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Abstract This report collects the solutions to the problems proposed in each chapter
of the book Quantum Communications by G.,ariolaro. Springer, May 2015

As a telecommunications engineer I know that in the real world the error proba-
bility is never zero. This is particularly true for the solutions of problems. I do hope
that, with the help of the readers, the error probability in the solutions will be con-
siderably reduced
cariolar@dei.unipd.it

The summary at April 26, 2015 is

Chapter 2 problems 16  solutions 16
Chapter 3 problems 19  solutions 19
Chapter 4 problems 11  solutions 10
Chapter 5 problems 20  solutions 20
Chapter 6 problems 11  solutions 11
Chapter 7 problems 13 solutions 13
Chapter 8 problems 5  solutions 5
Chapter 9 problems 1 solutions 1
Chapter 10 problems 1 solutions 1
Chapter 11 problems 31+1  solutions 30+1
Chapter 12 problems 9  solutions 9

e number of problems 138

e number of solutions 136



2 Solutions of problems of Chapter 2

Problems of Chapter 2

Problem 2.1 * [Sect. 2.4] A basis in H = C? is usually denoted by {|0),[1)}.
Write the standard basis and a nonorthogonal basis.

Solution The standard basis is

Another basis is

o=13]. m=|x|- (P1)

The two kets in (P1) are independent (check it), but not orthogonal. In fact

O/1) = [-1,2] [\%] — 3i4+2V3#£0.

Problem 2.2 xx [Sect.2.4] Animportant basis in 7 = C" is given by the columns
of the Discrete Fourier Transform (DFT) matrix of order n, given by

1 - -
|w,~>=—[1,W;l,W;2’,...,W,,’<" DY =01, a1 (E1)

Vn
where W, := exp(i27/n) is the nth root of 1. Prove that this basis is orthonormal.
Solution We recall that the standard inner product in C” is (see (2.23))

n—1
(V%) = x0¥0 4 Xn—1yp1 = Y XY -
r=0

Here, we have to evaluate the inner products (w;|w;). The rth entries of |w;) and
(wj| are respectively

1 —ri * 1 rj
xr=—7=W, ", yo=—7W,".

Jn
Hence

U ey U
wilwy) =~ 3 W™ =~ Y exp(idar(i— j)/n).
r=0 r=0

Next, using the property of the nth roots of 1

n—1
exp(i2nrk/n) =0 V integers k #0,
r=0

one gets
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_J1 i=j
<W1|WJ>_{O l?é]
Problem 2.3 x [Sect. 2.4] Find the Fourier coefficients of ket

1
y=1i|eC?
2

with respect to the orthonormal basis (E1).

Solution The Fourier coefficients with an orthonormal basis are given by (2.24a),
which now reads

ai:<wi|x>.
Then
1
1
ax=—=W3 Wi W i | k=012
V3 2
where W3 = exp(i27/3) = —% + % The explicit result is
L3+
e
. =12
t+i[-4+ 3] 2 -+ ] o
a = 7 = —<i[(6-30) + 3]
. 2 4
R it Bl ke I S
@ = 7 Z—[(3+61)—1 3} )

Problem 2.4 x [Sect. 2.4] Write the Fourier expansion (2.24) and (2.25) with a
general orthonormal basis B = {|b;)|i € I}.

Solution The compact form is

|x) = Zai|b,~) with a; = (bi|x) .

icl

Then it can also be written as

) = ) ({bilx)) (i)

il

Problem 2.5 * [Sect. 2.5] Prove that the image of an operator on J{ is a subspace
of J.
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Solution We have to prove that
im(A) :=AH = {A|x) | |x) € H}

has the properties of a vectors space as listed in Definition 2.1.

Problem 2.6 * [Sect.2.5] Define the 2D operator that inverts the entries of a ket
and write its matrix representation with respect to the standard basis.

Solution The relation |y) = A |x) of the operator is explicitly
Yu| _ |4 a2 | X1 _ (X2
Y2 ar axn| | X2 X1

o al ain o 0 1
A{“Ql 022}[1 0]'

This is also the matrix representation of the operator A with respect to the standard

basis B= { m ’ m} '

Problem 2.7 *x [Sect. 2.5] Find the matrix representation of the operator of the
previous problem with respect to the DFT basis.

Solution The DFT basis forn = 2 is

w-2 AL [A])

Hence, we apply (2.32), which reads

which implies that

aijw = (wilAlw;),  i,j=0,1.
Explicitly
1 0
apow =1, agw =1, ajow =0, aw=—1 — Apw= 0

Note that Tr[Ayy] = Tr[A] = 0, which confirms that the trace is independent of the
matrix representation.

Problem 2.8 * [Sect. 2.8] Classify the so called Pauli matrices

10 0 1 0 —i 10
el L R R R S T R I T

which have an important role in quantum computation.
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Solution All the Pauli matrices are both unitary and Hermitian.
Problem 2.9 « [Sect.2.9] Prove properties (2.65), (2.66) and (2.67) for a projec-
tor and its complement.

Solution To prove (2.65), let |s) = P|x) and |s*) = P.|y); bearing in mind that (s* | =
(y|P¥ and that P, is Hermitian, we get

(st|s) = (y|P.P|x), where P.P=(I—P)P=0.

Hence (2.65) follows. For the other properties, the proof is analogous.

Problem 2.10 « [Sect.2.9] Prove that projectors are positive semidefinite opera-
tors.

Solution See (2.63), Theorem 2.6 and Corollary 2.1.

Problem 2.11 x*x [Sect. 2.12] LetA be an arbitrary operator of the Hilbert space
J(. Show that the operator AA* is always positive semidefinite.

Hint: use diagonalization of A.

Solution Recalling the rules (AB)* = B*A* and (A*)* = A, we find

and therefore AA* is Hermitian. Let U AU* be the diagonalization of A. Then, the
diagonalization of A* is U A*U™ and the diagonalization of AA™ is

AA*=UAU*UA'U*=UAAU*.
Now, if ; is the ith eigenvalue in A, the corresponding eigenvalue in AA™ is LA =
|4:|> > 0 and the conclusion follow from Theorem 2.6.
Problem 2.12 x [Sect. 2.13] Prove that if A and B are Hermitian operators, also

A ® B is a Hermitian operator.

Solution From the Hermitian conditions, A* = A, B* = B, and from the second of
(2.103) one gets
(ARB)"=A"®@B*=AQ®B.

Problem 2.13 % [Sect. 2.13] Establish the compatibility conditions for the di-
mensions of the matrices in the mixed—product law (2.104).

Solution The compatibility conditions are concerned with the ordinary product. Let
my X ny be the dimension of A and so for the other matrices. Then, the compatibility
conditions on the right hand side are

mc =na, mp =ng .

These two conditions ensure the compatibility on the left hand side. In fact, on the
left hand side the conditions are
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Mcep = McMp = NAgB — NANB .

Problem 2.14 % [Sect. 2.13] Prove property (2.107) of the Kronecker product
and, more specifically, prove that, if A is an eigenvalue of A with eigenvector |A)
and U is an eigenvalue of B with eigenvector |it), then A1t is an eigenvalue of A ® B
with eigenvector [1) ® |1L).

Solution We have
ALY =AY, Blu) = ulw).
Hence, using definition (2.99) and property (2.98a), we get

(A®B)|(4) @ 1)) = (A]A)) @ (Blu) = (A|4)) © (u[p)) = Au(jA) @ [u)) -

Problem 2.15 xxx [Sect. 2.13] = The mixed—product law can be extended in
several ways. In particular,

(A} ®A2)(B) @ B,)(C; ®C2) = (A1B1C)) ® (A2B,Cs) . (E5)
Prove this relation using (2.104).
Solution The mixed—product law (2.104) gives
(A1 ®A2)(B1 ®By) = (A1B1) @ (A2B7) .
Then we right multiply both sides by C; ® C; to get
(A1 ®A2)(B1®B)(C1 ®Cy) = (A1B1) ® (A2B2)(C) @ Cy)

and (E5) follows after a new application of (2.104) at the right hand side.

Problem 2.16 *x [Sect. 2.13] Prove that, if the matrices A; and A; have respec-
tively the diagonalizations (see (2.87))

A ZUIAIUI*, A2=U2/\2U2*
then
A1 @Ay = (U1 @) (A1 @A) (U @ Uy) (E6)
is a diagonalization of A| ® A,.

Solution We have
Al R®RAy = (U]A]Ul*) ® (UzAzUZ*) .

Then, using the extension of the mixed-productlaw (see the previous problem), (E6)
follows at once.
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Problems of Chapter 3

Problem 3.1 * [Sect.3.3] Prove that the density operator p of a quantum system
in a pure state is idempotent.

Solution The density operator is given by p = |y)(y|. Then p? = |y)(y|y) (v,
where (y|y) = 1 and therefore p? = p.

Problem 3.2 *x*V [Sect. 3.3] Prove that, if and only if Tr[pz] = 1, the density
operator p represents a pure state.

Hint: see Proposition 3.5.

Solution Proposition 3.5 gives the expansion (reduced EID)
p =Y of |u)u
i=1

where 7 is the rank of p, 7 are the r positive eigenvalues of p, and |u;) are the
corresponding orthonormal eigenvectors. Then

2

p*> =Y o |u;)(uil

1~

and, considering that the 67 are probabilities (67 < 1),
Trlp’] =) o' <} o7 =Trlp] .
i i

The equality holds if and only if » =1 and (712 = 1, which gives

p = ot|ur)(ui| = [ur)(ui

and p represents a pure state.
Problem 3.3 xx [Sect. 3.3] Prove relation (3.9), which states that a cavity at
thermal equilibrium is in a mixed state.

Solution In fact,

p2=(1-e2 Y Y &€ lm){mln)n]

m=0n=0
=(1—¢)* ) &"|m){m|.
m=0

Hence ( )2
> 1—¢ 1—¢
Tr(p?) = (1—¢)* } & = =—
r(p?)=(1-¢)* ), s el g

m=0

< 1.
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Problem 3.4 xx [Sect. 3.3] Verify that the ensembles (3.10), (3.11) and (3.12)
give the same density operator.

Solution 1Tt is sufficient to use the definition (3.7). For the ensemble (3.12), where
the states are given by a linear combination of the orthonormal basis {|0),|1)}, see
Example 3.2.

Problem 3.5 « [Sect. 3.4]  Prove that if the temporal evolution operator U =
U (t,1p) is unitary, as assumed in Postulate 2, then the norm of the wave function
|w(#)) at time 7 remains of unit length, as it must be from Postulate 1. Moreover,
prove that the inner product of two wave functions |y;(¢)) and |y»(¢)) doesn’t
change during the evolution.

Solution 1t is sufficient to prove the statement concerning the wave functions, that
is,

(w1 () |ya(1)) = (wi(to)| w2 (1)) -

In fact, for both wave functions the evolution is

|V’i(t)>:U(tat0)|l’/i(t0)>’ i=12.

Then the inner product at time ¢ is given by

(Wi () w2(1)) =(w1 (1)U (2,20) U (t,70) |y (t0))
(w1 (o) 3¢ wa (t0))
(w1 (t0)|ya(to)) -

In particular, for |y (1)) = |ya(2)) = |w(z)) we get
(WOlw(0) = (y(o)w(n)) = 1.

Problem 3.6 * [Sect. 3.4] Suppose that Ag, Bs, and Cy are three observables in
the Schrodinger picture that verify the commutation condition

[As,Bs] =iCs .
Prove that in the Heisenberg picture the commutation condition becomes

[Ag(t),Bu(t)] =iCu(2) .

Solution The condition is explicitly
ASBS *BSAS = iCS .

Multiplying both sides from the left by U*(¢y,¢) and from the right by U (#y,t) one
gets
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U*(to,1) {AsBs — BsAs} U (to,1) =iU" (10,) Cs (to,1) U (to, 1)
where, considering that U*(fo,7)U (to,1) = I5¢, we can write
AsBs =AgU"(t9,1)U (to,t)Bs, BsAg = BsU"(t,1)U (to,t)As .

Finally, using (3.23), one obtains the result.

Problem 3.7 « [Sect. 3.5] Apply Postulate 3 to a quantum system “prepared” in
a pure state |y), when the measurement is obtained by a set of orthonormal mea-
surement vectors {|ao),|a1),...,lay—1)}. Find the probability distribution of the
measure m when the state of the system is one of the measurement vectors. Which is
the state of the system after the measurement?

Solution Suppose that the system is in the state |y) = |a;). Then, considering that
the vectors are orthonormal, application of (3.29) gives

Pin=dla = (ale)f ={ § 7]

which is a degenerate distribution. In other words, the measurement gives m = 1
with probability 1. Since the result of the measurement is m = 1, from (3.7) we get

W) = lar) -

removed problem(MQ37), identical to prolem(MQ30)

Problem 3.8 x [Sect. 3.6] Consider the Hermitian operator

I3 —i
H=-|"
21013
and use it as an observable for the measurement in a qubit system prepared in the
pure state

11
Evaluate the probability of the measurement outcome m and the post-measurement
states.

Solution The spectral decomposition theorem (Theorem 3.1) gives
H = ai|a;){ai| + az]az) as|

where a; and a, are the eigenvalues and the corresponding eigenvectors are
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== 7] e =]
a)) =— , a) = —= .
The corresponding projectors are

{1 i 1

that is, the ones given by (3.39). Then the probabilities of the outcome and the
post—-measurement states have been evaluated in Example 3.4. Note in particular
that, considering that the projectors are elementary, the post—-measurement states
are given by the eigenvectors of the observable H, according to (7BB27?).

Problem 3.9 xx [Sect. 3.6] Let A be an observable with spectrum c(A). Show
that the moments of a measurement m obtained with the observable when the state
|y) is set to an eigenket |a) of A, are simply given by

E[mla) =d",  k=1,2,... (E2)

where a € 6(A) is the eigenvalue corresponding to the eigenket |a). Explain why.

Solution For the proof it is sufficient to apply the eigenvalue equation
Ala) = ala), a€o(A)
which defines the eigenvalues and eigenvectors of A. For instance for k = 3 one gets
Elm’la] = (alA%]a) = (a|A’Ala)
where Ala) = a|a). Hence,

E[m’|a] = (a]A%|a) = a(a|A®|a)
and, repeating the substitution one gets E[m?|a] = a>.
To explain this result it is sufficient to evaluate the probability distribution of
random variable m in the case of elementary projectors. Using (3.29) with |y) =
|a) € o(A), one gets

1 a=a;

Pin=ild =l ={ 5 5%

which state that the outcome of the measurement is m = a with probability 1. In
practice this means that the outcome is always m = a and therefore the expectation
of mk is a*.

Problem 3.10 »*x [Sect. 3.9] Prove that the state after the second measurement
with the same projector system remains the same as the one in which the system

was after the first measurement, as stated by (3.55).

Solution In fact, it results
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T
W/(l.) t - IYz|1Vpost> _ H2|W> _ |w(i) t>
post,post \/17: \/ITZ pos

as soon as we bear in mind that p} = 1 and IT* =1II.

Problem 3.11 x* [Sect. 3.10] Consider the non normalized state
ly')y =2|00)+i]|01)+3]01)

of a two—qubit system with basis B = {|00),]01),[10),|11)} (here |00) stands for
|0) ®|0), etc.). Find the normalized form, (y|y) = 1, and prove that the two qubits
|y) are entangled.

Solution Considering that the basis is orthonormal, the square amplitude of |y’) is
(Wiy)=22+[i?+37 =14

and therefore the normalized form is

2 i 3
ly) = ﬁ|00)+ﬁ|01>+ﬁ|01).

Considering the general form (3.68) of non entangled qubits, now rewritten in the
form
[w1) @ |ya) = upvo|00) +uevi|01) 4+ u1vo|10) +uyvi|11)

we find that the non entanglement conditions should be
2 i 3

\/ﬁ’ upvy = \/ﬁ’ UIVO\/ﬁ; upvy =0

where the latter implies #; = 0 or vi = 0, which are incompatible with the other
conditions. Hence, the two qubits |y) are entangled.

In Chapter 10, Proposition 10.3, we shall see Schmidt’s decomposition, which
states in general whether a composite state is entangled or not.

upvo =

Problem 3.12 5 [Sect. 3.11]  Minimum factor from an arbitrary factor. Let 7
be an arbitrary k—factor of p. The reduced SVD of the n x k matrix ¥ has the form
(see Section2.12)

¥ =Y oilu)(vi| =UEZV* (3.1)
i=1

where the o; are the square roots of the r positive eigenvalues 67 of P — P,
X = diag {0y,...,0,}, |u;) and U are the same as in the EID of (3.81), |v;) are
orthonormal vectors of length k, and V = [|v}),...,|v,)]. Prove that a minimum or-
thonormal factor of p is given by

H=UZ. (3.2)
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Solution The expression of ‘f’o is the same as in Proposition 3.5. Note that from
(3.84), considering that V*V = I, (the r x r identity matrix), we find

PP —UEV'VEU =UEEU* =¥ =p

which represents the EID of p.

Problem 3.13 % * [Sect. 3.11]  Generation of all possible factors of a density
operator. Let ¥ be a k-factor of p, that is, Py — p, and let A be an arbitrary k X p
complex matrix that verifies the condition AA* = [;. Prove that

D="TA (3.3)

is a p—factor of p. This relation allows us to generate all the possible factors of a
given density operator

Solution In fact, ® ®* = WAA*P* = P¥* = p. Note that k > r = rank(p) =
rank(‘f’). Condition A* A = I states that the k columns a; of A are orthonormal vec-
tors, that is, they verify the condition aia;f =6 ;. Considering that a; € C?, we have
the condition p > k, because we cannot find in C” an orthonormal set {ay,...,a;}
with more than p components. R

Now we relate an arbitrary factor @ of p to a minimum orthonormal factor. A
k—factor @ of p is related to a minimum orthonormal factor ‘?’0 in the form

@ =T A, (3.4)
where Ag is an r X k matrix given by
Ag=229 (3.4a)

x? being the diagonal matrix formed by the positive eigenvalues of p. The matrix
Ag always verifies the condition AgAj = 1.

