1.6. Exercises

P1.1 Using Cartesian bases, show that (u ® v)- (w ® x) = (v- w)u ® x where u, v,
w, and x are rank 1 tensor.

Solution: Using the Cartesian basis, (u® v)(w ® x) = (ue; @ vie;) - (w e, ® z€)).
Since the dot product occurs between adjacent bases, we have

(v, ® vjej) (w,e, ® zp€))
= “z’vj“’kxz(ej -e)(e; ®e)
= uvwzb, (e; ®e)

= yw;z(e; @ €))

vw;(ue; © ze)

A
=(v-w)(u®x)

In the above equation, we used the following properties: e, e =0,, wb, =w,, and

VW, = VW,

P1.2 Any rank 2 tensor T can be decomposed by T =S + W, where S is the symmetric
part of T and W is the skew part of T. Let A be a symmetric rank 2 tensor. Show
A:-W=0and A: T=A:S.
Solution: Since A is symmetric and W is skew, we have
AW =AW, =-AW, =-AW,

Since in the above equation, the repeated indices i and j are dummy, the above equation
can be rewritten as

AWy = —A4Wy,; =0
In addition, from the relation T=S + W,

A:T=A:S+W)=A:S+A:W=A:S

P1.3 For a symmetric rank-two tensor E, using the index notation, show that
I:E=E,where I =1[0,6, +6,0,]isasymmetric unit tensor of rank-4.

ik~ gl il " gk
Solution: Using index notation, the contraction operator can be written as

(I:E), =[5,8, +6,6,1E,

ij il gk

Since the Kronecker-delta symbol replaces indices, the above equation can be written as



(I:E), =1[E, + E,|=E, = (E),

)

The symmetric property of E is used.

P1.4 The deviator of a symmetric rank-2 tensor is defined as A, = A — A™1 where
A" =+(A, + A, +A,). Find the rank-4 deviatoric identity tensor I, that satisfies
Adezr = Idev : :
Solution: From Problem P1.3, it can be shown that I: A = A . In addition, A™ can be
written in the tensor notation as A" = %1 : A Therefore, A, = A — A™1 and it can be
written as

A, =[I-1101:A=1,:A

dev

The last equality defined the rank-4 deviatoric identity tensor I .

P1.5 The norm of a rank-2 tensor is defined as HAH =+ A : A . Calculate the following
derivative 0 HAH / OA . What is the rank of the derivative?

Solution: From the definition

o)A
y - a%[(A FVE %(A L A)2(2A 1) =

A
4]

The result is a rank-2 tensor. Note that the property that A / OA =1 is used.

P1.6 A unit rank-2 tensor in the direction of rank-2 tensor A can be defined as
N =A/[A]. Show that ON / 9A = [1- N @ N]/[A].

Solution: Using chain-rule of differentiation, the unit normal tensor can be differentiated
as

ON_ 9
0A  0A

A

4]

1
Jaf

oA
O0A

O||A
- a5 5!

It is straightforward to show that A / OA = I. From Problem 1.5, we have

olal_ o
OA O0A

A
Al

(A:A)”] = LA A)22A) =
2

Therefore, we have



ON 1
—=—(I—-N®N
on " NN

P1.7 Through direct calculation of a rank-2 tensor, show that the following identity

Solution: In the index notation, (, s, t) are real indices, while (i, j, k) are dummy indices.
Since (1, s, t) only appears in the permutation symbol, it is enough to show the cases of
even and odd permutation. Consider the following case of even permutation: (1, s, t) = (1,
2, 3). In such a case, non-zero components of the right-hand side can be written as

eijL~Ai1Aj2AL~3 = 6123‘411’422‘433 + 6132‘411’432‘423
tey A AR A, + e, A A AL
te,, A ALA e, AjALA L

In the above equation, we have e, =e, =e¢,

Therefore, the above equation becomes

ezjkAilAj?AkS = All(A22A33 - A32A23) + A?l(AazAm - A12A33) + ‘431(‘412‘423 - AEQAIS)

which is the definition of det[A]. By following a similar approach, it can be shown that
the odd permutation of (r, s, t) will yield —det[A].

2 1 and €30 = €3 = €591 = —1.

P1.8 Foravector r = z,€, + 1,8, + T5€4 and its norm r = ‘r

,prove V- (1) = 4r.
Solution: From the product rule,

V-(m)=Vr-r+rV-r
Now consider

1 0 1 0z, oz, 1

0 N
VT.:—.%{II,l/Q =0z .x. :__]$—{—.’L'—j ISy =i
( )7, axl( J ]) 2(Ik,’1]k)1/2 axl( Ji j) 27”(81‘ j j a:I:,L) . i .

Therefore,
. orx. 2
v'(”):VT'I'—I—TV'r:ﬁ%_}_r $l:r_+3/’":4’f‘
r 8:1] r

7

This completes the proof.




P1.9 A velocity gradient is decomposed into symmetric and skew parts, Vv = d + w,

where
dzl %_}_%, w:lavz_%
Y 2 EMJ. 8332. v 2 81‘]- &Ui

Show that

(a) For a symmetric stress tensor, o : Vv = o : d.

