2.6. Exercise

P2.1 Find the roots of the following nonlinear vector equations using the Newton-

Raphson method:
+u, 3
P(u)z{u; u;l:{ }Ef.
u; + u, 9

Use the initial estimate u’ = {1, 5}" and convergence tolerance = 10~°. Discuss the
convergence rate.

Solution:
The Jacobian matrix and the residual term are defined first as

1 1
K :8—P:
r ou 2u1 2u,
3—u1—u2
R =f—Plu)= Lozt
9—u1 —u,
Iteration O;
0 1 0 1 0 -3
a’ = K’ = R’ = conv = 3.25
5% T 2 10 —-17
Iteration 1;
. |-1625] . [-0625) 1 1 .| 5266
Au = u = K’ = R’ =
—1.375 3.625 r —1.25 7.25 —4.531
Iteration 2;
, | 0533 o [-0092] 1 1 . 0.0
Au’ = u = K’ = R’ =
—0.533 3.092 T —0.184 6.184 —0.568
Iteration 3;
, |oos9] . [-0003] 1 1 . 0.0
Au’ = u = K’ = R’ =
—0.089 3.0003 r —0.0053 6.005 —0.016
Iteration 4;
Ay | 0:003 N U po_| 00
" T lo0003] " T30 T~ 10.0 6.0 = 1-0.00001

3-2
Below is the list of MATLAB programs that solve the nonlinear equations.

%
% P2.1 Newton-Raphson method
%

tol = 1.0e-5; 1iter = 0; c =0

u = [1; 5]; uold = u;

f=1[3; 9];

P = [u()+u(2); u()"2+u(2)"2];

R=*Ff-P;

conv= (R()"M2+R(2)"N2)/ (A+F(1)N2+F(2)"2);

fprintf("\n iter ul u2 conv c™):

fprintf("\n %3d %8.5F %8.5F %12.3e %7.5F",iter,u(l),u(2),conv,c);
while conv > tol && iter < 20

Kt = [1 1; 2*u(1) 2*u(2)];

delu = Kt\R;

u uold + delu;

P [u()+u2); u@)~2+u(2)"2];

R f - P;

conv= (R(M2+R(2)N2)/ (A+F(1)N2+F(2)"2);

c = abs(3-u(2))/abs(3-uold(2))"2;

iter = iter + 1;

uold = u;

fprintf("\n %3d %8.5F %8.5F %12.3e %7.5F",iter,u(1l),u(2),conv,c);
end

The following table shows the convergence history of the Newton-Raphson method. Note
that the residual reduction is approximately quadratic, and the parameter ¢ converges to a
constant. Thus, the convergence rate is two.

Iteration Up U conv c
0 1.0000 5.0000 3.275E+00 0.000
1 —0.6250 3.6250 2.256E—-01 0.156
2 —0.0919 3.0919 3.550E-03 0.235
3 —0.0027 3.0027 2.790E—06 0.314
4 —0.0000 3.0000 2.171E-12 0.333
5 —0.0000 3.0000 1.324E-24 0.333

P2.2 Using the modified Newton-Raphson method, solve the nonlinear equations in
P2.1. Compare the convergence rate with the Newton-Raphson method.

Solution:
In the modified Newton-Raphson method, a constant Jacobian matrix is used for all
iterations. Below is the list of MATLAB programs for solving the problem.

%
% P2.2 Modified Newton-Raphson method
ol = 1.0e-5; iter

1 0; c = 0;
= [1; 5];: uold

u;

[3; 91;
[u(+u(2); u@)*2+u(2)"2];

U= ==X

3-3

R=*Ff-P;
conv= (R("N2+R(2)"2)/ (1+F(1)"N2+F(2)"2);
Kt = [1 1; 2*u(1) 2*u(2)]:;
fprintf("\n iter ul u2 conv c");
fprintf("\n %3d %8.5F %8.5F %12.3e %7.5F",iter,u(l),u(2),conv,c);
while conv > tol && iter < 20
delu = Kt\R;

u uold + delu;

P = [u()+u(2); u()"2+u(2)"2];

R f - P;

conv= (R()"N2+R(2)"2)/ (A+F(A)N2+F(2)"2);

c = abs(3-u(2))/abs(3-uold(2))"2;

iter = iter + 1;

uold = u;

fprintf("\n %3d %8.5F %8.5F %12.3e %7.5F",iter,u(l),u(2),conv,c);
end
fprintf("\n");

The following table shows the convergence history of the modified Newton-Raphson
method. Note that the rate of residual reduction is slower than that of the standard
Newton-Raphson method, and the parameter ¢ does not converges to a constant.

