
1.6. Exercises 

P1.1 Using Cartesian bases, show that ( ) ( ) ( )Ä ⋅ Ä = ⋅ Äu v w x v w u x  where u, v, 
w, and x are rank 1 tensor. 
 
Solution: Using the Cartesian basis, ( )( ) ( ) ( )i i j j k k l lu v w xÄ Ä = Ä ⋅ Äu v w x e e e e . 
Since the dot product occurs between adjacent bases, we have  
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In the above equation, we used the following properties: j k jkd⋅ =e e , k jk jw wd = , and 

j jv w = ⋅v w . 
 

 
P1.2 Any rank 2 tensor T can be decomposed by T = S + W, where S is the symmetric 
part of T and W is the skew part of T. Let A be a symmetric rank 2 tensor. Show 

: 0=A W  and : :=A T A S . 
 
Solution: Since A is symmetric and W is skew, we have 

 : ij ij ij ji ji jiA W AW A W= = - = -A W  

Since in the above equation, the repeated indices i and j are dummy, the above equation 
can be rewritten as 

 0ij ij ij ijA W AW= - =  

In addition, from the relation T = S + W, 

 : : ( ) : : := + = + =A T A S W A S A W A S  

 

 
P1.3 For a symmetric rank-two tensor E , using the index notation, show that 

: =I E E , where 1
2
[ ]
ik jl il jk
d d d d= +I  is a symmetric unit tensor of rank-4. 

 
Solution: Using index notation, the contraction operator can be written as 

 
1
2

( : ) [ ]
ij ik jl il jk kl

Ed d d d= +I E
 

Since the Kronecker-delta symbol replaces indices, the above equation can be written as 



 
1
2

( : ) [ ] ( )
ij ij ji ij ij

E E E= + = =I E E
 

The symmetric property of E  is used. 

 

P1.4 The deviator of a symmetric rank-2 tensor is defined as m

dev
A= -A A 1  where 

1
11 22 333

( )mA A A A= + + . Find the rank-4 deviatoric identity tensor 
dev
I  that satisfies 

:
dev dev

=A I A . 
 
Solution: From Problem P1.3, it can be shown that : =I A A . In addition, mA  can be 
written in the tensor notation as 1

3
:mA = 1 A . Therefore, m

dev
A= -A A 1  and it can be 

written as 

 
1
3

: :
dev dev

é ù= - Ä =ê úë ûA I 1 1 A I A
 

The last equality defined the rank-4 deviatoric identity tensor 
dev
I . 

 

P1.5 The norm of a rank-2 tensor is defined as :=A A A . Calculate the following 
derivative /¶ ¶A A . What is the rank of the derivative? 
 
Solution: From the definition 

 1/2 1/21
( : ) ( : ) (2 : )

2
-

¶ ¶ é ù= = =ê úë û¶ ¶

A A
A A A A A I

A A A
 

The result is a rank-2 tensor. Note that the property that /¶ ¶ =A A I  is used. 

 

 
P1.6 A unit rank-2 tensor in the direction of rank-2 tensor A  can be defined as 

/=N A A . Show that / [ ] /¶ ¶ = - ÄN A I N N A . 
 
Solution: Using chain-rule of differentiation, the unit normal tensor can be differentiated 
as 

 

2

1
æ ö æ ö¶÷ ÷ç ç¶ ¶ ¶÷ ÷ç ç= ÷ = - Ä ÷ç ç÷ ÷ç ç÷ ÷¶ ¶ ¶ ¶÷ ÷ç çè ø è ø

AN A A
A A

A A A AA A
 

It is straightforward to show that /¶ ¶ =A A I . From Problem 1.5, we have 

 

1/2 1/21
( : ) ( : ) (2 )

2
-

¶ ¶ é ù= = =ê úë û¶ ¶

A A
A A A A A

A A A
 

Therefore, we have 



 

( )1¶
= - Ä

¶
N

I N N
A A

 

 

 
P1.7 Through direct calculation of a rank-2 tensor, show that the following identity

det[ ]
rst ijk ir js kt
e e A A A=A  is true  
 
Solution: In the index notation, (r, s, t) are real indices, while (i, j, k) are dummy indices. 
Since (r, s, t) only appears in the permutation symbol, it is enough to show the cases of 
even and odd permutation. Consider the following case of even permutation: (r, s, t) = (1, 
2, 3). In such a case, non-zero components of the right-hand side can be written as 

 

1 2 3 123 11 22 33 132 11 32 23

231 21 32 13 213 21 12 33

312 31 12 23 321 31 22 13

ijk i j k
e A A A e A A A e A A A

e A A A e A A A

e A A A e A A A

= +
+ +
+ +

 

In the above equation, we have 
123 231 312

1e e e= = =  and 
132 213 321

1e e e= = = - . 
Therefore, the above equation becomes 

 1 2 3 11 22 33 32 23 21 32 13 12 33 31 12 23 22 13
( ) ( ) ( )

ijk i j k
e A A A A A A A A A A A A A A A A A A= - + - + -

 

which is the definition of det[ ]A . By following a similar approach, it can be shown that 
the odd permutation of (r, s, t) will yield det[ ]- A . 

 

 
P1.8 For a vector 1 1 2 2 3 3x x x= + +r e e e  and its norm r = r , prove ( ) 4r r ⋅ =r . 
 
Solution: From the product rule,  

 ( )r r r ⋅ =  ⋅ +  ⋅r r r  

Now consider 

 1/2
1/2

1 1 1
( ) ( ) ( ) ( )

22( )

j j i
i j j j j j j ij j

i i i ik k

x x x
r x x x x x x x

x x r x x r rx x
d

¶ ¶¶ ¶
 = = = + = =

¶ ¶ ¶ ¶
 

Therefore, 

 
2

( ) 3 4i i
i

i

x x r
r r r x r r r

r x r

¶
 ⋅ =  ⋅ +  ⋅ = + = + =

¶
r r r  

This completes the proof. 

