09961 cos wy t 4+ 0.0003845 cos (w1 + Aw)t = A cos (w1t + 1) (5.3.98)

where, after some manipulations,

A = v/0.009923 + 0.0000766 cos Aw (5.3.99)

and
0.0003845 sin Awt

t = ) 5.3.100
Y= 509961 + 0.0003845 cos Aw ( )
The rotation of the platform around the center of gravity is given by
A
9(t) = —0.01228 (cos wi t — cos wat) = —0.02456 sin 7“% sin LT @2
(5.3.101)

2Orifatte!, ma check ancora una volta ...
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The displacement x(t) and the rotation 6(t), together with the modulation of their
amplitudes, are shown in Figs. (5.22) and (5.23).

Displacement x(t) and Modulation
X(1) [m]
0.100f—— = —
IR
0.098 H H

—

0.096 ‘ 1 -

0.094 }

0.092

{u‘\ I

0 5 10 15

t[s]

Figure 5.22: As the amplitude of the modulation of z(t) is small, we show
only the significant behaviour; creato da Chap5-11-2DOF-1m1k-

Figenval-Eigenfun-WithOutput-V804.nb; attenzione 'asse ¢ an-
cora X invece di Z

Rotation 6 (t) and Modulation
4(t) [rad]
0.03

0.02 i i A

0.0tf A A

-0.01 ] - N

~0.02 ‘\\c | \\/ | L/

-0.03

Figure 5.23: Rotation 6(¢) and modulation of the relevant amplitude; creato da
Chapb-11-2DOF-1m1k-Eigenval-Eigenfun-WithOutput-V804.nb

A more complex system formed by two platforms, although still a simplified
version being characterized by only four degrees of freedom, is described in
Chap5-4-4D0F-2m2k-BaseMotion-Lagr+NDSolve-Damp-Y-Symb-Manip-ultimo2.nb.
Notwithstanding this limitation, the possibility of considering simultaneously sev-

enteen parameters (mq,ms, Ji, Jo, ..., ¢3, ¢4) supplies useful hints about the design
of the vibration isolation mounting.
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5.4 Dynamic response of an anti-vibration mount-
ing

In this section we examine the behaviour of a rather realistic anti-vibrating mounting
characterized by six degrees of freedom (three translational and three rotational).
B continua nel 11 formato 111 the following figure we choose O as the origin of a set of fixed coordinate axes”!

del file, ma non & molto
chiaro... lo riscriviamo?

Uo

O >

Figure 5.24: la figura & da rivedere potremmo colorarla? cosi non é
chiara A section of a 4200-kg concrete block supported
by four springs and four dash-pots (not shown). By the

translation vector ug = O0O’, the fixed set Ozyz is trans-
formed into O'z'y’2’, where O’ is fixed to the block and, by
a rotation around the z’-axis through an angle 1), the set
O'z'y' 7 is transformed into O"z"y"2". The z, 2/, z""-axes are
orthogonal to the plane of the paper. The generic point
P of the block has initial position r = OP; successively,
after a displacement by u, the new position of the point
isr+u= @ The vector O’'P” is obtained by rotating
the vector O'P’ around the 2/, z”’-axes through the angle
1. The initial position of the centre of mass is indicated
by G, and G’ and G” are the new positions after a transla-
tion by ug and a rotation by 1) around the z”-axis; creato
da Chap5-Fig-5-24-vibrazioninew.pdf

Oxyz; another set of coordinate axes O'z’y'z’ parallel to the first is fixed to the
nee vibrating block. At the beginning the two sets of axes coincide. We denote by

2that is, the perspective from which observations are made, assumed to have no translation or
rotation in space
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i,j, k the unit vectors in the directions of the x-, y-, z-axes, respectively. As the
block V_ib>rates, the set O'z'y’z" is obtained from Oxyz by the translation vector
ug = 00" = &i+nj+ (k. At a fixed instant, a generic point P” in the moving block
is obtained by means of a rotation around a generic axis of the point P’, whose
position vector O’'P’ coincides (has the same components, to be more precise) with
the position vector r = xi 4 yj + 2k = O? of the point at ¢t = 0 (in Fig. 5.24 we

consider the case of a rotation around a axis orthogonal to the plane of the paper).