Considering that a minimum factor has the form (see (3.82)) ‘f’o =UZ, by left—
multiplying (3.4) by U™, we get

U*® =U*PAy=UUEAy=EZAg
and considering that % = U £, (3.4a) follows. Next, from (3.4a), considering that
b Pt = p and also ‘I’O‘I’O* =p, we get
AA = OO HE =L Y B HE

where ‘f{)* ‘f’o = X2 Hence, AA* =1,.

Relation (3.4) states that, starting from a minimum orthonormal factor ‘?’0, of
dimension n X r, one can generate all the possible factors of a given density operator
in the form ¥ = %Ao, where Ay is an arbitrary k X r matrix with orthonormal rows,
that is, with AgA§ = I,. Note that k > r may be arbitrarily large.
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Problem 3.14 5 [Sect. 3.11]  Find the reduced SVD of the factor (3.79) and
show that it gives the same minimum factor ¥ obtained with the EID of p.

Solution The factor given by (3.79) has rank r = 2 and its SVD is P = U ZV* with

1
2

i
U= 1
2

ot

= O
-

|
<
I
<S5
Sl ©
™M
\

1
2

Hence, we find

Sl

—

)

£
\
=
™M
I
&#|§4>|
PN 4>!~ Bl— —

+|

that is, the same minimum factor 'f’o obtained with the EID of p.

Problem 3.15 *x [Sect. 3.11] Consider the minimum factor given by (3.83) and
find a 2 x 3 matrix to generate a 3—factor. Also, apply the 2 x 8 matrix
1 { 11 1 1 1 11
A= ——= i . 3 in i
le

vy S1VI 1
—1e 4 —le4 ie4

D

el

-

to generate an 8—factor.

Solution A 2 x 3 matrix that verifies the condition AgAj = I is

b — — 43 8/3 8v/3
P =HpA= 1 —243V2 2432
4/3  8V/3 83
1 243v2 2432

43 8v/3 8v/3

The application of the 2 x 8 matrix A, which verifies the condition AA*™ = D,
gives the 8-factor

—1-a —e1—a i-a —-es3—a l—a —e3—a —i—a —ej1—a

éfL —l+4+ia ia—e_; i[l+d] ia—e3 l+ia ia—e; i[—1+d ia—e
82 | —l+a a—e i+a a—e_3 l4+a a—e3 —ita a—ep
—1-a —e1—a i-a —-e3—a l—a —e3—a —i—a —ej1—a

where a = /3 and ¢; = exp(i27k/4).
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Problem 3.16 xx [Sect. 3.12] Prove that the mixed state qubit expressed in the
form (3.90) represents a pure state if and only if the vector r has unit length. Under
this condition, from (3.90) find the corresponding pure state.

Solution The condition that p represents a pure state is (see Section3.3) Tr(p?) = 1.
Then, developing this expression, we have to find that || r|| = 1. An alternative proof
can be found using the following property of Pauli’s matrices

Tr(GiGj) =2 6ij

in (3.92). Rewriting (3.92) in the form

1 3
PZEZGG’, ro=1
i=0
we find
I ¢ 1 2,2, 2
Tr(p?) =Tr ZZZriGirjoj :§(1+rx+ry+rz):l.
i=0j=0

The pure state |y) = {Z

without restriction we can assume that a is real and positive. Then

al, . . la]>  ab* Ll 1+r, r—in
[a* b*]= , == _ _
b axb |b| 2 | re+iny 1—r;

} is found imposing the condition |y)(y| = p, where,

which gives
aP=04r).  BP=30-r). @ =l(n-in).
With a := u.e'% and b := uye'® we get

u,%:%(qurz), ug:%(lfrz)a “aubei(%i%):%(rx*iry)-

_la| Maei¢“ i, Uy
W)= 15| = [ueir | =€ | upeilor—o0

where the phasor e can be neglected. In conclusion we find

Hence

Ug

|l[/>= rX—iry with ua:\/%(l—i—rz).

2u,

Problem 3.17 xxV [Sect.3.12] Using Schmidt’s decomposition given in Chap-
ter 10, prove Proposition 3.6.
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Solution In Section 10.3 it is proved that a pure state is separable if and only if all
but one of the singular values of the coefficient matrix are zero. In the present case
the singular values are given by the eigenvalues of the matrix A = [;;], that is, the
solution of the equation

det(A —)J) = (), —all)(l —ax —apayy) .

The two solutions are A and 0 if and only if agya19 = agoaii-

Problem 3.18 [Sect. 3.12]  Prove Proposition 3.6 using the considerations of
Section 3.10.2, in particular relations (3.71) to (3.73).

Solution In the present case relation (3.71) is given by (3.94)

|w) = agpo |00) + ag; [01) + ayo|10) +ayp |11) (3.5)
while (3.72), which expresses |y) as the tensor product of two kets, becomes
[w) = (u]0) +u|1)) @ (vo|0) +vi|1)) = upvo|00) + v |01) 4+ 1y v | 10) +uyvy |11) .
Then the separability conditions are

apo = UuoVvo apr = Uovi, aip = uvo, app =uvy .
Combination of the first and the third and combination of the second with the fourth
give
up/ur = ago/a,  uo/ur = ap/an

which leads to the condition claimed by Proposition 3.6



16 Solutions of problems of Chapter 4

Problems of Chapter 4

Problem 4.1 ~ [Sect.4.2] A still image (photo) is quantized in 800 x 800 pixels
with 8 bit/pixel and transmitted by a digital channel with nominal rate Ry = 100
kbit/s. Find 1) the signal-to—quantization error Ay, 2) the error probability P, of the
digital channel such that the channel error is negligible, and 3) the time needed to
transmit the photo. Note that the global SNR is given by!

A=Ay/(1+PL%).

Solution We have:
L=2%=512, A,=5122=262144
and
H =800 x 800 x 8=2097152 bit >~ 2.1 Mbit .
It is reasonable to assume that

1
P=—L2=3810"
=15 3.810

in order that the channel error is negligible, that is, A ~ A,. Then the time needed
to transmit the photo is

T=H/Ry=209s~21s.

Problem 4.2 * [Sect. 4.2] A video signal (produced by a TV camera) has band-
width B =5 MHz. Evaluate the A/D conversion parameters that ensure A, = 60 dB,
and in particular the nominal rate of the digital channel.

Solution We have from (4.10)
Ag=2"~10° — m=10bit/symbol.

Then
Ry = 2B = 100 Mbit/s.

The error probability of the channel can be chosen as

| -7
P=—L“~1
‘710 0

in order that the channel error is negligible.

U A. J. Viterbi and J. K. Omura, Principles of digital communication and coding. Dover Books
on Electrical Engineering, 2009.
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Note that with the technique of compression (Mpeg) nowadays the rate for a good
TV channels is of a few Mbit/s.

Problem 4.3 x [Sect. 4.4] Write the expressions of a PAM optical power P(t),
with a generic fundamental pulse g(¢), valid for all r € R,

Solution Denoting by {A, = A(nT)} the sequence of symbols, in the PAM modula-
tion the contribution of the nth symbol is given by

An g(t—nT).
The PAM signal is given by all the contributions and therefore the expression is
given by
400
P(t):ZAng(t—nT), teR.
n—=oo
Note that in the interval (nT,nT + T| the power P(¢) is not equal to A, g(t —nT),

because in this interval we have also the contribution of the other pulses. Only when
the duration of the pulse g(#) is confined to the interval (0, 7] we find

P(t)=A, g(t—nT), nT <t<nT+T.

Problem 4.4 x [Sect. 4.4] The physical parameters of the transmitter (on space-
craft board) and of the receiver (at Earth, Goldstone, California) of NASA Voyager
2 mission at Jupiter (1979) were: radio frequency v = 8.9 GHz, transmitted power
Pr =24 W, transmitter’s antenna diameter dy = 3.660 m, receiver’s antenna diam-
eter dg = 64 m, noise temperature 7, = 14 K, accepted error probability P, = 1073,
Find the available rate. Repeat the evaluation at the optical frequency v = 300 THz.

Solution
Not available

Problem 4.5 *x [Sect.4.5] Consider a Poisson random variable n. Prove that the
variance 67 is equal to the mean m, = E[n] and that the characteristic function is
given by (4.23).

Solution We first evaluate the characteristic function
¥, (z) :=E[e"] = ) ek P[n =k
k=0

k
AN ~A

:kgoei”‘e’ T Z

(e54)

where we have found the expansion of e* with x = ¢'%. Then

an(Z) _ ef/\eeim _ eA(eizfl) )
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From the characteristic function we can evaluate the moments as

1 d"W(2)

my (k) = T dk Lo

Considering that
d¥(z)/dz = iAe 1 fw@mfzm&P”ﬂmﬁ¥A+q

we find
my(1)=A,  my(2)=A+A%.
Hence
2 =my(2)—mi(1)=A.

Problem 4.6 * [Sect. 4.5] In the the technique of single photon the following
probabilities are of interest

po=P[n=0], p1=Pn=1], p-1 =P[N>1].

Assuming that the arrival are described by a Poisson process, write and plot these
probabilities. Moreover, find the average of photon arrivals such that p»; = 0.1p;

Solution The probabilities are obtained from the Poisson distribution (4.21), that is,

A AF
—e AL

pn(k) Il

We have the expressions

Po :eiAa P1 :AeiA

p>1 =1 —e N —Ae A

which are illustrated in Fig.4.1. The relation p~; = 0.1p; is verified with A =
0.828863 and with such value of A we have

po=0.828863,  p; =0.155578,  p=P[n=2]=0.014601.

Thus we have the condition of a single photons in the 15.5% of cases, but in the
85.8% of cases we have no arrivals.

Problem 4.7 x [Sect.4.5] In the the technique of single photon the optical power
is attenuated to realize the condition of the arrival of a single photon in a given
symbol period (0,7]. Assuming that the power produced by the laser be Py = 10
mW at the frequency v = 300 THz and that the symbol period be T = 10 ns, find
the attenuation A needed to ensure that the condition of a single photon is verified
in the 15% of the symbol periods.

Solution The energy in a symbol period is Eg = PyT = 1073 1078 = 10! J. The
quantum at the frequency v = 300 THz has energy
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1.2 I A I I A T T T T T T

Po

04— —

P1
02— 1

0 \‘\\‘\\\‘\\ ‘\\ ‘\\ L L L

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
A

Fig. 4.1 Probabilities from a Poisson distribution as functions of the average number of arrivals
A.

hv =6.626 107300 10'* = 1.927810 "7 J .
Then the average number of photons is

Ao = B0 _ lo—™ —5.03069 10° phot iod
0= =Torgi0® ~ > photons per period .

In the previous problem we have seen that to have of a single photon in the 15% of
the symbol periods it is required an average number of photon A = 0.828863. Then
the needed attenuation is 6.06939 10° = 97.8314 dB.

Problem 4.8 xx [Sect. 4.6] Evaluate the mean m,(t) and the variance oy () of
a filtered Poisson process y(¢), where the intensity is constant A(¢#) = Ag, and the
fundamental pulse is rectangular of amplitude A in (0, 7].

Solution From the first Campbell’s theorem we have

my:/mo/jh(t)dz:zohor

and

ky(T) = %[th(t+r)h(t)dt = { éoh%T(l —|l/T) I;I E ; |

In particular the variance is

02 = ky(0) = Agh3 T .

Y
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Problem 4.9 xx* [Sect.4.6] Evaluate the mean my(t) and the variance o, (¢) of a
marked and filtered Poisson process y(¢), where the intensity is constant A (¢) = Ao,
the fundamental pulse is rectangular of amplitude % in (0,7], and the gains has
the geometrical distribution. pg(k) = (1 —a)a* , k =0,1,2,... with a a positive
constant.

Solution Since the intensity is constant, the process y(z) is stationary and the mean
and the variance are independent of 7. From the second Campbell’s theorem we find

~+oo
%:GM17hmm:GMMT

and N
o; :M/,m R (t)dt = Gy Agh3T .

For the evaluation of the gain G = E[g;] and of the quadratic gain G, = E[g?] we use
the moments’ theorem (see solution of Problem 4.5)

1 d“¥,(2)
ml’l(k) = l_k de =0 °
which gives
_d¥,(z)
=my(l) = —
G :=my(1) 1 R
d’%,(z)
Gz =My (2) = — dZQ =0 .

The characteristic function of the gains is

oo

W (2) ==E[e] = ) " Plg = 4]

k=0
> > k
:(1—a)Ze”kak:(l—a)Z(e”a)
k=0 k=0
(1 - a)—.
- Y "dza
Hence ( )
a a(l+a
Gil—a7 GQi(l—a)2

Problem 4.10 xx [Sect. 4.6] To illustrate the conditioning of a double stochastic
Poisson process we consider a (simplified) binary modulation, where the intensity of
the optical power in (0, T] has the values Ay = 10° photon/s with the symbol A = 0
and A; = 4 10° photon/s with the symbol A = 1. Find the conditioned distribution
of the number of arrivals

pn(klA = O)a pn(k|A = ])
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and the unconditioned distribution p,(k), assuming P[A=1]=1/4and T =1 ns.

Solution The conditioned distributions, where the intensity is given through the con-
dition of the symbol, are both Poisson distributions, and therefore specified by the
conditioned mean of the arrivals. These means are given by

Ag=XT=1010"°=1,

and then

Ag
pn(k|A=0) = o exp(—Ao),

A =MT=10410"=4

k
L

A
pu(klA = 1) = ZLexp(—A1)

The unconditional distribution is obtained by averaging the two conditioned distri-

butions

pn(k) = %pn(kM = 0) + %pn(k|A = ])

and is not a Poisson distribution.
The distributions are illustrated in Fig.4.2.

0.6

pn (k|A=0)

pn(klA=1)

0

0 2 4

Fig. 4.2 The conditioned distributions

Problem 4.11 x [Sect. 4.8]

variance G% s

6

10
k

0

> 4 6 8 0
: k

pn(k|A =0) and py(k|A = 1) (Poissonian) and the uncon-
ditioned distribution py (k) (non Poissonian). For semplicity the discrete plot is represented by a
continuous line.

Consider the counting of the random variable u =
n+n, where n is Poissonian with mean Nr and 7 is Gaussian with zero mean and

with # and 7 independent. Since u is continuous, for the counting we

have to introduce a rounding. Find the probability distribution of v = round(u).

Solution The probability density of u is given by (4.75)

Jula) = Z (k)

k=0

Introducing the rounding

oo

L a—k
Gn(P op )’

k
—ng N

pn(k) =e o
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1
0 I/l<lz 1
s s—7<u<s+;

v = round(u) = {

we find fors =0

where @(x) is the normalized Gaussian distribution. The probability distribution
depends on the same parameters, Ny = Ng and N = G%, as of Laguerre distribution.
The two distributions are similar but non coincident, as shown below for Ny, = 0.2
and N=0.2

0 0367953 0 0362165
1 0.343445 1 0311864
2 0.192001 2 0.181222
3 0.0714811 3 0.0865139
4 0.0198199 4 0.0364775
pu(k)=|5 000436307 |, pr(k)=|35 0.014087
6 0.00079474 6 0.00509043
7 0.000123301 7 0.00174521
8 0.0000166456 8 0.000573145
9 1.987673 10 9 0.000181567
102.126917 1077 | | 10 0.0000557765 |
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Problems of Chapter 5

Problem 5.1 xx [Sect. 5.2] Prove Proposition 5.1. Hint: see Section 3.6.4.

Solution From the orthogonality and the idempotency of the Py, we find that the Q;
are idempotent (projectors) and mutually orthogonal

Qz‘2:<z Pk)2: Y p=0

keM; keM;
Qin(k§iPk)(h§jPh)o it i

where we used the fact that M; "\M; =0 for i# j.

Problem 5.2 *x [Sect. 5.2] Optimization of decision element. In a post—
measurement decision the decision element is a mapping: M — A, where | M| >
|A|, in which every point k € M must be associated to a symbol a € A, thus cre-
ating a partition of M into K sets M,,a € A. For given a priori probabilities {g;}
and transition probabilities {p.(j|i)}, one can optimize the decision element with
the criterion to get the maximum correct decision probability. Prove the following
statement: Define the K decision functions as

fa(k) := qa pc(kla), , acAkeM.
Then, for each k € M, find the decision function f,(k) such that

fl)> fok),  Vb#a. (5.1)

The value of a that verifies (5.1) is placed in M. This defines the sets M, that
determine the optimum decision element.

Solution Recall that in a post-measurement decision we have two alphabets: the
source alphabet A = {0, 1,...,K — 1} and the measurement alphabet M = {1,...,K’'}.
The correct decision probability is given by (see (5.11) and (5.12))

P.:=P {Z:A} = Z qapclala)
acA

Y Y qup(kla)

acA keM,

and introducing the decision functions we have

Pc: Z Z fa(k)-

acA keM,

Clearly, if the partition M, is chosen as in (5.17), P, assumes its maximum value.
In the subsequent two problems we apply the above statement to two specific
cases.
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Problem 5.3 *x [Sect. 5.2] In a binary system {0, 1}, where the a priori prob-
abilities are ¢(0) = 1/3 and ¢(1) = 2/3, the quantum measurement, obtained with
a photon counting, gives two Poisson variables with averages Ag = E[m|A =0] =5
and A; = E[m|A = 1] = 20.

Apply the statement of the previous problem to find the optimum decision ele-
ment.

Solution The alphabet of the measurementis M = {0,1,2,...} and we have to find a
partition of M into two subsets Mg and M. In the binary case (5.17) can be written
as
folk) = fi(k)
and the values of k that verify this condition give the set M. The condition is ex-
plicitly
k k

le*/\oﬁ > ge*/\l At )

3 k! =3 k!
With Ag =5 and A; = 20 we get the table

k fo(k) f1(k)

0 0.00224598 1.3741024149590386 10~
1 0.0112299 2.748204829918077 108
2 0.0280748 2.748204829918077 10~
3 0.0467913 1.8321365532787178 10~°
4 0.0584891 9.16068276639359 10~°
5 0.0584891 0.0000366427

6 0.0487409 0.000122142

7 0.034815 0.000348978

8 0.0217593 0.000872446

9 0.0120885 0.00193877

10 0.00604426 0.00387754

11 0.00274739 0.00705007

12 0.00114475 0.0117501

13 0.000440287 0.0180771

14 0.000157245 0.0258244

15 0.0000524151 0.0344326

16 0.0000163797 0.0430407

17 4.817568453464372107° 0.0506361

18 1.338213459295659 10~° 0.0562624

19 3.521614366567524 1077 0.0592235

20 8.80403591641881 108 0.0592235

Thus we find that fy(k) > fi (k) fork=0,1,...,9,10 and therefore

Mo=1{0,1,...,9,10},  M;={11,12,13,...}.
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The correct decision probability is

oo

10
P.=Y folk)+ Y fi(k)=0.988227.
k=0 k=11

Problem 5.4 x [Sect. 5.2] As in the previous problem but with Ag = 0 and
Ay = 20 and equally likely symbols.