1 ov

®)w, =-e,e  —5
ij 92 ik~ mnk 8£En

Solution:
(a) From Prob. 1.2, Since stress tensor is symmetric, o : w = 0. Therefore, it is obvious
that c: Vv=0c:w+o:d=0oc:d.

(b) The direct substitution method can be used to show the identity. We will show the
case when ¢ = 1,7 = 2. The other cases can also be shown in the same way. Knowing
that the permutation symbol becomes zero when indices are repeated, in this case the
only nonzero situation happens when k& = 3. For the second permutation symbol, the
only non-zero situations are m = 1,n = 2 and m = 2,n = 1, where the former is even
permutation and the latter is odd permutation. Therefore,

W9

! Ov _1[%_%]

= —e..e —_m _—
2 123"mn3 8In 2 8.772 afL’l

Other cases can also be shown in the same way.

P1.10 A symmetric rank four tensor is defined by D = A1 ® 1 4+ 2ul where 1 = [(51.].] is
a unit tensor of rank-two and I = ;[6,6, + 6,0, ] is a symmetric unit tensor of rank-four.
When E is an arbitrary symmetric rank-two tensor, calculate S = D : E in terms of E .

Solution: Using index notation, the contraction can be written as

S, =D,E, = [A(sm(skl + (8,8, + 5_167k)]Ekl

ikl Kl L2 (2

Since the Kronecker-delta symbol replaces indices, the above equation can be simplified
as

Sij = D E = )\Ekk6zj + 'LL(EU + Eji) = )\Ekk6zj + QMEU

wgkl™ kKl
In the tensor notation, the above relation can be written as

S=D:E = Mr(E]1+2uE




P1.11 Using integration by parts, calculate [ = f zcos(z)dx.

Solution: Let v = z and v = cos(z). Then

f:l:cos(x)dx = fuv’dx
= uv — fu'vdx
= zsin(z) — fsin(x) dx

= xsin(z) + cos(z) + C

P1.12 Using integration by parts, calculate [ = f e’ cos(z)dx .
Solution: Let u = cos(z) and v = €”. Then
fe‘/” cos(z)dx = e” cos(z) + fe‘/” sin(z)dx

Now, to evaluate the second terms on the right-hand side using additional integration by
parts with u = sin(z) and v = ", as

fe"” sin(z)dx = e” sin(z) — fe"” cos(z)dx
Therefore, putting these together, we have
fef” cos(z)dx = e’ cos(z) + €” sin(z) — fef” cos(z)dz

After rearranging, the original integral can be obtained as

fex cos(z)dx = %(e‘” cos(z) + " sin(x)) + C

P1.13 Calculate the surface integral of the vector function F = ze, + ye, over the
portion of the surface of the unit sphere, S : z> + 4? + 2? = 1, above the zy plane; i.e.,
z>0.

j;F-ndS

Solution: If we close the surface of integration by adding the portion of the zy plane
which spans the hemisphere, we notice that the surface integral of F over the added
surface is zero, since

F-n=F-(—e;) =0



over this area. Thus, the divergence theorem states that we may calculate the required
surface integral of F by evaluating

fSF-ndS:ffVV-FdV

where V' is the volume interior of the hemisphere. Since V - F = 2, the result is merely
twice the volume of the unit hemisphere, or 47/3.

P1.14 Evaluate the surface integral of a vector, F = ze, + ye, + ze,, over the closed
surface of the cube bounded by the planes, z = +1,y = +1,z = £1, using the
divergence theorem.

fSF-ndS

Solution: Using the divergence theoremand V- F = 3,

fSF-ndS:ffVV-FdV:ffviSdV:M

P1.15 Consider a unit-depth (in z-axis) infinitesimal element as shown in the figure.
Using force equilibrium, derive the governing differential equation in two-dimension
(equilibrium in x- and y-directions). Assume that a uniform body force, f% = [ le , fQB |, is
applied to the infinitesimal element.

Only, ¥
2

T dy
21y, 3
i} y+ 5
y z-12|><+%
2
Oy |x,ﬁ Oy |x+%
2 2

X

z-12|x,%
2

T | dy |
21|y
y 2

O, | dy
22 |y_=%
y 2

Solution: Equilibrium in the x—direction yields the following equation:
[0’11 ‘H@ ]dy — [011 ‘mfdi" ]dy + [7’21 ‘er@ ]dx — [7’21 ‘ydy]dx + fIdedy =0
2 2 2 2

If the first-order Taylor series expansion is used to represent stresses on the surfaces of
the rectangle in terms of stresses at the center, the first two terms in the above equation
can be approximated by



["11 ‘Hﬂ ]dy - [‘711 L_@ ]dy
2 2

0o, d
= [‘711 "‘&_x]dy - [‘711

T Ox 2
Similarly, the next two terms can be approximated by

— 80” % dy = —8011 dzdy
I oz 2 oz

[7’21 ‘H@ dx — [7’21 ‘gﬁ@ ]dar;
iy 2
=T Oy dy de — | 7 ‘ _ Ot dy de = 97y dxdy
2y dy 2 21y dy 2 oy

By substituting these two equations into the original equation, we obtain an equilibrium
equation in the x—direction as

0oy, 01y

+/=0
Ox oy h

Similarly, equilibrium in the y-direction yields the following equation:

or,, 0o,

+5 =0
Ox Jy 2

P1.16 In the above unit-depth (in z-axis) infinitesimal element, show that the stress
tensor is symmetric using moment equilibrium.

