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Chapter 5

Anti-vibration mounting system

chap:vibrating
Coerenza tra Assi-Figure-Equazioni e TODO

1. quando il movimento avviene lungo l’asse verticale z, e.g. in Fig. (
piattaformapiattaforma
5.1), le x

vanno in z e di conseguenza usare z anche nelle eq; nota: aggiungere in Fig,
nella caption e in (

eqsyseqsys
5.0.1), anche F1,2(t)

2. la Fig. (
morizmoriz
5.2) va modficata con un taglio che permette al lato vert di muoversi

lungo x ed aggiungendo xg(t) (oltre ai ẋ1, ...)

3. Fig. (
paralparal
5.3) e Fig. (

seriesseries
5.4) inalterate; la Fig. (

mvertmvert
5.5) ed il testo che segue vogliono

y → z; nota: ora kzst = mg dopo Fig. (
subcase1subcase1
5.6)

4. tutte le x in section (
1DOFFor1DOFFor
5.2.3) si salvano mettendo un riferimento esplicito alla

Fig. (
morizmoriz
5.2); ne segue però che, in section (

groundground
5.2.3.2), dobbiamo y → x, Y → x;

nella section (
complexcomplex
5.2.3.3), per non entrare in conflitto con la X, possiamo dire

che cambiamo leggermente la notazione e lasciamo a secondo membro la y.

5. per quanto riguarda la section (
2DOF2DOF
5.3), per salvare il testo, ruotiamo Fig. (

2m3k2m3k
5.14),

Fig. (
2m3kbis2m3kbis
5.15), Fig. (

firstmfirstm
5.16) Fig. (

secondmsecondm
5.17)

6. per le Fig. (
plat2dofplat2dof
5.20) e Fig. (

nodinodi
5.21) x→ z; attenzione, ho preparato nuovi schizzi

per essere coerenti con i valori nel nuovo nb (Chap5-Fig5-21- verifica.nb);
anche il grafico nel nb relativo alla Fig. (

sposCGsposCG
5.22) va ritoccato

7. in Fig. (
vibrazionivibrazioni
5.24) bisogna cambiare solo y → z nella figura; nella caption atten-

zione, ora ruota intorno a y etc...

8. Conclusione: a me pare la soluzione meno indolore, ma manca anche il placet
di MD per la rotazione delle figure Fig. (

2m3k2m3k
5.14), Fig. (

2m3kbis2m3kbis
5.15), Fig. (

firstmfirstm
5.16) e

Fig. (
secondmsecondm
5.17)

9. ============= TODO sparsi ==============

10. dire che in questo capitolo usiamo le { }

11. p195 OK NBB (+2): il rosso, tolto!

12. p195 OK NBB In this case... in rosso; togliere!
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4 Anti-vibration mounting system

13. p195 OK NBB (-4): il rosso; togliere!

14. p196 nota 3, su frequency content; ora è un lusso; togliere!

15. p196 nota 4: richiesta NBB; OK, spiegato! discrete

16. p196 OK NBB, (-2) dopo section (
ElementElement
5.1): modificato! e togliere! il rosso

17. p197 in Fig. (
morizmoriz
5.2): manca xg(t); ẋ invece della barretta; decidere come indicare

il ground, coerente con le altre figure (
piattaformapiattaforma
5.1), (

paralparal
5.3), (

seriesseries
5.4), (

mvertmvert
5.5), (

2m3k2m3k
5.14), (

2m3kbis2m3kbis
5.15),

(
firstmfirstm
5.16), (

secondmsecondm
5.17), (

plat2dofplat2dof
5.20), (

nodinodi
5.21)

18. p197 nota 6, per Hooke NBB nota storica, indicato! rif e tolto! il rosso

19. p197 OK NBB (-6), The work; togliere! il rosso

20. p197 nota NBB (pdp), togliere! perché xg(t) comparirà in Fig. (
morizmoriz
5.2)

21. p199 nota 7 (pdp) ; GZ, aggiunto!

22. p201, aggiunto! rif a Puri in nota 8

23. p201 nota MD e NBB; è ideale: neanche nel vuoto siderale, in quanto trascura
l’attrito intrinseco interno; lasciare inalterato od aggiungere una nota in ideal
conditions ?

24. p202 la Fig. (
subcase1subcase1
5.6) forse andrebbe meglio metterla insieme a Fig. (

subcase1subcase1
5.6), Fig. (

subcase2subcase2
5.9),

Fig. (
subcase3subcase3
5.10), Fig. (

subcase4subcase4
5.11) con un GridArray; in ogni modo sono bruttine; decidere!

25. p202 modificato! dopo If we recall...

26. p202 pdp, nota 9 NBB, molto incerto se fare un rimando alle Navier-Stokes;
toglierei!

27. p202 in Fig. (
deltastdeltast
5.7); 1D - one dimension, decidere!

28. p204 NBB, migliorare la Fig. (
radiciradici
5.8) e rimpolpare?

29. p204 pdp, modificata la frase con rinvio a (
solEQ2solEQ2
5.2.19)

30. p205, nota MD e GZ: non ricordo, toglierei!

31. p206, nota 10 NBB: OK, aggiunti! due esempi (galva e cannon)

32. p207, nota 11, messi! due rif, ¿sceglierne uno?

33. p208, dubbio! se inserire nb (tipo per Balestra, Marocchi con uso di NonLin-
earFit); vedi Fig. (

eq:no11eq:no11
5.2.59); per esempio delcavendish-v7-21May2012-V804.nb

in E-Balestra oppure cavendish-62.nb in E-Marocchi

34. p209, OK alle tre note NBB: i rossi, togliere!

35. p209, qui si ripresenta il problema degli assi indicato in 5 TODO
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36. p209, nota 11; messa! una piccola nota ...da migliorare!

37. p210, dopo (
eq:no11eq:no11
5.2.59), togliere! il marginpar; il nb è quello a pdp Chap5-1-

1DOF...(ma verificare!)

38. p211, (+2) solito problema degli assi

39. p211, nota 12, mettere somewhere una definizione di harmonic; sin(πt) è
harmonic?; ma già prima a p209

40. p212, per nota MD inserito! un the above ...

41. p213, modificato! r >
√

2

42. p213, solito problema notazione assi in (
complexcomplex
5.2.3.3)

43. p215 nel titolo (
2m3k2m3k
5.14) k andato! in springs

44. p216 giusto! il segno in (
LagrangeLagrange
5.3.4); Meiro p255

45. p217 ¿migliorare? l’impaginazione, troppi bianchi

46. p218 OK tre NBB, togliere! i rossi

47. p218, aggiunta appendice R sulle ω; ¿letta e commentata?

48. p219, modificato! in nota 15 il rif al nb ...4DOF-2m2k-...

49. p215, p222, p224 e p225, problema dei pedici + tratteggio del ground in
(
2m3kbis2m3kbis
5.15)e (

firstmfirstm
5.16), (

secondmsecondm
5.17)

50. p225, ...The following graphs... Check il Check delle figure

51. p225, rivedere il commento di NBB Invece di radunare...

52. p226, OK due NBB, togliere! i rossi

53. p227, la Fig. (
plat2dofplat2dof
5.20) è da rifare come scritto nella caption (vedi mio schizzo a

matita); definire il senso positivo di θ; ancora, coerenza tra C.G, in figura e
Cm nel testo

54. p227, check NBB platform angular mass...

55. p227, nota 16; si potrebbbe accennare ad latre coppie di coordinate; gz, da
fare

56. p227, ho girato! (pdp) la frase di NBB; togliere! i rossi

57. p228, invertito! k2 con l2 in (
V60_BV60_B
5.3.78)

58. p228, ho tolto! la nota 19 (inoltre era spostata (?) a p229; abbiamo gà un
rimando alle ω
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59. p229, la Fig. (
nodinodi
5.21) è da rifare coerente con il nuovo schizzo; dai conti risulta

che non è coerente con IMGC; check! nuovi conti in Chap5-Fig5-21-verifica.nb

60. p230, ora la nota NBB (a metà p circa) è a posto; tolti! i rossi

61. p230, dubbio! se mettere il nb della nota 19; check! i nb in nota 21

62. p231, mancano le caption di Fig. (
sposCGsposCG
5.22) e Fig. (

rotCGrotCG
5.23); (gz)

63. p231, controllare! le conclusioni (pdp, -2)

64. p232, non capisco nota NBB (+3)

65. p232, la Fig. (
vibrazionivibrazioni
5.24) va ritoccata: con grigi diversi, anche per i CG; manca il

vettore PP“; etc... dovrebbe ruotare intorno a y se accettiamo proposta al
punto 7 (rosso)

66. p232, OK nota NBB (-2), toglere! il rosso

67. p233, attenzione a R(r) in (
eq:traslOPeq:traslOP
5.4.1) vs Rr in (

RrRr
5.4.40)

68. p233, attenzione a ∧ vs x; vedi anche nota a margine

69. p234, caption in Fig. (
rotazionerotazione
5.25) dopo averla rifinita; cercare modelli in Ward,

credo

70. p235, OK per NBB (pdp), togliere! i rossi

71. p236, OK per NBB In the same..., togliere! i rossi

72. p237, nota in rosso NBB; è un problema di notazione, bisogna decidere tra
α,U,Θ, ...; ¿perché non lasciamo α ?

73. p238, nota NBB (+3), ritorna il problema sui tensori; a me pare illuminante
il caso del tensore di Inerzia (vedi section 14 in Brennon)

74. p238, OK per NBB (-2), togliere! i rossi

75. p241, è chiaro il collegamento con FEM?; inoltre, verificare! l’aggancio con
Ansys (vedi Chap3 Ela)

76. p241 (-1), togliere! i rossi
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In the Introduction, the small double arrow in Fig. (
Xint-OptXint-Opt
??) indicates that the movement

of the analyzer has to satisfy two conditions. First, the ρ and θ angles (pitch NBB

and yaw, respectively) must be controlled accurately, i.e., the maximum ∆ρ and
∆θ admissible must be kept within 1 nrad and 1 µrad, respectively1. Second,
the parasitic vibrations caused by several sources of mechanical and/or acoustic
noise, must not perturb the signals monitored by the four detectors. It is therefore
mandatory to design an anti-vibration mounting (

Rao
[?],

Thor
[?]) to protect the kernel of

the experiment and avoid the corrugations of the x-ray and optical fringes.

To give an idea of a possible assembly forming an anti-vibration mounting, we
show in Fig. (

piattaformapiattaforma
5.1) a simplified model of a two-degree-of-freedom system in which

k1

k2

m2

m1

c2

c1

z2(t)

z1(t)

zg(t)

Figure 5.1: Two-degree of freedom anti-vibration mounting system. The elastic
supports (springs) are characterized by the stiffness coefficient k
and the dampers by the viscosity coefficient c. x1(t), x2(t) denote
the displacement of the masses from their condition of equilibrium,
along the vertical axis x; the movement of the ground is described
by xg(t); Chap5-Fig-5-1-piattaforma.pdfpiattaforma

the mouvement of the masses m1(t),m2(t), induced by the ground motion xg(t), is
confined along the vertical direction and no rotations are allowed. The system may
therefore be described by the following equations[
m1 0
0 m2

]{
ẍ1
ẍ2

}
+

[
c1 + c2 − c2
− c2 c2

]{
ẋ1
ẋ2

}
+

[
k1 + k2 − k2
− k2 k2

]{
x1
x2

}
=

{
k1xg + c1ẋg

0

}
.

(5.0.1) eqsys

where x1(t), x2(t) denote the displacements of the massesm1,m2 from their condition
of equilibrium, the constants k1, k2 represent the spring (or stiffness) constants NBB

and c1, c2 are called coefficients of viscous damping2. The search of the solutions of
the above equations aims to reduce the ratio x2(t)/xg(t) to the smallest (possible)
value by choosing adequately the quantities m, k and c and taking into account

1the remaining ∆ψ roll angle is easily kept within 1 mrad
2the mechanism by which the vibration energy is gradually converted into heat or sound can

be modelled in different ways; here we consider only the damping arising when, for example, a
fluid flows around a surface
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the frequency content3 of the perturbing signal xg(t). Consequently, we start by
giving in section

ElementElement
5.1 some simple considerations on the elements constituting a

discrete mechanical system4. Then, in section
sec:vibnocsec:vibnoc
5.2.1, we consider the response of a

single degree of freedom (1-DOF) when no external excitation is present; for this
reason, we speak about free response. In section

1DOFFor1DOFFor
5.2.3 we examine the response

of the same system when the excitation is in the form of initial displacements or
initial velocities or both; the excitation can also depend on forces which persist for
an extended period of time; we speak in this case of forced response. The study
of the influence of the ground motion is particularly important because we derive
a relationship between the natural frequency of the anti-vibration mounting and
the lowest frequency of xg(t) in order to have a reduction of the amplitude of the
disturbing signal. In section

2DOF2DOF
5.3 we consider two-degree-of-freedom systems, either

when two masses m1,m2 can translate only along the vertical axis, or when a single
mass can translate along the vertical axis and rotate around its centre of mass. Two
methods, based on Newton’s second law and on Lagrange equations, will be used
to derive the governing equations and to consider the relevant natural frequencies.
Finally, in section

6DOF6DOF
5.4 we examine the dynamic response of a rigid body (in practice,

a 4200-kg concrete block) representing an anti-vibrating mounting characterized
by six degrees of freedom; we use a matrix formulation and the solution of the
corresponding differential equations are illustrated in a Mathematica notebook and
compared with the results obtained through a finite element code.

Several notebooks illustrate different methods either to find out the natural frequen-
cies of the system or to investigate the dependence of the solution of the differential
equations on the parameters which characterize the system. Although the given
examples focus the attention on basic concepts which are preparatory to more
complex situations, they can supply useful information and hints during the design
phase.