Iteration Uy U, conv c
0 1.0000 5.0000 3.275E+00 0.000
1 —0.6250 3.6250 2.256E—-01 0.156
2 —0.0586 3.0586 1.412E-03 0.150
3 —0.0138 3.0138 7.592E—-05 4,017
4 —0.0034 3.0034 4.584E—06 17.879
5 —0.0009 3.0009 2.840E—-07 73.280

P2.3 Using the Broyden method, solve the nonlinear equations in P2.1. Compare the
convergence rate with the Newton-Raphson method.

Solution:

The Broyden method uses the exact Jacobian at the first iteration, and progressively
update it at every iteration using the increments of solution and increments of residuals.
Below is the list of MATLAB programs that solves the nonlinear equations.

%
% P2.3 Broyden method
%

tol = 1.0e-7; 1iter = 0; c =0
u = [1; 5]1; uold = u;
f=1[3; 9];

P = [u()+u(2); u()"2+u(2)"2];
R=P - F; Rold = R;

conv= (R()N2+R(2)"N2)/ (A+F(1)N2+F(2)"2);

Kt = [1 1; 2*u(1) 2*u(2)]:;
fprintf("\n iter ul u2 conv c’);
fprintf("\n %3d %8.5F %8.5F %12.3e %7.5F",iter,u(l),u(2),conv,c);
while conv > tol && iter < 20

delu = -Kt\R;

u uold + delu;

P [u()+u2); u@)~2+u(2)"2];

3-4

R=P - F;

conv= (R(M2+R(2)N2)/ (A+F(1)N2+F(2)"2);

c = abs(3-u(2))/abs(3-uold(2))"2;

delR = R - Rold;

Kt = Kt + (delR-Kt*delu)*delu®/norm(delu)”2;

uold = u; Rold = R;

iter = iter + 1;

fprintf("\n %3d %8.5F %8.5F %12.3e %7.5F",iter,u(l),u(2),conv,c);
end
fprintf("\n");

The following table shows the convergence history of the Broyden method. Note that the
rate of residual reduction is slower than that of the standard Newton-Raphson method,
and the parameter ¢ does not converges to a constant. However, the method performs a
little better than the modified Newton-Raphson method.

Iteration Uy U conv c
0 1.0000 5.0000 3.275E+00 0.000
1 —0.6250 3.6250 2.256E—-01 0.156
2 —0.0758 3.0758 2.387E—-03 0.194
3 —0.0128 3.0128 6.531E—-05 2.229
4 —0.0003 3.0003 3.897E-08 1.917

P2.4 Using the incremental force method, solve the equations in P2.1. Use five equal-
interval load steps.

Solution:
Below is the list of MATLAB programs for solving the problem.

%

% P2.4 Incremental force method
%

tol = 1.0e-5; u = [1; 5];

fprintf("\n inc ul u2 Tl 27);
for i1=1:5

f = 1*0.2*[3; 9];

P = [u()+u(2); u()"2+u(2)"2];

R=F-P;

conv= (RQ)"N2+R(2)"2)/ (A+F(A)N2+F(2)"2);

iter = 0;

while norm(R) > tol && iter < 20
Kt = [1 1; 2*u(1) 2*u(2)]:;
delu = Kt\R;
u =u + delu;
P = [u()+u(2); u()™2+u(2)"2];
R=*Ff-P;
conv= (R()"M2+R(2)"2)/ (A+F(1)N2+F(2)"2);
iter = iter + 1;
end
fprintf("\n %3d %8.5F %8.5F %8.5F %8.5F",i,u(1),u(2),f(1),f(2));
end
fprintf("\n");

3-5

The following table shows the convergence history of the incremental force method. Note
that the force terms increase regularly as they are inputs, while the displacement terms
are irregular.

Increment Uy U f f,
1 —0.6000 1.2000 0.6000 1.8000
2 —0.6000 1.8000 1.2000 3.6000
3 —0.4748 2.2748 1.8000 5.4000
4 —0.2697 2.6697 2.4000 7.2000
5 —0.0003 3.0000 3.0000 9.0000

P2.5 Consider a uniform bar with a constant Young’s modulus £ = 100MPa, cross-
sectional area A = 2x10 *m?, and a unit length L = 1m. The applied force F' = 10kN is
large enough such that the relation between displacement and strain is nonlinear:

2

e(u)

=—+
dz 2

_du | 1|du
dz

Using a single two-node bar element, calculate the displacement at the tip and strain of
the element. Assume stress-strain relation is linear and constant cross-sectional area and
length. Use an increment force method with ten equal force increments.