Solution: Moment equilibrium with respect to the center of the element becomes

dzdy dzdy dzdy dzdy
T de |—— +| T de |—— —| T. dy |—— —| T d =0
[l [ el J 5l [l )

If the first-order Taylor series expansion is used to represent stresses on the surfaces of
the rectangle in terms of stresses at the center,

Typdrdy — 7o dxdy = 0

Thus, the stress tensor is symmetric. The same relation can be shown for 3-D stress
tensor.

P1.17 The principal stresses at a point in a body are given by o, = 4,0, = 2,0, =1,
and the principal directions of the first two principal stresses are given by
n') = ﬁ(o, 1,—1) and n® = %(0, 1,1) . Determine the state of stress at the point; i.e., 6
components of stress tensor.



Solution:
Since the three principal directions are mutually orthogonal, the third principal direction
can be calculated by using the cross-product of the two principal directions, as

n® = n® xn® = (1,0,0)

Since these three principal directions are mutually orthogonal, they can be considered as
a basis of coordinate system. In this new coordinate system, the stress tensor will only
have diagonal components, which is the same as the three principal stresses. Then, the
transformation between the two coordinate systems for a rank-2 tensor can be written as

(o193 = [Q]T[G]mz[Q]

where [Q] = [0 n® n®)] is the orthogonal transformation matrix between the two
coordinate systems. Using the property that the inverse of an orthogonal matrix is the
same as the transpose, the reverse relationship can be obtained as

[0],,. = [Qllo]5[Q1"

Or,
001400()%—% 1 0 0
[G]W:%%00200%%=03—1
L L gllo 0 1{1 0 0 0 -1 3
2 42

The last matrix defines all 6 components of stress tensor.

P1.18 Find the principal stresses and the corresponding principal stress directions for the
following cases of plane stress:

(a) 0'11:40 MPa, 022=0MPa, 0'12:80 MPa

(b) g11 = 140 MPa, 0'22:20 MPa, 0'12:_60 MPa

(C) 0'11:—120 MPa, 0'22:50 MPa, g1 = 100 MPa

Solution:
(a) The stress matrix becomes

40 80
80 0

MPa

ag

l Oz sz
Tl'l/ vy

To find the principal stresses, the standard eigen value problem can be written as
[c — JI]{n} =0

The above problem will have non-trivial solution when the determinant of the coefficient
matrix becomes zero:



T.. g . —0

The equation of the determinant becomes:
((40—0)-—0)—(80-80) = 0® — 400 — 6400 = 0

The above quadratic equation yields two principal stresses, as

o, = 102.46 MPa and 0, = —62.46 MPa..

To determine the orientation of the first principal stresses, substitute 6; in the original
eigen value problem to obtain

n, 0

n, o

Since the determinant is zero, two equations are not independent

40 — 102.46 80
80 0 —102.46

62.46-n, = 80-n 80 n, = —102.46 - n,

¥ and

Thus, we can only get the relation between ny and ny. Then using the condition [n| = 1 we

obtain
{nx F” - {0.788}
n, 0.615
To determine the orientation of the second principal stress, substitute o, in the original
eigen value problem to obtain
n,| 0
=l

80-n, = —62.46 -1,

40 + 62.46 80
80 0+ 62.46

102.46 - n, = —80 - n, and

Using similar procedures as above, the eigen vector of 6, can be obtained as

n,|? [ 0615
n,| — |-0.788
Note that if n is a principal direction, —n is also a principal direction

(b) Repeat the procedure in (a) to obtain

o, = 164.85MPa 0, = —4.85MPa

and

1% }“) - {—0.924} {n r) - {0.383}
n, 0383 [ |, 0.924



(c) Repeat the procedure in (a) to obtain

o, = 96.24 MPa = —166.24 MPa

g
and 2

{nx r’ {0.420} {n r) {—0.908}

n, 0.908 and n, 0.420

Note that for the case of plane stress 63=0 is also a principal stress and the corresponding
principal stress direction is given by n® =(0,0,1)

P1.19 Determine the principal stresses and their associated directions, when the stress
matrix at a point is given by

[e]={1 1 2|MPa
1 21

Solution:
Use Eq. (1.50) with the coefficients of 1,=3, I,=—3, and I5=—1,

AP =3\ =3A4+1=0
By solving the above cubic equation,

o, = 3.73MPa, o0, =0.268MPa, o, = —1.00MPa

(a) Principal direction corresponding to o:

(1—3.7320)n, +n, +n, =0
ny + (1—3.7321)n) + 2n! = 0
n, +2n, + (1 —3.7321)n; = 0

Solving the above equations with [n'| = 1 yields
n' = {£0.4597,+0.6280, +0.6280}
(b) Principal direction corresponding to o»:

(1—0.2679)n, +n, +n; =0
n? +(1—0.2679)n + 2n =0
n? +2n2 + (1 —0.2679)n = 0

Solving the above equations with [n*| = 1 yields
n* = {40.8881,F0.3251,F0.3251}

(c) Principal direction corresponding to o3:



(1+1)n§’+n5+n?=0
n) +(1+1n) +2n =0
3 3 3

ny +2n, + (1 +1n =0

Solving the above equations with [n| = 1 yields

n® = {0,40.7071,F0.7071}

P1.20 Let x'y'z' coordinate system be defined using the three principal directions
obtained from Problem P1.19. Determine the transformed stress matrix [6]xy in the new
coordinates system.

