
3.9. Exercise 

P3.1 Derive the expression of the Eulerian strain in Eq. (3.17). 
 
Solution: 
From the definistion of the Eulerian strain, it is necessary to define the inverse of the 
deformation gradient in terms of the displacement gradient. From the relation X = x - 
u,  
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Then, the Eulerian strain in Eq. (4.17) can be written as 
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 ▄ 
 
 
P3.2 Derive the relation in volume change in Eq. (3.26) for an infinitesimal hexahedron 
whose edges are initially parallel to the coordinate directions. 
 
Solution: 
Let E1, E2, and E3 be the unit basis vectors for the coordinate system, and the legths of the 
hexahedron are dX1, dX2, and dX3. Then, the three edges at the undeformed state can be 
written as 

 
1 1 1 2 2 2 2 2 2

d d , d d , d dX X X= = =X E X E X E  

With these three vectors, the volume of the infinitesimal hexahedron can be calculated by 

 
0 1 2 3 1 2 3 1 2 3 1 2 3

d d (d d ) d d d ( ) d d dV X X X X X X= ⋅ ´ = ⋅ ´ =X X X E E E  

Now, after deformation, the three edges are deformed to 
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1 2 3

d d d , d d d , d d dX X X
X X X

¶ ¶ ¶
= = = = = =

¶ ¶ ¶
x x x

x F X x F X x F X  

The deformed volume becomes 

 
1 2 3 1 2 3

1 2 3

d d (d d ) d d d
x

V X X X
X X X

æ ö¶ ¶ ¶ ÷ç ÷ç= ⋅ ´ = ⋅ ´ ÷ç ÷÷ç¶ ¶ ¶è ø

x x x
x x x  

The determinant of the deformation gradient can be written as 



 
1 2 3

det( )J
X X X
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Thus, the deformed volume becomes 

 
0

d d
x

V J V=  

 ▄ 
 
 
P3.3 Consider a square block under oscillating simple shear deformation. The relation 
between undeformed and deformed geometry is given as 

 
1 1 2 2 2 3 3

sin , ,x X aX t x X x Xw= + = =  

Calculate the deformation gradient and the change in volume. 
 
Solution: 
The deformation gradient can be calculated from its definition as 

 

1 sin 0

0 1 0

0 0 1

a twé ù
ê ú
ê ú= ê ú
ê ú
ê úë û

F  

The determinant of the deformation gradient is J = det(F) = 1. Thus, the volume of the 
block does not change due to the given deformation. ▄ 
 
 
P3.4 Many materials often show very different behavior between volume-changing 
deformation and volume-preserving deformation. The former is called dilatation, while 
the latter is called distortion. In such a case, it is necessary to separate the dilatational and 
distortional parts from the deformation gradient. Let F be the deformation gradient, 
decompose it such that F = Fv⋅Fd, where Fv is the dilatational part and Fd is the 
distortional part. Calculate Fv and  Fd using the third invariant of the deformation 
gradient. 
 
Solution: 
The determinant of the product of two tensors satisfies the following relation: 

 det( ) det( )det( )
v d

J = =F F F  

From the definition, det( )
v

J=F  and det( ) 1
d

=F . In the view of Example 3.1, the 
dilatational deformation gradient must have the following form: 
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F  

where the principal stretch can be written in terms of J by 

 
1
33det( )

v
J Jl l= =  =F  

Thus, the following Fv is obtained: 

 
1
3

v
J=F 1  

and the distortional part of the deformation gradient can be written as 

 
1
31

d v
J

--= ⋅ =F F F F  

 ▄ 
 
 
P3.5 Repeat Problem P3.4 for the Cauchy-Green deformation tensor; i.e., decompose C 
= Cv⋅Cd. 
 
Solution: 
From the definition of the Cauchy-Green tensor C = FTF, the determinant of C becomes 
det(C) = det(FT)det(F) = J2. The volumetric part of the Cauchy-Green tensor comes 
from the volumetric part of the deformation gradient: T

v v v
=C F F , whose determinant 

becomes  

 
2
3Tdet( ) det( )det( )

v v v
J= =C F F  

Thus, the following Cv is obtained: 

 
2
3

v
J=C 1  

and the distortional part of the Cauchy-Green tensor can be written as 

 
2
31

d v
J

--= ⋅ =C C C C  

 ▄ 
 
 



P3.6 Consider a bar with a square cross section in the figure under uniaxial tension 
loading. The principal stretch in X1 direction is given by l > 1. When material is 
incompressible, compare X1 component of normal strain using Lagrangian, Eulerian, and 
engineering strains. 

  

Solution: 
Since the bar will maintain rectangular shape, there is no shear deformation. In addition, 
since both X2 and X3 directions are unconstrained, and the cross-sectional geometries are 
identical, the principal stretches in these two directions will be the same. Thus, the 
relation between undeformed and deformed geometries can be written as  

 
1 1 2 2 2 3 2 3

, ,x X x X x Xl l l= = =  

Since the material is incompressible, the volume should be preserved: 

 2 1/2
1 2 2

1l l l l-=  =  

Thus, the deformation gradient can be obtained as 

 1/2

1/2
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0 0
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l

l

l

-

-
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ê ú
ê úë û

F  

And the right Cauchy-Green deformation tensor can be obtained as 

 

2

1

1

0 0

0 0
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l

l

l

-

-

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

C  

The Lagrangian strain becomes 

 

2

1

1

1 0 0
1

0 1 0
2

0 0 1

l

l

l

-

-

é ù-ê ú
ê ú= -ê ú
ê ú

-ê úë û

E  

For the Eulerian strain, the inverse of the left Cauchy-Green deformation tensor can be 
calculated by 

X1 

X2 

X3 

F 
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2
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l
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ê ú= ê ú
ê ú
ê úë û
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And the Eulerian strain becomes 

 

21 0 0
1

0 1 0
2

0 0 1

l
l

l

-é ù-ê ú
ê ú= -ê ú
ê ú-ê úë û

e  

By differentiating the following displacement 

 
1 1 2 2 2 3 2 3

( 1) , ( 1) , ( 1)u X u X u Xl l l= - = - = -  

the engineering strain can be obtained as 

 1/2

1/2

1 0 0

0 1 0

0 0 1

l

l

l

-

-

é ù-ê ú
ê ú= -ê ú
ê ú

-ê úë û

e  

Below are the normal strains in the X1 direction from the three different strains: 

 2 2

11 11 11

1 1
( 1) (1 ) 1

2 2
E el l e l-= - = - = -  

The figure below shows the difference between these three strain components. When the 
strain is small; i.e., l » 1, all three strains are similar. However, the difference becomes 
large as the strain increase. 



  

 ▄ 
 
 
P3.7 A four node square element undergoes large displacement and rotation in the XY 
plane, as shown in the figure. The node initially at the origin is moved to (1, 1 – sinp/4) 
and the element is rotated by 45°. Calculate the deformation gradient. Compute the 
Lagrangian strain and demonstrate that no strain occurs during rigid body motion. 

  

 
Solution: 
From geometry the coordinates in the initial (X,Y) and the deformed (x,y) configurations 
are as follows. 
 

Node X Y x y 
1 0 0 1 1 – sinp/4 
2 1 0 1 + sinp/4 1 
3 1 1 1 1 + sinp/4 
4 0 1 1 – sinp/4 1 

 
We first need to develop mapping of the current configuration in terms of the initial 
configuration. A systematic way to develop this mapping in the finite element context is 

1

1

x

y

Initial

Current
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to use the interpolation functions to map the given configurations into a 2×2 reference 
element in Chapter 1. The interpolation functions are as follows. 