Solution In this case the conditional probability p.(k|0) degenerates as

1 k=0
pbo)={ 5 13

and we have
>1pe(k|1) k=0
<Ipe(kll)  k>1.

bpilo) {
Then the optimum decision criterion is obtained with
Mo = {0}, My ={1,2,...}.
After this choice the conditional error probabilities result in
P(0)=Pn>0[A=0]=0, P(l)=Pn=0A=1]=e"M
and the error probability is

1 1 1 _ _
Pe=5P(0) + 5P (1) = 5e7 1 ~ 1077
Note that with the transmission of the symbol A = 0 there is no error. An error
happens when, having transmitted A = 1, no photon is detected.
Problem 5.5 xx [Sect.5.3] Prove that the operators Q; and Qy, defined by (5.24),
form a projector system.

Solution The completeness Qo + Q1 = I has been imposed at the beginning of the
proof. Q) is actually a projector, because the |1;) are orthonormal, and therefore
Q% = Q1. Analogously, we prove the idempotency of Qy, and finally from (5.24) we
have Q) Qp = 0, that is, the orthogonality.

Problem 5.6 *x [Sect. 5.3] Consider the following density operators

46 13-37 —16 13+37i
1 | 13437 58 13-37 -32
208 | —16 134371 46 13—37i

13-37 —32 13437 58

Po =
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58 29-29i 8 21+29i
1 |294+29i 58 29-21i -8
208 8 29421 46 21-2li
20-29i -8 21+21i 46

p1=

First verify that they are “true” density operators. Then, assuming that they are the
states in a binary transmission with a priory probabilities go = 1/5 and ¢; = 4/5,
find the correct decision probability P..

Solution By inspection py and p; are Hermitian and have unitary trace. More com-
plicate is to check that they are PSD. To this end we can use Theorem 2.6 which
claims that a matrix is PSD if all its eigenvalues are nonnegative. The eigenvalues
of p; and py are respectively

{0.546889,0.444022,0.00750357,0.00158567}
{0.727465,0.259985,0.00924611,0.00330442}

and are all positive. Then we conclude that py and p; are “true” density operators.
To find the correct decision probability we apply (5.23)

Pc:q0+ Z Nk
>0

where 1), are the eigenvalues of the decision operator

186 103—-791 48 71+791

1 1034791 174 103—-471 O

D= _ -
DPI=40PO = Toa0 | 48 1034471 138 71—47i

71 —791 0 714+471 126
The eigenvalues are
{0.360242,0.236339,0.00442223,—0.00100303}
and then
P. =1/540.360242 + 0.236339 + 0.00442223 = 0.801003 .

Problem 5.7 xx [Sect. 5.4] Find the coefficients ag; and a;; in the expression of
the measurement vectors (5.35), assuming equally likely symbols and X real.

Solution The measurement vectors are given by

In0) = aool0) +ao1|n), 1) = aiolw) +anln)-

For the geometrical independence of |y) and |y;) we found (see (5.35))

qIX* qu )
=a + ; =ay | — +
1M0) = aoo (|Yo> F— |71>) Im) =an ( m +qolm m)
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Then, with equally likely symbols and X real we get

Im0) = avo  110)+ 5——Im) ), Im) = X o+ Im)
No) = aoo | % 2170717/1 ) Ny =an 2 Jr1?’0 "
where |
770,1=¥§A7 A=V1-X2.
Hence
X X
ay = z——ap = ————F—=—24a
01 o1 00 VX 00
X X

O M T T e

The nomalizations of |1y) and |n;) give

2[x*—1]
2 2
1=no)|" = == i
V1i—-X2-1
2 2 [Xz — 1] 2
L=[m)|" = == aii-
VvV1i-X4—1
Hence
V1i—-X2-1
ap=4ai] =\ ——— .
00 11 X2 1]
In conclusion, the measurement vectors are obtained from the states as

M=TA

where
apo Aol ]

r={w)ml, M=k lm), A= [am ai

The natrix A is given by

1-X21 VI-x2-1

A= {aoo 001} _ k] l+\/l —x2 | 2fx-
app darl X 1-X2-1 1-X2-1
14+/1-x2 2[x2-1] 2[x2 1

Note that with some algebra the result can be written in the form
a b
=

with (see (5.40))

27
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1 1 1
== +
TR VIR

1
b=-
’ 2

1 1

VITX] VI-X|

(5.2)

Problem 5.8 *x [Sect. 5.4] Write the fundamental relations of the geometrical
approach in matrix form, using the matrices

I ={w)In), U = [|uo), |u1)], M = [|to), [p)] -

Solution We want to check Proposition 5.2 and in particular the evaluation of the
optimal measurement matrix. We assume a real inner product

Y= (nln)
so that Mopy is given by (5.46).

Quantum states in terms of basis kets

The relations
[%) = cos 0 |ug) + sin Ou;)

[71) = cosO|ug) —sinOuy)
become

I'=BU with B=— [COS(G) cos(6) } .

sin(6) —sin(O)

The inverse of this relation is

e wi a1 sec(0) csc(0)
U=TB th B'=7 Lec(e) —csc(G)} . (5.3)

We now impose the orthonormality of the vector U, that is,
U'U=B"T"TB'=BVGB ' =1,

where G is the Gram matrix

e 1Y
o-rr-[1 7]

Explicitly we have

— [%(Y—H)secz(e) 0 ]

0 —3(Y —1)csc?(0)

which implies
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1 1
cos29:§(1+Y),sinZO:E(lfY).

Then we find

1 1
B! — [ﬁ\/lYJrl ﬂ\/llfY 1 .
VYL V2 /1Y

Measurement vectors in terms of basis kets

The relations .
o) = cos 9 o) + sin @)

1) = sin@|ug) — cos @ |uy)

become

_ - ._ |cos(¢) sin(¢)
M=UC with C:= [sin(d)) —cos(d))} .

Measurement vectors in terms of quantum states

We combine the previous relations to find
M=IB'C=TA (5.4)

thus we have

A=B'C

and explicitly

cos(9) n sin(9) sin(9) B cos(0)
V2VX T V2VT-X  V2VX+T V2V/1-X

cos(¢)  sin(9) cos(¢) . _sin(¢)
V2VX T V2VT—-X  V2VT—X  V2VX+1

Check of orthonormality of measurement vectors

In the formulation we have imposed the orthonormality of the measurement vectors
(see Fig.5.6). The condition is expressed as M*M = I,. Using the previous matrix
relations we have

M'M=AGA=C'BVGB 'C=1

where B~! is given by (5.3) and C by (5.4). The expression we obtained for
C*B~"'GB 'Cis a very long function of ¥ and ¢, but with Mathematica we
were able to simplify it to />, independently of Y and ¢.
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Introduction of the optimal ¢

We now introduce the angle ¢ giving the maximum correct decision probability,
stated by (5.42), that is,

1 V1-Y2
tan2¢ = tan20 = _—
90 — 41 9o—q Y
which gives
1 _
sin2¢ = —sin26 cos2¢ = 9 o529
R R
1 _
sin2¢ = —sin26 cos2¢ = 9 o529
R R

where R = /1 —4qoq1Y2. In (5.5) we have to express cos ¢ and sin¢ in terms of
t :=tan2¢, using the identities given in a footnote, that is,

sing =27120/1—1/\/1+12,  cos¢ =272\ /141//1+12

where (see (5.42))
1 V1-Y2

Q—q Y

sing =2""2/1—L,  cos¢p=2""2/T+L

t:=tan2¢ =

Hence

where
R=1+/1-4q0q:Y?, L=|(q0—q1)Y|/R.

Problem 5.9 xx [Sect. 5.7] From the following normalized states of { = c*

2 . | 2 L
Vi 2 2 Vi3 i
2 1 i _ 2 2
=2 =1 m=| 3 =] P wm=] P
vB i i° 35 yB
NS 2 2 NE] NE

form the density operators

3 1 3 1 1
p1= ZI%><% |+ ZIVz><Yz|, p2= 1IY3><73| + §|V4><}’4|§|V5><}’5|

and find their minimum factors y; and 7. Find also factorizations in which the ma-
trices 1 and 7 have the same dimensions.

Solution The density operators are explicitly
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61 61 61 37
208 208 208 208
3 ! 20 205 305 308
pl:1|’yl><’y]|+2|,y2><’y2|: 61 61 61 37
208 208 208 208
37 37 37 25
208 208 208 208
0.29327 0.29327 0.29327 0.17788
_10.29327 0.29327 0.29327 0.17788
©10.29327 0.29327 0.29327 0.17788
0.17788 0.17788 0.17788 0.12019
3 1 1
pZ:Z|73><73|+§|74><74|+§|75><75|
49 5L 47 Sl
2%8“ 25058 521?8 25058 0.23558 i0.24519  —0.22596 —i0.24519
_ | T208 208 208 ~ 208 | _ | —i0.24519  0.26442 10.24519 —0.26442
- 7% 7% % ;_(;é —0.22596 —i0.24519  0.23558 10.24519
sli 55 5l 55 10.24519 —0.26442 —i0.24519  0.26442
208 208 208 208

Consider now the factorizations p; = 7y ¥/ and p> = 7> %. The matrix p; has rank
hy =2 with positive eigenvalues 0.994517, 0.10458, therefore the factor y; becomes
4 x 2 and precisely

—0.54117 —0.02018
| 054117 —0.02018
"=1 054117 —0.02018

~0.33238  0.09857

The matrix p, has rank h; = 3 with positive eigenvalues 0.993343, 0.0980581,
0.0604505 therefore the factor > becomes 4 x 3 and precisely

—0.47937 —0.06934 0.03124

| 10.51339 0 10.02917
0.47937—-10 —0.069344i10 —0.03124
—i10.51339 0 —10.02917

These are minimum orthogonal factorizations, but the matrices y; and 9 have differ-
ent dimensions, respectively 4 x 2 and 4 x 3. To get the same dimensions, e.g.,4 X 3,
we can modify y; in the form 9 Z, where Z is a 2 x 3 matrix with ZZ* = I, (see

Section 3.11). A trivial solution is

giving

—0.54117
—0.54117
—0.54117
—0.33238

nzZ=

—0.02018

—0.02018

—0.02018
0.09857

o O OO
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Problem 5.10 * [Sect. 5.7] Consider the transition probabilities given by (5.72).
Prove that, if 7; is replaced by y;Z, with ZZ* = I;,, and u; by u;W, with WW* = I,
the transition probabilities do not change.

Solution The proof is immediate after use of the properties of the matrices Z and W.
In fact

p(l) = Tr(up; vy’ ) = Te(uWW u; vZZ" ) = Tr(uiug vy;) = p(ili)-

Problem 5.11 % [Sect. 5.7] Prove that the measurement matrix M defined by
(5.59) and its generalization to mixed states (5.69), allows us to express the resolu-
tion of the identity in the form MM* = I4.

Solution In a POVM system the resolution of the identity is imposed to the mea-
surement operators Q; as

K-1

Y 0i=15.

i=0

Now, for pure states the measurement matrix (5.59) gives
(ol
(] K-1 K-1
MM* = [|to), [pe), - k1)) | . =Y )l =Y Qi=Ix. (56)
: i=0 i=0
(k1]

For mixed states the measurement matrix (5.69) gives exactly the same results.

Problem 5.12 * [Sect. 5.12] Write the relations of Example 5.4 using the results
of Helstrom’s theory.

Solution We have found that with pure states the measurement vectors are given by

INo) = aol0) +boln), Im) =ai|w)+biln) -
Then we get the relation of the form (5.104a)
ap bo
M=T A o il =)l |2 3]
1x2 1x2 2x2 e

To get the form (5.104b) the explicit component of the kets would be requested (not
necessary in Helstrom’s theory).

Problem 5.13 xx [Sect. 5.13] Prove that the quantum states of H = ct

[17177151]1-

| =

[177151571]T7 |yl>:

| =

1) =
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verify the GUS for a binary transmission. Find the symmetry operator S, verify that
S has the properties of a symmetry operator and that |7y;) is obtained from |y) as

[v1) =S11)-

Solution The symmetry operator of a binary system is obtained from (5.122)

oM
(wlw)
where
w) = [r1) = %)
if the two states have inner product (¥|7;) real. In the present case the inner product
is (wln) = —%, and therefore we can apply the above formula, which gives
1000
12 _2
s=lp 117
0 21t
0-33 3

This matrix is unitary and gives S? = I, and therefore S is a correct symmetry
operator. Moreover

1000 1 1
01 2_2 -1 1
Sy =1, 3 1 2° = =In).
05 3 % 1 -1
o221 |- I
33 3

Problem 5.14 x [Sect. 5.13] Find the EID of the symmetry operator S of the
previous problem.

Solution We have

1000 1000
ol z2_2 0100

S= 303 3|, §= =1.
0§2§§ 0010
0-%22 1 0001

The EID oof S, say § = UsAg Ug, verifies the condition
§? = UsAsUsUsAs U = UsAZUS  —  A§=1.

Hence the eigenvalues A; of S are A; = &-1. The EID § = UsAg U gives explicitly
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(1)01? (1’ 1000
Us AV Ve A [0-100
0o L/ o | 0010
0L o 1 0001

i V6 V2

Problem 5.15 xx [Sect. 5.13] Prove that the two quantum states of H = ct

1 1
= [, —-1,1,—1]" = 1,1, -, 1"
|y0> 2[) s 1y ]a |71> 2[;; 1;]

verify the GUS for a binary transmission, and find the corresponding symmetry
operator S. Note that in this case the inner product X := (yy|7;) is complex.

Solution The state matrix and the Gram matrix are respectively

—11

In particular the inner product is
1 2
X:={pn)=—710+i)= ieﬂ(m)ﬂ
4 4
Thus, we have to modify |y;) as

%1) =4 |n) .

Then the state matrix and the Gram matrix become respectively

V2 —1+i
o L[ —V2-1+4i G_1[4 ﬁ}
T2v2 | V2 0+ | T 4|V2 4
—V2 —1+i

The vector |w) = |71) — | %) is

1

W =5 (—1=1) = V2,(=1 =) + V2, (1-1) = V2, (=1 =) + V2]

and from (5.122) we find that the symmetry operator results in
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2[-1+V7)] iv2 1+i iv2
o ~iv2 2 (1-1) {—1+ﬁ} 22
CAnV2 i ()[4 2 (1+i) [-1+2]
~iv2 2-V2Z  (1-i) [4%&} 2

Note that the eigenvalues of S are {—1,1,1,1}.

Problem 5.16 xx [Sect. 5.15] Prove that the evaluation of the transition probabil-
ities in the compressed space is based on the same formula as in the uncompressed
space. that is,

p(jli) = Te(IT; p;) = Te(T1;p;) -
Hint: Use orthonormality relationship U U, = I, where I, is the r x r identity ma-

trix.

Solution In fact, using the orthogonality U U, = I, and the cyclic property of the
trace, we find

Te(I1; p;) =Tr(U, IT; U; U, p; Uy)
(U5, U;) = TH(U; U TP

=Tr(I1;p;).

Problem 5.17 *x* [Sect.5.15] Prove Proposition 5.10, which states that the GUS
is preserved after a compression. Hint: Use orthonormality relationship U U, = I,
where [ is the r X r identity matrix.

Solution We have to prove that S is unitary and ¢ = I,. In fact, considering that
S = U,SU; and that, by assumption, S*S = I5¢, we find

Isc =U.S UUSU =U, S SU’

and reversing we get o
SS=UI3U,=UU, =1,.

Hence, S is unitary. Analogous is the proof that 5¢ = 1.
Problem 5.18 xx [Sect. 5.15] Consider the state matrix of H = C*

11

1] =
r-l 11
211 -1
-1 1

Find the compressor U and the compressed versions of the state matrix I" and of
the Gram operator 7.
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Solution The reduced SVD of I" results in

I =UAV*
where

0 1
1 1 1
10 3 0 S S

U, = jio, A=V V= ff]
V3 0 7 Vi V2
40
V3

Then the compressed dimension is » = 2, from C* to C2, and the compressor is

oL L L
Ur=|_ V3 V33
10 0 O
The compression of the state matrix gives
— _V3 3
I'=UT = 2o
2 2
The Gram operator results in
100 0
o L 11
r= LA
0 12 72
03 =23

and its compressed version is

3
T=U'TU, = |2
E

Problem 5.19 *x [Sect.5.15] Consider a binary transmission where the quantum
states are specified by the state matrix of the previous problem. Apply Helstrom
theory with go = 1/3 to find the probability of a correct decision P.. Then apply the
compression and evaluate P. from the compressed states.

Solution For the evaluation of P, with pure states it is sufficient to evaluate the
quadratic inner product I'> = |(y;|)|?. In fact from (5.33) we have

1
P=3 (1+\/1 —4qoq,F2) .

The quantum states are
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1 1

1|1 1|1
|'}/O>*§ 1 s |’yl>*_ -1

—1 1

\S)

and their inner product is (¥ |1) = —1/2. The probability of a correct decision P,

results in
/17
1 2
P.=—|1+-+—1] ~0.985913.

2

The compressed states are (see solution of Problem 5.18)

13 L 1[\3
m=5| V] m=3]Y
and have the same inner product as the uncompressed states, in agreement with the
general theory on quantum compression.

Problem 5.20 xx [Sect. 5.15] Consider the binary constellation of Problem 5.13,
where we determined the symmetry operator S. Find the compressor U;" showing in
particular that the compressed symmetry operator S is diagonal.