Solution:
The three principal directions in Problem 6 can be used for the coordinate transformation
matrix:

1) 2) 3)

n(

ny) n?ong 0.460 —0.888 0
[N]=|n(" nl» a®]=l0.628 0325 0.707
n) p® p®| 0628 0325 —0.707

To determine the stress components in the new coordinates we use Eq. (1.30):

. 3732 0 0
[o],,. =[N [¢][N]=] 0 268 0
0o 0 -1

Note that the transformed stress matrix is a diagonal matrix with the original principal
stresses on the diagonal.

P1.21 The stress-strain relationship for three-dimensional isotropic solid is given as
o, = [K 6.0, +2u(6,6, — %‘Sij‘su)]% where K is the bulk modulus and p is the shear
modulus. In practice, stress and strain are written in the vector forms such that

T T
{G} = {0-117 0-227 0-33’ Ul?’ 0-23’ 0-12 and {e} = {611’ 6227 8337 7127 7237 712} : Then’ the
stress-strain can be written as {o} = [D]|{e}. Write the expression of 6x6 elasticity
matrix [D] in terms of K and 4 .

Solution: Based on the arrangement of stress and strain vector, the indices are arranged
as



1 1 1

D1111 D1122 D1133 2 D1112 2 D1123 2 D1113
1 1 1

D2211 D2222 D2233 2 D2212 2 D2223 2 D2213
1 1 1

[D] _ D3311 D3322 D3333 2 D3312 2 D3323 2 D3313
1 1 1 1 1 1

2 D1211 2 D1222 2 D1233 2 D1212 2 D1223 2 D1213
1 1 1 1 1 1

2 D2311 2 D2322 2 D2333 2 D2312 2 D2323 2 D2313
1 1 1 1 1 1

2 D1311 2 D1322 2 D1333 2 D1312 2 D1323 2 D1313

Note that the components corresponding to shear strains are divided by two because
Y, = 251.].. Due to Kronecker-delta symbol, many components are zero. Non-zero
components are

D =D =D,

1111 2222 3333

=K+3u

D =D .=D =D .=D, =D, =K--—

1122 1133 2211 2233 3311 3322

w |ro

W
Dy, =D :D1313:2M

1212 2323

Therefore, the elasticity matrix can be written as

K+ip K—2p K—-2p 0 0 0
K—2p K+4p K—2p 0 0 0
pj_[K—3n K=in Kidp 0 0 0
0 0 0 0 0

0 0 0 0 u 0

0 0 0 0 0 pu

P1.22 For steel, the following material data are applicable: Young’s modulus E = 207
GPa and shear modulus G = 80 GPa. For the strain matrix at a point shown below,
determine the symmetric 3x3 stress matrix.

0.003 0  —0.006
e]=| 0  —0.001 0.003
~0.006 0.003 0.0015

Solution:
From Eq. (1.81) the elasticity matrix becomes

E

D} = 1+ )1 2v) g
0
0

o O o o O




From the relation G = E / 2(1 + v), we calculate v = (F / 2G) — 1 = 0.294.

T 0.003 0.879
T —0.001 0.239
o, 0.0015 0.639
= [D] = GPa
Ty 0.006 0.480
T —0.012 —0.960
Ty 0 0

In the matrix notation

0.879 0  —0.960
[e]=| 0 0239 0480 |GPa
—0.960 0.480  0.639

P1.23 A strain rosette consisting of three strain gages was used to measure the strains at
a point in a thin-walled plate. The measured strains in the three gages are: gn = 0.001, &g
=—0.0006, and & = 0.0007. Not that Gage C is at 45° with respect to the x-axis.

(a) Determine the complete state of strains and stresses (all six components) at that
point. Assume E =70 GPa, and v=0.3.

(b) What are the principal strains and their directions?

(c) What are the principal stresses and their directions?

(d) Show that the principal strains and stresses satisty the stress-strain relations.

e

Solution:

(a) From figure it is obvious &x = &a = 0.001 and &y = &g = —0.0006. Shear strain can be
found using the strain version of the stress transformation relation in Eq. (1.38). The 2-D
version becomes

— 2 2
Ean = Eully + 6yyny + fywynwny

where ny = cos(45°) and ny = sin(45°). Thus,

0 = €,,(45°) = ¢, cos® 45 + ¢ sin® 45 + v, sin45cos 45 = 0.0007

By solving the above equation, we obtain jy = 0.001. Since the strain rosette only
measures plane stress state, &; is unknown. But, there is no shear strain in the z-
direction, %; = %; = 0. In order to calculate the unknown stress &, , we use the

constitutive relation for plane stress. Since the plate is in a state of plane stress, 0 = 7,



= 75, = 0. Other stresses can be obtained from stress-strain relations for plane stress
conditions as shown below:
63.1
MPa
—23.1

