
4.10.  Exercise 

P4.1 A force is gradually applied at the end of an elastoplastic bar such that it is in the 
plastic phase. When the total magnitude of strain is e = 0.003, calculated the applied 
force, axial stress, elastic strain, and plastic strain. Use the following material properties: 
E = 100GPa, H = 10GPa, and sY = 100MPa. The cross-sectional area of the bar is A 
= 1.0´10-4m2. 
 
Solution: 
If the total strain is pure elastic, then stress will become s = Ee = 300MPa, which is 
larger than the yield stress. Thus, the material is in the plastic phase. It is convenient to 
separate the initial elastic deformation, e(1), until the yield stress from the elastoplastic 
deformation, e(2) such that e = e(1) + e(2). The initial elastic strain can be calculated from 

 (1) (1) (1)0.001, 100MPaY
e Y YE

s
e e e s s= = = = = =  

After the initial elastic deformation, the remaining deformation is elastoplastic 
deformation. In this phase, the strain increment is De(2) = 0.002. Since the total strain 
increment is given, Eq. (4.9) can be used to calculate the plastic strain increment as 

 
(2)

(2) 0.00182
1 /p H E

e
e

D
D = =

+
 

Thus, the plastic strain is (2) 0.00182p pe e= D = , and elastic strain is 
0.00118e pe e e= - = . The axial stress can be calculated using the elastic strain, 

118MPaeEs e= = . The applied force can be calculated from the assumption that the 
axial stress is uniformly distributed over the cross section: 11.8kNF As= = . Below is 
the MATLAB program that solves for the problem: 
% 
% P4.1 elastoplastic bar (MPa, mm) 
% 
delE=0.003; A=100; 
mp = [1E5, 0, 1E4, 100]; 
nS=0; nA=0; nep=0; 
[Snew, Anew, epnew]=combHard1D(mp,delE,nS,nA,nep) 
eelast=delE - epnew 
Force = Snew*A 

 ▄ 
 
 
P4.2 A force 12kN is gradually applied and then removed at the end of an elastoplastic 
bar. When the yield stress of the material is 100MPa, calculate plastic strains and tip 
displacement after removing the applied force. Use the following material properties: E 
= 100GPa and H = 10GPa. The cross-sectional area of the bar is A = 1.0´10-4m2 and 
the length of the bar is L0 = 1m. 
 
Solution: 
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In a one-dimensional bar, it is assumed that the force is uniformly distributed over the 
cross section. During the loading process, since the total stress, s = F/A = 120MPa, is 
larger than the yield stress, it can be concluded that the material is under plastic 
deformation. It is convenient to divide the entire deformation into elastic and plastic 
phases. The material is initially elastic until it reaches yield stress. Thus, when stress 
reaches yield stress s(1) = sY = 100MPa, strain is purely elastic: 

 (1) 0.001Y
e E

s
eD = =  

After yielding, the remaining stress increment, Ds = 20MPa, is in the plastic phase. The 
elastic and plastic strain increments can be calculated from 

 
(2)

(2) 0.0002e E

s
e

D
D = =  

 
(2)

(2) 0.002p H

s
e

D
D = =  

Thus, the total elastic and plastic strains become 

 
(1) (2)

(2)

0.0012

0.002
e e e

p p

e e e

e e

= D +D =

= D =
 

Now, during the unloading, elastic strain is removed, but the plastic strain remains. Thus, 
0.002pe =  and 2mmpu Le= = .  ▄ 

 
 
P4.3 A uniaxial bar is under tensile force F = 12kN at load step tn. (a) When the 
plastic strain is 0.002n

pe = , determine the yield status of the material. (b) If the applied 
force is increased to F = 15kN at load step tn+1, calculate plastic strain and tip 
displacement. Assume the initial yield stress sY = 100MPa, E = 100GPa and H = 
10GPa. The cross-sectional area of the bar is A = 1.0´10-4m2 and the length of the bar 
is L0 = 1m. Assume isotropic hardening model. 
 
Solution: 
(a) At load step tn, the stress in the bar is 

 120MPan F

A
s = =  

The yield stress is  

 0 100 10000 0.002 120MPan n
Y Y pHs s e= + = + ´ =  

Since n n
Ys s=  the material is in the loading stage. 

 
(b) During the loading stage up to tn, the elastic and plastic strains can be calculated by 
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 0.0012, 0.002
n

n n
e pE

s
e e= = =  

At load step tn+1, the elastic and plastic strain increments can be calculated from stress 
increment 1 30MPans +D =  as 

 
1 1

1 10.0004, 0.004
n n

n n
e pE H

s s
e e

+ +
+ +D D

D = = D = =  

Thus, the total elastic and plastic strains become 

 1 1 1 10.0016, 0.006n n n n n n
e e e p p pe e e e e e+ + + += + D = = + D =  

The tip displacement is 

 1 1( ) 7.6mmn n
e pu Le e+ += + =  

 ▄ 
 
 
P4.4 An elastoplastic bar is under variable load history. At load step tn, the stress and 
plastic strain are sn = 200MPa and 41.0 10n

pe
-= ´ , respectively. (a) Is the material in 

elastic or plastic state? (b) When strain increment is De = -0.003, calculate stress and 
plastic strain. Assume isotropic hardening with E = 200GPa, H = 25GPa, and sY = 
250MPa. 
 
Solution: 
(a) At a given plastic strain 41.0 10n

pe
-= ´ , the yield stress is 

 0 252.5MPan
Y Y pHs s e= + =  

Since sn < sY, the material is in the elastic state. 
(b) For given strain increment, the trial stress can be obtained as 

 600MPa, 400MPatr nEs e s s sD = D = - = + D = -  

Since | | 147.5 0tr tr
Yf s s= - = > , the material is yielded in the compression side. 

From Eq. (4.26), the plastic strain increment becomes  

 46.5556 10
tr

p
f

E H
e -D = = ´

+
 

Therefore, the stress and plastic strain are updated as 

 1 sgn( ) 268.9MPan tr tr
pEs s s e+ = - D = -  

 1 47.5556 10n n
p p pe e e+ -= + D = ´  



4-4 

 
Below is the MATLAB program that solves for the problem: 
% 
% P4.4 Elastoplastic bar (isotropic hardening) 
% 
delE=-0.003; nS=200; nA=0; nep=1E-4; 
mp=[2E5, 0, 2.5E4, 250]; 
[Snew, Anew, epnew]=combHard1D(mp,delE,nS,nA,nep) 

 ▄ 
 
 
P4.5 Repeat Problem P4.4 using the kinematic hardening model. For back stress, use 
an = 2.5MPa. 
 