 

1
1 4

1
2 4

1
3 4

1
4 4

(1 )(1 )

(1 )(1 )

(1 )(1 )

(1 )(1 )

N s t

N s t

N s t

N s t

ìï = - -ïïï = + -ïïíï = + +ïïï = - +ïïî

 

Using these interpolation functions, the initial configuration is mapped as follows. 

 
1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1

2
1

2

s
X N x N x N x N x

t
Y N y N y N y N y

+
= + + + =

+
= + + + =

 

By inverting this mapping, the s and t can be written in terms of X and Y as follows. 

 
2 1

2 1

s X

t Y

= -
= -

 

The current configuration can also be mapped into s, t using the interpolation functions. 

 
( )
( )

1
2 2 4

4
1

2 2 4
4

x s t

y s t

= - +

= + +
 

Now the desired mapping between the initial and the current configurations can be 
written by substituting for s, t in terms of X, Y giving 

 

( )
( )

1
2(2 1) 2(2 1) 4

4
1

2(2 1) 2(2 1) 4
4

x X Y

y X Y

z Z

= - - - +

= - + - +

=

 

The deformation gradient can now be easily computed by direct differentiation. 

 

1 1

2 2
1 1

2 2

0

0

0 0 1

é ù-ê ú
ê ú= ê ú
ê ú
ê úë û

F  

Using the deformation gradient, the matrix of Lagrangian strains is as follows. 



 

0 0 0
1
( ) 0 0 0

2
0 0 0

T

é ù
ê ú
ê ú= - = ê ú
ê ú
ê úë û

E F F 1  

This matrix mathematically states the obvious fact that in this example any differential 
line segment in the original configuration has the same length in the current 
configuration. This example demonstrates that Lagrangian strains are invariant with 
respect to rigid body rotations and displacements. ▄ 
 
 
P3.8 A square plane strain element is deformed as shown in the figure. The relation 
between deformed and undeformed coordinates is given as 

 1 1 1 2 2 2 3 3, ,x X aX X x X x X= - = =  

Compare the engineering strain and Lagrangian strain. Show that the two strain measures 
become identical when ‘a’ approach zero. 

 

Solution:  
The displacement vector can be written as 

 1 2[ , 0, 0]TaX X= -u
 

For linear elastic model, the engineering strain tensor can be defined as 

 

1
2 12

0 1
12

( )
0

aX aX
sym

aX

é ù- -ê ú=  = ê ú-ê úë û
ue

 

Thus, the strain varies linearly. 
 For the geometric nonlinear model, the deformation gradient and Lagrangian strain 
can be calculated by 

 

2 1
0

1

0 1

aX aXé ù- -ê ú= + = ê úê úë û
F 1 u

 

2

2 

a a

Original element 
Deformed element

aa

X2

X1
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2 2 21 1 1 1
2 2 1 2 2 1 21 2 2 2 2

2 2 2 2 21 1 1 12
1 2 1 1 2 12 2 2 2

(1 ) (1 )
( )

(1 )
T

aX aX aX aX a X a X X

aX aX a X a X X a X

é ùé ù- - - - ê úê ú= - = = + ê úê ú- - ê úê úë û ë û
E F F 1 e

 

Note that the the Lagrangian strain is the engineering strain plus nonlinear terms, which 
will approach zero fast when ‘a’ approaches zero.  ▄ 
 
 
P3.9 The relation between deformed and undeformed coordinates for pure bending of a 
plane strain solid is given as 

 21
1 1 1 2 2 2 1 3 32

, ,x X aX X x X aX x X= - = + =  

Compare the engineering strain and Lagrangian strain. Show that the two strain measures 
become identical when ‘a’ approach zero. 
 
Solution:  
The displacement vector can be written as 

 
21

1 2 12
[ , , 0]TaX X aX= -u

 

For linear elastic model, the engineering strain tensor can be defined as 

 

2
0

0
( )

0 0

aX
sym

é ù-ê ú=  = ê úê úë û
ue

 

Thus, 11e  is only non-zero component and varies linearly with respect to 2X . 
 For the geometric nonlinear model, the deformation gradient and Lagrangian strain 
can be calculated by 

 

2 1
0

1

1

1

aX aX

aX

é ù- -ê ú= + = ê úê úë û
F 1 u

 

 

1
2

2 2 2 21 1
2 1 2 1 22 2

2 2 21 1
1 2 12 2

2 2
1 2 1 221

22
1 2 1

( )

( )

T

aX a X X a X X

a X X a X

X X X X
a

X X X

= -
é ù- + +ê ú= ê ú
ê úë û

é ù+ê ú= + ê ú
ê úë û

E F F 1

e
 



Note that the Lagrangian strain is the engineering strain plus nonlinear terms, which will 
approach zero fast when ‘a’ approaches zero.  ▄ 
 
 
P3.10 In the small deformation theory, the volumetric strain (dVx - dV0)/dV0 is 
approximated by e11 + e22 + e33, while in the large deformation theory, it is given by J - 
1. Show that when the deformation is small, the latter can be approximated by the former.  
 
Solution:  
The deformation gradient can be written in terms of displacement gradient as 

 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

1

1

1

u u u

X X X
u u u

X X X
u u u

X X X

é ù¶ ¶ ¶ê ú+ê ú¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ê ú= +ê ú¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ê ú+ê ú¶ ¶ ¶ê úë û

F  

The determinant of the deformation gradient can be written as 

 

1 2 3 2 3

1 2 3 3 2

1 2 3 2 3

2 3 1 1 3

1 2 3 3 2

3 1 2 1 2

det 1 1 1

1

1

u u u u u

X X X X X

u u u u u

X X X X X

u u u u u

X X X X X

é ùæ ö æ öæ ö¶ ¶ ¶ ¶ ¶÷ ÷ ÷ç ç çê ú÷ ÷ ÷ç ç ç= + + + -÷ ÷ ÷ê úç ç ç÷ ÷ ÷÷ ÷ ÷ç ç ç¶ ¶ ¶ ¶ ¶è ø è øè øê úë û
é ùæ ö¶ ¶ ¶ ¶ ¶ ÷çê ú÷ç+ - + ÷ê úç ÷÷ç¶ ¶ ¶ ¶ ¶è øê úë û
é æ ö¶ ¶ ¶ ¶ ¶ ÷çê ÷ç+ - + ÷ê ç ÷÷ç¶ ¶ ¶ ¶ ¶è øêë

F

1 2 3

1 2 3

1 H.O.T.
u u u

X X X

ù
ú
ú
úû

¶ ¶ ¶
= + + + +

¶ ¶ ¶

 

When the deformation is small, the higher-order terms will approach zero quickly. Thus 
the volumetric strain can be approximated by 

 1 2 3
11 22 33

1 2 3

1
u u u

J
X X X

e e e
¶ ¶ ¶

- = + + » + +
¶ ¶ ¶

 

 ▄ 
 
 
P3.11 An initially straight beam AB is bent into a circular arc A'B' as shown in the 
figure. The deformation is specified as 

 1 1
1 2 2 2 3 3

(1 ) (1 )
( )cos , ( )sin ,

2 2

X X
x g X x g X x X

p p- -
= = =  
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where g(X2) is a simple function of X2. (a) Find the deformation gradient in terms of 
g(X2). (b) If the volume of the beam does not change, find g(X2). (c) Using g(X2) in (b), 
find U, Q, and V. 