For plane stress condition the through-the-thickness strain is obtained, as

—t—
™M M
< 8
| —
I

= E”(am +0,,) = —0.000171

2z y

(b) For a state of plane stress, &;=—0.000171 is a principal stress and the z-axis (0,0,1) is
the corresponding principal strain direction. The other two principal strains can be found
from the eigen value problem in 2D strain state:

n, | 0

n, ~]o

Two principal strains are calculated from the condition that the determinant of the
coefficient matrix is zero: (e, — A)(¢,, — A) — siy = 0. The solution of the quadratic
equation becomes A; = 0.0011 and A, = —0.0007. Thus, the three principal strains are &
= 0.0011, & = —0.000171, and & = —0.0007. Two principal directions can be obtained
from the original eigen value problem. Adding z-axis, the three principal directions are

- A

Eow Ezy

[e — M|{n} = e

zy

—0.961 0 0.276
n' ={-0276f, n?=1{0{, n®=1-0.961
0 1 0

(c) Principal stresses
For plane stress condition, o; = 0 is a principal stress and the z-axis (0,0,1) is the
corresponding principal direction. The other principal stresses and the directions can be
found by solving the following eigen value problem:

n, 0

Bt

Two principal stresses are calculated from the condition that the determinant of the
coefficient matrix is zero: (o,, — A)(o,, — A) — Tiy = 0. The solution of the quadratic
equation becomes 4; = 70.8 and A, = —30.8. Thus, the three principal stresses are o7 =
70.8 MPa, o, = 0.0 MPa, and o3 = —30.8 MPa. Two principal directions can be obtained
from the original eigen value problem. Adding z-axis, the three principal directions are

Uzz —A Txy

Ty Ty~ A

[0‘ - )\I}{n} =

—0.961 0 0.276
n' ={-0276f, n?=1{0{, n®=1-0.961
0 1 0



For isotropic materials, principal stress directions and principal strain directions are the
same.

(d) Principal Stress-strain relations

From Eq. (1.55), the stress-strain relation can be written as

g ) 1 —v —v o} 0.0011
g (= E v 1 —v|jo, =1-0.0002
&g —v —v 1 ||o, —0.0007

Also, all shear strains and stresses are zero because they are in the principal directions.
Thus, the stress-strain relation satisfies in the principal stresses and strains.

P1.24 A rectangular plastic specimen of size 100x100x10 mm’ is placed in a

rectangular metal cavity. The dimensions of the cavity are 101x101x9 mm’. The plastic
is compressed by a rigid punch until it is completely inside the cavity. Due to Poisson
effect, the plastic also expands in the X and y directions and fills the cavity. Calculate all
stress and strain components and the force exerted by the punch. Assume there is no
friction between all contacting surfaces. The metal cavity is rigid. Elastic constants of the
plastic are E =10 GPa, v =0.3.

Rigid punch Rigid punch
‘ Plastic
Rigid die
—/ ﬂ F
Rigid die

Solution:
The strains in the specimen are calculated as the ratio of change in length to original
length.
Loy o (0100
. 10 T 100 '

We have assumed that the plastic expands laterally and fill the cavity completely. If it
does not, then we will get positive values for oy and/or oyy, which will indicate that our
assumption is wrong. Then we can assume o and/or oy = 0, and redo the problem and
obtain corresponding strains & and/or &y which will be less than that calculated above.

Since there is no friction between contacting surfaces, all shear stresses and hence all
shear strains will be identically equal to zero.

The normal stresses can be obtained from three-dimensional stress strain relations:



] I B!

z
Substituting for the strains and elastic constants E and v we obtain the stresses as
{0, 0, 0n+={-38 —385 —1231} MPa

Since oy and oGyy are negative (compressive), our initial assumption about the strains is
correct. The punch force is obtained from c; and the area of cross section:

F = Ao, =0.1x0.1x1231 = [12.31MN

P1.25 Repeat Problem P1.24 with elastic constants of the plastic as E = 10 GPa and v=
0.485.

Solution:
The strains in the plastic specimen are calculated as the ratio of change in length to
original length.

(101 —100)

= +40.01
y 100 +0.0

We have assumed that the plastic expands laterally and fill the cavity completely. If it
does not, then we will get positive values for oy and/or oyy, which will indicate that our
assumption is wrong. Then we can assume oy and/or oy = 0, and reiterate the problem
and obtain corresponding strains &x and/or &y which will be less than that calculated
above.

Since there is no friction between contacting surfaces, all shear stresses and hence all
shear strains will be identically equal to zero.

The normal stresses can be obtained from three-dimensional stress strain relations:

o, (1—1/) v v €,
o, 0= I El 5 v <1—V> v g,
o, ( +V)< - V) v v (1—1/) g,

Substituting for the strains and elastic constants E and v we obtain the stresses as

{0, 0, 0,}={-80642 —8642 —9 383} MPa

Since oy and oyy are negative (compressive), our initial assumption about the strains is
correct. The punch force is obtained from o;; and the area of cross section:

F =40, =0.1x0.1x9,383 = 93.83 MN



Note: Punch force for this problem is almost 8 times that for Problem 24. The increase is
due to Poisson’s ratio. As the material compressibility decreases, Poisson’s ratio
increases. For example, as v — 0.5 the material becomes incompressible, i.e., its volume
cannot be changed, and the stresses become unbounded. Note the term (1 —2v) in the
denominator of the above constitutive relation.

