4.10. Exercise

P4.1 A force is gradually applied at the end of an elastoplastic bar such that it is in the
plastic phase. When the total magnitude of strain is € = 0.003, calculated the applied
force, axial stress, elastic strain, and plastic strain. Use the following material properties:
E = 100GPa, H = 10GPa, and 0, = 100MPa. The cross-sectional area of the bar is A
= 1.0x10 *'m”.

Solution:

If the total strain is pure elastic, then stress will become 0 = Ee = 300MPa, which is
larger than the yield stress. Thus, the material is in the plastic phase. It is convenient to
separate the initial elastic deformation, €', until the yield stress from the elastoplastic
deformation, e® such that ¢ = ¥ 4+ £®. The initial elastic strain can be calculated from

el = e = ¢, = % —0.001, o =0, =100MPa

e
After the initial elastic deformation, the remaining deformation is elastoplastic

deformation. In this phase, the strain increment is Ae® = 0.002. Since the total strain
increment is given, Eq. (4.9) can be used to calculate the plastic strain increment as

@ Ae?

Aeg\?) = ———— = (0.00182
» " 1+H/E

Thus, the plastic strain is €, = Aef) = 0.00182, and elastic strain is
€, =¢€—¢, =0.00118. The axial stress can be calculated using the elastic strain,
o = Fe, = 118MPa. The applied force can be calculated from the assumption that the
axial stress is uniformly distributed over the cross section: ' = 0 A = 11.8kN . Below is

the MATLAB program that solves for the problem:

%

% P4.1 elastoplastic bar (MPa, mm)

%

delE=0.003; A=100;

mp = [1E5, 0, 1E4, 100];

nS=0; nA=0; nep=0;

[Snew, Anew, epnew]=combHardlD(mp,delE,nS,nA,nep)
eelast=delE - epnew

Force = Snew*A

P4.2 A force 12kN is gradually applied and then removed at the end of an elastoplastic
bar. When the yield stress of the material is 100MPa, calculate plastic strains and tip
displacement after removing the applied force. Use the following material properties: E
= 100GPa and H = 10GPa. The cross-sectional area of the bar is A = 1.0x 10 *m” and
the length of the bar is L, = 1m.

Solution:
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In a one-dimensional bar, it is assumed that the force is uniformly distributed over the
cross section. During the loading process, since the total stress, 0 = F/A = 120MPa, is
larger than the yield stress, it can be concluded that the material is under plastic
deformation. It is convenient to divide the entire deformation into elastic and plastic
phases. The material is initially elastic until it reaches yield stress. Thus, when stress
reaches yield stress 0! = o, = 100MPa, strain is purely elastic:

A = 2 — 0,001

E

e

After yielding, the remaining stress increment, Ao = 20MPa, is in the plastic phase. The
elastic and plastic strain increments can be calculated from

Ac?®

Ae? = 0.0002

@)
Ae? = AT 5002
H

Thus, the total elastic and plastic strains become
g, = Aaf(}) + Aaf) = 0.0012
— (2) _
e, = Ag,” =0.002

Now, during the unloading, elastic strain is removed, but the plastic strain remains. Thus,
€, = 0.002 and u = spL =2mm. g

P4.3 A uniaxial bar is under tensile force F' = 12kN at load step ¢,. (a) When the
plastic strain is eg = 0.002, determine the yield status of the material. (b) If the applied
force is increased to F' = 15kN at load step ¢,.,, calculate plastic strain and tip
displacement. Assume the initial yield stress 0, = 100MPa, £ = 100GPa and H =
10GPa. The cross-sectional area of the bar is A = 1.0x10 'm?* and the length of the bar
is L, = 1m. Assume isotropic hardening model.

Solution:
(a) At load step ¢, the stress in the bar is

o" = E = 120MPa
A

The yield stress is
oy = oy + He, =100 410000 x 0.002 = 120MPa

Since 0" = oy the material is in the loading stage.

(b) During the loading stage up to ¢, the elastic and plastic strains can be calculated by



n

e =2 —0.0012, € = 0.002
E P

€

At load step t,.,, the elastic and plastic strain increments can be calculated from stress
increment Ao""! = 30MPa as

Agn+1 Ag"'H

A"t =

[&

= 0.0004, Aeg“ = = 0.004

Thus, the total elastic and plastic strains become

el = el + Al = 0.0016, e =l + Aelt! = 0.006

The tip displacement is

_ n+1 n+1 _
u=(g" +¢e,7 )L ="76mm

P4.4  An elastoplastic bar is under variable load history. At load step ¢,, the stress and
plastic strain are 0" = 200MPa and 52 — 1.0 x107*, respectively. (a) Is the material in
elastic or plastic state? (b) When strain increment is Ae = —0.003, calculate stress and
plastic strain. Assume isotropic hardening with £ = 200GPa, H = 25GPa, and o, =
250MPa.

Solution:
(a) At a given plastic strain gz =1.0x107*, the yield stress is

oy = oy + He = 252.5MPa

Since 0" < 0, the material is in the elastic state.
(b) For given strain increment, the trial stress can be obtained as

Ao = EAe = —600MPa, o = o¢" + Ao = —400MPa

Since f" = ¢ | —o, = 147.5 > 0, the material is yielded in the compression side.
From Eq. (4.26), the plastic strain increment becomes

tr
Ae = I _ 6.5556 x 1074
P B+ H

Therefore, the stress and plastic strain are updated as

0"t =g —sgn("o)EAe, = —268.9MPa

n+l _ _n _ —4
e, =¢,+ Aap = 7.5556 x 10



Below is the MATLAB program that solves for the problem:
%

% P4.4 Elastoplastic bar (isotropic hardening)

%

delE=-0.003; nS=200; nA=0; nep=1E-4;

mp=[2E5, 0, 2.5E4, 250];

[Snew, Anew, epnew]=combHard1lD(mp,delE,nS,nA,nep)

P4.5 Repeat Problem P4.4 using the kinematic hardening model. For back stress, use
a"=2.5MPa.