 

 



P1.9 A velocity gradient is decomposed into symmetric and skew parts,  = +v d w , 
where  

 
1 1

,
2 2

j ji i
ij ij

j i j i

v vv v
d

x x x x
w

æ ö æ ö¶ ¶¶ ¶÷ ÷ç ç÷ ÷ç ç= + = -÷ ÷ç ç÷ ÷÷ ÷ç ç¶ ¶ ¶ ¶è ø è ø
 

Show that  

(a) For a symmetric stress tensor, : : =v ds s . 

(b) 
1

2
m

ij ijk mnk
n

v
w e e

x

¶
=

¶
 

Solution: 
(a) From Prob. 1.2, Since stress tensor is symmetric, : 0=s w . Therefore, it is obvious 
that : : : : = + =v d ds s w s s . 
 
(b) The direct substitution method can be used to show the identity. We will show the 
case when 1, 2i j= = . The other cases can also be shown in the same way. Knowing 
that the permutation symbol becomes zero when indices are repeated, in this case the 
only nonzero situation happens when 3k = . For the second permutation symbol, the 
only non-zero situations are 1, 2m n= =  and 2, 1m n= = , where the former is even 
permutation and the latter is odd permutation. Therefore,  

 1 2
12 123 3

2 1

1 1

2 2
m

mn
n

v v v
w e e

x x x

æ ö¶ ¶ ¶ ÷ç ÷= = -ç ÷ç ÷¶ ¶ ¶è ø
 

Other cases can also be shown in the same way. 

 

 
P1.10 A symmetric rank four tensor is defined by 2l m= Ä +D 1 1 I  where [ ]

ij
d=1  is 

a unit tensor of rank-two and 1
2
[ ]
ik jl il jk
d d d d= +I  is a symmetric unit tensor of rank-four. 

When E  is an arbitrary symmetric rank-two tensor, calculate :=S D E  in terms of E . 
 
Solution: Using index notation, the contraction can be written as 

 
( )

ij ijkl kl ij kl ik jl il jk kl
S D E Eld d m d d d dé ù= = + +ê úë û  

Since the Kronecker-delta symbol replaces indices, the above equation can be simplified 
as 

 
( ) 2

ij ijkl kl kk ij ij ji kk ij ij
S D E E E E E El d m l d m= = + + = +

 

In the tensor notation, the above relation can be written as 

 : ( ) 2trl m= = +S D E E 1 E  

 



 
P1.11 Using integration by parts, calculate cos( )dI x x x= ò . 
 
Solution: Let u x=  and cos( )v x¢ = . Then 

 

cos( )d d

d

sin( ) sin( )d

sin( ) cos( )

x x x uv x

uv u v x

x x x x

x x x C

¢=

¢= -

= -

= + +

ò ò
ò

ò
 

 

 
P1.12 Using integration by parts, calculate cos( )dxI e x x= ò . 
 
Solution: Let cos( )u x=  and xv e¢ = . Then 

 cos( )d cos( ) sin( )dx x xe x x e x e x x= +ò ò  

Now, to evaluate the second terms on the right-hand side using additional integration by 
parts with sin( )u x=  and xv e¢ = , as 

 sin( )d sin( ) cos( )dx x xe x x e x e x x= -ò ò  

Therefore, putting these together, we have 

 cos( )d cos( ) sin( ) cos( )dx x x xe x x e x e x e x x= + -ò ò  

After rearranging, the original integral can be obtained as 

 
1

cos( )d ( cos( ) sin( ))
2

x x xe x x e x e x C= + +ò  

 

 
P1.13 Calculate the surface integral of the vector function 1 2x y= +F e e  over the 
portion of the surface of the unit sphere, 2 2 2: 1S x y z+ + = , above the xy plane; i.e., 

0z ³ . 

 d
S

S⋅ò F n  

Solution: If we close the surface of integration by adding the portion of the xy plane 
which spans the hemisphere, we notice that the surface integral of F over the added 
surface is zero, since 

 3( ) 0⋅ = ⋅ - =F n F e  



over this area. Thus, the divergence theorem states that we may calculate the required 
surface integral of F by evaluating 

 d d
S V

S V⋅ =  ⋅ò òòF n F  

where V is the volume interior of the hemisphere. Since 2 ⋅ =F , the result is merely 
twice the volume of the unit hemisphere, or 4p/3. 

 

 
P1.14 Evaluate the surface integral of a vector, 1 2 3x y z= + +F e e e , over the closed 
surface of the cube bounded by the planes, 1, 1, 1x y z=  =  =  , using the 
divergence theorem. 

 d
S

S⋅ò F n  

Solution: Using the divergence theorem and 3 ⋅ =F , 

 d d 3d 24
S V V

S V V⋅ =  ⋅ = =ò òò òòF n F  

 

 
P1.15 Consider a unit-depth (in z-axis) infinitesimal element as shown in the figure. 
Using force equilibrium, derive the governing differential equation in two-dimension 
(equilibrium in x- and y-directions). Assume that a uniform body force, 1 2[ , ]B B Bf f=f , is 
applied to the infinitesimal element. 

