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Appendix

Here we want to show that the sample correlation coefficients ri and r j converge
in distribution to independent normally distributed random variables, with n → ∞.
Then taking these independent asymptotic distributions in our approximate formula
for p (Equation 2), we obtain independence of Zi, Z j (as functions of independent
variables generate independent variables).

We assume that the vectors Xi, Xj and Y come from normal distributions with

zero mean. We define the matrix Mn×3 =
[
XT

i ,XT
j ,Y

T
]
. M can be seen as n inde-

pendent samples from p-variate (p = 3) normal distribution with zero mean and the

covariance matrix Σ =

⎡
⎣

1 0 0
0 1 ρ
0 ρ 1

⎤
⎦ (since Xi is independent of Xj and Y , and Xj and Y

are correlated).
Then the matrix S = 1

n MT M is the sample covariance matrix, where the elements
s1,3 and s2,3 of this matrix represent the sample correlation coefficients ri and r j,
respectively.

The matrix nS has the Wishart distribution Wp=3(Σ ,n) with n degrees of freedom.
Asymptotic behaviour of this distribution was studied in many papers; here we use
the result given in [5] which states that for n→∞ and fixed p, the matrix 1√

n (S−nI)
(where I is the p× p identity matrix) converges in distribution to the random ma-
trix Z whose elements are normally and independently distributed. Hence ri and r j
converge in distribution to independent normally distributed random variables, for
n → ∞.
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