Solution: 
(a) At a given stress sn = 200MPa and back stress 2.5MPana = , the trial shifted 
stress is 

 197.5MPan n nh s a= - =  

Since hn < sY, the material is in the elastic state. 
(b) For given strain increment, the trial stress can be obtained as 

 600MPa, 400MPatr nEs e s s sD = D = - = + D = -  

Since | | 152.5 0tr tr n
Yf s a s= - - = > , the material is yielded in the compression 

side. From Eq. (4.41), the plastic strain increment becomes  

 46.7778 10
tr

p
f

E H
e -D = = ´

+
 

Therefore, the stress, back stress and plastic strain are updated as 

 1 sgn( ) 264.4MPan tr tr
pEs s h e+ = - D = -  

 1 sgn( ) 14.444MPan n tr
pHa a h e+ = - D = -  

 1 47.7778 10n n
p p pe e e+ -= + D = ´  

Below is the MATLAB program that solves for the problem: 
% 
% P4.5 Elastoplastic bar (kinematic hardening 
% 
delE=-0.003; nS=200; nA=0; nep=1E-4; 
mp=[2E5, 1, 2.5E4, 250]; 
[Snew, Anew, epnew]=combHard1D(mp,delE,nS,nA,nep) 

 ▄ 
 
 
P4.6 Repeat Problem 4.5 using the combined hardening model with b = 0.5. 
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Solution: 
(a) At a given stress sn = 200MPa, back stress 2.5MPana = , and plastic strain 

41.0 10n
pe

-= ´ , the trial shifted stress and the yield stress are  

 197.5MPan n nh s a= - =  

 0 (1 ) 251.25MPan
Y Y pHs s b e= + - =  

Since hn < sY, the material is in the elastic state. 
(b) For given strain increment, the trial stress can be obtained as 

 600MPa, 400MPatr nEs e s s sD = D = - = + D = -  

Since | | 151.25 0tr tr n
Yf s a s= - - = > , the material is yielded in the compression 

side. From Eq. (4.41), the plastic strain increment becomes  

 46.2222 10
tr

p
f

E H
e -D = = ´

+
 

Therefore, the stress, back stress and plastic strain are updated as 

 1 sgn( ) 265.6MPan tr tr
pEs s h e+ = - D = -  

 1 sgn( ) 5.9028MPan n tr
pHa a h b e+ = - D = -  

 1 47.2222 10n n
p p pe e e+ -= + D = ´  

Below is the MATLAB program that solves for the problem: 
% 
% P4.6 Elastoplastic bar (combined hardening) 
% 
delE=-0.003; nS=200; nA=0; nep=1E-4; 
mp=[2E5, 0.5, 2.5E4, 250]; 
[Snew, Anew, epnew]=combHard1D(mp,delE,nS,nA,nep) 

 ▄ 
 
P4.7 For the combined isotropic/kinematic hardening model, derive the expression of 
plastic strain increment from the plastic consistency condition. 
 
Solution: 
The plastic consistency condition means that the yield function at the current time step, 
tn+1, remains zero; that is,  

 1 1 1 0n n n
Yf h s+ + += - =  

The following stress update formulas and yield stress are used for the plastic consistency 
condition: 

 1 sgn( )n tr tr
pEs s h e+ = - D  
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 1 sgn( )n n tr
pHa a h b e+ = + D  

 1 (1 )n n
Y Y pHs s b e+ = + - D  

By substituting the above 3 formulas into the plastic consistency condition,  
The above consistency condition can be expanded in terms of plastic strain increment as  

 
sgn( ) sgn( ) ( (1 ) ) 0

( ) 0

tr tr tr tr n
p p Y p

tr tr n
Y p

E H H

E H

s h e a h b e s b e

s a s e

- D - - D - + - D =

 - - - + D =
 

Note that the above formula works for both positive and negative trial stress. Therefore, 
the plastic strain increment can be obtained as 

 
tr

p
f

E H
eD =

+
 

Note that the formula for plastic strain increment is identical to that of isotropic 
hardening in Eq. (4.26) and kinematic hardening in Eq. (4.41). ▄ 
 
P4.8 An elastoplastic bar is clamped at the left end, and variable loads are applied at 
the right end, as shown in the table. Plot the stress-strain curve by changing the applied 
forces by 5kN increments. Assume the following material properties with isotropic 
hardening: E = 70GPa, H = 10GPa, sY = 250MPa. The length of the bar is L = 1m, 
and the cross-sectional area is A = 1.0´10-4m2. 
 

Load step 1 2 3 4 
Force (kN) 30 20 35 20 

 
Solution: 
Since the given condition is applied force at the tip, the convergence iteration must be 
performed to find equilibrium. Below is the MATLAB program that solves for the 
problem: 
 
% 
% P4.8 Variable loadings 
% 
E=70000; H=10000;Et=1000; sYield=250; 
mp = [E, 0, H, sYield]; 
Et=E*H/(E+H); 
nS=0; nep=0; nA=0; 
A = 100; L = 1000; 
tol = 1.0E-5; u = 0; iter=0; Res=0; 
Force = 1000*[5:5:30 25 20 25 30 35 30 25 20]; 
N = size(Force',1); 
X=zeros(N,1);Y=zeros(N,1); 
fprintf('\nstep  iter        u       S       ep   Residual'); 
fprintf('\n %3d %3d  %7.4f %7.3f %8.6f %10.3e',i,iter,u,nS,nep,Res); 
for i=1:N 
 P = Force(i); iter = 0; 
 Res = P - nS*A; 
 conv = Res^2/(1+P^2); 
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 du=0; 
 while conv > tol && iter < 20 
   Eep = E; if epnew>nep; Eep = Et; end 
   delu = Res / (Eep*A/L); 
   du = du + delu; 
   delE = du / L; 
   [Snew, Anew, epnew]=combHard1D(mp,delE,nS,nA,nep); 
   Res = P - Snew*A; 
   conv = Res^2/(1+P^2); 
   iter = iter + 1; 
 end 
 u=u+du; 
 nS = Snew; nep = epnew; 
 X(i) = u; Y(i) = nS; 
 fprintf('\n %3d %3d  %7.4f %7.3f %8.6f %10.3e',i,iter,u,nS,nep,Res); 
end 
X=[0;X];Y=[0;Y];plot(X,Y); 

 

 
 ▄ 
 
 
P4.9 An elastoplastic bar is clamped at the left end, and variable displacements are 
applied at the right end, as shown in the table. Plot the stress-strain curve by changing the 
tip displacement by 1mm increments. Assume the following material properties with 
isotropic hardening: E = 70GPa, H = 10GPa, sY = 250MPa. The length of the bar is 
L = 1m, and the cross-sectional area is A = 1.0´10-4m2. 
 

Load step 1 2 3 4 
Displacement (mm) 5.0 3.0 7.0 6.0 

 
Solution: 
Since the tip displacements are given, there is no need to perform convergence iteration. 
At each step, displacement increment is calculated by the difference between current and 
previous load increments. After that, the strain increment is calculated from the small 
deformation assumption. The program combHard1D will calculate stress and plastic 
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strain for the given strain increment. Below is the MATLAB program that solves for the 
problem: 
 
% 
% P4.9 Variable displacement 
% 
E=70000; H=10000;Et=1000; sYield=250; 
mp = [E, 0, H, sYield]; 
Et=E*H/(E+H); 
nS=0; nep=0; nA=0; 
A=100; L=1000; 
tol = 1.0E-5; u=0; iter=0; Res=0; 
disp=[0 1 2 3 4 5 4 3 4 5 6 7 6]; 
N = size(disp',1); 
X=zeros(N,1);Y=zeros(N,1); 
fprintf('\nstep         u       S       ep'); 
fprintf('\n %3d %7.4f %7.3f %8.6f',i,u,nS,nep); 
for i=2:N 
 delu = disp(i) - disp(i-1); 
 delE = delu / L; 
 [Snew, Anew, epnew]=combHard1D(mp, delE, nS, nA, nep); 
 nS = Snew; nep = epnew; 
 X(i) = disp(i); Y(i) = nS; 
 fprintf('\n %3d %7.4f %7.3f %8.6f',i,u,nS,nep); 
end 
plot(X,Y); 

 

 
 ▄ 
 
 
P4.10 A force of P = 15 is applied to the two parallel bars in Example 4.2 and then 
removed. Using combHard1D program, calculate tip displacement and residual stresses 
for the two bars after unloading. Use 15 load increments for each loading and unloading 
cycle. Plot stresses vs. tips displacement in the XY graph. 
 