Solution The reduced EID of the state matrix

11-1 1
=311 4
-1 1
is I' = U,A,V* with
0 1
L0 3 4L
Ur= _\/io J A= 21 ) V= 1\/5\/121
V3 0 ViV
7 0

- O
S
sl
oS-
[E—'

The uncompressed symmetry operator found in the solution of Problem 5.13 is
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()

‘ WIoW— O
Wi
WINW—WIN O
W=l |

I

and the compressed version is

- e [-10
SU,SU,[O J.

Note that S is diagonal as stated in the general theory of compression.
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Problems of Chapter 6

Problem 6.1 [Sect. 6.2]  Prove that 7~'/2T'/2 does not yield, in general, the
identity I5¢, but the projector Py, = U,U;’. Only if r = K one actually produces the
identity Ig.

Solution From (6.13) we have
T2 = U, 5 Uy

and then

T\2TV2 — Uy, Uf =y
Note that U, is not a unitary matrix for r < K. If r = K it becomes unitary.
Problem 6.2 xx [Sect. 6.2] Consider the following state matrix of H = ct

1
2

o=
STESI

=

D=

1
2

D=
D=

Find the inverse square root G~'/2 and 7!/2 based on the two approaches: 1) the
Moore—Penrose pseudo inverse and 2) the reduced EID.

Solution The state matrix has rank » = 2. The Gram matrix is

1 -1
o4
2
and has rank 2 and therefore the pseudoinverse coincides with the ordinary inverse.
The EID G =U A U* is given by

I S 30
f?lv A:{21]-

U =
05

V2 V2

The inverse square root is simply obtained by evaluating the ordinary inverse square

root of A, that is,
ATI2 = [\/g 0 ]

0 V2
Then we get
RIS U U
G2 _pya-12y* — \{E %6\? ¢16
VARV ARV A:

The Gram operator is given by
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T=IT"=

S O OoOwm=

and has rank 2. Its EID T = U A U* is given by

9re ] i
V3 V2 V6 0500
U= 1 2| A=
~0 0 \/; 0000
2 0000
50 7

Now we have to evaluate the pseudoinverse by introducing the diagonal matrix

2000
A2 0 V200
0 000
0 000

to get

by

In this case A is regular and the passage to the pseudoinverse is not needed.
Finally note that 7~'/2T"/2 does not give the identity, but

10 0 0
i |0 % =% 3
AT =100 0

133113
03 -3 3

and we can check that 7-1/271/2 = UrU,.
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Problem 6.3 *x [Sect. 6.3] Consider the state matrix I" given by (6.31) of Ex-
ample 6.1. Check that the methods based on the EIDs of G and T give the same
transition probabilities as obtained with the SVD of I".

Solution The Gram matrix and the Gram operator are respectively

1 3
Gr*r{5 13}
21

13 9441 5 9—4i
.1 19-4i 13 9+4i 5
r=rr 26 5 9—4i 13 9+4i
9+4i 5 9—4i 13

The reduced EID of G is G = V, X2V, and gives

13
GP=G =y vy = 2 [5 _1] .

roor 12 |—-1 5
Then
2 0
_ 1 1—11+1
Moy =T G 2= —
opt 22| 0 2
1+11—1

The reduced EID of T is T = U,X2U; and gives

5 2431 -1 2-3i

i _ 1 /13 |2-3i 5 2+43i —1
T 2_pxlyr= L, ]2
Urz, U, 24V 2 | =1 2—-3i 5 2+43i

2431 —1 2-31 5

Then
2 0
_ 1 1—i1+41
My =T '’ =—
opt 2\/5 O 2
14+i11—1

Thus we have found that in both cases the same optimal measurement matrix evalu-
ated in Example 6.1 and this is sufficient to conclude that the tree method gives the
same transition probabilities (see (6.32)).

Problem 6.4 *x [Sect. 6.3] With the data of the previous problem, find the rela-
tions

wm=Cn, Ww=Cyp.
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These relations are somewhat intriguing since they lead to think that u; depends
only on y; and not on 7 and W, only on . Explain why not.

Solution The measurement vectors has been found in Example 6.1 and are given by

2 0
) = 1 |1—i ) = 1| 1+i
1 2\/5 O ) 2 2\/5 2

1+i 1—i

From the SRM theory we know that the above relations holds with C = 7~'/2. Now
we have

2 0 5 2
12y, — 1o [1—il+i| 1 [3-2i|] 1 |[1-i
"Yo2l 0 2 |2y 15 22l 0
14+il—1i 3421 1+i1

2 0 5 0

12, = o[ 1—il4+i| 1 [3+42i] 1 [1+i
2722l 0 2 |2v3 ] 15 22| 2
14+il—i 3-2i1 I—1

Thus the relations are really verified with C = 7-'/2. But u; does not depends only
on ¥ because in T'/2 it is also encoded the information on 7.

Problem 6.5 xx [Sect.6.5] Apply the SRM approach to find the optimal decision
in a binary system with equiprobable symbols and with a real inner product X.

Solution When the inner product is real the Gram matrix becomes

¥ 1 X
G=r F[X 1], X:=(0ln) -
and it is circulant. Therefore we can apply the approach based on the DFT.

The two eigenvalues of G are A := o3 = 1 +|X| and A, := 62 = 1 — |X|. The
corresponding eigenvectors are given by the columns of the DFT matrix

=1
|:|W0>7|W1>:|: 2 |:1 1
Then the EID of G is
1 2
G=UAU* with U:E[} 11},/\:[% 02}

The correct decision probability is
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Pe= Bug/zw/z)r - B(\/l+ x|+ /1= |x|)] : <1+,/1 - |x|2)

that is, the Helstrom bound.
The square roots of G are given by

2

GI/Z:UAI/ZU*:l Op+ 01 Op— O]
2 |0p—01 09+ 0]

-1 -1 -1 -1

G*I/Z:UA*I/ZU*:E 6, +0, 0y —O0
210y —o0;' oyl +o!

Problem 6.6 x [Sect. 6.6] Write explicitly the block DFT matrix, defined by

(6.59), for K = 4 and hy = 2 and prove that it is a unitary matrix.

Solution We use the symbol Wik to denote the DFT matrix of order K and the
symbol Wik ;) to denote the block DFT matrix of order K with blocks of size .
The block DFT matrix can be written in the form

Wik no) = Wik @ Ing

where Wik is the ordinary K-DFT matrix of dimension K X K and I, is the identity
matrix of dimension Ao x hy. Then W[K’ho] has dimension Khg x Khyg. In the specific

case Khy = 8.
We have
11 1 1 11 1 1
Llaw, ' w2w | [ —i—1 10
— — _ — =
Wi =5 IW2wotw o 2 -1 -1 2= 1o 1
1w 3w, w,® 1 i —1—i
Hence
101 01 0 1 017
010 1 0 1 0 1
10-i 0 -10 1 0
1{010 =10 —-10 i
Wag =Wal®@b=5110 10 1 o _10
010-101 0 —1
10i 0 -10 —i 0
01 0 i 0 —10 —i]

The matrix W((4 5) is unitary and in fact
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Wi ) W[Z,z] =

Problem 6.7 »x

(101 0 1
010 1 O

010
10-10 1
010 —10
10 i
01 0 i

(400000007
04000000
00400000
00040000
00004000
00000400
00000040

10-1 0 -1 0
-1 0 —-10
0 —1

0 —-10
0 —-120

100000004 |

[Sect. 6.6]

by (6.59), is a unitary matrix.

1
0
i

0
1
0
i

0

0 —1

—i

=

0

7i_

Solutions of problems of Chapter 6

(101 0 1 0 1 0
010 1 0 1 0 1
10i 010 =i 0
010 i 0—-10 —i
10-10 1 0 —10
010 -10 1 0 —1
10-i0-10 i 0
010 i 0 -10 i

Prove in general that the block DFT matrix, defined

Solution As in the previous solution, we use the symbol Wik to denote the DFT
matrix of order K and the symbol Wik ) to denote the block DFT matrix of order K
with blocks of size /. The block DFT matrix can be written in the form

Wik no) = Wik) @ Ing

where Wik is the ordinary K-DFT matrix of dimension K x K and I, is the identity
matrix of dimension Ag X hy.

For the proof we apply two rules on the Kronecker products of matrices (see
Section 2.13). The first rule is

(A®B)"=A"®B"

and the second rule is given by the mixed—product law

(A®B)(C®D) = (AC) ® (BD) .

Hence, considering that the ordinary DFT matrix is unitary, we find

Wik i1 Wik o) =(Wik) @ Ing) (Wi © 1)

=(Wix) Wik)) @ (g Iny)
=Ig @ Iny, = Igp, -
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Problem 6.8 xxx* [Sect. 6.6] Extend Theorem 6.3 on circulant matrices to block
circulant matrices.

Solution The proofis perfectly similar to the proof given in Appendix A of Chapter 6
for pure states, proceeding with blocks instead of scalars. Thus, we consider the
matrix

Z:= Wik )G -

From inspection of the structure of the block Z;; of Z and bearing in mind the con-
dition (6.58), we have

1 Kil . 1 Kil .
Zii = — W[l(G[:— W,l(l’; d K
1] \/E = J \/? = Jj—t (mod K)

[ S 1 ini ik
=—= Y W =—=w Y wetn
K = VK " 5
1 y
= ﬁw,’gl),
where
K—1
Di:=Y W¢*n
k=0

From the above result we infer that the matrix Z can be written in the form
. *
Z =AW

and, to conclude, it is sufficient to note that also the block DFT matrix Wik j,) is
unitary.

Problem 6.9 xx [Sect. 6.6] To check the fundamental formulas of the SRM with
mixed states having the GUS, consider the following degenerate case of reference
state factor in a quaternary system

Y = %Hﬁo%mo%moﬂ

where |f) is an arbitrary pure state, and the symmetry operator S generates the other
state factor in the form y; = S' 1, i = 1,2, 3. Find the correct decision probability P..

Solution The reference density operator is

Po =% = |Bo)(Bol

and corresponds to a pure state. Then we can apply the theory of SRM with pure
states having the GUS. The first row of the 4 x 4 Gram matrix G is given by

Go = [(BolBo) (BolB1), (Bol B2), (Bol B3)]



46 Solutions of problems of Chapter 6

where |B;) = S'|Bo). The DFT of this row gives the eigenvalues of G (see (6.45a))
3 - 3
}”p = Z GogW, P = Z<ﬁ0|ﬁj> . (6.1)
q=0

q=0

The correct decision probability is then given by (see (6.48)

b
3:2243. (6.2)
p=0

But we want to apply the theory of SRM with mixed states having the GUS to
find the same result. In this case the Gram matrix G consists of block 3 x 3 and has
dimension 12 x 12. The blocks of the first block—row are given by

111
(BolBj)Zs with Zy=|111
111

W | =

Goj =17 =

Then we evaluate the matrices
3 i 1 3 i
D= GoW, " = 3Z3 Y (BolBjyW,
j=0 J=0

which, considering (6.1), are given by Dy = %lk Z3. Next, we have to find the square
roots Dy, which results in

1/2 11,4 12
Dk/ :(5)2)%223/

The evaluation of the square root of the matrix Z3 gives Z31 2 %ZL but it is not
needed. In fact

in agreement with (6.2).

Problem 6.10 xx [Sect. 6.7] Solve Problem 6.3 introducing compression.

Solution The state matrix in C* is given by
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501
1 [3-2i3+2i
=311 s

342i3-2i

From the reduced SVD of I' = U,AV," we find

11

1)1 i L 1[1 1t

2011 ] mi{lilJ
1 i

U, =

where U} gives the compressor. Then the compressed state matrix results in

Lr=u'r=

3 3
IRERYE

We know that the Gram matrix is not reduced by compression, so we consider only
the Gram operator T = I'T"*, which is 4 x 4. In the compressed space C? it becomes

. . . . =1/2=
Then itis immediate to find the optimum measurement matrix as Mopt = T / I.

We find

o]

o
Slee ©

T_FT — [1

W

As expected, T is diagonal.

2
Tfl/z _ 3 0

and
3 3 4L
o= | T 0| [ 72 |-

Vi3 V13

i
V2 V2

Problem 6.11 * [Sect. 6.8] Consider the binary system specified by the pure
states
o) = ——[5,3—20,1,3+21]",  |p) = ——[1,3+2i,5,3 2"
= , 0 — 21,1, 5 = ) 1,2,0— 21 .
% B N Wik
Check that: 1) Helstrom’s theory gives P, = 1/26 , Chernoff bound gives P, =
25/338.

Solution (file pp406.m) The inner product is X = ]5—3 and, from Helstrom’s formula
with pure states and equiprobable symbols, we
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48
P—25 P, = : =0.038465
260 26 '
The density operators are
1 3+2i 5 3—-2i T
_i 3—-2i 13 15—10i 5—12i
P55 s 154100 25 15— 10i
|3+21 5+121 15+101 13
[ 25 15—10i 5 15-+10i]
i 15+10i 13 342 54+ 12i
PI=s3| s 3-2i 1 342
L 15—10i 5—12i 3—2i 13
and there square roots are
1 3+2i 5 3—-2i
1 |3—-2i 13 15—10i 5—12i
VP=3531" s 15+10i 25 15—10i
3421 54121 15+101 13
25 15—10i 5 15-+10i
L | 15+10i 13 3+2i 5+12i
‘/’)_'*52 5 3-2i 1 342
15—10i 5—12i 3—-2i 13

Hence, from the Chernoff bound

25
= — =0.0739645 .

P, =
¢ 338
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Problems of Chapter 7

Problem 7.1 x [Sect.7.2] Prove that the inner product X = (ct|3) of two coherent
states is real if and only if argox — arg3 =0 or arga — arg = + 7.

Solution The inner product is given by (7.9)
(a|B) = o~ 3(lal’+IBP~2a"B)

Considering that
o> + (B —20"B = o — B + &P — of* = | — B> +2iS3 (" B)

we can write 1 ,
X — ¢ 2(la=PBI" G2i|a[|B]sin(arg f-argax)

Problem 7.2 %« [Sect. 7.2] The map (7.2) gives for any a € C a coherent state
|a). Given |a) is it possible to find the complex number o/?

Solution We consider the inner product (O]er) and (1) to get

12 e o 112

Oa)y = e 2197 Y ——(0[n) = e~21*
_ ey Oy Ll

(o) =e 21" Y n!<1|n) e 2l y

n=0

Hence

Problem 7.3 xx [Sect. 7.2] Examine the effect of the introduction of a phasor
z = ¢'? into the complex parameter o that identifies the state | o), that is, evaluate
lei®ar).

Solution The effect is equivalent to the application of the operator
Se:= 3 2'n){n|=2".
n=0
In fact, from (7.2) we obtain

).

- gl e o
S|y = Y 2" |m)(m| e~ 21" Zﬁln

m=0 n=0

Hence, by the orthonormality of the number states |n), we get the coherent state
|zex).
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Problem 7.4 xx* [Sect.7.2] Let|o) =]|0y)®|a;) be a two—mode coherent states.
The number of photons m; associated to each component state is a Poisson variable
with mean A; = |OC,'|2. Considering that m; and m; are statistically independent (see
Section 3.10), prove that the total number of photons m = m; 4+ m; is a Poisson
variable.

Hint: use the characteristic function given by (4.23).

Solution The characteristic functions are

'le (Z) _ eAl[exp(iZ)fl] , 'le (Z) _ eA2[Cxp(iZ)71] )
Recalling from Probability Theory that the characteristic function of the sum of
two independent random variables is given by the product of their characteristic

functions, we find
¥, (z) = e (A1+4A2)[exp(iz) —1]

which states that m = m; + my is a Poisson variable with mean A + A,.

Problem 7.5 *x [Sect. 7.3]  Show that the PPM must be considered a vector
modulation. Find explicitly the waveform ¥;(¢) and the vector ¥; of the coefficients.

Solution If we assume as basis of orthonormal functions {px_;(¢),...,p1(t), po(t)}.
where p;() is a unitary rectangle on [iTp, (i + 1)T), and if we develop the PPM
waveforms with this basis, we obtain as coefficients exactly the symbols ¥;; of the
words ¥.

Problem 7.6 x [Sect.7.3] The n-DFT matrix W, is unitary and has the property
W[Z} = I,. Then it allows the construction of n-ary constellations in H{ = C”". Find a

quaternary constellation using S = Wy and reference state |y) = [1,1,0,0]". Also
prove also that the four states are linearly independent.

Solution The n—DFT matrix is defined by

1 —rs . i2m/
W= |G e e
For n = 4 it results in
11 1 1
111 —1—-1 1
Wy ==
720111 -1

1 i —1-i

It is unitary and its fourth power gives

1000
., |o100]|
Ya=1oo10| =™

0001
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Then W) is a symmetry operator for a quaternary system.
With the reference state | %) =[1,1,0,0]" the following constellation is generated

2 2 2 2
=== |2 i =os | = s o] = s |
0 1+1i 2 1—i

These kets are linearly independent as stated by their Gram matrix having rank 4

4 3—i 2 3+i
1|3+i 4 3-i 2
41 2 3+4i 4 3—i

3—i 2 3+i 4

G =

Problem 7.7 xxV [Sect. 7.4] Find the shape factor y; of the 16-QAM constel-
lation (see Fig.7.28).

Solution We subdivide the constellation into three parts, where the states have the
same number of signal photons Ny, = |y|%:

e the 4 inner states, as |(1+1)A), giving 4 x 2 A2,

e the 4 corner states, as |(3 4 3i)A), giving 4 x 18 A2,

e the 8 lateral states, as |(3 +1)A), giving 8 x 10 A2,

The global number of signal photon in the constellation is 16042 and the number of
signal photons per symbol is therefore

Ny = (160/16)A% =10A* — puxg=10.

Problem 7.8 x [Sect. 7.5] Consider the 4—-QAM (which is equivalent to 4-PSK)
where the normalized constellation is Gy = {y = £1 + +i} and the constellation of
received values is given by

{(21+ +i)Ug+ (1 +1)NL} -

Find the optimal decision regions and prove that the minimum error probability P,
is given by P. = 1 — (1 - Q(\/X)Z) with A = 4Ng.