  

Solution: Equilibrium in the x–direction yields the following equation: 

 11 11 21 21 1
2 2 2 2

0B
dx dx dy dy

x x y y
dy dy dx dx f dxdys s t t

+ - + -

æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ç ç ç ç- + - + =÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è ø  

If the first-order Taylor series expansion is used to represent stresses on the surfaces of 
the rectangle in terms of stresses at the center, the first two terms in the above equation 
can be approximated by 

x

y 

11
2

dx
x


11

2

dx
x




22
2

dy
y




22
2

dy
y




21
2

dy
y




21
2

dy
y




12
2

dx
x




12
2

dx
x






 
11 11

2 2

11 11 11
11 112 2

dx dx
x x

x x

dy dy

dx dx
dy dy dxdy

x x x

s s

s s s
s s

+ -

æ ö æ ö÷ ÷ç ç-÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
æ ö æ ö¶ ¶ ¶÷ ÷ç ç÷ ÷= + - - =ç ç÷ ÷ç ç÷ ÷ç ç¶ ¶ ¶è ø è ø  

Similarly, the next two terms can be approximated by 

 
21 21

2 2

21 21 21
21 212 2

dy dy
y y

y y

dx dx

dy dy
dx dx dxdy

y y y

t t

t t t
t t

+ -

æ ö æ ö÷ ÷ç ç-÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
æ ö æ ö¶ ¶ ¶÷ ÷ç ç÷ ÷= + - - =ç ç÷ ÷ç ç÷ ÷ç ç¶ ¶ ¶è ø è ø  

By substituting these two equations into the original equation, we obtain an equilibrium 
equation in the x–direction as 

 11 21
1 0Bf

x y

s t¶ ¶
+ + =

¶ ¶  

Similarly, equilibrium in the y-direction yields the following equation: 

 12 22
2 0Bf

x y

t s¶ ¶
+ + =

¶ ¶  

 

 
P1.16 In the above unit-depth (in z-axis) infinitesimal element, show that the stress 
tensor is symmetric using moment equilibrium. 
 
Solution: Moment equilibrium with respect to the center of the element becomes 

 12 12 21 21
2 2 2 2

0
2 2 2 2

dx dx dy dy
x x y y

dxdy dxdy dxdy dxdy
t t t t

+ - + -

æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ç ç ç ç+ - - =÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è ø  

If the first-order Taylor series expansion is used to represent stresses on the surfaces of 
the rectangle in terms of stresses at the center,  

 12 21 0dxdy dxdyt t- =  

Thus, the stress tensor is symmetric. The same relation can be shown for 3-D stress 
tensor. 

 
 
P1.17 The principal stresses at a point in a body are given by 1 2 34, 2, 1s s s= = = , 
and the principal directions of the first two principal stresses are given by 

(1) 1
2
(0,1, 1)= -n  and (2) 1

2
(0,1,1)=n . Determine the state of stress at the point; i.e., 6 

components of stress tensor. 
 



Solution: 
Since the three principal directions are mutually orthogonal, the third principal direction 
can be calculated by using the cross-product of the two principal directions, as 

 (3) (1) (2) (1, 0, 0)= ´ =n n n  

Since these three principal directions are mutually orthogonal, they can be considered as 
a basis of coordinate system. In this new coordinate system, the stress tensor will only 
have diagonal components, which is the same as the three principal stresses. Then, the 
transformation between the two coordinate systems for a rank-2 tensor can be written as 

 T
123[ ] [ ] [ ] [ ]xyz= Q Qs s  

where (1) (2) (3)[ ] [ ]=Q n n n  is the orthogonal transformation matrix between the two 
coordinate systems. Using the property that the inverse of an orthogonal matrix is the 
same as the transpose, the reverse relationship can be obtained as 

 T
123[ ] [ ][ ] [ ]xyz = Q Qs s  

Or, 

 

1 1
2 2

1 1 1 1
2 2 2 2
1 1
2 2

00 0 1 4 0 0 1 0 0

[ ] 0 0 2 0 0 0 3 1

0 0 1 0 1 31 0 00
xyz

é ù é ùé ù é ù-ê ú ê úê ú ê úê ú ê úê ú ê ú= = -ê ú ê úê ú ê úê ú ê úê ú ê ú--ê ú ê úê ú ê úë û ë ûë ûë û

s  

The last matrix defines all 6 components of stress tensor. 
  

 
 
P1.18 Find the principal stresses and the corresponding principal stress directions for the 
following cases of plane stress: 
 (a) s11 = 40 MPa,   s22 = 0 MPa, s12 = 80 MPa 
 (b) s11 = 140 MPa,  s22 = 20 MPa, s12 = −60 MPa 
 (c)  s11 = −120 MPa, s22 = 50 MPa, s12 = 100 MPa 
 
Solution: 
(a) The stress matrix becomes 

 

40 80
MPa

80 0
xx xy

xy yy

s t
t s

é ù é ù
ê ú ê ú=ê ú ê úê ú ê úë û ë û  

To find the principal stresses, the standard eigen value problem can be written as 

 { } 0sé ù- =ë ûI ns
 

The above problem will have non-trivial solution when the determinant of the coefficient 
matrix becomes zero: 



 

40 80
0

80 0
xx xy

xy yy

s s t s
t s s s
- -

= =
- -

 

The equation of the determinant becomes: 

 ( )( ) ( ) 240 80 80 40 6400 0s s s s- ⋅ - - ⋅ = - - =
 

The above quadratic equation yields two principal stresses, as 

 1 102.46MPas =  and 2 62.46MPas = - . 

To determine the orientation of the first principal stresses, substitute 1 in the original 
eigen value problem to obtain 

 

40 102.46 80 0

80 0 102.46 0
x

y

n

n

é ù ì ü ì ü- ï ï ï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ï-ê ú ï ï ï ïë û î þ î þ  

Since the determinant is zero, two equations are not independent 

 
62.46 80x yn n⋅ = ⋅

 and 
80 102.46x yn n⋅ = - ⋅

. 

Thus, we can only get the relation between nx and ny.  Then using the condition |n| = 1 we 
obtain 

 

(1)
0.788

0.615
x

y

n

n

ì ü ì üï ï ï ïï ï ï ï=í ý í ýï ï ï ïï ï ï ïî þ î þ  

To determine the orientation of the second principal stress, substitute 2 in the original 
eigen value problem to obtain 

 

40 62.46 80 0

80 0 62.46 0
x

y

n

n

é ù ì ü ì ü+ ï ï ï ïï ï ï ïê ú =í ý í ýê ú ï ï ï ï+ê ú ï ï ï ïë û î þ î þ  

 
102.46 80x yn n⋅ = - ⋅

 and 
80 62.46x yn n⋅ = - ⋅

. 