  

 
Solution: 
(a) For the given deformation, the deformation gradient can be obtained as 

 

2 1 1

2

2 1 1

2

d
( )sin (1 ) cos (1 ) 0

2 2 d 2
d

( )cos (1 ) sin (1 ) 0
2 2 d 2

0 0 1

g
g X X X

X
g

g X X X
X

p p p

p p p

é ù
ê ú- -ê ú
ê ú
ê ú
ê ú= - - -
ê ú
ê ú
ê ú
ê ú
ê úë û

F  

(b) In order to preserve the volume, the determinant of the deformation gradient must be 
one. 

 
2

2

d
det ( ) 1

2 d

g
g X

X

p
= =F  

Using the separation of variables,  

 
2

2
d dg g X

p
=  

Integrating both sides 

 2

2

1 2

2
g X

p
=  

Thus, the expression of g(X2) is obtained as 

X2

X1

Undeformed beam

Deformed beam

1 

1 



 2
2

4
( )

X
g X

p
=  

(c) By substituting g(X2) into the deformation gradient, 

 

2 1 1

2

2 1 1

2

1
sin (1 ) cos (1 ) 0

2 2

1
cos (1 ) sin (1 ) 0

2 2

0 0 1

X X X
X

X X X
X

p p
p

p
p p

p
p

é ù
ê ú- -ê ú
ê ú
ê ú
ê ú= - - -ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

F  

The left Cauchy-Greed deformation tensor becomes 

 

2

T

2

0 0

1
0 0

0 0 1

X

X

p

p

é ù
ê ú
ê ú
ê ú= = ê ú
ê ú
ê ú
ê úë û

C F F  

Note that the left Cauchy-Green deformation tensor has only diagonal components. Thus, 
the matrices of eigenvectors and eigenvalues become 

 

2

2

0 0
1 0 0

1
0 1 0 , 0 0

0 0 1
0 0 1

X

X

p

p

é ù
ì ü ê úï ïï ï ê úï ïï ï ê ú= =í ý ê úï ï ê úï ïï ï ê úï ïî þ ê úë û

F L  

Accordingly, U, Q, and V can be calculated by 

 

2

T

2

0 0

1
0 0

0 0 1

X

X

p

p

é ù
ê ú
ê ú
ê ú

= = ê ú
ê ú
ê ú
ê ú
ê úë û

U F LF  

 1

sin cos 0

cos sin 0

0 0 1

-

é ù
ê ú
ê ú= = -ê ú
ê ú
ê úë û

Q FU  
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2 2

2 2

2 2

T 2 2

2 2

2 2

1 1
sin cos sin cos 0

1 1
sin cos cos sin 0

0 0 1

X X
X X

X X
X X

p p
p p

p p
p p

é ùæ ö÷çê ú÷ç ÷+ - +ê úç ÷ç ÷ê úç ÷çè øê ú
ê úæ ö÷çê ú÷ç ÷= = - + +ê úç ÷ç ÷ê úç ÷çè øê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

V FQ  

In the above expressions, simplified notations are used such that 
12

sin sin (1 )Xp= -  and 

12
cos cos (1 )Xp= - . ▄ 
 
 
P3.12 Consider a square element under pure shear deformation as shown in the figure. 
The relation between deformed and undeformed coordinates becomes 

 1 1 2 2 1 2
,x X kX x kX X= + = +  

(a) Calculate deformation gradient F, Lagrangian strain E, Eulerian strain e, and 
engineering strain e. (b) Calculate principal stretch tensors U and V, and rotation tensor 
Q. 

 

 
Solution:  
(a) From the relation between deformed and undeformed coordinates, the deformation 
gradient and Lagrangian strain can be calculated as 

 
1

1

k

k

é ù
ê ú= ê ú
ê úë û

F  

X1

X2



 
21

21
22 1

2

( )T
k k

k k

é ù
ê ú= - = ê ú
ê úë û

E F F 1  

The engineering strain becomes 

 
0

0

k

k

é ù
ê ú= ê ú
ê úë û

e   

Note that the Lagrangian strain has normal components in higher order. 
 
(b) The relation in the polar decomposition is given as = =F QU VQ . First, the right 
Cauchy-Green deformation tensor becomes 

 
2

2

1 2

2 1
T

k k

k k

é ù+ê ú= = ê ú+ê úë û
C F F  

The above Cauchy-Green tensor will have two eigenvalues: 

 
2 2 2

2 2

(1 ) 4

(1 2 )(1 2 ) 0

k k

k k k k

l l

l l

- = + - -

= + - - + - + =

C 1
 

Thus, two eigenvalues are 2
1

(1 )kl = -  and 2
2

(1 )kl = +  and 

 
2

2

(1 ) 0

0 (1 )

k

k

é ù-ê úL = ê ú+ê úë û
 

Two eigenvectors corresponding to the two eigenvalues can be calculated as 

 1 1 1
1 22 2 2

1 1 1 1
, ,

1 1 1 1

ì ü ì ü é ùï ï ï ïï ï ï ï ê ú= = F =í ý í ý ê úï ï ï ï- -ê úï ï ï ïî þ î þ ë û
E E  

Then, the principal stretch tensor U  can be calculated from the following relation: 

 
1 1 1 0 1 1 11
1 1 0 1 1 1 12

T
k k

k k

é ù é ù é ù é ù- -ê ú ê ú ê ú ê ú= F LF = =ê ú ê ú ê ú ê ú- +ê ú ê ú ê ú ê úë û ë û ë û ë û
U  

Note that the principal stretch tensor is identical to the deformation gradient, which 
means there is no rotation involved in the deformation. Thus, we have 

 1
1 0

0 1
-

é ù
ê ú= = = ê ú
ê úë û

Q FU 1  

Because =Q 1 , the following relation can also be obtained: 

 1-= = =V FQ F U  
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 ▄ 
 
 
P3.13 A square block of surface area A on all sides is under pure shear deformation due 
to the uniformly distributed load F on the top surface, as shown in the figure. The 
deformation of the block is such that the deformed coordinates can be written as 

 
1 1 2 2 2 3 3

, ,x X aX x X x X= + = =  

Calculate Cauchy stress, 1-st and 2-nd Piola-Kirchhoff stresses. 

  

 
Solution: 
Since the force is uniformly distributed over the area, the Cauchy stress will be 

 

0 / 0

/ 0 0

0 0 0

F A

F As

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

 

Using the relation of 1J -=P F s , the first Piola-Kirchhoff stress can be calculated by 

 

/ / 0

/ 0 0

0 0 0

aF A F A

F A

é ù-ê ú
ê ú= ê ú
ê ú
ê úë û

P  

And from 1 TJ - -=S F Fs
, 

the second Piola-Kirchhoff stress becomes 

F

X1

X2



 

2 / / 0

/ 0 0

0 0 0

aF A F A

F A

é ù-ê ú
ê ú= ê ú
ê ú
ê úë û

S  

Note that the shear stress components are all the same, but negative normal stress 
component exists in the case of P and S. However, this component becomes small as the 
shear deformation becomes small. ▄ 
 
 
P3.14 A force R is applied at the tip of the uniform bar element shown in the figure. The 
initial length and the cross-sectional area of the bar are, respectively, A0 and L0. The 
elastic modulus of the material is E. Calculate the tip displacement by solving the total 
Lagrangian variational equation with St. Vernant-Kirchhoff nonlinear elastic material 
model. Assume the following numerical values: E = 700MPa, A0 = 1.0´10-4m2, L0 = 
1.0m, and R = 10kN. Compare the tip displacement with that from the linear elastic 
model when (a) E = 700MPa and (b) E = 70GPa.  