Solution With he Gaussian approximation, for symmetry reasons, the optimal deci-
sion regions are given by

R(I+1i)={x>Np,y>N.}, R(—=14+1)={x<Np,y>N_}
R(=1—i)={x <N, <N}, R(A—i)={x>N,,y<N_r}.

For the symbol ¥ = 1 +1 we have
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P =P[Co=1iCo=1] = [ "fulalto = 1)1y, (5180 = 1)dadb

A a—n(l) > ] b—na(l)
B N gn(P( On ) da~[\/L gnd)( On ) ab
where 7(1) = Ni +2+/N.Ng and 6,, = \/NL. Then
- 2+/NiNg 2+/NiNg _ )

This result holds also for the other three symbols. Hence the maximum correct de-

cision probability is
P. = @(\/4Ng)?

Po=1—-P.=1—®(\/4Ng)* =1—(1—Q(y/4Ng))* .
Problem 7.9 xx« [Sect. 7.6] The error probability in classical homodyne BPSK
has been evaluated assuming equiprobable symbols. When the symbols are not
equiprobable the number of signal photons per bit Ny is still independent of the
symbols and gives the SNR as A = 4Ng. The only change is in the evaluation is the
decision element, given for equiprobable symbol by (7.78), as

-~ 1 n<s
A :{ <
=10 a>s

and

where S is the threshold to be optimized.
Find the optimal decision threshold and prove that the minimum error probability
is given by

1 q1 1 q1
), = vV log — VA — log— | . .1
F ChQ( A+2\/A Ong>+QOQ< 2VA Ogé/o) D

Solution The correct decision probability is given by
P. =qiP[n < S|A¢] = 1+ qoP[n < S|Ao = 0]
S +oo
=1 [ _fulalto=1)da+ao [ filalao = 0)da

where n = 714, +u with ny; = Uy cos TA( and u a Gaussian noise independent of Ag
(see (7.77)). Then

S—i1y oo
Pe=ar [ fn)ab g [ fb)a

—o0 S—ng

S—1 S—1
=q1 P
q1 ( y )-HIOQ( o )
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where

D (x e’%y2dy

1 X
() = V2r ./700
is the normalized Gaussian distribution function and Q(x) = 1 — ®(x) is its comple-
ment.
The threshold S is determined by maximizing the probability P.. The value Sy
giving the maximum is
_ ng— 1 Oy q1

So = log— .
0 20, ng + 1y q0

Considering that Q(—x) = ®(x), iig = Uy + No, iy = Up — Ny, and Uy/ 0, = VA,
we find that the maximum probability of correct decision is

1 g1 1 q1
Po=q ®(VA+ Io —)+ @(\//_\—10—
c= < 2VA gt]o B 2VA gCIO
and (7.87) follows.
Problem 7.10 *x [Sect. 7.8] Prove that with the optimization the a posteriori
probabilities ¢(ii) := P [Ag = i|A¢ = i] are equal and coincides with the correct de-
cision probability P..
Solution Let
[70) = cosO|x) + sinOy)
|71) = cosO|x) —sinB]y)
be the two states of the system expressed in terms of the orthonormal basis {|x), |y)},
where, without restriction, we can choose 0 < 6 < /4. The superposition degree

results in
X ={nln)= cos® 6 —sin® 6 = cos26 .

Let go and ¢ be the a priori probabilities of the states |y) e |71).
From Kennedy’s theorem we have that the optimal measurement vector are or-
thonormal, say
ko) = cos @|x) —sinPly)
[l1) = sin@|x) +cos Py) .

Hence the transition probabilities are given by

p(0[0) = |{(]|to)|* = (cos @ cos ¢ + sinBsin§)? = cos*(6 — @)
p(11) = (71| |* = (cos Osin g +sin @ cos ¢)> = sin>(0 + ¢)

and
p(10)=sin*(6—¢) ,  p(0]1) =cos* (6 +9).
The output probabilities are given by
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p(0) = qop (0]0) +q1p (0[]1) = gocos* (0 — §) + g1 cos*(6 + ¢)
qop (110) +q1p (1]1) = gosin®(6 — ¢) + g1 sin*(6 + ¢)

qop (0[0) qocos*(6 — ¢)
010 =10 = 0co2(0 —9) 1 41c02(0 1 9)
Cqip(1]1) q1sin”(6 + ¢)
P =20 = osin(0— 9+ quoin’(84+9)

The corresponding correct decision probability is

Pe = qo|(10lko)|* + @1 [ (1|11} > = gocos? (6 — ¢) +gisin* (6 + ¢) .
To find the optimal decision we impose that the derivative with respect to ¢ be zero

0=2qgpcos(0 —¢)sin(0 —¢)+2q;sin(60 + ¢)cos(6 + ¢)
= qosin(20 —2¢) + ¢, sin(260 +2¢)
= qo(sin260cos2¢ —cos20sin2¢) + g (sin26 cos2¢ + cos20sin2¢)
=sin20cos2¢ — (qo — q1)cos26sin2¢ .

Hence

in26

cos2¢:qol_eqlcos26 , sin2¢:¥s

where R is determined by the condition
R? = (g0 —q1)*cos*20 + (qo+ 1) sin® 20 = 1 — 4qoq1 cos® 20 = 1 — 4qoq 1 X

that is,
1-R?

X% = .
4q0q1

The optimal value of ¢ results in

1
o= 3 arctan ( tan26) .

q0 — 41

Hence the optimal transition probabilities become
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p(0]0) = cos*(6 — ¢) = 1[1+C0S(29 2¢)]

1
=3 [1+cos2¢ cos26 +sin2¢sin26)]
[ 1
=2 _1+quq1 5229+—sin229]
L[ qo—a¢
=11
2 + R
1
2

R
1

X2+R(1—X2)]

1

R

1 2 1 1—R?
14— — q'XZ} {1+ - }

R R 2 2q0R

p(1]1) =sin*(0+¢) = %[1 —cos(20+29)]

1
=3 [l —cos2¢ cos20 +sin2¢ sin26]
L m s ong Lanog
2| R
_ - “diyr Ly xy
2| R R
I[, 1 2g.,] 1 1 1-R?
= 14+-—22x% = 14— — .
2 TRTR “21'"R 2R

Finally, the optimal correct decision probability and the error probability are

—[1+R]

2

1 4
CIOCIIXQ _
R R

1
Fe = qop (0[0) +q1p(1]1) = 5 [1+—

1
1=
= S[1-R]
which corresponds to Helstrom’s bound.
The a posteriori probabilities of the state are given by

1 1-R?
qop (0/0) L+~ 90r  12g0(R+1)—1+R?

0[0 -
Pxy(0]0) = IO 1+%9-9 ~2  R+tq—q
_1610—611+2CI0R+R2_1[1+R]—
2 go—qi+R 2 -
2
110 1_—+ —1)4+1-R?
pes(Ol1) = qop (1] )_qo T _ 12go(R—1)+
py(1) 17%_qu 2 R—(q0—q1)

_ 1qo—q1—2qoR+ R
2 q-q1—R

1
:E[lfR]:Pe
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In conclusion, with the optimal decision we find that the a posteriori probabilities
p(0]0) and p (1|1) are equal and given by the correct decision probability.

Problem 7.11 « [Sect. 7.8]  Prove that in a binary system with equiprobable
symbols the error probability can be expressed as function of Ng(0), Ng(1), and of
the relative phase of the complex parameters Y and ¥, . that determine the coherent
states.

Solution The error probability depends only the superposition parameter |X |?, which
is given by (7.104a), that is,
|X|2 _ e*h’b*?’l\z

where

o—nl*= w1 - %
"

2
Ng(0) Ng(0)
=Nr(0) | 1+ -2 cos @
R(0) ( Ne(D) 2\ NelD)
with 6 = arg(y/71 ). Then the minimal error probability (7.104) depends on Ng(0) , Ng(1)
and on the relative phase 0 of the complex parameters yy and 7;.
In the cases of interest (OOK and 2-PSK) P, depends only on Nz(0) and Ng(1).

Problem 7.12 xxx [Sect. 7.12] Prove that the operator S defined by (7.123) is
the symmetry operator of the K—PSK modulation.

Solution Let us recall from Functional Analysis the meaning of the exponential of
an operator (see Section 2.10.3), and observe that the eigenvalues of the number
operator N are n = 0,1,2,... with the corresponding eigenvectors |n), and that N
in (7.1) is expressed by its spectral decomposition. Therefore, the exponential of N
that appears in (7.123) is defined as (see (2.90))

S= i exp(
n=0

Hence, using the orthonormality of the number states |n), we get S" =Y W |n) (n;
in particular, for m = K we obtain

12rn
K

)inbinl= X Wi o

because the |n) form an orthonormal basis (see (2.50)). Next we verify the other
conditions of GUS, namely, that all the states (7.121) are obtained from the state |y)
as |Ym) = 8" |%). This is easily proved by property (7.124) of the rotation operator.

Problem 7.13 x [Sect. 7.12] Find explicitly the formula for the error probability
P, of quantum 4-PSK system, with the target to show that P, depends only on A =
N;.

Solution We apply (7.125) with K = 4 to get the circulant vector

[Goo, Got,Go2, Goz) = [1767NS[17H,67N‘[1+1],efN“[Hi]] .
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Then we get the eigenvalues as
3 .
Ai = Z G()kilk.
k=0

The four real eigenvalues can be written in the forms

Ao 2e M cosNy +e 2N + 1 2(cos Ny + coshNy) (cosh Ny — sin iN)
M| 2e NoginNy —e 2N 1 | 2(coshN; —sinANg)(sin Ny + sinhNj)
M| | —2e™™cosNy+e ™ +1| | (coshNs — cosNy)(2cosh Ny — 2sin/Ny)
A3 —2e NsginN; —e 2N 4 1 2(cosh Ny — sin AN ) (sin AN; — sin Ny)

Finally we get the correct decision probability as

PC:%[\/EJr\/A_ﬁ\/Tﬁ Azr.
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Problems of Chapter 8

Problem 8.1 xxx [Sect. 8.2] Starting from the integral representation (8.2) of the
density operator py,, find the Fock representation (8.4). Hint: use polar coordinates.

Solution Use of (8.1) gives

- v . dep e (a")”

=Y Yot S ).
e m

m=0n=0 m!n!

Then

o= Y [exp o/ C1 gy
N m=0n—0"C m!n!
where u = (1 +XN)/N. Introducing the polar coordinates o = re'? we get
e i(m—n)¢
2
P = / / exp [~ /u] e rdrdg |m)(n] .
N mZOr;)
where
o
/ 04y =278, .
0

Hence
2m

72 > i o I
pu=y; X [, (/) prr m

= . A
:Nm;()/o exp(fx/u)ﬁdx m)(m] .

The integral gives®
m+1

* u
- "dx =
/0 exp(—x/u)x —

so that
+1 N
Pth = Z u" |m m| Z (N+ 1)m| ><m| ’

mO m=0

Problem 8.2 * [Sect. 8.2] Organize a quantum measurement with the system in
the state pyy, defined by (8.2). The outcome n should have the geometrical distribu-

tion py,(k|pg) given by (8.6).

Solution We recall from Postulate 3 of Quantum Mechanics (see (3.36)) that the
probability of a outcome of the measurement obtained with a projector system {IT; },
when the quantum system is in the state p, is given by

p(i) :=Plm =ilp] = Tr[p IL] .

2 1. S. Gradshteyn and 1. M. Ryzhik, Tables of integrals, series, and products, Tthed. Amsterdam:
Elsevier, 2007, p. 340.
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Now we consider the projector system obtained by the Fock basis {IT; = |i)(i|}.
Since

ad . Nk
Pth = k;)pm(kﬂk) (k| with  p(k) = G
we obtain
p(i) =Tr[p IT]] = Zl’m )k) (kli) (i
where (k|i) = 8. Hence

p(i) = Tr[p ITI] = Pm(k) Tr(|k> <k|) = Pm(k) :

Problem 8.3 « [Sect. 8.2] Prove (8.5), that is, E[m|py,] = Tr[p;,N] = N, where
Pih 18 the density operator of thermal noise given by (8.4) and N is the number
operator.

Solution In E[m|py,] = Tr[pgN] we have

oo Nk
Pth = /;)P(k)|k> (k| with p(k) = N T
and .
N= Z nln){n
n=0
Then

Elmlpg] = Tr Zznp ) k) (il
n=0k=

where (k|n) = 8, and Tr[|n)(n|] = 1. Hence
E[m|py] = Z kp(k

which establishes that E[m|py,] gives the mean of the random variable having p(k)
as probability distribution. On the other hand, developing the calculation and using
the identity 3

one obtains the desired result.

Problem 8.4 xx [Sect. 8.2] Representations (8.8) and (8.10) on thermal noise
hold for y # 0 and N > 0. Find and discuss the representations in the degenerate
cases ¥ = 0 (absence of signal) and N = 0 (absence of noise).

3 1. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, series, and products, Tthed. Amsterdam:
Elsevier, 2007, p. 8
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Solution For y = 0 representation (8.8) gives (8.2), while (8.10) gives (8.4). For
N =0, both (8.8) and (8.10) degenerate. The state becomes pure and therefore we
have

p(y) =1l

with |y) given by (8.1). Hence the matrix representation (8.10) becomes

_ eyt )"
Run(y) =e 7] W

m){nl .

Problem 8.5 *x [Sect. 8.10]  Check that the further condition (6.66), that is,
U3 Bo = al, is not verified in 4 PSK with the data of Example 8.19.

Solution It results

[0.456  0.001 0.000  0.000  0.000  0.000  0.000 0.000 0.0007
0.001 0.184  0.003 —0.001 —0.001 0.000  0.000 0.000 0.000
0.000  0.003 0.067  0.007 —0.001 —0.001 0.000 0.000 0.000
0.000 —0.001 0.007  0.020  0.005 0.000  —0.001 0.000 0.000

uiBo=10.000 —0.001 —0.001 0.005 0.006  0.002  0.000 0.000 0.000
0.000 0.000 —0.001 0.000  0.002  0.002 0.001 0.000 0.000
0.000  0.000  0.000 —0.001 0.000  0.001 0.001  0.000 0.000
0.000  0.000  0.000  0.000  0.000 0.000 0.000 0.000 0.000

L0.000  0.000  0.000  0.000  0.000  0.000  0.000 0.000 0.000_]

that it is not proportional to the identity matrix, and therefore the SRM decision is
not optimal.
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Problems of Chapter 9

Problem 9.1 xx [Sect. 9.2] Consider the model of a photon counter where the
dark current and the non unitary efficiency are taken into account. Prove that the
measurement operators are given by (9.22).

Solution Provided that the input state is the Fock state |n) with n photons, the prob-
ability of no electron count is

(n|Qo|n) =e #(1—n)"

coinciding with the probability the no dark electron are emitted and each photon
is missed with probability 1 — 1. Then the first of (9.22) holds, while the second
follows by the identity resolution. In the presence of input states |0) and |@) the
transition probabilities of the equivalent binary channel become

p(0]0) =(0]Q0[0) = ¢ *
p(0[1) =(a|Qolot) =& * f‘,ou )|l a?

o 2
:e*#e*\a\z Z (1 _ n)n |OC| !
n=0

—Uu— _ 2 T 2
—e H-le2+(1=m)|af® _ o—u-nfal®.

n!
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Problems of Chapter 10

Problem 10.1 xx* [Sect. 10.3] To check Schmidt’s decomposition consider a
finite—dimensional bipartite system with (4 = C? and Hz = C* , where the coeffi-
cient matrix C is 2 X 4. Suppose that the matrix has the form

co {611 ci2 €13 614] _
€21 €22 €23 C24
where 3 is a parameter. Find the values of beta, if any, which correspond to a sepa-
rable state and to a maximally entangled state.

FNTFNT
ool

| >
=

a8}
| IS

NS
N[N -

Solution The SVD gives the two Schmidt coefficients

di=1\/8+£VA with A=24v2B+\/5-8B2+34

and d* + d%r = 1. Now, we can see that in general the state is entangled. For =

(+1+1/4)/+/3, we have di = v/2/2 and the state is maximally entangled. For
B =+/5/4 we have d_ =0 and d, = 1, so that the state is separable. In fact, the
matrix of the coefficients becomes

C =

Bl s —
Bl

IS,
=5
| I

and the linear combination (10.7) gives
)y = (§10) + 316) + L) + 216 ) & (16F) -+ [65)

which clearly is the tensor product of two states.
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Problems of Chapter 11

An extra problem, Problem 11.19E, not included in the book, is introduced.

Problem 11.1 * [Sect. 11.5] Prove relation (11.58), which states that all the
number states |n) can be obtained from the ground state |0).

Solution Relation (11.58) is proved by induction considering that it holds for n =0
and in the iterations we can use (11.57).

Problem 11.2 xx [Sect. 11.6] Using the general definition of the exponential of
a matrix, find explicitly the exponential of a 2 x 2 matrix.

Solution First we have to find the EID of the matrix, say

A=UAU" — [“ b]{“” 2 ]{ll 0} [Hﬁ 3, ].
C

d ujq u» 0 )Lz MTZ u%z

Then we have

. e 0
expA=UexpAU* with expA =

0 ek

The secular equation is A% — (a +d)A +ad — bc = 0 whose solutions are A+ =
Y(a+dFV/A). Hence

- Na+d—A) 0 ]_

0 HNa+d+VA)
It remains to evaluate the eigenvectors to arrive at the formula of the text.

Problem 11.3 +x [Sect. 11.6] Prove relation (11.81) linking the complex vectors
and the real vectors defined by (11.80). Note that the entries of the matrix £ can be
written in the form

Qz(h,1)+r,2(k71)+s = 6hk(6r’37| — 6r,],s) = 6hk Ers hk=1,....N rs=1,2

1 r=1s=2
Sm{—l r=2,s=1

0 otherwise .

where

Solution Letting X = [X;,..., Xon]" and Y = [V},...,Yan]" we find

N
X'QY =Y [Xop1)r1 Yap-1)+2 — X142 Y2 1)41)
h=1
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Next we replace X and Y with x, and u,, respectively, and use the fact that x; =
$(Ai+Af), etc. Thus (11.81) follows.