Using similar procedures as above, the eigen vector of 2 can be obtained as 

 

(2)
0.615

0.788
x

y

n

n

ì ü ì üï ï ï ïï ï ï ï=í ý í ýï ï ï ï-ï ï ï ïî þ î þ  

Note that if n is a principal direction, −n is also a principal direction 
(b) Repeat the procedure in (a) to obtain 

 1 164.85 MPas =
 and 2 4.85 MPas = -

. 

 

(1)
0.924

0.383
x

y

n

n

ì ü ì ü-ï ï ï ïï ï ï ï=í ý í ýï ï ï ïï ï ï ïî þ î þ  and 

(2)
0.383

0.924
x

y

n

n

ì ü ì üï ï ï ïï ï ï ï=í ý í ýï ï ï ïï ï ï ïî þ î þ  



(c) Repeat the procedure in (a) to obtain 

 1 96.24 MPas =
 and 2 166.24 MPas = -

. 

 

(1)
0.420

0.908
x

y

n

n

ì ü ì üï ï ï ïï ï ï ï=í ý í ýï ï ï ïï ï ï ïî þ î þ  and 

(2)
0.908

0.420
x

y

n

n

ì ü ì ü-ï ï ï ïï ï ï ï=í ý í ýï ï ï ïï ï ï ïî þ î þ  

Note that for the case of plane stress 3=0 is also a principal stress and the corresponding 
principal stress direction is given by  n(3) =(0,0,1)   
 
 
P1.19 Determine the principal stresses and their associated directions, when the stress 
matrix at a point is given by 

 

1 1 1

[ ] 1 1 2 MPa

1 2 1

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

s

 

Solution: 
Use Eq. (1.50) with the coefficients of I1=3, I2= −3, and I3 = −1, 

 
3 23 3 1 0l l l- - + =  

By solving the above cubic equation, 

 1 2 33.73 MPa, 0.268 MPa, 1.00 MPas s s= = = -
 

(a) Principal direction corresponding to 1: 

 

1 1 1

1 1 1

1 1 1

(1 3.7321) 0

(1 3.7321) 2 0

2 (1 3.7321) 0

x y z

x y z

x y z

n n n

n n n

n n n

- + + =

+ - + =

+ + - =
 

Solving the above equations with |n1| = 1 yields 

 { 0.4597, 0.6280, 0.6280}=   1n  

(b) Principal direction corresponding to 2: 

 

1 1 1

2 2 2

2 2 2

(1 0.2679) 0

(1 0.2679) 2 0

2 (1 0.2679) 0

x y z

x y z

x y z

n n n

n n n

n n n

- + + =

+ - + =

+ + - =
 

Solving the above equations with |n2| = 1 yields 

 
2 { 0.8881, 0.3251, 0.3251}= n    

(c) Principal direction corresponding to 3: 



 

3 3 3

3 3 3

3 3 3

(1 1) 0

(1 1) 2 0

2 (1 1) 0

x y z

x y z

x y z

n n n

n n n

n n n

+ + + =

+ + + =

+ + + =
 

Solving the above equations with |n2| = 1 yields 

 
3 {0, 0.7071, 0.7071}= n   

 
 
P1.20 Let x′y′z′ coordinate system be defined using the three principal directions 
obtained from Problem P1.19.  Determine the transformed stress matrix [σ]x′y′z′ in the new 
coordinates system. 
 
Solution: 
The three principal directions in Problem 6 can be used for the coordinate transformation 
matrix: 

 

(1) (2) (3)

(1) (2) (3)

(1) (2) (3)

0.460 0.888 0

0.628 0.325 0.707

0.628 0.325 0.707

x x x

y y y

z z z

n n n

n n n

n n n

é ù é ù-ê ú ê úê ú ê úé ù = =ê ú ê úë û ê ú ê ú-ê ú ê úë ûë û

N

 

To determine the stress components in the new coordinates we use Eq. (1.30): 

 

3.732 0 0

0 .268 0

0 0 1

T

x y z¢ ¢ ¢

é ù
ê ú
ê úé ù é ù é ù é ù= = ê úë û ë û ë û ë û
ê ú-ê úë û

N Ns s

 

Note that the transformed stress matrix is a diagonal matrix with the original principal 
stresses on the diagonal. 
 
 
P1.21 The stress-strain relationship for three-dimensional isotropic solid is given as 

1
3

2 ( )
ij ij kl ik jl ij kl kl

Ks d d m d d d d eé ù= + -ê úë û  where K is the bulk modulus and m  is the shear 
modulus. In practice, stress and strain are written in the vector forms such that 

T
11 22 33 12 23 12

{ } { , , , , , }s s s s s s=s  and T
11 22 33 12 23 12

{ } { , , , , , }e e e g g g=e . Then, the 
stress-strain can be written as { } [ ]{ }= Ds e . Write the expression of 6x6 elasticity 
matrix [ ]D  in terms of K and m . 
 
Solution: Based on the arrangement of stress and strain vector, the indices are arranged 
as 



 

1 1 1
1111 1122 1133 1112 1123 11132 2 2

1 1 1
2211 2222 2233 2212 2223 22132 2 2

1 1 1
3311 3322 3333 3312 3323 33132 2 2

1 1 1 1 1 1
1211 1222 1233 1212 1223 12132 2 2 2 2 2

1 1 1 1 1 1
2311 2322 2333 2312 2323 23132 2 2 2 2 2

1
12

[ ]

D D D D D D

D D D D D D

D D D D D D

D D D D D D

D D D D D D

D

=D

1 1 1 1 1
311 1322 1333 1312 1323 13132 2 2 2 2

D D D D D

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

 

Note that the components corresponding to shear strains are divided by two because 
2

ij ij
g e= . Due to Kronecker-delta symbol, many components are zero. Non-zero 
components are 