Solution: 
Below is the MATLAB program to solve loading/unloading cycle for two parallel bars in 
Example 4.2. After unloading, the tip displacement is u = 0.1227, and stresses are s1 = 
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-4.091, s2 = 2.455. Since the area of bar2 is twice than that of bar1, the stress s2 is half 
of s1. 
% 
% P4.10 Two-bar in parallel - unloading 
% 
E1=10000; Et1=1000; sYield1=5; 
E2=5000;  Et2=500;  sYield2=7.5; 
mp1 = [E1, 0, E1*Et1/(E1-Et1), sYield1]; 
mp2 = [E2, 1, E2*Et2/(E2-Et2), sYield2]; 
nS1 = 0; nA1=0; nep1 = 0; epnew1=0; 
nS2 = 0; nA2=0; nep2 = 0; epnew2=0; 
A1 = 0.75; L1 = 100; 
A2 = 1.25; L2 = 100; 
tol = 1.0E-5; u = 0; 
Force = [1:15 14:-1:0]; 
N = size(Force',1); 
X=zeros(N,1);Y1=zeros(N,1);Y2=zeros(N,1); 
fprintf('\nstep iter        u      S1      S2      ep1      ep2   Residual'); 
fprintf('\n %3d %3d  %7.4f %7.3f %7.3f %8.6f %8.6f %10.3e',... 
      0,0,u,nS1,nS2,nep1,nep2,0); 
for i=1:N 
 P = Force(i); iter = 0; 
 Res = P - nS1*A1 - nS2*A2; 
 conv = Res^2/(1+P^2); 
 while conv > tol && iter < 20 
   Eep1 = E1; if epnew1>nep1; Eep1 = Et1; end 
   Eep2 = E2; if epnew2>nep2; Eep2 = Et2; end 
   delu = Res / (Eep1*A1/L1 + Eep2*A2/L2); 
   u = u + delu; 
   delE = delu / L1; 
   [Snew1, Anew1, epnew1]=combHard1D(mp1, delE, nS1, nA1, nep1); 
   [Snew2, Anew2, epnew2]=combHard1D(mp2, delE, nS2, nA2, nep2); 
   Res = P - Snew1*A1 - Snew2*A2; 
   conv = Res^2/(1+P^2); 
   iter = iter + 1; 
   nS1 = Snew1; nep1 = epnew1; nA1 = Anew1; 
   nS2 = Snew2; nep2 = epnew2; nA2 = Anew2; 
 end 
 X(i) = u; Y1(i) = nS1; Y2(i) = nS2; 
 fprintf('\n %3d %3d  %7.4f %7.3f %7.3f %8.6f %8.6f %10.3e',... 
      i,iter,u,nS1,nS2,nep1,nep2,Res); 
end 
X=[0;X];Y1=[0;Y1];Y2=[0;Y2];plot(X,Y1,X,Y2); 
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 ▄ 
 
 
P4.11 A force 12kN is gradually applied at the end of an elastoplastic bar. When the 
yield stress of the material is 100MPa, calculate displacement at the tip. Use the 
following material properties: E = 100GPa and H = 10GPa. The cross-sectional areas 
of the bars are A(1) = 1.0´10-4m2 and A(2) = 0.5´10-4m2. 

  Figure P4.11 

Solution: 
Since the two bars are connected in parallel, the element forces of the two bars are the 
same as the applied force at the tip. By considering the cross-sectional areas of the bars, 
the stresses of the bars can be calculated by 

 (1) (2)
(1) (2)

120MPa, 240MPa
F F

A A
s s= = = =  

Since both bars are in the plastic state, it is possible to separate the entire deformation 
into the initial yielding stage (at s = 100MPa) and followed by the elastoplastic state. 
For bar1, the elastic strain at the initial yielding stage can be calculated from 

 (1) 0.001Y
e E

s
e = =  

After that, the remaining Ds = 20MPa is in the elastoplastic stage: 

L0=1m 

F 

x 

L0=1m 

E, A(1) E, A(2) 

1 2 3 
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(1) (1)

(1) (1) (1) (1) (1)0.0002, 0.002, 0.0022e p e pE H

s s
e e e e e

D D
= = = = = + =  

Thus the total strain becomes (1) 0.001 0.0002 0.002 0.0032e = + + = , and the 
displacement at Node 2 becomes  

 (1)
2 0 0.32mmu Le= =  

For bar2, the strain at the initial yielding stage can be calculated from 

 (2) 0.001Y
e E

s
e = =  

After that, the remaining Ds = 140MPa is in the elastoplastic stage: 

 
(2) (2)

(2) (2) (2) (2) (2)0.0014, 0.014, 0.0154e p e pE H

s s
e e e e e

D D
= = = = = + =  

the total strain becomes (1) 0.001 0.0014 0.014 0.0164e = + + = , and the displacement 
at Node 3 becomes  

 (2)
3 2 0 1.96mmu u Le= + =  

The same problem can be solved using combHard1D program with convergence 
iteration. The following MATLAB program solves for the displacement and stress for the 
two-bar problem: 
 
% 
% P4.11 Two-bar in serial 
% 
E=100000; H=10000; sYield=100;Et=E*H/(E+H); 
mp = [E, 0, H, sYield]; 
nS1 = 0; nA1=0; nep1=0; epnew1=0; Eep1=E; 
nS2 = 0; nA2=0; nep2=0; epnew2=0; Eep2=E; 
A1 = 100; L1 = 100; A2 = 50; L2 = 100; 
tol = 1.0E-8; iter = 0; u = [0 0]'; F = [0 12000]'; 
Res = F - [nS1*A1-nS2*A2;nS2*A2]; 
conv = norm(Res)^2/(1+norm(F)^2); 
fprintf('\n iter      u1      u2      S1      S2      ep1      ep2   
Residual'); 
fprintf('\n %3d  %7.4f %7.4f %7.3f %7.3f %8.6f %8.6f %10.2e %10.2e',... 
      iter,u(1),u(2),nS1,nS2,nep1,nep2,Res); 
while conv > tol && iter < 20 
  Kt = [Eep1*A1/L1+Eep2*A2/L2,-Eep2*A2/L2;-Eep2*A2/L2,Eep2*A2/L2]; 
  delu = Kt\Res; 
  u = u + delu; 
  delE1 = delu(1) / L1; 
  delE2 = (delu(2)-delu(1)) / L2; 
  [Snew1, Anew1, epnew1]=combHard1D(mp, delE1, nS1, nA1, nep1); 
  [Snew2, Anew2, epnew2]=combHard1D(mp, delE2, nS2, nA2, nep2); 
  Eep1 = E; if epnew1>nep1; Eep1 = Et; end 
  Eep2 = E; if epnew2>nep2; Eep2 = Et; end 
  nS1 = Snew1; nep1 = epnew1; nA1=Anew1; 
  nS2 = Snew2; nep2 = epnew2; nA2=Anew2; 
  Res = F - [nS1*A1-nS2*A2;nS2*A2]; 
  conv = norm(Res)^2/(1+norm(F)^2); 
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  iter = iter + 1; 
  fprintf('\n %3d  %7.4f %7.4f %7.3f %7.3f %8.6f %8.6f %10.2e %10.2e',... 
      iter,u(1),u(2),nS1,nS2,nep1,nep2,Res); 
end 

 
As shown in the output below, the Newton-Raphson iteration converges in the second 
iteration. 
 
iter       u1      u2      S1      S2      ep1      ep2   Residual 
   0   0.0000  0.0000   0.000   0.000 0.000000 0.000000  0.00e+000  1.20e+004 
   1   0.1200  0.3600 101.818 112.727 0.000182 0.001273 -4.55e+003  6.36e+003 
   2   0.3200  1.9600 120.000 240.000 0.002000 0.014000  0.00e+000  0.00e+000 

 ▄ 
 
 
P4.12 Two one-dimensional bars are connected serially as shown in the figure. At load 
step n, bar1 was plastic and bar2 was elastic. At load step n+1, the increments of nodal 
displacements are given as Du = [Du1, Du2, Du3] = [0.0, -0.01, 0.0]. Calculate 
stresses and plastic strains of both bars at load step n+1. 

