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As a telecommunications engineer I know that in the real world the error proba-

bility is never zero. This is particularly true for the solutions of problems. I do hope

that, with the help of the readers, the error probability in the solutions will be con-

siderably reduced
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2 Solutions of problems of Chapter 2

Problems of Chapter 2

Problem 2.1 ⋆ [Sect. 2.4] A basis in H = C2 is usually denoted by {|0〉, |1〉}.

Write the standard basis and a nonorthogonal basis.

Solution The standard basis is

|0〉=
[

1

0

]
, |1〉=

[
0

1

]
.

Another basis is

|0〉=
[

3i

2

]
, |1〉=

[
3√
3

]
. (P1)

The two kets in (P1) are independent (check it), but not orthogonal. In fact

〈0|1〉= [−i,2]

[
3√
3

]
=−3i+ 2

√
3 6= 0 .

Problem 2.2 ⋆⋆ [Sect. 2.4] An important basis in H=Cn is given by the columns

of the Discrete Fourier Transform (DFT) matrix of order n, given by

|wi〉=
1√
n

[
1,W−i

n ,W−2i
n , . . . ,W

−i(n−1)
n

]
T

, i = 0,1, . . . ,n− 1 (E1)

where Wn := exp(i2π/n) is the nth root of 1. Prove that this basis is orthonormal.

Solution We recall that the standard inner product in Cn is (see (2.23))

〈y|x〉= x0y∗0 + · · ·xn−1y∗n−1 =
n−1

∑
r=0

xry
∗
r .

Here, we have to evaluate the inner products 〈w j|wi〉. The rth entries of |wi〉 and

〈w j | are respectively

xr =
1√
n

W−ri
n , y∗r =

1√
n

W r j
n .

Hence

〈wi|w j〉=
1

n

n−1

∑
r=0

W
r( j−i)
n =

1

n

n−1

∑
r=0

exp(i2πr(i− j)/n) .

Next, using the property of the nth roots of 1

n−1

∑
r=0

exp(i2πrk/n) = 0 ∀ integers k 6= 0 ,

one gets
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〈wi|w j〉=
{

1 i = j

0 i 6= j .

Problem 2.3 ⋆ [Sect. 2.4] Find the Fourier coefficients of ket

|x〉=




1

i

2


 ∈ C

3

with respect to the orthonormal basis (E1).

Solution The Fourier coefficients with an orthonormal basis are given by (2.24a),

which now reads

ai = 〈wi|x〉 .
Then

ak =
1√
3
[W 0

3 ,W
k
3 ,W

2k
3 ]




1

i

2


 , k = 0,1,2

where W3 = exp(i2π/3) =− 1
2
+ i

√
3

2
. The explicit result is

a0 =
3+ i√

3

a1 =
1+ i

[
− 1

2
+ i

√
3

2

]
+ 2
[
− 1

2
+ i

√
3

2

]2

√
3

=−1

6
i
[
(6− 3i)+

√
3
]

a2 =
1+ i

[
− 1

2
+ i

√
3

2

]2

+ 2
[
− 1

2
+ i

√
3

2

]4

√
3

=
1

6

[
(3+ 6i)− i

√
3
]
.

Problem 2.4 ⋆ [Sect. 2.4] Write the Fourier expansion (2.24) and (2.25) with a

general orthonormal basis B= {|bi〉|i ∈ I}.

Solution The compact form is

|x〉= ∑
i∈I

ai|bi〉 with ai = 〈bi|x〉 .

Then it can also be written as

|x〉= ∑
i∈I

(〈bi|x〉) |bi〉 .

Problem 2.5 ⋆ [Sect. 2.5] Prove that the image of an operator on H is a subspace

of H.
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Solution We have to prove that

im(A) := AH = {A|x〉 | |x〉 ∈H}

has the properties of a vectors space as listed in Definition 2.1.

Problem 2.6 ⋆ [Sect. 2.5] Define the 2D operator that inverts the entries of a ket

and write its matrix representation with respect to the standard basis.

Solution The relation |y〉= A |x〉 of the operator is explicitly

[
y1

y2

]
=

[
a11 a12

a21 a22

][
x1

x2

]
=

[
x2

x1

]

which implies that

A =

[
a11 a12

a21 a22

]
=

[
0 1

1 0

]
.

This is also the matrix representation of the operator A with respect to the standard

basis

B=

{[
1

0

]
,

[
0

1

]}
.

Problem 2.7 ⋆⋆ [Sect. 2.5] Find the matrix representation of the operator of the

previous problem with respect to the DFT basis.

Solution The DFT basis for n = 2 is

W=
1√
2

{[
1

1

]
,

[
1

−1

]}
.

Hence, we apply (2.32), which reads

ai jW = 〈wi|A|w j〉 , i, j = 0,1 .

Explicitly

a00W= 1 , a01W= 1 , a10W= 0 , a11W=−1 → AW=

[
1 0

0 −1

]

Note that Tr[AW] = Tr[A] = 0, which confirms that the trace is independent of the

matrix representation.

Problem 2.8 ⋆ [Sect. 2.8] Classify the so called Pauli matrices

σ0 = I =

[
1 0

0 1

]
, σx =

[
0 1

1 0

]
, σy =

[
0 −i

i 0

]
, σz =

[
1 0

0 −1

]
(E2)

which have an important role in quantum computation.
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Solution All the Pauli matrices are both unitary and Hermitian.

Problem 2.9 ⋆ [Sect. 2.9] Prove properties (2.65), (2.66) and (2.67) for a projec-

tor and its complement.

Solution To prove (2.65), let |s〉= P|x〉 and |s⊥〉= Pc|y〉; bearing in mind that 〈s⊥|=
〈y|P∗

c and that Pc is Hermitian, we get

〈s⊥|s〉= 〈y|PcP|x〉, where PcP = (I−P)P = 0 .

Hence (2.65) follows. For the other properties, the proof is analogous.

Problem 2.10 ⋆ [Sect. 2.9] Prove that projectors are positive semidefinite opera-

tors.

Solution See (2.63), Theorem 2.6 and Corollary 2.1.

Problem 2.11 ⋆⋆⋆ [Sect. 2.12] Let A be an arbitrary operator of the Hilbert space

H. Show that the operator AA∗ is always positive semidefinite.

Hint: use diagonalization of A.

Solution Recalling the rules (AB)∗ = B∗A∗ and (A∗)∗ = A, we find

(AA∗)∗ = (A∗)∗A∗ = AA∗

and therefore AA∗ is Hermitian. Let U ΛU∗ be the diagonalization of A. Then, the

diagonalization of A∗ is U Λ∗U∗ and the diagonalization of AA∗ is

AA∗ =U ΛU∗U Λ∗U∗ =U Λ Λ∗U∗ .

Now, if λi is the ith eigenvalue in Λ , the corresponding eigenvalue in ΛΛ∗ is λiλ
∗
i =

|λi|2 ≥ 0 and the conclusion follow from Theorem 2.6.

Problem 2.12 ⋆ [Sect. 2.13] Prove that if A and B are Hermitian operators, also

A⊗B is a Hermitian operator.

Solution From the Hermitian conditions, A∗ = A, B∗ = B, and from the second of

(2.103) one gets

(A⊗B)∗ = A∗⊗B∗ = A⊗B .

Problem 2.13 ⋆⋆ [Sect. 2.13] Establish the compatibility conditions for the di-

mensions of the matrices in the mixed–product law (2.104).

Solution The compatibility conditions are concerned with the ordinary product. Let

mA×nA be the dimension of A and so for the other matrices. Then, the compatibility

conditions on the right hand side are

mC = nA , mD = nB .

These two conditions ensure the compatibility on the left hand side. In fact, on the

left hand side the conditions are
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mC⊗D = mCmD = nA⊗B = nAnB .

Problem 2.14 ⋆⋆ [Sect. 2.13] Prove property (2.107) of the Kronecker product

and, more specifically, prove that, if λ is an eigenvalue of A with eigenvector |λ 〉
and µ is an eigenvalue of B with eigenvector |µ〉, then λ µ is an eigenvalue of A⊗B

with eigenvector |λ 〉⊗ |µ〉.
Solution We have

A|λ 〉= λ |λ 〉 , B|µ〉= µ |µ〉 .
Hence, using definition (2.99) and property (2.98a), we get

(A⊗B)|(λ 〉⊗ |µ〉) = (A|λ 〉)⊗ (B|µ〉) = (λ |λ 〉)⊗ (µ |µ〉) = λ µ(|λ 〉⊗ |µ〉) .

Problem 2.15 ⋆ ⋆ ⋆ [Sect. 2.13] The mixed–product law can be extended in

several ways. In particular,

(A1 ⊗A2)(B1 ⊗B2)(C1 ⊗C2) = (A1B1C1)⊗ (A2B2C2) . (E5)

Prove this relation using (2.104).

Solution The mixed–product law (2.104) gives

(A1 ⊗A2)(B1 ⊗B2) = (A1B1)⊗ (A2B2) .

Then we right multiply both sides by C1 ⊗C2 to get

(A1 ⊗A2)(B1 ⊗B2)(C1 ⊗C2) = (A1B1)⊗ (A2B2)(C1 ⊗C2)

and (E5) follows after a new application of (2.104) at the right hand side.

Problem 2.16 ⋆⋆ [Sect. 2.13] Prove that, if the matrices A1 and A2 have respec-

tively the diagonalizations (see (2.87))

A1 =U1Λ1U∗
1 , A2 =U2Λ2U∗

2

then

A1 ⊗A2 = (U1 ⊗U2)(Λ1 ⊗Λ2)(U
∗
1 ⊗U∗

2 ) (E6)

is a diagonalization of A1 ⊗A2.

Solution We have

A1 ⊗A2 = (U1Λ1U∗
1 )⊗ (U2Λ2U∗

2 ) .

Then, using the extension of the mixed-product law (see the previous problem), (E6)

follows at once.
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Problems of Chapter 3

Problem 3.1 ⋆ [Sect. 3.3] Prove that the density operator ρ of a quantum system

in a pure state is idempotent.

Solution The density operator is given by ρ = |ψ〉〈ψ |. Then ρ2 = |ψ〉〈ψ |ψ〉〈ψ |,
where 〈ψ |ψ〉= 1 and therefore ρ2 = ρ .

Problem 3.2 ⋆ ⋆∇ [Sect. 3.3] Prove that, if and only if Tr[ρ2] = 1, the density

operator ρ represents a pure state.

Hint: see Proposition 3.5.

Solution Proposition 3.5 gives the expansion (reduced EID)

ρ =
r

∑
i=1

σ2
i |ui〉〈ui|

where r is the rank of ρ , σ2
i are the r positive eigenvalues of ρ , and |ui〉 are the

corresponding orthonormal eigenvectors. Then

ρ2 =
r

∑
i=1

σ4
i |ui〉〈ui|

and, considering that the σ2
i are probabilities (σ2

i ≤ 1),

Tr[ρ2] =
r

∑
i=1

σ4
i ≤

r

∑
i=1

σ2
i = Tr[ρ ] .

The equality holds if and only if r = 1 and σ2
1 = 1, which gives

ρ = σ2
1 |u1〉〈u1|= |u1〉〈u1|

and ρ represents a pure state.

Problem 3.3 ⋆⋆ [Sect. 3.3] Prove relation (3.9), which states that a cavity at

thermal equilibrium is in a mixed state.

Solution In fact,

ρ2 = (1− ε)2
∞

∑
m=0

∞

∑
n=0

εmεn|m〉〈m|n〉〈n|

= (1− ε)2
∞

∑
m=0

ε2m|m〉〈m| .

Hence

Tr(ρ2) = (1− ε)2
∞

∑
m=0

ε2m =
(1− ε)2

1− ε2
=

1− ε

1+ ε
< 1.
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Problem 3.4 ⋆⋆ [Sect. 3.3] Verify that the ensembles (3.10), (3.11) and (3.12)

give the same density operator.

Solution It is sufficient to use the definition (3.7). For the ensemble (3.12), where

the states are given by a linear combination of the orthonormal basis {|0〉, |1〉}, see

Example 3.2.

Problem 3.5 ⋆ [Sect. 3.4] Prove that if the temporal evolution operator U =
U(t, t0) is unitary, as assumed in Postulate 2, then the norm of the wave function

|ψ(t)〉 at time t remains of unit length, as it must be from Postulate 1. Moreover,

prove that the inner product of two wave functions |ψ1(t)〉 and |ψ2(t)〉 doesn’t

change during the evolution.

Solution It is sufficient to prove the statement concerning the wave functions, that

is,

〈ψ1(t)|ψ2(t)〉= 〈ψ1(t0)|ψ2(t0)〉 .
In fact, for both wave functions the evolution is

|ψi(t)〉=U(t, t0)|ψi(t0)〉 , i = 1,2 .

Then the inner product at time t is given by

〈ψ1(t)|ψ2(t)〉=〈ψ1(t0)|U∗(t, t0)U(t, t0)|ψ2(t0)〉
=〈ψ1(t0)|IH|ψ2(t0)〉
=〈ψ1(t0)|ψ2(t0)〉 .

In particular, for |ψ1(t)〉= |ψ2(t)〉= |ψ(t)〉 we get

〈ψ(t)|ψ(t)〉= 〈ψ(t0)|ψ(t0)〉= 1 .

Problem 3.6 ⋆ [Sect. 3.4] Suppose that AS, BS, and CS are three observables in

the Schrödinger picture that verify the commutation condition

[AS,BS] = iCS .

Prove that in the Heisenberg picture the commutation condition becomes

[AH(t),BH(t)] = iCH(t) .

Solution The condition is explicitly

AS BS −BS AS = iCS .

Multiplying both sides from the left by U∗(t0, t) and from the right by U(t0, t) one

gets
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U∗(t0, t){AS BS −BS AS}U(t0, t) = iU∗(t0, t)CS (t0, t)U(t0, t)

where, considering that U∗(t0, t)U(t0, t) = IH, we can write

AS BS = AS U∗(t0, t)U(t0, t)BS , BS AS = BS U∗(t0, t)U(t0, t)AS .

Finally, using (3.23), one obtains the result.

Problem 3.7 ⋆ [Sect. 3.5] Apply Postulate 3 to a quantum system “prepared” in

a pure state |ψ〉, when the measurement is obtained by a set of orthonormal mea-

surement vectors {|a0〉, |a1〉, . . . , |aM−1〉}. Find the probability distribution of the

measure m when the state of the system is one of the measurement vectors. Which is

the state of the system after the measurement?

Solution Suppose that the system is in the state |ψ〉 = |a1〉. Then, considering that

the vectors are orthonormal, application of (3.29) gives

P [m = i|a1] = |〈ai|a1〉|2 =
{

1 i = 1

0 i 6= 1

which is a degenerate distribution. In other words, the measurement gives m = 1

with probability 1. Since the result of the measurement is m = 1, from (3.7) we get

|ψ(1)
post〉= |a1〉 .

removed problem(MQ37), identical to prolem(MQ30)

Problem 3.8 ⋆ [Sect. 3.6] Consider the Hermitian operator

H =
1

2

[
3 −i

i 3

]

and use it as an observable for the measurement in a qubit system prepared in the

pure state

|ψ〉= 1√
5

[
1

2i

]
.

Evaluate the probability of the measurement outcome m and the post–measurement

states.

Solution The spectral decomposition theorem (Theorem 3.1) gives

H = a1|a1〉〈a1|+ a2|a2〉〈a2|

where a1 and a2 are the eigenvalues and the corresponding eigenvectors are
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|a1〉=
1√
2

[
−i

1

]
, |a2〉=

1√
2

[
i

1

]
.

The corresponding projectors are

Π1 = |a1〉〈a1|=
1

2

[
1 i

−i 1

]
, Π2 = |a1〉〈a1|=

1

2

[
1 −i

i 1

]

that is, the ones given by (3.39). Then the probabilities of the outcome and the

post–measurement states have been evaluated in Example 3.4. Note in particular

that, considering that the projectors are elementary, the post–measurement states

are given by the eigenvectors of the observable H, according to (?BB2?).

Problem 3.9 ⋆⋆ [Sect. 3.6] Let A be an observable with spectrum σ(A). Show

that the moments of a measurement m obtained with the observable when the state

|ψ〉 is set to an eigenket |a〉 of A, are simply given by

E[mk|a] = ak , k = 1,2, . . . (E2)

where a ∈ σ(A) is the eigenvalue corresponding to the eigenket |a〉. Explain why.

Solution For the proof it is sufficient to apply the eigenvalue equation

A|a〉= a|a〉 , a ∈ σ(A)

which defines the eigenvalues and eigenvectors of A. For instance for k = 3 one gets

E[m3|a] = 〈a|A3|a〉= 〈a|A2A|a〉

where A|a〉= a |a〉. Hence,

E[m3|a] = 〈a|A2|a〉= a〈a|A2|a〉

and, repeating the substitution one gets E[m3|a] = a3.

To explain this result it is sufficient to evaluate the probability distribution of

random variable m in the case of elementary projectors. Using (3.29) with |ψ〉 =
|a〉 ∈ σ(A), one gets

P [m = i|a] = |〈a|ai〉|2 =
{

1 a = ai

0 a 6= ai

which state that the outcome of the measurement is m = a with probability 1. In

practice this means that the outcome is always m = a and therefore the expectation

of mk is ak.

Problem 3.10 ⋆⋆ [Sect. 3.9] Prove that the state after the second measurement

with the same projector system remains the same as the one in which the system

was after the first measurement, as stated by (3.55).

Solution In fact, it results



Solutions of problems of Chapter 3 11

|ψ(i)
post,post〉=

Πi|ψ(i)
post〉√
p′i

=
Π 2|ψ〉√

p′i
= |ψ(i)

post〉

as soon as we bear in mind that p′i = 1 and Π 2 = Π .

Problem 3.11 ⋆⋆ [Sect. 3.10] Consider the non normalized state

|ψ ′〉= 2 |00〉+ i |01〉+ 3 |01〉

of a two–qubit system with basis B= {|00〉, |01〉, |10〉, |11〉} (here |00〉 stands for

|0〉⊗ |0〉, etc.). Find the normalized form, 〈ψ |ψ〉= 1, and prove that the two qubits

|ψ〉 are entangled.