 4
1111 2222 3333 3
D D D K m= = = +  

 2
1122 1133 2211 2233 3311 3322 3
D D D D D D K m= = = = = = -  

 
1212 2323 1313

2D D D m= = =  

Therefore, the elasticity matrix can be written as 

 

4 2 2
3 3 3

2 4 2
3 3 3

2 2 4
3 3 3

0 0 0

0 0 0

0 0 0
[ ]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

K K K

K K K

K K K

m m m
m m m
m m m

m
m

m

é ù+ - -ê ú
ê ú- + -ê ú
ê ú- - +ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

D  

 

P1.22 For steel, the following material data are applicable:  Young’s modulus E = 207 
GPa and shear modulus G = 80 GPa.  For the strain matrix at a point shown below, 
determine the symmetric 3×3 stress matrix. 
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[ ] 0 0.001 0.003
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Solution: 
From Eq. (1.81) the elasticity matrix becomes 
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From the relation / 2(1 )G E n= + , we calculate ( / 2 ) 1 0.294E Gn = - = .  
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In the matrix notation 

 

0.879 0 0.960

0 0.239 0.480 GPa

0.960 0.480 0.639
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P1.23 A strain rosette consisting of three strain gages was used to measure the strains at 
a point in a thin-walled plate. The measured strains in the three gages are: A = 0.001, B 
= −0.0006, and C = 0.0007. Not that Gage C is at 45o with respect to the x-axis. 
 (a) Determine the complete state of strains and stresses (all six components) at that 
point.  Assume E = 70 GPa, and = 0.3. 
 (b) What are the principal strains and their directions? 
 (c) What are the principal stresses and their directions? 
 (d) Show that the principal strains and stresses satisfy the stress-strain relations. 

 

Solution: 
(a) From figure it is obvious xx = A = 0.001 and yy = B = −0.0006.  Shear strain can be 
found using the strain version of the stress transformation relation in Eq. (1.38).  The 2-D 
version becomes 

 
2 2

nn xx x yy y xy x yn n n ne e e g= + +
 

where nx = cos(45o) and ny = sin(45o). Thus, 

 
2 2(45 ) cos 45 sin 45 sin 45 cos 45 0.0007C nn xx yy xye e e e g= = + + =

 

By solving the above equation, we obtain xy = 0.001.  Since the strain rosette only 
measures plane stress state, zz is unknown.  But, there is no shear strain in the z-
direction, xz = yz = 0.  In order to calculate the unknown stress zz , we use the 
constitutive relation for plane stress.  Since the plate is in a state of plane stress, zz = xz 

x 

y 

A 

B C 



= yz = 0.  Other stresses can be obtained from stress-strain relations for plane stress 
conditions as shown below: 
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For plane stress condition the through-the-thickness strain is obtained, as 

 
( ) 0.000171zz xx yyE

n
e s s

-
= + = -

 

(b) For a state of plane stress, zz = −0.000171 is a principal stress and the z-axis (0,0,1) is 
the corresponding principal strain direction.  The other two principal strains can be found 
from the eigen value problem in 2D strain state: 
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Two principal strains are calculated from the condition that the determinant of the 
coefficient matrix is zero: 2( )( ) 0xx yy xye l e l e- - - = .  The solution of the quadratic 
equation becomes 1 = 0.0011 and 2 = −0.0007.  Thus, the three principal strains are 1 
= 0.0011, 2 = −0.000171, and 3 = −0.0007. Two principal directions can be obtained 
from the original eigen value problem. Adding z-axis, the three principal directions are 

 

1 2 3

0.961 0 0.276

0.276 , 0 , 0.961

0 1 0

ì ü ì ü ì üï ï ï ï ï ï-ï ï ï ï ï ïï ï ï ï ï ïï ï ï ï ï ï= - = = -í ý í ý í ýï ï ï ï ï ïï ï ï ï ï ïï ï ï ï ï ïï ï ï ï ï ïî þ î þ î þ

n n n

 

(c) Principal stresses 
For plane stress condition, z = 0 is a principal stress and the z-axis (0,0,1) is the 
corresponding principal direction.  The other principal stresses and the directions can be 
found by solving the following eigen value problem: 
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Two principal stresses are calculated from the condition that the determinant of the 
coefficient matrix is zero: 2( )( ) 0xx yy xys l s l t- - - = .  The solution of the quadratic 
equation becomes 1 = 70.8 and 2 = −30.8.  Thus, the three principal stresses are 1 = 
70.8 MPa, 2 = 0.0 MPa, and 3 = −30.8 MPa.  Two principal directions can be obtained 
from the original eigen value problem.  Adding z-axis, the three principal directions are 
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For isotropic materials, principal stress directions and principal strain directions are the 
same. 
(d) Principal Stress-strain relations 
From Eq. (1.55), the stress-strain relation can be written as 
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Also, all shear strains and stresses are zero because they are in the principal directions.  
Thus, the stress-strain relation satisfies in the principal stresses and strains. 
 
 
P1.24 A rectangular plastic specimen of size 100×100×10 mm3 is placed in a 
rectangular metal cavity. The dimensions of the cavity are 101×101×9 mm3.  The plastic 
is compressed by a rigid punch until it is completely inside the cavity.  Due to Poisson 
effect, the plastic also expands in the x and y directions and fills the cavity.  Calculate all 
stress and strain components and the force exerted by the punch.  Assume there is no 
friction between all contacting surfaces. The metal cavity is rigid. Elastic constants of the 
plastic are E = 10 GPa, = 0.3. 

 

Solution: 
The strains in the specimen are calculated as the ratio of change in length to original 
length. 