  Figure P4.12 

 
 bar1 bar2 

Young modulus (E) 10,000 5,000 

Tangent modulus (Et) 1,000 500 

Previous stress (sn) 6.0 7.4 

Initial yield stress (sY) 5.0 7.5 

Plastic strain (ep) 9E-4 0.0 

Yield status Plastic Elastic 
Hardening Isotropic Isotropic 

 
Solution: 
Bar1: From the given nodal displacements, the strain of the element can be calculated by 

 42 1

1

10
u u

L
e -D -D

D = = -  

First, assume that the strain increment is purely elastic to obtain the following trial state: 

 05.0, 6.0tr n n n
Y Y pE Hs s e s s e= + D = = + =  

Since the material is initially in the plastic state and the stress is positive at load step n, 
the bar yielded in tension. However, since the incremental strain is negative, the bar is 
under unloading. Thus, the material becomes elastic and 

bar1 bar2
1 2 3

L=100 L=100
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 1 1 45.0, 9 10n tr n n
p ps s e e+ + -= = = = ´   

Bar2: From the given nodal displacements, the strain of the element can be calculated by 

 43 2

1

10
u u

L
e -D -D

D = =  

First, assume that the strain increment is purely elastic to obtain the following trial state: 

 07.9, 7.5tr n n n
Y Y pE Hs s e s s e= + D = = + =  

Since tr n
Ys s> , the material becomes plastic in this load increment. Since the element is 

elastic at load step n, the ratio R needs to be calculated, which can be written as 

 1 0.2
tr n

Y
R

s s

s

-
= - =

D
  

Thus, the updated stress and plastic strain become 

 1 (1 ) 7.54n n
tR E Rs s s e+ = + D + - D =   

 1 51
7.2 10

1 /
n n
p p

R

H E
e e e+ --

= + D = ´
+

 

 ▄ 
 
 
P4.13 Write the expression of the rank-4 unit symmetric tensor and unit deviatoric 
tensor in the 6´6 matrix notation. 
 
Solution: 
The index of rank-2 tensor can be converted into a vector via [11 22 33 12 23 13]. From 
the definition of ( ) / 2ijkl ik jl il jkI d d d d= + , the matrix version of the fourth-order unit 
symmetric tensor becomes 

 
1
2

1
2

1
2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

I  

In addition, from the definition of rank-4 unit deviatoric tensor 1
3dev = - ÄI I 1 1 , its 

matrix version becomes 
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2 1 1
3 3 3
1 2 1
3 3 3
1 1 2
3 3 3

1
2

1
2

1
2

0 0 0

0 0 0

0 0 0
IDEV

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

é ù- -ê ú
ê ú- -ê ú
ê ú- -ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ë û

 

 ▄ 
 
 
P4.14 A solid shaft as shown in the figure is subjected to tensile force P and a torque T.  
The force and torque are such that the normal stress sxx = s and shear stress t = s. The 
shear stress is along the circumference of the shaft. Using the von Mises criterion, 
determine the values of s when the material yields first time. The yield stress from the 
uniaxial tension test is sY. 

  Figure P4.14 

Solution: 
In the case of P, the stress component is fixed to be s11. In the case of T, the shear stress 
component varies at different location on the boundary of the cross-section. For the 
simplicity, let’s consider the case in which t12 = s. Thus, the stress matrix and deviatoric 
stress become 

 

2
3

1
3

1
3

00

0 0 , 0

0 0 0 0 0

s ss s
s s s

s

é ùé ù
ê úê ú
ê úê ú= = -ê úê ú
ê úê ú -ê úê úë û ë û

ss  

The norm of deviatoric stress can be calculated by 

 4 1 1 8
9 9 9 3

1 1s s= + + + + =s  

The yield criterion is 

 2 8 2
3 3 3

0Y Yf s s s= - = - =s  

Thus, the first yielding starts when 

 
1

2 Ys s=  

P 

T 

X1 

X2 

X3 
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 ▄ 
 
 
P4.15 A plane stress plate is under biaxial stress state in which sxx = -syy = s. When 
the applied load is proportional, determine s when the material yields first time. The 
yield stress from the uniaxial tension test is sY. 
 
Solution: 
In the case of biaxial loading, the stress matrix and deviatoric stress become 

 

0 0

0 0

0 0 0

s
s

é ù
ê ú
ê ú= = -ê ú
ê ú
ê úë û

ss  

The norm of deviatoric stress can be calculated by 

 2s=s  

The yield criterion is 

 2 2
3 3

2 0Y Yf s s s= - = - =s  

Thus, the first yielding starts when 

 1
3 Y

s s=  

 ▄ 
 
 
P4.16 A square is under proportional loading with shear stress t12 = t21 = t. When the 
effective plastic strain is ep = 0.1, calculate the value of shear stress. Consider three 
different hardening models: (a) isotropic, (b) kinematic, and (c) combined hardening with 
b = 0.5. Assume that the initial yield stress is 400MPa and the plastic modulus is H = 
200MPa. 
 
Solution: 
Since the applied stress is proportional loading, it is expected that the material is in the 
plastic phase, and all three models provide the same stress value. The difference occurs 
only when the direction of loading changes. In the case of pure shear loading, the stress 
and deviatoric stress become 

 

0 0

0 0

0 0 0

t
t

é ù
ê ú
ê ú= = ê ú
ê ú
ê úë û

ss  

Thus, the norm of the deviatoric stress becomes 
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 2t=s  

(a) Isotropic hardening: from the definition of yield function,  

 02 2
3 3
( ) 2 (400 200 0.1) 0Y pHes t- + = - + ´ =s  

 171.5MPas =  

(b) Kinematic hardening: from the definition of yield function, 

 02
3

0Ys- - =s a  

Note that Da is parallel to h and the loading direction remains fixed, and thus, a is 
parallel to s. In that case, the norm of the shifted stress can be written as 

- = -s sa a . Thus, the yield function can be rewritten as 

 0 0 02 2 2 2
3 3 3 3

2 0Y Y p YHes s t s- - = - - = - - =s sa a  

 01 2
2 3

( ) 171.5MPaY pHet s= + =  

(c) Combined hardening: Similar to the kinematic hardening model, a is parallel to s. 
Thus, the yield function can be written as 

 

02
3

02
3

02 2 2
3 3 3

(1 )

(1 )

2 (1 )

0

Y p

Y p

p Y p

He

He

He He

s b

s b

t b s b

é ù- - + -ê úë û
é ù= - - + -ê úë û

= - - - -
=

s

s

a

a  

Thus, the applied stress can be solved for 

 01 2
2 3

( ) 171.5MPaY pHet s= + =  

Note that all three models provide the same stress value. ▄ 
 
 
P4.17 A pure shear deformation is applied to the square element as shown in the figure 
such that s12 = s21 is only non-zero stress component. At load step n, the stress value 
was s12 = 50, and there was no plastic deformation. At load step n+1, incremental strain 
De12 = De21 = 0.005 is applied. Calculate stress components and effective plastic strain 
at load step n+1. Use the following material properties: shear modulus m = 1,000, 
plastic modulus H = 100, initial yield stress sY = 100. 
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  Figure P4.17 