Solution Considering that the basis is orthonormal, the square amplitude of |ψ ′〉 is

〈ψ ′|ψ ′〉= 22 + |i|2 + 32 = 14

and therefore the normalized form is

|ψ〉= 2√
14

|00〉+ i√
14

|01〉+ 3√
14

|01〉 .

Considering the general form (3.68) of non entangled qubits, now rewritten in the

form

|ψ1〉⊗ |ψ2〉= u0v0|00〉+ u0v1|01〉+ u1v0|10〉+ u1v1|11〉
we find that the non entanglement conditions should be

u0v0 =
2√
14

, u0v1 =
i√
14

, u1v0

3√
14

, u1v1 = 0

where the latter implies u1 = 0 or v1 = 0, which are incompatible with the other

conditions. Hence, the two qubits |ψ〉 are entangled.

In Chapter 10, Proposition 10.3, we shall see Schmidt’s decomposition, which

states in general whether a composite state is entangled or not.

Problem 3.12 ⋆⋆ [Sect. 3.11] Minimum factor from an arbitrary factor. Let Ψ̂
be an arbitrary k–factor of ρ . The reduced SVD of the n× k matrix Ψ̂ has the form

(see Section 2.12)

Ψ̂ =
r

∑
i=1

σi |ui〉〈vi|=U ΣΣΣV ∗ (3.1)

where the σi are the square roots of the r positive eigenvalues σ2
i of Ψ̂ Ψ̂∗ = ρ ,

ΣΣΣ = diag {σ1, . . . ,σr}, |ui〉 and U are the same as in the EID of (3.81), |vi〉 are

orthonormal vectors of length k, and V = [|v1〉, . . . , |vr〉]. Prove that a minimum or-

thonormal factor of ρ is given by

Ψ̂0 =U ΣΣΣ . (3.2)
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Solution The expression of Ψ̂0 is the same as in Proposition 3.5. Note that from

(3.84), considering that V ∗V = Ir (the r× r identity matrix), we find

Ψ̂ Ψ̂∗ =U ΣΣΣV ∗V ΣΣΣ U∗ =U ΣΣΣΣΣΣ U∗ = Ψ̂0Ψ̂∗
0 = ρ

which represents the EID of ρ .

Problem 3.13 ⋆ ⋆ ⋆ [Sect. 3.11] Generation of all possible factors of a density

operator. Let Ψ̂ be a k–factor of ρ , that is, Ψ̂ Ψ̂∗ = ρ , and let A be an arbitrary k× p

complex matrix that verifies the condition AA∗ = Ik. Prove that

Φ = Ψ̂ A (3.3)

is a p–factor of ρ . This relation allows us to generate all the possible factors of a

given density operator

Solution In fact, Φ Φ∗ = Ψ̂ AA∗Ψ̂∗ = Ψ̂ Ψ̂ ∗ = ρ . Note that k ≥ r = rank(ρ) =

rank(Ψ̂). Condition A∗ A = Ik states that the k columns ai of A are orthonormal vec-

tors, that is, they verify the condition ai a∗j = δi j. Considering that ai ∈ Cp, we have

the condition p ≥ k, because we cannot find in Cp an orthonormal set {a1, . . . ,ak}
with more than p components.

Now we relate an arbitrary factor Φ̂ of ρ to a minimum orthonormal factor. A

k–factor Φ̂ of ρ is related to a minimum orthonormal factor Ψ̂0 in the form

Φ̂ = Ψ̂0 A0 (3.4)

where A0 is an r× k matrix given by

A0 = ΣΣΣ−2Ψ̂ ∗
0 Φ̂ (3.4a)

ΣΣΣ2 being the diagonal matrix formed by the positive eigenvalues of ρ . The matrix

A0 always verifies the condition A0 A∗
0 = Ir.

Considering that a minimum factor has the form (see (3.82)) Ψ̂0 =U ΣΣΣ , by left–

multiplying (3.4) by U∗, we get

U∗Φ̂ =U∗Ψ̂0 A0 =U∗U ΣΣΣ A0 = ΣΣΣ A0

and, considering that Ψ̂0 =U ΣΣΣ , (3.4a) follows. Next, from (3.4a), considering that

Φ̂ Φ̂∗ = ρ and also Ψ̂0Ψ̂∗
0 = ρ , we get

A0 A∗
0 = ΣΣΣ−2Ψ̂ ∗

0 Φ̂ Φ̂∗Ψ̂0 ΣΣΣ−2 = ΣΣΣ−2Ψ̂∗
0 Ψ̂0Ψ̂∗

0 Ψ̂0 ΣΣΣ−2

where Ψ̂∗
0 Ψ̂0 = ΣΣΣ 2. Hence, AA∗ = Ir.

Relation (3.4) states that, starting from a minimum orthonormal factor Ψ̂0, of

dimension n×r, one can generate all the possible factors of a given density operator

in the form Ψ̂ = Ψ̂0 A0, where A0 is an arbitrary k× r matrix with orthonormal rows,

that is, with A0 A∗
0 = Ir. Note that k ≥ r may be arbitrarily large.
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Problem 3.14 ⋆⋆ [Sect. 3.11] Find the reduced SVD of the factor (3.79) and

show that it gives the same minimum factor Ψ̂0 obtained with the EID of ρ .

Solution The factor given by (3.79) has rank r = 2 and its SVD is Ψ̂ =U ΣΣΣV ∗ with

U =




− 1
2
− 1

2
i
2

− 1
2

1
2

− 1
2

− 1
2
− 1

2


 , V =




1√
3

0
1√
3

1√
2

− 1√
3

1√
2


 , ΣΣΣ =

[ √
3

2
0

0 1
2

]
.

Hence, we find

Ψ̂0 =U ΣΣΣ =




−
√

3
4

− 1
4

i
√

3
4

− 1
4√

3
4

− 1
4

−
√

3
4

− 1
4




that is, the same minimum factor Ψ̂0 obtained with the EID of ρ .

Problem 3.15 ⋆⋆ [Sect. 3.11] Consider the minimum factor given by (3.83) and

find a 2× 3 matrix to generate a 3–factor. Also, apply the 2× 8 matrix

A =
1

2
√

2

[
1 1 1 1 1 1 1 1

1 e−
iπ
4 −i e−

3iπ
4 −1 e

3iπ
4 i e

iπ
4

]

to generate an 8–factor.

Solution A 2× 3 matrix that verifies the condition A0 A∗
0 = I2 is

A0 =

[
0 1√

2
− 1√

2

− 1√
3

1√
3

1√
3

]
.

The corresponding 3–factor is

Φ̂ = Ψ̂0 A =




− 1

4
√

3
− 2+3

√
2

8
√

3

−2+3
√

2

8
√

3

− 1

4
√

3

−2+3i
√

2

8
√

3

−2−3i
√

2

8
√

3

− 1

4
√

3

−2+3
√

2

8
√

3
− 2+3

√
2

8
√

3

− 1

4
√

3
− 2+3

√
2

8
√

3

−2+3
√

2

8
√

3



.

The application of the 2× 8 matrix A, which verifies the condition AA∗ = I2,
gives the 8-factor

Φ̂ =
1

8
√

2




−1−a −e−1 −a i−a −e−3 −a 1−a −e3 −a − i−a −e1 −a

−1+ ia ia− e−1 i [1+a] ia− e−3 1+ ia ia− e3 i [−1+a] ia− e1

−1+a a− e−1 i+a a− e−3 1+a a− e3 − i+a a− e1

−1−a −e−1 −a i−a −e−3 −a 1−a −e3 −a − i−a −e1 −a




where a =
√

3 and ek = exp(i2πk/4).
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Problem 3.16 ⋆⋆ [Sect. 3.12] Prove that the mixed state qubit expressed in the

form (3.90) represents a pure state if and only if the vector r has unit length. Under

this condition, from (3.90) find the corresponding pure state.

Solution The condition that ρ represents a pure state is (see Section 3.3) Tr(ρ2) = 1.

Then, developing this expression, we have to find that ‖ r‖= 1. An alternative proof

can be found using the following property of Pauli’s matrices

Tr(σiσ j) = 2 δi j

in (3.92). Rewriting (3.92) in the form

ρ =
1

2

3

∑
i=0

ri σi , r0 = 1

we find

Tr(ρ2) = Tr

(
1

4

3

∑
i=0

3

∑
j=0

ri σir j σ j

)
=

1

2
(1+ r2

x + r2
y + r2

z ) = 1 .

The pure state |ψ〉 =
[

a

b

]
is found imposing the condition |ψ〉〈ψ | = ρ , where,

without restriction we can assume that a is real and positive. Then

[
a

b

]
[a∗ b∗ ] =

[
|a|2 ab∗

a ∗ b |b|2
]
=

1

2

[
1+ rz rx − iry

rx + iry 1− rz

]
.

which gives

|a|2 = 1
2
(1+ rz) , |b|2 = 1

2
(1− rz) , ab∗ = 1

2
(rx − iry) .

With a := uaeiφa and b := ubeiφb we get

u2
a =

1
2
(1+ rz) , u2

b =
1
2
(1− rz) , uaubei(φa−φb) = 1

2
(rx − iry) .

Hence

|ψ〉=
[

a

b

]
=

[
uaeiφa

ubeiφb

]
= eiφa

[
ua

ubei(φb−φa)

]

where the phasor eiφa can be neglected. In conclusion we find

|ψ〉=




ua

rx − iry

2ua


 with ua =

√
1
2
(1+ rz) .

Problem 3.17 ⋆ ⋆∇ [Sect. 3.12] Using Schmidt’s decomposition given in Chap-

ter 10, prove Proposition 3.6.
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Solution In Section 10.3 it is proved that a pure state is separable if and only if all

but one of the singular values of the coefficient matrix are zero. In the present case

the singular values are given by the eigenvalues of the matrix A = [ai j], that is, the

solution of the equation

det(A−λ I) = (λ − a11)(λ − a22 − a12a21) .

The two solutions are λ1 and 0 if and only if a01a10 = a00a11.

Problem 3.18 [Sect. 3.12] Prove Proposition 3.6 using the considerations of

Section 3.10.2, in particular relations (3.71) to (3.73).

Solution In the present case relation (3.71) is given by (3.94)

|ψ〉= a00 |00〉+ a01 |01〉+ a10 |10〉+ a11 |11〉 (3.5)

while (3.72), which expresses |ψ〉 as the tensor product of two kets, becomes

|ψ〉=(u0|0〉+u1|1〉)⊗(v0|0〉+v1|1〉)= u0v0|00〉+u0v1|01〉+u1v0|10〉+u1v1|11〉 .

Then the separability conditions are

a00 = u0v0 , a01 = u0v1 , a10 = u1v0 , a11 = u1v1 .

Combination of the first and the third and combination of the second with the fourth

give

u0/u1 = a00/a10 , u0/u1 = a01/a11

which leads to the condition claimed by Proposition 3.6
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Problems of Chapter 4

Problem 4.1 ⋆ [Sect. 4.2] A still image (photo) is quantized in 800× 800 pixels

with 8 bit/pixel and transmitted by a digital channel with nominal rate R0 = 100

kbit/s. Find 1) the signal–to–quantization error Λq, 2) the error probability Pe of the

digital channel such that the channel error is negligible, and 3) the time needed to

transmit the photo. Note that the global SNR is given by1

Λ = Λq/(1+PeL
2) .

Solution We have:

L = 28 = 512 , Λq = 5122 = 262 144

and

H = 800× 800× 8= 2097152 bit ≃ 2.1 Mbit .

It is reasonable to assume that

Pe =
1

10
L−2 = 3.8 10−7

in order that the channel error is negligible, that is, Λ ≃ Λq. Then the time needed

to transmit the photo is

T = H/R0 = 20.9 s ≃ 21 s .

Problem 4.2 ⋆ [Sect. 4.2] A video signal (produced by a TV camera) has band-

width B = 5 MHz. Evaluate the A/D conversion parameters that ensure Λq = 60 dB,

and in particular the nominal rate of the digital channel.

Solution We have from (4.10)

Λq = 2m ≃ 106 → m = 10 bit/symbol .

Then

R0 = 2B = 100 Mbit/s.

The error probability of the channel can be chosen as

Pe =
1

10
L−2 ≃ 10−7

in order that the channel error is negligible.

1 A. J. Viterbi and J. K. Omura, Principles of digital communication and coding. Dover Books

on Electrical Engineering, 2009.
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Note that with the technique of compression (Mpeg) nowadays the rate for a good

TV channels is of a few Mbit/s.

Problem 4.3 ⋆ [Sect. 4.4] Write the expressions of a PAM optical power P(t),
with a generic fundamental pulse g(t), valid for all t ∈ R,

Solution Denoting by {An = A(nT )} the sequence of symbols, in the PAM modula-

tion the contribution of the nth symbol is given by

An g(t − nT).

The PAM signal is given by all the contributions and therefore the expression is

given by

P(t) =
+∞

∑
n=∞

An g(t − nT) , t ∈ R .

Note that in the interval (nT,nT +T ] the power P(t) is not equal to An g(t − nT ),
because in this interval we have also the contribution of the other pulses. Only when

the duration of the pulse g(t) is confined to the interval (0,T ] we find

P(t) = An g(t − nT) , nT < t ≤ nT +T .

Problem 4.4 ⋆ [Sect. 4.4] The physical parameters of the transmitter (on space-

craft board) and of the receiver (at Earth, Goldstone, California) of NASA Voyager

2 mission at Jupiter (1979) were: radio frequency ν = 8.9 GHz, transmitted power

PT = 24 W, transmitter’s antenna diameter dT = 3.660 m, receiver’s antenna diam-

eter dR = 64 m, noise temperature Tr = 14 K, accepted error probability Pe = 10−3.

Find the available rate. Repeat the evaluation at the optical frequency ν = 300 THz.

Solution

Not available

Problem 4.5 ⋆⋆ [Sect. 4.5] Consider a Poisson random variable n. Prove that the

variance σ2
n is equal to the mean mn = E[n] and that the characteristic function is

given by (4.23).

Solution We first evaluate the characteristic function

Ψn(z) :=E[einz] =
∞

∑
k=0

eizk P [n = k]

=
∞

∑
k=0

eizke−Λ Λ k

k!
= e−Λ

∞

∑
k=0

(
eiz Λ

)k

k!

where we have found the expansion of ex with x = eizΛ . Then

Ψn(z) = e−Λ eeizΛ
= eΛ(eiz−1) .
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From the characteristic function we can evaluate the moments as

mn(k) =
1

ik
dkΨn(z)

dzk

∣∣∣
z=0

.

Considering that

dΨ(z)/dz = iΛeΛ[−1+eiz]+iz , d2Ψ(z)/dz2 = iΛeΛ[−1+eiz]+iz
[
ieizΛ + i

]

we find

mn(1) = Λ , mn(2) = Λ +Λ 2 .

Hence

σ2
n = mn(2)−m2

n(1) = Λ .

Problem 4.6 ⋆ [Sect. 4.5] In the the technique of single photon the following

probabilities are of interest

p0 = P [n = 0] , p1 = P [n = 1] , p>1 = P [N > 1] .

Assuming that the arrival are described by a Poisson process, write and plot these

probabilities. Moreover, find the average of photon arrivals such that p>1 = 0.1p1

Solution The probabilities are obtained from the Poisson distribution (4.21), that is,

pn(k) = e−Λ Λ k

k!
.

We have the expressions

p0 =e−Λ , p1 = Λ e−Λ

p>1 =1− e−Λ −Λ e−Λ

which are illustrated in Fig. 4.1. The relation p>1 = 0.1p1 is verified with Λ =
0.828863 and with such value of Λ we have

p0 = 0.828863 , p1 = 0.155578 , p2 = P [n = 2] = 0.014601 .

Thus we have the condition of a single photons in the 15.5% of cases, but in the

85.8% of cases we have no arrivals.

Problem 4.7 ⋆ [Sect. 4.5] In the the technique of single photon the optical power

is attenuated to realize the condition of the arrival of a single photon in a given

symbol period (0,T ]. Assuming that the power produced by the laser be P0 = 10

mW at the frequency ν = 300 THz and that the symbol period be T = 10 ns, find

the attenuation A needed to ensure that the condition of a single photon is verified

in the 15% of the symbol periods.

Solution The energy in a symbol period is E0 = P0 T = 10−3 10−8 = 10−11 J. The

quantum at the frequency ν = 300 THz has energy
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p0

p>1

p1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

Λ

Fig. 4.1 Probabilities from a Poisson distribution as functions of the average number of arrivals

Λ .

hν = 6.626 10−34 300 1012 = 1.927810−19 J .

Then the average number of photons is

Λ0 =
E0

hν
=

10−11

1.9278 10−19
= 5.03069 109 photons per period .

In the previous problem we have seen that to have of a single photon in the 15% of

the symbol periods it is required an average number of photon Λ = 0.828863. Then

the needed attenuation is 6.06939 109 = 97.8314 dB.

Problem 4.8 ⋆⋆ [Sect. 4.6] Evaluate the mean my(t) and the variance σy(t)
2 of

a filtered Poisson process y(t), where the intensity is constant λ (t) = λ0, and the

fundamental pulse is rectangular of amplitude h0 in (0,T ].

Solution From the first Campbell’s theorem we have

my = λ0

∫ +∞

−∞
h(t)dt = λ0 h0 T

and

ky(τ) = λ0

∫ +∞

−∞
h(t + τ)h(t)dt =

{
λ0 h2

0 T (1−|τ|/T) |t| ≤ T

0 |t|> T .

In particular the variance is

σ2
y = ky(0) = λ0 h2

0 T .
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Problem 4.9 ⋆⋆⋆ [Sect. 4.6] Evaluate the mean my(t) and the variance σy(t)
2 of a

marked and filtered Poisson process y(t), where the intensity is constant λ (t) = λ0,

the fundamental pulse is rectangular of amplitude h0 in (0,T ], and the gains has

the geometrical distribution. pg(k) = (1− a)ak , k = 0,1,2, . . . with a a positive

constant.