P1.26 The strain energy and work done by applied load are given in the following
equations. When the solution is expressed by u(z) = ¢,z + ¢, calculate the solution
using the principle of minimum potential energy.
L[l 1
= — pu— ]_

U 5 O(u)dx, W j;udzv-i—u()
Solution: From the given form of displacement, the virtual displacement can be
expressed as u(x) = ¢r + 52332 . The variation of the potential energy can be written as

_ 1 /=1 _ 1— _
6H—Luudx j;ud:v u(1)
1 1
= [ (e +200)(@ +2Ba)de - [ (Gr+ Ga®)dr -7 —
=0
The above variational equation must satisfy for all u(z) € Z. Since the virtual
displacement is expressed by w(z) = ¢z + 52:1:2 , 1t is possible that the above variational

equation must satisfy for arbitrary coefficients ¢, and &¢,. Since ¢ and ¢, are
independent, those terms that contain them must vanish independently; that is,

ale + o _%) =0
&(q +%Cz _é) =0
By solving the above two equations, we obtain ¢, = 2 and ¢, = — ;. Thus, the solution
becomes
2
T
u(r) = 2xr — —
@) :

P1.27 The governing differential equation for the bar component in the figure is given as
f(z), = e(00)

0
0

_(EA(‘T)UJ)J
(0)
10

u
u

Y

where the subscribed comma denotes differentiation with respect to the spatial
coordinate, i.e., u; = du/dz. Derive the weak form using the principle of virtual work.
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Solution: The principle of virtual work can be obtained by multiplying the governing
differential equation with an arbitrary function & (called virtual displacement) and then
integrating over the domain as

j&ﬁ@dx—ﬂﬁﬂdxzum@@%,

where integration by parts is used once. The above equation is called the variational
identity. Among arbitrary u , let us choose those that satisfy the homogeneous essential
boundary condition, that is, %(0) = 0. Thus, the space of kinematically admissible
displacements is defined as

z ={ue H'(0,1)| u(0) =0},

where H' is the Sobolev space of the first order. Note that Z contains the homogeneous
essential boundary condition but not the natural boundary condition. Since the derivative
of the solution vanishes at x = [, the following variational equation can be obtained

j;lEAu./lﬂ,1 dz = J;lfﬂdx,

for all w in Z. Note that the above variational problem is well defined for the integrable
cross-sectional area A(x) as well as for the continuous displacement function u(z) whose
first derivative is in L,(2). Therefore, smoothness requirements for this variational
problem are much less than for the classical differential equation.

For the homogeneous boundary condition, the solution space is the same as Z.
Therefore, the structural energy bilinear and load linear forms are defined as

!
a(u,ﬂ):j;EAuJE/1 dz
and
I
amzﬁﬁm.

Then, the variational equation of the bar component can be represented using the energy
bilinear and load linear forms as

a(u,w) = L(u), Yu € Z.



Note that a(e,e) is symmetrical with respect to its arguments.

P1.28 Derive the weak form of two-dimensional, steady-state heat transfer problem.

Solution: The governing differential equation of a steady-state heat transfer problem in
two-dimension is

0 oT 0 oT
k, + k
Oz, Oz, o,

: ]+Q:o & (W), + (Ty), +Q =0
8:132

For given boundary conditions, the space of kinematically admissible temperatures
becomes

2 ={T e [H'QP|T(z) = 0on S, }

Multiplying the governing equation with a virtual temperature and integrating over the
domain, we obtain the following equation:

[ TIRT), + Ty, + QA2 =0 VT ez
After integrating by parts, we have
[[ 1T, T), + (1D 00 — [ (T + BT,T,)d0 + [[ TQdQ =0
- j; (kT T + kT, T) T — [ (R T\T, + kT,T,)d2+ [[ TQd2 =0
= [ (~m = fyn)TdT 1. (WT,T, + K T,T,)d0 + [ 7Qaa =0
= j; g, Tdl — ffﬂ(klrlrl + k,T,T,)dQ + fo TQdQ =0

In the above equation, we used the Green-Gauss theorem and the following properties:

h = _le,l
f = _sz,z

Thus, the weak form becomes

ff9<’f1f1771 + k,T,T,)dQ = fS andFJrfoTQdQ, VT e 7

P1.29 Derive the weak form of simply-supported beam problem.

Solution: The governing differential equation of a beam becomes

ERW = f(z)



where v is the forth-order derivative of deflection, and f(z) is the distributed load.
Boundary conditions are given as

v(0) = v(L) = 0, EN"(0)= ER"(L)=0

By including homogeneous essential boundary conditions, the space of kinematically
admissible displacements becomes

7={ve HQ(O,L)‘U(O) = (L) =0}

The weak form can be obtained by multiplying the governing equation by a virtual
deflection and integrating over the domain, as

L
j; [EI™ — flvdz = 0
After performing integration-by-parts twice for the first term, we have
L "= L m— L n—n|L
fo Elv"v dx—j;) fodz + [Elv UHO — [Elv v]‘o =0
Since the virtual displacements are zero at the both boundaries and the bending moments

are zero at the both boundaries, the boundary terms in the above equation vanish. Thus,
the weak form becomes

L 1= _ L —
J;Elvv dx—j;ﬁd:v, Vv € Z

P1.30 When the potential energy of P1.29 is given, derive the variational equation using
the principle of minimum potential energy.