Problem 11.4 *xx [Sect. 11.7] Prove the relation (11.100) between the covariance
matrices R and V in the single mode.

Solution The covariances given by (11.99) are
1
Vi = 5{{l4q,4q}) = ((Ag)*) =Ru

Vio =3 ({Aq.4p}) = 5((a~ D))+ (P~ P)g~7)

1 __ _ _
=5lap+pa+29P —2pg—24p]

where we can express pg using the commutation relation (11.51), that is, pg =
qp — 2i. Hence

Vio=qp+i+qq—pp—qp=AqAp—i=R;p—1
and
Vio={qp+i+qp—pg—qp)={(qp) +i—qp ="V +i.

Analogously we find Vo1 = Ry —1iand V23 = Ry;. In conclusion, we find the matrix
relation

Vie, Vio| _ R Rp| 1 0 1

Vor Vo Ry1 R -1 0
which can be written in the form

V=R—-iQ.

Problem 11.5 *x [Sect. 11.7] Compare conditions (11.101) and (11.102) in the
single mode.

Solution Condition (11.101) gives
VitV > 1
while condition (11.102) reads

Vit Vip+i

V+iQ = .
' |:V121 V22

E

We recall that a Hermitian matrix is PSD if and only if its principal minors are
nonnegative. In the case of matrix V +1€2 we have the conditions

Vi1 >0, V3 >0, det(v+iQ):V]1V22*V122+1ZO
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which constrains the nondiagonal element as

VEh <ViVp <1.

Problem 11.6 *x* [Sect. 11.7] Prove condition (11.113), which states that the
characteristic function x (&) refers to a pure state.

Hint Use the Fock expansion of the pure state and Proposition 11.9.

Solution We prove the statement in the single mode. Let
) =Y fuln)
n

be the Fock expansion of the pure state |y). Then (11.112) gives
x(8) = (wID@&)|y) =Y. ) fufu(mDE)|n) =YY fofin Donn (§)

m n
and

X&) =2(E)x (&) = XY S Dun(E) Y Y oS D3s(&) -

m n

Now in the integral we can use Proposition 11.9 to get

PRSI WA D WAL I ) MIARIAE,

m n

where Y, | fin|* = 1 is due to the normalization of the ket |y).

Problem 11.7 xx* [Sect. 11.7] Evaluate the integral (11.114) using Williamson’s
theorem (Theorem 11.2).

Solution From (11.105a) we have that the integrand is
(&) = 12 (V)P = expl—u (QVQ)uy) .
By Williamson’s theorem the covariance matrix can be decomposed as
V=58,vosr, V® = diag [67,0%,...,08,00] .

Then ,
[ Q€ E)F = [ dudvlz(um)P?
JC R

— 0
_/RW dudv exp [—u," (25, V5,27 uy] .
Now it is convenient to make the change of variables
X=8,Q"u, — dX =|det(S,Q)|dudv = dudv

where | det(S,,£2)| = 1 because S, is a symplectic matrix (see (11.149)). Hence
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2 _ yvTyD
/Cng 2(8)] f/Rdeexp[ XVex] .

Considering that the matrix V¥ is diagonal, the biquadratic form at the exponential
results in
XWVEX = (XP+X3)07 + -+ (Xy 1 +XGy) 0%

so that the exponential is given by product of 2N exponentials and
‘ 1y S
oN d€ [x(8)I" = H/Rdxzpl exp [_Xzifl Gi} /RdXZi exp [—Xzzi(’ﬂ .
. i .

Each integral gives \/7/o;. Hence

N

[ aE12(8)7 =

2 2
Oy - Oy

It remains to recall that Giz are the symplectic eigenvalues of V, which can be ob-
tained as the ordinary eigenvalues of the matrix 12 V. More precisely, the eigen-
values of iQV are {67,...,40%}. On the other hand, we recall that the prod-
uct of the eigenvalues of a square matrix gives the determinant of the matrix (see
(2.46)). Hence det(iQV) = (—1)Vo} - o, where det(iQ) = (—1)". Therefore
0?%--- 0% = /detV. In conclusion

v

detV

L aelx@)r=

Problem 11.8 x** [Sect. 11.8] Prove Glauber’s inversion formula (11.90) in the
single mode. Hint: use Fock representation and the orthogonality of the D,,, (see
Proposition 11.9).

Solution The density operator p can be recovered from the characteristic function
x(&) in the single mode as

p= [aEx@D' @)

T
We denote by p the reconstructed operator, namely

p = 46D (E)x(E) = [ azD(©)Tr (pebe £

Then, we proceed with the matrix representation of the operators to get
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pn = [ 4E D& LY puD@)

s=0r=0

o oo 1 .

=Y ¥ Py [ 48 DL (E)DA()
s=0r=0 TJc

where we apply the orthogonality of the D,,, (see Proposition 11.9), which gives

pmn = Pmn-

Problem 11.9 * [Sect. 11.8]  Using the orthogonality of the functions Dy, (&)

given by (11.132), prove the orthogonality of the functions D,,,(A), the Fourier
transform of the D, (&).

Solution Combination of (11.131) and (11.132) gives
[ AAD(2) Dra(2) = (1) 5 = 6,5
JC
Problem 11.10 xxx* [Sect. 11.9] Thermal states are defined as the bosonic states

that maximize the von Neumann entropy for a fixed energy. Prove this statement
using Lagrange multipliers.

Solution not available

Problem 11.11 xx [Sect. 11.9]  Prove that, if the characteristic function y (&)
depends only on |£|?, say x (&) = f(|&]?), the reconstruction formula (11.110) of
Proposition 11.7) is simplified as

pnm:Smn/Omdxe’%xf(x)Ln(x) (11.1)

where L, (x) is the ordinary Laguerre polynomial.

Solution The general reconstruction formula of the matrix representation of the den-
sity operator is given by (11.110), that is,

pun = [ 4EX(END}(E) (11.2)

where the matrix representation of the Weyl operator is given in Proposition 11.7 as

Din(§) = 25@ &L (1P

Now, considering that (&) = £(|&]?) we find

Pum = % /Cdé FIEP) lé\/mi (L (EP)
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where we use polar coordinates with & = A exp(i¢) to get

L o ~4az [ n! —n i(n—m m—n
Pn;n:EA dll/() d(bf(lQ)e ZAQ/%)}” eil )¢L£z )(12)-

Considering that

1 21 .
% A d(P el(nfm)(p _ 6mn

we find - |
Do = S 2 / A4 f(A2) e L0(22)
JO

and (11.143) follows after the change of variable x = A2

Problem 11.12 *x [Sect. 11.9] Consider the alternative definition of a coherent
state given by (11.138). Show that the Fock representation of |¢) is still given by
(11.46).

Solution The alternative definition is
o) = D(a)[0) = e 21 ea" # =)
Now, from (11.126¢), e~*|0) = |0). Thus

oo n
o) =3P e j0) = 31 Y (D ey
n=0 :

where we can use (11.124) to get (a*)"|0) = v/n!|n). Hence
S 12 A
@) = Y e 3ol Z

which is the Fock expansion obtained with the original definition of | o).

Problem 11.13 % [Sect. 11.11] Prove that the Bogoliubov transformation gener-
ated by the N—mode displacement operator is given by

Dy(o)aDy(a)=a+a.

Then evaluate the corresponding symplectic matrix.

Solution The N-mode displacement operator Dy () is simply given by the prod-
uct of N single-mode displacement operators . Hence, by Proposition 11.12, which
holds also in the N-mode, one gets the Bogoliubov transformation. The symplectic
transformation is obtained by using relation (11.151), that is,

RE+F) S(—E+F)

S=1sE+F) RE-F)

or, d=1I P‘Z]

3z

with u = Iy and v = Oy to get
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Iy Oy

S=1I [ON Py

] O =III" =Ly .

On the other hand the permutation matrix IT provides the interlace of the two N—
column vectors, so that we can write

Problem 11.14 % xx [Sect. 11.11]  Prove that the N—mode rotation operator
(11.161) produces the Bogoliubov transformation

Ry(¢)aRy(9) =¢'%a.

Solution Considering that the matrix ¢ is Hermitian, the adjoint of the exponent
ia*¢ais —ia* ¢ a. Hence

R*(9)aR(9) =e 1@ 90 gl 00 (11.3)
which corresponds to the BCH identity (11.168) with
x=-1i, H=d"¢a, K=a.

But we have to interpret this identity in the sense of (11.168), that is,

e ap e —nz::omD,,(k), k=1,....N
where
Dy(k) = ay, D,(k)=[H,D,—1(k)] for n>1. (11.3a)
Then
. v (i)
RY(9)axR(9) =) Dy (k) (11.4)

|
0 n:

n
We now proceed for N = 2. We have Dy(1) = ay, Dy(2) = a,, and
a*¢a=ajday+ajPpay +asPrar +ay$aa; .
Hence, recalling that operators of different modes commute, we find

Di(1) = [a" ¢ a,a1] = {a]¢r1a1 +ajdrpaz + as¢r1a1 + a3¢2a2} a;
—ay{ajona) +ai¢ar +aspria; +as0ar}
=—(¢na1+ ¢2a1)
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D\(2) =[a" pa,ar] = {aldr1a1 + aiPr2a2 + asPr1a1 + a5Pxar } ar
—ai{ayPria1 +ajdpax +as¢r1a1 + a>s¢nar}
= —(¢r1a1 + ar)

which can be written in the matrix form

DOl=-[ar e)[a] - p=ea

Now we can organize (with some effort) an induction procedure to prove that

D, = (*d’)na
and the final result is
R(@)ar(0) =Y, 1 —dv
n=0 .

Problem 11.15 xx [Sect. 11.11] Write explicitly the symplectic matrix of a two—
mode rotation operator in the two cases of matrix ¢

¢ 0 ] [ 0 d)o]
= , = real) .
o |: 0 ¢ ¢ o O (¢0 )
Hint: use identities (11.74) for the exponential and the expressions of Il and I1"
given after Proposition 11.11.
Solution In the first case the matrix is diagonal and therefore

. 9o .
ip _ . (P() 0 _|e O _ _ido
e —expl[o d)o}_[ 0 el%]_e bL.

Hence _ _
Re'? = cos(¢o) L, Se'? =sin(¢o) I .

The symplectic matrix is explicitly

Ss—1I [EK(E—FF) S(—E—i—F)} I =1 [cos(gbo)l2 —sin(@o) b | v

S(E+F) R(E-F) sin(@o)l,  cos(¢o) I

and, considering the expressions of the permutation matrices

10007 rcos(¢o) 0 —sin(¢p) 0 1000

o_| 0010 0 cos(¢) O  —sin(gp)| | 0010
170100/ | sin(¢o) cos (o) 0 0100
0001 0 sin(¢) 0 cos(¢o) 1 0001

The final result is
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cos(¢) —sin(dp) 0 0

§_ sin(¢p) cos(¢o) 0 0
0 0 cos(¢o) —sin(¢o)
0 0 sin(@o) cos(¢p)

In the second case

Fimerp| 0 ] = [[nlt) fsnian)]

o O isin(¢g) cos(dp)
Then

RE = cos(¢o) I, SE =sin(¢y) S, with J, = [(1) (1)]

and the conclusion is that the symplectic matrix S is the same as in the first case.

Problem 11.16 xxx [Sect. 11.11] Prove that the N-mode squeeze operator pro-
duces the Bogoliubov transformation

Z(2)aZy(z) = coshra+sinhre® ay (11.5)
where the symmetric matrix z is written in the form z = ret?.

Solution In Ma and Rhode’s paper” the authors assume that the matrix z is symmet-
ric and claim that

1 1 1
Zyn(z)aZn(z) =a+zax+ Ezz*aJr 3 (zz")z ax+ a (zz")a+--- (11.6)

With the decomposition z = re’?, the even and odd terms in (11.6) give respectively

1 1
E=a+—z'a+— (") a+

21 41
1 1
=(Iv+ 3774 g ++-)a=coshra
1 " 1 *\2
Ozzg*+§(zz )za*+§(zz Yozax+ -
1 1 - |
=(rt 577+ 57 )l ax =sinhre? ay

and (11.179) follows.
We now sketch the proof of the first terms of (11.6) for N = 2, investigating in
particular the role of the assumption of symmetry for z. We have

Zi(2) aZu(z) = 310" g3 (6" (e )

which corresponds to the BCH identity (11.168) with

4 X. Ma and W. Rhodes, “Multimode squeeze operators and squeezed states,” Phys. Rev. A, vol. 41,
pp. 4625-4631, May 1990.
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1
=5, H=(a"z(a")"—d"za)" =d 7"a—a"z(a")", K=a.

But we have to interpret this identity in the sense of (11.168), that is,

eage =Y ED,,(k), k=1,...,N
n=0""

where
Dy(k) = ay, D, (k) =[H,D,_ (k)] for n>1. (11.6a)
Then .
Zy(z)aZn(z) = nzg)znln' D, (11.7)

Now
N N
H=d7Z'a—a'z(a")" =) Z(Zﬂa’al zjja;ay)
i=0 /=0
and
N N
D (k) = [a,a] = Z Z (zji [aiaj,ar) —Z"i] [a;‘a;f,ak]) )
i=0 /=0

In particular for N =2

Dy (k) =27 [arar, ai] + 251 [araz, ar] + 215 [acar, ai] + z35[azan, ay]

— (znlaiay, a] + za1ayaz, an] + zi2[azat, ar] + z220]aza3, ax])
where [a;aj,a;] =0 and

[aja},a\] =ajala) — ayaia) = ajaja) —ajaa) +ajaa] +ajaa) +a) — ayaja;

* * * * *\ % *
=a|(aja; —aja1) + (aja; — aja))a) = —2a]
Xk X % * ok *
[ajas,a1] =ajaza) — araja; = —a;
Xk X % * ok *
[aza),a1] =azaia) — aaza) = —a;

lazaz,a1] =0

laiay,ax] =0
[@)a5,a0] =aiasar, — araiay = —aj
[aya],ar] =asaiar — axasal = —aj
[ayas,ar] = —2aj .
Hence
D = [DI(U} _ [ 2zy1a1 + 22105 + 21205 ] _ [ 2711 le+221:| [a’f}
Dy (2) +21a] +z12a] 4 2200a] Z2+221 2222 ay
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Now, if the matrix z is symmetric we find
1
Dy =2zax — ED] = Zdx
in agreement with the first term of (11.109).
The next step would be the evaluation of

Dz = [Dl,a] = [za*,a]

but the organization of an induction procedure becomes mandatory.

Problem 11.17 x [Sect. 11.14] Prove in the single bosonic mode condition
(11.148), which states that the commutation relation is preserved after a Bogoli-
ubov transformation.

Hint Use the bilinearity of the trace

[MIHI +uyHy, v K +V2K2] =uv [H] ,K]]+M[V2[H] ,Kz] “+urvy [HQ,K[]JruQVQ[HQ,KQ]
(11.8)
where u;, v; are complex numbers and H;, K; are operators.

Solution The direct solution is
la,a" =aa* —a'a
=(Ea+Fa"+z)(E*a"+Fa+7)—(E*a"+F'a+7)Ea+Fa" +2)
=(EE* —F*F)aa*+ (EF*— F*'E)aa+ (FE* —F*E)a*a”+ (FF* —E*E)a*a
=(EE*—F*F)(aa* —aa") = (EE* — F*F)[a,a"] .
Instead, using (11.199)
[Ea+Fa",E*a"+F*al = EE*[a,a*|+ EF*[a,a+ FE*F|a,a] + FF*[a"d]

where [a,a] = [a*,a*] = 0 and [a*,a] = —[a,a*]. Hence (11.148) follows at once.
Problem 11.18 *x [Sect. 11.14]  Prove that the rotation operator (11.207) pro-
duces the Bogoliubov transformation (11.210).

Solution We have .
R*(¢)aR(¢) =¢a (11.9)

which correspond to the BCH identity (11.70) with

x=—i¢, K=ad"a,, K=a.
Then . .
R(¢)aR(9) =) (7:1?) D, (11.10)
n=0 :

where
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DO =da
Dy =[H,Dy| = [a"a,a] =a"aa—aa*a= (a"a—aa*)a = [a",ala= —a

D, =la,Di] =[a"a,—a]=a

and in general D, = (—1)"a. Then from (11.10) we obtain (11.9).

Problem 11.19 *x [Sect. 11.14] Prove that a squeezing followed by a displace-
ment is equivalent to a displacement followed by a squeezing with the change of the
displacement amount indicated in (11.176).

Solution The cascade of Z(z) with z = rel followed by D(a) gives the Bogoliubov
transformation

Z*(z) D*(a)a D(et) Z(z) = coshra+sinhre'® a* + o .
The cascade of D(f3) followed by Z(z) gives
D*(B)Z* (r)aZ* (r)D(B) =D*(B) [coshm+sinhrei9 a*} D(B)

=coshrD*(B)aD(B) +sinhrel® D*(B)a* D(B)
—coshr(a+ B)+sinhre'® (a* + B)

where the displacement amount is
o = B coshr+ B*sinhre'® .
Solving with respect to 3 one gets

B = a coshr— o sinhre'® .
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Extra Problem (not introduced in the book)

Problem 11.19E *xx [Sect. 11.14] Starting from Yuen’s formula (11.229), prove
that the probability distribution p, (i) of squeezed—displaced states, for « real and
0 = 0, can be written in the form

. sechr ., (oa(l+tanhr .,
pn(i) = 0 tanhrHi( NTETY: exp | —50 (I +tanhr | .

Solution The above formula was obtained by Kim et al.’. They started from Yuen’s
formula for squeezed-displaced states, that is,

|—z,a), = W% (%)n/z H, (\/%) exp (—%|ﬁ|2+£ﬁ2) (11.11)

where

U =coshr, v =sinhrexp(i6), B =coshro +sinhra*exp(if) .