Solution Since the intensity is constant, the process y(t) is stationary and the mean

and the variance are independent of t. From the second Campbell’s theorem we find

my = Gλ0

∫ +∞

−∞
h(t)dt = Gλ0 h0 T

and

σ2
y = λ0

∫ +∞

−∞
h2(t)dt = G2 λ0 h2

0 T .

For the evaluation of the gain G = E[gi] and of the quadratic gain G2 = E[g2
i ] we use

the moments’ theorem (see solution of Problem 4.5)

mn(k) =
1

ik
dkΨn(z)

dzk

∣∣∣
z=0

.

which gives

G :=mg(1) =−i
dΨn(z)

dz

∣∣∣
z=0

G2 :=mg(2) =−d2Ψn(z)

dz2

∣∣∣
z=0

.

The characteristic function of the gains is

Ψg(z) :=E[eigz] =
∞

∑
k=0

eizk P [g = k]

=(1− a)
∞

∑
k=0

eizk ak = (1− a)
∞

∑
k=0

(
eiz a

)k

=(1− a)
1

1− eiz a
.

Hence

G =
a

1− a
, G2 =

a(1+ a)

(1− a)2
.

Problem 4.10 ⋆⋆ [Sect. 4.6] To illustrate the conditioning of a double stochastic

Poisson process we consider a (simplified) binary modulation, where the intensity of

the optical power in (0,T ] has the values λ0 = 109 photon/s with the symbol A = 0

and λ1 = 4 109 photon/s with the symbol A = 1. Find the conditioned distribution

of the number of arrivals

pn(k|A = 0) , pn(k|A = 1)
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and the unconditioned distribution pn(k), assuming P [A = 1] = 1/4 and T = 1 ns.

Solution The conditioned distributions, where the intensity is given through the con-

dition of the symbol, are both Poisson distributions, and therefore specified by the

conditioned mean of the arrivals. These means are given by

Λ0 = λ0 T = 109 10−9 = 1 , Λ1 = λ1 T = 109 410−9 = 4

and then

pn(k|A = 0) =
Λ k

0

k!
exp(−Λ0) , pn(k|A = 1) =

Λ k
1

k!
exp(−Λ1) .

The unconditional distribution is obtained by averaging the two conditioned distri-

butions

pn(k) =
3
4

pn(k|A = 0)+ 1
4

pn(k|A = 1)

and is not a Poisson distribution.

The distributions are illustrated in Fig.4.2.

pN (k|A=0)

pN (k|A=1)

0 2 4 6 8 10
0

0.2

0.4

0.6

k

pN (k)

0 2 4 6 8 10
0

0.2

0.4

0.6

k

Fig. 4.2 The conditioned distributions pN(k|A = 0) and pN(k|A = 1) (Poissonian) and the uncon-

ditioned distribution pN(k) (non Poissonian). For semplicity the discrete plot is represented by a

continuous line.

Problem 4.11 ⋆ [Sect. 4.8] Consider the counting of the random variable u =
n+η , where n is Poissonian with mean NR and η is Gaussian with zero mean and

variance σ2
η , with u and η independent. Since u is continuous, for the counting we

have to introduce a rounding. Find the probability distribution of v = round(u).

Solution The probability density of u is given by (4.75)

fu(a) =
∞

∑
k=0

pn(k)
1

ση
ϕ

(
a− k

ση

)
, pn(k) = e−NR

Nk
R

k!
.

Introducing the rounding
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v = round(u) =

{
0 u < 1

2

s s− 1
2
< u < s+ 1

2

we find for s = 0

pv(0) = P

[
u <

1

2

]
=
∫ 1

2

−∞
fu(a)da =

∞

∑
k=0

pn(k)Φ

(
1
2
− k

ση

)

and for s > 0

pv(s) =P

[
s =

1

2
< u < s+

1

2

]
=

∫ s+ 1
2

s− 1
2

fu(a)da

=
∞

∑
k=0

pn(k)

[
Φ

(
s+ 1

2
− k

ση

)
−Φ

(
s− 1

2
− k

ση

)]

where Φ(x) is the normalized Gaussian distribution. The probability distribution

depends on the same parameters, Nγ = NR and N= σ2
η , as of Laguerre distribution.

The two distributions are similar but non coincident, as shown below for Nγ = 0.2
and N = 0.2

pv(k) =




0 0.367953

1 0.343445

2 0.192001

3 0.0714811

4 0.0198199

5 0.00436307

6 0.00079474

7 0.000123301

8 0.0000166456

9 1.987673 10−6

10 2.126917 10−7




, pL(k) =




0 0.362165

1 0.311864

2 0.181222

3 0.0865139

4 0.0364775

5 0.014087

6 0.00509043

7 0.00174521

8 0.000573145

9 0.000181567

10 0.0000557765



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Problems of Chapter 5

Problem 5.1 ⋆⋆ [Sect. 5.2] Prove Proposition 5.1. Hint: see Section 3.6.4.

Solution From the orthogonality and the idempotency of the Pk, we find that the Qi

are idempotent (projectors) and mutually orthogonal

Q2
i =

(
∑

k∈Mi

Pk

)2

= ∑
k∈Mi

Pk = Qi

QiQ j =
(

∑
k∈Mi

Pk

)(
∑

h∈M j

Ph

)
= 0 if i 6= j

where we used the fact that Mi ∩M j = /0 for i 6= j.

Problem 5.2 ⋆⋆ [Sect. 5.2] Optimization of decision element. In a post–

measurement decision the decision element is a mapping: M → A, where |M| ≥
|A|, in which every point k ∈ M must be associated to a symbol a ∈ A, thus cre-

ating a partition of M into K sets Ma,a ∈ A. For given a priori probabilities {qi}
and transition probabilities {pc( j|i)}, one can optimize the decision element with

the criterion to get the maximum correct decision probability. Prove the following

statement: Define the K decision functions as

fa(k) := qa pc(k|a), , a ∈A,k ∈M .

Then, for each k ∈M, find the decision function fa(k) such that

fa(k)≥ fb(k) , ∀b 6= a. (5.1)

The value of a that verifies (5.1) is placed in Ma. This defines the sets Ma that

determine the optimum decision element.

Solution Recall that in a post–measurement decision we have two alphabets: the

source alphabetA= {0,1, . . . ,K−1} and the measurement alphabetM= {1, . . . ,K′}.

The correct decision probability is given by (see (5.11) and (5.12))

Pc := P
[
Â = A

]
= ∑

a∈A
qa pc(a|a)

∑
a∈A

∑
k∈Ma

qa p(k|a)

and introducing the decision functions we have

Pc = ∑
a∈A

∑
k∈Ma

fa(k) .

Clearly, if the partition Ma is chosen as in (5.17), Pc assumes its maximum value.

In the subsequent two problems we apply the above statement to two specific

cases.



24 Solutions of problems of Chapter 5

Problem 5.3 ⋆⋆ [Sect. 5.2] In a binary system {0,1}, where the a priori prob-

abilities are q(0) = 1/3 and q(1) = 2/3, the quantum measurement, obtained with

a photon counting, gives two Poisson variables with averages Λ0 = E[m|A = 0] = 5

and Λ1 = E[m|A = 1] = 20.

Apply the statement of the previous problem to find the optimum decision ele-

ment.

Solution The alphabet of the measurement is M= {0,1,2, . . .} and we have to find a

partition of M into two subsets M0 and M1. In the binary case (5.17) can be written

as

f0(k)≥ f1(k)

and the values of k that verify this condition give the set M0. The condition is ex-

plicitly

1

3
e−Λ0

Λ k
0

k!
≥ 2

3
e−Λ1

Λ k
1

k!
.

With Λ0 = 5 and Λ1 = 20 we get the table

k f0(k) f1(k)

0 0.00224598 1.3741024149590386 10−9

1 0.0112299 2.748204829918077 10−8

2 0.0280748 2.748204829918077 10−7

3 0.0467913 1.8321365532787178 10−6

4 0.0584891 9.16068276639359 10−6

5 0.0584891 0.0000366427

6 0.0487409 0.000122142

7 0.034815 0.000348978

8 0.0217593 0.000872446

9 0.0120885 0.00193877

10 0.00604426 0.00387754

11 0.00274739 0.00705007

12 0.00114475 0.0117501

13 0.000440287 0.0180771

14 0.000157245 0.0258244

15 0.0000524151 0.0344326

16 0.0000163797 0.0430407

17 4.817568453464372 10−6 0.0506361

18 1.338213459295659 10−6 0.0562624

19 3.521614366567524 10−7 0.0592235

20 8.80403591641881 10−8 0.0592235

Thus we find that f0(k)≥ f1(k) for k = 0,1, . . . ,9,10 and therefore

M0 = {0,1, . . . ,9,10} , M1 = {11,12,13, . . .} .
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The correct decision probability is

Pc =
10

∑
k=0

f0(k)+
∞

∑
k=11

f1(k) = 0.988227 .

Problem 5.4 ⋆ [Sect. 5.2] As in the previous problem but with Λ0 = 0 and

Λ1 = 20 and equally likely symbols.

Solution In this case the conditional probability pc(k|0) degenerates as

pc(k|0) =
{

1 k = 0

0 k ≥ 1

and we have

1
2

pc(k|0)
{
> 1

2
pc(k|1) k = 0

< 1
2

pc(k|1) k ≥ 1 .

Then the optimum decision criterion is obtained with

M0 = {0} , M1 = {1,2, . . .} .

After this choice the conditional error probabilities result in

Pe(0) = P [n > 0|A = 0] = 0 , Pe(1) = P[n = 0|A = 1] = e−Λ1

and the error probability is

Pe =
1

2
Pe(0)+

1

2
Pe(1) =

1

2
e−Λ1 ∼ 10−9 .

Note that with the transmission of the symbol A = 0 there is no error. An error

happens when, having transmitted A = 1, no photon is detected.

Problem 5.5 ⋆⋆ [Sect. 5.3] Prove that the operators Q1 and Q0, defined by (5.24),

form a projector system.

Solution The completeness Q0 +Q1 = I has been imposed at the beginning of the

proof. Q1 is actually a projector, because the |ηk〉 are orthonormal, and therefore

Q2
1 = Q1. Analogously, we prove the idempotency of Q0, and finally from (5.24) we

have Q1 Q0 = 0, that is, the orthogonality.

Problem 5.6 ⋆⋆ [Sect. 5.3] Consider the following density operators

ρ0 =
1

208




46 13− 37i −16 13+ 37i

13+ 37i 58 13− 37i −32

−16 13+ 37i 46 13− 37i

13− 37i −32 13+ 37i 58



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ρ1 =
1

208




58 29− 29i 8 21+ 29i

29+ 29i 58 29− 21i −8

8 29+ 21i 46 21− 21i

21− 29i −8 21+ 21i 46


 .

First verify that they are “true” density operators. Then, assuming that they are the

states in a binary transmission with a priory probabilities q0 = 1/5 and q1 = 4/5,

find the correct decision probability Pc.

Solution By inspection ρ0 and ρ1 are Hermitian and have unitary trace. More com-

plicate is to check that they are PSD. To this end we can use Theorem 2.6 which

claims that a matrix is PSD if all its eigenvalues are nonnegative. The eigenvalues

of ρ1 and ρ0 are respectively

{0.546889,0.444022,0.00750357,0.00158567}
{0.727465,0.259985,0.00924611,0.00330442}

and are all positive. Then we conclude that ρ0 and ρ1 are “true” density operators.

To find the correct decision probability we apply (5.23)

Pc = q0 + ∑
ηk>0

ηk

where ηk are the eigenvalues of the decision operator

D = q1ρ1 − q0ρ0 =
1

1040




186 103− 79i 48 71+ 79i

103+ 79i 174 103− 47i 0

48 103+ 47i 138 71− 47i

71− 79i 0 71+ 47i 126


 .

The eigenvalues are

{0.360242,0.236339,0.00442223,−0.00100303}

and then

Pc = 1/5+ 0.360242+0.236339+0.00442223= 0.801003 .

Problem 5.7 ⋆⋆ [Sect. 5.4] Find the coefficients a01 and a11 in the expression of

the measurement vectors (5.35), assuming equally likely symbols and X real.

Solution The measurement vectors are given by

|η0〉= a00|γ0〉+ a01|γ1〉 , |η1〉= a10|γ0〉+ a11|γ1〉 .

For the geometrical independence of |γ0〉 and |γ1〉 we found (see (5.35))

|η0〉= a00

(
|γ0〉+

q1X∗

η0 − q1

|γ1〉
)
, |η1〉= a11

(
− q0X

η1 + q0

|γ0〉+ |γ1〉
)
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Then, with equally likely symbols and X real we get

|η0〉= a00

(
|γ0〉+

X

2η0 − 1
|γ1〉
)
, |η1〉= a11

(
− X

2η1 + 1
|γ0〉+ |γ1〉

)

where

η0,1 =∓1

2
∆ , ∆ =

√
1−X2 .

Hence

a01 =
X

2η0 − 1
a00 =− X

1+
√

1−X2
a00

a10 =− X

2η1 + 1
a11 =− X

1+
√

1−X2
a11 .

The nomalizations of |η0〉 and |η1〉 give

1 = ||η0〉|2 =
2
[
X2 − 1

]
√

1−X2− 1
a2

00

1 = ||η1〉|2 =
2
[
X2 − 1

]
√

1−X2− 1
a2

11 .

Hence

a00 = a11 =

√√
1−X2− 1

2 [X2 − 1]
.

In conclusion, the measurement vectors are obtained from the states as

M = Γ A

where

Γ = [|γ0〉, |γ1〉] , M = [|µ0〉, |µ1〉 , A =

[
a00 a01

a10 a11

]
.

The natrix A is given by

A =

[
a00 a01

a10 a11

]
=




√√
1−X2−1

2[X2−1]
− X

1+
√

1−X2

√√
1−X2−1

2[X2−1]

− X

1+
√

1−X2

√√
1−X2−1

2[X2−1]

√√
1−X2−1

2[X2−1]


 .

Note that with some algebra the result can be written in the form

A =

[
a b

b a

]

with (see (5.40))
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a =
1

2

[
1√

1−|X |
+

1√
1+ |X |

]
, b =

1

2

[
1√

1+ |X |
− 1√

1−|X |

]
. (5.2)

Problem 5.8 ⋆⋆ [Sect. 5.4] Write the fundamental relations of the geometrical

approach in matrix form, using the matrices

Γ = [|γ0〉, |γ1〉] , U = [|u0〉, |u1〉] , M = [|µ0〉, |µ1〉] .

Solution We want to check Proposition 5.2 and in particular the evaluation of the

optimal measurement matrix. We assume a real inner product

Y := 〈γ0|γ1〉

so that Mopt is given by (5.46).

Quantum states in terms of basis kets

The relations
|γ0〉= cosθ |u0〉+ sinθ |u1〉
|γ1〉= cosθ |u0〉− sinθ |u1〉

become

Γ = B U with B ==

[
cos(θ ) cos(θ )

sin(θ ) −sin(θ )

]
.

The inverse of this relation is

U = Γ B−1 with B−1 =
1

2

[
sec(θ ) csc(θ )

sec(θ ) −csc(θ )

]
. (5.3)

We now impose the orthonormality of the vector U , that is,

U∗U = B−1∗Γ ∗Γ B−1 = B−1∗GB−1 = I2

where G is the Gram matrix

G = Γ ∗Γ =

[
1 Y

Y 1

]
.

Explicitly we have

U∗U =

[
1
2
(Y + 1)sec2(θ ) 0

0 − 1
2
(Y − 1)csc2(θ )

]

which implies
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cos2 θ =
1

2
(1+Y) , sin2 θ =

1

2
(1−Y) .

Then we find

B−1 =

[
1√

2
√

Y+1

1√
2
√

1−Y
1√

2
√

Y+1
− 1√

2
√

1−Y

]
.

Measurement vectors in terms of basis kets

The relations
|µ0〉= cosφ |u0〉+ sinφ |u1〉
|µ1〉= sinφ |u0〉− cosφ |u1〉

become

M =U C with C :=

[
cos(φ) sin(φ)

sin(φ) −cos(φ)

]
.

Measurement vectors in terms of quantum states

We combine the previous relations to find

M = Γ B−1 C = Γ A (5.4)

thus we have

A = B−1C

and explicitly

A =




cos(φ)√
2
√

X + 1
+

sin(φ)√
2
√

1−X

sin(φ)√
2
√

X + 1
− cos(φ)√

2
√

1−X

cos(φ)√
2
√

X + 1
− sin(φ)√

2
√

1−X

cos(φ)√
2
√

1−X
+

sin(φ)√
2
√

X + 1


 . (5.5)

Check of orthonormality of measurement vectors

In the formulation we have imposed the orthonormality of the measurement vectors

(see Fig.5.6). The condition is expressed as M∗M = I2. Using the previous matrix

relations we have

M∗M = A∗GA =C∗B−1∗GB−1C = I2

where B−1 is given by (5.3) and C by (5.4). The expression we obtained for

C∗B−1∗GB−1C is a very long function of Y and φ , but with Mathematica we

were able to simplify it to I2, independently of Y and φ .
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Introduction of the optimal φ

We now introduce the angle φ giving the maximum correct decision probability,

stated by (5.42), that is,

tan2φ =
1

q0 − q1

tan2θ =
1

q0 − q1

√
1−Y2

Y

which gives

sin2φ =
1

R
sin2θ , cos2φ =

q0 − q1

R
cos2θ

sin2φ =
1

R
sin2θ , cos2φ =

q0 − q1

R
cos2θ

where R =
√

1− 4q0q1Y 2. In (5.5) we have to express cosφ and sinφ in terms of

t := tan2φ , using the identities given in a footnote, that is,

sinφ = 2−1/2

√
1− 1/

√
1+ t2 , cosφ = 2−1/2

√
1+ 1/

√
1+ t2

where (see (5.42))

t := tan2φ =
1

q0 − q1

√
1−Y2

Y
.