Solution:
(a) At a given stress ¢" = 200MPa and back stress a" = 2.5MPa, the trial shifted
stress is

n" =o" —a" =197.5MPa

Since n" < oy, the material is in the elastic state.
(b) For given strain increment, the trial stress can be obtained as

Ao = EAe = —600MPa, ¢ = 0" + Ao = —400MPa

Since " = ¢ —a" | =0, = 152.5 > 0, the material is yielded in the compression
side. From Eq. (4.41), the plastic strain increment becomes

tr
e = I _ 6.7778 x 10~*
P E+ H

Therefore, the stress, back stress and plastic strain are updated as

o' =g — sgn("n)EAe, = —264.4MPa
"t =g — sgn(”’n)HAsp = —14.444MPa

n+l1 __ _n _ —4
e, =¢,+ Aep = 7.7778 x 10

Below is the MATLAB program that solves for the problem:
%

% P4.5 Elastoplastic bar (kinematic hardening

%

delE=-0.003; nS=200; nA=0; nep=1E-4;

mp=[2E5, 1, 2.5E4, 250];

[Snew, Anew, epnew]=combHard1lD(mp,delE,nS,nA,nep)

P4.6 Repeat Problem 4.5 using the combined hardening model with 3 = 0.5.
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Solution:

(a) At a given stress ¢" = 200MPa, back stress " = 2.5MPa, and plastic strain
g, =1.0x 10, the trial shifted stress and the yield stress are

n" =o" —a" =197.5MPa
oy = oy + (1 - B)He) = 251.25MPa

Since n" < o, the material is in the elastic state.
(b) For given strain increment, the trial stress can be obtained as

Ao = EAe = —600MPa, o¢" = 0" + Ao = —400MPa

Since " =| " —a" | —oy = 151.25 > 0, the material is yielded in the compression
side. From Eq. (4.41), the plastic strain increment becomes

tr
Ae = I _ 6.2222 x 10~*
P E+ H

Therefore, the stress, back stress and plastic strain are updated as

0"t = "o —sgn("n)EAe, = —265.6MPa
o™t = "a —sgn("n)BHAe, = —5.9028MPa

n+l _ _n _ —4
e, =¢, + Aap = T7.2222 % 10

Below is the MATLAB program that solves for the problem:
%

% P4.6 Elastoplastic bar (combined hardening)

%

delE=-0.003; nS=200; nA=0; nep=1E-4;

mp=[2E5, 0.5, 2.5E4, 250];

[Snew, Anew, epnew]=combHardlD(mp,delE,nS,nA,nep)

P4.7 For the combined isotropic/kinematic hardening model, derive the expression of
plastic strain increment from the plastic consistency condition.

Solution:
The plastic consistency condition means that the yield function at the current time step,
t,.1, remains zero; that is,

n+1f: O'YZO

n+1 n+1
n| -

The following stress update formulas and yield stress are used for the plastic consistency
condition:

n+10_ — tro_ . Sgn(trn)EAap
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"la = "a + sgn("n)BHAe,
"o, = "o, 4+ (1— B)HAe,

By substituting the above 3 formulas into the plastic consistency condition,
The above consistency condition can be expanded in terms of plastic strain increment as

o — sgn(”n)EAep — o — sgn(”n)ﬁHAep‘ —("oy + (1= B)HAe,) =0
=0

= |"o— troz‘ — "oy —(E+ H)Ae,

Note that the above formula works for both positive and negative trial stress. Therefore,
the plastic strain increment can be obtained as

tr
Ae = !
P E4+ H

Note that the formula for plastic strain increment is identical to that of isotropic
hardening in Eq. (4.26) and kinematic hardening in Eq. (4.41).

P4.8 An elastoplastic bar is clamped at the left end, and variable loads are applied at
the right end, as shown in the table. Plot the stress-strain curve by changing the applied
forces by 5kN increments. Assume the following material properties with isotropic
hardening: £ = 7T0GPa, H = 10GPa, o, = 250MPa. The length of the bar is L = 1m,
and the cross-sectional areais A = 1.0x10 'm?.

Load step 1 2 3 4
Force (kN) 30 20 35 20
Solution:

Since the given condition is applied force at the tip, the convergence iteration must be
performed to find equilibrium. Below is the MATLAB program that solves for the
problem:

%
% P4.8 Variable loadings
%
E=70000; H=10000;Et=1000; sYield=250;
mp = [E, 0, H, sYield];
Et=E*H/(E+H);
nS=0; nep=0; nA=0;
A = 100; L = 1000;
tol = 1.0E-5; u = 0; i1ter=0; Res=0;
Force = 1000*[5:5:30 25 20 25 30 35 30 25 20];
N = size(Force",1);
X=zeros(N,1);Y=zeros(N,1);
fprintf("\nstep iter u S ep Residual ") ;
fprintf("\n %3d %3d %7.4F %7.3f %8.6F %10.3e",i,iter,u,nS,nep,Res);
for i=1:N
P = Force(i); iter = 0;
Res = P - nS*A;
conv = Res™2/(1+P"2);



du=0;
while conv > tol && iter < 20
Eep = E; if epnew>nep; Eep = Et; end
delu = Res / (Eep*A/L);
du = du + delu;
delE = du 7/ L;
[Snew, Anew, epnew]=combHardlD(mp,delE,nS,nA,nep);
Res = P - Snew*A;
conv = Res™2/(1+P"2);
iter iter + 1;
end
u=u+du;
nS = Snew; nep epnew;
X(1) = u; YD) ns;
fprintf("\n %3d %3d %7.4Ff %7.3F %8.6F %10.3e",i,iter,u,nS,nep,Res);
end
X=[0;X]1;Y=[0;Y];plot(X,Y);

350 T T

300~ 1

250+ 1

200+ 1

150+~ .

Stress (MPa)

100+~ .

50+ 1

% 5 10 15

Displacement (mm)

P4.9 An elastoplastic bar is clamped at the left end, and variable displacements are
applied at the right end, as shown in the table. Plot the stress-strain curve by changing the
tip displacement by Imm increments. Assume the following material properties with
isotropic hardening: £ = 70GPa, H = 10GPa, o, = 250MPa. The length of the bar is
L = 1m, and the cross-sectional area is A = 1.0x10 *m?.

Load step 1 2 3 4
Displacement (mm) 5.0 3.0 7.0 6.0
Solution:

Since the tip displacements are given, there is no need to perform convergence iteration.
At each step, displacement increment is calculated by the difference between current and
previous load increments. After that, the strain increment is calculated from the small
deformation assumption. The program combHard1D will calculate stress and plastic
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strain for the given strain increment. Below is the MATLAB program that solves for the
problem:

%

% P4.9 Variable displacement

%

E=70000; H=10000;Et=1000; sYield=250;
mp = [E, 0, H, sYield];
Et=E*H/(E+H);

nS=0; nep=0; nA=0;

A=100; L=1000;

tol = 1.0E-5; u=0; iter=0; Res=0;
disp=[0 1 2345434567 6];
N = size(disp”,1);
X=zeros(N,1);Y=zeros(N,1);

fprintf("\nstep u S ep);
fprintf("\n %3d %7.4F %7.3F %8.6F",i,u,nS,nep);
for i1=2:N

delu = disp(i) - disp(i-1);

delE = delu 7/ L;

[Snew, Anew, epnew]=combHardlD(mp, delE, nS, nA, nep);
nS = Snew; nep = epnew;

X(1) = disp(i); Y(i) = nS;

fprintf("\n %3d %7.4F %7.3F %8.6fF",i,u,nS,nep);
end
plot(X,Y);

300 T T T T T T

250+ 1

200+ 1

1501 1

Stress (MPa)

100 1

00 1 2 3 4 5 8 7

Displacement (mm)

P4.10 A force of P = 15 is applied to the two parallel bars in Example 4.2 and then
removed. Using combHard1D program, calculate tip displacement and residual stresses
for the two bars after unloading. Use 15 load increments for each loading and unloading
cycle. Plot stresses vs. tips displacement in the XY graph.