 

( ) ( )9 10 101 100
0.1, 0.01

10 100zz xx yye e e
- -

= = - = = = +
  

We have assumed that the plastic expands laterally and fill the cavity completely. If it 
does not, then we will get positive values for xx and/or yy, which will indicate that our 
assumption is wrong. Then we can assume xx and/or yy = 0, and redo the problem and 
obtain corresponding strains xx and/or yy which will be less than that calculated above. 
 Since there is no friction between contacting surfaces, all shear stresses and hence all 
shear strains will be identically equal to zero. 
 The normal stresses can be obtained from three-dimensional stress strain relations: 
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Substituting for the strains and elastic constants E and  we obtain the stresses as 

 
{ } { 385 385 1,231} MPaxx yy xxs s s = - - -

 

Since xx and yy are negative (compressive), our initial assumption about the strains is 
correct.  The punch force is obtained from z and the area of cross section: 

 
0.1 0.1 1,231 12.31MNzF As= = ´ ´ =

 

 
 
P1.25 Repeat Problem P1.24 with elastic constants of the plastic as E = 10 GPa and  = 
0.485. 
 
Solution: 
The strains in the plastic specimen are calculated as the ratio of change in length to 
original length. 

 

( ) ( )9 10 101 100
0.1, 0.01

10 100z x ye e e
- -

= = - = = = +
  

We have assumed that the plastic expands laterally and fill the cavity completely. If it 
does not, then we will get positive values for xx and/or yy, which will indicate that our 
assumption is wrong. Then we can assume xx and/or yy = 0, and reiterate the problem 
and obtain corresponding strains xx and/or yy which will be less than that calculated 
above. 
 Since there is no friction between contacting surfaces, all shear stresses and hence all 
shear strains will be identically equal to zero. 
 The normal stresses can be obtained from three-dimensional stress strain relations: 
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Substituting for the strains and elastic constants E and  we obtain the stresses as 

 
{ } { 8, 642 8, 642 9, 383} MPaxx yy xxs s s = - - -

 

Since xx and yy are negative (compressive), our initial assumption about the strains is 
correct.  The punch force is obtained from zz and the area of cross section: 

 
0.1 0.1 9, 383 93.83MNzF As= = ´ ´ =

 



Note: Punch force for this problem is almost 8 times that for Problem 24. The increase is 
due to Poisson’s ratio. As the material compressibility decreases, Poisson’s ratio 
increases. For example, as 0.5n   the material becomes incompressible, i.e., its volume 
cannot be changed, and the stresses become unbounded. Note the term ( )1 2n-  in the 
denominator of the above constitutive relation. 
 
 
P1.26 The strain energy and work done by applied load are given in the following 
equations. When the solution is expressed by u(x) = c1x + c2x

2, calculate the solution 
using the principle of minimum potential energy. 
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0 0
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( ) d , d (1)

2
U u x W u x u¢= = +ò ò  

Solution: From the given form of displacement, the virtual displacement can be 
expressed as 2

1 2( )u x c x c x= + . The variation of the potential energy can be written as 
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The above variational equation must satisfy for all ( )u x Î  . Since the virtual 
displacement is expressed by 2

1 2( )u x c x c x= + , it is possible that the above variational 
equation must satisfy for arbitrary coefficients 1c  and 2c . Since 1c  and 2c  are 
independent, those terms that contain them must vanish independently; that is, 
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By solving the above two equations, we obtain 1 2c =  and 1
2 2c = - . Thus, the solution 

becomes 

 
2

( ) 2
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x
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P1.27 The governing differential equation for the bar component in the figure is given as 
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where the subscribed comma denotes differentiation with respect to the spatial 
coordinate, i.e., u,1 = du/dx. Derive the weak form using the principle of virtual work. 



  

Solution: The principle of virtual work can be obtained by multiplying the governing 
differential equation with an arbitrary function u  (called virtual displacement) and then 
integrating over the domain as 

 ,1 ,1 ,1 00 0
d d [ ] ,

l l l
u u x f u x EAu u- =ò ò  

where integration by parts is used once. The above equation is called the variational 
identity. Among arbitrary u , let us choose those that satisfy the homogeneous essential 
boundary condition, that is, (0) 0u = . Thus, the space of kinematically admissible 
displacements is defined as 

 { }1(0, ) | (0) 0 ,u H l u= Î =  

where H1 is the Sobolev space of the first order. Note that  contains the homogeneous 
essential boundary condition but not the natural boundary condition. Since the derivative 
of the solution vanishes at x = l, the following variational equation can be obtained 

 ,1 ,10 0
d d ,

l l
EAu u x f u x=ò ò  

for all u  in . Note that the above variational problem is well defined for the integrable 
cross-sectional area A(x) as well as for the continuous displacement function u(x) whose 
first derivative is in L2(W). Therefore, smoothness requirements for this variational 
problem are much less than for the classical differential equation. 
 For the homogeneous boundary condition, the solution space is the same as . 
Therefore, the structural energy bilinear and load linear forms are defined as 

 ,1 ,10
( , ) d

l
a u u EAu u x= ò  

and 
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u fu x= ò  

Then, the variational equation of the bar component can be represented using the energy 
bilinear and load linear forms as 

 ( , ) ( ), .a u u u u= " Î   
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Note that a(•,•) is symmetrical with respect to its arguments. 
 
 
 
P1.28 Derive the weak form of two-dimensional, steady-state heat transfer problem. 
 
Solution: The governing differential equation of a steady-state heat transfer problem in 
two-dimension is 
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For given boundary conditions, the space of kinematically admissible temperatures 
becomes 

 { }1 2[ ( )] ( ) 0 on TZ T H T x S= Î W =  

Multiplying the governing equation with a virtual temperature and integrating over the 
domain, we obtain the following equation: 

 1 ,1 ,1 2 ,2 ,2[( ) ( ) ]d 0T kT k T Q T Z
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+ + W = " Îòò  

After integrating by parts, we have 
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In the above equation, we used the Green-Gauss theorem and the following properties: 
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Thus, the weak form becomes 
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P1.29 Derive the weak form of simply-supported beam problem. 
 