 
Solution: 
Since s12 is only non-zero component, it is convenient to work with it as a scalar rather 
than stress matrix. With given information of 12 50ns =  and 12 0.005eD = , the trial 
state can be calculated as 

 12 12 122 60tr ns s m e= + D =  

The yield state can be tested using the yield function as 

 02 2
123 3

2 3.2032 0tr n tr
Y Yf s s s= - = - = >h  

Thus, the material becomes plastic in this load increment. The plastic consistency 
parameter can be calculated by 

 
2
3

0.00155
2

f

H
g

m
D = =

+
 

In addition, the deviatoric unit tensor for the trial state becomes 

 

0 1 0
1

1 0 0
2

0 0 0

tr

tr

é ù
ê ú
ê ú= = ê ú
ê ú
ê úë û

N
h
h

 

Thus, only s12 will be updated due to plastic deformation. The updated stress and plastic 
strain become 

 1
12 12

2
57.808

2
n tr m g

s s+ D
= - =  

 1 2
3

0.00127n n
p pe e g+ = + D =  

Below is the MATLAB program that solves the above problem: 
% 
% P4.17 shear deformation of a square 
% 
lambda=1000; mu=1000; 
mp = [lambda, mu, 0, 100, 100]; 

X1

X2



4-18 

Iden=[1 1 1 0 0 0]'; 
deps=[0 0 0 0.01 0 0]'; 
stressN=[0 0 0 50 0 0]'; 
alphaN=[0 0 0 0 0 0]'; 
epN=0; 
D=2*mu*eye(6) + lambda*Iden*Iden'; 
D(4,4) = mu; D(5,5) = mu; D(6,6) = mu; 
[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN) 

 ▄ 
 
 
P4.18 Displacements of a simple shear deformation in the figure can be expressed by u1 
= kx2, u2 = 0. At load step n, k = 0.016 and the material is elastic. At load step n+1, 
Dk = 0.008. Calculate stress and plastic strain. Check if the updated state is on the yield 
function; i.e., 1 1( , ) 0n n

pf es + + = . Use the following material properties: shear modulus m 
= 100, plastic modulus H = 10, initial yield stress 12Ys = . 

  Figure P4.18 

 
Solution: 
From the infinitesimal deformation assumption, the strain at load step n can be calculated 
by 

 
1
2

12 121
2

0
0.008, 0.004

0
n nk

k
e e

é ù
ê ú=  = D =ê ú
ê úë û

e  

Since e12 is only non-zero component, strain will be considered as a scalar in the 
following calculations. For the given strain at load step n, the stress becomes 

 12

0 0 1.6
2 2 , 1.6

0 1.6 0
n n n

k

k

m
m m s

m

é ù é ù
ê ú ê ú= = = = =  =ê ú ê úê ú ê úë û ë û

s es e  

Again, since s12 is only non-zero component, stress will be considered as a scalar. For a 
given increment De12, the trial stress becomes 

 12 12 2 2.4tr ns s em= + D =  

The yield function can be used to check the status of the material, as 

F

x1

x2
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 0 22
12 123

2( ) 8 0.566 0tr tr
Yf Ss= - = - = >s  

Thus, the material becomes plastic in this increment, yieldStatus = 1. The unit 
deviatoric tensor and the plastic consistency parameter can be calculated by 

 
0 2.41

2.4 03.394

tr

tr

é ù
ê ú= = ê úê úë û

s
N

s
 

 
2
3

0.5657
0.002737

200 6.6672

f

H
g

m
D = = =

++
 

Using the unit deviatoric tensor and the plastic consistency parameter, the stress and the 
effective plastic strain can be updated by 

 1
0 2.4 0 2.4 0 2.0130.5473

2
2.4 0 2.4 0 2.013 03.394

n tr m g+
é ù é ù é ù
ê ú ê ú ê ú= - D = - =ê ú ê ú ê úê ú ê ú ê úë û ë û ë û

s s N  

 1 2
3

0.002234n n
p pe e g+ = + D =  

After the plastic deformation, the yield surface is expanded by 

 1 0 1( ) 3.4864n n
p Y pe Hek s+ += + =  

Thus, the yield function after update becomes 

 1 1 1 12
3

( , ) ( ) 0n n n n
p pf e ek+ + + += - =s s  

Thus, the updated state of the material is on the surface of the yield function. 
Below is the MATLAB program that solves the above problem: 
% 
% P4.18 shear deformation of a square 
% 
lambda=100; mu=100; 
mp = [lambda, mu, 0, 10, sqrt(12)]; 
Iden=[1 1 1 0 0 0]'; 
stressN=[0 0 0 0 0 0]'; 
alphaN=[0 0 0 0 0 0]'; 
epN=0; 
D=2*mu*eye(6) + lambda*Iden*Iden'; 
D(4,4) = mu; D(5,5) = mu; D(6,6) = mu; 
deps=[0 0 0 0.016 0 0]'; 
[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN); 
stressN=stress; alphaN=alpha;epN=ep; 
deps=[0 0 0 0.008 0 0]'; 
[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN) 

 ▄ 
 
 
P4.19 At load step tn, a unit cube is under unaxial stress state with s11 = 100MPa, and 
all other stress components and plastic variables are zero. At load step tn+1, additional 
shear stress is applied such that Dg12 = 0.002. Determine stress, back stress, and 
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effective plastic strain. Assume the following material properties: l = m = 100GPa, H 
= 10GPa, sY = 100MPa, combined isotropic/kinematic hardening with b = 0.5. 
 
Solution: 
At load step tn, the material reaches the initial yield stress. At load step tn+1, the trial stress 
becomes 

 T: [100 0 0 200 0 0]tr n= + D =Ds s e  

Since back stress is zero at load step tn, the deviatoric stress is the same with the shifted 
stress as 

 T( ) [66.67 33.33 33.33 200 0 0]tr tr tr trtr= = - = - -s 1h s s  

From the shifted stress, the unit deviatoric tensor that is normal to the yield surface can 
be obtained as 

 T[.2265 .1132 .1132 .6794 0 0]
tr

tr
= = - -N

h
h

 

Using the norm of the shifted stress, the yield function can be evaluated as 

 02 2
3 3

294.4 100 212.7 0tr
Yf s= - = - = >h   

It is clear that the material is in the plastic state. The plastic consistency parameter can be 
calculated from 

 
2
3

0.001
2

f

H
g

m
= =

+
 

Using  and N, the stress, back stress, and effective plastic strain can be updated as 

 1 T2 [53.4 23.3 23.3 60.1 0 0]n tr mg+ = - =Ns s  

 1 T2
3

[.777 .389 .389 2.331 0 0]n n Hb g+ = + = - -Na a  

 1 42
3

8.405 10n n
p pe e g+ -= + = ´  

Below is the MATLAB program that solves for the above problem: 
 
lambda=100000; mu=100000; 
mp = [lambda, mu, 0.5, 10000, 100]; 
Iden=[1 1 1 0 0 0]'; 
stressN=[100 0 0 0 0 0]'; 
alphaN=[0 0 0 0 0 0]'; 
epN=0; 
D=2*mu*eye(6) + lambda*Iden*Iden'; 
D(4,4) = mu; D(5,5) = mu; D(6,6) = mu; 
deps=[0 0 0 0.002 0 0]'; 
[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN) 
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 ▄ 
 
 
P4.20 Using Abaqus perform a uniaxial tension test of a unit cube (C3D8) in x3-
direction. Assume elastoplastic material with linear isotropic hardening (E = 2.0E5,  = 
0.3, Y = 200, H = 2.0E4). Displace at x3 = 1 surface is controlled as shown in the figure 
with three steps. Use 10 increments in each step. Plot stress-strain curve for all 30 
increments. 