Hence

sinφ = 2−1/2
√

1−L , cosφ = 2−1/2
√

1+L

where

R =
√

1− 4q0q1Y 2 , L = |(q0 − q1)Y |/R .

Problem 5.9 ⋆⋆ [Sect. 5.7] From the following normalized states of H = C4

|γ1〉=




2√
13
2√
13
2√
13
1√
13




|γ2〉=




1
2
1
2
1
2
1
2


 |γ3〉=




1
2

− i
2

− 1
2

i
2


 |γ4〉=




2√
13

− 2i√
13

− 1√
13

2i√
13




|γ5〉=




1√
13

− 2i√
13

− 2√
13

2i√
13




form the density operators

ρ1 =
3

4
|γ1〉〈γ1|+

1

4
|γ2〉〈γ2| , ρ2 =

3

4
|γ3〉〈γ3|+

1

8
|γ4〉〈γ4|

1

8
|γ5〉〈γ5|

and find their minimum factors γ1 and γ2. Find also factorizations in which the ma-

trices γ1 and γ2 have the same dimensions.

Solution The density operators are explicitly
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ρ1 =
3

4
|γ1〉〈γ1|+

1

4
|γ2〉〈γ2|=




61
208

61
208

61
208

37
208

61
208

61
208

61
208

37
208

61
208

61
208

61
208

37
208

37
208

37
208

37
208

25
208




=




0.29327 0.29327 0.29327 0.17788

0.29327 0.29327 0.29327 0.17788

0.29327 0.29327 0.29327 0.17788

0.17788 0.17788 0.17788 0.12019




ρ2 =
3

4
|γ3〉〈γ3|+

1

8
|γ4〉〈γ4|+

1

8
|γ5〉〈γ5|

=




49
208

51i
208

− 47
208

− 51i
208

− 51i
208

55
208

51i
208

− 55
208

− 47
208

− 51i
208

49
208

51i
208

51i
208

− 55
208

− 51i
208

55
208



=




0.23558 i0.24519 −0.22596 −i 0.24519

−i 0.24519 0.26442 i0.24519 −0.26442

−0.22596 −i 0.24519 0.23558 i0.24519

i0.24519 −0.26442 −i 0.24519 0.26442


 .

Consider now the factorizations ρ1 = γ1 γ∗1 and ρ2 = γ2 γ∗2 . The matrix ρ1 has rank

h1 = 2 with positive eigenvalues 0.994517, 0.10458, therefore the factor γ1 becomes

4× 2 and precisely

γ1 =




−0.54117 −0.02018

−0.54117 −0.02018

−0.54117 −0.02018

−0.33238 0.09857


 .

The matrix ρ2 has rank h2 = 3 with positive eigenvalues 0.993343, 0.0980581,

0.0604505 therefore the factor γ2 becomes 4× 3 and precisely

γ2 =




−0.47937 −0.06934 0.03124

i0.51339 0 i0.02917

0.47937− i0 −0.06934+ i0 −0.03124

−i0.51339 0 −i0.02917


 .

These are minimum orthogonal factorizations, but the matrices γ1 and γ2 have differ-

ent dimensions, respectively 4×2 and 4×3. To get the same dimensions, e.g.,4×3,

we can modify γ1 in the form γ1Z, where Z is a 2× 3 matrix with ZZ∗ = I2 (see

Section 3.11). A trivial solution is

Z =

[
1 0 0

0 1 0

]

giving

γ1 Z =




−0.54117 −0.02018 0

−0.54117 −0.02018 0

−0.54117 −0.02018 0

−0.33238 0.09857 0


 .



32 Solutions of problems of Chapter 5

Problem 5.10 ⋆ [Sect. 5.7] Consider the transition probabilities given by (5.72).

Prove that, if γi is replaced by γ jZ, with ZZ∗ = Ih, and µ j by µ jW , with WW ∗ = Ih,

the transition probabilities do not change.

Solution The proof is immediate after use of the properties of the matrices Z and W .

In fact

p( j|i) = Tr(µ jµ
∗
j γiγ

∗
i ) = Tr(µ jWW ∗µ∗

j γiZZ∗γ∗i ) = Tr(µ jµ
∗
j γiγ

∗
i ) = p( j|i) .

Problem 5.11 ⋆⋆ [Sect. 5.7] Prove that the measurement matrix M defined by

(5.59) and its generalization to mixed states (5.69), allows us to express the resolu-

tion of the identity in the form MM∗ = IH.

Solution In a POVM system the resolution of the identity is imposed to the mea-

surement operators Qi as
K−1

∑
i=0

Qi = IH .

Now, for pure states the measurement matrix (5.59) gives

M M∗ = [|µ0〉, |µ1〉, . . . , |µK−1〉]




〈µ0|
〈µ1|

...

〈µK−1|


=

K−1

∑
i=0

|µi〉〈µi|=
K−1

∑
i=0

Qi = IH . (5.6)

For mixed states the measurement matrix (5.69) gives exactly the same results.

Problem 5.12 ⋆ [Sect. 5.12] Write the relations of Example 5.4 using the results

of Helstrom’s theory.

Solution We have found that with pure states the measurement vectors are given by

|η0〉= a0|γ0〉+ b0|γ1〉 , |η1〉= a1|γ0〉+ b1|γ1〉 .

Then we get the relation of the form (5.104a)

M
1×2

= Γ
1×2

A
2×2

→ [|η0〉, |η1〉] = [|γ0〉, |γ1〉]
[

a0 b0

a1 b1

]

To get the form (5.104b) the explicit component of the kets would be requested (not

necessary in Helstrom’s theory).

Problem 5.13 ⋆⋆ [Sect. 5.13] Prove that the quantum states of H = C4

|γ0〉=
1

2
[1,−1,1,−1]T , |γ1〉=

1

2
[1,1,−1,1]T



Solutions of problems of Chapter 5 33

verify the GUS for a binary transmission. Find the symmetry operator S, verify that

S has the properties of a symmetry operator and that |γ1〉 is obtained from |γ0〉 as

|γ1〉= S |γ0〉.
Solution The symmetry operator of a binary system is obtained from (5.122)

S = I− 2
|w〉〈w|
〈w|w〉

where

|w〉= |γ1〉− |γ0〉
if the two states have inner product 〈γ0|γ1〉 real. In the present case the inner product

is 〈γ0|γ1〉=− 1
2
, and therefore we can apply the above formula, which gives

S =




1 0 0 0

0 1
3

2
3
− 2

3

0 2
3

1
3

2
3

0 − 2
3

2
3

1
3


 .

This matrix is unitary and gives S2 = I4 and therefore S is a correct symmetry

operator. Moreover

S |γ0〉=




1 0 0 0

0 1
3

2
3
− 2

3

0 2
3

1
3

2
3

0 − 2
3

2
3

1
3







1

−1

1

−1


=




1

1

−1

1


= |γ1〉 .

Problem 5.14 ⋆ [Sect. 5.13] Find the EID of the symmetry operator S of the

previous problem.

Solution We have

S =




1 0 0 0

0 1
3

2
3
− 2

3

0 2
3

1
3

2
3

0 − 2
3

2
3

1
3


 , S2 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


= I4 .

The EID oof S, say S =USΛS U∗
S , verifies the condition

S2 =USΛS U∗
S USΛS U∗

S =USΛ 2
S U∗

S → Λ 2
S = I4 .

Hence the eigenvalues λi of S are λi =±1. The EID S =USΛS U∗
S gives explicitly
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US =




1 0 0 0

0 − 1√
3

1√
6

1√
2

0 1√
3

√
2
3

0

0 − 1√
3

1√
6
− 1√

2



, ΛS =




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


 .

Problem 5.15 ⋆⋆ [Sect. 5.13] Prove that the two quantum states of H = C4

|γ0〉=
1

2
[1,−1,1,−1]T , |γ1〉=

1

2
[1,1,−i,1]T

verify the GUS for a binary transmission, and find the corresponding symmetry

operator S. Note that in this case the inner product X := 〈γ0|γ1〉 is complex.

Solution The state matrix and the Gram matrix are respectively

Γ =
1

2




1 1

−1 1

1 −i

−1 1


 , G =

[
1 − 1

4
− i

4

− 1
4
+ i

4
1

]

In particular the inner product is

X := 〈γ0|γ1〉=−1

4
(1+ i) =

√
2

4
e−i(3/4)π

Thus, we have to modify |γ1〉 as

|γ̃1〉= ei3π/4|γ1〉 .

Then the state matrix and the Gram matrix become respectively

Γ =
1

2
√

2




√
2 −1+ i

−
√

2 −1+ i√
2 1+ i

−
√

2 −1+ i


 , G =

1

4

[
4

√
2√

2 4

]

The vector |w〉= |γ1〉− |γ0〉 is

|w〉= 1

2
√

2

[
(−1− i)−

√
2,(−1− i)+

√
2,(1− i)−

√
2,(−1− i)+

√
2
]

T

and from (5.122) we find that the symmetry operator results in
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S=
1

−4+
√

2




2
[
−1+

√
2
]

i
√

2 1+ i i
√

2

−i
√

2 −2 (1− i)
[
−1+

√
2
]

2−
√

2

1− i (1+ i)
[
−1+

√
2
]

−2 (1+ i)
[
−1+

√
2
]

−i
√

2 2−
√

2 (1− i)
[
−1+

√
2
]

−2



.

Note that the eigenvalues of S are {−1,1,1,1}.

Problem 5.16 ⋆⋆ [Sect. 5.15] Prove that the evaluation of the transition probabil-

ities in the compressed space is based on the same formula as in the uncompressed

space. that is,

p( j|i) = Tr(Π j ρi) = Tr(Π j ρ i) .

Hint: Use orthonormality relationship U∗
r Ur = Ir, where Ir is the r× r identity ma-

trix.

Solution In fact, using the orthogonality U∗
r Ur = Ir and the cyclic property of the

trace, we find

Tr(Π j ρi) =Tr(Ur Π j U
∗
r Ur ρ i U

∗
r )

=Tr(UrΠ j ρ iU
∗
r ) = Tr(U∗

r Ur Π j ρ i)

=Tr(Π j ρ i) .

Problem 5.17 ⋆⋆⋆ [Sect. 5.15] Prove Proposition 5.10, which states that the GUS

is preserved after a compression. Hint: Use orthonormality relationship U∗
r Ur = Ir,

where Ir is the r× r identity matrix.

Solution We have to prove that S is unitary and S
K
= Ir. In fact, considering that

S =Ur SU∗
r and that, by assumption, S∗S = IH, we find

IH =Ur S
∗
U∗

r Ur SU∗
r =Ur S

∗
SU∗

r

and reversing we get

S
∗
S =U∗

r IHUr =U∗
r Ur = Ir .

Hence, S is unitary. Analogous is the proof that S
K
= Ir.

Problem 5.18 ⋆⋆ [Sect. 5.15] Consider the state matrix of H = C
4

Γ =
1

2




1 1

−1 1

1 −1

−1 1


 .

Find the compressor U∗
r and the compressed versions of the state matrix Γ and of

the Gram operator T .
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Solution The reduced SVD of Γ results in

Γ =Ur Λr V ∗

where

Ur =




0 1
1√
3

0

− 1√
3

0
1√
3

0


 , Λr =



√

3
2

0

0 1√
2


 , V =

[
− 1√

2

1√
2

1√
2

1√
2

]

Then the compressed dimension is r = 2, from C4 to C2, and the compressor is

U∗
r =

[
0 1√

3
− 1√

3

1√
3

1 0 0 0

]

The compression of the state matrix gives

Γ =U∗
r Γ =

[
−

√
3

2

√
3

2
1
2

1
2

]

The Gram operator results in

T =




1
2

0 0 0

0 1
2

− 1
2

1
2

0 − 1
2

1
2

− 1
2

0 1
2

− 1
2

1
2




and its compressed version is

T =U∗
r TUr =

[
3
2

0

0 1
2

]
.

Problem 5.19 ⋆⋆ [Sect. 5.15] Consider a binary transmission where the quantum

states are specified by the state matrix of the previous problem. Apply Helstrom

theory with q0 = 1/3 to find the probability of a correct decision Pc. Then apply the

compression and evaluate Pc from the compressed states.

Solution For the evaluation of Pc with pure states it is sufficient to evaluate the

quadratic inner product Γ 2 = |〈γ1|γ0〉|2. In fact from (5.33) we have

Pc =
1

2

(
1+
√

1− 4q0q1Γ 2
)
.

The quantum states are
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|γ0〉=
1

2




1

−1

1

−1


 , |γ1〉=

1

2




1

1

−1

1




and their inner product is 〈γ1|γ0〉 = −1/2. The probability of a correct decision Pc

results in

Pc =
1

2


1+

√
17
2

3


≃ 0.985913 .

The compressed states are (see solution of Problem 5.18)

|γ0〉=
1

2

[
−
√

3

1

]
, |γ1〉=

1

2

[√
3

1

]

and have the same inner product as the uncompressed states, in agreement with the

general theory on quantum compression.

Problem 5.20 ⋆⋆ [Sect. 5.15] Consider the binary constellation of Problem 5.13,

where we determined the symmetry operator S. Find the compressor U∗
r showing in

particular that the compressed symmetry operator S is diagonal.

Solution The reduced EID of the state matrix

Γ =
1

2




1 1

−1 1

1 −1

−1 1




is Γ =UrΛrV
∗ with

Ur =




0 1
1√
3

0

− 1√
3

0
1√
3

0


 , Λr =



√

3
2

0

0 1√
2


 , V =

[
− 1√

2

1√
2

1√
2

1√
2

]
.

Then, the expander and the compressor are respectively

Ur =




0 1
1√
3

0

− 1√
3

0
1√
3

0


 , U∗

r =

[
0 1√

3
− 1√

3

1√
3

1 0 0 0

]
.

The uncompressed symmetry operator found in the solution of Problem 5.13 is
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S =




1 0 0 0

0 1
3

2
3
− 2

3

0 2
3

1
3

2
3

0 − 2
3

2
3

1
3




and the compressed version is

S =U∗
r SUr =

[
−1 0

0 1

]
.

Note that S is diagonal as stated in the general theory of compression.
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Problems of Chapter 6

Problem 6.1 [Sect. 6.2] Prove that T−1/2T 1/2 does not yield, in general, the

identity IH, but the projector PU = UrU
∗
r . Only if r = K one actually produces the

identity IH.

Solution From (6.13) we have

T±1/2 =Ur Σ±1
r U∗

r

and then

T−1/2T 1/2 =Ur U∗
r = PU .

Note that Ur is not a unitary matrix for r < K. If r = K it becomes unitary.

Problem 6.2 ⋆⋆ [Sect. 6.2] Consider the following state matrix of H = C4

Γ =




1
2

1
2

− 1
2

1
2

1
2

− 1
2

− 1
2

1
2


 .

Find the inverse square root G−1/2 and T−1/2 based on the two approaches: 1) the

Moore–Penrose pseudo inverse and 2) the reduced EID.

Solution The state matrix has rank r = 2. The Gram matrix is

G =

[
1 − 1

2

− 1
2

1

]

and has rank 2 and therefore the pseudoinverse coincides with the ordinary inverse.

The EID G =U Λ U∗ is given by

U =

[
− 1√

2

1√
2

1√
2

1√
2

]
, Λ =

[
3
2

0

0 1
2

]
.

The inverse square root is simply obtained by evaluating the ordinary inverse square

root of Λ , that is,

Λ−1/2 =

[√
2
3

0

0
√

2

]

Then we get

G−1/2 =UΛ−1/2V ∗ =

[
1√
2
+ 1√

6

1√
2
− 1√

6
1√
2
− 1√

6

1√
2
+ 1√

6

]

The Gram operator is given by
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T = Γ Γ ∗ =




1
2

0 0 0

0 1
2

− 1
2

1
2

0 − 1
2

1
2

− 1
2

0 1
2

− 1
2

1
2




and has rank 2. Its EID T =U Λ U∗ is given by

U =




0 1 0 0
1√
3

0 − 1√
2

1√
6

− 1√
3

0 0

√
2
3

1√
3

0 1√
2

1√
6



, Λ =




3
2

0 0 0

0 1
2

0 0

0 0 0 0

0 0 0 0


 .

Now we have to evaluate the pseudoinverse by introducing the diagonal matrix

Λ−1/2 =




√
2
3

0 0 0

0
√

2 0 0

0 0 0 0

0 0 0 0




to get

T−1/2 =UΛ−1/2V ∗ =




√
2 0 0 0

0

√
2
3

3
−
√

2
3

3

√
2
3

3

0 −
√

2
3

3

√
2
3

3
−
√

2
3

3

0

√
2
3

3
−
√

2
3

3

√
2
3

3



.

We arrive to the same result by using the reduced EID T =UrΛrU
∗
r , which is given

by

Ur =




0 1
1√
3

0

− 1√
3

0
1√
3

0


 , Λr =

[
3
2

0

0 1
2

]
.

In this case Λ is regular and the passage to the pseudoinverse is not needed.

Finally note that T−1/2T 1/2 does not give the identity, but

T−1/2T 1/2 =




1 0 0 0

0 1
3

− 1
3

1
3

0 − 1
3

1
3

− 1
3

0 1
3

− 1
3

1
3




and we can check that T−1/2T 1/2 =U∗
r Ur.
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Problem 6.3 ⋆⋆ [Sect. 6.3] Consider the state matrix Γ given by (6.31) of Ex-

ample 6.1. Check that the methods based on the EIDs of G and T give the same

transition probabilities as obtained with the SVD of Γ .

Solution The Gram matrix and the Gram operator are respectively

G = Γ ∗Γ =

[
1 5

13
5

13
1

]

T = Γ Γ ∗ =
1

26




13 9+ 4i 5 9− 4i

9− 4i 13 9+ 4i 5

5 9− 4i 13 9+ 4i

9+ 4i 5 9− 4i 13


 .

The reduced EID of G is G =VrΣ
2
r V ∗

r and gives

G−1/2 = G−1/2 =VrΣ
−1
r V ∗

r =

√
13
2

12

[
5 −1

−1 5

]
.