I = fOL[%EI(qHY — foldz

Solution: It is clear that the potential energy is well defined as long as u;, € L,(0,/) and
it does not require u to be C'(0,]), as in the original differential equation. Equating the
first variation of I1 to zero, in which the variation @(z) has the second-order derivative,
Uy € I?(0,1), and assuming that % satisfies the essential boundary conditions, we
obtain

I
)
drJo

= LI[EIU,11@11 — fﬂ] dz = 0.

dz

1
EEI(U,H + 7—77,11)2 — f(u + )

=0

In order to make a consistent notation, the following energy bilinear and load linear
forms are defined:



I
a(u,w) = ‘/;Efu’nﬂ’n dx
and
l
o) = fo fu da.

Then, the variational equation can be written as

a(u,w) = L(uw), Yu € Z. (0.1)

which is identical to the weak form obtained using the principle of virtual work.

P1.31 Derive the principle of virtual work for the simply-supported Kirchhoff plate
element from the governing equation:

[D(“,n + ’/u,zg)].,n + [D(U,Qz + V“.,11)],22 +2(1 - T/)[D’Ugmlm =f

Solution: For a simply supported plate, the space of kinematically admissible
displacements is

z = {ue[H*QPF|u=00onT}

The principle of virtual work can be obtained by multiplying the governing differential
equation with a virtual displacements % and integrate over the domain as

ffﬂ{[D(%n + V“,22)],11 + [D<U,22 + Vu,11)122 +2(1-v) [D“,12]712 }EdQ = ffﬂfﬂdﬂ
Applying the integration by parts once and using Green-Gauss theorem, we have

L{[D(uyll + vu )] uny + [D(uyy + vuy)]yun, +2(1—v)[Du ], un, }dF
_ffg{[D(“,n + V“,22>],11_’J,1 + [D(“,22 + Vu,n)]gﬁg +2(1 - V)[D“,m],lﬁg }dQ - foﬁdQ

In the above equation, the first boundary integral term becomes

fr (D, + vuyy)] @y + [D(ugy + vuy,)]yTny + 2(1— v)[Duy,] @n, JdT = — fF wNu dl

where Nu is the transverse shear force on the boundary. Applying the integration by
parts again and using Green-Gauss theorem, we have

— [ aNudl — [ { Dy, +vug, i, + Dluwgy + v, )Ty, + 21 = v)Du,ylyn, AT
—I—fo{D(qu + Vu722)17711 + D(u722 + Vu711)17722 +2(1— V)Du71217712 }dQ = fofEdQ

where the second boundary integral becomes



_ _ _ ou
—L{D(ull + VU0 ) 1y + D(uyy + vu ) uyn, + 21 — v)Du ,u,n, }dF = _fra_UMu dr
bl bl k) ’ ’ ? 7 ’ n

In addition, the domain integrals in the above equation can be converted to

[ @ eswyan = [ aao+ [ anudr + fr% Mudr

For the simply supported plate, w = Mu = 0 on the boundary. Thus, the variational
equation becomes

f k(@) Ce(u)dQ = f ﬁ afdo

P1.32 Consider a bar element as shown in the figure. The cross sectional areas are 4,
and A, at Nodes 1 and 2, respectively, and vary linearly. In addition, the gravitational
acceleration is applied along the axial direction of the bar, such that the distributed load
per unit length is f(z) = pgA(x), where p is the density and ¢ is gravitational
acceleration. Construct the discrete variational equation for the element.

|_>x, Ui E. AKX) |_> Uz

10— — —> — — —_— — 2 /e O O §
f(x
& -1 | +1
| L |
(a) Finite Element (b) Reference Element

Solution: The discrete variational equation of a bar element is

— L — L
d’ ]; EA(z)B"Bdz|d = d” j; N7 f(z)dz

In the problem statement, both cross-sectional area A(z) and distributed load f(z) are
not constant. Since f(z) is also a function of A(z), it is necessary to integrate the area
over the length of the element. Note that the area varies linearly between 4, at Node 1
and A, at Node 2. Or, it can be considered that the cross-sectional area is interpolated
using shape function, as

A(f) = Nl(f)Al + Nz(f)AQ
Then, the integral of the cross-sectional area will be

L ot L B (A1 +A2)L
J Az = [ (V€4 + N,(©4) T de = =

Also, for the distributed load term, we need to calculate the following integrals:



fOL N, (A(x)dz = f_llNl(g)(Nl(g)Al + N2(§)A2)§dg _ (§A1 n %AQ)
Jiv@awa= [ NEOWi©4 +N©a)Zae = Ca +2a)

b | O |

. - ) 37 37
Then, the above discrete variational equation becomesd” kd = d"f | where the element
stiffness matrix and nodal force vector are defined as

1 -1
-1 1

f:@ 24+ 4
A+ 24,

E4 +4)

2L

6

P1.33 For the Euler beam element shown in the figure, derive interpolation functions
N, (&), stiffness matrix k, nodal force vector f. Assume uniformly distributed load
f(x) = f. Note that the reference element is defined in the domain & = [—1, 1].