  Figure P4.20 

Solution:  
The following program list shows the ABAQUS input file for the elastoplastic loading: 
 

t1 t2 t3

0.001 

0.004 

0.006 
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The analysis results are shown in the following figure: 

 
 ▄ 
 
 

*BOUNDARY 
7,3,,.001 
5,3,,.001 
6,3,,.001 
8,3,,.001 
*EL PRINT,FREQ=1 
S,  
E,  
EP,  
*NODE PRINT 
U,RF 
*EL FILE,FREQ=1 
S,  
E,EP 
*END STEP 
*STEP,INC=10 
*STATIC,DIRECT 
1.,10. 
*BOUNDARY 
7,3,,.006 
5,3,,.006 
6,3,,.006 
8,3,,.006 
*EL PRINT,FREQ=1 
S,  
E,  
EP,  
*NODE PRINT 
U,RF 
*EL FILE,FREQ=1 
S,  
E,EP 
*END STEP 

*HEADING 
MISES PLASTICITY/LINEAR ELASTICITY, 
UNIAXIAL TENSION TEST, C3D8 
*NODE,NSET=ALLN 
1,0.,0.,0. 
2,1.,0.,0. 
3,1.,1.,0. 
4,0.,1.,0. 
5,0.,0.,1. 
6,1.,0.,1. 
7,1.,1.,1. 
8,0.,1.,1. 
*ELEMENT,TYPE=C3D8,ELSET=ALLE 
1,1,2,3,4,5,6,7,8 
*SOLID 
SECTION,ELSET=ALLE,MATERIAL=ALLE 
*MATERIAL,NAME=ALLE 
*ELASTIC 
200.E3,.3 
*PLASTIC 
200.,0. 
400.,.01 
*BOUNDARY 
1,PINNED 
2,2 
5,2 
6,2 
4,1 
5,1 
8,1 
2,3 
3,3 
4,3 
*STEP,INC=10 
*STATIC,DIRECT 
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P4.21 Calculate Dep and Dalg for one-dimensional elastoplasticity problem using the von 
Mises yield criterion and linear combined isotropic/kinematic hardening. Assume 
material properties: 0( , , , )YE H s b . 
 
Solution: 
(a) In one-dimensional problems, the lateral strains are ignored, and stress s and strain e 
are scalar. In addition, there is no need to calculate deviatoric stress and strain. The yield 
function becomes 

 0( , ) ( (1 ) ) 0p Y pf e Heh s a s b= - - + - £  

Note that the above yield function is slightly different from the multi-dimensional yield 
function in Eq. (4.84) because equivalent stress and effective strain are not used. The 
constitutive relation is ( )pEs e e= -   with p pee g= =  , and the hardening models are 

 Ha b g=  

There is no difference between the plastic strain and effective plastic strain. From the 
consistency condition: 

 ( ) (1 ) 0p
pf E Hee e a b= - - - - =      

The plastic consistency parameter can be calculated as 

 
E

E H

e
g =

+


 

Thus,  

 1p E EH
E E E

E H E H
s e e e e

æ ö÷ç= - = - =÷ç ÷÷ç + +è ø
     

Thus, the elastoplastic tangent modulus can be obtained as 

 ep
EH

D
E H

=
+

 

Note that the above Dep is the same as the tangent modulus in Eq. (4.8). 
 
(b) In numerical integration, the trial stress is obtained from  

 , ,tr n tr n tr n
p pE e es s e a a= + D = =  

Using the property of p
pee gD = D = D , the plastic return mapping becomes 

 1 1 1, ,n tr n tr n tr
p pE H e es s g a a b g g+ + += - D = + D = + D  

The yield function becomes 
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1 1 0( , ) ( ) ( (1 ) ( )) 0n n tr tr

p Y pf e E H H eh h b g s b g+ + = - + D - + - + D =
 

from which the plastic consistency parameter can be calculated by 

 
0( (1 ) )

( )

tr tr
Y pH e

E H

h s b
g

- + -
D =

+
 

For the consistent tangent stiffness, it is clear that N is fixed in one-dimensional 
problems. The derivative of the plastic consistency parameter with respect to strain 
increment becomes 

 
E

E H

g
e

¶D
=

¶D +
 

Thus, the consistent tangent stiffness becomes 

 
2

alg E EH
D E

E H E H
= - =

+ +
 

Note that Dalg = Dep because in the case of one-dimensional case, the direction N is 
fixed.  ▄ 
 
 
P4.22 In the saturated isotropic hardening model, the yield stress starts from initial value 
of 0

Ys  and approaches Ys
¥  as the plastic strain increases. 

 0 0( ) ( ) 1 exp p
p Y Y Y

p

e
e

e
k s s s¥

¥

é æ öù÷çê ú÷ç= + - - - ÷çê ú÷ç ÷çê úè øë û
 

Since the hardening model is nonlinear, it is required to have a local Newton-Raphson 
method to find the plastic consistency parameter. Modify MATLAB program combHard 
so that it can solve for the above saturated isotropic hardening model. Test the program 
by solving the pure shear problem in P4.15. Assume the following material properties: 
shear modulus m = 1,000, initial yield stress sY = 100, asymptotic yield stress 

Y
s¥  = 

200, and asymptotic effective plastic strain 
p
e¥  = 0.05. 

 
Solution: 
The return-mapping algorithm will be similar to the linear isotropic hardening model 
except for the yield function and the local Newton-Raphson method to find the plastic 
consistency parameter.  
 
 1. Yield function 

 0 02
3

( ) 1 exp
k
pk tr

Y Y Y
p

e
f

e
s s s¥

¥

æ é æ öù ö÷ ÷ç çê ú÷ ÷ç ç= - + - - - ÷ ÷ç çê ú÷ ÷ç ç ÷ ÷ç çê úè è ø øë û
h  

 2. Jacobian relation 



  4-25 

 
0( )2

2 1 exp
3

k
pY Y

p p

ef

e e

s s
m

g

¥

¥ ¥

é æ öù- ÷¶ çê ú÷ç= + - - ÷çê ú÷ç¶ ÷çê úè øë û
 

 3. Update the plastic consistency parameter and effective plastic strain 

 1 1 12
3

,
k

k k k n k
p p

f
e e

f
g g g

g
+ + += + = +

¶ ¶
 

 4. Check convergence 

 If (½fk½ > fTOL) k = k + 1 and go to Step 1 

 If (k > kMAX) stop with error message 

Below is MATLAB program, combHardSat, which can solve for stress and effective 
plastic strain from the saturated hardening model: 
 