Then

Mopt = Γ G−1/2 =
1

2
√

2




2 0

1− i 1+ i

0 2

1+ i 1− i


 .

The reduced EID of T is T =UrΣ
2
r U∗

r and gives

T−1/2 =UrΣ
−1
r U∗

r =
1

24

√
13

2




5 2+ 3i −1 2− 3i

2− 3i 5 2+ 3i −1

−1 2− 3i 5 2+ 3i

2+ 3i −1 2− 3i 5


 .

Then

Mopt = T−1/2Γ =
1

2
√

2




2 0

1− i 1+ i

0 2

1+ i 1− i


 .

Thus we have found that in both cases the same optimal measurement matrix evalu-

ated in Example 6.1 and this is sufficient to conclude that the tree method gives the

same transition probabilities (see (6.32)).

Problem 6.4 ⋆⋆ [Sect. 6.3] With the data of the previous problem, find the rela-

tions

µ1 =C γ1 , µ2 =C γ2 .



42 Solutions of problems of Chapter 6

These relations are somewhat intriguing since they lead to think that µ1 depends

only on γ1 and not on γ2 and µ2 only on γ2. Explain why not.

Solution The measurement vectors has been found in Example 6.1 and are given by

|µ1〉=
1

2
√

2




2

1− i

0

1+ i


 , |µ2〉=

1

2
√

2




0

1+ i

2

1− i


 .

From the SRM theory we know that the above relations holds with C = T−1/2. Now

we have

T−1/2γ1 =
1

2
√

2




2 0

1− i 1+ i

0 2

1+ i 1− i




1

2
√

13




5

3− 2i

15

3+ 2i


=

1

2
√

2




2

1− i

0

1+ i




T−1/2γ2 =
1

2
√

2




2 0

1− i 1+ i

0 2

1+ i 1− i




1

2
√

13




5

3+ 2i

15

3− 2i


=

1

2
√

2




0

1+ i

2

1− i


 .

Thus the relations are really verified with C = T−1/2. But µ1 does not depends only

on γ1 because in T 1/2 it is also encoded the information on γ2.

Problem 6.5 ⋆⋆ [Sect. 6.5] Apply the SRM approach to find the optimal decision

in a binary system with equiprobable symbols and with a real inner product X .

Solution When the inner product is real the Gram matrix becomes

G = Γ ∗Γ =

[
1 X

X 1

]
, X := 〈γ0|γ1〉 .

and it is circulant. Therefore we can apply the approach based on the DFT.

The two eigenvalues of G are λ0 := σ2
0 = 1+ |X | and λ1 := σ2

1 = 1− |X |. The

corresponding eigenvectors are given by the columns of the DFT matrix

[
|w0〉, |w1〉

]
= 1

2

[
1 −1

1 1

]

Then the EID of G is

G =U Λ U∗ with U =
1

2

[
1 1

1 −1

]
, Λ =

[
σ2

0 0

0 σ2
1

]

The correct decision probability is
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Pc =

[
1

2
(λ

1/2

0 +λ
1/2

1 )

]2

=

[
1

2
(
√

1+ |X |+
√

1−|X |)
]2

=
1

2

(
1+
√

1−|X |2
)

that is, the Helstrom bound.

The square roots of G are given by

G1/2 =U Λ 1/2U∗ =
1

2

[
σ0 +σ1 σ0 −σ1

σ0 −σ1 σ0 +σ1

]

G−1/2 =U Λ−1/2 U∗ =
1

2

[
σ−1

0 +σ−1
1 σ−1

0 −σ−1
1

σ−1
0 −σ−1

1 σ−1
0 +σ−1

1

]
.

Problem 6.6 ⋆ [Sect. 6.6] Write explicitly the block DFT matrix, defined by

(6.59), for K = 4 and h0 = 2 and prove that it is a unitary matrix.

Solution We use the symbol W[K] to denote the DFT matrix of order K and the

symbol W[K,h] to denote the block DFT matrix of order K with blocks of size h.

The block DFT matrix can be written in the form

W[K,h0] =W[K]⊗ Ih0

where W[K] is the ordinary K–DFT matrix of dimension K×K and Ih0
is the identity

matrix of dimension h0 ×h0. Then W[K,h0] has dimension Kh0 ×Kh0. In the specific

case Kh0 = 8.

We have

W[4] =
1

2




1 1 1 1

1 W−1
4 W−2

4 W−3
4

1 W−2
4 W−4

4 W−6
4

1 W−3
4 W−6

4 W−9
4


=

1

2




1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i


 , I2 =

[
1 0

0 1

]
.

Hence

W[4,2] =W[4]⊗ I2 =
1

2




1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 −i 0 −1 0 i 0

0 1 0 −i 0 −1 0 i

1 0 −1 0 1 0 −1 0

0 1 0 −1 0 1 0 −1

1 0 i 0 −1 0 −i 0

0 1 0 i 0 −1 0 −i




.

The matrix W([4,2] is unitary and in fact
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W[4,2]W
∗
[4,2] =

1

2




1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 −i 0 −1 0 i 0

0 1 0 −i 0 −1 0 i

1 0 −1 0 1 0 −1 0

0 1 0 −1 0 1 0 −1

1 0 i 0 −1 0 −i 0

0 1 0 i 0 −1 0 −i




1

2




1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 i 0 −1 0 −i 0

0 1 0 i 0 −1 0 −i

1 0 −1 0 1 0 −1 0

0 1 0 −1 0 1 0 −1

1 0 −i 0 −1 0 i 0

0 1 0 −i 0 −1 0 i




=
1

4




4 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 4 0 0 0 0

0 0 0 0 4 0 0 0

0 0 0 0 0 4 0 0

0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 4




= I8 .

Problem 6.7 ⋆⋆ [Sect. 6.6] Prove in general that the block DFT matrix, defined

by (6.59), is a unitary matrix.

Solution As in the previous solution, we use the symbol W[K] to denote the DFT

matrix of order K and the symbol W[K,h] to denote the block DFT matrix of order K

with blocks of size h. The block DFT matrix can be written in the form

W[K,h0] =W[K]⊗ Ih0

where W[K] is the ordinary K–DFT matrix of dimension K×K and Ih0
is the identity

matrix of dimension h0 × h0.

For the proof we apply two rules on the Kronecker products of matrices (see

Section 2.13). The first rule is

(A⊗B)∗ = A∗⊗B∗

and the second rule is given by the mixed–product law

(A⊗B)(C⊗D) = (AC)⊗ (BD) .

Hence, considering that the ordinary DFT matrix is unitary, we find

W[K,h0]W
∗
[K,h0]

=(W[K]⊗ Ih0
)(W ∗

[K]⊗ Ih0
)

=(W[K]W
∗
[K])⊗ (Ih0

Ih0
)

=IK ⊗ Ih0
= IKh0

.



Solutions of problems of Chapter 6 45

Problem 6.8 ⋆⋆⋆ [Sect. 6.6] Extend Theorem 6.3 on circulant matrices to block

circulant matrices.

Solution The proof is perfectly similar to the proof given in Appendix A of Chapter 6

for pure states, proceeding with blocks instead of scalars. Thus, we consider the

matrix

Z :=W ∗
[K,h0]

G .

From inspection of the structure of the block Zi j of Z and bearing in mind the con-

dition (6.58), we have

Zi j =
1√
K

K−1

∑
t=0

W it
K Gt j =

1√
K

K−1

∑
t=0

W it
K r j−t (mod K)

=
1√
K

K−1

∑
k=0

W
i( j−k)
K rk =

1√
K

W
i j
K

K−1

∑
k=0

W−ik
K rk

=
1√
K

W
i j
K Di

where

Di :=
K−1

∑
k=0

W−ik
K rk .

From the above result we infer that the matrix Z can be written in the form

Z = ΛW ∗
(h0)

and, to conclude, it is sufficient to note that also the block DFT matrix W[K,h0] is

unitary.

Problem 6.9 ⋆⋆ [Sect. 6.6] To check the fundamental formulas of the SRM with

mixed states having the GUS, consider the following degenerate case of reference

state factor in a quaternary system

γ0 =
1√
3
[|β0〉, |β0〉, |β0〉]

where |β0〉 is an arbitrary pure state, and the symmetry operator S generates the other

state factor in the form γi = Si γ0, i = 1,2,3. Find the correct decision probability Pc.

Solution The reference density operator is

ρ0 = γ0γ∗0 = |β0〉〈β0|

and corresponds to a pure state. Then we can apply the theory of SRM with pure

states having the GUS. The first row of the 4× 4 Gram matrix G is given by

G0 = [〈β0|β0〉,〈β0|β1〉,〈β0|β2〉,〈β0|β3〉]
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where |βi〉= Si|β0〉. The DFT of this row gives the eigenvalues of G (see (6.45a))

λp =
3

∑
q=0

G0qW
−pq
4 =

3

∑
q=0

〈β0|β j〉 . (6.1)

The correct decision probability is then given by (see (6.48)

Pc =

[
1

4

3

∑
p=0

λ
1
2
p

]2

. (6.2)

But we want to apply the theory of SRM with mixed states having the GUS to

find the same result. In this case the Gram matrix G̃ consists of block 3× 3 and has

dimension 12× 12. The blocks of the first block–row are given by

G̃0 j = γ∗0 γ j =
1

3
〈β0|β j〉Z3 with Z3 =




1 1 1

1 1 1

1 1 1


 .

Then we evaluate the matrices

Dk =
3

∑
j=0

G0qW
− jk
4 =

1

3
Z3

3

∑
j=0

〈β0|β j〉W− jk
4

which, considering (6.1), are given by Dk =
1
3
λk Z3. Next, we have to find the square

roots Dk, which results in

D
1/2

k = (
1

3
)

1
2 λ

1
2

k Z
1/2

3

The evaluation of the square root of the matrix Z3 gives Z
1/2

3 = 1√
3
Z3, but it is not

needed. In fact

Pc =Tr

(
1

4

3

∑
k=0

D
1/2

k

)2

= Tr

(
1

4
(

1

3
)

1
2 Z

1/2

3

3

∑
k=0

λ
1
2

k

)2

=

(
1

4

3

∑
k=0

λ
1
2

k

)2

Tr

(
(

1

3
)

1
2 Z

1/2
3

)2

=

(
1

4

3

∑
k=0

λ
1
2

k

)2

Tr

(
1

3
Z3

)2

where Tr(Z3) = 3. Hence

Pc =

(
1

4

3

∑
k=0

λ
1
2

k

)2

in agreement with (6.2).

Problem 6.10 ⋆⋆ [Sect. 6.7] Solve Problem 6.3 introducing compression.

Solution The state matrix in C4 is given by
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Γ =
1

2




5 1

3− 2i 3+ 2i

1 5

3+ 2i 3− 2i




From the reduced SVD of Γ =UrΛV ∗
r we find

Ur =
1

2




1 −1

1 i

1 1

1 −i


 → U∗

r =
1

2

[
1 1 1 1

−1 −i 1 i

]

where U∗
r gives the compressor. Then the compressed state matrix results in

Γ =U∗
r Γ =

[
3√
13

3√
13

− 2√
13

2√
13

]

We know that the Gram matrix is not reduced by compression, so we consider only

the Gram operator T =Γ Γ ∗, which is 4×4. In the compressed space C2 it becomes

T = Γ Γ
∗
=

[
18
13

0

0 8
13

]
.

As expected, T is diagonal.

Then it is immediate to find the optimum measurement matrix as Mopt = T
−1/2

Γ .

We find

T
−1/2

=




√
13
2

3
0

0

√
13
2

2




and

Mopt =




√
13
2

3
0

0

√
13
2

2



[

3√
13

3√
13

− 2√
13

2√
13

]
=

[
1√
2

1√
2

− 1√
2

1√
2

]
.

Problem 6.11 ⋆ [Sect. 6.8] Consider the binary system specified by the pure

states

|γ0〉=
1√
13

[5,3− 2i,1,3+ 2i]T , |γ1〉=
1

2
√

13
[1,3+ 2i,5,3− 2i]T .

Check that: 1) Helstrom’s theory gives Pe = 1/26 , Chernoff bound gives Pe =
25/338.

Solution (file pp406.m) The inner product is X = 5
13

and, from Helstrom’s formula

with pure states and equiprobable symbols, we
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Pc =
25

26
, Pe =

1

26
= 0.038465 .

The density operators are

ρ0 =
1

52




1 3+ 2i 5 3− 2i

3− 2i 13 15− 10i 5− 12i

5 15+ 10i 25 15− 10i

3+ 2i 5+ 12i 15+ 10i 13




ρ1 =
1

52




25 15− 10i 5 15+ 10i

15+ 10i 13 3+ 2i 5+ 12i

5 3− 2i 1 3+ 2i

15− 10i 5− 12i 3− 2i 13




and there square roots are

√
ρ0 =

1

52




1 3+ 2i 5 3− 2i

3− 2i 13 15− 10i 5− 12i

5 15+ 10i 25 15− 10i

3+ 2i 5+ 12i 15+ 10i 13




√
ρ1 =

1

52




25 15− 10i 5 15+ 10i

15+ 10i 13 3+ 2i 5+ 12i

5 3− 2i 1 3+ 2i

15− 10i 5− 12i 3− 2i 13


 .

Hence, from the Chernoff bound

Pe =
25

338
= 0.0739645 .



Solutions of problems of Chapter 7 49

Problems of Chapter 7

Problem 7.1 ⋆ [Sect. 7.2] Prove that the inner product X = 〈α|β 〉 of two coherent

states is real if and only if argα − argβ = 0 or argα − argβ =±π .

Solution The inner product is given by (7.9)

〈α|β 〉= e−
1
2 (|α |2+|β |2−2α∗β ) .

Considering that

|α|2 + |β |2 − 2α∗β = |α −β |2 +α∗β −αβ ∗ = |α −β |2 + 2iℑ(α∗β )

we can write

X = e−
1
2 (|α−β |2 e2i |α ||β |sin(argβ−argα) .

Problem 7.2 ⋆⋆ [Sect. 7.2] The map (7.2) gives for any α ∈ C a coherent state

|α〉. Given |α〉 is it possible to find the complex number α?

Solution We consider the inner product 〈0|α〉 and 〈1|α〉 to get

〈0|α〉= e−
1
2 |α |2

∞

∑
n=0

αn

√
n!
〈0|n〉= e−

1
2 |α |2

〈1|α〉= e−
1
2 |α |2

∞

∑
n=0

αn

√
n!
〈1|n〉= e−

1
2 |α |2α

Hence

α =
〈1|α〉
〈0|α〉 .

Problem 7.3 ⋆⋆ [Sect. 7.2] Examine the effect of the introduction of a phasor

z = eiϕ into the complex parameter α that identifies the state |α〉, that is, evaluate

|eiϕα〉.
Solution The effect is equivalent to the application of the operator

Sz :=
∞

∑
n=0

zn |n〉〈n|= zN .

In fact, from (7.2) we obtain

Sz |α〉=
∞

∑
m=0

zm|m〉〈m| e−
1
2 |α |2

∞

∑
n=0

αn

√
n!
|n〉 .

Hence, by the orthonormality of the number states |n〉, we get the coherent state

|zα〉.
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Problem 7.4 ⋆⋆⋆ [Sect. 7.2] Let |α〉= |α1〉⊗|α2〉 be a two–mode coherent states.

The number of photons mi associated to each component state is a Poisson variable

with mean Λi = |αi|2. Considering that m1 and m2 are statistically independent (see

Section 3.10), prove that the total number of photons m = m1 +m2 is a Poisson

variable.

Hint: use the characteristic function given by (4.23).

Solution The characteristic functions are

Ψm1
(z) = eΛ1[exp(iz)−1] , Ψm1

(z) = eΛ2[exp(iz)−1] .

Recalling from Probability Theory that the characteristic function of the sum of

two independent random variables is given by the product of their characteristic

functions, we find

Ψm(z) = e(Λ1+Λ2)[exp(iz)−1]

which states that m = m1 +m2 is a Poisson variable with mean Λ1 +Λ2.

Problem 7.5 ⋆⋆ [Sect. 7.3] Show that the PPM must be considered a vector

modulation. Find explicitly the waveform γi(t) and the vector γi of the coefficients.

Solution If we assume as basis of orthonormal functions {pK−1(t), . . . , p1(t), p0(t)},

where pi(t) is a unitary rectangle on [iT0,(i + 1)T0), and if we develop the PPM

waveforms with this basis, we obtain as coefficients exactly the symbols γi j of the

words γi.

Problem 7.6 ⋆⋆ [Sect. 7.3] The n-DFT matrix W[n] is unitary and has the property

W n
[n] = In. Then it allows the construction of n-ary constellations in H = C

n. Find a

quaternary constellation using S = W[4] and reference state |γ0〉 = [1,1,0,0]T. Also

prove also that the four states are linearly independent.

Solution The n–DFT matrix is defined by

W[n] =

[
1√
n

W−rs
n

]

r,s=0,1,...,n−1

with Wn = ei2π/n .

For n = 4 it results in

W[4] =
1

2




1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i


 .

It is unitary and its fourth power gives

W 4
[4] =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


= I4 .
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Then W[4] is a symmetry operator for a quaternary system.

With the reference state |γ0〉= [1,1,0,0]T the following constellation is generated

|γ0〉=
1

2
√

2




2

2

0

0


 , |γ1〉=

1

2
√

2




2

1− i

0

1+ i


 , |γ2〉=

1

2
√

2




2

0

0

2


 , |γ3〉=

1

2
√

2




2

1+ i

0

1− i


 .

These kets are linearly independent as stated by their Gram matrix having rank 4

G =
1

4




4 3− i 2 3+ i

3+ i 4 3− i 2

2 3+ i 4 3− i

3− i 2 3+ i 4


 .

Problem 7.7 ⋆ ⋆∇ [Sect. 7.4] Find the shape factor µk of the 16–QAM constel-

lation (see Fig.7.28).

Solution We subdivide the constellation into three parts, where the states have the

same number of signal photons Nγ = |γ|2:

• the 4 inner states, as |(1+ i)∆〉, giving 4× 2 ∆ 2,

• the 4 corner states, as |(3+ 3i)∆〉, giving 4× 18 ∆ 2,

• the 8 lateral states, as |(3+ i)∆〉, giving 8× 10 ∆ 2.