5.1 Elements of a vibratory system
Element

To predict the dynamical behaviour of a system governed by Eq .(
eqsyseqsys
5.0.1), it is

NBB like that mi sembra
pesante convenient to start at the beginnings by introducing some elementary concepts.

NB Therefore, let us consider in Fig. (
morizmoriz
5.2) the elements of one of the simplest vibratory

systems.

3qui ci vorrebbe un rimando ad una appendice dove si dice come ricava lo spettro, pensiamoci
se avremo tempo

4With discrete we refer to a large class of systems which can be described by lumping their
masses and moments of inertia
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k

c

k
x(t)xg(t)

x1 x2

c
ẋ1 ẋ2

F (t)
m

Figure 5.2: Elements of a mass-spring system in horizontal position; k, c,m
denote the spring, the damper (dashpot) and the mass, respec-
tively; F (t) and xg(t) indicate excitations; Chap5-Fig-5-2-moriz-ab-
Bozza.pdfmoriz

The three basic elements, the mass, the spring and the damper are represented in a
rather idealized way. If the mass m is assumed to be a rigid body, it represents the
coupling between force Fm and acceleration ẍ according to Newton’s law of motion

Fm = mẍ. (5.1.1)

The spring k is assumed to be elastic and of negligible mass5. A spring force Fs
exists if the spring is extended or compressed, that is, when there is a relative
displacement between the two ends x1 and x2 of the spring. If the spring deformation
is proportional to the spring force, the spring obeys Hooke’s law6

NBB

Fs = k(x2 − x1), (5.1.2) spri

where the constant of proportionality k is called stiffness or spring constant. The
units of k are newton per meter (N/m).

The element relating forces to velocities is assumed to be massless and is generally
known as viscous damper or dashpot. In practice, it can consist of a piston fitting
loosely in a cylinder filled with viscous fluid flowing around the piston. If the
damping force Fd is proportional to the velocities ẋ1 and ẋ2 of the ends of the
dashpot, we can write

Fd = c(ẋ2 − ẋ1), (5.1.3) dash

where the constant of proportionality is called coefficient of viscous damping c.
The units of c are newton · second per meter (N s/m). The work done by moving NBB

the dashpot is converted into heat, so the damping element cannot be considered
conservative.

The excitations of the system from its rest position can be given in the form of
initial displacements and velocities, or in the form of externally applied forces to
the mass F (t) and/or to the base xg(t). per base intendiamo la

parete di sinistra?
5also damping, due to internal friction, is negligible
6 The Hooke’s law is named after the British physicist Robert Hooke (1635-1703) and was

published as the solution Ut tensio sic vis of an anagram. For further details, see section (
stre-strastre-stra
??)
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Even if the previous discussion deals with translational motion, analogous relation-
ships can be derived for systems undergoing torsional vibrations.

5.1.1 Equivalence of Systems

Many other systems composed by spring and masses can be reduced to the simple
system of Fig. (

morizmoriz
5.2), thus representing an equivalent system to be studied. The

equivalence may be achieved by combining several springs into a single equivalent
spring. We can distinguish two main cases.

Case 1: Springs in parallel

When a force F is applied to the two springs k1 and k2 in Fig. (
paralparal
5.3), the system

k1 k2

k1

k1

k2

k2

(c)

F

k1δst k2δst

δst

F

(a) (b)

Figure 5.3: Springs in parallel. Rao p24; da Chap5-Fig-5-5-paral-ab-Bozza.pdfparal

undergoes a static deflection δst and two equivalent reactions F1 = k1δst and
F2 = k2δst are generated. Hence, if we denote by keq the stiffness of an equivalent
spring representing the combined effect of k1 and k2, the equilibrium equation

F = keqδst = k1δst + k2δst (5.1.4)

yields

keq = k1 + k2. (5.1.5)

Case 2: Springs in series

Next we consider the two spring in Fig. (
seriesseries
5.4). Under the action of the force F ,

springs k1 and k2 undergo elongations δ1 and δ2, respectively. Since both springs
are subjected to the same force F , we have

F = k1δ1F = k2δ2. (5.1.6) k1k2

If keq represents the equivalent spring constant, then we must have

F = keqδst, (5.1.7) keq

and, from Eq. (
k1k2k1k2
5.1.6) and Eq. (

keqkeq
5.1.7), we get

keqδst = k1δ1 = k2δ2 (5.1.8)



5.2 Systems with a Single Degree of Freedom 11

k1

k2

k1

k2

d1
F

k2

F

k1

δ1

δ2

F = k2δ2

F = k1δ1

F

(c)(a) (b)

F

δst

Figure 5.4: Springs in series. Rao p25; da Chap5-Fig-5-6-series-ab-Bozza.pdfseries

or

δ1 =
keqδst
k1

and δ2 =
keqδst
k2

. (5.1.9)

If we substitute these values into the equation δst = δ1 + δ2, we obtain

δst =
keqδst
k1

+
keqδst
k2

(5.1.10)

and we can write
1

keq
=

1

k1
+

1

k2
(5.1.11)

5.2 Systems with a Single Degree of Freedom
1DOF

From a general point of view, the equation governing the motion of the system in
Fig. (

morizmoriz
5.2), using Newton’s second law applied to the forces acting on the mass m,

can be written as
mẍ(t) = F (t)− Fs(t)− Fd(t) (5.2.1)

and, using Eq. (
sprispri
5.1.2) and Eq. (

dashdash
5.1.3), we have

mẍ(t) + cẋ(t) + kx(t) = F (t), (5.2.2) New1

having assumed that the spring is weightless.7 The static equilibrium position of
the system, in the absence of external forces, coincides with the position in which
the spring is unstretched.

When the spring is stretched, the stored elastic potential energy can be found by
calculating the work necessary to obtain the given stretching x = x2 − x1, that is

Uela = −
∫ x

0

Fs dx. (5.2.3)

7We shall keep this assumption in the following
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In the case of a hookean linear spring, we get

Uela = −
∫ x

0

(−kx)dx =
1

2
kx2. (5.2.4)

If we were dealing with the system of Fig. (
mvertmvert
5.5), where the force of gravity has to

be considered, we would reach a slightly different conclusion.

k
k

k

m

m

m

zst

z
ztot

Figure 5.5: A mass-spring system in vertical position; appunti miei; da Chap5-
Fig-5-3-mvert-ab-Bozza.pdfmvert

On the left of Fig. (
mvertmvert
5.5) we have omitted for simplicity the viscous effects and

the spring k, as already said, is assumed weightless. At the center, the mass m
hangs at the lower end of the spring and reaches its static equilibrium position
when mg = kyst. On the right of Fig. (

mvertmvert
5.5), the mass is further deflected a distance

y from its static equilibrium position; therefore, the application of the Newton’s
second law gives

mÿtot = mg − k(yst + y). (5.2.5)

If we remember that ytot = yst + y so that ÿtot = ÿ, we can write

mÿ = mg − kyst − ky = −ky. (5.2.6) eqvert

We are now interested in evaluating the net potential energy of the system when
the mass is extended from the equilibrium position yst to the deflected position ytot.
The gain of elastic energy is given by

Uela =
1

2
ky2tot −

1

2
ky2st =

1

2
ky2st +

1

2
ky2 + kysty −

1

2
ky2st =

1

2
ky2 +mgy. (5.2.7)

At the same time, the gravitational potential energy due to the change in elevation
of the mass amounts to Ugrav = −mgy. Therefore,

Usis = Uela + Ugrav =
1

2
ky2 +mgy −mgy =

1

2
ky2, (5.2.8)

and the net potential energy of the entire system depends only upon the stretching
of the spring from its equilibrium position. We conclude that when a mass oscillates
along a vertical direction, we can ignore the effect of gravity, provided that we
measure its displacement y from its static equilibrium position. When damping
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elements and external forces are taken into account, the equation of motion describ-
ing the vertical system will be the same as the one we found for the horizontal one.
The class of systems whose motion can be studied by means of Eq. (

New1New1
5.2.2) has a

single degree of freedom, namely, the variable y(t) or x(t). Systems with a single
degree of freedom will be the main subject of this section.
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5.2.1 Free vibrations without damping
sec:vibnoc

If we set c and F (t) equal to zero in Eq.
New1New1
5.2.2, the equation of motion becomes

mẍ(t) + kx(t) = 0 . (5.2.9) eq:freendeq

In order to solve the above equation we postulate solutions of the form

x(t) = C est , (5.2.10) eq:freendsol

where C and s are constants to be determined. If we substitute Eq. (
eq:freendsoleq:freendsol
5.2.11) into

Eq. (
eq:freendeqeq:freendeq
5.2.9) we shall find

s1,2 = ±
(
− k
m

)1/2

= ±i ωn , (5.2.11) eq:freendsol

where

ωn = 2πf =

(
k

m

)1/2

(5.2.12)

is known as the natural angular frequency of the system, that is the frequency at
which the system naturally oscillates when perturbed from its static equilibrium
position8 . The general solution of the differential equation is obtained by combining

MD: NBB corretto? GZ
neanche nel vuoto siderale,

rimane l’attrito interno
the two particular solutions we just found (the eigenfunctions of the system)

x(t) = C1e
iωn + C2e

−iωn . (5.2.13) eqC1C2c

By using the identities
e±iωnt = cosωnt± i sinωnt, (5.2.14)

Eq. (
eqC1C2ceqC1C2c
5.2.13) becomes

x(t) = K1 cosωnt+K2 sinωnt, (5.2.15) IC0

where the values of the constants K1 and K2 depend on the initial displacement
x(0) and initial velocity ẋ(0). For example, if x(0) = x0 and ẋ(0) = ẋ0, we have
from Eq. (

IC0IC0
5.2.15)

x(0) = x0 = K1 (5.2.16)

ẋ(0) = ẋ0 = ωnK2 (5.2.17) solIC

and the solution of Eq. (
eq:freendeqeq:freendeq
5.2.9), subjected to the initial conditions (

solICsolIC
5.2.17), is given

by

x(t) = x0 cosωnt+
ẋ0
ωn

sinωnt (5.2.18) solEQ

or, equivalently, by

x(t) =

√
x20 + (

ẋ0
ωn

)2 cos(ωnt− arctan
ẋ0
x0ωn

). (5.2.19) solEQ2

An example of solutions of this kind is given in Fig. (
subcase1subcase1
5.6)

8If we do assume that the spring has a mass M , it can be shown that ω =
√
k/(m+M/3),

(
puri
[?])
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Figure 5.6: Undamped oscillations; da Book-Chap5-AntiVib-Fig&NB/Chap5-
Fig-5-8-zetaeq0.pdfsubcase1

If we recall that for the vertical system of Fig. (
mvertmvert
5.5) kyst = mg, we obtain, for the

natural frequency

f =
1

2π

√
mg

δstm
=

1

2π

√
9.805

δst[mm] · 10−3
≈ 15.76

∆mm

. (5.2.20) deltamm

The simple graphic of Fig. (
deltastdeltast
5.7) shows the dependence of the natural frequency

of the system on the static equilibrium deflection yst expressed in millimetres and
permits to estimate what elongation a spring has to have in its static equilibrium
position to let the perturbed system oscillate with a certain frequency f . For
example, to have a natural frequency of 0.5 Hz (i.e., a natural period of 2 seconds),
the elongation of the spring, when the system is in static equilibrium, must be
about 1 meter.

1 10 100 1000 104D @mmD
0.5
1.0

5.0
10.0

50.0
f @HzD

Figure 5.7: How the natural frequency of a 1D system depends on the exten-
sion of the spring; Book-Chap5-AntiVib-Fig&NB/Chap5-Fig-5-4-
deltastat.nbdeltast

5.2.2 Free vibrations with damping
1DOFDamping

To study the effect of the viscous9 damping c on the solution of Eq. (
New1New1
5.2.2), that NBB

we repeat here for convenience,

mẍ(t) + cẋ(t) + kx(t) = F (t), (5.2.21) New2

9 To calculate c we could refer to the Kelvin-Voigt model using Hagen-Poisuille equation.
Actually the viscoelasticity interpretation is poor because we miss an analytical solution of
Navier-Stokes equation... io l’ho inserita cosi può avere senso un richiamo simile?
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we consider the general case of free vibrations. In absence of external forces,
F (t) = 0, the equation of motion reduces to a homogeneous ordinary differential
equation with constant coefficients. By analogy with the undamped case, we assume
a solution in the form

x(t) = Cest (5.2.22) equno

where C and s are constants to be determined. If we insert this function into
Eq. (

New2New2
5.2.21) we obtain

ms2 + cs+ k = 0, (5.2.23) eqcar

the roots of which are

s1,2 =
−c±

√
c2 − 4mk

2m
=
−c
2m
±
√( c

2m

)2
− k

m
. (5.2.24) radical

These roots give the following solutions of Eq. (
New2New2
5.2.21)

x1(t) = C1e
s1t and x2(t) = C2e

s2t, (5.2.25) C1C2

and therefore the general solution of Eq. (
New2New2
5.2.21) is obtained by a combination of

the two solutions x1(t), x2(t),

x(t) = C1e
s1t + C2e

s2t

more explicitly,

x(t) = C1 e

−c
2m

+

√(
c

2m

)2

− km

t
+ C2 e

−c
2m

−

√(
c

2m

)2

− km

t
,

where C1, C2 are constants to be determined from the initial conditions.