The rotation R can be viewed, for instance, as the ordered composition of three
different rotations, firstly Ry, then R, and finally Ry, about the z'-, y/'-, 2’-axes
through angles 6, ¢, 1, respectively. Identifying each rotation with its matrix with
respect to the non-rotating reference frame O’2'y’2’, one has R = RyR,Ry. Note
that in the reference frame with origin at O the position vector of P” is given by

OP" = Up + O"P" = Ug + R(I‘) . (541)
Let us define the displacement vector

u:ﬁzﬁ—ﬁ:ugjtfi(r)—r. (5.4.2)

Assuming that 0, ¢, are “small”, the displacement of any point, with respect to
set Ozyz, is given by the formula

u=1up+aAr, (5.4.3)

where a = 0i + ¢j + 1k indicates the direction of the rotation axis.
Eq. (5.4.3) in scalar form becomes

u=E&+ 20—y (5.4.4)
v=mn—2z20+z¢ (5.4.5)
w=_(+yl —x0p. (5.4.6)

As Eq. (5.4.3) is not immediate, to deduce it we first derive the second order tensor
representing the rotation of a rigid body through an angle o about a rotation axis
containing the origin O" and whose direction is given by a unit vector n. According

to Fig. (5.25), the original position vector is r = O'P and the position vector after

rotation is r' = OP’. Also, A is the intersection point between the plane passing
through P and orthogonal to the rotation axis and the rotation axis itself; B is the

IR
point on AP such that P'B and 1@ are orthogonal. Thus we have
— —
v —=r+ PP =r+ PB+ BP. (5.4.7)
To obtain ﬁ , we observe that

—
— |0’Aja = (r-f) &, (5.4.8)

2|

which yields

S|
I
Q
NI
.

I
=
E/)

=

.

(5.4.9)

notazione coerente per R

non usiamo X 7
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Y

Figure 5.25: la figura & proprio brutta colorare o rifare? serve poi
un commento ma dopo]; Descrizione 1....;da Chap5-Fig-5-25-
rotazione-ab-Bozza.pdf

—
and, as |P'A| = |PA| ( because they lie on a circle), we get

\PB| = |PA| — |PA| cosa. (5.4.10)
Hence, we find
— —
PA PA
PB = |PB|—5 = |PA|(1 - cosa) — = (1 —cosa) PA=  (5.4.11)
IPA| PA
(r-n)n—r)(l—cosa). (5.4.12)

. OO . . . R =5
To obtain BP', we observe that its direction is the same as n Ar and |BP'| =
H .
|PA|sina. So we have

— S, DA — n A\
BP = |BP| = = |PA|sina——" = (AAT)sina, (5.4.13)
D Ar| |r|sin 8
_) .
where we have used the fact that |PA| = |r|sin 3, as one can deduce from the

triangle O’ PA. Substituting the expressions for ﬁ and BP' into Eq. (5.4.7),we

conclude that
r'=r+((rrn)n—r)(l—cosa)+ (DAr)sina (5.4.14)
=rcosa+ (r-n)n(l —cosa)+ (A Ar)sina. (5.4.15)

More explicitly, having denoted by (z1,x2, z3), (2], 24, 23%), (n1, na, n3) the compo-
nents (x,y, z) of r, (2/,y,2') of r' and the components of n, respectively, we can
write

ohi+ ahj + ahk = (xli + 2j + xﬂc) cos a+ (5.4.16)
[(mli + xgj + 13R> . (nli + ’I’ng + n3R> (nli + ngj + 7’Lgl;>i| (1 —cosa) (5.4.17)

~ ~

+ |:(n2.f133 —ngxe) i+ (n3xy — niz3) j + (nixe — noxy) k] sin av, (5.4.18)
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or

21+ 2hj + ahk = (3:11 + 1) + nglA{> cos a+ (5.4.19)

~ ~
.