Hint: The virtual strain can be obtained through variation of the strain as

_da |, duda

ew)=—+—
dz dz dz

@ @—> F=10kN

e [=1m ———>

Solution:
For a bar element, the displacement is interpolated by

u(r) = N, (z)d, + N,(z)d, = Zd

2

Note that the boundary condition, d1 = 0, is applied. From the displacement-strain
relation, the strain is interpolated by

1

In the weak form of the bar requires the virtual strain e(u), which can be written in terms
of the virtual nodal displacement.

3-6

£(7) = 7 (d, + 1),

The relation between stress and strain is linear:

E .

The weak form of the nonlinear equation becomes

d

2

b E
fo =, + L)E(dj +2Ld)Adz = F

After integration, the nonlinear finite element equation can be obtained as

EA
E(dj +3Ld; +20d,)) = F

Below is the list of MATLAB programs that solves for the above nonlinear equation.
%

% P2.5 Nonlinear strain bar

%

fprintf("\n inc F u strain®);
tol = 1.e-5; u = 0;
for 1=1:10

strain = 0.5*%u”2 + u;

f =0.1%i;

iter = 0;

P = un3+3*un"2+2*u;

R=*Ff-P;

conv= R"2/(1+f"2);
while conv > tol && iter < 20
Kt = 3*u”2+6*u+2;
delu = R/Kt;
u=u + delu;
strain = 0.5%u”2 + u;
P = un"3+3*un2+2*u;
R=*Ff-P;
conv= R"2/(1+f"2);
iter = iter + 1;
end
fprintf("\n %3d %7.5F %7.5F %7.5F",i,f,u,strain);
end

The following table shows the force, displacement, and strain at each force increment.
When displacement is small (e.g., the first increment), the different between displacement
and strain is small, while the difference becomes large as displacement increases. This is
because of the nonlinear displacement-strain relation.

Increment Force (kN) Displacement Strain
1 1.0 0.0467 0.0478
2 2.0 0.0880 0.0919
3 3.0 0.1254 0.1333
4 4.0 0.1597 0.1725

3-7

5 5.0 0.1915 0.2098
6 6.0 0.2222 0.2469
7 7.0 0.2499 0.2812
8 8.0 0.2763 0.3144
9 9.0 0.3013 0.3467
10 10.0 0.3252 0.3781

P2.6 Solve Problem P2.5 using the secant method. Do not use the incremental force
method. Discuss about the convergence rate.

Solution:
For the derivation of nonlinear equation, refer to P2.5. Below is the list of MATLAB
programs that solve for the nonlinear equation.

%
% P2.6 Nonlinear strain bar (secant method)
%

tol = 1.0e-5; iter = 0;

u=0.0; uold = u; f=1;

P = u"3+3*un2+2*u; Pold = P;

R=Ff - P; conv= R"2/(1+f"2);

strain = 0.5*%u”2 + u;

fprintf("\n iter u strain conv®);

fprintf("\n %3d %7.5F %7.5F %12_3e",iter,u,strain,conv);
Ks = 3*u”2+6*u+2;
while conv > tol && iter < 20

delu = R/Ks;

u = uold + delu;

strain = 0.5%u”™2 + u;

P = un"3+3*un2+2*u;

R=Ff-P;

conv= R"2/(1+f"2);

Ks = (P - Pold)/(u - uold);

uold u;

Pold P;

iter = iter + 1;

fprintf("\n %3d %7.5F %7.5F %12.3e",iter,u,strain,conv);
end

The following table shows the convergence history. It converges in the fourth iteration.
The convergence criterion reduces rapidly, but not as fast as the Newton-Raphson
method.

Iteration Displacement Strain conv
0 0.0000 0.0000 5.000E-01
1 0.5000 0.6250 3.838E-01
2 0.2667 0.3022 2.746E—02
3 0.3160 0.3659 6.859E—04
4 0.3252 0.3781 2.241E—06

3-8

P2.7 Consider a uniform bar with cross-sectional area A = 1x10 *m?”and a unit length
L = 1m. The bar shows elasto-plastic material behavior as depicted in the figure. The
plastic deformation starts at yields stress o, = 400MPa. In the elastic region, the
Young’s modulus E = 200GPa, while in the plastic region, the tangent stiffness is £, =
20GPa. When a force F = 50kN is applied at the end, calculate tip displacement and
stress of the element using one bar element. Use 10 equal-interval force increments. Plot
the force-displacement curve. Assume displacement-strain relation is linear.