It is convenient to express the above solutions in terms of a dimensionless parameter.
To this end we define the critical damping Cc as the value of the damping constant
c for which the radical in Eq. (

radicalradical
5.2.24) becomes zero(

Cc
2m

)2

− k

m
= 0, (5.2.26)

that is,

Cc = 2m

√
k

m
= 2mωn = 2

√
km, (5.2.27) Cc1

where ωn is the natural frequency of the undamped oscillation, defined in the
previous section. For any damped system, the damping ratio ζ is defined as the
ratio of the damping constant to the critical damping constant

ζ =
c

Cc
(5.2.28) Cc2

If we use Eq. (
Cc2Cc2
5.2.28) and Eq. (

Cc1Cc1
5.2.27) we can write

c

2m
=

c

Cc

Cc
2m

= ζ ωn (5.2.29) Cc3
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and, hence

s1,2 = −ζωn ±
√
ζ2 − 1ωn = (−ζ ±

√
ζ2 − 1)ωn (5.2.30) rad12

Then, the solution of the Eq. (
New2New2
5.2.21), divided by m and with F (t) = 0, takes the

form

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = 0, (5.2.31) New3

with the corresponding solutions

x(t) = C1e

(
−ζ+
√
ζ2−1

)
ωnt + C2e

(
−ζ−
√
ζ2−1

)
ωnt (5.2.32a) eqC1C2aa

=
(
C1e
√
ζ2−1ωnt + C2e

−
√
ζ2−1ωnt

)
e−ζωnt. (5.2.32b) eqC1C2bb

The nature of the solutions s1 and s2 depends on the value of ζ which can be
represented in the complex plane. In Fig. (

radiciradici
5.8) the horizontal and vertical axes

σ1 = σ2

σ1

σ2

0

=

<

(ζ < 1)

σ1(ζ = 0)

σ2(ζ = 0)

σ2(ζ > 1)

(ζ < 1)

(ζ = 1)

σ1(ζ > 1)

Figure 5.8: Rao p134 The semicircle represents the locus of the roots s1 and
s2 when 0 < ζ < 1; rimpolpare !; da Chap5-Fig-5-7-radicis1s2.pdfradici

are chosen as the real and imaginary axes and we see immediately the effect of the
parameter ζ on the behaviour of the system. We can consider quantitatively how
the response of the system depends on the damping ratio.

5.2.2.1 Undamped system (ζ = 0 or c = 0)

In this case, the solutions of the characteristic equation Eq. (
eqcareqcar
5.2.23) are

s1,2 = ±
(
k

m

)1/2

= ±iωn

and x(t) is represented by (
solEQ2solEQ2
5.2.19).
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5.2.2.2 Underdamped system (ζ < 1 or c < Cc)

As the solutions of the characteristic equation are
MD: GZ: nb Mathematica
?

s1,2 =
(
−ζ ± i

√
1− ζ2

)
ωn ,

we can write (
eqC1C2bbeqC1C2bb
5.2.32b) more conveniently as

x(t) = e−ζωnt
(
C1e

i
√

1−ζ2ωnt + C2e
−i
√

1−ζ2ωnt
)

= e−ζωnt
(

(C1 + C2) cos
√

1− ζ2ωnt+ i(C1 − C2) sin
√

1− ζ2ωnt
)

= e−ζωnt
(
C̃1 cos

√
1− ζ2ωnt+ C̃2 sin

√
1− ζ2ωnt

)
= e−ζωnt

(
C̃1 cosωdt+ C̃2 sinωdt

)
,

where ωd =
√

1− ζ2ωn is called the angular frequency of damped vibration and is

always less than the undamped angular frequency ωn. The constants C̃1 and C̃2

can be found by imposing the initial conditions x(0) = x0 and ẋ(0) = ẋ0; we obtain

C̃1 = x0 and C̃2 =
ẋ0 + ζx0ωn

ωd
. (5.2.33)

Hence the solution becomes

x(t) = e−ζωnt

(
x0 cosωdt+

ẋ0 + ζx0ωn
ωd

sinωdt

)
, (5.2.34) eqpiuIC

or, equivalently

x(t) = Ae−ζωnt cos
(√

1− ζ2ωnt− φ0

)
(5.2.35)

where

A =

√
C̃2

1 + C̃2
2 and φ0 = arctan

(
C̃2/C̃1

)
. (5.2.36)

The combined result of a decreasing exponential and a sine wave is a damped sine
wave oscillating in the space between the exponential curve and its mirrored image,
as shown in Fig. (

subcase2subcase2
5.9)
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Figure 5.9: Free vibrations with ζ < 1 Rao 132; Book-Chap5-AntiVib-
Fig&NB/Chap5-Fig-5-9-zetaless1.pdfsubcase2
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5.2.2.3 Critically damped system (ζ = 1 or c = Cc)

In this case the two roots s1 and s2 in Eq. (
rad12rad12
5.2.30) are equal

s1 = s2 = −ωn = − c

2m
= − Cc

2m
(5.2.37)

If we let ζ approach unity in the limit of Eq. (
rad12rad12
5.2.30), we have ωd → 0, cosωdt→ 1,

sinωdt→ ωdt. Hence, the last of Eqs. (
eqC1C2deqC1C2d
5.2.33) yields

x(t) = e−ωnt
(
C̃1 + C̃2ωdt

)
. (5.2.38)

If we apply the initial conditions x(0) = x0 and ẋ(0) = ẋ0, we have

C̃1 = x0

C̃2 = (ẋ0 + x0ωn)/ωd (5.2.39)

and, finally
x(t) = e−ωnt [x0 + (ẋ0 + x0ωn)t] (5.2.40)

which represents an aperiodic response as shown in Fig. (
subcase3subcase3
5.10). It is interesting

to note that, for a given initial excitation a critically damped system reaches the
equilibrium position without oscillating in the fastest way10.
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Cosmesi di Chap5-Fig-5-10-zetaeq1.pdf Ζ = 1 da fare

Figure 5.10: Free vibrations with ζ = 1, Rao 132; Book-Chap5-AntiVib-
Fig&NB/Chap5-Fig-5-10-zetaeq1.pdfsubcase3

5.2.2.4 Overdamped system (ζ > 1 or c > Cc)

The solutions of the characteristic equation Eq. (
eqcareqcar
5.2.23) are

s1,2 =
(
−ζ ±

√
ζ2 − 1

)
ωn < 0 (5.2.41) s22

with s2 � s1. Then the solutions take the form

x(t) =
(
C1e
√
ζ2−1ωnt + C2e

−
√
ζ2−1ωnt

)
e−ζωnt (5.2.42)

10For example, in a balistic galavanometer or in a barrel of a cannon the recoil mechanisms are
critically damped
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with

C1 =
x0 ωn

(√
ζ2 − 1 + ζ

)
+ ẋ0

2ωn
√
ζ2 − 1

(5.2.43)

C2 =
x0 ωn

(√
ζ2 − 1− ζ

)
− ẋ0

2ωn
√
ζ2 − 1

(5.2.44)

An example of a typical solution of this kind is given in Fig. (
subcase4subcase4
5.11)
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Figure 5.11: Free vibrations with ζ > 1 Rao 133; Book-Chap5-AntiVib-
Fig&NB/Chap5-Fig-5-11-zetagreat1.pdfsubcase4

5.2.2.5 Logarithmic decrement

Very often the amount of damping in a given system cannot be evaluated ana-
lytically11. However, in many practical cases in which damping is viscous and
the system is underdamped, we can experimentally observe the rate at which the
amplitude of the free damped vibrations decreases.

If we indicate with t1 and t2 the times corresponding to two consecutive displace-
ments x1 and x2 measured one period apart (e.g., in correspondence of the first two
maxima in Fig. (

DecrLogDecrLog
5.12)),

we can form the ratio

x1
x2

=
Ae−ζωnt1 cos(ωdt1 − φ0)

Ae−ζωnt2 cos(ωdt2 − φ0)
. (5.2.45) eqlog

Because t2 = t1 + Td, where Td = 2π/ωd is the period of the damped vibration, we
have

cos(ωdt2 − φ0) = cos(ωdt1 + 2π − φ0) = cos(ωdt1 − φ0), (5.2.46)

so that Eq. (
eqlogeqlog
5.2.45) reduces to

x1
x2

=
Ae−ζωnt1

Ae−ζωn(t1+Td)
= eζωnTd . (5.2.47) eqlog3

11In the case of a piston of diameter d and length L, with two holes of diameter D, assuming
that the oil has a viscosity η and density ρ, we have a damping constant c = 4πLη(d/D)4 (

Rao
[?],

dima
[?])
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Figure 5.12: Two consecutive maxima of an underdamped system; Meiro p30
a mano; da Chap5-Fig-5-12-DecrLog.pdf; ? mio nb Mathematica
per Balestra-Marocchi ?DecrLog

If we now introduce the notation

δ = ln
x1
x2

= ζωnTd = ζωn
2π√

1− ζ2ωn
=

2πζ√
1− ζ2

(5.2.48) deltaandzeta

with δ known as the logaritmic decrement, we can obtain ζ by measuring two
consecutive displacements x1 and x2; in fact,

ζ =
δ√

(2π)2 + δ2
. (5.2.49) delta

When ζ is small, Eq. (
deltaandzetadeltaandzeta
5.2.48) can be approximated by

δ ≈ 2πζ, (5.2.50)

as illustrated in Fig. (
deltaNLindeltaNLin
5.13)
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Figure 5.13: Dependence of logarithmic decrement with damping; Rao 136 p30;
da Chap5-Fig-5-13-deltaNLin.pdfdeltaNLin
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5.2.3 Forced vibrations
1DOFFor

The amplitude of the damped vibrations considered in the previous section decays
with time and after some time the system comes to rest, because there is a continuous
dissipation of energy. However, it is possible to keep up these vibrations applying aNBB

force or imposing a displacement to the system. When the frequencies of the driving
and driven system are not the same, the amplitude corresponding to the natural
frequency of the oscillator dies out and it begins to oscillate with the frequency of
the impressed excitation. These are called forced vibrations. When the frequencyNBB

of the driving force is near or coincides with the natural frequency of the driven
oscillator, it appears the phenomenon of resonance. In this section we begin the
discussion with simple harmonic excitation12 due to their fundamental nature andNBB

practical applications. The case of a periodic excitation can be reduced to that of a
harmonic excitation. We shall consider two cases: when the excitation is applied
directly to the mass and when the base on which the mass rests is subjected to a
shacking action.

5.2.3.1 Driving force applied directly to the mass m

If the driving function13 is given by F (t) = F0 sinωf t, the equation of motion
MD: qui siamo orizzontali

(
New2New2
5.2.21) becomes

mẍ+ cẋ+ kx = F0 sinωf t, (5.2.51) eq:no2

where ωf is the angular driving frequency. If we divide Eq. (
eq:no2eq:no2
5.2.51) by m and

introduce the damping ratio ζ we obtain

ẍ+ 2ζωnẋ+ ω2
nx =

F0

m
sinωf t. (5.2.52) eq:no4

If we neglect the transient solution, i.e., we limit ourselves to the search of theNBB

steady-state solution, we let the solution of Eq. (
eq:no4eq:no4
5.2.52) have the form

x = X sin(ωf t− ϕ),

which leads to
ẋ = Xωf cos(ωf t− ϕ)

ẍ = −Xω2
f sin(ωf t− ϕ).

From Eq. (
eq:no4eq:no4
5.2.52) we get

−Xω2
f sin(ωf t− ϕ) + 2ζωnXωf cos(ωf t− ϕ) + ω2

nX sin(ωf t− ϕ) =
F0

m
sinωf t,

(5.2.53) eq:no5

and, exploiting the properties of the trigonometric functions,

−Xω2
f (sinωf t cosϕ− cosωf t sinϕ)+ (5.2.54) eq:no6

12A possible definition of simple harmonic motion is: a type of periodic motion where the
restoring force is directly proportional to the displacement of the object, but in the opposite
direction.

13Loosely speaking, since Fourier analysis tells us that any function can be written in terms of
sinusoidal functions, we can limit our discussion with a single term and exploit the principle of
superposition
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+2Xζωnωf (cosωf t cosϕ+ sinωf t sinϕ)+

+Xω2
n(sinωf t cosϕ− cosωf t sinϕ) =

F0

m
sinωf t,

and grouping the common terms we have

sinωf t[−Xω2
f cosϕ+Xω2

n cosϕ+ 2Xζωnωf sinϕ]+ (5.2.55) eq:no7

cosωf t[Xω
2
f sinϕ−Xω2

n sinϕ+ 2Xζωnωf cosϕ] =
F0

m
sinωf t.

Equating the coefficients of cosωf t and sinωf t

X(ω2
n − ω2

f ) cosϕ+ 2Xζωnωf sinϕ =
F0

m
(5.2.56) eq:no8

X(ω2
n − ω2

f ) sinϕ− 2Xζωnωf cosϕ = 0, (5.2.57) eq:no9

and squaring and summing the Eq. (
eq:no8eq:no8
5.2.56) and Eq. (

eq:no9eq:no9
5.2.57) we obtain

X2(ω2
n − ω2

f )
2 + 4X2ζ2ω2

nω
2
f = (

F0

m
)2 (5.2.58) eq:no10

and
(ω2

n − ω2
f ) tanϕ− 2ζωnωf = 0, (5.2.59) eq:no11

from which we deduce the amplitude X inserire un esempio pratico
può avere senso?