 

Solution:  
If the tip displacement is uNL, the displacement in the bar can be approximated by 

 
0

( )
NL

X
u X u X

L
l= =  (1) 

where l = uLN/L0 is the stretch ratio. Using Eq. (1), the displacement gradient can be 
calculated by 

 
0

du
u

dX
l = =  (2) 

Since the problem is 1D, the displacement gradient becomes a scalar. Note that the above 
displacement gradient is in fact engineering strain. The deformation gradient becomes 

 
11 0

0

1 1
L

F u
L

l= + = + =  (3) 

where L = L0 + uLN 
is the deformed length of the bar. The Lagrangian strain is given as 

 2 21 1 1
11 11 112 2 2

( 1) [(1 ) 1]TE F F l l l= - = + - = +  (4) 

L0=1m 

1 2 R = 10kN 

x 
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Comparing with the engineering strain, the Lagrangian strain has an additional 
quadratic term. Assuming that the material is St. Vernant-Kirchhoff nonlinear elastic, the 
strain energy density becomes 

 2 2 21 1 1 1
112 2 2 2

( ) : : ( )W E E E l l= = ⋅ = +E E D E  (5) 

By differentiating the above strain energy density with respect to Lagrangian strain, the 
2nd Piola-Kirchhoff stress can be calculated as 

 21
11 11 2

11

( )
dW

S E E E
dE

l l= = ⋅ = +  (6) 

In order to obtain the variational equation, the variation of the strain needs to be 
calculated. Since the displacement of the bar is expressed in terms of the tip displacement 
in Eq. (1), the variation of the displacement can also be represented by that of the tip 
displacement. Let 

NL
u  be the variation of the tip displacement, and 

0
/

NL
u Ll =  be the 

variation of the stretch ratio, the variation of displacement and that of the Lagrangian 
strain can be obtained as 

 
0

( )
NL

X
u X u X

L
l= =  (7) 

 1
11 11 0 0 112

( ) (1 )T TE F u u F l l=  + = +  (8) 

Note that 
11

E  is linear with respect to l . Using Eq. (8), the structural energy form for 
the total Lagrangian formulation becomes 

 
0 0 21

0 11 11 0 0 20 0
( , ) d ( )(1 ) d

L L

a u u S E A X EA Xl l l l= = + +ò ò  (9) 

Since the integrand is independent of X, the integral can be evaluated analytically, as 

 2 33 1
0 0 0 2 2
( , ) ( )a u u EA L l l l l= + +  (10) 

Since the point load is applied at the tip of the bar, the load form can be evaluated 
without integration as  

 
0 0 0
( ) ( )u u L R L Rl= =  (11) 

By equating Eqs. (10) and (11), the variational equation can be written as 

 2 33 1
0 0 02 2

( ) ,
h

EA L L Rl l l l l l+ + = " Î   (12) 



In the discrete domain, the space of kinematically admissible displacements will be the 
space of real numbers. In order to satisfy the above equation for all real number l , the 
coefficients of l  should be equal in the above equation, to yield 

 2 33 1
2 2

0

R

EA
l l l+ + =  (13) 

For linear elastic material, the above equation becomes 

 
0

R

EA
l =  (14) 

Note that both equations have the same right-hand side. Thus, the nonlinear displacement 
will always be smaller than that of linear displacement. In addition, when the 
displacement is small; i.e., 1l  , the higher-order terms can be negligible, 

2 3 0l l» » . Thus, the nonlinear displacement will approach to the linear one. 
 
(a) When E = 700 MPa, Eq. (13) yields 0.12028 120.28mm

NL
ul =  = , while 

Eq. (14) yields 0.14286 142.86mm
L

ul =  = . Thus, the linear elastic model 
predicts about 19% larger tip displacement. 
 
(b) When E = 70 GPa, Eq. (13) yields 0.001426 1.426mm

NL
ul =  = , while Eq. 

(14) yields 0.001429 1.429mm
L

ul =  = . Thus, the linear elastic model predicts 
about 0.2% larger tip displacement. 
 ▄ 
 
 
P3.15 Solve Problem P3.14 using force equilibrium; i.e., internal force caused by stress 
is equal to external force. 
 
Solution:  
From the previous problem, we have 

 21
11 2

( )S E l l= +  

However, the 2nd Piola-Kirchhoff stress cannot be used for force equilibrium. Thus, the 
1st Piola-Kirchhoff stress is calculated using the following relation: 

 2 2 31 3 1
11 11 11 2 2 2

( )(1 ) ( )TP S F E El l l l l l= ⋅ = + + = + +  

Note that the 1st Piola-Kirchhoff stress is defined with respect to the initial cross-
sectional area. Assuming this stress is uniform over the cross-section, the force 
equilibrium can be obtained by 

 2 33 1
11 0 0 2 2

( )R P A EA l l l= ⋅ = + +  

Thus, we obtain the same equation with the variational approach, as 
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 2 33 1
2 2

0

R

EA
l l l+ + =  

For linear elastic material, the above equation becomes 

 
0

R

EA
l =  

Note that both equations have the same right-hand side. Thus, the nonlinear displacement 
will always be smaller than that of linear displacement. In addition, when the 
displacement is small; i.e., 1l  , the higher-order terms can be negligible, 

2 3 0l l» » . Thus, the nonlinear displacement will approach to the linear one.  ▄ 
 
 
P3.16 Consider a plane strain, unit depth, square element as shown in the figure. Use St. 
Vernant-Kirchhoff isotropic material model with two Lame’s constants l and m. A 
uniformly distributed force 

x
T  (force per area) is horizontally applied at the top surface. 

Assuming it is a simple shear problem, the deformation of the element can be written as 

 1 1 2

2 2

x X kX

x X

ìï = +ïíï =ïî
 

(a) Find the relation between k  and 
x

T , (b) Find the reaction force in 
2

X  direction at the 
top surface, and (c) Compare the results with that of the linear elastic model. 

 

Solution: 
For the given deformation, the deformation gradient and Lagrangian strain can be 
calculated as 

Tx

X1

X2



 2

01 1 1
, ( )

0 1 2 2
T

kk

k k

é ùé ù
ê úê ú= = - = ê úê ú
ê úê úë û ë û

F E F F 1  

From the constitutive tensor of St. Vernant-Kirchhoff material 2l m= Ä +C 1 1 I  and 
the Lagrangian strain, the 2nd Piola-Kirchhoff stress can be calculated by 

 
21

2
21

2

: tr( ) 2
( )

k k

k k

l m
l m

m l m

é ù
ê ú= = + = ê ú+ê úë û

S D E E 1 E  

Since the 2nd Piola-Kirchhoff stress does not have any physical meaning, it is converted 
to the 1st Piola-Kirchhoff stress as 

 
21

2
3 21 1

2 2

( )

( ) ( )
T

k k

k k k

l m m

m l m l m

é ù+ê ú= ⋅ = ê ú+ + +ê úë û
P S F  

The unit normal vector of the top surface is N = [0, 1]T. Thus, the surface traction on the 
top surface becomes 

 
31

2
21

2

( )

( )
xT

y

k k T

Tk

m l m

l m

ì ü ì üï ï ï ï+ +ï ï ï ïï ï⋅ = =í ý í ýï ï ï ï+ï ï ï ïî þï ïî þ
P N  

(a) In the above equation, 
x

T  is the horizontal surface traction on the top surface or, 
equivalently, uniformly distributed force: 31

2
( )

x
T k km l m= + +  

(b) 
y

T  is the uniformly distributed vertical reaction: 21
2

( )
y

T kl m= +  
(c) For linear elastic model, the relation between  k  and 

x
T  is 

x
T km= . Thus, the 

nonlinear model has higher-order terms. In addition, the vertical reaction in linear elastic 
model is zero, while the nonlinear elastic model yields non-zero vertical reaction. When 

0k  , the results from nonlinear model approach that of the linear elastic model.  ▄ 
 
 
P3.17 Consider a deformation of a rectangular bar whose deformed geometry is given as 

 
1 1 2 2 3 3

, ,x X x X x Xa b b= = =  

When the material is incompressible and St. Venant-Kirchhoff material properties are 
given as E = 600MPa and n = 0.49, write the expression of S11 component of the 
second Piola-Kirchhoff stress as a function of a. In addition, write the expression of s11 
of the Cauchy stress as a function of a. Plot S11 and s11 in the range of a = [0.7 1.5]. 
 