The global number of signal photon in the constellation is 160∆ 2 and the number of

signal photons per symbol is therefore

Ns = (160/16)∆ 2 = 10∆ 2 → µK = 10 .

Problem 7.8 ⋆ [Sect. 7.5] Consider the 4–QAM (which is equivalent to 4–PSK)

where the normalized constellation is C0 = {γ = ±1+±i} and the constellation of

received values is given by

{(±1+±i)U0+(1+ i)NL} .

Find the optimal decision regions and prove that the minimum error probability Pc

is given by Pc = 1−
(

1−Q(
√

Λ)2
)

with Λ = 4NR.

Solution With he Gaussian approximation, for symmetry reasons, the optimal deci-

sion regions are given by

R(1+ i) = {x > NL , y > NL} , R(−1+ i) = {x < NL , y > NL}
R(−1− i) = {x < NL , < NL} , R(1− i) = {x > NL , y < NL} .

For the symbol γ = 1+ i we have
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p(γ|γ) =P
[
Ĉ0 = γ|C0 = γ

]
=

∫ ∞

NL

∫ ∞

NL

fna(a|A0 = 1) fnb
(b|B0 = 1)dadb

=

∫ ∞

NL

1

σn

φ

(
a− n̄(1)

σn

)
da

∫ ∞

NL

1

σn

φ

(
b− n̄(1)

σn

)
db

where n̄(1) = NL + 2
√

NLNR and σn =
√

NL. Then

p(γ|γ) = Φ

(
2
√

NLNR√
NL

)
Φ

(
2
√

NLNR√
NL

)
= Φ(

√
4NR)

2 .

This result holds also for the other three symbols. Hence the maximum correct de-

cision probability is

Pc = Φ(
√

4NR)
2

and

Pe = 1−Pc = 1−Φ(
√

4NR)
2 = 1− (1−Q(

√
4NR))

2 .

Problem 7.9 ⋆⋆⋆ [Sect. 7.6] The error probability in classical homodyne BPSK

has been evaluated assuming equiprobable symbols. When the symbols are not

equiprobable the number of signal photons per bit NR is still independent of the

symbols and gives the SNR as Λ = 4NR. The only change is in the evaluation is the

decision element, given for equiprobable symbol by (7.78), as

Â0 =
{

1 n ≤ S

0 n > S

where S is the threshold to be optimized.

Find the optimal decision threshold and prove that the minimum error probability

is given by

Pe = q1 Q

(√
Λ +

1

2
√

Λ
log

q1

q0

)
+ q0 Q

(√
Λ − 1

2
√

Λ
log

q1

q0

)
. (7.1)

Solution The correct decision probability is given by

Pc =q1P [n < S|A0] = 1+ q0P [n < S|A0 = 0]

=q1

∫ S

−∞
fn(a|A0 = 1)da+ q0

∫ +∞

S
fn(a|A0 = 0)da

where n = n̄A0
+u with nA0

=U0 cosπA0 and u a Gaussian noise independent of A0

(see (7.77)). Then

Pc =q1

∫ S−n̄1

−∞
fu(b)db+ q0

∫ +∞

S−n̄0

fn(b)db

=q1 Φ

(
S− n̄1

σu

)
+ q0 Q

(
S− n̄1

σu

)
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where

Φ (x) =
1√
2π

∫ x

−∞
e−

1
2 y2

dy

is the normalized Gaussian distribution function and Q(x) = 1−Φ(x) is its comple-

ment.

The threshold S is determined by maximizing the probability Pc. The value S0

giving the maximum is

S0 =
n̄0 − n̄1

2σu

+
σu

n̄0 + n̄1

log
q1

q0

.

Considering that Q(−x) = Φ(x), n̄0 = U0 +N0, n̄1 = U0 −N0, and U0/σu =
√

Λ ,

we find that the maximum probability of correct decision is

Pc = q1 Φ

(√
Λ +

1

2
√

Λ
log

q1

q0

)
+ q0 Φ

(√
Λ − 1

2
√

Λ
log

q1

q0

)

and (7.87) follows.

Problem 7.10 ⋆⋆ [Sect. 7.8] Prove that with the optimization the a posteriori

probabilities q(i|i) := P
[
A0 = i|Â0 = i

]
are equal and coincides with the correct de-

cision probability Pc.

Solution Let
|γ0〉= cosθ |x〉+ sinθ |y〉
|γ1〉= cosθ |x〉− sinθ |y〉

be the two states of the system expressed in terms of the orthonormal basis {|x〉, |y〉},

where, without restriction, we can choose 0 < θ < π/4. The superposition degree

results in

X = |〈γ0|γ1〉|= cos2 θ − sin2 θ = cos2θ .

Let q0 and q1 be the a priori probabilities of the states |γ0〉 e |γ1〉.
From Kennedy’s theorem we have that the optimal measurement vector are or-

thonormal, say

|µ0〉= cosφ |x〉− sinφ |y〉
|µ1〉= sinφ |x〉+ cosφ |y〉 .

Hence the transition probabilities are given by

p(0|0) = |〈γ0|µ0〉|2 = (cosθ cosφ + sinθ sinφ)2 = cos2(θ −φ)

p(1|1) = |〈γ1|µ1〉|2 = (cosθ sinφ + sinθ cosφ)2 = sin2(θ +φ)

and

p(1|0) = sin2(θ −φ) , p(0|1) = cos2(θ +φ) .

The output probabilities are given by
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p(0) = q0 p(0|0)+ q1p(0|1) = q0 cos2(θ −φ)+ q1 cos2(θ +φ)

p(1) = q0 p(1|0)+ q1p(1|1) = q0 sin2(θ −φ)+ q1 sin2(θ +φ)

and the a posteriori probabilities by

p(0|0) = q0 p(0|0)
p(0)

=
q0 cos2(θ −φ)

q0 cos2(θ −φ)+ q1 cos2(θ +φ)

p(1|1) = q1 p(1|1)
p(1)

=
q1 sin2(θ +φ)

q0 sin2(θ −φ)+ q1 sin2(θ +φ)
.

The corresponding correct decision probability is

Pc = q0|〈γ0|µ0〉|2 + q1|〈γ1|µ1〉|2 = q0 cos2(θ −φ)+ q1 sin2(θ +φ) .

To find the optimal decision we impose that the derivative with respect to φ be zero

0 = 2q0 cos(θ −φ)sin(θ −φ)+ 2q1 sin(θ +φ)cos(θ +φ)

= q0 sin(2θ − 2φ)+ q1 sin(2θ + 2φ)

= q0(sin 2θ cos2φ − cos2θ sin2φ)+ q1(sin2θ cos2φ + cos2θ sin2φ)

= sin2θ cos2φ − (q0 − q1)cos2θ sin2φ .

Hence

cos2φ =
q0 − q1

R
cos2θ , sin2φ =

q0 + q1

R
sin2θ

where R is determined by the condition

R2 = (q0 − q1)
2 cos2 2θ +(q0 + q1)

2 sin2 2θ = 1− 4q0q1 cos2 2θ = 1− 4q0q1X2

that is,

X2 =
1−R2

4q0q1

.

The optimal value of φ results in

φ =
1

2
arctan

(
1

q0 − q1

tan2θ

)
.

Hence the optimal transition probabilities become
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p(0|0) = cos2(θ −φ) =
1

2
[1+ cos(2θ − 2φ)]

=
1

2
[1+ cos2φ cos2θ + sin2φ sin2θ ]

=
1

2

[
1+

q0 − q1

R
cos2 2θ +

1

R
sin2 2θ

]

=
1

2

[
1+

q0 − q1

R
X2 +

1

R
(1−X2)

]

=
1

2

[
1+

1

R
− 2q1

R
X2

]
=

1

2

[
1+

1

R
− 1−R2

2q0R

]

p(1|1) = sin2(θ +φ) =
1

2
[1− cos(2θ + 2φ)]

=
1

2
[1− cos2φ cos2θ + sin2φ sin2θ ]

=
1

2

[
1− q0 − q1

R
cos2 2θ +

1

R
sin2 2θ

]

=
1

2

[
1− q0 − q1

R
X2 +

1

R
(1−X2)

]

=
1

2

[
1+

1

R
− 2q0

R
X2

]
=

1

2

[
1+

1

R
− 1−R2

2q1R

]
.

Finally, the optimal correct decision probability and the error probability are

Pc = q0 p(0|0)+ q1p(1|1) = 1

2

[
1+

1

R
− 4q0q1

R
X2

]
=

1

2
[1+R ]

Pe =
1

2
[1−R ]

which corresponds to Helstrom’s bound.

The a posteriori probabilities of the state are given by

px|y(0|0) =
q0 p(0|0)

py(0)
= q0

1+ 1
R
− 1−R2

2q0R

1+ q0−q1
R

=
1

2

2q0(R+ 1)− 1+R2

R+ q0− q1

=
1

2

q0 − q1 + 2q0R+R2

q0 − q1 +R
=

1

2
[1+R ] = Pc

px|y(0|1) =
q0 p(1|0)

py(1)
= q0

1− 1
R
+ 1−R2

2q0R

1− q0−q1
R

=
1

2

2q0(R− 1)+ 1−R2

R− (q0− q1)

=
1

2

q0 − q1 − 2q0R+R2

q0 − q1 −R
=

1

2
[1−R ] = Pe
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In conclusion, with the optimal decision we find that the a posteriori probabilities

p(0|0) and p(1|1) are equal and given by the correct decision probability.

Problem 7.11 ⋆ [Sect. 7.8] Prove that in a binary system with equiprobable

symbols the error probability can be expressed as function of NR(0), NR(1), and of

the relative phase of the complex parameters γ0 and γ1. that determine the coherent

states.

Solution The error probability depends only the superposition parameter |X |2, which

is given by (7.104a), that is,

|X |2 = e−|γ0−γ1|2

where

|γ0 − γ1|2 = |γ0|2
∣∣∣∣1−

γ0

γ1

∣∣∣∣
2

= NR(0)

(
1+

NR(0)

NR(1)
− 2

√
NR(0)

NR(1)
cosθ

)

with θ = arg(γ0/γ1). Then the minimal error probability (7.104) depends on NR(0) , NR(1)
and on the relative phase θ of the complex parameters γ0 and γ1.

In the cases of interest (OOK and 2–PSK) Pe depends only on NR(0) and NR(1).

Problem 7.12 ⋆ ⋆ ⋆ [Sect. 7.12] Prove that the operator S defined by (7.123) is

the symmetry operator of the K–PSK modulation.

Solution Let us recall from Functional Analysis the meaning of the exponential of

an operator (see Section 2.10.3), and observe that the eigenvalues of the number

operator N are n = 0,1,2, . . . with the corresponding eigenvectors |n〉, and that N

in (7.1) is expressed by its spectral decomposition. Therefore, the exponential of N

that appears in (7.123) is defined as (see (2.90))

S =
∞

∑
n=0

exp
( i2πn

K

)
|n〉〈n|=

∞

∑
n=0

W n
K |n〉〈n|.

Hence, using the orthonormality of the number states |n〉, we get Sm =∑∞
n=0 W mn

K |n〉〈n|;
in particular, for m = K we obtain

SK =
∞

∑
n=0

|n〉〈n|= IH

because the |n〉 form an orthonormal basis (see (2.50)). Next we verify the other

conditions of GUS, namely, that all the states (7.121) are obtained from the state |γ0〉
as |γm〉= Sm|γ0〉. This is easily proved by property (7.124) of the rotation operator.

Problem 7.13 ⋆ [Sect. 7.12] Find explicitly the formula for the error probability

Pe of quantum 4–PSK system, with the target to show that Pe depends only on ∆ 2 =
Ns.

Solution We apply (7.125) with K = 4 to get the circulant vector

[G00,G01,G02,G03] = [1,e−Ns[1−i],e−Ns[1+1],e−Ns[1+i]] .
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Then we get the eigenvalues as

λi =
3

∑
k=0

G0kiik.

The four real eigenvalues can be written in the forms




λ0

λ1

λ2

λ3


=




2e−Ns cosNs + e−2Ns + 1

2e−Ns sinNs − e−2Ns + 1

−2e−Ns cosNs + e−2Ns + 1

−2e−Ns sinNs − e−2Ns + 1


=




2(cosNs + coshNs)(coshNs − sinhNs)

2(coshNs − sinhNs)(sin Ns + sinhNs)

(coshNs − cosNs)(2coshNs − 2sinhNs)

2(coshNs − sinhNs)(sin hNs − sinNs)




Finally we get the correct decision probability as

Pc =
1

16

[√
λ0 +

√
λ1 +

√
λ2 +

√
λ3

]2

.
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Problems of Chapter 8

Problem 8.1 ⋆⋆⋆ [Sect. 8.2] Starting from the integral representation (8.2) of the

density operator ρth, find the Fock representation (8.4). Hint: use polar coordinates.

Solution Use of (8.1) gives

|α〉〈α|=
∞

∑
m=0

∞

∑
n=0

e−
1
2 |α |2 αm(αn)∗√

m!n!
|m〉〈n| .

Then

ρth =
1

πN

∞

∑
m=0

∞

∑
n=0

∫

C

exp
[
−|α|2/u

] αm(αn)∗√
m!n!

dα |m〉〈n|

where u = (1+N)/N. Introducing the polar coordinates α = reiφ we get

ρth =
1

πN

∞

∑
m=0

∞

∑
n=0

∫ ∞

0

∫ 2π

0
exp
[
−r2/u

] rm+nei(m−n)φ

√
m!n!

r dr dφ |m〉〈n| .

where ∫ 2π

0
ei(m−n)φ dφ = 2πδmn .

Hence

ρth =
2

N

∞

∑
m=0

∫ ∞

0
exp(−r2/u)

r2m

m!
rdr |m〉〈m|

=
1

N

∞

∑
m=0

∫ ∞

0
exp(−x/u)

xm

m!
dx |m〉〈m| .

The integral gives2

∫ ∞

0
exp(−x/u)xmdx =

um+1

m!

so that

ρth =
1

N

∞

∑
m=0

um+1|m〉〈m|=
∞

∑
m=0

Nm

(N+ 1)m
|m〉〈m| .

Problem 8.2 ⋆ [Sect. 8.2] Organize a quantum measurement with the system in

the state ρth defined by (8.2). The outcome n should have the geometrical distribu-

tion pm(k|ρth) given by (8.6).

Solution We recall from Postulate 3 of Quantum Mechanics (see (3.36)) that the

probability of a outcome of the measurement obtained with a projector system {Πi},

when the quantum system is in the state ρ , is given by

p(i) := P [m = i|ρ ] = Tr[ρ Πi] .

2 I. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, series, and products, 7th ed. Amsterdam:

Elsevier, 2007, p. 340.
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Now we consider the projector system obtained by the Fock basis {Πi = |i〉〈i|}.

Since

ρth =
∞

∑
k=0

pm(k)|k〉〈k| with pm(k) =
Nk

(N+ 1)k+1

we obtain

p(i) = Tr[ρ Πi] =
∞

∑
k=0

pm(k)|k〉〈k|i〉〈i|

where 〈k|i〉= δik. Hence

p(i) = Tr[ρ Πi] = pm(k)Tr(|k〉〈k|) = pm(k) .

Problem 8.3 ⋆ [Sect. 8.2] Prove (8.5), that is, E[m|ρth] = Tr[ρthN] = N, where

ρth is the density operator of thermal noise given by (8.4) and N is the number

operator.

Solution In E[m|ρth] = Tr[ρthN] we have

ρth =
∞

∑
k=0

p(k)|k〉〈k| with p(k) =
Nk

(N+ 1)k+1

and

N =
∞

∑
n=0

n|n〉〈n| .

Then

E[m|ρth] = Tr

[
∞

∑
n=0

∞

∑
k=0

n p(k)|k〉〈k|n〉〈n|
]

where 〈k|n〉= δin and Tr[|n〉〈n|] = 1. Hence

E[m|ρth] =
∞

∑
k=0

k p(k)

which establishes that E[m|ρth] gives the mean of the random variable having p(k)
as probability distribution. On the other hand, developing the calculation and using

the identity 3

∞

∑
k=0

k uk =
u

(1− u)2

one obtains the desired result.

Problem 8.4 ⋆⋆ [Sect. 8.2] Representations (8.8) and (8.10) on thermal noise

hold for γ 6= 0 and N > 0. Find and discuss the representations in the degenerate

cases γ = 0 (absence of signal) and N = 0 (absence of noise).

3 I. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, series, and products, 7th ed. Amsterdam:

Elsevier, 2007, p. 8
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Solution For γ = 0 representation (8.8) gives (8.2), while (8.10) gives (8.4). For

N = 0, both (8.8) and (8.10) degenerate. The state becomes pure and therefore we

have

ρ(γ) = |γ〉〈γ|
with |γ〉 given by (8.1). Hence the matrix representation (8.10) becomes

Rmn(γ) = e−
1
2 |γ|2 γm(γ∗)n

√
m!n!

|m〉〈n| .

Problem 8.5 ⋆⋆ [Sect. 8.10] Check that the further condition (6.66), that is,

µ∗
0 β0 = αI, is not verified in 4 PSK with the data of Example 8.19.

Solution It results

µ∗
0 β0 =




0.456 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.184 0.003 −0.001 −0.001 0.000 0.000 0.000 0.000

0.000 0.003 0.067 0.007 −0.001 −0.001 0.000 0.000 0.000

0.000 −0.001 0.007 0.020 0.005 0.000 −0.001 0.000 0.000

0.000 −0.001 −0.001 0.005 0.006 0.002 0.000 0.000 0.000

0.000 0.000 −0.001 0.000 0.002 0.002 0.001 0.000 0.000

0.000 0.000 0.000 −0.001 0.000 0.001 0.001 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000




that it is not proportional to the identity matrix, and therefore the SRM decision is

not optimal.
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Problems of Chapter 9

Problem 9.1 ⋆⋆ [Sect. 9.2] Consider the model of a photon counter where the

dark current and the non unitary efficiency are taken into account. Prove that the

measurement operators are given by (9.22).