X =
F0

m√
(ω2

n − ω2
f )

2 + 4ζ2ω2
nω

2
f

(5.2.60) eq:no12

and the phase

tanϕ =
2ζωnωf
ω2
n − ω2

f

. (5.2.61) eq:no13

Eq. (
eq:no12eq:no12
5.2.60) can be simplified if we put r = ω

ωn

X =
F0

m√
ω4
n

[ (
ω2
n−ω2

f

ω2
n

)2
+ 4ζ2

ω2
nω

2
f

ω4
n

] =
F0

m

ω2
n

√
(1− r2)2 + 4ζ2r2

= (5.2.62) eq:no14

F0

m
k
m

√
(1− r2)2 + 4ζ2r2

=
F0

k√
(1− r2)2 + 4ζ2r2

;

We observe that in the limit r2 � 1, the response is independent on the mass; for
r = 1, the amplitude of the resonance depends inversely on the damping constant ζ
and for r2 � 1 the response is independent on the spring constant. Analogously,
we have

tanϕ =
2ζ ωn

ω2
n
ωf

ω2
n−ω2

f

ω2
n

=
2ζr

1− r2
. (5.2.63) eq:no15

Therefore, if we consider only the steady-state solution we can write

x(t) =
F0

k√
(1− r2)2 + 4ζ2r2

sin

(
ωf t− arctan

2ζr

1− r2

)
. (5.2.64) eq:no16

The notebook Chap5-1-1DOF-Under-Harmonic-Force.nb illustrates the behaviour
of the amplitude X and phase ϕ for different values of r.
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5.2.3.2 Influence of ground motion
ground

In many instances, for example during the execution of very accurate measurements,
MD: qui siamo verticali

it is necessary to consider the effects of the vibrations of the base on which the
system rests. Let Ys(t) = Y sinωf t denote the displacement of the base and y(t)
the displacement of the mass from its static equilibrium position at time t. The
equation of motion can be written in the form

mÿ + c(ẏ − Ẏs) + k(y − Ys) = 0. (5.2.65) eq:no30

The following relations

Ys = Y sinωf t

Ẏs = Y ωf cosωf t

yield
mÿ + cẏ + ky = kY sinωf t+ cωfY cosωf t, (5.2.66) eq:no31

or, equivalently,

ÿ + 2ζωnẏ + ω2
ny = ω2

nY sinωf t+ 2ζωnωfY cosωf t. (5.2.67) eq:no32

This means that the excitation of the base is equivalent to applying two different
harmonic driving forces to the free system14. Then, by splitting Eq.

eq:no32eq:no32
5.2.67 into two

equivalent equations, we can solve them separately exploiting the results obtained
in Eq. (

eq:no16eq:no16
5.2.64). Therefore we have,

Eq. A: ÿ + 2ζωnẏ + ω2
ny = ω2

nY sinωf t

Eq. B: ÿ + 2ζωnẏ + ω2
ny = 2ζωnωfY cosωf t.

With the help of Eq. (
eq:no14eq:no14
5.2.62), since ω2

nY is equivalent to F
m

, in the case of Eq. A
the amplitude of the steady-state solution is

ω2
nY

ω2
n

√
(1− r2)2 + 4ζ2r2

=
Y√

(1− r2)2 + 4ζ2r2
. (5.2.68) eq:no33

and, in the case of Eq. B, being 2ζωnωf equivalent to F/m, the amplitude is15

2ζωnωfY

ω2
n

√
(1− r2)2 + 4ζ2r2

=
2ζrY√

(1− r2)2 + 4ζ2r2
. (5.2.69) eq:no34

If we apply the principle of superposition, the solution of Eq. (
eq:no32eq:no32
5.2.67) is

Y√
(1− r2)2 + 4ζ2r2

sin(ωf t− ϕ1) +
2ζrY√

(1− r2)2 + 4ζ2r2
cos(ωf t− ϕ1) (5.2.70) eq:no35

where ϕ1 is obtained from Eq. (
eq:no15eq:no15
5.2.63).

14but the sum of two harmonic forces is still an harmonic force
15here we observe that if the right hand side of Eq. (

eq:no2eq:no2
5.2.51) is F0 cosωf t, it is sufficient to

replace F0 sinωf t in Eq. (
eq:no16eq:no16
5.2.64)
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Letting

Ȳ =
Y√

(1− r2)2 + 4ζ2r2
(5.2.71) eqnew

into the Eq. (
eq:no35eq:no35
5.2.70), we obtain

Ȳ sin(ωf t− ϕ1) + 2ζrȲ cos(ωf t− ϕ1) (5.2.72) eq:no36

that, as we are going to show, can be written also as
MD: definizione di Y ?

Y ∗ sin(ωf t− ϕ̄). (5.2.73) eq:no37

Now, to find out the relationship between the above Y ∗ and Y , we exploit again the
properties of the trigonometric functions in equating Eq. (

eq:no36eq:no36
5.2.72) and Eq. (

eq:no37eq:no37
5.2.73)

Ȳ (sinωf t cosϕ1 − cosωf t sinϕ1) + 2ζrȲ (cosωf t cosϕ1 + sinωf t sinϕ1) =

Y ∗(sinωf t cos ϕ̄− cosωf t sin ϕ̄) .
(5.2.74) eq:no38

By grouping the terms sinωf t and cosωf t

(Ȳ cosϕ1 + 2ζrȲ sinϕ1) sinωf t+ (2ζrȲ cosϕ1 − Ȳ sinϕ1) cosωf t =

(Y ∗ cos ϕ̄) sinωf t− (Y ∗ sin ϕ̄) cosωf t ,
(5.2.75) eq:no39

we obtain

Ȳ cosϕ1 + 2ζrȲ sinϕ1 = Y ∗ cos ϕ̄ (5.2.76) eq:no40

2ζrȲ cosϕ1 − Ȳ sinϕ1 = −Y ∗ sin ϕ̄. (5.2.77) eq:no41

By squaring and summing the above equations, we have

Ȳ 2 + 4ζ2r2Ȳ 2 = Y ∗2, (5.2.78) eq:no42

and
Ȳ 2(1 + 4ζ2r2) = Y ∗2 (5.2.79) eq:no43

Recalling the value of Ȳ in Eq. (
eqneweqnew
5.2.71) we get the amplitude of the oscillation

Y ∗2 =

(
Y√

(1− r2)2 + 4ζ2r2

)2

(1 + 4ζ2r2) =
Y 2(1 + 4ζ2r2)

(1− r2)2 + 4ζ2r2
. (5.2.80) eq:no44

Therefore, the amplitude Y ∗ becomes

Y ∗ = Y

√
(1 + 4ζ2r2)

(1− r2)2 + 4ζ2r2
. (5.2.81) eq:no45

Furthermore, from Eq. (
eq:no40eq:no40
5.2.76) and Eq. (

eq:no41eq:no41
5.2.77), we have

− tan ϕ̄ =
2ζr cosϕ1 − sinϕ1

cosϕ1 + 2ζr sinϕ1

=
2ζr − tanϕ1

1 + 2ζr tanϕ1

=
2ζr − 2ζr

1−r2

1 + 2ζr 2ζr
1−r2

= (5.2.82) eq:no46
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2ζr − 2ζr3 − 2ζr

1− r2 + 4ζ2r2
=

−2ζr3

1 + (4ζ2 − 1)r2
,

from which

tan ϕ̄ =
2ζr3

1 + (4ζ2 − 1)r2
. (5.2.83) eq:no47

Finally, the solution of Eq. (
eq:no30eq:no30
5.2.65) takes the form

y(t) = Y

√
(1 + 4ζ2r2)

(1− r2)2 + 4ζ2r2
sin

(
ωf t− arctan

2ζr3

1 + (4ζ2 − 1)r2

)
. (5.2.84) eq:no48

The notebook Chap5-2-1DOF-Under-Harmonic-Motion-Base.nb illustrates the be-
haviour of the amplitude X and phase ϕ for different values of r. It illustrates why
an anti-vibration mounting must have a natural angular frequency ωn such that the
ratio r = ωf/ωn is >

√
2 in order to reduce the amplitude of the ground motion.

5.2.3.3 Complex vector representation of harmonic motion
complex

We can obtain the response to harmonic excitation also by using complex vector
MD: MD-GZ: Nota: anche
qui cambierei ẍ con z̈ e di

conseguenza y con Y
oppure Z; da discutere;

inoltre, userei ωf invece di
ω.

representation of the excitation and of the response itself. Then, if in the case of
sinusoidal excitation we introduce in the right hand side of the slightly modified
Eq (

eq:no32eq:no32
5.2.67),

ẍ+ 2ζωnẋ+ ω2
nx = ω2

ny + 2ζωnẏ, (5.2.85) eq:no49

the notation
y = Y sinωt ≡ (=Y eiωt), (5.2.86)

the response of the system can be represented by

x(t) = X(iω)eiωt (5.2.87) eq:no50

ẋ(t) = iωX(iω)eiωt (5.2.88) eq:no51

ẍ(t) = −ω2X(iω)eiωt. (5.2.89) eq:no52

By substituting these expressions into Eq. (
eq:no49eq:no49
5.2.85), we have

− ω2Xeiωt + 2iζωωnXe
iωt + ω2

nXe
iωt = ω2

nY e
iωt + 2iζωωnY e

iωt (5.2.90) eq:no53

from which we obtain the amplitude X(iω)

X(iω) = Y
ω2
n + 2iζωωn

ω2
n + 2iζωωn − ω2

= Y
1 + 2iζ ω

ωn

1 + 2iζ ω
ωn
−
(
ω
ωn

)2 , (5.2.91) eq:no54

that can be transformed into the form

X(iω) = a(ω) + ib(ω) =
√
a2 + b2eiϕ. (5.2.92) eq:no55

We can now calculate the modulus of X(iω)

|X(iω)|2 = X(iω) ·X∗(iω) = Y
1 + 2iζr

(1− r2) + 2iζr
·Y

1− 2iζr

(1− r2)− 2iζr
= (5.2.93) eq:no56
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Y 2 1 + 4ζ2r2

(1− r2)2 + 4ζ2r2
.

For the phase, after some manipulations in Eq. (
eq:no54eq:no54
5.2.91),

X(iω) = Y
(1 + 2iζr)(1− 2iζr − r2)

(1− r2)2 + 4ζ2r2
= Y

1− 2iζr − r2 + 2iζr + 4ζ2r2 − 2iζr3

(1− r2)2 + 4ζ2r2
=

(5.2.94) eq:no57

Y
[ 1− r2 + 4ζ2r2

(1− r2)2 + 4ζ2r2
− i 2ζr3

(1− r2)2 + 4ζ2r2

]
,

we get

tanϕ =
−2ζr3

1 + (4ζ2 − 1)r2
(5.2.95) eq:no58

or

ϕ = − arctan
2ζr3

1 + (4ζ2 − 1)r2
. (5.2.96) eq:no59

Finally, we obtain again the solution of Eq. (
eq:no49eq:no49
5.2.85)

x(t) = =[X(iω)eiωt] = |X(iω)| =[eiϕeiωt] = |X(iω)| sin(ωt+ ϕ) = (5.2.97) eq:no60

Y

√
1 + 4ζ2r2

(1− r2)2 + 4ζ2r2
sin

(
ωt− arctan

2ζr3

1 + (4ζ2 − 1)r2

)
.
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5.3 Systems with Two Degrees of Freedom
2DOF

We can now make a further step towards the system depicted in Fig. (
piattaformapiattaforma
5.1) which,

we repeat, is a simplified model of a real anti-vibration mounting. For pedagogic
reasons we shall consider two distinct two-degree-of-freedom systems. The first
(section

2m3k2m3k
5.14) is relevant to the case of two masses m1,m2 which can move only

along the vertical axis and the governing equations will be derived through the
second Newton’s law and the Lagrange method; these equations are preparatory to
the analysis of the natural modes (section

FreeVibFreeVib
5.3.1.3). In the second system (section

2DOF1m2DOF1m
5.3.2) we have only one mass m but a rotation θ around one axis passing through
its centre of mass is allowed. Several notebooks in this Chapter examine the effects
of the damping coefficient and the dependence of the response on the frequency
of the disturbing ground motion xg(t). Some numerical examples simulates the
response when the elements have definite values.

5.3.1 Two masses and three springs
2m3k

We start with the more symmetric system of Fig. (
2m3k2m3k
5.14), owing to the presence of

an additional spring k3 and damper c3 which make slightly simpler the analysis of
the eigenfrequencies and eigenmodes.

0 0

m1 m2

c1 c2 c3

k1 k2 k3

x2x1

F1(t) F2(t)

Figure 5.14: A two-degree-of-freedom system; correggere in figura due pedici
di c; Chap5-Fig-5-14-2m3k-ab-Bozza.pdf2m3k

At any instant of time, let the displacement of the masses be x1 and x2 from the
position of equilibrium. The displacement is assumed positive when it is directed
along the axis of gravity and the damping is viscous. We can follow two paths to
write the equations of motion.