[(xlnlnl + wongny + x3nang) i+ (r1n1ng + Toneng + x3n3ng) j + (r1ning + xongng + rangng) k
(5.4.20)

~ ~

(1 —cosa) + [(ngl’g — ngx) i+ (ngxy — nix3) j+ (n1xe — noxy) k| sin .
(5.4.21)

We now observe that the i-th component of the vector product n A r, by exploiting
the indexed notation, can be written as

(D AT), = niEnjag.> (5.4.22)
Therefore, Eq. (5.4.15) takes the more concise form
T, = Riyxy, (5.4.23)
where
R, = cosa b, + (1 — cos a) nyny, + 1550, sin a. (5.4.24)

Eq. (5.4.23) expresses the coordinates of the end point of a vector after it has been
rotated through an angle o about an axis in the direction of n.

From expression (5.4.24), one can observe that Ry is the sum of second order
tensors, and thus it is a second order tensor itself.

It is interesting to examine the rotation R, corresponding to the case when we rotate

the block around the Z-axis through an angle ); in this case we have n = R, a =1
and n; = (0,0,1) = d;3. Hence the rotation tensor Ry, can be simplified as NBB

Rik = COS@/) 5zk + (1 — COS 1/)) 5i35k3 + nijk5j3 Sin@/) (5425)
and Eq. (5.4.23) becomes

x; = cos ) dipxr + (1 — cosv) 0;30ksr + Nigky SN Y (5.4.26)
= COSQ/J.fi + (1 — COS lp> (51'3.1’3 + (’fh’gll’l + 7]i321’2> sin 'lb (5427)

22 Tn order to check this identity, we recall that

—1 if 4,7,k is an anti-cyclic permutation of 1,2,3
0 otherwise.

1 if ¢, 7, k is a cyclic permutation of 1,2, 3
Nijk =
We have
NijkMiTh = NilkM1 Lk +Ni26N2Tk+1i3kN3TE = 175121 T2+1i13N1T3+17i21 21 +1i23N2T3+1i31M3T1+1i32N3 T2,
which yields

MjkN; Tk = M12M1T2 + N1137123 + N121N2T1 + M123N2T3 + N131N3%1 + N132N3T2 = N2T3 — N3T2

and, similarly, na;xn;2r = n3w1 — n1xs and n3En;TE = a1T2 — N2T1.
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As a conclusion, we get

¥ =costr —sinyy (5.4.28)
y =sinyx + cosy (5.4.29)
2=z (5.4.30)

In the same way, for n = i, a =60 and for n = j, a = ¢ Eq. (5.4.7), respectively,
becomes

¥ =ux (5.4.31)
Yy = cosfy —sinf z (5.4.32)
2 =sinfy+ coshz (5.4.33)
and
¥ =cos¢px+singz (5.4.34)
v =y (5.4.35)
2= —singr+cosgz (5.4.36)

In the notebook Chap5-12-6D0F-Pitch-Yaw-Roll.nb we compute the matrix R =
Ry RsRy representing the composition of the three rotations and we get

cos g costy cosysinfsing — cosfsiny  cosf cossin @ + sin @ siny
R = | cos¢siny cosfcosy +sinfsingsiny — cosysinb + cosfsin @siny
—sin ¢ cos ¢ sin 0 cos 6 cos ¢
(5.4.37)
At this point, since the rotation angles are infinitesimal, we can use the following
approximations:

cos B, cos ¢, costp ~ 1, sinf ~ 0, sin ¢ ~ ¢, siny =, ¢, 00, p1p =~ 0, (5.4.38)

obtaining
I =y ¢
R= (0 1 -0 (5.4.39)
—¢ 0 1
and thus
1 =y ¢ x =y + z2¢
Re=| v 1 -4 y|l=1yt+ap—20 |. (5.4.40)
- 6 1 z 2 —xp+ yb

Hence, recalling Eq. (5.4.2), we get in conclusion

—y + 2¢
u=uy+R(r)—r=uo+[i,jk] | 2 —20 | =ug+aAr, (5.4.41)
xp + yo

which is exactly Eq. (5.4.3).
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The kinetic energy of the system is

1
T= —/ w’pdV (5.4.42)
2 )y

where V is the total volume of the block.