Solution:  
For the given material properties, the Lame’s constants can be calculated from 

 
9, 865.8 MPa

(1 )(1 2 )

201.3 MPa
2(1 )

E

E

n
l

n n

m
n

= =
+ -

= =
+
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For given deformation, the deformation gradient and Cauchy-Green deformation tensor 
can be calculated as 

 

2

2

2

0 00 0

0 0 , 0 0

0 0 0 0

T

aa
b b

b b

é ùé ù
ê úê ú
ê úê ú= = = ê úê ú
ê úê ú
ê úê úë û ë û

F C F F  

The relation between a and b can be obtained from incompressibility: 

 2 1/2det 1ab b a-= =  =F  

Thus, the Lagrangian strain can be calculated as 

 

2

1

1

1 0 0
1 1
( ) 0 1 0

2 2
0 0 1

T

a

a

a

-

-

é ù-ê ú
ê ú= - = -ê ú
ê ú

-ê úë û

E F F 1  

Since all shear components are zero, we can only consider the normal components as a 
vector. The second Piola-Kirchhoff stress becomes 

 

2 1 2

211 11
2 1 1

22 22 2
2 1 1

33 33 2

( 2 3) ( 1)2

2 ( 2 3) ( 1)

2 ( 2 3) ( 1)

S E

S E

S E

l

l

l

a a m al m l l
l l m l a a m a
l l l m a a m a

-

- -

- -

ì üì ü é ù ì ü ï ïï ï ï ï + - + -+ ï ïï ï ï ïê ú ï ïï ï ï ï ï ïê úï ï ï ï= = + = + - + -í ý í ý í ýê úï ï ï ï ï ïê úï ï ï ï ï ï+ï ï ï ï ï ï+ - + -ê úï ï ï ï ï ïî þ ë û î þ î þ

S  

The 
11

S  component of the stress becomes 

 2 1 2

11
( 2 3) ( 1)

2
S

l
a a m a-= + - + -  

The Cauchy stress can be obtained from the relation 

 
1 T

J
= ⋅ ⋅F S Fs  

The s11 component of the stress becomes 

 4 2 4 2

11
( 2 3 ) ( )

2

l
s a a a m a a= + - + -  

The following figure shows the two stress components as a function of the principal 
stretch a. Note that both stresses are highly nonlinear even if the relation between stress 
and strain is constant.  



  

 ▄ 
 
 
P3.18 Consider a simple shear deformation of a square whose deformed geometry is 
given as 

 
1 1 2 2 2 3 3

, ,x X X x X x Xa= + = =  

When the material is incompressible and St. Venant-Kirchhoff material properties are 
given as E = 600MPa and n = 0.49, write the expression of S12 component of the 
second Piola-Kirchhoff stress as a function of a. In addition, write the expression of s12 
of the Cauchy stress as a function of a. Plot S12 and s12 in the range of a = [0.0 1.5]. 
 
Solution:  
For the given material properties, the Lame’s constants can be calculated from 

 
9, 865.8 MPa

(1 )(1 2 )

201.3 MPa
2(1 )

E

E

n
l

n n

m
n

= =
+ -

= =
+

 

For given deformation with incompressibility, the deformation gradient and Lagrangian 
strain tensor can be calculated as 

 2

0 01 0
1 1

0 1 0 , ( ) 0
2 2

0 0 1 0 0 1

T

aa
a a

é ù é ù
ê ú ê ú
ê ú ê ú= = - =ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

F E F F 1  

In the plane strain problem, we can consider only three non-zero stress components. The 
second Piola-Kirchhoff stress becomes 
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2

211 11
2

22 22 2

12 12

2 0

2 0 ( )

0 0 2

S E

S E

S E

l

l

al m l
l l m m a

m ma

ì üì ü é ù ì ü ï ïï ï ï ï+ ï ïï ï ï ïê ú ï ïï ï ï ïê ú ï ïï ï ï ï= = + = +í ý í ý í ýê úï ï ï ï ï ïê úï ï ï ï ï ïï ï ï ï ï ïê úï ï ï ï ï ïî þ ë û î þ î þ

S  

Thus, S12 is a linear function of a. The Cauchy stress can be obtained from the relation 

 
1 T

J
= ⋅ ⋅F S Fs  

The s12 component of the stress becomes 

 3
12 2

l
s m a ma

æ ö÷ç ÷= + +ç ÷ç ÷çè ø
 

Different from the hyperelastic material, now s12 is a cubic function, while S12 is a linear 
function for the shear deformation. The following figure compares the two stresses as a 
function of shear deformation. 

  

  ▄ 
 
 
P3.19 Consider the following deformation with ½a½ £ 1: 



 2

1 1 2 2 2 3 3
, 1 ,x X X x X x Xa a= + = - =  

Assume St. Venant-Kirchhoff material with two material parameters l and m. (a) Show 
that the above deformation is a pure shear deformation in terms of the Lagrangian strain, 
(b) Calculate the second Piola-Kirchhoff stress and Cauchy stress in terms of a, l, and m. 
 
Solution:  
(a) For the given deformation, the deformation gradient and the Lagrangian strain 
become 

 2 T

1 0 0 0
1 1

0 1 0 , ( ) 0 0
2 2

0 0 1 0 0 0

a a
a a

é ù é ùê ú ê úê ú ê ú= - = - =ê ú ê úê ú ê úê ú ê úë ûê úë û

F E F F 1  

Thus, the given deformation is a pure shear deformation in terms of the Lgrangian strain.  
(b) From the St. Venant-Kichhoff material, the stress-strain relation becomes 

 

0 0

( ) 2 0 0

0 0 0

tr

a
l m m a

é ù
ê ú
ê ú= + = ê ú
ê ú
ê úë û

S E 1 E  

Thus, only shear stress component S12 exists. The Cauchy stress becomes 
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0
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ê ú
ê ú
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ê ú= = ê ú
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ê úê úë û

FSFs  

Note that the Cauchy stress has a non-zero normal component s11. The following figure 
shows the deformation of a square block with a = 0.5. 
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  ▄ 
 
 
P3.20 A force F is applied at the tip of the uniform bar shown in the figure. The 
displacement of the bar is given as u(X) = lX where l is the principal stretch. The 
initial length and the cross-sectional area of the bar are, respectively, A0 and L0. The 
elastic modulus of the material is E. Calculate the tip displacement by solving the 
principal stretch using the total Lagrangian formulation with the St. Venant-Kirchhoff 
material model. Assume the following numerical values: E = 700 MPa, A0 = 1.0´10-4 
m2, L0 = 1.0 m, and F = 10 kN. Compare the tip displacement with that from the linear 
elastic model when (a) E = 700 MPa and (b) E = 70 GPa.  