Uy f(x) Uz
el(L munEn 9 |
L ...................... — | e— O O é:
1+ EullA ﬂ%z - | +1
| | |
| |
X1 X2
(a) Finite Element

(b) Reference Element

Solution: The mapping relation between the physical and reference elements is

z=51-8z +1(1+ 8z,

Thus, the Jacobian becomes

_dz

L
it e Uy

Since the Euler beam element has four DOFs, the transverse deflection can be assumed as
u(g) = a, + (Ilg + a2€2 + a3§3
Accordingly, the rotational angle can be assumed as

o) — dul6) _ du(de _ 2

Z(a, + 2a.,¢ + 3a.,&>
dz d¢ dz L(1 2 5&)

Now, we want to express the four coefficients in terms of four DOFs, by



u = uw(—1) = a, —a, + a, —ay
u, = u(l) = ay +a, + a, + ay
—1
0, = du(z1) _ —(a; — 2a, + 3a,)
dz
du(l 2
0, = U()—_( |+ 2a, + 3ag)
dz

By solving the above equation for four coefficients, we have

u(§) =+ (2 -3+ 53)% ""%(1 —-&— 52 + 53)01

1
4
+L2 436 -y +L(-1 -+ & + )0,

Thus,
N(©=12-3¢+¢)
Ny(§) =L2(1—-¢-€+¢)
Ny(&) =12+ 36 - &)
N =L(-1-€6++&)

The displacement-strain relation for the Euler beam element becomes

Pu duf2) 4
L

WF ~a@l\n) "¢ §02H60 —3¢ e 60)d=Bd

Then, the element stiffness matrix becomes

12 6L —12 6L
1 6L 4I? —6L 2I?

k:f EBTBJde = 2L

1 31-12 —6L 12 —6L

6L 2I? —6L 4I7

For the distributed load, the nodal force vector becomes

fL /2

fI? /12
fL /2
—fI? /12

£ fllNTdeg _

Note that the element stiffness matrix and the force vector are the same with the case
when the reference element domain £ = [0, 1] is used.

P1.34 Below is the governing differential equation of one-dimensional bar under
uniformly distributed load. Using one bar element, calculate displacement at x = L and



z =4 L. Compare these displacements with that of exact calculation. (Note: exact
solution can be calculated by integrating the differential equation twice).

—BAu, =f, z€(0,L)
u(0) =10
u,(L)=0

Solution: From the textbook, the finite element equation becomes

u, fL/2
u, - fL/2

Since Node 1 is fixed, the first row and the first column can be deleted, yielding the
following displacement at Node 2

1 -1
-1 1

BA
L

_
 92FA

u, = u(L)
Since u, = 0, the displacement at x = 1 L. can be calculated by

_ T
4EA

u(z) = NG, + N,y

The exact displacement can be obtained by integrating the differential equation by twice
and applying two boundary conditions as

—Lx -1z
a) = Loa(r —1a)

Therefore, the displacements at the end and at the center are

_ T
u(L) = 2EA
L 3L
uty) = SEA

Note that the displacement at the tip is exact, but that at the center is different. This
happens because the finite element method uses linear interpolation, while the exact
displacement is a quadratic function.

P1.35 An Euler beam element shown in the figure is under uniformly distributed couple
C'. Calculate equivalent nodal forces. Using a simply-supported beam under uniform
couple, show that the reaction forces are equal and opposite directions with the equivalent
nodal forces.
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Solution: The loading form becomes

m :j;L§Cdx

By using the mapping relation and interpolation, the load form becomes

(m=a" [ )1 [‘;—NJ CJde = d'

X

where f is the equivalent nodal force. The derivatives of interpolation function becomes

—6& + 6£°
[dN]T 1 |L0— 48 +3¢7)
dz L 6¢ — 6¢°
L(—2¢ 4 38%) J

By integrating the derivatives of interpolation function, the equivalent nodal forces can
be obtained as

' ={-c 0 ¢ o
The following figure illustrates the equivalent nodal forces

C
EFYIILTITILLR = &

e -

If simply-supported boundary conditions are given at Nodes 1 and 2, the reaction forces
can be calculated using the equilibrium of moments at Nodes 1 and 2, respectively

> M
>M

—CL+RL=0 = R =-C
Node 1

—CL-RL=0 = R =C
Node 2

Therefore, the reactions are equal and opposite directions with the equivalent nodal
forces.




P1.36 Integrate the following function using one—point and two—point numerical
integration (Gauss quadrature). Explain how to integrate it. The exact integral is equal
to 2. Compare the accuracy of the numerical integration with the exact one.

I= j; sin(z) dzx

Solution:
Integration . _ Exact for polynomial of
NG Points (S;) Weights (w) degree
1 0.0 2.0 1
2 +.57735 1.0 3

Since the numerical integration must be between the bounds [-1,1], a change of variable

is needed.
r=as+b

T=a-+b O0=—a-+b

b:z azz

2 2
7r

z=—(s+1

"5+

dr = Zds
2
m 17'(' T
I:{sm(x)dx:fgsm E(s—kl) ds

T T
§)=—sin|—(s+1
1) =2 [2 ( >]
One Point Integration: S =0, w =2
I ~2f(0)=21sin|Z| =7 =3.1415

2 2
Error = n-2 = 1.1415
Two Point Integration: s = + .57735, w=1

I =~ 1f(—.57735) + 1f(.57735) = 1%(.6162) + 1%(.6162) = 1.9358

Error =2 — 1.9358 = .0642