5.3.1.1 Newton’s method
Newt

We apply Newton’s second law to each of the masses. For example, the spring k1
exerts a force −k1x1 on mass m1 and the spring k2, owing to the elongation x1−x2,
exerts a force −k2(x1− x2) again on m1. Analogously, the dashpot c1 exerts a force
−c1ẋ1 on mass m1 and the dashpot c2, owing to the difference of velocities ẋ1 − ẋ2,
exerts a force −c2(ẋ1 − ẋ2) again on m1. If we consider also the external forces
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F1(t) and F2(t), the equation on motion for the masses m1 and m2 are

m1 ẍ1 + c1 ẋ1 + c2 (ẋ1 − ẋ2) + k1 x1 + k2 (x1 − x2) = F1 (t) (5.3.1a)

m2 ẍ2 + c3 ẋ2 + c2 (ẋ2 − ẋ1) + k3 x2 + k2 (x2 − x1) = F2 (t) (5.3.1b)

nw1

or, in matrix notation,

[
m1 0
0 m2

]{
ẍ1
ẍ2

}
+

[
c1 + c2 − c2
− c2 c2 + c3

]{
ẋ1
ẋ2

}
+

[
k1 + k2 − k2
− k2 k2 + k3

]{
x1
x2

}
=

{
F1(t)
F2(t)

}
(5.3.2)[

M
] {

ẍ
}

+
[
C
] {

ẋ
}

+
[
K
] {

x
}

=
{
F (t)

}
. (5.3.3) matr1

5.3.1.2 Lagrange’s method
Lagr

Lagrange’s equations, for non conservative forces and for n degrees of freedom, can
be stated as

d

d t

∂ T

∂ q̇i
− ∂ T

∂ qi
+
∂ V

∂ qi
= Qi, i = 1, 2, ..., n (5.3.4) Lagrange

where qi and q̇i are the generalized coordinates and velocities, respectively. Qi

represent non conservative forces and some of them deserve special consideration,
namely, those those due to viscous damping. If the damping forces are proportional
to the generalized velocities, the Rayleigh’s dissipation function, in the form

R =
1

2

n∑
r=1

n∑
s=1

crsq̇rq̇r (5.3.5)

can be introduced. In this way, as we can derive viscous damping forces in a manner
analogous to that for conservative forces, we can write

Qi = −∂R
∂q̇i

, i = 1, 2... (5.3.6)

and Eq. (
LagrangeLagrange
5.3.4) becomes

d

d t

∂T

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
+
∂R
∂q̇i

= Qi, i = 1, 2, ... (5.3.7) Lagrange2

where this time the terms Qi denote only impressed forces.

In the case of Fig. (
2m3k2m3k
5.14) we

T =
1

2
m1 ẋ

2
1 +

1

2
m2 ẋ

2
2 (5.3.8) T

R =
1

2
c1 ẋ

2
1 +

1

2
c2 (ẋ21 − ẋ22) +

1

2
c3 ẋ

2
2 (5.3.9) R
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V =
1

2
k1 x

2
1 +

1

2
k2 (x1 − x2)

2 +
1

2
k3 x

2
2. (5.3.10) V

If we introduce these expressions into Eq. (
Lagrange2Lagrange2
5.3.7), and derive with respect to x1, we

obtain

d

d t

(
∂T

∂ẋ1

)
= m1 ẍ1 (5.3.11)

∂T

∂x1
= 0 (5.3.12)

∂V

∂x1
= k1 x1 + k2 (x1 − x2) (5.3.13)

∂R
∂ẋ1

= c1 ẋ1 + c2 (ẋ1 − ẋ2). (5.3.14)

which yield the equation relevant to m1

m1 ẍ1 + (c1 + c2) ẋ1 + (k1 + k2)x1 − c2 ẋ2 − k2 x2 = F1(t). (5.3.15)

Similarly, if we derive with respect to x2, we have

d

d t

(
∂T

∂ẋ2

)
= m2 ẍ2 (5.3.16)

∂T

∂x2
= 0 (5.3.17)

∂V

∂x2
= k3 x2 − k2 (x1 − x2) (5.3.18)

∂R
∂ẋ2

= c3 ẋ2 − c2 (ẋ1 − ẋ2). (5.3.19)

which, for m2, leads to

m2 ẍ2 + (c2 + c3) ẋ2 + (k2 + k3)x2 − c2 ẋ1 − k2 x1 = F2(t). (5.3.20)

We have thus reobtained the system (
nw1nw1
5.3.1).

5.3.1.3 Free vibration analysis
FreeVib

The search of the natural frequencies and modes of vibrations of systems with
two or more degrees of freedom is - as expected - not as direct as in the caseNBB

of one-degree-of-freedom. Their determination is important for two importantNBB

reasons. On one hand, the general motion of the system is the superposition of
the modes of vibration, each one characterized by its natural frequency. On theNBB

other end, in order to realize an effective anti-vibrating mounting, it is mandatory
that its natural frequencies are distant from the frequencies of the impressed forces
(directly on the masses or through the support).
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The search of the natural frequencies requires that all the external and dissipative
forces are set to zero, that is, F1 = F2 = 0 and c1 = c2 = c3 = 0. Hence, the
equation of motion from Eq.(

nw1nw1
5.3.1) reduces to{

m1 ẍ1 + (k1 + k2)x1 − k2 x2 = 0
m2 ẍ2 − k2 x1 + (k2 + k3)x2 = 0,

(5.3.21) eqmod1

or, in matrix notation[
M
] {

ẍ
}

+
[
K
] {

x
}

=
{

0
}
. (5.3.22) matr1

We are now facing the problem of determining the nature of the solution of the
system (

matr1matr1
5.3.22).

Let us assume16 it is possible to have harmonic motion of m1 and m2 with the same
frequency ω and with the same phase angle ϕ; thenwe can take the solutions of the
system (

eqmod1eqmod1
5.3.21) as

x1 (t) = X1 sin(ω t + ϕ) x2 (t) = X2 sin(ω t + ϕ), (5.3.23) prova1

where X1 and X2 denote the maximum amplitude of x1(t) and x2(t).

Substituting Eqs. (
prova1prova1
5.3.23) into the system (

eqmod1eqmod1
5.3.21), and dividing out the factor

sin(ω t + ϕ), we obtain

[−m1 ω
2 + (k1 + k2) ]X1 − k2X2 = 0 (5.3.24) V53_1

− k2X1 + [−m2 ω
2 + (k2 + k3) ]X2 = 0 . (5.3.25) V53_2

The non-trivial solutions of X1 and X2 can be found by imposing the determinant
of the coefficients of X1 and X2 equal to zero

∣∣∣∣ −m1 ω
2 + (k1 + k2) − k2
− k2 −m2ω

2 + (k2 + k3)

∣∣∣∣ = 0 (5.3.26)

or,

m1m2 ω
4 − [m2 (k1 + k2) + m1 (k2 + k3)]ω

2 + [(k1 + k2)(k2 + k3) − k22] = 0.(5.3.27)

The roots ω1 and ω2 of Eq. (
radrad1radrad1
5.3.27) are called the angular natural frequencies of

the system and are given by{
ω2
1

ω2
2

}
= 1

2
(k1 + k2)m2 + (k2 + k3)m1

m1m2

∓ (5.3.28)

1
2

√[
(k1 + k2)m2 + (k2 + k3)m1

m1m2

]2
− 4

(k1 + k2)(k2 + k3) − k22
m1m2

.(5.3.29)

Under matrix form, Eq. (
V53_1V53_1
5.3.24) and Eq. (

V53_2V53_2
5.3.25) can be written as

([K]− ω2[M ]){X} = 0 (5.3.30)

16 A small digression about this assumption is in Appendix
Vib-OmegaVib-Omega
??
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and, pre-multiplying by [M−1], we obtain

([M−1][K]− ω2[I]){X} = 0 (5.3.31)

or
([D]− λ[I]){X} = 0, (5.3.32)

whose eigenvalues λ are obtained imposing the determinant equal to zero.

In the notebook Chap5-3-2DOF-2m2k-IMGC-only-eigenval-eigenfun.nb the eigen-
values and eigenmodes are first calculated symbolically and, successively, determined
for a real case in which k3 is set to zero. It is interesting to compare these results
with those obtained in section

2DOF1m2DOF1m
5.3.2, when the two masses are allowed to rotate

around their centers of mass17.

We have now to determine the values of X1 and X2 which are dependent on the
natural frequencies ω1 and ω2. We shall denote with X

(1)
1 , X

(1)
2 the values of X1 and

X2 corresponding to ω1 and with X
(2)
1 , X

(2)
2 the values of X1 and X2 corresponding

to ω2. Furthermore, as above system is homogeneous, only the ratios

r1 =
X

(1)
2

X
(1)
1

and r2 =
X

(2)
2

X
(2)
1

(5.3.33)

can be found.

The Eqs. (
V53_1V53_1
5.3.24,

V53_2V53_2
5.3.25) give, when ω = ω2

1,

[−m1 ω
2
1 + (k1 + k2)]X

(1)
1 − k2X

(1)
2 = 0 ∴

X
(1)
2

X
(1)
1

=
−m1 ω

2
1 + (k1 + k2)

k2
(5.3.34)

− k2X(1)
1 + [−m2 ω

2
1 + (k2 + k3)]X

(1)
2 = 0 ∴

X
(1)
2

X
(1)
1

=
k2

−m2 ω2
1 + (k2 + k3)

(5.3.35)

and, when ω = ω2
2

[−m1 ω
2
2 + (k1 + k2)]X

(2)
1 − k2X

(2)
2 = 0 ∴

X
(2)
2

X
(2)
1

=
−m1 ω

2
2 + (k1 + k2)

k2
(5.3.36)

− k2X(2)
1 + [−m2 ω

2
2 + (k2 + k3)]X

(2)
2 = 0 ∴

X
(2)
2

X
(2)
1

=
k2

−m2 ω2
2 + (k2 + k3)

.(5.3.37)

We remark that the two expressions for r1 are equal and similarly the two expressions
for r2. The ratios X

(1)
2 /X

(1)
1 and X

(2)
2 /X

(2)
1 determine the shape assumed by the

system during the synchronous motion with frequencies ω1 and ω2, respectively.
The resulting pair of values (X

(1)
2 , X

(1)
1 ) and (X

(2)
2 , X

(2)
1 ) are known as the natural

modes of vibration or modal vectors of the system and can be represented as

X(1) =

{
X

(1)
1

X
(1)
2

}
=

{
X

(1)
1

r1X
(1)
1

}
(5.3.38)

17see the notebook Chap5-4-4DOF-2m2k-BaseMotion-Lagr+NDSolve-Damp-Y-Symb.nb
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and

X(2) =

{
X

(2)
1

X
(2)
2

}
=

{
X

(2)
1

r2X
(2)
1

}
. (5.3.39)

Then, the free vibration solution for the first mode can be expressed as

x(1) =

{
x
(1)
1 (t)

x
(1)
2 (t)

}
=

{
X

(1)
1 sin (ω1 t + ϕ1)

r1X
(1)
1 sin (ω1 t + ϕ1)

}
(5.3.40) x1

and, for the second mode, as

x(2) =

{
x
(2)
1 (t)

x
(2)
2 (t)

}
=

{
X

(2)
1 sin (ω2 t + ϕ2)

r2X
(2)
2 sin (ω2 t + ϕ2)

}
(5.3.41) x2

where the constants X
(1)
1 , X

(2)
1 , ϕ1, ϕ2, have to be determined through the initial

conditions.

Before considering how it is possible to let the system vibrate only on its first mode
or on its second mode, it is convenient to examine more general initial conditions.
In this case, both modes are excited and the resulting motion obtainable from the
solution of Eq. (

eqmod1eqmod1
5.3.21) consists of the superposition of the two normal modes given

by (
x1x1
5.3.40) and (

x2x2
5.3.41), that is

x (t) = x(1) (t) + x(2) (t) = (5.3.42)

{
x
(1)
1 (t)

x
(1)
2 (t)

}
+

{
x
(2)
1 (t)

x
(2)
2 (t)

}
= (5.3.43)

{
X

(1)
1 sin(ω1 t + ϕ1) + X

(2)
1 sin(ω2 t + ϕ2)

X
(1)
2 sin(ω1 t + ϕ1) + X

(2)
2 sin(ω2 t + ϕ2)

}
(5.3.44)

where, owing to the presence of r1 and r2, only four unknowns ( X
(1)
1 , X

(2)
1 , ϕ1 and

ϕ2 ) have to be determined{
X

(1)
1 sin(ω1 t + ϕ1) + X

(2)
1 sin(ω2 t + ϕ2)

r1X
(1)
1 sin(ω1 t + ϕ1) + r2X

(2)
1 sin(ω2 t + ϕ2).

}
(5.3.45)

If we apply the four initial conditions, we have

x1
∣∣
t=0

= x1 (0) = X
(1)
1 sin ϕ1 + X

(2)
1 sin ϕ2 (5.3.46) 1

ẋ1
∣∣
t=0

= ẋ1 (0) = ω1X
(1)
1 cos ϕ1 + ω2X

(2)
1 sin ϕ2 (5.3.47) 2
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x2
∣∣
t=0

= x2 (0) = r1X
(1)
1 sin ϕ1 + r2X

(2)
1 sin ϕ2 (5.3.48) 3

ẋ2
∣∣
t=0

= ẋ2 (0) = ω1 r1X
(1)
1 cos ϕ1 + ω2 r2X

(2)
1 cos ϕ2 (5.3.49) 4

¿From Eqs. (
11
5.3.46) and

33
5.3.48 we have

X
(2)
1 sin ϕ2 =

x2(0) − r1 x1(0)

r2 − r1
X

(1)
1 sin ϕ1 =

r2 x1(0) − x2(0)

r2 − r1
(5.3.50)

and, from Eqs. (
22
5.3.47) and

22
5.3.47, we have

X
(2)
1 cos ϕ2 =

ẋ2(0) − r1 ẋ1(0)

ω2 (r2 − r1)
X

(1)
1 cos ϕ1 =

r2 ẋ1(0) − ẋ2(0)

ω1 (r2 − r1)
. (5.3.51)

Therefore,

X
(1)
1 =

1

r2 − r1

√
(r2 x1(0) − x2(0))2 +

(r2 ẋ1(0) − ẋ2(0))2

ω2
1

(5.3.52) x11

X
(2)
1 =

1

r2 − r1

√
(x2(0) − r1 x1(0))2 +

(ẋ2(0) − r1 ẋ1(0))2

ω2
2

(5.3.53) x12

tanϕ1 =
ω1(r2 x1(0) − x2(0))

r2ẋ1(0) − ẋ2(0)
and tanϕ2 =

ω2(x2(0) − r1 x1(0))

ẋ2(0) − r1 ẋ1(0)
(5.3.54) tn

Finally, from these equations, we see what kind of initial condition have to be
applied to let the system oscillate only on its first mode X

(1)
1 , namely, we have to

set to zero the terms in Eq. (
x12x12
5.3.53),

x2(0)

x1(0)
=
ẋ2(0)

ẋ1(0)
= r1, (5.3.55)

Similarly, for the second natural mode X
(2)
1 , we have to set equal to zero the terms

in Eq. (
x11x11
5.3.52).