  Figure P3.20 

Solution:  
If the tip displacement is NLu , the displacement in the bar can be approximated by 

 0

( ) NL
X

u X u X
L

l= =
 (1) 

L0=1m 

F = 10kN 

x 



where 0/NLu Ll =  is the stretch ratio. Using Eq. (1), the displacement gradient can be 
calculated by 

 0
du

u
dX

l = =  (2) 

Since the problem is 1D, the displacement gradient becomes a scalar. Note that the above 
displacement gradient is in fact engineering strain. The deformation gradient becomes 

 
11 0

0

1 1
L

F u
L

l= + = + =
 (3) 

where 0 NLL L u= +  is the deformed length of the bar. The Lagrangian strain is given as 

 
2 21 1 1

11 11 112 2 2
( 1) [(1 ) 1]TE F F l l l= - = + - = +

 (4) 

Comparing with the engineering strain, the Lagrangian strain has an additional quadratic 
term. Assuming that the material is St. Vernant-Kirchhoff nonlinear elastic, the strain 
energy density becomes 

 
2 2 21 1 1 1
112 2 2 2

( ) : : ( )W E E E l l= = ⋅ = +E E C E
 (5) 

By differentiating the above strain energy density with respect to Lagrangian strain, the 
2nd Piola-Kirchhoff stress can be calculated as 

 

21
11 11 2

11

( )
dW

S E E E
dE

l l= = ⋅ = +
 (6) 

In order to obtain the variational equation, the variation of the strain needs to be 
calculated. Since the displacement of the bar is expressed in terms of the tip displacement 
in Eq. (1), the variation of the displacement can also be represented by that of the tip 
displacement. Let NLu  be the variation of the tip displacement, and 0/NLu Ll =  be the 
variation of the stretch ratio, the variation of displacement and that of the Lagrangian 
strain can be obtained as 

 0

( ) NL
X

u X u X
L

l= =
 (7) 

 
1

11 11 0 0 112
( ) (1 )T TE F u u F l l=  + = +

 (8) 

Note that 11E  is linear with respect to l . Using Eq. (8), the structural energy form for the 
total Lagrangian formulation becomes 

 

0 0 21
0 11 11 0 0 20 0
( , ) d ( )(1 ) d

L L
a u u S E A X EA Xl l l l= = + +ò ò  (9) 

Since the integrand is independent of X , the integral can be evaluated analytically, as 
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2 33 1

0 0 0 2 2
( , ) ( )a u u EA L l l l l= + +

 (10) 

Since the point load is applied at the tip of the bar, the load form can be evaluated 
without integration as  

 0 0 0( ) ( )u u L F L Fl= =  (11) 

By equating Eqs. (10) and (11), the variational equation can be written as 

 2 33 1
0 0 02 2

( ) , hEA L L Fl l l l l l+ + = " Î   (12) 

In the discrete domain, the space of kinematically admissible displacements will be the 
space of real numbers. In order to satisfy the above equation for all real number l , the 
coefficients of l  should be equal in the above equation, to yield 

 2 33 1
2 2

0

F

EA
l l l+ + =  (13) 

For linear elastic material, the above equation becomes 

 
0

F

EA
l =  (14) 

Note that both equations have the same right-hand side. Thus, the nonlinear displacement 
will always be smaller than that of linear displacement. In addition, when the 
displacement is small; i.e., 1l  , the higher-order terms can be negligible, 

2 3 0l l» » . Thus, the nonlinear displacement will approach to the linear one. 
 
(a) When E = 700 MPa, Eq. (13) yields 0.12028 120.28mmNLul =  = , while 
Eq. (14) yields 0.14286 142.86mmLul =  = . Thus, the linear elastic model 
predicts about 19% larger tip displacement. 
 
(b) When E = 70 GPa, Eq. (13) yields 0.001426 1.426mmNLul =  = , while 
Eq. (14) yields 0.001429 1.429mmLul =  = . Thus, the linear elastic model 
predicts about 0.2% larger tip displacement.  ▄ 
 
 
P3.21 Solve Problem P4.20 using force equilibrium; i.e., internal force caused by stress 
is equal to external force. 
 
Solution:  
From the previous problem, we have 



 
21

11 2
( )S E l l= +

 

However, the 2nd Piola-Kirchhoff stress cannot be used for force equilibrium. Thus, the 
1st Piola-Kirchhoff stress is calculated using the following relation: 

 
2 2 31 3 1

11 11 11 2 2 2
( )(1 ) ( )TP S F E El l l l l l= ⋅ = + + = + +

 

Note that the 1st Piola-Kirchhoff stress is defined with respect to the initial cross-
sectional area. Assuming this stress is uniform over the cross-section, the force 
equilibrium can be obtained by 

 2 33 1
11 0 0 2 2

( )F P A EA l l l= ⋅ = + +  

Thus, we obtain the same equation with the variational approach, as 

 2 33 1
2 2

0

F

EA
l l l+ + =  

For linear elastic material, the above equation becomes 

 
0

F

EA
l =  

Note that both equations have the same right-hand side. Thus, the nonlinear displacement 
will always be smaller than that of linear displacement. In addition, when the 
displacement is small; i.e., 1l  , the higher-order terms can be negligible, 

2 3 0l l» » . Thus, the nonlinear displacement will approach to the linear one. 
(a) When E = 700 MPa, Eq. (13) yields 0.12028 120.28mmNLul =  = , while 
Eq. (14) yields 0.14286 142.86mmLul =  = . Thus, the linear elastic model 
predicts about 19% larger tip displacement. 
 
(b) When E = 70 GPa, Eq. (13) yields 0.001426 1.426mmNLul =  = , while 
Eq. (14) yields 0.001429 1.429mmLul =  = . Thus, the linear elastic model 
predicts about 0.2% larger tip displacement.  ▄ 
 
 
P3.22 Consider two bar elements under a force at the tip. Using the displacement-
controlled method, plot the load-displacement curve (F vs. u2 and u3). Increase the tip 
displacement u3 up to 1.0m with ten equal increments. Assume St. Venant-Kirchhoff 
material with E = 100MPa, and cross-sectional areas of A(1) = 1.0´10-4 m2 and  A(2) = 
0.5´10-4 m2. 
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  Figure P3.22 

 
Solution:  
Since this is a one-dimensional problem, only X1-directional component will be used in 
the following calculations. For Elements 1 and 2, the Lagrangian strains are defined as 

 (1) 2 (2) 21 1
11 2 2 11 3 2 3 22 2

, ( )E u u E u u u u= + = - + -  

In the above equation u1 = 0 is used. For the St. Venant-Kirchhoff material, the second 
Piola-Kirchhoff strsses for the two elements can be calculated by 

 ( )(1) 2 (2) 21 1
11 2 2 11 3 2 3 22 2

( ), ( )S E u u S E u u u u= + = - + -  

Since u1 is fixed, its variation is also equal to zero. The variation of the Lagrangian strans 
become 

 (1) (2)

11 2 2 11 2 3 2 3
(1 ) , ( 1)( )E u u E u u u u= + = - - -  

The energy form can be obtained by adding the contributions from two elements as 
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2
(1) (1) (2) (2)

11 2 2 11 2 3 2 30

(1) (1) (2) (2) (2) (2)
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The load form is simply 

 
3 3

( )u u F=  

Since the nonlinear variational equation must satisfy for arbitraty 
2

u  and 
3

u , two 
nonlinear equation can be obtained: 