% 
% Saturated isotropic hardening model 
% 
function [stress, ep]=combHardSat(mp,D,deps,stressN,epN) 
% Inputs: 
% mp = [lambda, mu, epinf, Y0, Yinf]; 
% D = elastic stiffness matrix 
% stressN = [s11, s22, s33, t12, t23, t13]; 
% 
Iden = [1 1 1 0 0 0]';  
two3 = 2/3; stwo3=sqrt(two3);                   %constants 
mu=mp(2);epinf=mp(3);Y0=mp(4);Yinf=mp(5);       %material properties 
ftol = Y0*1E-6;                                 %tolerance for yield 
stresstr = stressN + D*deps;                    %trial stress 
I1 = sum(stresstr(1:3));                        %trace(sigmatr) 
eta = stresstr - I1*Iden/3;                     %deviatoric stress 
etat = sqrt(eta(1)^2 + eta(2)^2 + eta(3)^2 ... 
          + 2*(eta(4)^2 + eta(5)^2 + eta(6)^2));%norm of eta 
fyld = etat - stwo3*(Y0+(Yinf-Y0)*(1-exp(-epN/epinf))) 
if fyld < ftol                                  %yield test 
    stress = stresstr; ep = epN;                %trial states are final  
    return; 
else 
  iter =0; gamma = 0; ep = epN; 
  while fyld > ftol                             %local N-R iteration 
     iter=iter+1; 
     if iter > 40; error('Fail to compute gamma'); end; 
     dfdg = 2*mu+two3*((Yinf-Y0)*exp(-ep/epinf)/epinf) 
     gamma = gamma + fyld/dfdg                  %update plast cons param 
     ep = epN + stwo3*gamma; 
     fyld = etat -2*mu*gamma - stwo3*(Y0+(Yinf-Y0)*(1-exp(-ep/epinf))) 
  end 
end 
N = eta/etat;                                   %unit vector normal to f 
stress = stresstr - 2*mu*gamma*N;               %updated stress 

 
Below is the MATLAB program that can solve for P4.15 with the saturated isotropic 
hardening model: 
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% 
% P4.22 shear deformation of a square (saturated isotropic hardening) 
% 
lambda=1000; mu=1000;epinf=0.05;Y0=100;Yinf=200; 
mp = [lambda, mu, epinf, Y0, Yinf]; 
Iden=[1 1 1 0 0 0]'; 
deps=[0 0 0 0.01 0 0]'; 
stressN=[0 0 0 50 0 0]'; 
alphaN=[0 0 0 0 0 0]'; 
epN=0; 
D=2*mu*eye(6) + lambda*Iden*Iden'; 
D(4,4) = mu; D(5,5) = mu; D(6,6) = mu; 
[stress, ep]=combHardSat(mp,D,deps,stressN,epN) 

 
The local Newton-Raphson converged after the second iteration.  
Iteration 1: f = 3.2032, df/dg = 3.33E3, g = 9.61E-4 
Iteration 2: f = 0.01, df/dg = 3.31E3, g = 9.64E-4 
Iteration 3: f = 9.77E-8 
 
After convergence, the stress and effective plastic strain are updated to 

 1 1 4
12 58.63, 7.87 10n n

pes+ + -= = ´  

 ▄ 
 
 
P4.23 An plane strain square undergoes the following elastic deformation:  

 1 1 2 2 2 3 3, ,x X kX x X x X= + = =  

Using the linear relationship between principal Kirchhoff stress and logarithmic stretch, 
find the Kirchhoff stress tensor when k = 0.02. Use the following material properties: l 
= m = 100GPa. 
 
Solution: 
Since the cube is elastic, there is no need to separate elastic and plastic part of 
deformation. Thus, the superscript ‘e’ will be omitted in the following derivation. For 
given deformation, the deformation gradient and left Cauchy-Green deformation tensor 
becomes 

 T

1 0.02 0 1.0004 0.02 0

0 1 0 , 0.02 1 0

0 0 1 0 0 1

é ù é ù
ê ú ê ú
ê ú ê ú= = =ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

F b FF  

The three eigenvalues and eigenvectors of b become 

 

1 T
1

2 T
2

3 T
3

1.02, [ 0.711 0.704 0]

0.98, [0.704 0.711 0]

1, [0 0 1]

l

l

l

= = - -

= = -

= =

n

n

n
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Then, the logarithmic stretch can be obtained by 

 { }T
0.02 0.02 0= -e  

The stress-strain relation in the principal space, tp = c⋅e, can be written as 

 11 9

3 1 1 0.02 4

1 3 1 0.02 10 4 10 Pa

1 1 3 0 0

p

é ù ì ü ì üï ï ï ïï ï ï ïê ú ï ï ï ïï ï ï ïê ú= - ´ = - ´í ý í ýê ú ï ï ï ïê ú ï ï ï ïï ï ï ïê ú ï ï ï ïë û î þ î þ

t  

Then, the Kirchhoff stress can be obtained using 

 
3

1

0.04 4 0

4 0.04 0 GPa

0 0 0

p i i
i

i

t
=

é ù
ê ú
ê ú= Ä = -ê ú
ê ú
ê úë û

å n nt  

 ▄ 
 
 
P4.24 A history of biaxial loadings is applied to a 1mm´1mm square, as shown in the 
figure. The square is constrained in the Y-direction along the bottom edge and in the X-
direction along the left edge. The model is displaced in the X and Y directions at the right 
and top edges by R = 2.5´10-5mm, respectively. Calculate sxx, syy, szz, and vonMises 
stress at each load step. Use the following material properties: E = 250GPa, n = 0.25, 
sY = 5MPa, and ET = 50GPa. 

  Figure P4.24 

 
Load step DX DY Description 

1 R 0 First yield 
2 R 0 Plastic flow 
3 0 R Elastic unloading 
4 0 R Plastic reloading 

1m 

1m 
DX 

DY 

X 

Y 
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5 -R 0 Plastic flow 
6 -R 0 Plastic flow 
7 0 -R Elastic unloading 
8 0 -R Plastic flow 

 
Solution: 
The problem is modeled using one square element in ANSYS. Since the strain in Z-
direction is constrained, stress in Z-direction. Below is the table of stresses at each load 
step.  
 

Load step sxx syy szz von Mises stress 
1 7.50000    2.5 2.5 5.0 
2 11.7 6.7 6.7 5.0 
3 14.2 14.2 9.2 5.0 
4 16.4 19.7 13.9 5.0 
5 9.9 15.6 12.0 5.0 
6 5.1 10.7 9.2 5.0 
7 2.6 3.2 6.7 3.8 
8 0.2 -3.0 2.8 5.0 

 
Below is ANSYS script to model and solve the problem: 
 
/COM,ANSYS MEDIA REL. 11.0 (10/27/2006) REF. VERIF. MANUAL: REL. 11.0 
/VERIFY,VMR049-PL1A-182 
/TITLE, VMR049-PL1A-182, 2D PLANE STRAIN PLASTICITY BENCHMARK 
/COM, REFERENCE: NAFEMS REPORT-R0049 
 
/PREP7 
R = 2.5E-5 
ET,1,182,,, 
KEYOPT,1,3,2 
N,1,,,, 
N,2,0,1,, 
N,3,1,0,, 
N,4,1,1,, 
E, 1,3,4,2 
MP,EX,1,250E3, 
MP,NUXY,1,0.25, 
TB,BISO,1,1, , , 
TBMODIF,2,1,5 
TBMODIF,3,1,0.0 
TB,HILL,1 
TBDATA,1,1.0,1.0,1.0,1.0,1.0,1.0 
NSEL,S,LOC,X 
D,ALL,UX 
NSEL,S,LOC,Y 
D,ALL,UY 
NSEL,S,LOC,Y,1.0 
D,ALL,UY 
FINISH 
 