Solution: The governing differential equation of a beam becomes 

 (4) ( )EIv f x=  



where (4)v  is the forth-order derivative of deflection, and ( )f x  is the distributed load. 
Boundary conditions are given as 

 (0) ( ) 0, (0) ( ) 0v v L EIv EIv L¢¢ ¢¢= = = =  

By including homogeneous essential boundary conditions, the space of kinematically 
admissible displacements becomes 

 { }2(0, ) (0) ( ) 0Z v H L v v L= Î = =  

The weak form can be obtained by multiplying the governing equation by a virtual 
deflection and integrating over the domain, as 

 (4)

0
[ ] d 0
L
EIv f v x- =ò  

After performing integration-by-parts twice for the first term, we have 
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Since the virtual displacements are zero at the both boundaries and the bending moments 
are zero at the both boundaries, the boundary terms in the above equation vanish. Thus, 
the weak form becomes 
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P1.30 When the potential energy of P1.29 is given, derive the variational equation using 
the principle of minimum potential energy. 
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Solution: It is clear that the potential energy is well defined as long as u,11 Î L2(0,l) and 
it does not require u to be C4(0,l), as in the original differential equation. Equating the 
first variation of  to zero, in which the variation ( )u x  has the second-order derivative, 

2
,11 (0, )u L lÎ , and assuming that u  satisfies the essential boundary conditions, we 

obtain  
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In order to make a consistent notation, the following energy bilinear and load linear 
forms are defined: 



 ,11 ,110
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and 
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u fu x= ò  

Then, the variational equation can be written as 

 ( , ) ( ), .a u u u u= " Î   (0.1) 

which is identical to the weak form obtained using the principle of virtual work. 
 

P1.31 Derive the principle of virtual work for the simply-supported Kirchhoff plate 
element from the governing equation:  

 ,11 ,22 ,11 ,22 ,11 ,22 ,12 ,12[ ( )] [ ( )] 2(1 )[ ]D u u D u u Du fn n n+ + + + - =
 

Solution: For a simply supported plate, the space of kinematically admissible 
displacements is 

 { }2 2[ ( )] 0 onu H u= Î W = G  

The principle of virtual work can be obtained by multiplying the governing differential 
equation with a virtual displacements u  and integrate over the domain as 

 { },11 ,22 ,11 ,22 ,11 ,22 ,12 ,12[ ( )] [ ( )] 2(1 )[ ] d dD u u D u u Du u fun n n
W W
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Applying the integration by parts once and using Green-Gauss theorem, we have 
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In the above equation, the first boundary integral term becomes 

{ },11 ,22 ,1 1 ,22 ,11 ,2 2 ,12 ,1 2[ ( )] [ ( )] 2(1 )[ ] d dD u u un D u u un Du un uNun n n
G G
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where Nu  is the transverse shear force on the boundary. Applying the integration by 
parts again and using Green-Gauss theorem, we have 

{ }
{ }

,11 ,22 ,1 1 ,22 ,11 ,2 2 ,12 ,2 1

,11 ,22 ,11 ,22 ,11 ,22 ,12 ,12

d ( ) ( ) 2(1 ) d

( ) ( ) 2(1 ) d d

uNu D u u u n D u u u n Du u n

D u u u D u u u Du u fu

n n n

n n n
G G

W W

- G - + + + + - G

+ + + + + - W = W
ò ò
òò òò

 

where the second boundary integral becomes 
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In addition, the domain integrals in the above equation can be converted to  

 ( ) ( )d d d dT b u
u u uf uNu Mu

nW W G G

¶
W = W + G + G

¶òò òò ò òCk k  

For the simply supported plate, 0u Mu= =  on the boundary. Thus, the variational 
equation becomes 

 ( ) ( )d dT bu u uf
W W
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P1.32 Consider a bar element as shown in the figure. The cross sectional areas are 1A  
and 2A  at Nodes 1 and 2, respectively, and vary linearly. In addition, the gravitational 
acceleration is applied along the axial direction of the bar, such that the distributed load 
per unit length is ( ) ( )f x gA xr= , where r  is the density and g  is gravitational 
acceleration. Construct the discrete variational equation for the element. 

 

Solution: The discrete variational equation of a bar element is 
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In the problem statement, both cross-sectional area ( )A x  and distributed load ( )f x  are 
not constant. Since ( )f x  is also a function of ( )A x , it is necessary to integrate the area 
over the length of the element. Note that the area varies linearly between 1A  at Node 1 
and 2A  at Node 2. Or, it can be considered that the cross-sectional area is interpolated 
using shape function, as 

 1 1 2 2( ) ( ) ( )A N A N Ax x x= +  

Then, the integral of the cross-sectional area will be  
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Also, for the distributed load term, we need to calculate the following integrals: 
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Then, the above discrete variational equation becomes

T T=d kd d f , where the element 
stiffness matrix and nodal force vector are defined as 
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1 12
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P1.33 For the Euler beam element shown in the figure, derive interpolation functions 

( )IN x , stiffness matrix k , nodal force vector f . Assume uniformly distributed load 
( )f x f= . Note that the reference element is defined in the domain [ 1, 1]x = - . 