Solution:
Below is the MATLAB program to solve loading/unloading cycle for two parallel bars in
Example 4.2. After unloading, the tip displacement is © = 0.1227, and stresses are 0, =
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—4.091, 0, = 2.455. Since the area of bar2 is twice than that of barl, the stress o, is half

of o,.

%

% P4.10 Two-bar in parallel - unloading
%

E1=10000; Et1=1000; sYieldl=5;

E2=5000; Et2=500; sYield2=7.5;

mpl = [E1, O, E1*Etl/(E1-Etl), sYieldl];
mp2 = [E2, 1, E2*Et2/(E2-Et2), sYield?2];
nS1 = 0; nAl=0; nepl = 0; epnewl=0;
nS2 = 0; nA2=0; nep2 = 0; epnew2=0;

Al = 0.75; L1 = 100;
A2 = 1.25; L2 = 100;

tol = 1.0E-5; u = 0;

Force = [1:15 14:-1:0];

N = size(Force",1);

X=zeros(N,1);Yl=zeros(N,1);Y2=zeros(N,1);

fprintf("\nstep iter u S1 S2 epl ep2
fprintf("\n %3d %3d %7.4F %7.3F %7.3F %8.6F %8.6F %10.3e", ...

0,0,u,nS1,nS2,nepl,nep2,0);

for i=1:N

P = Force(i); iter = 0;

Res = P - nS1*Al - nS2*A2;

conv = Res™2/(1+P"2);

while conv > tol && iter < 20

Eepl = E1; if epnewl>nepl; Eepl = Etl; end
Eep2 = E2; if epnew2>nep2; Eep2 = Et2; end
delu = Res / (Eepl*Al/L1l + Eep2*A2/L2);

u=u + delu;
delE = delu /7 L1;
[Snewl, Anewl, epnewl]=combHardlD(mpl, delE, nS1, nAl, nepl);
[Snew2, Anew2, epnew2]=combHardlD(mp2, delE, nS2, nA2, nep2);
Res = P - Snewl*Al - Snew2*A2;
conv = Res™2/(1+P"2);
iter = iter + 1;
nS1 = Snewl; nepl epnewl; nAl Anewl;
nS2 = Snew2; nep2 = epnew2; nA2 = Anew2;
end
X(1) = u; Y1(i) = nS1l; Y2(i) = nS2;
fprintf("\n %3d %3d %7.4Ff %7.3F %7.3F %8.6F %8.6F %10.3e",...
i,iter,u,nS1,nS2,nepl,nep2,Res);

end
X=[0;X];Y1=[0;Y1];Y2=[0;Y2];plot(X,Y1,X,Y2);

Residual ") ;
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Stress

0 0.05 0.1 0.15 0.2 0.25
Displacement

P4.11 A force 12kN is gradually applied at the end of an elastoplastic bar. When the
yield stress of the material is 100MPa, calculate displacement at the tip. Use the
following material properties: £ = 100GPa and H = 10GPa. The cross-sectional areas
of the bars are A" = 1.0x10*m*and A® = 0.5x10 *m”.

@ ©, ®

,f";_> X
Solution:

Since the two bars are connected in parallel, the element forces of the two bars are the
same as the applied force at the tip. By considering the cross-sectional areas of the bars,
the stresses of the bars can be calculated by

Figure P4.11

o = £ 120MPa, o® = L 940MPa
AWM A®)

Since both bars are in the plastic state, it is possible to separate the entire deformation
into the initial yielding stage (at 0 = 100MPa) and followed by the elastoplastic state.
For barl, the elastic strain at the initial yielding stage can be calculated from

e =2 — 0,001
E

[

After that, the remaining Ao = 20MPa is in the elastoplastic stage:
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)
—0.0002, &0 =29 _ (002, &0 =04 ell) = 0.0022

p H €

1)
6(1) _ AO’

e

Thus the total strain becomes & = 0.001 + 0.0002 + 0.002 = 0.0032, and the
displacement at Node 2 becomes

Uy = 6(1)L0 = 0.32mm

For bar2, the strain at the initial yielding stage can be calculated from

e® = 7Y — 0,001
E

e

After that, the remaining Ao = 140MPa is in the elastoplastic stage:

Ac?
2 = 29

e

(2)
—0.0014, @ — AR 0.014, & =¢? 4+ =0.0154

D e

the total strain becomes ¢ = 0.001 + 0.0014 + 0.014 = 0.0164, and the displacement
at Node 3 becomes

Us = Uy + 5(2)L0 = 1.96mm

The same problem can be solved using combHardlD program with convergence
iteration. The following MATLAB program solves for the displacement and stress for the
two-bar problem:

%

% P4.11 Two-bar in serial

%

E=100000; H=10000; sYield=100;Et=E*H/ (E+H);

mp = [E, 0, H, sYield];

nS1 0; nAl1=0; nepl=0; epnewl=0; Eepl=E;

nS2 0; nA2=0; nep2=0; epnew2=0; Eep2=E;

Al = 100; L1 = 100; A2 = 50; L2 = 100;
1
F

tol -0OE-8; iter = 0; u = [0 0]"; F = [0 12000]";
Res - [NS1*A1-nS2*A2;nS2*A2];
conv = norm(Res)"2/(1+norm(F)"2);
fprintf("\n iter ul u2 S1 S2 epl ep2
Residual*);
fprintf("\n %3d %7.4F %7.4F %7.3F %7.3F %8.6F %8.6F %10.2e %10.2e", ...
iter,u(1l),u(2),nS1,nS2,nepl,nep2,Res);
while conv > tol && iter < 20
Kt = [Eepl*Al/L1+Eep2*A2/L2,-Eep2*A2/L2;-Eep2*A2/L2,Eep2*A2/1.2];
delu = Kt\Res;

u=u + delu;
delEl = delu(l) 7/ L1;
delE2 = (delu(2)-delu(l)) 7/ L2;

