A Appendix: Proofs of intermediate results of Section 3

A.l Proof of Lemma 1

Proof. We start to show that there is a one-to-one correspondence between the pos-
itive definite solutions of the the discrete algebraic Riccati Equation

P=FPFT —FPHI (HyPHY + Ry) 'HyPFT + LLT, (14)
and of its counterpart in information form
M= (FM'FT +LLT) " + HIR, ' Hy,. (15)

Let M be a positive definite solution of (15), and set P := FM “1FT L+ LLT . Note that
this matrix is positive definite, because it can be written as

P=(F L) (Ml Ié) (F L)

and our controllability assumption (A1) implies that the matrix [F,L] has full row
rank. (Indeed, If C = [L,FL,F?L,...,F"~'L] has rank n then CCT has also rank n,
but CCT = [F,L]B, where B is some matrix. Thus, the n x (n+¢)—matrix [F, L] must
have full rank n. ) So we can write M = P~ + HI Ry,' H,. By the Woodbury matrix
identity we have M~! = P — PHI (HwPHY + Ry) " 'HyP, and it is now clear that P
solves (14).

Conversely, if P is a positive solution of Eq (14), set M := p! +H£R;1Hw,
which is also a positive definite matrix. As above, we can write M “l—p_
PHI (HywPHT + Ry )~ 'HyP, and so we have P = FM~'FT 4 LL” . Finally, we have
M:=P '+ HIR,'Hy = (FM~'FT + LLT)~' + HI R,'Hy, i.e. M solves (15).

Moreover, the two maps that we have defined above are inverses of each other,
between the set of positive definite solutions of the DARE and of the I-DARE. In-
deed, the map M +— FM~'FT + LLT can be rewritten as M — (M — HIR,,'Hy) !
when M is a solution of the I-DARE, which is clearly the inverse mapping of
P— P '+ HIR'H,.

Then, we can apply known results about the former Riccati equation (14): under
our assumption (A1) that (F,L) is controllable, there exists a positive semidefinite
solution to Eq. (14) if only if the pair (F,Hy) is detectable, and moreover this so-
lution is unique and positive definite (see e.g. Theorems 23 and 25 in [Sim06]). So
the proof of the lemma is complete.
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A.2 Proof of Proposition 2

Letwe #,X € 2 (w) and U be a matrix satisfying (i) and (if) in the definition (10)
of 2°(w). Define M(w) := Y3, w;(w;)HI H;. In particular,

U+M(w)—-FTUF FTUL -0
LTUF I,-LTuL ) =™

Since (F,L) is controllable, there is a gain matrix N such that F + LN has all his
eigenvalues outside the unit disc of C, see [KSHOO, Sections C3 and C4], and hence
every eigenvalue of I' = (F 4+ LN)~! lies inside the open unit disc. Now, we obtain
another positive semidefinite matrix by a congruence operation:

1\ (U+M(w)—F'UF F'UL I,
(I” N)( L"UF v )\ ~) =0

This gives:
U+M(w)+N'N—(F+LN)"U(F +LN) - 0.

Pre and post-multiplying by I'” (resp. I"), we obtain
U=TTUrI +Qy,

where Qy :=I'T(M(w) +NTN)I" = 0. Denote by Uy the unique solution of the
discrete-time Lyapunov equation U = I'TUT" + Qy, see [KSHO0, Section D1]. We
have

U-Uy=TTU-U)r=...<(I'"U-u)rk=...,

and so U =< U, because ['¥ converges to 0 as k — co.
Now, observe that Uy has a closed-form expression that can be obtained by vec-
torizing the Lyapunov equation: vec(Up) = (I, —I'T @ ')~ vec(Qy), where ®
denotes the Kronecker product. Using this relation, we obtain ||Up||r < ||(L. — T @)1,
||Owl|F, where |M||F := \/trace(MMT) denotes the Frobenius norm of M and
||M]||2 is its spectral norm. By using the definition of Qy, we can thus conclude
that there exists a constant o’ > 0 such that ||U||r < &'(1+ Y w;(w;)||H;||%). Fi-
nally, we obtain the bound of the proposition, || X|]> < a(1 + ¥, t:(w;)||H;||3) for
some ¢ > 0, by using (i) in Eq. (10) and the fact that the Frobenius and spectral
norms are equivalent.

A.3 Proof of Proposition 3

Let w € % .We introduce the function g that maps S,/ onto S, defined by g(X) =
f(X,w) = (FX 'FT +LLT)~' + M(w) — X. Note that X € 2 *(w) if and only if
g(X) = 0.



3

The directional derivative of g in the direction of A = 0 can be found by using

-1 .
the formula d‘zt =—A"! %A" and the chain rule:

1
Dg(M)[A] = lim  —(g(M +€A)—g(M))
e—=0 &
= (FM'FT 4 LT ' FM ' AM T FT(FMFT LT — A,

Let X be a matrix in 2 *(w), such that g(X) # 0. We are going to show that there
exists a matrix X’ in the neighborhood of X satisfying X’ = X, X' # X, g(X’) = 0.
This is equivalent to the following first order property (see e.g., [HUL93, Section
VLS.1]):

JA>0:A#0, Vu € Ker(g(X)), u’ Dg(X)[AJu > 0.

This condition is satisfied for A := g(X) indeed, because the first term of Dg(X)[A]
is a positive semidefinite matrix, and the term —u’ Au vanishes for all u € Ker(g(X)).
Hence, for all Xo € 2" (w) we can define a sequence of matrices X; € 2 (w) sat-
isfying Xp < X; <...X, < ... as follows: X,,+1 = ¥(X,,), where

P(X)=X+ (argrtnf(;( {t cg(X+1g(X)) = 0}) g(X).

The sequence (X;) is bounded (by Propositions 1 and 2) and hence it converges.
(Indeed, if it has two accumulation points X" and X3, then for all u € R” the non-
decreasing sequence u’ X;u converges to some value, which must be equal to both
u’X;u and u” X;u. Hence, u? (X; — X;)u = 0 for all u, which proves X; = X3.)
Denote this limit by X*. The above discussion shows that g(X*) = 0, otherwise X*
cannot be a fixed point of ¥. This means that X* is the unique positive definite so-
lution of the I-DARE (3). We have thus Xg < X* = M. (W), and the proposition is
proved.
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