We now elaborate the argument of the Hermite polynomial and of the exponent to
meet Kim’s formula. First we proceed in general and then we introduce the specific
case: ¢ real and 6 = 0.

e Elaboration of the argument of the Hermite polynomial.
The argument is

arg — B :coshroc—i—sinhroc*exp(ie)
V2uv \/2coshrsinhrexp(i0)
_ a+tanhroexp(if)
~ /2tanhrexp(i6)

If o is real and 6 = 0, we get

_afl +tanhr]

arg —
g v/2tanhr

Leaving u and v unspecified (v > 0) and 8 = g ot + v a*, the exponent is

5 M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, “Properties of squeezed number states and
squeezed thermal states,” Phys. Rev. A, vol. 40, pp. 2494-2503, Sep. 1989.
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_Lbap, Vo2
e=3IBP + 5,5

71 *(2 V_* %12
2{|ua+va | 2u[ua+va] }
Ll ‘aJrXoc*zfv—* at Yo ’
72” m

1
:5”2 {la+Ta*?—T*[a+Ta*)*}

where

T = — =tanhrexp(if) .

\%
u
This in general. When o is real and 6 =0

e:—%u2{|a+Toc*|2—T*[oc+T(x*]2}
:_%uzaz [(1+T)*—T(1+T7)*]
=@ (147201 - T)]
=—%u2a2(1 +T)(1-T?).
Note that
w?(1 —T?%) = cosh?(r)(1 — tanhr) = cosh?(r) —sinh?(r) =1 .

Hence 1
e= 5052(1 + tanhr)

in agreement with the result of Kim et al.

Problem 11.20 *x [Sect. 11.15]  Prove that in a cascade of three symplectic
transformations X; = S;X; + d;, i = 1,2,3, the covariance matrix at the output is
given by

Vi2s = $38:51V0S15553

where Vj is the covariance matrix at the input.

Solution The cascade is shown in Fig.11.1. By applying iteratively relations (11.154)
of Theorem 11.1 one gets the relations for the mean vectors

Y|23:S3SQS|Y0+S3SQd|+S3d2+d3 (11.12)

where X is the mean vector at the input. Analogously, for the covariance matrices
we find
Viz = S3SzS]VOS§S£S§ . (11.13)
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X1=S81Xo+d) X12=5X1+d» X123=S3X2+d3

Fig. 11.1 Cascade application of Gaussian unitaries and corresponding relation of symplectic pa-
rameters.

Problem 11.21 xx* [Sect. 11.15] Prove that the covariance matrix of a squeezed—
displaced—rotated state |z, ¢, @) is given by

cosh(2r) +cos(2¢ + ) sinh(2r) sin(2¢ + 0) sinh(2r)
sin(2¢ + 0) sinh(2r) cosh(2r) — cos(2¢ + 0)sinh(2r)
(11.14)

Vsq,rot (Za (0 ) =

Solution We apply the statement of Problem 11.20 with: I=squeezing, 2=dis-
placement, 3=rotation, starting form the vacuum state, which have Vy = I,. Also,
S| = Ssq(z), S =5h,85; = Srot(‘P)- Then

Vsq.disp.rot (z.0) = SrotSsqS;qS;m

where (see (11.170) and (11.172))

Sro(9) = {cosd) —singb}

sing  cos¢

nd
) S cosh(r) 4 cos(0)sinh(r) sin(0) sinh(r)
54— sin(0) sinh(r) cosh(r) — cos(60)sinh(r) }

Substitution of the expressions gives (11.233).

Problem 11.22 * [Sect. 11.16] Prove that the covariance matrix of the single—
mode Gaussian state |z, @) is given by (11.236).

Solution The covariance matrix is given by V = Ssq(2)S5q(2), where the symplectic
matrix is given by (11.172)

(11.15)

sin @ sinhr coshr —cos O sinhr

Ssq(reie) _ [CoshrJrcosOsinhr sin @ sinhr } _

Hence

Ve [V” Vlg] B [cosh2r+cosesinh2r sin O sinh 2r ]

Vio Vo sin @ sinh 2r cosh2r — cos Osinh2r
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Note that this result is a special case of the covariance matrix of an N—-mode Gaus-
sian state, given by (11.185), where in the single mode r and 6 are scalars and
Y =Vi.

Problem 11.23 xx [Sect. 11.16] Consider the Wigner function W (x,y) of a gen-
eral Gaussian state given by (11.237) and introduce the change of coordinate (see
the left of Fig.11.13)

_ lo_ysinl — ysinl 1
X=ucosy6—vsin50, y=usin;60+vcos,0

which provides a rotation of the angle %6. Prove that the new Wigner function
W (u,v) is obtained with the covariance matrix

e 0
V= [ 0 e |-
i0

In words, the rotation of %9 removes the squeeze phase in z =re'”.
Solution(CS126) It is convenient to write

W(x,y) = Lexp {—lE]
2r 2
where
E = —2cos 0 coshrsinh(r)y* + [x* +y*] cosh?(r) + [x* +)*] sinh?(r)
+ x(xcos O +2ysin(0)) sinh(2r) .
After the introduction of the rotation we find
E= “vcos %9 +usin%9}2 + [ucos %9 - vsin%e} 2} cosh? r
—2cos0 [vcos 16 +usini 6] g sinh(r)coshr
+ “vcos%e + usin%e}z + [ucos 16 —vsin %6]2} sinh?(r)
+ [ucos %9 - vsin%@] cos 6 [ucos %9 —vsin %9}
+2 [vcos 16+ usin%@} sin(6) sinh2r
which can be simplified as
E = [u* +v*| cosh2r+ [u?> —v?] sinh2r = ¥ u? +- & *V? .

We have obtained the above simplifications with Mathematica. ces

Problem 11.24 *x [Sect. 11.17] Prove that the symplectic transformation of the
Gaussian unitary (11.243) for 8 = 0 is given by

Ssq(z0) = (11.16)

coshrgl, sinhrg Y, ¥V — 0 1
sinhrg Y, coshrgl |’ 2= '
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Solution For the squeeze operator (11.242) the Bogoliubov transformation is (see
(11.73) and (11.74))

dzZﬁ(Zo)aZz(Zo)zcosh[o ro] a—i—eiesinh[o ro} s

) 0 ro 0
| coshry 0 | O sinhr
a [ 0 cosh ro} are [sinh o 0 o
that is,
- . 0 1
d = coshrg I, a+sinhrg Ws ax, W, := 1 ol- (11.17)

The symplectic matrix is obtained using Proposition 11.11 and reads

coshrplh sinhry Y, 1 0
Ssq(Zo)[ 02 0 2] ) ¢! 2[ 1 }

sinhrg Y, coshrg b 0

Problem 11.25 * [Sect. 11.17]  Prove that the covariance matrix of the state
(11.244) is given by (11.245).

Solution We use the matrices

0 1 10
C I (e

and, to avoid confusion between scalars and matrices, we have written the squeeze
matrix z as

1 * % *
z{o ZS:|Z()W2 S Za(zg) = e? (@i —Zaaz)
20

with zg = roel® € C. Now we write z in the standard form z = rel?, where z is
symmetric and r and 8 Hermitian. We have

r= |:0 r0:| :r()WQ, 6= 9012—)(96 :eieolz.
ro 0

Now we can apply the general formula (11.185) giving the covariance matrix ¥ in
the N-mode. Considering that " = r and

cosh2r=cosh2rgl,, sinh2r=sinhrgW,, cos@ =cos6yl,, sinO =sin6yl,

we find
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Y,q = cosh2r+sinh2r cos 8 = cosh2rg I, 4 cos 8 sinh 2roW>
Vpp = cosh2r — sinh2rcos 6 = cosh2ry I, — cos 6y sinh2ryW>
Y,p = sinh2r sin 6 = sin 6 sinh2roW,

and explicitly
cosh2rg  cos6ysinh2r 0 sin B sinh 2ry
Y — cos Bysinh2ry  cosh2r sin By sinh 2rg 0
n 0 sin B sinh 2rq cosh2rg —cos By sinh 2ry
sin 6y sinh 27 0 — cos By sinh 2rg cosh2ry
Then with
1000
0010
II =
0100
0001
we get
cosh2rg 0 cos By sinh2ry sin By sinh2ry
VIV — 0 . cosh.2r0 sin 6y sinh2ry — cos B sinh 2r
cos By sinh2ry  sin 6y sinh2r cosh2ry 0
sin By sinh2ry — cos 6y sinh 2ry 0 cosh2ry

which can be written in the compact form

cosh2rgl, cos By sinh 2ryY; + sin 6y sinh 2ry W,
cos 6y sinh2ryY; + sin By sinh 2rgW, cosh2rpl

In particular, for 6y = 0 we find

cosh2r012 Sil‘lh2r0Y2
sinh2rgY> cosh2ryl

We now check the identity YY), = Yqu + 1. We find
Yoo Ypp = cosh2r I, — cos® 8 sinh? 2rgW5
where sz = I>. On the other hand
Y, = sin® 6 sinh”2ro Wy

Hence
Yyq¥pp — Y., = (cosh®2rg — sinh®2rg) b = I .

The condition of minimum uncertainty, Y,,Y,, = b, is verified for 6y = 0.
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Problem 11.26 xxx [Sect. 11.17] Develop the Fock expansion of the general
two—mode Gaussian state (11.254), considering that the exponential el has the struc-
ture (11.258).

Solution We begin with the non degenerate case.f

The case uj; #0, vi,v, #0
The exponent L is explicitly

L:u1a1—l—uzaz—i-vla%—i—vza%—i—ulzalaz (11.18)
and the exponential reads

2 2
B(x,a) — eu1a1+u2a2+vla|+v2a2+u12a1a2 (] ]19)

The direct expansion of the exponential gives

upay +uzax +vg [al]z +Vv2 [a2]2++u12a|a2)4

s

B(a,a):i %(
=0 **

where

1
E(ulal +uraz +vi [al]z +va [az]z + M1za1az)e
1

- ¥

iy iy i g2k i +2j1+k ir+2ja+k
PPN uis(ar) (a2)
ijkee, 1:12:]J1:]2:K:

Upuy vy vy

with the summation over all naturals i, j, k such that
Cr:iy+i+h+jpt+k=2¢. (11.20)

To get the coefficients we let

i1+2j1+k=ny, ix+2jr+k=n; (11.21)
to obtain
b(”l,nz)zz(ni . , ]7 . s
Tk U (211 +k))-(n2 (2,]2+k))./l Lja k! (”.22)
“rlll —(2j1+k) u;2*(2j2+k)vjl'1 Vé'z ”11(2

Considering (11.21), we find that the range of summations is explicitly given by

C(ni,na2) ={(k, j1,/2)|0 <k <max(ni,n2),0 <2j1 +k<n;,0<2jr+k<ny}
={(k, j1,/2)|0 <k <max(ny,n2),0 < ji < (n1 —k)/2,0 < jo < (n2—k)/2} .
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Now (11.22) can be rewritten in the form

min(ny.n2) . [(n1=k)/2] 1

bl’l],nz = —u %M"I*Zh*k‘}jl

( ) k:Zo k1ot jlz;‘o (n1—2j1 —k)ji! ! !
—k)/2

L(m=k)/2] 1 a2hni

j2=0 (nszjka)jZ! 2 2

Next we introduce the Hermite—like polynomial (11.231) (called Hermite 2VHKdFP
in the literature), specifically

[m/2] 1 b
H = —— X"y 11.23
MERY! ,;) CETIR (11.23)
to get
min(ny,ny) 1
b(nl,nz): Z E MII(Z f]{nl,k(u],v])f]{nrk(ug,vz) . (1124)
k=0 :

In conclusion:

Proposition 11.1. For N = 2 the expansion of the exponential

B(x,a) _ exTFaf%aTCa _ eulal+u2a2+v1a%+v2a%+u12a1a2 (1125)
is given by
B(x,a) = Z Z b(ny,ny) ay'dy? (11.26)
n1:0n2:0

where the coefficients b(ny,ny) are given by (11.24) and the parameters uy,uy, vi,v;
and uy, are determined by the matrices S and T by the relations (11.259).
The case u;; #0,vi=v, =0
This correspond to Caves—Schumaker expansion where the exponent is
L = uyaj + upas + uppaias . (11.27)

However, we can obtain the expansion form the general case of Proposition 11.1
considering that the polynomial (11.23) for x = 0 gives

mmmziw

so that (11.24) becomes
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min(zy,m) 4

b(ny,ny) = Z E“Ifzj{nlfk(”l;o)}anfk(”ZaO)

=0 (11.28)
min(ny,ny) 1 1 1
=)y = uk, 7u’1”7k 7@24{
= k! (n —k)! (ny —k)!

The case u;, =0

The exponent (11.258) becomes
L=a"S"ax+ La" T ax = wa} +usas +vi(a})* +va(a3)* . (11.29)

and leads to a separable exponential

2

L uyal+upay+vy (af)>+va(a3)? uyaj+vy(af)? eu2a§+v2(a§) )

€ =¢ =€

Then the two—mode state is factored into two single-mode squeezed displaced
states, say
|z,0) = [21,00) ® |22, 00) .

Problem 11.27 x [Sect. 11.18]  Prove that the symplectic matrix of the beam
splitter is given by (11.263).

Solution Using Proposition 11.11 one gets

(1000 cosf sinfB 0 0 1000
S 0010 [ —sinBcosB O 0 0010
5710100 0 0 cosp sinf||0100
L0001 0 0 —sinfcosp] [0001
[ cosf 0 sinf 0
B 0 cosB 0 sinfB| | cosBlhL sinfh
| —=sinB 0 cosp 0 | |—sinBL cosBh
L 0 —sinf 0 cosf

Problem 11.28 xx% Consider the beam splitter with a Caves-Schumacher state
at the input. Prove that the average numbers of photons in the two modes are given
by (11.265) at the input and by (11.266) at the output.

Solution We take the opportunity to develop a general theory of photon counting,
not considered in the book. Finally, we give the solution to the problem.
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Average photon numbers in an N-mode Gaussian state

We consider a general Bogoliubov transformation in the N—mode
b=Ea+Fax+y, b*=a"E*+aF*+y". (11.30)
whose scalar forms are

b; = Z[Eirar +Firaj +yi] ) bl* = Z[E;;a: +Fj§as +y;k] .

r N

Assuming that the input is the N—-mode ground state [Oy) = |0); ® --- ® |0)n, the
average number of photons in the i—th mode is given by

7i; = i (01b;bi|0)i = Y Y [EEir i(0la}ar|0); + Fii Fyr i(0aga; |0);
r s

+ EjFiri(0lagay|0); + Fi Eir i(0asar|0);
+yi(E i(0]ag|0); + Fiy 1(0]as|0);)
+; (Eir i(0la,|0); + Firi (0la,|0);) + |yil ] -

Now most product are zero, except ;(0]asat|0); for r = s, that is,
i<0|araj |O>l - l<0| [ajar + ]] |O>l =1.

Thus we have

N
— 2 2
A=Y |Ful+[yil* . (11.31)

r=1

In the N mode the general state Gaussian |c,z), with z = rel?, is obtained from

the Bogoliubov transformation, where we have
E = coshr, F:sinhreie, y=a
and (11.31) requires to evaluate the entries

F, = [Sinhreie} , ir=1,...,N.

ir

Now, given the complex symmetric matrix z, we have to find its polar form z = rei?
and the EID of of r to evaluate sinhr.
In particular in the two—mode the average number of photons in the two modes

results in
m =Pl + [Fol +lal?, =P+ [Fol + ol (11.32)

Note that (11.32) can be written in the matrix form
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[?} = vetD[FF* + aa’] (11.33)
2

where vetD[A] is the column vector obtained from the diagonal elements of the
matrix A.

Polar decomposition of the output squeeze matrix
We find the relation linking the polar decomposition z = r/¢®” at the output to the
polar decomposition z = re'? at the input. For the two matrices we have found the
relation
/ T
7 =uzu

where u is a unitary matrix.

Proposition 11.2. The relation 7 = uzu" for the the squeeze matrices, gives the
following relations for the factors of the polar decomposition

P =uru*, el = uel® " (11.34)

Proof. We follow the procedure outlined in a previous section. We evaluate the EID
of 2 := 7/ 7" using the EID zp = VA2 V*. We find

2 =uzu" (") 7wt = uzout = uVA*V*u'
so that the EID of z, has uV as unitary matrix. Hence
r/:\/g::uVAV*u*:uru*. (11.35)

Finally, if » > 0, we find (#/)~! = ur~'u* and

o B B B B
e = () =ur Wwruzu = ur  wruzu = ur zut = ue®u”

d

In the proof we have seen the following EIDs
r=VAV*, n=VA*V*
¥ =uVAV*u*, = uVA2VV*,

Corollary 11.1. The matrices r and r' have the same eigenvalues. If f(r) =V f(A)V*
is an arbitrary function of r, the corresponding function of ¥ is given by

)y =uf(ryu*. (11.36)

In particular we have the relations
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S :=sechr — S :=sech’ =uSu*

. . 11.37
T:=tanhrel® — 7' :=tanhr e® =uTu’ . ( )

Average number of photons in a beam splitter

We have seen that in a Gaussian state the average number of photons in the two
modes are given (11.33), where the matrix F is

F =sinhre® .= T .

Now, if 7] and 71, are the average numbers of photons at the input of the BS, to
find the average numbers at the output we can evaluate the output matrix F’ using
the polar decomposition at the output. In alternative we can use relation(11.37), that
is,

F'=uFu"
In conclusion, we find that the average number of photons at the output are given by
ﬁ/
{ﬁ’l} = vetA[uF F*u* + uoa*u] (11.38)
2

The explicit results are (with separation of the contribution of squeezing n and of
displacement m)

e Means at input
n =FnF+Fol,, =B+ k) (11.39)

i +7 = |Fu | + |Fia* + [P |* + ||
:|061|2, m2:|052|2, mler2:|Oll|2+|Olz|2

e Means at output

—sin(B) [Pt + |Poa | + cos?(B) [1Fir |+ |Fial?]
—|—s1n([3 COS( [Flle*l+F12F;2+F21F1*1+F22F1*2]

|
)
iy =sin(B) [|Fin[> + |Fial| +cos® (B) [ 1P + | Foal’|
—sin(B)cos(B) [Fi1Fy + FiaFy + Fa1 iy + F )
i) 410 = [Fi1 |+ |Fial* + |Far | + | Foa |
The above results can be rewritten as
i) =cos*(B) iy + sin?(B) 772 4 An sin23

) :sinz(ﬁ)ﬁ, + COSz(ﬁ)ﬁzfAn sin2f3 (11.40)
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where
An:%(Flle*l +F22F1*2) (11.403.)
and
7ty =cos*(B) /iy + sin(B) 7112 + Am sin23 (1141)
7ty =sin’(B) 1y + cos(B) 7ita — Am sin23 '
where
Am=R(oya;) . (11.41a)

The global average numbers of both contributions at the output remain un-
chained.
The relations (11.40) and (11.41) give the solution to the problem.