In the next subsection, we give a simple example to clarify the role of the initial
conditions.
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5.3.1.4 Natural frequencies and modes of a simple two-degree-of-freedom
system

m1eqm2
Let us now solve numerically the case relevant to the system in the following figure
where m1 = m2 and the springs have the same stiffness coefficient k. To find the

x1(t) x2(t)

k1 = k k2 = nk k3 = k

m1 = m m2 = m

m1 m2

Figure 5.15: System with m1 = m2 and k1 = k2 = k3 = k. Meiro p335 - da
Chap5-Fig-5-15-mugu-ab-Bozza.pdf2m3kbis

natural frequencies, the modes and the displacement vector {x(t)} when the initial
conditions are x(0) = {1 0} and ẋ(0) = {0 0}, we apply the equations Eq. (

eqmod1eqmod1
5.3.21)

which become {
mẍ1 + 2 k x1 − k x2 = 0
mẍ2 − k x1 + 2 k x2 = 0.

(5.3.56) es1

With the following assumption,

xi (t) = Xi sin (ω t + ϕ) i = 1, 2 , (5.3.57)

from Eq.
es1es1
5.3.56 we obtain

{[−mω2 + 2 k ]X1 − k X2} sin (ω t + ϕ) = 0
{− k X1 + [−mω2 + 2 k ]X2} sin (ω t + ϕ) = 0.

(5.3.58)

The natural frequencies are determined by imposing the relevant determinant equal
to zero, that is, ∣∣∣∣ (−mω2 + 2 k ) − k

− k (−mω2 + 2 k )

∣∣∣∣ = 0. (5.3.59)

From the characteristic polynomial

m2 ω4 − 4 kmω2 + 3 k2 = 0 (5.3.60)

we obtain the roots

ω2
1 =

2 km −
√

4 k2m2 − 3m2 k2

m2
⇒ ω1 =

√
k

m
(5.3.61)

ω2
2 =

2 km +
√

4 k2m2 − 3m2 k2

m2
⇒ ω2 =

√
3 k

m
. (5.3.62)
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If we substitute these results into Eqs.(
r1r1
5.3.34) and (

r2r2
5.3.36), we have

r1 =
−mω2

1 + 2 k

k
= 1 (5.3.63)

r2 =
−mω2

2 + 2 k

k
= −1. (5.3.64)

The natural modes follow from Eqs. (
x1x1
5.3.40) and (

x2x2
5.3.41)

x(1) (t) =

 X
(1)
1 sin (

√
k
m
t + ϕ1)

X
(1)
1 sin (

√
k
m
t + ϕ1)

 (5.3.65)

x(2) (t) =

 X
(2)
1 sin (

√
3 k
m
t + ϕ2)

−X(2)
1 sin (

√
3 k
m
t + ϕ2)

 . (5.3.66)

We notice that, when the system vibrates in its first mode, the amplitudes of
the two masses are equal; it follows that the length of the middle spring remains
constant and the motions of m1 and m2 are in phase. When the system vibrates in
its second mode, the displacements of the two masses have opposite sign and same
magnitude; in this case the motions of m1 and m2 are 180◦ out of phase and the
centre of the middle spring remains stationary for all time t.

The two modes are illustrated in Fig. (
firstmfirstm
5.16) and (

secondmsecondm
5.17)

m2

m1

m1 m2

Figure 5.16: First natural mode. Tipo Meiro p336 - da Chap5-Fig-5-16-firstm-
ab-Bozza.pdffirstm

To illustrate how the solution of Eq. (
es1es1
5.3.56) can be represented by a superposition

of its natural modes, we recall the initial conditions

x(0) =

{
x1(0)
x2(0)

}
=

{
1
0

}
(5.3.67)

and
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m1 m2

Node
Node

m1

m2

Figure 5.17: Second natural mode. Tipo Meiro p336 - da Chap5-Fig-5-17-
secondm-ab-Bozza.pdfsecondm

ẋ(0) =

{
ẋ1(0)
ẋ2(0)

}
=

{
0
0

}
. (5.3.68)

¿From Eqs. (
x11x11
5.3.52) and (

x12x12
5.3.53) we have

X
(1)
1 =

1

2
(5.3.69)

X
(2)
1 =

1

2
(5.3.70)

and, from Eqs.(
tntn
5.3.54),

tanϕ1 = π/2 e tanϕ2 = π/2. (5.3.71)

Therefore, the solution of Eq. (
es1es1
5.3.56), with the relevant initial conditions, is given

by

x(t) =

{
x1(t)
x2(t)

}
=


1
2

sin

(√
k
m
t+ π/2

)
+ 1

2
sin

(√
3 k
m
t+ π/2

)
1
2

sin

(√
k
m
t+ π/2

)
− 1

2
sin

(√
3 k
m
t+ π/2

)
 (5.3.72)
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The following graphs show the single natural modes and the resultant superposition
when m = 5 kg and k = 10000 N/m.

0.1 0.2 0.3 0.4 0.5
t @sD

-1.0

-0.5

0.5

1.0

x2HtL @mD

X2 = -0.5 Sin@20 15 t+Π�2D

X1 = 0.5 Sin@20 5 t+Π�2D

Figure 5.18: Solution x1(t); creato con Chap5-Fig-5-18-2m3k-paral-
antiparal.nbgrafp

0.1 0.2 0.3 0.4 0.5
t @sD

-1.0

-0.5

0.5

1.0

x2HtL @mD

X2 = -0.5 Sin@20 15 t+Π�2D

X1 = 0.5 Sin@20 5 t+Π�2D

Figure 5.19: Solution x2(t); creato con Chap5-Fig-5-18-2m3k-paral-
antiparal.nbgrafm

NB - Invece di radunare qui i nb, potremmo metterli nei punti dove si illustra laNBB

teoria relativa: forse però è meglio seguire il filo logico della teoria e poi alla fine
avere dei riferimenti? non spezza troppo il filo del discorso?

It is now time to illustrate the notebooks anticipated at the beginning of the section
(
2DOF2DOF
5.3). The notebooks Chap5-5-2DOF-2m2k-IMGC-Imped-damp-N-direct-method.nb
and Chap5-6-2DOF-2m2k-IMGC-Imped-damp-Y-direct-method.nb use the com-
plex vector representation (also known under the name of so called Impedence
Method to examine how the position and the amplitude of the response of systems
with 2 DOF (undamped and damped, respectively), depend on the frequency of
the harmonic motion of the base.

In Chap5-7-2DOF-2m2k-IMGC-Base-Motion-fs-1-Decoupling-CYMC-Damp-N.nb we
show how it is possible to decouple the equations of motion by introducing the
modal matrix C, whose columns are the eigenmodes of the undamped system.

Finally, the notebook Chap5-8-2DOF-2m2k-BaseMotion-Lagr-Symb-Manipulate-6-parameters.nb

show how the responses x1(t), x2(t) depend upon the several parameters previouslyNBB

seen m1,m2, k1, k2, c1, c2 and on the frequency of the base motion.

Although these notebooks are only relevant to two-degree-of-freedom systems, theyNBB

can supply useful hints during the design phase of anti-vibration mountings.
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5.3.2 Motion of one platform with two degrees of freedom

2DOF1m

To see the effect of the rotation of a rigid slab of total mass m around an axis
passing trough its centre of mass Cm, instead of considering only a translation along
a vertical axis, we consider the platform in Fig. (

plat2dofplat2dof
5.20)

C.G.

l1

A B

c1 c2k1 k2

A′

B′

l2

A B

C.G.
θ(t)

z(t)

zg(t)

k1(z1 − zg)

z2(t)z1(t)

c1(ż1 − żg) k2(z2 − zg)
c2(ż2 − żg)

Figure 5.20: The translation x(t) is positive when directed downwards and
the rotation ϑ(t) is positive when clockwise. La figura è da rifare
(vedi mio schizzo) coerentemente con la posizione delle molle-dash
pot, e dei valori di l1, l2 nei nb !; da Chap5-Fig-5-20-plat2dof-ab-
Bozza.pdfplat2dof

where the springs k1, k2 and the dashpots c1, c2 the springs k1, k2 and the dashpots
c1, c2, respectively.are at distances l1 and l2 from Cm, respectively. , È questo il NBB

senso?] The platform angular mass J is about Cm; the displacement consist of the
vertical translation x(t) of Cm and the rotation ϑ(t) around Cm. The translation is
measured from the equilibrium position and the angular displacement is supposed
small; the motion of the ground is represented by xg(t).

Therefore, the force equilibrium equation in the vertical direction and the moment
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equation around the centre of gravity (C.G.) can be written as18

mẍ = − k1 (x1 − xg) − k2 (x2 − xg) − c1 (ẋ1 − ẋg) − c2 (ẋ2 − ẋg) (5.3.73)

= − k1 (x − l1 ϑ− xg) − k2 (x + l2 ϑ− xg)− (5.3.74)

c1 (ẋ − l1 ϑ̇− ẋg) − c2 (ẋ − l2 ϑ̇− ẋg) (5.3.75) sisx1

J0 ϑ̈ = k1(x − l1 ϑ− xg) l1 − k2(x + l2 ϑ− xg) l2 + (5.3.76)

c1(ẋ − l1 ϑ̇− ẋg) l1 − c2(ẋ + l2 ϑ̇− ẋg) l2 . (5.3.77) sisJ

As we are interested in calculating the natural frequencies and the mode shapes,NBB

we have to neglect in the previous equation the dissipative forces and the external
forces due to the ground motion. Therefore, we can write[

m 0
0 J0

]{
ẍ

ϑ̈

}
+

[
k1 + k2 − (k1 l1 − k2 l2)

− (k1 l1 − k2 l2) k1 l
2
1 + k2 l

2
2

]{
x
ϑ

}
=

{
0
0

}
.

(5.3.78) V60_B

It can be seen that Eqs. (
V60_BV60_B
5.3.78) become uncoupled if the term k1l1 − k2l2 is equal

to zero. In this system the mass matrix is diagonal.

If we assume harmonic solutions for free vibrations

x = X sin (ω t + ϕ) (5.3.79)

ϑ = Θ sin (ω t + ϕ), (5.3.80)

we have

(−mω2 + k1 + k2)X − (k1 l1 − k2 l2)Θ = 0 (5.3.81) sistemaa

− (k1 l1 − k2 l2)X + (−J0 ω2 + k1l
2
1 + k2 l

2
2)Θ = 0, (5.3.82) sistemab

and the natural frequencies are determined by imposing the relevant determinant
equal to zero, that is,∣∣∣∣ (−mω2 + k1 + k2) − (k1l1 − k2l2)

− (k1l1 − k2l2) (− J0 ω2 + k1l
2
1 + k2l

2
2)

∣∣∣∣ = 0. (5.3.83)

From the characteristic polynomial

ω4 − ω2

(
k1 + k2
m

+
k1l

2
1 + k2l

2
2

J0

)
+

1

J0m
k1k2(l1 + l2)

2 = 0. (5.3.84)

we obtain the roots

ω2
1,2 =

1

2

(
k1 + k2
m

+
k1l

2
1 + k2l

2
2

J0

)
∓1

2

√(
k1 + k2
m

+
k1l

2
1 + k2l

2
2

J0

)2

− 1

J0m
4k1k2(l1 + l2)2.

(5.3.85)

18accenniamo al fatto che vi sono almeno due altre coppie di coordinate ? Thompson p139, Rao
p345, Tse p155, mie dispense
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From Eqs.(
sistemabsistemab
5.3.82), we have

r1 =
Θ(1)

X(1)
=

k1l1 − k2l2
−J0ω2

1 + k1l
2
1 + k2l

2
2

(5.3.86)

r2 =
Θ(2)

X(2)
=

k1l1 − k2l2
−J0ω2

2 + k1l
2
1 + k2l

2
2

. (5.3.87)

This means that, when X(1)(t) = 1 m, Θ(1) = r1, that is, there is a first node,
at 1/ tan r1 meters from the centre of mass around which the mass oscillates;
similarly, there is a second node at 1/ tan r2 meters from the centre of mass. The
two modes, in the case of an undamped platform with the following parameters
(m = 4200, J = 1070, k1 = k2 = 20000, l1 = 0.65, l2 = 0.70)), are shown in Fig. (

nodinodi
5.21)

In interpreting these results, the first mode is mostly vertical with rather small

Node

l1 l2

Node

l1 l2

ω1

ω2

x1(t)

θ(t)

C.G.

C.G.

Figure 5.21: da rifare secondo mio schizzo; bisogna mantenere la scala ed essere
coerenti con i nb che verranno citati; i conti nello schizzo vengono
da Chap5-Fig5-21- verifica-V901.nbnodi

rotations, whereas in the second mode rotation is more evident. The values of ω1

and ω2 are derived in the third of the following books.

The next step requires to calculate the natural frequencis of the platform to verify
that they do not overlap with the frequency content of the ground motion19. To
this end, we write the general solution of (

V60_BV60_B
5.3.78) as

x(t) = X(1) sin(ω1 t + ϕ1) + X(2) sin(ω2 t + ϕ2) (5.3.88) sinx

ϑ(t) = r1X
(1) sin(ω1 t + ϕ1) + r2X

(2) sin(ω2 t + ϕ2) (5.3.89) sinth

and, in the first of the following notebooks, Chap5-9-2DOF-1m1k-BaseMotion-Lagr-IMGC4000-0p85-risonanze-Symb.nb
we use the Lagrangian formalism to determine the resonances of an undamped

19The main components of the frequency spectrum of the ground motion are centered near 3
and 7 Hz, as measured by means of suitable seismometers
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platform. The search of the possible resonances is mandatory during the design
phase of the anti-vibration mounting system.