/SOLU 
NLGEOM,ON 
NSEL,S,LOC,X,1.0 
D,ALL,UX,R 
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NSEL,ALL 
NSUBST,10,10,10, 
OUTRES,ALL,5 
SOLVE 
NSEL,S,LOC,X,1.0 
D,ALL,UX,2*R 
NSEL,ALL 
NSUBST,10,10,10, 
OUTRES,ALL,5 
SOLVE 
NSEL,S,LOC,Y,1.0 
D,ALL,UY,R 
NSEL,ALL 
NSUBST,10,10,10, 
OUTRES,ALL,5 
SOLVE 
NSEL,S,LOC,Y,1.0 
D,ALL,UY,2*R 
NSEL,ALL 
NSUBST,10,10,10, 
OUTRES,ALL,5 
SOLVE 
NSEL,S,LOC,X,1.0 
D,ALL,UX,R 
NSEL,ALL 
NSUBST,10,10,10, 
OUTRES,ALL,5 
SOLVE 
NSEL,S,LOC,X,1.0 
D,ALL,UX,0.0 
NSEL,ALL 
NSUBST,10,10,10, 
OUTRES,ALL,5 
SOLVE 
NSEL,S,LOC,Y,1.0 
D,ALL,UY,R 
NSEL,ALL 
NSUBST,10,10,10, 
OUTRES,ALL,5 
SOLVE 
NSEL,S,LOC,Y,1.0 
D,ALL,UY,0.0 
NSEL,ALL 
NSUBST,10,10,10, 
OUTRES,ALL,5 
SOLVE 
FINISH 
 
/POST26 
/GROPT,VIEW,0 
/GTHK,CURVE,1 
/GROPT,FILL,OFF 
/GRID,1 
/GTHK,GRID,1 
/GROPT,CGRID,1 
/AXLAB,X,STEP 
/AXLAB,Y,STRESS 
/GTHK,AXIS,1 
/GRTYP,0 
/XRANGE,0,8 
/YRANGE,-10,25 
ESOL,2,1,4,S,X, 
ESOL,3,1,4,S,Y, 
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ESOL,4,1,4,S,Z, 
ESOL,5,1,4,S,EQV, 
PLVAR,2,3,4,5 
PRVAR,2,3,4,5 
 
*DIM,VALUEX,ARRAY,8,1 
*DO,JJ,1,8,1 
*GET,VALUEX(JJ,1),VARI,2,RTIME,JJ 
*ENDDO 
R1=VALUEX(1,1)/7.500 
R2=VALUEX(2,1)/11.666 
R3=VALUEX(3,1)/14.166 
R4=VALUEX(4,1)/16.418 
R5=VALUEX(5,1)/9.927 
R6=VALUEX(6,1)/5.134 
R7=VALUEX(7,1)/2.635 
R8=VALUEX(8,1)/1.218 
 
*DIM,VALUEY,ARRAY,8,1 
*DO,JJ,1,8,1 
*GET,VALUEY(JJ,1),VARI,3,RTIME,JJ 
*ENDDO 
R9=VALUEY(1,1)/2.500 
R10=VALUEY(2,1)/6.666 
R11=VALUEY(3,1)/14.166 
R12=VALUEY(4,1)/19.669 
R13=VALUEY(5,1)/15.622 
R14=VALUEY(6,1)/10.745 
R15=VALUEY(7,1)/3.245 
R16=VALUEY(8,1)/(-3.715) 
 
*DIM,VALUEZ,ARRAY,8,1 
*DO,JJ,1,8,1 
*GET,VALUEZ(JJ,1),VARI,4,RTIME,JJ 
*ENDDO 
R17=VALUEZ(1,1)/2.500 
R18=VALUEZ(2,1)/6.666 
R19=VALUEZ(3,1)/9.166 
R20=VALUEZ(4,1)/13.912 
R21=VALUEZ(5,1)/11.951 
R22=VALUEZ(6,1)/9.120 
R23=VALUEZ(7,1)/6.620 
R24=VALUEZ(8,1)/3.521 
 
*DIM,VALUEEF,ARRAY,8,1 
*DO,JJ,1,8,1 
*GET,VALUEEF(JJ,1),VARI,5,RTIME,JJ 
*ENDDO 
R25=VALUEEF(1,1)/5.000 
R26=VALUEEF(2,1)/5.000 
R27=VALUEEF(3,1)/5.000 
R28=VALUEEF(4,1)/5.000 
R29=VALUEEF(5,1)/5.000 
R30=VALUEEF(6,1)/5.000 
R31=VALUEEF(7,1)/3.719 
R32=VALUEEF(8,1)/5.000 
 
*DIM,STEP,CHAR,10 
*DIM,TARGETX,CHAR,10 
*DIM,TARGETY,CHAR,10 
*DIM,TARGETZ,CHAR,10 
*DIM,TARGETEF,CHAR,10 
*DIM,RATIOX,,8,1 
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*DIM,RATIOY,,8,1 
*DIM,RATIOZ,,8,1 
*DIM,RATIOEF,,8,1 
STEP(1)='1.0','2.0','3.0','4.0','5.0','6.0','7.0','8.0' 
TARGETX(1)='7.500','11.666','14.166','16.418','9.927','5.134','2.635','1.218' 
TARGETY(1)='2.500','6.666','14.166','19.669','15.622','10.745','3.245','-3.715' 
TARGETZ(1)='2.500','6.666','9.166','13.914','11.951','9.120','6.620','3.521' 
TARGETEF(1)='5.000','5.000','5.000','5.000','5.000','5.000','3.719','5.000' 
*VFILL,RATIOX,DATA,R1,R2,R3,R4,R5,R6,R7,R8 
*VFILL,RATIOY,DATA,R9,R10,R11,R12,R13,R14,R15,R16 
*VFILL,RATIOZ,DATA,R17,R18,R19,R20,R21,R22,R23,R24 
*VFILL,RATIOEF,DATA,R25,R26,R27,R28,R29,R30,R31,R32 
/COM, 
/COM, ----------- VMR049-PL1A-182 RESULTS COMPARISON -------------- 
/COM, 
/COM, vmr049-pl1a-182.jpeg RESULTS SHOULD MATCH R0049 NAFEMS MANUAL 
/COM, GRAPH RESULTS ON PAGE 49, FIGURE 2.14(A).  THE RESULTS 
/COM, DISPLAYED ARE INCREMENTED FOR THIS PURPOSE. 
/COM, 
/COM, 
/COM, ------ VMR049-PL1A-182 STRESS RESULTS IN X DIRECTION ------- 
/COM, 
/COM, |  STEP  |  TARGET  |  ANSYS  |  RATIO 
/COM, 
*VWRITE,STEP(1),TARGETX(1),VALUEX(1,1),RATIOX(1,1) 
(1X,A8,'   ',1x,A8,'   ',F8.3,'   ',F8.3,'   ') 
/COM, 
/COM, ------ VMR049-PL1A-182 STRESS RESULTS IN Y DIRECTION ------- 
/COM, 
/COM, |  STEP  |  TARGET  |  ANSYS  |  RATIO 
/COM, 
*VWRITE,STEP(1),TARGETY(1),VALUEY(1,1),RATIOY(1,1) 
(1X,A8,'   ',1x,A8,'   ',F8.3,'   ',F8.3,'   ') 
/COM, 
/COM, 
/COM, ------ VMR049-PL1A-182 STRESS RESULTS IN Z DIRECTION ------- 
/COM, 
/COM, |  STEP  |  TARGET  |  ANSYS  |  RATIO 
/COM, 
*VWRITE,STEP(1),TARGETZ(1),VALUEZ(1,1),RATIOZ(1,1) 
(1X,A8,'   ',1x,A8,'   ',F8.3,'   ',F8.3,'   ') 
/COM, 
/COM, 
/COM, ------ VMR049-PL1A-182 EFFECTIVE STRESS RESULTS ------- 
/COM, 
/COM, |  STEP  |  TARGET  |  ANSYS  |  RATIO 
/COM, 
*VWRITE,STEP(1),TARGETEF(1),VALUEEF(1,1),RATIOEF(1,1) 
(1X,A8,'   ',1x,A8,'   ',F8.3,'   ',F8.3,'   ') 
/COM, 
/COM, 
FINISH 

 
 