Problem 11.29 % x % [Sect. 11.20]  Consider the Fock representation of a pure
state in the single mode

W (p)) = f‘,o falp) In)

Prove that the application of the rotation operator R(¢) to |y(p)) modifies the
Fourier coefficients as

fp) = " fulp). (11.42)

Solution Consider the rotation operator expressed by the number operator N = a*a

R(¢) _ eiq)N _ i (I(P)k Nk )

i—o K

Starting from the expression N = Y7 j| j) (j|, we get Nk = Yo 7*17)(j|. Then

k=0 n=0 k=0 j=0 n=0
) oo i k oo

Y Y YR o)) = Y £l )

n=0k=0 n=0

Problem 11.30 %% [Sect. 11.20] Apply the statement of the previous problem
to prove that the class of squeezed—displaced states is closed under rotations.

Solution The solution is cumbersome for the complicated expression of the Fock
representation given by (11.229).
After a rotation of ¢ the n—coefficient of a squeezed state becomes

- - 1 v \"? B 1 v*

ing _ ing v P - 2 Y Rp2

el = <2u> H”<x/2LW>eXp< 2P+ 2P > '
(11.43)

The target should be: find &y and zy such that
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e 0t,2)n = |y, 29 )n

Now, we try to replace

Vv i=vel? o Vo = ve2? .

so that . '
(V¢)”/2 — (v612¢)n/2 — (v)n/Qem(D

and

But, how should the other parameters be changed? Considering that

U = coshr, v =sinhre'® B=ua—voa*.
we have
Hy = COSh(}"¢)7 Vo = sinh(r¢)ei9¢ = v6i2¢ y ﬁq, = Up Uy — Vyp OC; .

Next we try to set ¢ unchanged

o = U —  cosh(ry) = coshr.

Then we can write the condition e |, z) = |ty 29 ) as
1 Vo "2 B Lop Vi
- H [ - __ -
N (Zu) "\v2zuv exP 2|ﬁ| +2yﬁ
1 ve \"? By Lo, Yo
= — H exp( —= +—
N <2u> "\ V21V, P 2|ﬁ¢| Zuﬁq’
and we get three conditions. The first condition is

B Bo Bo

V20V 21 N

(11.45)

that is ' ' ' '
Bo=Be — way—ve®Poy=pae? —vare? .

This gives

oy = ae'®, o@e‘d’ =a* Oy = ae'®
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The second condition is

Bs* =B — Iua¢—v¢a$|2:|ua—va*|2
that is, _ . .
lnae —ve?are )2 = |juo — var|?

which holds! The third condition is
A% *
02V o *R2 ¥ 2
— By =— — ViBi=V
o Bi=3 I B 5B B
that is

Ve 2 (o — v¢oc$)2 =vi(uo—va)? —e 2 (noy — vocgj)2 = (na—va*)?

Ve 2 (Lo — v, oc;)2 =vi(pa—va')? —se 2 (nae? —ve?Pore ) = (na—va*)?
which holds!

In conclusion, the squeezed state absorbs the rotation with
oy =ae?,  uy=p,  vy=ve?

where (
Up = U, —  cosh(rg) = coshr
L e e (11.46)
Vo = Ve —  sinh(ry)e'% = sinhre'%e'?? .

Considering that z = re', where r is not the modulus of z (it can be negative), from
(11.46) we have _
ro =%r, telf = 0720

Hence

oy =ae'?, 75 =2ze??. (11.47)

Problem 11.31 * [Sect. 11.20] Prove that the class of coherent states is closed
with respect to rotations, using the Fock representation (11.191)

Solution The coefficient f, of the Fock representation of the coherent state |@) is
given by

L2 "
—e2lalf 2
Jo=e2 W
while the coefficient f;,(¢) of the state |ael?) is
ig\n
ful9) = e*%\a\ZM =& £, .

NG

and the conclusion follows from the statement of the previous problem.
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Problems of Chapter 12

Problem 12.1 *x [Sect. 12.3]  Consider a pair (A,B) of statistically indepen-
dent symbols. Prove that, by imposing the condition i(a,b) = i(a) +i(b), the unique
function f[-] defining the information i(a) = f[p(a] is the logarithm.

Solution The condition is

flp(a,b)] = flp(a)l + flp(b)]

where p(a,b) is the joint probability. Considering the statistical independence we
have

pla,b) =p(a) p(b).
Hence

flp(a) p(b)] = flp(a)l + flp(b)] (12.1)

which must hold for every pair of probabilities p(a), p(b). This leads to the func-
tional equation

fxy)=f)+ ),  Vxyelo,1].

It can be shown that the unique continuous solution of this equation is given by the
logarithm

f(x) =Klog.x

where both the constant K and the basis ¢ are arbitrary (¢ > 0). But, by imposing
that (see the definition of bit) f(%) =1, one gets Klog, % = 1 and hence

1
flx) = Tz 2 log. x = —logy x

where we have used the formula giving the change of base of the logarithmic func-
tion
log.x = (log.d)log,x.

Problem 12.2 xx [Sect. 12.4] (Thermal states) A thermal state may be defined as
the bosonic state that maximizes the von Neumann entropy for a given mean number
of photons N. 6 It has the following Fock representation (see Section 11.9)

oo N\
=Y, ey )] (12.2)
t r;) (N+ 1)n+l
Find its quantum entropy.

Solution The form (12.2) is already an EID with orthonormal states and eigenvalues

6 C. Weedbrook, S. Pirandola, R. Garcf a Patrén, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd,
“Gaussian quantum information,” Rev. Mod. Phys., vol. 84, pp. 621-669, May 2012.
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Nn
Ap= .
(N4 1)l
Then we can apply (12.27) to get
oo n n

S(p) = 1
(Pun) ”;) N+ 1)L 8 (N 1)

The summation gives the quantum entropy
S(pm) = N+1)log(N+1) —Nlog(N)

which is illustrated in Fig.12.1.

i

0

I R PR | ]
0 05 I L5 2 25 3 35 4 45,5
Fig. 12.1 The quantum entropy S(p) of the thermal state as a function of the mean number of
photons N.

Problem 12.3 « [Sect. 12.7]  Prove that in a binary symmetric channel with
cross transition probability € and equal a priori probabilities (see Fig. 12.15), the
equivocation is given by

H(A|B) = —(1—¢)log(l —¢) —€eloge .
Solution The general formula giving the equivocation is

H(A|B) = E[i(A[B)] = — Zzb:pAB(mb)lngA\B(alb) :

In this case we have
1
pas(a,b) = EPA\B(““’) .
Then
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H(A|B) =Y pas(a,b)log pajp(alb)
ab

1
=-3 [Pa15(0]0) 10g pa|5(010) 4 pajp(1]1) log pap(1]1)+

+pajp(0[1) log po15(0[1) + pajp(1]0) log pajp(1]0)]
—(1—¢€)log(1—¢€)—¢€loge.

Problem 12.4 % [Sect. 12.7] Prove formula (12.71) giving the mutual information
in terms of the a priori probabilities and the transition probabilities.

Solution The general formula giving the mutual information is
I(A; B) =H(A) — H(A|B) = E[i(4) — i(A|B)]
=Y pa(a)logpa(a)+Y Y pas(a,b)logps(alb)
a a b

where the probabilities can be expressed in the form
pag(a, b) = pa(a) pgia(bla) = pa(a) pc(bla)
b) =Y pas(d,b) ZPA ) pe(bld’) .
a/

Then
pe(ba)

Zm ) pe(bla) k’gZp e

Problem 12.5 % [Sect. 12.8] Find the Kraus representation of a depolarizing
channel in a qubit system, using identity (12.86).

Solution We can first check that the relation

Ii=h=3% Y GAg))
i=0,x,y,2

holds for every Hermitian matrix A, as soon as we use the expression of Pauli’s
matrices (see (3.91)), given by

o |1 O] S _fo 1] S _fo -] __[t o0
= = 1o 1Tt ol i o] o —1]|-

Then, using the above relation with A = p in

D(p)=1=p)p+p(1/2)Is, d=2

we get
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®(p) =(1-p)p+4p3 Gipo;
i=0,x,y,2
=(1=p)p+ipp+ip ), cipo;
i=x,y,2
3
=) Vip V¢
k=0

with

Vo=y\/(1=p)+irh, Ve=3vPOr, k=123.

Problem 12.6 * [Sect. 12.9] Consider the following ensemble in a qubit system

0.8 0.25}

0.10.3
0.25 0.2 ’

L P0=%7P0=[ P1=%7P1=[0_30.9

Evaluate the Holevo x.

Solution The eigenvalues of pg and of p; are respectively
{0.890512,0.109488} , {1.,0}.

Note that p; has rank 1 and therefore it corresponds to a pure state. The mean density
operator is given by

[ 045 0275
P1=10275 055

B [—

po+

=

p:

and its eigenvalues are
{0.779508,0.220492} .

From the eigenvalues we find the entropies
S(po) = 0.498368, S(p1)=0., S(p) =0.761064 .

Hence
x=5(p) —35(po) — 3S(p1) = 0.51188..

Problem 12.7 xx [Sect. 12.9]  With the ensemble £ specified in the previous
problem, evaluate the mutual information, assuming that Bob uses the measurement
operators provided by the Helstrom theory. Then verify the Holevo bound I(A, B) <

x(£).
Solution We have to calculate the mutual information /(A;B),which in the binary

case is given by
I(A;B)=H(A)—H(A|B)

where
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H(A|B) = [logPA\B alb)] ZPAB a,b) IOgPA\B(aV’)

With equal a priory probabilities the joint probabilities are evaluated from the tran-
sition probabilities as pap(0,0) = 1p.(0(0), pag(0,1) = 1p.(0[1), etc. where for
the symmetry we have p.(1|1) = p.(0,0) = P, and p.(0|1) = p(1,0) = P,, with P,
the correct decision probability and P, — 1 — P.. Thus, we have

pas(0,0) = pap(1,1) =3P, pap(1,0) = pag(0,1) = 1P,

For the symmetry we have that also the output probabilities are equal, pg(0) =
pp(l) = % Hence

pap(0]0) = pap(1]1) = P, pajp(1]0) = pa(0[1) =
and
H(A|B) = —P.logP. — P, logP,.

On the other hand Helstrom’s theory gives

Fe=3+ )
>0

where 1y, are the eigenvalues of the operator D = % p1— % Po-. In this case the eigen-
values result in {—0.350892,0.350892} and therefore

P.=0.850892, P, =0.149108.

and
H(A|B) =0.607604, HA)=1, I(A;B) =0.39239.

On the other hand
S(po) = 0.498368, S(p1)=0., S(p) =0.761064

and
x=5(p) = 5S(po) — 35(p1) = 0.51188.
Thus I(A; B) < x and the Holevo bound is verified.
Problem 12.8 %% [Sect. 12.9]  Prove that the Holevo bound holds with the
equality sign if 1) the density operators {p,} commute, that is, they are simultane-

ously diagonalizable, and 2) the POVM measurement is performed with the com-
mon eigenbasis of the {p,}.

Solution Let
Pa=UAU" = Z|uk>k,f<uk|
k
be the simultaneous diagonalization of the p,. Then we implement the measure-
ment with the basis {u,},b € A provided by the common unitary operator U. The
measurement with the elementary projectors Qp, = |up) (up| gives (see (3.36))
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Ppja(bla) :=Pm = b|pa) = (up|palup) = |(up|U AU |up)
Zk‘, |ut) (ot | 2 ) (s |

=Y S Al = AL
k

Comment. The probabilities pp|4(b|a) = A} are generic with no particular struc-
ture. Thus, if this is true, it does not seem possible to prove that the mutual informa-
tion saturates the Holevo—y.

On the other hand Datta’ claims the statement. Also Holevo and Giovannetti®
claim the statement, citing Helstrom’s book.

Problem 12.9 * [Sect. 12.9] Prove that in a constellation of distinct pure states
{Pa = |Wa)(Wul| , a € A}, the density operators commute if and only if the states are
orthogonal.

Solution We have

PaPp :|‘Va> <V’a|V’b><Wb| = Xab|‘/’a> <‘I’b|
PoPa =| W) (Wb |Wa) (Wa| = Xap| Wi ) (Wal -

If X, = 0 the density operators commute. Are |y, ){y,| and |y} ) (y,| commutable
with b # a?

Small corrections to be introduced in the Prblems

Correction N.1

Please remove Problem 3.8 at p.103, because it has the same content as Problem 3.7
at p.97., and enumerate the subsequent problems correspondingly.
The text to be removed reads

Problem 3.8 *  Apply Postulate 3 to a quantum system “prepared” in a pure
state | ), when the measurement is obtained by an set of orthonormal measurement
vectors {|ao),|a1),...,|lap—1)}. Find the probability distribution of the measure m
when the state of the system is one of the measurement vectors. Which is the state
of the system after the measurement?

Correction N.2

In the equation of Problem 5.8 at p. 202 there is an error. Please replace the last part
of the eqaution

M=[ \ket{\mu_O}\ket{\mu_0}]

7 N. Datta, “Quantum entropy and information,” in Quantum information, computation and cryp-
tography, ser. Lecture Notes in Physics, F. Benatti, M. Fannes, R. Floreanini, and D. Petritis, Eds.
Springer Berlin Heidelberg, 2010, vol. 808, pp. 175-214.

8 A.'S. Holevo and V. Giovannetti, “Quantum channels and their entropic characteristics,” Reports
on Progress in Physics, vol. 75, no. 4, p. 046001, 2012.
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with
M=[ \ket{\mu_0}, \ket{\mu_1}]

Then the text should result in

Problem 5.8 xx Write the fundamental relations of the geometrical approach in
matrix form, using the matrices

r={w.ml,  U=luo)lu)],  M=]lto),[u)].

Correction N.3

In the equation of Problem 5.10 at p.209 there is an error. Please replace the last part
of the text

if $\gamma_1$ is replaced by

S\gamma_1 \B(z) $, with $\B(Z)\B(Z) “x=I_hs,
S\BB (\mu)_1 \B(W) S,

with

if $\gamma_i$ is replaced by

S\gamma_i \B(Z) $, with S$\B(Z)\B(Z) “*=I_h$, and $\mu_j$ by
S\mu_j \B(W) $,

Then the text should result in

Problem 5.10 « Consider the transition probabilities given by (5.22). Prove that,
if 7; is replaced by %Z, with ZZ* = I, and u; by u;W, with WW* = [, the transition
probabilities do not change.

Corrections on page 196

Present stautus.

IM0) = aoo|¥00) + ao1]710) » [m1) = aoly00) +aii]vio) - (5.28)

Now, the coefficients a;; are obtained by applying the definition of eigenvector, that
is,

D[no) =mno[no),  DIni)=mi|m) (5.29)

where 1 and 7n; are the eigenvalues. Substituting (?H2?) and (5.28) in (5.29), re-
calling that (y0|vi0) = (Y00|00) = 1 and letting X = {y0|710), we obtain

q1(apiX +ai;)|v10) — golaoi + a1:X™)|y00) = Noi(aoi| v00) + a1:1710)) s i=0,1.

(5.30)
But, because of the assumed independence, in (5.30) the coefficients of |y() and
[Y00) must be equal
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q1(aoiX + ay;) = niay;, —qo(ao; +aX") = niao;, i=0,1. (531)

Solving with respect to 1); we get the equation

Please
1) replace all )y, with 9, and all v, with y;,
2) replace must be equal with must be equal to zeo. Hence
3) in Eq.(5.31) replace

q1(aoiX +a;) = niay;, —qo(ao; + a1 X") = mao;, i=0,1.
with
q1(aioX" +ain) = nia1, —qo(aio +ainX) = nia, i=0,1.
The TeX code of the last (correct) equation is

$S

g l(a_{i\,0}X"«x+a_{i\,1})=\eta_{i}\, a_{i\, 1}
\vg —q 0 (a_{i\,0}+a_{i\,1}1Xx)=

\eta_{i}\, a_{i\,0}\vg i=0,1\;.

\e (H4B)

$S
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Corrections on page 197
Present stautus.

represents the (quadratic) superposition degree between the two states. In the liter-
ature expressions (?H20?) are universally known as Helstrom’s bound.
The optimal projectors derive from (?DD13?) and become

Qo= [mo)(mol, Q1 =[n1){m] (5.34)

and therefore they are of the elementary type, with measurement vectors given by
the eigenvectors |1o) and |1;) of the decision operator D.

It remains to complete the computation of these two eigenvectors, identified by
the linear combinations (5.28). Considering (5.31) we find

moh = (1)~ 2220 ) = (L) 44 ) (539)

where ag and aj; are calculated by imposing the normalization (1;|1;) = 1. In the
general case, the calculation of the eigenvectors is very complicated
Please in Eq. (5.35) replace

_ Mo —4q0 _ m—q
mob=an (1) =220 ) = (P )+ 1))
with
X" qoX )
=a + ; =apn | — +
b =ao () + -2 ) = () + )
correzioni

e p. 112 final dot . in Eq. (3.63)

e p. 263 last but one line; remove -10.0 and two extra plus

—0.54117 —0.02018 —0.47937 —0.06934 0.03124

r=[p.0] = —0.54117 —0.02018 i0.51339 0.0 10.02917
’ —0.54117 —0.02018 0.47937—-10.0 —0.069344 —0.03124+
—0.33238  0.09857 —10.51339 0.0 —10.02917

Remove the red part

p. 415 last symbol of last equation: replace Do with da
Tex code \D\alpha

p. 445 first equation: add a final .

p. 461 three lines before (10.12): replace “system A” with “system A”

p. 489 last two lines of Eq.(11.80): replace RY with CV in both lines. Tex code
S\M(C) "N$
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e p. 659 first line after the second equation: replace B, € (R) with B, € R that s, re-

move () aroud R.
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