In the second Chap5-10-2DOF-1m1k-BaseMotion-Lagr+NDSolve-Symb-Manip-9-parameters.nb,
we examine the influence on x(t) and ϑ(t) of the parameters in the equations (

sisx1sisx1
5.3.75)

and (
sisJsisJ
5.3.77) when the platform is damped.

In the third Chap5-11-2DOF-1m1k-Eigenval-Eigenfun.nb we re-consider the case
of an undamped platform with the usual parameters and with the following initial
conditions

x(0) = 0.1 = X(1) sin ϕ1 + X(2) sin ϕ2 (5.3.90)

θ(0) = 0 = r1X
(1) sin ϕ1 + r2X

(2) sin ϕ2 (5.3.91)

ẋ(0) = 0 = ω1X
(1) cos ϕ1 + ω2X

(2) cos ϕ2 (5.3.92)

θ̇(0) = 0 = r1ω1X
(1) cos ϕ1 + r2ω2X

(2) cos ϕ2. (5.3.93)

Here, we have done step by step the calculations whose main objective is to find out
the modulations of x(t) and ϑ(t). By direct inspection from the third and fourth
equation we obtain cos ϕ1 = 0 = cos ϕ2 from which ϕ1 = ϕ2 = π

2
. Then, from

the first and second equation, we have

X(1) = 0.09961 (5.3.94)

X(2) = 0.0003845. (5.3.95)

Therefore, the Eqs. (
sinxsinx
5.3.88,

sinthsinth
5.3.89) take the form

x(t) = 0.09961 cos ω1 t + 0.0003845 cos ω2 t (5.3.96)

ϑ(t) = −0.01228 cos ω1 t + 0.01228 cos ω2 t. (5.3.97)

Let us now consider the motion of the centre of mass x(t); as we have ω1 = 3.08
and ω2 = 4.13 we have20 ω2 − ω1 = ∆ω = 1.05, then

x(t) = 0.09961 cos ω1 t + 0.0003845 cos (ω1 + ∆ω)t = A cos (ω1 t + ψ) (5.3.98)

where, after some manipulations,

A =
√

0.009923 + 0.0000766 cos ∆ω t (5.3.99)

and

tanψ =
0.0003845 sin ∆ω t

0.09961 + 0.0003845 cos ∆ω t
. (5.3.100)

The rotation of the platform around the center of gravity is given by

ϑ (t) = −0.01228 (cos ω1 t − cos ω2 t) = −0.02456 sin
∆ω

2
t sin

ω1 + ω2

2
t.

(5.3.101)

20rifatte!, ma check ancora una volta ...
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The displacement x(t) and the rotation θ(t), together with the modulation of their
amplitudes, are shown in Figs. (

sposCGsposCG
5.22) and (

rotCGrotCG
5.23).

0 5 10 15
t @sD

0.092

0.094

0.096

0.098

0.100
xHtL @mD

Displacement x Ht L and Modulation

Figure 5.22: As the amplitude of the modulation of x(t) is small, we show
only the significant behaviour; creato da Chap5-11-2DOF-1m1k-
Eigenval-Eigenfun-WithOutput-V804.nb; attenzione l’asse è an-
cora X invece di ZsposCG
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t @sD
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ΘHtL @radD

Rotation Θ Ht L and Modulation

Figure 5.23: Rotation θ(t) and modulation of the relevant amplitude; creato da
Chap5-11-2DOF-1m1k-Eigenval-Eigenfun-WithOutput-V804.nbrotCG

A more complex system formed by two platforms, although still a simplified
version being characterized by only four degrees of freedom, is described in
Chap5-4-4DOF-2m2k-BaseMotion-Lagr+NDSolve-Damp-Y-Symb-Manip-ultimo2.nb.
Notwithstanding this limitation, the possibility of considering simultaneously sev-
enteen parameters (m1,m2, J1, J2, ..., c3, c4) supplies useful hints about the design
of the vibration isolation mounting.
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5.4 Dynamic response of an anti-vibration mount-

ing
6DOF

In this section we examine the behaviour of a rather realistic anti-vibrating mounting
characterized by six degrees of freedom (three translational and three rotational).
In the following figure we choose O as the origin of a set of fixed coordinate axes21NB continua nel II formato

del file, ma non è molto
chiaro... lo riscriviamo?

ψ

ψ
P ′

P ′′

G′

G′′

O′
O′′

x′

x′′

y

O

P

G

r

u0

x

y′′
y′

Figure 5.24: la figura è da rivedere potremmo colorarla? cos̀ı non è
chiara A section of a 4200-kg concrete block supported
by four springs and four dash-pots (not shown). By the

translation vector u0 =
−−→
OO′, the fixed set Oxyz is trans-

formed into O′x′y′z′, where O′ is fixed to the block and, by
a rotation around the z′-axis through an angle ψ, the set
O′x′y′z′ is transformed into O′′x′′y′′z′′. The z, z′, z′′-axes are
orthogonal to the plane of the paper. The generic point

P of the block has initial position r =
−−→
OP ; successively,

after a displacement by u, the new position of the point

is r + u =
−−→
OP ′′. The vector

−−−→
O′P ′′ is obtained by rotating

the vector
−−→
O′P ′ around the z′, z′′-axes through the angle

ψ. The initial position of the centre of mass is indicated
by G, and G′ and G′′ are the new positions after a transla-
tion by u0 and a rotation by ψ around the z′′-axis; creato
da Chap5-Fig-5-24-vibrazioninew.pdfvibrazioni

Oxyz; another set of coordinate axes O′x′y′z′ parallel to the first is fixed to the
vibrating block. At the beginning the two sets of axes coincide. We denote byNBB

21that is, the perspective from which observations are made, assumed to have no translation or
rotation in space
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i, j,k the unit vectors in the directions of the x-, y-, z-axes, respectively. As the
block vibrates, the set O′x′y′z′ is obtained from Oxyz by the translation vector

u0 =
−−→
OO′ = ξi+ηj+ ζk. At a fixed instant, a generic point P ′′ in the moving block

is obtained by means of a rotation around a generic axis of the point P ′, whose

position vector
−−→
O′P ′ coincides (has the same components, to be more precise) with

the position vector r = xi + yj + zk =
−→
OP of the point at t = 0 (in Fig.

vibrazionivibrazioni
5.24 we

consider the case of a rotation around a axis orthogonal to the plane of the paper).
The rotation R can be viewed, for instance, as the ordered composition of three
different rotations, firstly Rθ, then Rφ and finally Rψ about the x′-, y′-, z′-axes
through angles θ, φ, ψ, respectively. Identifying each rotation with its matrix with
respect to the non-rotating reference frame O′x′y′z′, one has R = RψRφRθ. Note
that in the reference frame with origin at O the position vector of P ′′ is given by notazione coerente per R ?

−−→
OP ′′ = u0 +

−−−→
O′′P ′′ = u0 + R(r) . (5.4.1) eq:traslOP

Let us define the displacement vector

u =
−−→
PP ′′ =

−−→
OP ′′ −

−→
OP = u0 + R(r)− r. (5.4.2) eq:U=

Assuming that θ, φ, ψ are “small”, the displacement of any point, with respect to
set Oxyz, is given by the formula non usiamo × ?

u = u0 + α ∧ r, (5.4.3) eq:displ

where α = θi + φj + ψk indicates the direction of the rotation axis.
Eq. (

eq:displeq:displ
5.4.3) in scalar form becomes

u = ξ + zφ− yψ (5.4.4)

v = η − zθ + xψ (5.4.5)

w = ζ + yθ − xφ . (5.4.6)

As Eq. (
eq:displeq:displ
5.4.3) is not immediate, to deduce it we first derive the second order tensor

representing the rotation of a rigid body through an angle α about a rotation axis
containing the origin O′ and whose direction is given by a unit vector n̂. According

to Fig. (
rotazionerotazione
5.25), the original position vector is r =

−−→
O′P and the position vector after

rotation is r′ =
−−→
OP ′. Also, A is the intersection point between the plane passing

through P and orthogonal to the rotation axis and the rotation axis itself; B is the

point on AP such that
−−→
P ′B and

−→
AP are orthogonal. Thus we have

r′ = r +
−−→
PP ′ = r +

−−→
PB +

−−→
BP ′. (5.4.7) r’=

To obtain
−−→
PB, we observe that

−−→
O′A = |

−−→
O′A|n̂ = (r · n̂) n̂, (5.4.8)

which yields
−→
PA =

−−→
O′A− r = (r · n̂) n̂− r (5.4.9)
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Figure 5.25: la figura è proprio brutta colorare o rifare? serve poi
un commento ma dopo]; Descrizione 1....;da Chap5-Fig-5-25-
rotazione-ab-Bozza.pdfrotazione

and, as |
−−→
P ′A| = |

−→
PA| ( because they lie on a circle), we get

|
−−→
PB| = |

−→
PA| − |

−→
PA| cosα. (5.4.10)

Hence, we find

−−→
PB = |

−−→
PB|

−→
PA

|
−→
PA|

= |
−→
PA| (1− cosα)

−→
PA

|
−→
PA|

= (1− cosα)
−→
PA = (5.4.11)

((r · n̂) n̂− r) (1− cosα) . (5.4.12)

To obtain
−−→
BP ′, we observe that its direction is the same as n̂ ∧ r and |

−−→
BP ′| =

|
−→
PA| sinα. So we have

−−→
BP ′ = |

−−→
BP ′| n̂ ∧ r

|n̂ ∧ r|
= |
−→
PA| sinα n̂ ∧ r

|r| sin β
= (n̂ ∧ r) sinα, (5.4.13)

where we have used the fact that |
−→
PA| = |r| sin β, as one can deduce from the

triangle O′PA. Substituting the expressions for
−−→
PB and

−−→
BP ′ into Eq. (

r’=r’=
5.4.7),we

conclude that

r′ = r + ((r · n̂) n̂− r) (1− cosα) + (n̂ ∧ r) sinα (5.4.14) rotation0

= r cosα + (r · n̂) n̂ (1− cosα) + (n̂ ∧ r) sinα. (5.4.15) rotation

More explicitly, having denoted by (x1, x2, x3), (x
′
1, x
′
2, x
′
3), (n1, n2, n3) the compo-

nents (x, y, z) of r, (x′, y′, z′) of r′ and the components of n̂, respectively, we can
write

x′1î + x′2ĵ + x′3k̂ =
(
x1î + x2ĵ + x3k̂

)
cosα+ (5.4.16)[(

x1î + x2ĵ + x3k̂
)

·

(
n1î + n2ĵ + n3k̂

)(
n1î + n2ĵ + n3k̂

)]
(1− cosα) (5.4.17)

+
[
(n2x3 − n3x2) î + (n3x1 − n1x3) ĵ + (n1x2 − n2x1) k̂

]
sinα, (5.4.18)
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or

x′1î + x′2ĵ + x′3k̂ =
(
x1î + x2ĵ + x3k̂

)
cosα+ (5.4.19)[

(x1n1n1 + x2n2n1 + x3n3n1) î + (x1n1n2 + x2n2n2 + x3n3n2) ĵ + (x1n1n3 + x2n2n3 + x3n3n3) k̂
]

(5.4.20)

(1− cosα) +
[
(n2x3 − n3x2) î + (n3x1 − n1x3) ĵ + (n1x2 − n2x1) k̂

]
sinα.

(5.4.21)

We now observe that the i-th component of the vector product n̂ ∧ r, by exploiting
the indexed notation, can be written as

(n̂ ∧ r)i = ηijknjxk.
22 (5.4.22)

Therefore, Eq. (
rotationrotation
5.4.15) takes the more concise form

x′i = Rikxk, (5.4.23) x’_i=

where
Rik = cosα δik + (1− cosα)nink + ηijknj sinα. (5.4.24) R_{ik}

Eq. (
x’_i=x’_i=
5.4.23) expresses the coordinates of the end point of a vector after it has been

rotated through an angle α about an axis in the direction of n̂.

From expression (
R_{ik}R_{ik}
5.4.24), one can observe that Rik is the sum of second order

tensors, and thus it is a second order tensor itself.

It is interesting to examine the rotation Rψ corresponding to the case when we rotate

the block around the Z-axis through an angle ψ; in this case we have n̂ = k̂, α = ψ
and ni = (0, 0, 1) = δi3. Hence the rotation tensor Rik can be simplified as NBB

Rik = cosψ δik + (1− cosψ) δi3δk3 + ηijkδj3 sinψ (5.4.25)

and Eq. (
x’_i=x’_i=
5.4.23) becomes

x′i = cosψ δikxk + (1− cosψ) δi3δk3xk + ηi3kxk sinψ (5.4.26)

= cosψ xi + (1− cosψ) δi3x3 + (ηi31x1 + ηi32x2) sinψ. (5.4.27)

22 In order to check this identity, we recall that

ηijk =

 1 if i, j, k is a cyclic permutation of 1, 2, 3
−1 if i, j, k is an anti-cyclic permutation of 1, 2, 3
0 otherwise.