[Snewl, Anewl, epnewl]=combHardlD(mp, delEl, nS1, nAl, nepl);
[Snew2, Anew2, epnew2]=combHardlD(mp, delE2, nS2, nA2, nep2);
Eepl E; if epnewl>nepl; Eepl = Et; end

Eep2 E; if epnew2>nep2; Eep2 = Et; end

nS1 Snewl; nepl = epnewl; nAl=Anewl;

nS2 Snew2; nep2 = epnew2; nA2=Anew2;

Res F - [NS1*A1-nS2*A2;nS2*A2];

conv = norm(Res)"2/(1+norm(F)"2);
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iter = iter + 1;
fprintf("\n %3d %7.4F %7.4F %7.3F %7.3F %8.6F %8.6F %10.2e %1l0.2e", ...
iter,u(1),u(2),nS1,nS2,nepl,nep2,Res);
end

As shown in the output below, the Newton-Raphson iteration converges in the second
iteration.

iter ul u2 S1 S2 epl ep2 Residual

O 0.0000 0.0000 0.000 0.000 0.000000 0.000000 0.00e+000 1.20e+004
0.1200 0.3600 101.818 112.727 0.000182 0.001273 -4.55e+003 6.36e+003
0.3200 1.9600 120.000 240.000 0.002000 0.014000 0.00e+000 0.00e+000

1
2
|

P4.12 Two one-dimensional bars are connected serially as shown in the figure. At load
step n, barl was plastic and bar2 was elastic. At load step n+1, the increments of nodal
displacements are given as Au = [Aw,, Aw,, Au] = [0.0, —0.01, 0.0]. Calculate
stresses and plastic strains of both bars at load step n+1.

10, @ ®

f barl [ bar2 |

? L=100 | L=100 | _

A | | Figure P4.12

barl bar2

Young modulus (F) 10,000 5,000
Tangent modulus (£)) 1,000 500
Previous stress (¢") 6.0 7.4
Initial yield stress (o) 5.0 7.5
Plastic strain (¢,) 9E-4 0.0
Yield status Plastic Elastic
Hardening Isotropic Isotropic

Solution:
Barl: From the given nodal displacements, the strain of the element can be calculated by

Au, — Auy

Ae = =10

L
First, assume that the strain increment is purely elastic to obtain the following trial state:

o" = o" + EAe = 5.0, oy = a?, —I—HEZ = 6.0

Since the material is initially in the plastic state and the stress is positive at load step n,
the bar yielded in tension. However, since the incremental strain is negative, the bar is
under unloading. Thus, the material becomes elastic and



0" =0¢" =50, et = =9x107"

Bar2: From the given nodal displacements, the strain of the element can be calculated by

Ae = w - 10
L

First, assume that the strain increment is purely elastic to obtain the following trial state:
tr_ _n _ 0 L
o =" 4+ FEAe =17.9, O';’/—O'Y+HE;—7.5

Since 0" > oy , the material becomes plastic in this load increment. Since the element is
elastic at load step n, the ratio R needs to be calculated, which can be written as

tr

o

|40

n

R:l— 20.2

Thus, the updated stress and plastic strain become
0"t =¢" + RAc + E,(1— R)Ae = 7.54

gntl — ¢gn +i‘Ae‘ =7.2x107°
r » "1YH/E

P4.13 Write the expression of the rank-4 unit symmetric tensor and unit deviatoric
tensor in the 6 X6 matrix notation.

Solution:

The index of rank-2 tensor can be converted into a vector via [11 22 33 12 23 13]. From
the definition of I, = (6,6, + 6,0, ) /2, the matrix version of the fourth-order unit
symmetric tensor becomes

o O O O O =
o O O O = O
O O O = O O
O O O O O
O ©O O O O

o o o o O

N =

In addition, from the definition of rank-4 unit deviatoric tensor I,, =T — %1 ® 1, 1its

matrix version becomes
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O O O wlwhhw|
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P4.14 A solid shaft as shown in the figure is subjected to tensile force P and a torque T.
The force and torque are such that the normal stress o,, = ¢ and shear stress 7 = o. The
shear stress is along the circumference of the shaft. Using the von Mises criterion,
determine the values of o when the material yields first time. The yield stress from the
uniaxial tension test is 0.

X

X

A~
L~~~

e )\
v

Xs
Figure P4.14

Solution:

In the case of P, the stress component is fixed to be ;. In the case of T, the shear stress
component varies at different location on the boundary of the cross-section. For the
simplicity, let’s consider the case in which 7, = 0. Thus, the stress matrix and deviatoric
stress become

c o 0 %O’ o 0
c=|c 0 0|, s=|o —éa 0
0 0 O 0 0 —1s

The norm of deviatoric stress can be calculated by

il =it iviriri=of;

The yield criterion is

7=l By = B = iy 0

Thus, the first yielding starts when



P4.15 A plane stress plate is under biaxial stress state in which o,, = —o,, = 0. When
the applied load is proportional, determine o when the material yields first time. The

yield stress from the uniaxial tension test is 0.

Solution:
In the case of biaxial loading, the stress matrix and deviatoric stress become

c 0 O
o=s=|0 —oc 0
0O 0 O

The norm of deviatoric stress can be calculated by
s = o2
The yield criterion is

F=lell= iy =20 = fioy =0

Thus, the first yielding starts when

— |1
_

P4.16 A square is under proportional loading with shear stress 7, = 7,;, = 7. When the
effective plastic strain is e, = 0.1, calculate the value of shear stress. Consider three
different hardening models: (a) isotropic, (b) kinematic, and (¢) combined hardening with
8 = 0.5. Assume that the initial yield stress is 400MPa and the plastic modulus is H =
200MPa.

Solution:

Since the applied stress is proportional loading, it is expected that the material is in the
plastic phase, and all three models provide the same stress value. The difference occurs
only when the direction of loading changes. In the case of pure shear loading, the stress
and deviatoric stress become

Q

I

n

I
o a3 o
o o 2
o o o

Thus, the norm of the deviatoric stress becomes
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[s] = 27

(a) Isotropic hardening: from the definition of yield function,

s — \2(o0 + He,) = 27 — {[2(400 + 200 x 0.1) = 0
o =171.5MPa

(b) Kinematic hardening: from the definition of yield function,

_ _ 2.0 __
s = ol = {37 = 0

Note that Ac is parallel to m and the loading direction remains fixed, and thus, o is
parallel to s. In that case, the norm of the shifted stress can be written as
Hs — OLH = HSH — HOLH . Thus, the yield function can be rewritten as

o~ ol - iod = o] - ol - i = 27 ~ e, o =

r= %@(09 + He,) = 171.5MPa

(¢) Combined hardening: Similar to the kinematic hardening model, o is parallel to s.
Thus, the yield function can be written as

s~ o - 3] °+<1—B>Hep}
= [sl-llod = 3[o} + 0= pytie,
= 2T—\/EﬂH6 \/jay —\/7( — B)He
=0

Thus, the applied stress can be solved for

T =1.[2(0) + He,) = 171.5MPa

Note that all three models provide the same stress value. gy

P4.17 A pure shear deformation is applied to the square element as shown in the figure
such that 0,, = 0,, is only non-zero stress component. At load step n, the stress value
was 0,, = 950, and there was no plastic deformation. At load step n+1, incremental strain
Ae,, = Aeg,; = 0.005 is applied. Calculate stress components and effective plastic strain
at load step n+1. Use the following material properties: shear modulus 1 = 1,000,
plastic modulus H = 100, initial yield stress o, = 100.