We denote by rg the position vector of the centre of gravity G of the block with
respect to the origin O and we write r = rg + T (see Fig. 5.24). From Eq. (5.4.3) it
follows that

=1+ &AT, (5.4.43)

as r does not change with time. Let us call theta grande the... io spiegherei
questo passaggio... da vettori a tensori, sto passando ad un estensione per le varie
direzioni?. This yields

U2 =102 + (é) A r)2 + 92U, - (é A r) (5.4.44)
. . 2 . . . .
= Ui+ (&A1) +200- (O 410) +20s- (61F). (5.4.45)
Setting
0 =z -y
A=| -2 0 =z |, (5.4.46)
y —x 0

Eq. (5.4.43) can be written as follows in matrix form:

O Ar = A0. (5.4.47)
Indeed, we have
. i j k
OAr=|0 ¢ 9 (5.4.48)
r oy z
N U R I L
:(¢z—¢y>i+(wx—é’z)j—i-(@y—qu)k | =z 0 = b | = 46.
y —x 0 )
(5.4.49)
Using the fact that A is antisymmetric, we get
. 2 . . AN\T . . .
(@ A r) — A0 A0 = (A@) AO = OTATAD (5.4.50)
where
0 —z 0 z —y 24y -y —xz
ATA = z 0 —x -z 0 =z | = —xy 22422 —yz
-y x 0 y —x 0 —xz —yz Y+ 2P
(5.4.51)

NBB

Setting io inserirei una nota sui tensori o lo facciamo in appendice? con un w~ss
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richiamo? io chiarirei nei conti quando passiamo da vettori a tensori per compattare
la notazione.

Iac _]a:y _Ixz
I=|-L, I, —I. |, (5.4.52)
_Ixz _Iyz [z
where
Ix:/p(y2+z2) dv, Ixy:/pxydv, (5.4.53)
14 1%

and taking into account Eq. (5.4.45) and Eq. (5.4.50), we obtain the following
expression for the kinetic energy:

T:%/prdvz%/vp[wg+ &1 +2Up- (& Axo) +2Up- (6 7F)] av

(5.4.54)
— % [M (52+772+g'2) + @TI®+2/VpUO- (é)/\r0> dV+2/VpU0- (é)/\f) dv] :
(5.4.55)

where M is the total mass of the foundation. Observing that fv prdV = 0, since in

the reference frame R(Og; i,j, lAc) the centre of gravity of the block is the origin, we
get

/VpUO. (@/\f)dV:/fo- (Uo/\®>dV:(U0/\9> -/fodVZO,

(5.4.56)
and thus we conclude that
1 . . e . )
T=- [M <52 P4 42) +OTIO+2MU,- <@ A roﬂ (5.4.57)
2
=3 [M (€472 + ) + L8 + 1,6 + LU* = 2 (Ly06 + 1 90) + L.106)

+oME (zogé - y0¢> + oM (—zoé + xm) + oM (yoé _ xoé)} . (5.4.58)

Let us suppose that the origin O" coincides with the centre of gravity of the
xee foundation; then the expression found for 7' can be simplified as

T=3 {M (52 + P+ C2> L6+ [, + L2 — 2 (]xyeqs + 1.0 + Imw)]
(5.4.59)
Assuming that each supporting spring has spring constants ki, kiy, ki, in the X-Y-
,Z-directions, respectively, the potential energy of the system is given by

N

1

V=3 Zl (kizti® + kiyv® + kizw?) (5.4.60)
1

=52, [’% (€ + 20 = ya)* + by (= 20 + 2:))” (5.4.61)
=1

+ ki (C+ 3 — xi¢)2] , (5.4.62)
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where N is the total number of supporting springs.

