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A Appendix: Proofs of intermediate results of Section 3

A.1 Proof of Lemma 1

Proof. We start to show that there is a one-to-one correspondence between the pos-
itive definite solutions of the the discrete algebraic Riccati Equation

P = FPFT −FPHT
w(HwPHT

w +Rw)
−1HwPFT +LLT , (14)

and of its counterpart in information form

M = (FM−1FT +LLT )−1 +HT
w R−1

w Hw. (15)

Let M be a positive definite solution of (15), and set P := FM−1FT +LLT . Note that
this matrix is positive definite, because it can be written as

P =
(
F L

)(M−1

I`

)(
F L

)T

and our controllability assumption (A1) implies that the matrix [F,L] has full row
rank. ( Indeed, If C = [L,FL,F2L, . . . ,Fn−1L] has rank n then CCT has also rank n,
but CCT = [F,L]B, where B is some matrix. Thus, the n×(n+`)−matrix [F,L] must
have full rank n. ) So we can write M = P−1 +HT

w R−1
w Hw. By the Woodbury matrix

identity we have M−1 = P−PHT
w(HwPHT

w +Rw)
−1HwP, and it is now clear that P

solves (14).
Conversely, if P is a positive solution of Eq (14), set M := P−1 +HT

w R−1
w Hw,

which is also a positive definite matrix. As above, we can write M−1 = P−
PHT

w(HwPHT
w +Rw)

−1HwP, and so we have P = FM−1FT +LLT . Finally, we have
M := P−1 +HT

w R−1
w Hw = (FM−1FT +LLT )−1 +HT

w R−1
w Hw, i.e. M solves (15).

Moreover, the two maps that we have defined above are inverses of each other,
between the set of positive definite solutions of the DARE and of the I-DARE. In-
deed, the map M 7→ FM−1FT +LLT can be rewritten as M 7→ (M−HT

w R−1
w Hw)

−1

when M is a solution of the I-DARE, which is clearly the inverse mapping of
P 7→ P−1 +HT

w R−1
w Hw.

Then, we can apply known results about the former Riccati equation (14): under
our assumption (A1) that (F,L) is controllable, there exists a positive semidefinite
solution to Eq. (14) if only if the pair (F,Hw) is detectable, and moreover this so-
lution is unique and positive definite (see e.g. Theorems 23 and 25 in [Sim06]). So
the proof of the lemma is complete.



2

A.2 Proof of Proposition 2

Let w∈W , X ∈X (w) and U be a matrix satisfying (i) and (ii) in the definition (10)
of X (w). Define M(w) := ∑

s
i=1 µi(wi)HT

i Hi. In particular,(
U +M(w)−FTUF FTUL

LTUF I`−LTUL

)
� 0.

Since (F,L) is controllable, there is a gain matrix N such that F + LN has all his
eigenvalues outside the unit disc of C, see [KSH00, Sections C3 and C4], and hence
every eigenvalue of Γ = (F +LN)−1 lies inside the open unit disc. Now, we obtain
another positive semidefinite matrix by a congruence operation:(

In −NT
)(U +M(w)−FTUF FTUL

LTUF I`−LTUL

)(
In
−N

)
� 0.

This gives:
U +M(w)+NT N− (F +LN)TU(F +LN)� 0.

Pre and post-multiplying by Γ T (resp. Γ ), we obtain

U � Γ
TUΓ +Qw,

where Qw := Γ T (M(w) +NT N)Γ � 0. Denote by U0 the unique solution of the
discrete-time Lyapunov equation U = Γ TUΓ +Qw, see [KSH00, Section D1]. We
have

U−U0 � Γ
T (U−U0)Γ � . . .� (Γ T )k(U−U0)Γ

k � . . . ,

and so U �U0 because Γ k converges to 0 as k→ ∞.
Now, observe that U0 has a closed-form expression that can be obtained by vec-

torizing the Lyapunov equation: vec(U0) = (In2 −Γ T ⊗Γ T )−1 vec(Qw), where ⊗
denotes the Kronecker product. Using this relation, we obtain ‖U0‖F ≤‖(In2 −Γ T ⊗Γ T )−1‖2

·‖Qw‖F , where ‖M‖F :=
√

trace(MMT ) denotes the Frobenius norm of M and
‖M‖2 is its spectral norm. By using the definition of Qw, we can thus conclude
that there exists a constant α ′ ≥ 0 such that ‖U‖F ≤ α ′(1+∑i µi(wi)‖Hi‖2

F). Fi-
nally, we obtain the bound of the proposition, ‖X‖2 ≤ α(1+∑i µi(wi)‖Hi‖2

2) for
some α ≥ 0, by using (i) in Eq. (10) and the fact that the Frobenius and spectral
norms are equivalent.

A.3 Proof of Proposition 3

Let w ∈W .We introduce the function g that maps S++
n onto Sn, defined by g(X) =

f (X ,w) = (FX−1FT +LLT )−1 +M(w)−X . Note that X ∈X +(w) if and only if
g(X)� 0.



3

The directional derivative of g in the direction of ∆ � 0 can be found by using
the formula dA−1

dt =−A−1 dA
dt A−1 and the chain rule:

Dg(M)[∆ ] := lim
ε→0

1
ε
(g(M+ ε∆)−g(M))

= (FM−1FT +LLT )−1FM−1
∆M−1FT (FM−1FT +LLT )−1−∆ .

Let X be a matrix in X +(w), such that g(X) 6= 0. We are going to show that there
exists a matrix X ′ in the neighborhood of X satisfying X ′ � X , X ′ 6= X , g(X ′) � 0.
This is equivalent to the following first order property (see e.g., [HUL93, Section
VI.5.1]):

∃∆ � 0 : ∆ 6= 0, ∀u ∈ Ker(g(X)), uT Dg(X)[∆ ]u≥ 0.

This condition is satisfied for ∆ := g(X) indeed, because the first term of Dg(X)[∆ ]
is a positive semidefinite matrix, and the term−uT ∆u vanishes for all u ∈ Ker(g(X)).
Hence, for all X0 ∈X +(w) we can define a sequence of matrices Xi ∈X +(w) sat-
isfying X0 � X1 � . . .Xn � . . . as follows: Xn+1 =Ψ(Xn), where

Ψ(X) = X +

(
argmax

t>0

{
t : g

(
X + tg(X)

)
� 0
})

g(X).

The sequence (Xi) is bounded (by Propositions 1 and 2) and hence it converges.
(Indeed, if it has two accumulation points X∗1 and X∗2 , then for all u ∈ Rn the non-
decreasing sequence uT Xiu converges to some value, which must be equal to both
uT X∗1 u and uT X∗2 u. Hence, uT (X∗1 −X∗2 )u = 0 for all u, which proves X∗1 = X∗2 .)
Denote this limit by X∗. The above discussion shows that g(X∗) = 0, otherwise X∗

cannot be a fixed point of Ψ . This means that X∗ is the unique positive definite so-
lution of the I-DARE (3). We have thus X0 � X∗ = M∞(w), and the proposition is
proved.
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