Figure P4.17
- —X

Solution:

Since o, is only non-zero component, it is convenient to work with it as a scalar rather
than stress matrix. With given information of of, = 50 and Ag, = 0.005, the trial
state can be calculated as

olt = o}y + 2ule, = 60
The yield state can be tested using the yield function as

— 2ot = 200 — \[200 = 3.2032 > 0

Thus, the material becomes plastic in this load increment. The plastic consistency
parameter can be calculated by

f= Hntr

Ay=—T 000155
2p+2H

In addition, the deviatoric unit tensor for the trial state becomes

€
V2

S = O
o O =
o O O

Thus, only o,, will be updated due to plastic deformation. The updated stress and plastic
strain become

O = 0y9 _W

n+l __ _n 2 —
el = e 4[24 = 0.00127

p

Below is the MATLAB program that solves the above problem:
%

% P4.17 shear deformation of a square

%

lambda=1000; mu=1000;

mp = [lambda, mu, 0, 100, 100];
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Iden=[1 1100 0]";

deps=[0 0 0 0.01 O O]";

stressN=[0 0 0 50 0 0]";

alphaN=[0 0 0 O O 0]";

epN=0;

D=2*mu*eye(6) + lambda*lden*lden”;

D(4,4) = mu; D(5,5) = mu; D(6,6) = mu;

[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN)

P4.18 Displacements of a simple shear deformation in the figure can be expressed by v,
= kzx,, u, = 0. At load step n, £ = 0.016 and the material is elastic. At load step n+1,
Ak = 0.008. Calculate stress and plastic strain. Check if the updated state is on the yield

function; i.e., f(a"“,e;”H) = 0. Use the following material properties: shear modulus p
= 100, plastic modulus H = 10, initial yield stress o, = V12

Figure P4.18

Solution:

From the infinitesimal deformation assumption, the strain at load step n can be calculated
by

1
0 Sk

1
Ekz()

n

e" = = g5 = 0.008, Ag, = 0.004

Since €,, is only non-zero component, strain will be considered as a scalar in the
following calculations. For the given strain at load step n, the stress becomes

0 uk
uk 0

0 1.6
1.6 0

o" =s" =2ue =2ue = =

n __
, = 015 =16

Again, since o, is only non-zero component, stress will be considered as a scalar. For a
given increment Ae,,, the trial stress becomes

sih = s + 2ule = 2.4

The yield function can be used to check the status of the material, as



tr
812

— 200 = 2885 V8 = 0566 > 0

Thus, the material becomes plastic in this increment, yieldStatus = 1. The unit
deviatoric tensor and the plastic consistency parameter can be calculated by

f=|

N_ S _ 1 |0 24
‘Str 3.394|12.4 0
Ay = fo_ 05657 000737

C2u+2H 200+ 6.667

Using the unit deviatoric tensor and the plastic consistency parameter, the stress and the
effective plastic strain can be updated by

0 24
24 0

0 24
24 0

0 2.013
2.013 0

_0.5473
3.394

s"M = s —2uAYN =

p

n+l _ _n 2 _
ertl = en + [2Ay = 0.002234
After the plastic deformation, the yield surface is expanded by

n+1 0 n+1
K(e, ™) = oy + Hey™ = 3.4864

Thus, the yield function after update becomes

gn+1 H _ \/%’43@;“) —0

Thus, the updated state of the material is on the surface of the yield function.

Below is the MATLAB program that solves the above problem:
%

% P4.18 shear deformation of a square

%

lambda=100; mu=100;

mp = [lambda, mu, 0, 10, sqrt(12)];

Iden=[1 1 100 0]";

stressN=[0 0 0 0 O O]";

alphaN=[0 0 0 0 O O]":

epN=0;

D=2*mu*eye(6) + lambda*lden*lden”;

D(4,4) = mu; D(5,5) = mu; D(6,6) = mu;

deps=[0 0 0 0.016 0 0O]";

[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN);
stressN=stress; alphaN=alpha;epN=ep;

deps=[0 0 0 0.008 0 0]";

[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN)

f(Sn+1, ez—H) —

P4.19 At load step ¢,, a unit cube is under unaxial stress state with o, = 100MPa, and
all other stress components and plastic variables are zero. At load step ¢,,,, additional

shear stress is applied such that Ay, = 0.002. Determine stress, back stress, and
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effective plastic strain. Assume the following material properties: A = p = 100GPa, H
= 10GPa, o, = 100MPa, combined isotropic/kinematic hardening with 5 = 0.5.

Solution:
At load step ¢

.» the material reaches the initial yield stress. At load step tn+1, the trial stress
becomes

"e="c+D:Ae=[100 0 0 200 0 O]°

Since back stress is zero at load step t,, the deviatoric stress is the same with the shifted
stress as

'm="s="g —tr("o)l =[66.67 —33.33 —33.33 200 0 O]
From the shifted stress, the unit deviatoric tensor that is normal to the yield surface can
be obtained as

N:HZ—"H:W% —.1132 —.1132 6794 0 0]
M

Using the norm of the shifted stress, the yield function can be evaluated as

f =] - 208 = 2904 1002 = 212.7 > 0

It is clear that the material is in the plastic state. The plastic consistency parameter can be
calculated from

Using yand N, the stress, back stress, and effective plastic strain can be updated as

"o = "g — 29N = [53.4 233 233 60.1 0 O
o= "o+ 2BHAN =[777 —.389 —.389 2331 0 0O

1 _ 2. —4
e = e, + |2y = 8.405x 10

Below is the MATLAB program that solves for the above problem:

lambda=100000; mu=100000;

mp = [lambda, mu, 0.5, 10000, 100];

Iden=[1 1100 0]";

stressN=[100 0 0 0 O O]";

alphaN=[0 0 0 O O 0]";

epN=0;

D=2*mu*eye(6) + lambda*lden*lden”;

D(4,4) = mu; D(5,5) = mu; D(6,6) = mu;

deps=[0 0 0 0.002 O 0]";

[stress, alpha, ep]=combHard(mp,D,deps,stressN,alphaN,epN)
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P4.20 Using Abaqus perform a uniaxial tension test of a unit cube (C3D8) in X3-
direction. Assume elastoplastic material with linear isotropic hardening (E = 2.0ES, v =
0.3, oy = 200, H = 2.0E4). Displace at X3 = 1 surface is controlled as shown in the figure
with three steps. Use 10 increments in each step. Plot stress-strain curve for all 30
increments.