g
7
By

© D

Solution:
The discrete weak form of the bar element can be written as

_ L _
ar j; BToAdz = d°F

where d = [d,, d,)" is the vector of nodal displacements, d is the vector of virtual nodal
displacements, B* = [—1, 1]/L is the displacement-strain matrix, and F = [F,, F}]"
the vector of applied forces. In order to simplify the following steps, the essential
boundary condition can be applied in advance; i.e., d = El = 0. For simplicity of
notation, d = d, and F' = F, will be used in the following derivations. Then, the above
discrete weak form becomes a scalar equation. The residual now becomes

R=F- f o4 4
= R=F—-o(d A
Note that the residual is nothing but the equilibrium between external and internal forces:

P(d) = F. The nonlinearity comes from stress calculation. Initially, the stress increases
linearly with strain until it reaches the yield stress. The value of displacement at yield is

oL
u, =¢,L = = 0.002
Thus, the internal force term is determined based on the magnitude of displacement as

P(d) = ==d if d<d,

A
‘—(d —d,) otherwise

The Jacobian relation and stress calculation also have two branches as

3-9

FA :
KT(d):T if d<dY
E A
K, (d)= 2 otherwise
a(d):%d it d<d

E
o(d)=o0, + TT(d —d,) otherwise

Note that actually elasto-plastic material show much more complex behavior that the one
explained above. However, when the load is monotonically increasing, the above
formulas work. Below is the list of MATLAB program that solves the elasto-plastic bar

with ten increments.

%

% P2.7 Elasto-plastic bar

%

fprintf("\n inc F u stress”);

tol = 1.e-5; u = 0; uY = 0.002;

for 1=1:10
f = 1*5000;
iter = 0;
ifu<uypr
else P
R=F-P;
conv= R"N2/(1+f"2);
whille conv > tol && iter < 20

if u < uYy Kt = 2E7;

2E7*u;
2E7*uY + 2E6*(u-uY); end

else Kt = 2E6; end

delu = R/Kt;

u=u + delu;

if u < uy P = 2E7*u;

else P = 2E7*uY + 2E6*(u-uY); end
R=*Ff-P;

conv= R"2/(1+f"2);
iter = iter + 1;

end

if u < uY stress = 2El1*u;

else stress = 4E8 + 2E10*(u-uY); end
fprintf("\n %3d %8.1Ff %7.5F %10.3e",i1,f,u,stress);
end

The following table and figure show the force-displacement relation at each increment. It
is clear that plastic deformation starts at F = 40kN at which stress becomes 400MPa.
Since the stress-strain relation is linear in each increment, it only requires one iteration
per increment.

Increment Force (kN) Displacement Stress (MPa)
1 5.0 0.00025 50
2 10.0 0.00050 100
3 15.0 0.00075 150
4 20.0 0.00100 200
5 25.0 0.00125 250
6 30.0 0.00150 300

3-10

7 35.0 0.00175 350
8 40.0 0.00200 400
9 45.0 0.00450 450
10 50.0 0.00700 500

5x 104

4,

3,

L.

2 L

1 L

% 1 2 3 4 5 6 7

u x10°

P2.8 Consider three nonlinear springs in the figure. The stiffness of each spring is
given by k£, = 500 + 50w, k, = 200 4+ 100w, and k, = 500 + 100w where w is the
elongation of the spring. Solve the displacements at Nodes 1 and 2 using the Newton-
Raphson method when F' = 100.

Solution:
The finite element matrix equation for the three nonlinear springs can be written as

HRE

By substituting the stiffness for all spring elements, the following nonlinear equations can
be obtained:

k o+ k 4k —k,
—k, k

3

500u” + 200u,u, — 100u? + 12004, — 500u, = 0
100u? — 200w,u, +100u? — 500w, + 500u, = 100

which is in the form of P(u) = F. The Jacobian matrix can be obtained by differentiating
the above relation

3-11

 _[100u, +200u, +1200 2004, —200u, — 500
T 1 2004, —200u, — 500 —200u, + 200u, + 500

Below is the list of MATLAB programs that solves for the equilibrium of the three
nonlinear springs

%
% P2.8 Three nonlinear springs
%

tol = 1.0e-5; 1iter = 0;

u = [0; 0]; uold = u;

f = [0; 100];

P = [60*u(1)"2+200*u(1)*u(2)-100*u(2)"2+1200*u(1)-500*u(2)
100*u(1)"2-200*u(1)*u(2)+100*u(2)"2-500*u(1)+500*u(2)];