 
(1) (1) (2) (2)

11 2 0 11 2 3 0
(2) (2)

11 2 3 0

(1 ) ( 1) 0

( 1) 0

S u A L S u u A L

S u u A L F

+ + - - =

- - + =
 

Note that the first equation is the coefficient of 
2

u  and the second is that of 
3

u . Since u3 
is prescribed for the displacement-controll method, its variation is zero, and the applied 

L0=1m 

F 

x 

L0=1m 

E, A(1) E, A(2) 

1 2 3 



force is in fact the reaction force required prescribing the displacement. Thus, for a given 
u3, the unknown u2 is solved from the first equation. After that, the second equation is 
used to solve for the reaction force F. 
 In order to solve the above nonlinear equation using the Newton-Raphson method, 
the increment is stresses are required: 

 (1) (2)

11 2 2 11 2 3 2
(1 ) , ( 1)S E u u S E u u uD = + D D = - - D  

Note that only the increment Du2 is considered because the motion of u3 is prescribed; 
i.e., the convergence iteration is performed to find Du2 after increasing u3 according to 
the displacement controlled method. Thus,  
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ò
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Below is the list of MATLAB programs that solves for the nonlinear variational equation. 
The following table and figure show the converged solutions at each increment.  
 
% 
% P3.22 Two bar elements--displacement controlled procedure 
% 
tol = 1.0e-5;  conv = 0;  u2 = 0;  u2old = u2; 
E = 1E8; A1 = 1E-4; A2 = .5E-4; 
fprintf('\n step      u2      u3        F'); 
% Displacement increment loop 
for i=1:10 
 u3 = 0.1*i; 
 S1 = E*(u2+.5*u2^2); 
 S2 = E*(u3-u2+.5*(u3-u2)^2); 
 P = S1*A1*(1+u2)+S2*A2*(u2-u3-1); 
 F = S2*A2*(1+u3-u2); 
 R = -P; 
 conv = R^2; 
 % Convergence loop 
 iter = 0; 
 while conv > tol && iter < 50 
  Kt = A1*(E*(1+u2)^2+S1) + A2*(E*(u2-u3-1)^2+S2); 
  delu2 = R/Kt; 
  u2 = u2old + delu2; 
  S1 = E*(u2+.5*u2^2); 
  S2 = E*(u3-u2+.5*(u3-u2)^2); 
  P = S1*A1*(1+u2)+S2*A2*(u2-u3-1); 
  R = -P; 
  conv= R^2; 
  u2old = u2; 
  iter = iter + 1; 
 end 
 F = S2*A2*(1+u3-u2); 
 fprintf('\n %3d  %7.5f %7.5f %8.3f',i,u2,u3,F); 
end 

 
Increment u2 u3 F 
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1 0.0343 0.1000 361.3 
2 0.0704 0.2000 779.7 
3 0.1077 0.3000 1256.9 
4 0.1460 0.4000 1795.0 
5 0.1851 0.5000 2396.4 
6 0.2248 0.6000 3063.4 
7 0.2651 0.7000 3798.5 
8 0.3058 0.8000 4604.2 
9 0.3469 0.9000 5482.9 
10 0.3883 1.0000 6437.2 

 

  

 ▄ 
 
 
 P3.23 Consider a nonlinear elastic uniaxial bar element under tip force F = 100N 
shown in Figure 3.11. The stress strain relation is given in terms of Cauchy stress and 
engineering strain in the deformed geometry: s11 = Ee11. Using the updated Lagrangian 
formulation, solve for displacement at the tip, stress and strain of the uniaxial bar. 
Assume E = 200Pa and the cross-sectional area A = 1.0m2. 
 
Solution:  
It is easy to estimate the stress and strain in order to make equilibrium with the applied 
load. Since F = 100N and A = 1.0m2, the required Cauchy stress should be s11 = 
100Pa. From the stress-strain relation, the required strain should be e11 = 0.5. Since the 
strain is defined using the deformed geometry, the deformed length of the bar should be 



2.0m, which yields the tip displacement of u2 = 1.0m. Now in the following, the updated 
Lagrangian method is used to solve the problem. 
 Since the strain is defined in the deformed geometry,  
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Thus, since a concentrated force is applied at the tip, the load form is 
2

( )u Fu= . The 
energy form can be wriiten as 
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Since the nonlinear variational equation satisfies for arbitrary 
2

u , the residual can be 
defined as 
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Since the constitutive relation is given in terms of Cauchy stress and engineering strain, it 
is unnecessary to transform the material description to the spatial descrition. It is more 
convenient to directly linearlize the energy form in the spatial form. After linearizing the 
residual, the incremental equation for the Newton-Raphson method becomes 
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EAL
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Below is the list of MATLAB programs that solve the the nonlinear variational equation. 
Also the following table shows the convergence interation of the Newton-Raphson 
method. The solution converges in the fourth iteration. As expected, the tip displacement, 
strain, and strss converge to u2 = 1.0m., e11 = 0.5, and s11 = 100Pa. 
 
% 
% P3.23 Uniaxial bar--updated Lagrangian formulation 
% 
tol = 1.0e-5;  iter = 0;  E = 200; 
u = 0;         uold = u;  f = 100; 
strain = u/(1+u); 
stress = E*strain; 
P = stress; 
R = f - P; 
conv= R^2/(1+f^2); 
fprintf('\n iter      u1    Strain   Stress         conv'); 
fprintf('\n %3d  %7.5f  %7.5f %8.3f %12.3e %7.5f',iter,u,strain,stress,conv); 
while conv > tol && iter < 20 
 Kt = E/(1+u)^2; 
 delu = R/Kt; 
 u = uold + delu; 
 strain = u/(1+u); 
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 stress = E*strain; 
 P = stress; 
 R = f - P; 
 conv= R^2/(1+f^2); 
 uold = u; 
 iter = iter + 1; 
 fprintf('\n %3d  %7.5f  %7.5f %8.3f %12.3e %7.5f',iter,u,strain,stress,conv); 
end 

 
Iteration u Strain Stress conv 

0 0.0000 0.0000 0.000 9.999E-01 
1 0.5000 0.3333 66.667 1.111E-01 
2 0.8750 0.4667 93.333 4.444E-03 
3 0.9922 0.4980 99.608 1.538E-05 
4 1.0000 0.5000 99.998 2.328E-10 

 
 ▄ 
 
 
P3.24 Consider a deformation of a rectangular bar whose deformed geometry is given as 

 
1 1 2 2 3 3

, ,x X x X x Xa b b= = =  

When the material is incompressible, Mooney-Rivlin hyperelastic material with A10 = 
80MPa and A01 = 20MPa, write the expression of S11 component of the second Piola-
Kirchhoff stress as a function of a. In addition, write the expression of s11 of the Cauchy 
stress as a function of a. Plot S11 and s11 in the range of a = [0.7 1.5]. 
 
Solution:  
For given deformation, the deformation gradient and Cauchy-Green deformation tensor 
can be calculated as 
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The relation between a and b can be obtained from incompressibility: 

 2 1/2det 1ab b a-= =  =F  

The three invariants of the deformation tensor can be obtained as 
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The reduced invariants become 
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In order to calculate stress, we need to differentiate the reduced invariants with respect to 
strain 
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The derivatives of the reduced invariants become 
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Thus, the second Piola-Kirchhoff stress becomes 
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The S11 component of the stress becomes 
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The Cauchy stress can be obtained from the relation 

 
1 T

J
= ⋅ ⋅F S Fs  

The s11 component of the stress becomes 
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3
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The following figure shows the two stress components as a function of the principal 
stretch a. Note that the second Piola-Kirchhoff stress is highly nonlinear, but the Cauchy 
stress is reasonably linear with respect to the principal stretch. Also note that the two 
stresses are similar when the deformation is small. However, as deformation increases, 
the difference also increases. 