0.006f -~=====================

0.004t-------

0.001[/~----- .

R b E Figure P4.20

Solution:
The following program list shows the ABAQUS input file for the elastoplastic loading:
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*HEADING

MISES PLASTICITY/LINEAR ELASTICITY,
UNIAXTAL TENSION TEST, C3D8

*NODE ,NSET=ALLN

1,0.,0.,0.

2,1.,0.,0.

3,1.,1.,0.

4,0.,1.,0.

5,0.,0.,1.

6,1.,0.,1.

7,1.,1.,1.

8,0.,1.,1.
*ELEMENT , TYPE=C3D8,ELSET=ALLE
1,1,2,3,4,5,6,7,8

*SOLID
SECTION,ELSET=ALLE ,MATERIAL=ALLE
*MATERIAL ,NAME=ALLE
*ELASTIC

200.E3, .3

*PLASTIC

200.,0.

400.,.01

*BOUNDARY

1,PINNED

2,2

4,3
*STEP, INC=10
*STATIC.DIRECT

*BOUNDARY
7,3,,.001
5,3,,.001
6,3,,-001
8.,3,,.001

*EL PRINT,FREQ=1
S,

E,

EP,

*NODE PRINT
U,RF

*EL FILE,FREQ=1
S,

E,EP

*END STEP
*STEP, INC=10
*STATIC,DIRECT
1.,10.
*BOUNDARY
7,3,,-006
5,3,,-006
6,3,,-006
8,3,,-006

*EL PRINT,FREQ=1
S,

E,

EP,

*NODE PRINT
U,RF

*EL FILE,FREQ=1
S,

E,EP

*END STEP

The analysis results are shown in the following figure:

400

Stress
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P4.21 Calculate D,, and D™ for one-dimensional elastoplasticity problem using the von
Mises yield criterion and linear combined isotropic/kinematic hardening. Assume
material properties: (E, H, ag, B).

Solution:

(a) In one-dimensional problems, the lateral strains are ignored, and stress o and strain ¢
are scalar. In addition, there is no need to calculate deviatoric stress and strain. The yield
function becomes

flne,) =|o —a| = (o) + (1 - B)He,) <0

Note that the above yield function is slightly different from the multi-dimensional yield
function in Eq. (4.84) because equivalent stress and effective strain are not used. The
constitutive relation is 6 = F(¢ — &) with ¥ = é, = 7, and the hardening models are

a = (BHy

There is no difference between the plastic strain and effective plastic strain. From the
consistency condition:

f=EE—e)—da—(01—-pB)Hé, =0

The plastic consistency parameter can be calculated as

. Be
TTE1H
Thus,
G—E: Eer—pgl1- P |e— PH .
rro) Erm

Thus, the elastoplastic tangent modulus can be obtained as

_ EH
“ E+H

Note that the above D, is the same as the tangent modulus in Eq. (4.8).

(b) In numerical integration, the trial stress is obtained from
t'ro_ = "o + EA&, t'ra — na, t’re’ — ’ILe’

Using the property of Ae?” = Ae, = A, the plastic return mapping becomes

n+10_ — ”O’—EA’)/, n+1a — trOé—i-ﬂHA’y, n+16p — trep +A’Y

The yield function becomes



424

f<n+1777 'n+1€p> — t"'n — (E -+ BH)A’Y — (O')QV + (1 - ﬁ)H(tTep + A’)/)) =0

from which the plastic consistency parameter can be calculated by

tr

n

— (o) +(1—pB)H"e,)
(E+ H)

Ay =

For the consistent tangent stiffness, it is clear that N is fixed in one-dimensional
problems. The derivative of the plastic consistency parameter with respect to strain
increment becomes

0Ay E
0Ae E+H

Thus, the consistent tangent stiffness becomes

E? EH

DY = E — =
E+H E+H

Note that D"® = D, because in the case of one-dimensional case, the direction N is
fixed. [ ]

P4.22 In the saturated isotropic hardening model, the yield stress starts from initial value
of 0)9 and approaches oy° as the plastic strain increases.
5 ]
~
€p

Since the hardening model is nonlinear, it is required to have a local Newton-Raphson
method to find the plastic consistency parameter. Modify MATLAB program combHard
so that it can solve for the above saturated isotropic hardening model. Test the program
by solving the pure shear problem in P4.15. Assume the following material properties:
shear modulus 1 = 1,000, initial yield stress o, = 100, asymptotic yield stress o =
200, and asymptotic effective plastic strain e =0.05.

9] 0

K(e,) = oy + (o) —oy)|1 —exp

Solution:

The return-mapping algorithm will be similar to the linear isotropic hardening model
except for the yield function and the local Newton-Raphson method to find the plastic
consistency parameter.

1. Yield function

0 00

oy + (oy —ay)

al- 4

= 1—exp|—

)
=R |@mw
—,

2. Jacobian relation
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oo 0 ek
OF g, 2oy —ov)ly ol %
N S a

3. Update the plastic consistency parameter and effective plastic strain

k
VkH _ 'Yk + ek—H — 'n,ep + %’V

8f/877 P

k+1

4. Check convergence

If (| > fror) k= k + 1 and go to Step 1
If (k > kyux) stop with error message

Below is MATLAB program, combHardSat, which can solve for stress and effective
plastic strain from the saturated hardening model:

%

% Saturated isotropic hardening model

%

function [stress, ep]=combHardSat(mp,D,deps,stressN,epN)
% Inputs:

% mp = [lambda, mu, epinf, YO, Yinf];

% D = elastic stiffness matrix

% stressN = [sl1l1l, s22, s33, tl12, t23, t13];

%

Iden = [1 1100 0]";

two3 = 2/3; stwo3=sqrt(two3); %constants

mu=mp(2) ;epinf=mp(3);Y0=mp(4);Yinf=mp(5); %material properties
ftol = YO*1E-6; %tolerance for yield
stresstr = stressN + D*deps; %trial stress