R=*Ff-P;

conv= (R(L)"M2+R2)"N2)/ (L+F(L)N2+F(2)N2) ;

fprintf("\n iter ul u2 conv®);

fprintf("\n %3d %7.5F %7.5F %12.3e",iter,u(1l),u(2),conv);
while conv > tol && iter < 20
Kt = [100*u(1)+200*u(2)+1200 200*u(1)-200*u(2)-500
200*u(1)-200*u(2)-500 -200*u(1)+200*u(1)+500];
delu = Kt\R;
u = uold + delu;
P [50*u(1)”2+200*u(1)*u(2)-100*u(2)”2+1200*u(1)-500*u(2)
100*u(1)"2-200*u(1)*u(2)+100*u(2)"2-500*u(1)+500*u(2)];
R=*Ff-P;
conv= (R(1)"M2+R(2)"N2)/ (1+F(1)N2+F(2)N2);
uold = u;
iter = iter + 1;
fprintf("\n %3d %7.5F %7.5F %12_.3e",iter,u(l),u(2),conv);
end

The following table shows the convergence history of the Newton-Raphson method. Note
that the iteration converges at the third iteration.

Iteration Uz U, conv
0 0.0000 0.0000 9.999E-01
1 0.1429 0.3429 1.688E—03
2 0.1380 0.3296 2.722E—-05
3 0.1388 0.3316 5.390E—-07

P2.9 Consider a uniform bar in the figure. The stress-strain relation and displacement-
strain relation are linear. However, the Young’s modulus of the material varies according
to the strain.

_du

0 = Bue(u), e(u)=—,

du

Eu) =F [1——
(w) 0[(1x]

When one element is used to model the bar, formulate the nonlinear equation with the tip

displacement being unknown. Solve the tip displacement using the incremental force

method with ten equal-interval increments. Use E, = 1.0GPa, A = 10'm? and F =

3-12

25kN. Plot the force-displacement curve. Test what happens when F = 30kN, and
explain why.

b

@ @—> F=10kN

— [=1m ———>

Solution:

Since Node 1 is fixed for the element, it can be deleted. Thus, the weak form of the
nonlinear bar becomes a single DOF equation. By denoting d = d, and F' = F,, the
nonlinear equation becomes P(d) = F, where the internal force term is defined by

puy:d@A:Emmnzf%%d@—d@ﬂ

Note that since the length of the element is a unit and since a linear bar element is used,
displacement is identical to strain. Due to strain-dependent material properties, the
Newton-Raphson method is used to find the displacement d. The Jacobian becomes
dP E,A
=—=—_(1-—2d

The first derivative on the right-hand side can be calculated by differentiating the stress-
strain relation, and the second derivative from displacement-strain relation. Using these
relations, we have

_dP _ EA

K,=""=2"024+1
r=17= 1)

Below is the list of MATLAB programs that solves for the nonlinear modulus bar.

%
% P2.9 Nonlinear modulus bar
%

fprintf("\n inc iter F u stress”);
tol = 1.e-5; u = 0;
for 1=1:10

f = 1*2500;

iter = 0;

stress = 1E9*(1-u)*u;
P = stress*1E-4;
R=Ff-P;
conv= R"N2/(1+f"2);
while conv > tol && iter < 20
Kt = 1E5*(1-2*u);
delu = R/Kt;
u=u + delu;
stress = 1E9*(1-u)*u;
P = stress*1E-4;
R=Ff-P;

3-13

conv= R"2/(1+1"2);

iter = iter + 1;

end

fprintf("\n %3d %3d %7.1F %7.5F %12_.3e",i,iter,f,u,stress);
end

The following table and figure show the force-displacement relation during the force
increments. Each increment converges in the second iteration. Note that the slope of the
force-displacement curve becomes zero as the force approaches 25kN. In fact, the force
will decrease if displacement further increases. However, this cannot be solved using
Newton-Raphson method as the tangent stiffness becomes singular.

Increment Force (KN) Displacement Stress (MPa)
1 2.5 0.0257 25.0
2 5.0 0.0528 50.0
3 7.5 0.0817 75.0
4 10.0 0.1127 100.0
5 12.5 0.1464 125.0
6 15.0 0.1838 150.0
7 17.5 0.2261 175.0
8 20.0 0.2764 200.0
9 22.5 0.3416 224.9
10 25.0 0.4802 249.6

Force

0 0.1 0.2 0.3 0.4 0.5
Displacement