We have

ηijknjxk = ηi1kn1xk+ηi2kn2xk+ηi3kn3xk = ηi12n1x2+ηi13n1x3+ηi21n2x1+ηi23n2x3+ηi31n3x1+ηi32n3x2,

which yields

η1jknjxk = η112n1x2 + η113n1x3 + η121n2x1 + η123n2x3 + η131n3x1 + η132n3x2 = n2x3 − n3x2

and, similarly, η2jknjxk = n3x1 − n1x3 and η3jknjxk = a1x2 − n2x1.
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As a conclusion, we get

x′ = cosψ x− sinψ y (5.4.28)

y′ = sinψ x+ cosψ y (5.4.29)

z′ = z (5.4.30)

In the same way, for n̂ = î, α = θ and for n̂ = ĵ, α = φ Eq. (
r’=r’=
5.4.7), respectively,NBB

becomes

x′ = x (5.4.31)

y′ = cos θ y − sin θ z (5.4.32)

z′ = sin θ y + cos θ z (5.4.33)

and

x′ = cosφx+ sinφ z (5.4.34)

y′ = y (5.4.35)

z′ = − sinφx+ cosφ z (5.4.36)

In the notebook Chap5-12-6DOF-Pitch-Yaw-Roll.nb we compute the matrix R =
RψRφRθ representing the composition of the three rotations and we get

R =

 cosφ cosψ cosψ sin θ sinφ− cos θ sinψ cos θ cosψ sinφ+ sin θ sinψ
cosφ sinψ cos θ cosψ + sin θ sinφ sinψ − cosψ sin θ + cos θ sinφ sinψ
− sinφ cosφ sin θ cos θ cosφ


(5.4.37)

At this point, since the rotation angles are infinitesimal, we can use the following
approximations:

cos θ, cosφ, cosψ ≈ 1, sin θ ≈ θ, sinφ ≈ φ, sinψ ≈ ψ, θφ, θψ, φψ ≈ 0, (5.4.38)

obtaining

R =

 1 −ψ φ
ψ 1 −θ
−φ θ 1

 (5.4.39)

and thus

Rr =

 1 −ψ φ
ψ 1 −θ
−φ θ 1

 x
y
z

 =

 x− yψ + zφ
y + xψ − zθ
z − xφ+ yθ

 . (5.4.40) Rr

Hence, recalling Eq. (
eq:U=eq:U=
5.4.2), we get in conclusion

u = u0 + R(r)− r = u0 + [i, j,k]

−yψ + zφ
xψ − zθ
xφ+ yθ

 = u0 + α ∧ r, (5.4.41) eq:u=

which is exactly Eq. (
eq:displeq:displ
5.4.3).
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The kinetic energy of the system is

T =
1

2

∫
V

u̇2ρ dV (5.4.42) eq:ekin

where V is the total volume of the block.

We denote by rG the position vector of the centre of gravity G of the block with
respect to the origin O and we write r = rG + r̃ (see Fig.

vibrazionivibrazioni
5.24). From Eq. (

eq:displeq:displ
5.4.3) it

follows that
u̇ = u̇0 + α̇ ∧ r, (5.4.43) wedge1

as r does not change with time. Let us call theta grande the... io spiegherei NBB

questo passaggio... da vettori a tensori, sto passando ad un estensione per le varie
direzioni?. This yields

U̇2 = U̇2
0 +

(
Θ̇ ∧ r

)2
+ 2U̇0 ·

(
Θ̇ ∧ r

)
(5.4.44)

= U̇2
0 +

(
Θ̇ ∧ r

)2
+ 2U̇0 ·

(
Θ̇ ∧ r0

)
+ 2U̇0 ·

(
Θ̇ ∧ r̃

)
. (5.4.45) U’^2

Setting

A =

 0 z −y
−z 0 x
y −x 0

 , (5.4.46)

Eq. (
wedge1wedge1
5.4.43) can be written as follows in matrix form:

Θ̇ ∧ r = AΘ̇. (5.4.47)

Indeed, we have

Θ̇ ∧ r =

∣∣∣∣∣∣
î ĵ k̂

θ̇ φ̇ ψ̇
x y z

∣∣∣∣∣∣ (5.4.48)

=
(
φ̇z − ψ̇y

)
î +
(
ψ̇x− θ̇z

)
ĵ +
(
θ̇y − φ̇x

)
k̂ =

 0 z −y
−z 0 x
y −x 0

 θ̇

φ̇

ψ̇

 = AΘ̇.

(5.4.49)

Using the fact that A is antisymmetric, we get(
Θ̇ ∧ r

)2
= AΘ̇ ·AΘ̇ =

(
AΘ̇

)T
AΘ̇ = Θ̇TATA Θ̇ (5.4.50) wedge^2

where

ATA =

 0 −z y
z 0 −x
−y x 0

 0 z −y
−z 0 x
y −x 0

 =

 z2 + y2 −xy −xz
−xy z2 + x2 −yz
−xz −yz y2 + x2

 .
(5.4.51)

Setting io inserirei una nota sui tensori o lo facciamo in appendice? con un NBB
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richiamo? io chiarirei nei conti quando passiamo da vettori a tensori per compattare
la notazione.

I =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

 , (5.4.52)

where

Ix =

∫
V

ρ
(
y2 + z2

)
dV, Ixy =

∫
V

ρxy dV, ..., (5.4.53)

and taking into account Eq. (
U’^2U’^2
5.4.45) and Eq. (

wedge^2wedge^2
5.4.50), we obtain the following

expression for the kinetic energy:

T =
1

2

∫
V

U̇2ρdV =
1

2

∫
V

ρ
[
U̇2

0 + Θ̇T I Θ̇ + 2U̇0 ·

(
Θ̇ ∧ r0

)
+ 2U̇0 ·

(
Θ̇ ∧ r̃

)]
dV

(5.4.54)

=
1

2

[
M
(
ξ̇2 + η̇2 + ζ̇2

)
+ Θ̇T I Θ̇ + 2

∫
V

ρU̇0 ·

(
Θ̇ ∧ r0

)
dV + 2

∫
V

ρU̇0 ·

(
Θ̇ ∧ r̃

)
dV

]
,

(5.4.55)

where M is the total mass of the foundation. Observing that
∫
V
ρr̃dV = 0, since in

the reference frame R(OG; î, ĵ, k̂) the centre of gravity of the block is the origin, we
get ∫

V

ρU̇0 ·

(
Θ̇ ∧ r̃

)
dV =

∫
V

ρr̃ ·

(
U̇0 ∧ Θ̇

)
dV =

(
U̇0 ∧ Θ̇

)
·

∫
V

ρr̃dV = 0,

(5.4.56)
and thus we conclude that

T =
1

2

[
M
(
ξ̇2 + η̇2 + ζ̇2

)
+ Θ̇T I Θ̇ + 2MU̇0 ·

(
Θ̇ ∧ r0

)]
(5.4.57)

=
1

2

[
M
(
ξ̇2 + η̇2 + ζ̇2

)
+ Ixθ̇

2 + Iyφ̇
2 + Izψ̇

2 − 2
(
Ixyθ̇φ̇+ Iyzφ̇ψ̇ + Ixzψ̇θ̇

)
+ 2Mξ̇

(
z0φ̇− y0ψ̇

)
+ 2Mη̇

(
−z0θ̇ + x0ψ̇

)
+ 2Mζ̇

(
y0θ̇ − x0φ̇

)]
. (5.4.58) T=

Let us suppose that the origin O′ coincides with the centre of gravity of the
foundation; then the expression found for T can be simplified asNBB

T =
1

2

[
M
(
ξ̇2 + η̇2 + ζ̇2

)
+ Ixθ̇

2 + Iyφ̇
2 + Izψ̇

2 − 2
(
Ixyθ̇φ̇+ Iyzφ̇ψ̇ + Ixzψ̇θ̇

)]
.

(5.4.59)
Assuming that each supporting spring has spring constants kix, kiy, kiz in the X-,Y -
,Z-directions, respectively, the potential energy of the system is given by

V =
1

2

Ns∑
i=1

(
kixu

2 + kiyv
2 + kizw

2
)

(5.4.60)

=
1

2

Ns∑
i=1

[
kix (ξ + ziφ− yiψ)2 + kiy (η − ziθ + xiψ)2 (5.4.61)

+ kiz (ζ + yiθ − xiφ)2
]
, (5.4.62)
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where Ns is the total number of supporting springs.

The Lagrange equations are

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂V

∂qi
= Qi, (5.4.63)

where q1 = ξ, q2 = η, q3 = ζ, q4 = θ, q5 = φ, q6 = ψ. We have

d

dt

(
∂T

∂ξ̇

)
= Mξ̈,

d

dt

(
∂T

∂η̇

)
= Mη̈,

d

dt

(
∂T

∂ζ̇

)
= Mζ̈, (5.4.64)

d

dt

(
∂T

∂θ̇

)
= Ixθ̈ − Ixyφ̈− Ixzψ̈, (5.4.65)

d

dt

(
∂T

∂φ̇

)
= Iyφ̈− Iyzψ̈ − Iyxθ̈, (5.4.66)

d

dt

(
∂T

∂ψ̇

)
= Izψ̈ − Izxθ̈ − Izyφ̈. (5.4.67)

In matrix form we can write

d

dt

(
∂T

∂q̇i

)
=


M 0 0 0 0 0
0 M 0 0 0 0
0 0 M 0 0 0
0 0 0 Ix −Ixy −Ixz
0 0 0 −Ixy Iy −Iyz
0 0 0 −Ixz −Iyz Iz





ξ̈
η̈

ζ̈

θ̈

φ̈

ψ̈


= M q̈. (5.4.68)

The matrix M is real and symmetric, and it turns out to be diagonal if the products
of inertia vanish.
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Let us now calculate ∂V
∂qi

. We get

∂V

∂ξ
=

∑
i

kix (ξ + ziφ− yiψ) = ξ
∑
i

kix + φ
∑
i

kixzi − ψ
∑
i

kixyi,

∂V

∂η
=

∑
i

kiy (η − ziθ + xiψ) = η
∑
i

kiy − θ
∑
i

kiyzi + ψ
∑
i

kiyxi,

∂V

∂ζ
=

∑
i

kiz (ζ + yiθ − xiφ) = ζ
∑
i

kiz + θ
∑
i

kizyi − φ
∑
i

kizxi,

∂V

∂θ
=

∑
i

(−kiyzi (η − ziθ + xiψ) + kizyi (ζ + yiθ − xiφ))

= −η
∑
i

kiyzi + ζ
∑
i

kizyi + θ

(∑
i

kiyz
2
i +

∑
i

kizy
2
i

)
− φ

∑
i

kizyixi +

−ψ
∑
i

kiyzixi,

∂V

∂φ
=

∑
i

(kixzi (ξ + ziφ− yiψ)− kizxi (ζ + yiθ − xiφ))

= ξ
∑
i

kixzi − ζ
∑
i

kizxi − θ
∑
i

kizxiyi + φ

(∑
i

kixz
2
i +

∑
i

kizx
2
i

)
+

−ψ
∑
i

kixziyi,

∂V

∂ψ
=

∑
i

(−kixyi (ξ + ziφ− yiψ) + kiyxi (η − ziθ + xiψ))

= −ξ
∑
i

kixyi + η
∑
i

kiyxi − θ
∑
i

kiyxizi − φ
∑
i

kixyizi +

+ψ

(∑
i

kiyx
2
i +

∑
i

kixy
2
i

)
.

In matrix form, we can write [
∂V

∂qi

]
=

=



∑
i kix 0 0 0

∑
i kixzi −

∑
i kixyi

0
∑

i kiy 0 −
∑

i kiyzi 0
∑

i kiyxi

0 0
∑

i kiz
∑

i kizyi −
∑

i kizxi 0

0 −
∑

i kiyzi
∑

i kizyi

∑
i kiyz

2
i +

+
∑

i kizy
2
i )

−
∑

i kizyixi −
∑

i kiyzixi

∑
i kixzi 0 −

∑
i kizxi −

∑
i kizxiyi

∑
i kixz

2
i +

+
∑

i kizx
2
i

−
∑

i kixziyi

−
∑

i kixyi
∑

i kiyxi 0 −
∑

i kiyxizi −
∑

i kixyizi

∑
i kiyx

2
i+

+
∑

i kixy
2
i



·
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·


ξ
η
ζ
θ
φ
ψ

 = Kq. (5.4.69) def K

The Lagrange equations can be written in matrix form as

M q̈ +Kq = Q

where

Q =


Fx
Fy
Fz
Mx

My

Mz

 sin (ωf t) .

We now consider the case in which there is a sussultatory action on the base of the
system along the z-direction, and no driving force Q is applied directly to the mass;

we denote by qs =


0
0

Az sin (ωst)
0
0
0

 the displacement of the base. The equation of

motion becomes
M q̈ +K (q− qs) = 0 (5.4.70)

or, equivalently,
M q̈ +Kq = Kqs. (5.4.71) eq sussul

If we compute Kqs by using the definition of K given in Eq. (
def Kdef K
5.4.69), we can rewrite

the above equation in the following form

M q̈ +Kq =


0
0∑
i kiz∑
i kizyi

−
∑

i kizxi
0

Az sin (ωst) . (5.4.72)

The notebook Chap5-13-6DOF-BaseMotion-Fs-4-Hz-Kz-0.nb shows how the dis-
placement and the rotations around the mass centre of the above system can be
determined. The solutions of the Lagrangian equations are found when the various
parameters are varied and the base is subjected to an harmonic motion. The results
are coherent and in excellent agreement with those obtained with simpler 1-DOF
systems (e.g., Chap5-2-1DOF-Under-Harmonic-Motion-Base.nb. Furthermore, by
exploiting a Finite Element code we have examined the behaviour of the system
in Fig. (

piattaformapiattaforma
5.1) when all the twelve degrees of freedom (six for mass m1 and six for

mass m2) are taken into account. Again, the simulation indicates that the results
obtained with Mathematica are coherent and worth of consideration.
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