11 = sum(stresstr(1:3)); %trace(sigmatr)

eta = stresstr - 11*lden/3; %deviatoric stress

etat = sqgrt(eta(1)”"2 + eta(2)"2 + eta(3)™2 ...
+ 2*(eta(4)™2 + eta(5)"2 + eta(6)"2));%norm of eta
fyld = etat - stwo3*(YO+(Yinf-YO)*(1-exp(-epN/epinf)))

if fyld < ftol %yield test
stress = stresstr; ep = epN; %trial states are final
return;
else
iter =0; gamma = 0; ep = epN;
while fyld > ftol %local N-R iteration

iter=iter+1;

if iter > 40; error("Fail to compute gamma®); end;

dfdg = 2*mu+two3*((Yinf-YO)*exp(-ep/epinf)/epinf)

gamma = gamma + fyld/dfdg %update plast cons param

ep = epN + stwo3*gamma;

fyld = etat -2*mu*gamma - stwo3*(YO+(Yinf-Y0)*(1-exp(-ep/epinf)))
end

end
N = eta/etat; %unit vector normal to f
stress = stresstr - 2*mu*gamma*N; %updated stress

Below is the MATLAB program that can solve for P4.15 with the saturated isotropic
hardening model:
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%

% P4.22 shear deformation of a square (saturated isotropic hardening)
%

lambda=1000; mu=1000;epinf=0.05;Y0=100;Yinf=200;
mp = [lambda, mu, epinf, YO, Yinf];

Iden=[1 1100 0]";

deps=[0 0 0 0.01 O O]";

stressN=[0 0 0 50 0 0]";

alphaN=[0 0 0 0 O 0O]";

epN=0;

D=2*mu*eye(6) + lambda*lden*lden”;

D(4,4) = mu; D(5,5) = mu; D(6,6) = mu;

[stress, ep]=combHardSat(mp,D,deps,stressN,epN)

The local Newton-Raphson converged after the second iteration.
Iteration 1: f = 3.2032, df/dvy = 3.33E3, v = 9.61E-4
Iteration 2: f= 0.01, df/dy = 3.31E3, v = 9.64E-4

Iteration 3: f = 9.77E-8

After convergence, the stress and effective plastic strain are updated to

"oy, =58.63, "o =7.87x107"

P4.23 An plane strain square undergoes the following elastic deformation:

T, =X +kX,, z,=X, z,=2X;

Using the linear relationship between principal Kirchhoff stress and logarithmic stretch,
find the Kirchhoff stress tensor when £ = 0.02. Use the following material properties: A

= pn = 100GPa.

Solution:

Since the cube is elastic, there is no need to separate elastic and plastic part of
deformation. Thus, the superscript ‘e’ will be omitted in the following derivation. For
given deformation, the deformation gradient and left Cauchy-Green deformation tensor

becomes
1 0.02 0 1.0004 0.02 0
F=/0 1 0, b=FF'=]| 0.02 1 0
0 0 1 0 0 1

The three eigenvalues and eigenvectors of b become
A =102 n'=[-0711 —0.704 0]

A, =0.98, n?=1[0.704 -0.711 0]
A =1, n* =10 0 1]
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Then, the logarithmic stretch can be obtained by

e={002 —0.02 0}

The stress-strain relation in the principal space, T/ = c-e, can be written as

3 1 1| 0.02 4
7 =11 3 1/{1-0.02}x10" ={-4!x10°Pa
1 1 3 0 0

Then, the Kirchhoff stress can be obtained using

; 0.04 4 0
T = ZTf’ni Qn' =| 4 —0.04 0|GPa
=1 0 0 0

P4.24 A history of biaxial loadings is applied to a Imm x Imm square, as shown in the
figure. The square is constrained in the Y-direction along the bottom edge and in the X-
direction along the left edge. The model is displaced in the X and Y directions at the right
and top edges by R = 2.5x10 "mm, respectively. Calculate o,,, 0,,, 0., and vonMises
stress at each load step. Use the following material properties: £ = 250GPa, v = 0.25,
oy = bMPa, and F,; = 50GPa.

Y
7 1[ay
m — AX
Y
7 X
‘ lm > Figure P4.24

Load step AX AY Description

1 R 0 First yield

2 R 0 Plastic flow

3 0 R Elastic unloading

4 0 R Plastic reloading
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5 —R 0 Plastic flow
6 —R 0 Plastic flow
7 0 —R Elastic unloading
8 0 —R Plastic flow

Solution:

The problem is modeled using one square element in ANSYS. Since the strain in Z-
direction is constrained, stress in Z-direction. Below is the table of stresses at each load
step.

Load step 0, T o, von Mises stress
1 7.50000 2.5 2.5 5.0
2 11.7 6.7 6.7 5.0
3 14.2 14.2 9.2 5.0
4 16.4 19.7 13.9 5.0
5 9.9 15.6 12.0 5.0
6 5.1 10.7 9.2 5.0
7 2.6 3.2 6.7 3.8
8 0.2 -3.0 2.8 5.0

Below is ANSYS script to model and solve the problem:

/COM,ANSYS MEDIA REL. 11.0 (10/27/2006) REF. VERIF. MANUAL: REL. 11.0
/VERIFY ,VMR0O49-PL1A-182

/TITLE, VMRO49-PL1A-182, 2D PLANE STRAIN PLASTICITY BENCHMARK

/COM, REFERENCE: NAFEMS REPORT-R0049

/PREP7

R = 2_5E-5
ET,1,182,,,
KEYOPT,1,3,2

MP,EX,1,250E3,
MP,NUXY,1,0.25,
TB8,B1S0,1,1, , ,
TBMODIF,2,1,5
TBMODIF,3,1,0.0
TB,HILL,1
TBDATA,1,1.0,1.0,1.0,1.0,1.0,1.0
NSEL,S,LOC, X
D,ALL,UX
NSEL,S,LOC,Y
D,ALL,UY
NSEL,S,LOC,Y,1.0
D,ALL,UY

FINISH

/SOLU

NLGEOM,ON
NSEL,S,LOC,X,1.0
D,ALL,UX,R



NSEL ,ALL
NSUBST,10,10,10,
OUTRES,ALL,5
SOLVE
NSEL,S,LOC,X,1.0
D,ALL,UX,2*R
NSEL ,ALL
NSUBST,10,10,10,
OUTRES,ALL,5
SOLVE
NSEL,S,LOC,Y,1.0
D,ALL,UY,R

NSEL ,ALL
NSUBST,10,10,10,
OUTRES,ALL,5
SOLVE
NSEL,S,LOC,Y,1.0
D,ALL,UY,2*R
NSEL ,ALL
NSUBST,10,10,10,
OUTRES,ALL,5
SOLVE
NSEL,S,LOC,X,1.0
D,ALL,UX,R

NSEL ,ALL
NSUBST,10,10,10,
OUTRES,ALL,5
SOLVE
NSEL,S,LOC,X,1.0
D,ALL,UX,0.0
NSEL ,ALL
NSUBST,10,10,10,
OUTRES,ALL,5
SOLVE
NSEL,S,LOC,Y,1.0
D,ALL,UY,R