 

 ▄ 
 



 
P3.25 Consider a simple shear deformation of a square whose deformed geometry is 
given as 

 
1 1 2 2 2 3 3

, ,x X X x X x Xa= + = =  

When the material is incompressible, Mooney-Rivlin hyperelastic material with A10 = 
80MPa and A01 = 20MPa, write the expression of S12 component of the second Piola-
Kirchhoff stress as a function of a. In addition, write the expression of s12 of the Cauchy 
stress as a function of a. Plot S12 and s12 in the range of a = [0.0, 1.5]. 
 
Solution:  
For given deformation, the deformation gradient and Cauchy-Green deformation tensor 
can be calculated as 
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The three invariants of the deformation tensor can be obtained as 
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In order to calculate stress, we need to differentiate the reduced invariants with respect to 
strain 
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The derivatives of the reduced invariants become 
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Thus, the second Piola-Kirchhoff stress becomes 
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The S12 component of the stress becomes 
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The Cauchy stress can be obtained from the relation 
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The s12 component of the stress becomes 
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Note that the shear stress S12 is a cubic function of a, but s12 is a linear function.  
 



 

 ▄ 
 
 
P3.26 Derive the energy form and its linearization of a Mooney-Rivlin hyperelastic 
material using the perturbed Lagrangian method. Use a mixed variable r = [uT, p]T. 
 
Solution: 
Using the distortional strain energy density in Eq. (4.116) and dilatational strain energy 
density in Eq. (4.123) for the Mooney-Rivlin material, the second Piola-Kirchhoff stress 
can be obtained by 
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Note that the independent pressure p is used. In order to derive the energy form, the first 
variation of the strain energy density can be written as 
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Since both displacement and pressure are independent variables, a new combined 
variable is introduced as r = [uT, p]T. Then, the energy form can be obtained by 
integrating Eq. (3) as 
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where H = J3 – 1 – p/K corresponds to the volumetric strain. 
 The energy form ( , )a r r  is nonlinear through the constitutive relation and strain-
displacement relation. Linearization of stress can be expressed in terms of displacement 
and pressure increments as 
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, , , , 3,
: :

p
W W p J pD = D + D = D + D
E E E E

S E D E  (4) 

where D is the fourth-order constitutive tensor defined as  
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and DE and Dp are the incremental strain and pressure. Linearization of energy form can 
be obtained as 
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The pressure term can be condensed on the finite element level by directly solving the 
terms that contain the pressure variation. This can easily be done if constant pressure 
approximation is used, which can be done within a finite element. ▄ 
 
 
P3.27 Derive the 6´6 [D] matrix in Eq. (3.147) for two-dimensional Mooney-Rivlin 
material with three material parameters (A10, A01, and K). Use the penalty method for 
near-incompressibility 
 
Solution: 
The expression for the constitutive tensor is given in Eq. (3.128). In order to make a 
matrix expression, it is necessary to define the second-order derivatives of the three 
invariants in the matrix notation as 
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From Eq. (3.129), the second-order derivatives of the three reduced invariants can be 
written in the matrix notation as 
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Note that the expressions of {I1,E}, {I2,E}, and {I3,E} are available in Section 3.5.2. From 
Eq. (3.128), the constitutive matrix can be obtained as 

 T
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 ▄ 
 
 
P3.28 Derive the 6´6 [D] matrix in Eq. (3.147) for two-dimensional Mooney-Rivlin 
material with three material parameters (A10, A01, and K). Use the perturbed Lagrangian 
method for near-incompressibility 
 
Solution: 
For the perturbed Lagrangian formulation, the expression of stress is given in Example 
3.15, and the constitutive tensor can be written as 
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In order to make a matrix expression, it is necessary to define the second-order 
derivatives of the three invariants in the matrix notation as 
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From Eq. (3.129), the second-order derivatives of the three reduced invariants can be 
written in the matrix notation as 
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Note that the expressions of {I1,E}, {I2,E}, and {I3,E} are available in Section 3.5.2. Thus, 
the constitutive matrix can be obtained as 
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 ▄ 
 
 
P3.29 A nearly incompressible rubber block is confined between two frictionless rigid 
walls as shown in the figure. When uniform pressure P is applied on the right end, the 
length of the block is changed by x1 = (1 - a)X1. When a = 0.1, (a) calculate the value 
of strain energy density and (b) the magnitude of applied pressure P on the right end. 
Assume plane strain problem and use Mooney-Rivlin material with A10 = 80MPa, A01 = 
20MPa, and K = 1,000MPa. 



  Figure P3.29 

 
Solution: 
Since both X2 and X3 directions are fixed, the deformation of the rubber block can be 
written as 
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from which the deformation gradient and the right Cauchy-Green deformation tensor can 
be calculated as 
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The three eigenvalues of the right Cauchy-Green deformation tensor can be obtained as 
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Using the three eigenvalues, the three invariants can be obtained as 
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In addition, the reduced invariants are 
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(a) Strain energy density 
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(b) Hydrostatic pressure 

 
3

( 1) 100MPap K J= - = -  

 ▄ 
 
 
P3.30 Consider a unit cube shown in Figure 3.15. Using an eight-node solid element, 
perform biaxial extension analysis using ABAQUS. Apply uniform extensions in both X1 

P Rubber 
Rigid  
wall 

X1 
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and X2 directions so that deformed shape will be 5´5´t3. Plot stress s11 and thickness 
t3 as a function of stretch. 
 
Solution:  
The following program list shows the ABAQUS input file for the biaxial loading: 

 

The analysis results are shown in the following figure: 

*SOLID SECTION,ELSET=ONE,MATERIAL=MNEY 
*MATERIAL,NAME=MNEY 
*HYPERELASTIC, MOONEY-RIVLIN 
80., 20., 
*STEP,NLGEOM,INC=20 
BIAXIAL TENSION 
*STATIC,DIRECT 
1.,20. 
*BOUNDARY,OP=NEW 
FACE1,3 
FACE3,2 
FACE6,1 
FACE4,1,1,5. 
FACE5,2,2,5. 
*EL PRINT,F=1 
S,  
E,  
*NODE PRINT,F=1 
U,RF 
*OUTPUT,FIELD,FREQ=1 
*ELEMENT OUTPUT 
S,E 
*OUTPUT,FIELD,FREQ=1 
*NODE OUTPUT 
U,RF 
*END STEP 

*HEADING 
  - INCOMPRESSIBLE HYPERELASTICITY 
(MOONEY-RIVLIN), BIAXIAL TENSION 
*NODE,NSET=ALL 
1, 
2,1. 
3,1.,1., 
4,0.,1., 
5,0.,0.,1. 
6,1.,0.,1. 
7,1.,1.,1. 
8,0.,1.,1. 
*NSET,NSET=FACE1 
1,2,3,4 
*NSET,NSET=FACE2 
5,6,7,8 
*NSET,NSET=FACE3 
1,2,5,6 
*NSET,NSET=FACE4 
2,3,6,7 
*NSET,NSET=FACE5 
3,4,7,8 
*NSET,NSET=FACE6 
4,1,8,5 
*ELEMENT,TYPE=C3D8RH,ELSET=ONE 
1,1,2,3,4,5,6,7,8 



  

 ▄ 
 
 
 
 