 

Solution: The mapping relation between the physical and reference elements is 

 
1 1

1 22 2
(1 ) (1 )x x xx x= - + +

 

Thus, the Jacobian becomes 

 

1
2 12

d
( )

d 2

x L
J x x

x
= = - =

 

Since the Euler beam element has four DOFs, the transverse deflection can be assumed as 

 
2 3

0 1 2 3( )u a a a ax x x x= + + +  

Accordingly, the rotational angle can be assumed as 

 

2
1 2 3

d ( ) d ( ) d 2
( ) ( 2 3 )

d d d

u u
a a a

x x L

x x x
q x x x

x
= = = + +

 

Now, we want to express the four coefficients in terms of four DOFs, by 

 


u1 

E, , I, A 

f(x) 

l 

u2

1 2

21 

x1 x2

(a) Finite Element (b) Reference Element 



 

1 0 1 2 3

2 0 1 2 3

1 1 2 3

2 1 2 3

( 1)

(1)

d ( 1) 2
( 2 3 )

d
d (1) 2

( 2 3 )
d

u u a a a a

u u a a a a

u
a a a

x L
u

a a a
x L

q

q

= - = - + -
= = + + +

-
= = - +

= = + +
 

By solving the above equation for four coefficients, we have 

 

3 2 31
1 14 8

3 2 31
2 24 8

( ) (2 3 ) (1 )

(2 3 ) ( 1 )

L

L

u u

u

x x x x x x q

x x x x x q

= - + + - - +

+ + - + - - + +
 

Thus, 

 

31
1 4

2 3
2 8

31
3 4

2 3
4 8

( ) (2 3 )

( ) (1 )

( ) (2 3 )

( ) ( 1 )

L

L

N

N

N

N

x x x

x x x x

x x x

x x x x

= - +

= - - +

= + -

= - - + +
 

The displacement-strain relation for the Euler beam element becomes 

 

22 2
3 3
2 8 2 82 2

d d 2 4
( 2 6 ) (2 6 )

d d
L Lu u

L Lx
x x x x

x
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Then, the element stiffness matrix becomes 

 

2 2
1

31

2 2

12 6 12 6

6 4 6 2
d
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For the distributed load, the nodal force vector becomes 

 

2
1

1

2

/ 2

/ 12
d

/ 2

/ 12

T

fL

fL
fJ

fL

fL

x
-
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Note that the element stiffness matrix and the force vector are the same with the case 
when the reference element domain [0, 1]x =  is used. 

 
 
P1.34 Below is the governing differential equation of one-dimensional bar under 
uniformly distributed load. Using one bar element, calculate displacement at x L=  and 



1
2

x L= . Compare these displacements with that of exact calculation. (Note: exact 
solution can be calculated by integrating the differential equation twice). 

 

,11

,1

, (0, )

(0) 0

( ) 0

EAu f x L

u

u L

- = Î
=
=

 

 
Solution: From the textbook, the finite element equation becomes 

 

1

2

1 1 / 2

1 1 / 2

u fLEA
u fLL

é ù ì ü ì üï ï ï ï- ï ï ï ïê ú =í ý í ýê ú ï ï ï ï-ê ú ï ï ï ïë û î þ î þ  

Since Node 1 is fixed, the first row and the first column can be deleted, yielding the 
following displacement at Node 2  

 

2

2
( )

2

fL
u u L

EA
= =

 

Since 
1

0u = , the displacement at 1
2

x L=  can be calculated by 

 

2
1 1 1

1 1 2 22 2 2
( ) ( ) ( )

4

fL
u N u N u

EA
= + =

 

The exact displacement can be obtained by integrating the differential equation by twice 
and applying two boundary conditions as 

 
1
2

( ) ( )
f

u x x L x
EA

= -
 

Therefore, the displacements at the end and at the center are 

 

2

( )
2

fL
u L

EA
=

 

 

2

2

3
( )

8
L fL
u

EA
=

 

Note that the displacement at the tip is exact, but that at the center is different. This 
happens because the finite element method uses linear interpolation, while the exact 
displacement is a quadratic function. 

 

P1.35 An Euler beam element shown in the figure is under uniformly distributed couple 
C . Calculate equivalent nodal forces. Using a simply-supported beam under uniform 
couple, show that the reaction forces are equal and opposite directions with the equivalent 
nodal forces. 



 

 
Solution: The loading form becomes 

 0
( ) d

L

u C xq= ò
 

By using the mapping relation and interpolation, the load form becomes 

 

1
T T

0

d
( ) d

d

T

u CJ
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x
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where f  is the equivalent nodal force. The derivatives of interpolation function becomes 
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By integrating the derivatives of interpolation function, the equivalent nodal forces can 
be obtained as 

 
{ }0 0T C C= -f

 

The following figure illustrates the equivalent nodal forces. 

 

If simply-supported boundary conditions are given at Nodes 1 and 2, the reaction forces 
can be calculated using the equilibrium of moments at Nodes 1 and 2, respectively: 

 

2 2Node 1

1 1Node 2

0

0

M CL R L R C

M CL RL R C

= + =  = -

= - =  =

å
å

 

Therefore, the reactions are equal and opposite directions with the equivalent nodal 
forces. 

 

C 

1 2

C C 

C 

L

1 2

x1 x2



P1.36 Integrate the following function using one–point and two–point numerical 
integration (Gauss quadrature). Explain how to integrate it. The exact integral is equal 
to 2. Compare the accuracy of the numerical integration with the exact one. 

 0
sin( )I x dx

p
= ò  

Solution: 

NG 
Integration 
Points (si) 

Weights (wi) 
Exact for polynomial of 

degree 
1 0.0 2.0 1 
2 .57735 1.0 3 

 
Since the numerical integration must be between the bounds [-1,1], a change of variable 
is needed. 

 x as b= +  

 

0

2 2

( 1)
2

2

a b a b

b a

x s

dx ds

p
p p

p

p

= + =- +

= =

= +

=

 

 

1

0 1

sin( ) sin ( 1)
2 2

I x dx s ds
p p p

-

æ ö÷ç ÷= = +ç ÷ç ÷çè øò ò  

 
( ) sin ( 1)

2 2
f s s

p pæ ö÷ç ÷= +ç ÷ç ÷çè ø
 

One Point Integration: s = 0, w = 2 

 
2 (0) 2 sin 3.1415

2 2
I f

p p
p

æ ö÷ç ÷» = = =ç ÷ç ÷çè ø
 

Error = π-2 = 1.1415 
 
Two Point Integration: s =   .57735, w = 1 

 
1 ( .57735) 1 (.57735) 1 (.6162) 1 (.6162) 1.9358

2 2
I f f

p p
» - + = + =  

Error = 2 – 1.9358 = .0642 

 