NSEL ,ALL
NSUBST,10,10,10,
OUTRES,ALL,5
SOLVE
NSEL,S,LOC,Y,1.0
D,ALL,UY,0.0
NSEL ,ALL
NSUBST,10,10,10,
OUTRES,ALL,5
SOLVE

FINISH

/P0OST26
/GROPT,VIEW,0
/GTHK,CURVE, 1
/GROPT,FILL,OFF
/GRID,1
/GTHK,GRID, 1
/GROPT,CGRID, 1
/AXLAB, X, STEP
/AXLAB, Y ,STRESS
/GTHK,AXIS, 1
/GRTYP,0
/XRANGE, 0,8
/YRANGE, -10,25
ESOL,2,1,4,S,X,
ESOL,3,1,4,S,Y,
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*DIM, VALUEX, ARRAY, 8,1
*D0,JJ,1,8,1
*GET,VALUEX(JJ,1),VARI,2,RTIME, JJ
*ENDDO

R1=VALUEX(1,1)/7.500
R2=VALUEX(2,1)/11.666
R3=VALUEX(3,1)/14.166
R4=VALUEX(4,1)/16.418
R5=VALUEX(5,1)/9.927
R6=VALUEX(6,1)/5.134
R7=VALUEX(7,1)/2.635
R8=VALUEX(8,1)/1.218

*DIM,VALUEY,ARRAY, 8,1
*D0,JJ,1,8,1
*GET,VALUEY(JJ,1),VARI,3,RTIME, JJ
*ENDDO

R9=VALUEY(1,1)/2.500
R10=VALUEY(2,1)/6.666
R11=VALUEY(3,1)/14.166
R12=VALUEY(4,1)/19.669
R13=VALUEY(5,1)/15.622
R14=VALUEY(6,1)/10.745
R15=VALUEY(7,1)/3.245
R16=VALUEY(8,1)/(-3.715)

*DIM,VALUEZ,,ARRAY, 8,1
*D0,JJ,1,8,1
*GET,VALUEZ(JJ,1),VARI,4,RTIME,JJ
*ENDDO

R17=VALUEZ(1,1)/2.500
R18=VALUEZ(2,1)/6.666
R19=VALUEZ(3,1)/9.166
R20=VALUEZ(4,1)/13.912
R21=VALUEZ(5,1)/11.951
R22=VALUEZ(6,1)/9.120
R23=VALUEZ(7,1)/6.620
R24=VALUEZ(8,1)/3.521

*DIM, VALUEEF, ARRAY, 8,1
*D0,JJ,1,8,1
*GET,VALUEEF(JJ,1),VARI,5,RTIME, JJ
*ENDDO

R25=VALUEEF(1,1)/5.000
R26=VALUEEF(2,1)/5.000
R27=VALUEEF(3,1)/5.000
R28=VALUEEF(4,1)/5.000
R29=VALUEEF(5,1)/5.000
R30=VALUEEF(6,1)/5.000
R31=VALUEEF(7,1)/3.719
R32=VALUEEF(8,1)/5.000

*DIM,STEP,CHAR, 10
*DIM, TARGETX,CHAR, 10
*DIM, TARGETY,CHAR, 10
*DIM, TARGETZ,CHAR, 10
*DIM, TARGETEF,CHAR, 10
*DIM,RATIOX, ,8,1
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*DIM,RATIOY, ,8,1
*DIM,RATI0Z, ,8,1

*DIM,RATIOEF, ,8,1

STEP(1)="1.0","2.0","3.0","4.0","5.0","6.0","7.0","8.0"
TARGETX(1)="7.500","11.666","14.166","16.418","9.927","5.134","2.635","1.218"
TARGETY(1)="2.500","6.666","14.166","19.669","15.622","10.745" ,"3.245" ,"-3.715"
TARGETZ(1)="2.500","6.666",79.166",713.914","11.951","9.120","6.620","3.521"
TARGETEF(1)="5.000","5.000",*5.000","5.000",*5.000" ,*5.000" ,"3.719","5.000"
*VFILL,RATIOX,DATA,R1,R2,R3,R4,R5,R6,R7,R8
*VFILL,RATIOY,DATA,R9,R10,R11,R12,R13,R14,R15,R16
*VFILL,RATI0Z,DATA,R17,R18,R19,R20,R21,R22,,R23,R24
*VFILL,RATIOEF,DATA,R25,R26,R27 ,R28,R29,R30,R31,R32

/COM,

P/{cloJR— VMRO49-PL1A-182 RESULTS COMPARISON ——————————————

/COM,

/COM, vmr049-plila-182.jpeg RESULTS SHOULD MATCH RO049 NAFEMS MANUAL

/COM, GRAPH RESULTS ON PAGE 49, FIGURE 2.14(A). THE RESULTS

/COM, DISPLAYED ARE INCREMENTED FOR THIS PURPOSE.

/COM,

/COM,

/COM, ————— VMR0O49-PL1A-182 STRESS RESULTS IN X DIRECTION ---———-

/COM,

/COM, | STEP | TARGET | ANSYS | RATIO

/COM,

*VWRITE, STEP(1) , TARGETX(1) , VALUEX(1,1) ,RATIOX(1,1)

(1X,A8," ",1x,A8," ",F8.3," ",F8.3," %)

/COM,

/COM, —————- VMRO49-PL1A-182 STRESS RESULTS IN Y DIRECTION ---——--
/COM,

/COM, | STEP | TARGET | ANSYS | RATIO

/COM,

*WRITE, STEP(1) , TARGETY (1), VALUEY(1,1) ,RATIOY(1,1)
(1X,A8," ",1x,A8," ",F8.3," ",F8.3," %)

/COM,

/COM,

/COM, ————— VMR0O49-PL1A-182 STRESS RESULTS IN Z DIRECTION ---——--
/COM,

/COM, | STEP | TARGET | ANSYS | RATIO

/COM,

*WRITE, STEP(1) , TARGETZ(1) ,VALUEZ(1,1) ,RATI0Z(1,1)
(1X,A8," ",1x,A8," ",F8.3," ",F8.3," %)

/COM,

/COM,

/COM, ————— VMRO49-PL1A-182 EFFECTIVE STRESS RESULTS —-——---
/COM,

/COM, | STEP | TARGET | ANSYS | RATIO

/COM,

*WRITE, STEP(1) , TARGETEF(1) , VALUEEF(1,1) ,RATIOEF(1,1)
(1X,A8," ",1x,A8," ",F8.3," ",F8.3," %)

/COM,

/COM,

FINISH