Solution Provided that the input state is the Fock state |n〉 with n photons, the prob-

ability of no electron count is

〈n|Q0|n〉= e−µ(1−η)n

coinciding with the probability the no dark electron are emitted and each photon

is missed with probability 1−η . Then the first of (9.22) holds, while the second

follows by the identity resolution. In the presence of input states |0〉 and |α〉 the

transition probabilities of the equivalent binary channel become

p(0|0) =〈0|Q0|0〉= e−µ

p(0|1) =〈α|Q0|α〉= e−µ
∞

∑
n=0

(1−η)n|〈n|n〉α|2

=e−µe−|α |2
∞

∑
n=0

(1−η)n |α|2n

n!

=e−µ−|α2|+(1−η)|α |2 = e−µ−η|α |2 .
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Problems of Chapter 10

Problem 10.1 ⋆ ⋆ ⋆ [Sect. 10.3] To check Schmidt’s decomposition consider a

finite–dimensional bipartite system with HA = C2 and HB = C4 , where the coeffi-

cient matrix C is 2× 4. Suppose that the matrix has the form

C =

[
c11 c12 c13 c14

c21 c22 c23 c24

]
=

[
1
4

1
4

1
4

β

1
4

1
4

1
4

√
5
8
−β 2

]

where β is a parameter. Find the values of beta, if any, which correspond to a sepa-

rable state and to a maximally entangled state.

Solution The SVD gives the two Schmidt coefficients

d± = 1
4

√
8±

√
∆ with ∆ = 24

√
2β
√

5− 8β 2+ 34

and d2
−+ d2

+ = 1. Now, we can see that in general the state is entangled. For β =

(±1± i/4)/
√

3, we have d± =
√

2/2 and the state is maximally entangled. For

β =
√

5/4 we have d− = 0 and d+ = 1, so that the state is separable. In fact, the

matrix of the coefficients becomes

C =

[
1
4

1
4

1
4

√
5

4
1
4

1
4

1
4

√
5

4

]

and the linear combination (10.7) gives

|ψ〉〉=
(

1
4
|bA

1 〉+ 1
4
|bA

2 〉+ 1
4
|bA

3 〉+
√

5
4
|bA

4 〉
)
⊗
(
|bB

1 〉+ |bB
2〉
)

which clearly is the tensor product of two states.
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Problems of Chapter 11

An extra problem, Problem 11.19E, not included in the book, is introduced.

Problem 11.1 ⋆ [Sect. 11.5] Prove relation (11.58), which states that all the

number states |n〉 can be obtained from the ground state |0〉.
Solution Relation (11.58) is proved by induction considering that it holds for n = 0

and in the iterations we can use (11.57).

Problem 11.2 ⋆⋆ [Sect. 11.6] Using the general definition of the exponential of

a matrix, find explicitly the exponential of a 2× 2 matrix.

Solution First we have to find the EID of the matrix, say

A =U Λ U∗ →
[

a b

c d

]
=

[
u11 u12

u21 u22

][
λ1 0

0 λ2

][
u∗11 u∗21

u∗12 u∗22

]
.

Then we have

expA =U expΛ U∗ with expΛ =

[
eλ1 0

0 eλ2

]
.

The secular equation is λ 2 − (a+ d)λ + ad − bc = 0 whose solutions are λ∓ =
1
2
(a+ d∓

√
∆). Hence

Λ =

[ 1
2
(a+ d−

√
∆ ) 0

0 1
2
(a+ d+

√
∆ )

]
.

It remains to evaluate the eigenvectors to arrive at the formula of the text.

Problem 11.3 ⋆⋆ [Sect. 11.6] Prove relation (11.81) linking the complex vectors

and the real vectors defined by (11.80). Note that the entries of the matrix Ω can be

written in the form

Ω2(h−1)+r,2(k−1)+s = δhk(δr,s−1 − δr−1,s) = δhk εrs , h,k = 1, . . . ,N r,s = 1,2

where

εrs =

{
1 r = 1,s = 2

−1 r = 2,s = 1

0 otherwise .

Solution Letting X = [X1, . . . ,X2N ]
T and Y = [Y1, . . . ,Y2N ]

T we find

X T Ω Y =
N

∑
h=1

[
X2(h−1)+1Y2(h−1)+2 −X2(h−1)+2Y2(h−1)+1

]
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Next we replace X and Y with xy and uv, respectively, and use the fact that xi =
1
2
(λi +λ ∗

i ), etc. Thus (11.81) follows.

Problem 11.4 ⋆⋆ [Sect. 11.7] Prove the relation (11.100) between the covariance

matrices R and V in the single mode.

Solution The covariances given by (11.99) are

V11 =
1

2
〈{|∆q,∆q}〉= 〈(∆q)2〉= R11

V12 =
1

2
〈{∆q,∆ p}〉= 1

2
〈(q− q)(p− p)+ (p− p)(q− q)〉

=
1

2
[q p+ pq+ 2q p− 2pq− 2qp]

where we can express pq using the commutation relation (11.51), that is, pq =
q p− 2i. Hence

V12 = q p+ i+ q q− pp− qp = ∆q∆ p− i = R12 − i

and

V12 = 〈q p+ i+ q p− pq− qp〉= 〈q p〉+ i− q p =Vqp + i .

Analogously we find V21 = R21 − i and V22 = R22. In conclusion, we find the matrix

relation [
V11 V12

V21 V22

]
=

[
R11 R12

R21 R22

]
− i

[
0 1

−1 0

]

which can be written in the form

V = R− iΩ .

Problem 11.5 ⋆⋆ [Sect. 11.7] Compare conditions (11.101) and (11.102) in the

single mode.

Solution Condition (11.101) gives

V11V22 ≥ 1

while condition (11.102) reads

V + iΩ =

[
V11 V12 + i

V12 − i V22

]
≥ 0 .

We recall that a Hermitian matrix is PSD if and only if its principal minors are

nonnegative. In the case of matrix V + iΩ we have the conditions

V11 ≥ 0 , V22 ≥ 0 , det(V + iΩ) =V11V22 −V 2
12 + 1 ≥ 0
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which constrains the nondiagonal element as

V 2
12 ≤V11V22 ≤ 1 .

Problem 11.6 ⋆ ⋆ ⋆ [Sect. 11.7] Prove condition (11.113), which states that the▽
characteristic function χ(ξ ) refers to a pure state.

Hint Use the Fock expansion of the pure state and Proposition 11.9.

Solution We prove the statement in the single mode. Let

|ψ〉= ∑
n

fn |n〉

be the Fock expansion of the pure state |ψ〉. Then (11.112) gives

χ(ξ ) = 〈ψ |D(ξ )|ψ〉= ∑
m

∑
n

f ∗m fn〈m|D(ξ )|n〉= ∑
m

∑
n

f ∗m fm Dmn(ξ )

and

|χ(ξ )|2 = χ(ξ )χ∗(ξ ) = ∑
m

∑
n

f ∗m fm Dmn(ξ )∑
r

∑
s

fr f ∗s D∗
rs(ξ ) .

Now in the integral we can use Proposition 11.9 to get

∫

C

dξ |χ(ξ )|2 = ∑
m

∑
n

f ∗m fm ∑
r

∑
s

fr f ∗s δmrδns = ∑
m

∑
n

| fm|2| fn|2 = 1

where ∑m | fm|2 = 1 is due to the normalization of the ket |ψ〉.
Problem 11.7 ⋆⋆⋆ [Sect. 11.7] Evaluate the integral (11.114) using Williamson’s▽
theorem (Theorem 11.2).

Solution From (11.105a) we have that the integrand is

|χ(ξ )|2 = |χ(u,v)|2 = exp [−uv
T (Ω VΩ T)uv] .

By Williamson’s theorem the covariance matrix can be decomposed as

V = SwV⊕ ST

w , V⊕ = diag [σ2
1 ,σ

2
1 , . . . ,σ

2
N ,σ

2
N ] .

Then ∫

CN
dξ |χ(ξ )|2 =

∫

R2N
dudv |χ(u,v)|2

=

∫

R2N
dudv exp

[
−uv

T
(
Ω SwV⊕ ST

wΩ T
)

uv
]
.

Now it is convenient to make the change of variables

X = ST

wΩ T uv → dX = |det(SwΩ)|dudv = dudv

where |det(SwΩ)|= 1 because Sw is a symplectic matrix (see (11.149)). Hence
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∫

CN
dξ |χ(ξ )|2 =

∫

R2N
dX exp

[
−X TV⊕ X

]
.

Considering that the matrix V⊕ is diagonal, the biquadratic form at the exponential

results in

X TV⊕ X = (X2
1 +X2

2 )σ
2
1 + · · ·+(X2

2N−1 +X2
2N)σ

2
N

so that the exponential is given by product of 2N exponentials and

∫

CN
dξ |χ(ξ )|2 =

N

∏
i=1

∫

R

dX2i−1 exp
[
−X2

2i−1 σ2
i

] ∫

R

dX2i exp
[
−X2

2i σ
2
i

]
.

Each integral gives
√

π/σi. Hence

∫

CN
dξ |χ(ξ )|2 = πN

σ2
1 ·σ2

N

.

It remains to recall that σ2
i are the symplectic eigenvalues of V , which can be ob-

tained as the ordinary eigenvalues of the matrix iΩ V . More precisely, the eigen-

values of iΩ V are {±σ2
1 , . . . ,±σ2

N}. On the other hand, we recall that the prod-

uct of the eigenvalues of a square matrix gives the determinant of the matrix (see

(2.46)). Hence det(iΩ V ) = (−1)Nσ4
1 · · ·σ4

N , where det(iΩ) = (−1)N . Therefore

σ2
1 · · ·σ2

N =
√

detV . In conclusion

∫

CN
dξ |χ(ξ )|2 = πN

√
detV

.

Problem 11.8 ⋆ ⋆ ⋆ [Sect. 11.8] Prove Glauber’s inversion formula (11.90) in the

single mode. Hint: use Fock representation and the orthogonality of the Dmn (see

Proposition 11.9).

Solution The density operator ρ can be recovered from the characteristic function

χ(ξ ) in the single mode as

ρ =
1

π

∫

C

dξ χ(ξ )D∗(ξ ) .

We denote by ρ̃ the reconstructed operator, namely

ρ̃ =
1

π

∫

C

dξ D∗(ξ )χ(ξ ) =
∫

C

dξ D∗(ξ )Tr
(

ρeξ a∗−ξ ∗a
)
.

Then, we proceed with the matrix representation of the operators to get
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ρ̃mn =
1

π

∫

C

dξ D∗
nm(ξ )

∞

∑
s=0

∞

∑
r=0

ρsr Drs(ξ )

=
∞

∑
s=0

∞

∑
r=0

ρsr
1

π

∫

C

dξ D∗
nm(ξ )Drs(ξ )

where we apply the orthogonality of the Dmn (see Proposition 11.9), which gives

ρ̃mn = ρmn.

Problem 11.9 ⋆ [Sect. 11.8] Using the orthogonality of the functions Dmn(ξ )
given by (11.132), prove the orthogonality of the functions Dmn(λ ), the Fourier

transform of the Dmn(ξ ).

Solution Combination of (11.131) and (11.132) gives

∫

C

dλDmn(λ )
∗
Drs(λ ) = (−1)min(m,n)+min(r,s)δmnδrs = δmnδrs .

Problem 11.10 ⋆ ⋆ ⋆ [Sect. 11.9] Thermal states are defined as the bosonic states▽
that maximize the von Neumann entropy for a fixed energy. Prove this statement

using Lagrange multipliers.

Solution not available

Problem 11.11 ⋆⋆ [Sect. 11.9] Prove that, if the characteristic function χ(ξ )
depends only on |ξ |2, say χ(ξ ) = f (|ξ |2), the reconstruction formula (11.110) of

Proposition 11.7) is simplified as

ρnm = δmn

∫ ∞

0
dx e−

1
2 x f (x)Ln(x) (11.1)

where Ln(x) is the ordinary Laguerre polynomial.

Solution The general reconstruction formula of the matrix representation of the den-

sity operator is given by (11.110), that is,

ρnm =
1

π

∫

C

dξ χ(ξ )D∗
mn(ξ ) (11.2)

where the matrix representation of the Weyl operator is given in Proposition 11.7 as

Dmn(ξ ) = e−
1
2
|ξ |2
√

n!

m!
ξ m−nL

(m−n)
n (|ξ |2) .

Now, considering that χ(ξ ) = f (|ξ |2) we find

ρnm =
1

π

∫

C

dξ f (|ξ |2) e−
1
2
|ξ |2
√

n!

m!
(ξ ∗)m−nL

(m−n)
n (|ξ |2)
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where we use polar coordinates with ξ = λ exp(iφ) to get

ρnm =
1

π

∫ ∞

0
dλ λ

∫ 2π

0
dφ f (λ 2) e

− 1
2

λ 2

√
n!

m!
λ m−nei(n−m)φ L

(m−n)
n (λ 2) .

Considering that
1

2π

∫ 2π

0
dφ ei(n−m)φ = δmn

we find

ρnm = δmn 2

∫ ∞

0
dλ λ f (λ 2) e−

1
2

λ 2

L
(0)
n (λ 2) .

and (11.143) follows after the change of variable x = λ 2.

Problem 11.12 ⋆⋆ [Sect. 11.9] Consider the alternative definition of a coherent

state given by (11.138). Show that the Fock representation of |α〉 is still given by

(11.46).

Solution The alternative definition is

|α〉= D(α)|0〉= e−
1
2 |α |2 ea∗ α e−α∗ a|0〉 .

Now, from (11.126c), e−α∗a|0〉= |0〉. Thus

|α〉= e−
1
2 |α |2 ea∗ α |0〉= e−

1
2 |α |2

∞

∑
n=0

(α)n

n!
(a∗)n|0〉

where we can use (11.124) to get (a∗)n |0〉=
√

n!|n〉. Hence

|α〉=
∞

∑
n=0

e−
1
2 |α |2 αn

√
n!

|n〉

which is the Fock expansion obtained with the original definition of |α〉.
Problem 11.13 ⋆ [Sect. 11.11] Prove that the Bogoliubov transformation gener-

ated by the N–mode displacement operator is given by

D∗
N(α) a DN(α) = a+α .

Then evaluate the corresponding symplectic matrix.

Solution The N–mode displacement operator DN(α) is simply given by the prod-

uct of N single–mode displacement operators . Hence, by Proposition 11.12, which

holds also in the N–mode, one gets the Bogoliubov transformation. The symplectic

transformation is obtained by using relation (11.151), that is,

S = Π

[
ℜ(E +F) ℑ(−E +F)
ℑ(E +F) ℜ(E −F)

]
Π T , d = Π

[
ℜz

ℑz

]

with u = IN and v = 0N to get
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S = Π

[
IN 0N

0N IN

]
Π T = Π Π T = I2N .

On the other hand the permutation matrix Π provides the interlace of the two N–

column vectors, so that we can write

d = ℜαℑα .

Problem 11.14 ⋆ ⋆ ⋆ [Sect. 11.11] Prove that the N–mode rotation operator

(11.161) produces the Bogoliubov transformation

RN(φ)aRN(φ) = eiφ a .

Solution Considering that the matrix φ is Hermitian, the adjoint of the exponent

ia∗ φ a is −ia∗ φ a. Hence

R∗(φ)aR(φ) = e−ia∗ φ a a ei a∗φ a (11.3)

which corresponds to the BCH identity (11.168) with

x =−i , H = a∗φ a , K = a .

But we have to interpret this identity in the sense of (11.168), that is,

exH ak e−xH =
∞

∑
n=0

xn

n!
Dn(k) , k = 1, . . . ,N

where

D0(k) = ak , Dn(k) = [H,Dn−1(k)] for n ≥ 1 . (11.3a)

Then

R∗(φ)ak R(φ) =
∞

∑
n=0

(−iφ)n

n!
Dn(k) . (11.4)

We now proceed for N = 2. We have D0(1) = a1, D0(2) = a2, and

a∗φ a = a∗1φ11a1 + a∗1φ12a2 + a∗2φ21a1 + a∗2φ22a2 .

Hence, recalling that operators of different modes commute, we find

D1(1) = [a∗ φ a,a1] = {a∗1φ11a1 + a∗1φ12a2 + a∗2φ21a1 + a∗2φ22a2}a1

− a1{a∗1φ11a1 + a∗1φ12a2 + a∗2φ21a1 + a∗2φ22a2}
=−(φ11a1 +φ12a1)
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D1(2) = [a∗ φ a,a2] = {a∗1φ11a1 + a∗1φ12a2 + a∗2φ21a1 + a∗2φ22a2}a2

− a1{a∗2φ11a1 + a∗1φ12a2 + a∗2φ21a1 + a∗2φ22a2}
=−(φ21a1 +φ22a2)

which can be written in the matrix form

[
D1(1)
D1(2)

]
=−

[
φ11 φ12

φ21 φ22

][
a1

a2

]
→ D1 =−φ a .

Now we can organize (with some effort) an induction procedure to prove that

Dn = (−φ)n a

and the final result is

R∗(φ)aR(φ) =
∞

∑
n=0

(iφ)n

n!
= eiφ a .

Problem 11.15 ⋆⋆ [Sect. 11.11] Write explicitly the symplectic matrix of a two–

mode rotation operator in the two cases of matrix φ

φ =

[
φ0 0

0 φ0

]
, φ =

[
0 φ0

φ0 0

]
(φ0 real) .

Hint: use identities (11.74) for the exponential and the expressions of Π and Π T

given after Proposition 11.11.

Solution In the first case the matrix is diagonal and therefore

eiφ = exp i

[
φ0 0

0 φ0

]
=

[
eiφ0 0

0 eiφ0

]
= eiφ0 I2 .

Hence

ℜeiφ = cos(φ0) I2 , ℑeiφ = sin(φ0) I2 .