The Lagrange equations are

d (0T oT OV
dt (8%) “ g Tog 9 (5.4.63)

where 1 =&, 2 = 1,93 = (,q1a = 0,q5 = ¢, 96 = 1. We have

- d (0T . d (0T 5

= I,¢ — I — 1.0, (5.4.66)

Sl &l s &

= LY — 1,0 — L,o. (5.4.67)

)
) L6 Lyd— 10, (5.4.65)
)
)

In matrix form we can write

M 0 0 0 0 0 1[¢&]
0 M 0 0 0 0 77
d (0T 0 0 M 0 0 0 ¢ )
dt (aC]i) 10 o0 0 I, -I, —I. g |~ Maq. (5.4.68)
0 0 0 —Ly I, -~ ¢
0 0 0 —L —I. L ||

The matrix M is real and symmetric, and it turns out to be diagonal if the products
of inertia vanish.
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Let us now calculate g—;/_. We get

%—Z = S ka4 mo ) =€ ki 4 03 ki — 0> kayi

((;—‘; = Zkiy(n—zi9+xi¢):Uzkiy_ezkiyzi"‘wzkiyxi’

oV
= Z (—kiyzi (n — 20 + 2) + kizyi (C+ vi0 — z:0))

20 i
= =N Z Kiyzi + CZ kizyi + 0 (Z kiyz! + Z kzzy12> -9 Z kizyizi +
- Z kiyZiJCm
A i 9
8_¢ - XZ:( w2 (& + 20 — yih) — kizw; (C 4 yi0 — 2:0))
- 52 Kiz2i — CZ kizz; — 0 Z kizxiy; + ¢ <Z ]fixZiQ + Z kzzx?) +
~0 Y k2,
oV l
% = Z (—kipyi (§+ 20 — yith) + kiyx; (n — 20 + z9))

= £ Z kizyi +n Z Ky, — 0 Z kiyvizi — ¢ Z Fizyizi +
+1 (Z kiya} + Z klxyz2> :

In matrix form, we can write

v
Jq; B
0 > i kiy 0 L 0 2 kiywi
> kiy2i+

0 - kz i kzzz ‘ - kzzzz - kz g

= Zz yZ Zz Y + Zl kzzyf) Zz YiZ Zz yZ 4

Yo kizzi 0 — Y ki = ki S ki — > ki

> kiyi+

- sz kz i 0 - kz ) - kzzzz :
i Zz Y Zz ?Jx Zz yl' z ZZ Yiz 4 zz kzzyr?
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£
n
o | = Ka (5.4.69)
¢
L ¥
The Lagrange equations can be written in matrix form as
Mq+ Kq=Q
where _ -
Fy
Ey
F, .
Q= AL | S (wyt).
M,

We now consider the case in which there is a sussultatory action on the base of the
system along the z-direction, and no driving force Q is applied directly to the mass;

0
0
A, sin (wst) : ,
we denote by qs = 0 the displacement of the base. The equation of
0
0
motion becomes )
Mg+ K(q—qs) =0 (5.4.70)
or, equivalently,
Mq+ Kq = Kqs. (5.4.71)

If we compute K q, by using the definition of K given in Eq. (5.4.69), we can rewrite
the above equation in the following form

0
0
Mg+ Kq= VL e (wst) . (5.4.72)

Zi kzzyz ? 3
- O -
The notebook Chap5-13-6D0F-BaseMotion-Fs-4-Hz-Kz-0.nb shows how the dis-
placement and the rotations around the mass centre of the above system can be
determined. The solutions of the Lagrangian equations are found when the various
parameters are varied and the base is subjected to an harmonic motion. The results
are coherent and in excellent agreement with those obtained with simpler 1-DOF
systems (e.g., Chap5-2-1D0F-Under-Harmonic-Motion-Base.nb. Furthermore, by
exploiting a Finite Element code we have examined the behaviour of the system
in Fig. (5.1) when all the twelve degrees of freedom (six for mass m; and six for
mass my) are taken into account. Again, the simulation indicates that the results
obtained with Mathematica are coherent and worth of consideration.
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