The symplectic matrix is explicitly

S = Π

[
ℜ(E +F) ℑ(−E +F)
ℑ(E +F) ℜ(E −F)

]
Π T = Π

[
cos(φ0) I2 −sin(φ0) I2

sin(φ0) I2 cos(φ0) I2

]
Π T

and, considering the expressions of the permutation matrices

S =


 .

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1







cos(φ0) 0 −sin(φ0) 0

0 cos(φ0) 0 −sin(φ0)
sin(φ0) 0 cos(φ0) 0

0 sin(φ0) 0 cos(φ0)







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 .

The final result is
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S =




cos(φ0) −sin(φ0) 0 0

sin(φ0) cos(φ0) 0 0

0 0 cos(φ0) −sin(φ0)

0 0 sin(φ0) cos(φ0)


 .

In the second case

E := exp

[
0 φ0

φ0 0

]
=

[
cos(φ0) i sin(φ0)

i sin(φ0) cos(φ0)

]
.

Then

ℜE = cos(φ0) I2 , ℑE = sin(φ0)J2 with J2 =

[
0 1

1 0

]

and the conclusion is that the symplectic matrix S is the same as in the first case.

Problem 11.16 ⋆ ⋆ ⋆ [Sect. 11.11] Prove that the N–mode squeeze operator pro-

duces the Bogoliubov transformation

Z∗
N(z)aZN(z) = coshr a+ sinhr eiθ a∗ , (11.5)

where the symmetric matrix z is written in the form z = r eiθ .

Solution In Ma and Rhode’s paper4 the authors assume that the matrix z is symmet-

ric and claim that

Z∗
N(z)aZN(z) = a+ za∗+

1

2!
zz∗ a+

1

3!
(zz∗)z a∗+

1

4!
(zz∗)2 a+ · · · (11.6)

With the decomposition z = r eiθ , the even and odd terms in (11.6) give respectively

E =a+
1

2!
zz∗ a+

1

4!
(zz∗)2 a+ · · ·

=(IN +
1

2!
r2 +

1

4!
r4 + · · ·)a = coshr a

O =za∗+
1

3!
(zz∗)z a∗+

1

5!
(zz∗)2z a∗+ · · ·

=(r+
1

3!
r3 +

1

5!
r5 · · ·)eiθ a∗ = sinhreiθ a∗

and (11.179) follows.

We now sketch the proof of the first terms of (11.6) for N = 2, investigating in

particular the role of the assumption of symmetry for z. We have

Z∗
N(z)aZN(z) = e

1
2 (a

∗ z(a∗)T−aT za)∗ ae
1
2 (a

∗ z(a∗)T−aT za)∗

which corresponds to the BCH identity (11.168) with

4 X. Ma and W. Rhodes, “Multimode squeeze operators and squeezed states,” Phys. Rev. A, vol. 41,

pp. 4625–4631, May 1990.
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x =
1

2
, H = (a∗ z(a∗)T − aT za)∗ = aT z∗ a− a∗ z(a∗)T , K = a .

But we have to interpret this identity in the sense of (11.168), that is,

exA ak e−xA =
∞

∑
n=0

xn

n!
Dn(k) , k = 1, . . . ,N

where

D0(k) = ak , Dn(k) = [H,Dn−1(k)] for n ≥ 1 . (11.6a)

Then

Z∗
N(z)aZN(z) =

∞

∑
n=0

1

2nn!
Dn (11.7)

where Dn is the N × 1 vector collecting the Dn(k).
Now

H = aT z∗ a− a∗ z(a∗)T =
N

∑
i=0

N

∑
j=0

(z∗jiaia j − zi ja
∗
i a∗j)

and

D1(k) = [a,ak] =
N

∑
i=0

N

∑
j=0

(
z∗ji [aia j,ak]− z∗i j [a∗i a∗j ,ak]

)
.

In particular for N = 2

D1(k) =z∗11[a1a1,ak]+ z∗21[a1a2,ak]+ z∗12[a2a1,ak]+ z∗22[a2a2,ak]

− (z11[a
∗
1a∗1,ak]+ z21[a

∗
1a∗2,ak]+ z12[a

∗
2a∗1,ak]+ z22[a

∗
2a∗2,ak])

where [aia j,ak] = 0 and

[a∗1a∗1,a1] =a∗1a∗1a1 − a1a∗1a∗1 = a∗1a∗1a1 − a∗1a1a∗1 + a∗1a1a∗1 + a∗1a1a∗1 + a1− a1a∗1a∗1
=a∗1(a

∗
1a1 − a∗1a1)+ (a∗1a1 − a1a∗1)a

∗
1 =−2a∗1

[a∗1a∗2,a1] =a∗1a∗2a1 − a1a∗1a∗2 =−a∗2
[a∗2a∗1,a1] =a∗2a∗1a1 − a1a∗2a∗1 =−a∗2
[a∗2a∗2,a1] =0

[a∗1a∗1,a2] =0

[a∗1a∗2,a2] =a∗1a∗2a2 − a2a∗1a∗2 =−a∗1
[a∗2a∗1,a2] =a∗2a∗1a2 − a2a∗2a∗1 =−a∗1
[a∗2a∗2,a2] =− 2a∗1 .

Hence

D1 =

[
D1(1)
D1(2)

]
=

[
2z11a1 + z21a∗2 + z12a∗2
+z21a∗1 + z12a∗1 + 2z22a∗1

]
=

[
2z11 z12 + z21

z12 + z21 2z22

][
a∗1
a∗2

]
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Now, if the matrix z is symmetric we find

D1 = 2za∗ → 1

2
D1 = za∗

in agreement with the first term of (11.109).

The next step would be the evaluation of

D2 = [D1,a] = [za∗,a]

but the organization of an induction procedure becomes mandatory.

Problem 11.17 ⋆ [Sect. 11.14] Prove in the single bosonic mode condition

(11.148), which states that the commutation relation is preserved after a Bogoli-

ubov transformation.

Hint Use the bilinearity of the trace

[u1H1+u2H2,v1K1+v2K2] = u1v1[H1,K1]+u1v2[H1,K2]+u2v1[H2,K1]+u2v2[H2,K2]
(11.8)

where ui, v j are complex numbers and Hi, K j are operators.

Solution The direct solution is

[ã, ã∗] =ãã∗− ã∗ã

=(E a+F a∗+ z)(E∗ a∗+F∗ a+ z∗)− (E∗a∗+F∗ a+ z∗)(E a+F a∗+ z)

=(EE∗−F∗F)aa∗+(EF∗−F∗E)aa+(FE∗−F∗E)a∗a∗+(FF∗−E∗E)a∗a

=(EE∗−F∗F)(aa∗− aa∗) = (EE∗−F∗F)[a,a∗] .

Instead, using (11.199)

[E a+F a∗,E∗a∗+F∗a] = EE∗[a,a∗]+EF∗[a,a+FE∗F[a,a]+FF∗[a∗a]

where [a,a] = [a∗,a∗] = 0 and [a∗,a] =−[a,a∗]. Hence (11.148) follows at once.

Problem 11.18 ⋆⋆ [Sect. 11.14] Prove that the rotation operator (11.207) pro-

duces the Bogoliubov transformation (11.210).

Solution We have

R∗(φ)aR(φ) = eiφ a (11.9)

which correspond to the BCH identity (11.70) with

x =−iφ , K = a∗a, , K = a .

Then

R∗(φ)aR(φ) =
∞

∑
n=0

(−iφ)n

n!
Dn (11.10)

where
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D0 = a

D1 = [H,D0] = [a∗a,a] = a∗aa− aa∗a = (a∗a− aa∗)a = [a∗,a]a =−a

D2 = [a,D1] = [a∗a,−a] = a

and in general Dn = (−1)na. Then from (11.10) we obtain (11.9).

Problem 11.19 ⋆⋆ [Sect. 11.14] Prove that a squeezing followed by a displace-

ment is equivalent to a displacement followed by a squeezing with the change of the

displacement amount indicated in (11.176).

Solution The cascade of Z(z) with z = r eiθ followed by D(α) gives the Bogoliubov

transformation

Z∗(z)D∗(α)a D(α)Z(z) = coshr a+ sinhr eiθ a∗+α .

The cascade of D(β ) followed by Z(z) gives

D∗(β )Z∗(r)aZ∗(r)D(β ) =D∗(β )
[
coshr a+ sinhr eiθ a∗

]
D(β )

=coshr D∗(β )aD(β )+ sinhr eiθ D∗(β )a∗ D(β )

=coshr(a+β )+ sinhr eiθ (a∗+β ∗)

where the displacement amount is

α = β coshr+β ∗ sinhr eiθ .

Solving with respect to β one gets

β = α coshr−α∗ sinhr eiθ .
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Extra Problem (not introduced in the book)

Problem 11.19E ⋆⋆⋆ [Sect. 11.14] Starting from Yuen’s formula (11.229), prove

that the probability distribution pn(i) of squeezed–displaced states, for α real and

θ = 0, can be written in the form

pn(i) =
sechr

i!
tanhi r H2

i

(
α(1+ tanhr√

2tanhr

)
exp

(
−1

2
α2(1+ tanhr

)
.

Solution The above formula was obtained by Kim et al.5. They started from Yuen’s

formula for squeezed-displaced states, that is,

|− z,α〉n =
1√
µ n!

(
ν

2µ

)n/2

Hn

(
β√
2µν

)
exp

(
−1

2
|β |2 + ν∗

2µ
β 2

)
(11.11)

where

µ = coshr , ν = sinhr exp(iθ ) , β = coshr α + sinhr α∗ exp(iθ ) .

We now elaborate the argument of the Hermite polynomial and of the exponent to

meet Kim’s formula. First we proceed in general and then we introduce the specific

case: α real and θ = 0.

• Elaboration of the argument of the Hermite polynomial.

The argument is

arg =
β√
2µν

=
coshr α + sinhr α∗ exp(iθ )√

2coshr sinhr exp(iθ )

=
α + tanhrα∗ exp(iθ )√

2tanhr exp(ıθ )
.

If α is real and θ = 0, we get

arg =
α[1+ tanhr]√

2tanhr
.

Leaving µ and ν unspecified (ν > 0) and β = µ α +ν α∗, the exponent is

5 M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, “Properties of squeezed number states and

squeezed thermal states,” Phys. Rev. A, vol. 40, pp. 2494–2503, Sep. 1989.
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e =
1

2
|β |2 + ν∗

2µ
β 2

=
1

2

{
|µα +ν α∗|2 − ν∗

2µ
[µ α +ν α∗]2

}

=
1

2
µ2

{∣∣∣α +
ν

µ
α∗
∣∣∣
2

− ν∗

µ

[
α +

ν

µ
α∗
]2
}

=
1

2
µ2
{
|α +Tα∗|2 −T ∗[α +Tα∗]2

}

where

T =
ν

µ
= tanhr exp(iθ ) .

This in general. When α is real and θ = 0

e =− 1

2
µ2
{
|α +Tα∗|2 −T∗[α +Tα∗]2

}

=− 1

2
µ2α2

[
(1+T)2 −T(1+T)2

]

=− 1

2
µ2α2

[
(1+T)2(1−T)

]

=− 1

2
µ2α2(1+T)(1−T2) .

Note that

µ2(1−T2) = cosh2(r)(1− tanhr) = cosh2(r)− sinh2(r) = 1 .

Hence

e =
1

2
α2(1+ tanhr)

in agreement with the result of Kim et al.

Problem 11.20 ⋆⋆ [Sect. 11.15] Prove that in a cascade of three symplectic

transformations X̃i = Si Xi + di, i = 1,2,3, the covariance matrix at the output is

given by

V123 = S3S2S1V0ST

1ST

2ST

3

where V0 is the covariance matrix at the input.

Solution The cascade is shown in Fig.11.1. By applying iteratively relations (11.154)

of Theorem 11.1 one gets the relations for the mean vectors

X123 = S3S2S1X0 + S3S2d1 + S3d2 + d3 (11.12)

where X0 is the mean vector at the input. Analogously, for the covariance matrices

we find

V123 = S3S2S1V0ST

1ST

2ST

3 . (11.13)
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U1
✲

X0

U2
✲

X1=S1X0+d1

U3
✲

X12=S2X1+d2
✲

X123=S3X2+d3

Fig. 11.1 Cascade application of Gaussian unitaries and corresponding relation of symplectic pa-

rameters.

Problem 11.21 ⋆⋆⋆ [Sect. 11.15] Prove that the covariance matrix of a squeezed–

displaced–rotated state |z,α,φ〉 is given by

Vsq,rot(z,φ)=

[
cosh(2r)+ cos(2φ +θ )sinh(2r) sin(2φ +θ )sinh(2r)

sin(2φ +θ )sinh(2r) cosh(2r)− cos(2φ +θ )sinh(2r)

]
.

(11.14)

Solution We apply the statement of Problem 11.20 with: 1=squeezing, 2=dis-

placement, 3=rotation, starting form the vacuum state, which have V0 = I2. Also,

S1 = Ssq(z), S2 = I2, S3 = Srot(φ). Then

Vsq,disp,rot(z,φ) = SrotSsqST

sqST

rot

where (see (11.170) and (11.172))

Srot(φ) =

[
cosφ −sinφ
sinφ cosφ

]

and

Ssq =

[
cosh(r)+ cos(θ )sinh(r) sin(θ )sinh(r)

sin(θ )sinh(r) cosh(r)− cos(θ )sinh(r)

]

Substitution of the expressions gives (11.233).

Problem 11.22 ⋆ [Sect. 11.16] Prove that the covariance matrix of the single–

mode Gaussian state |z,α〉 is given by (11.236).

Solution The covariance matrix is given by V = Ssq(z)S
T

sq(z), where the symplectic

matrix is given by (11.172)

Ssq(r e iθ ) =

[
coshr+ cosθ sinhr sinθ sinhr

sinθ sinhr coshr− cosθ sinhr

]
. (11.15)

Hence

V =

[
V11 V12

V12 V22

]
=

[
cosh2r+ cosθ sinh2r sinθ sinh2r

sinθ sinh2r cosh2r− cosθ sinh2r

]
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Note that this result is a special case of the covariance matrix of an N–mode Gaus-

sian state, given by (11.185), where in the single mode r and θ are scalars and

Yi j =Vi j.

Problem 11.23 ⋆⋆ [Sect. 11.16] Consider the Wigner function W (x,y) of a gen-

eral Gaussian state given by (11.237) and introduce the change of coordinate (see

the left of Fig.11.13)

x = u cos 1
2
θ − v sin 1

2
θ , y = u sin 1

2
θ + v cos 1

2
θ

which provides a rotation of the angle 1
2
θ . Prove that the new Wigner function

W̃ (u,v) is obtained with the covariance matrix

V =

[
e2r 0

0 e−2r

]
.

In words, the rotation of 1
2
θ removes the squeeze phase in z = r e iθ .

Solution(CS126) It is convenient to write

W (x,y) =
1

2π
exp

[
−1

2
E

]

where

E =− 2cosθ coshr sinh(r)y2 +
[
x2 + y2

]
cosh2(r)+

[
x2 + y2

]
sinh2(r)

+ x(xcosθ + 2ysin(θ ))sinh(2r) .

After the introduction of the rotation we find

E =
[[

vcos 1
2
θ + usin 1

2
θ
]2
+
[
ucos 1

2
θ − vsin 1

2
θ
]2]

cosh2 r

− 2cosθ
[
vcos 1

2
θ + usin 1

2
θ
]2

sinh(r)cosh r

+
[[

vcos 1
2
θ + usin 1

2
θ
]2
+
[
ucos 1

2
θ − vsin 1

2
θ
]2]

sinh2(r)

+
[
ucos 1

2
θ − vsin 1

2
θ
]

cosθ
[
ucos 1

2
θ − vsin 1

2
θ
]

+ 2
[
vcos 1

2
θ + usin 1

2
θ
]

sin(θ )sinh2r

which can be simplified as

E =
[
u2 + v2

]
cosh2r+

[
u2 − v2

]
sinh2r = e2ru2 + e−2rv2 .

We have obtained the above simplifications with Mathematica. ces

Problem 11.24 ⋆⋆ [Sect. 11.17] Prove that the symplectic transformation of the

Gaussian unitary (11.243) for θ = 0 is given by

Ssq(z0) =

[
coshr0 I2 sinhr0 Y2

sinhr0 Y2 coshr0 I2

]
, Y2 :=

[
0 1

−1 0

]
. (11.16)
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Solution For the squeeze operator (11.242) the Bogoliubov transformation is (see

(11.73) and (11.74))

ã = Z∗
2(z0)aZ2(z0) =cosh

[
0 r0

r0 0

]
a+ eiθ sinh

[
0 r0

r0 0

]
a∗

=

[
coshr0 0

0 coshr0

]
a+ eiθ

[
0 sinhr0

sinhr0 0

]
a∗

that is,

ã = coshr0 I2 a+ sinhr0 W2 a∗ , W2 :=

[
0 1

1 0

]
. (11.17)

The symplectic matrix is obtained using Proposition 11.11 and reads

Ssq(z0) =

[
coshr0 I2 sinhr0 Y2

sinhr0 Y2 coshr0 I2

]
, Y2 :=

[
1 0

−1 0

]
.

Problem 11.25 ⋆⋆ [Sect. 11.17] Prove that the covariance matrix of the state

(11.244) is given by (11.245).

Solution We use the matrices

W2 =

[
0 1

1 0

]
, Y2 =

[
1 0

0 −1

]

and, to avoid confusion between scalars and matrices, we have written the squeeze

matrix z as

z =

[
0 z0

z0 0

]
= z0 W2 → Z2(z0) = e

1
2 (z0 a∗1a∗2−z∗0a1a2)

with z0 = r0 eiθ0 ∈ C. Now we write z in the standard form z = reiθ , where z is

symmetric and r and θ Hermitian. We have

r =

[
0 r0

r0 0

]
= r0W2 , θ = θ0I2 → eiθ = eiθ0 I2 .

Now we can apply the general formula (11.185) giving the covariance matrix Y in

the N–mode. Considering that rT = r and

cosh2r = cosh2r0 I2 , sinh2r= sinhr0W2 , cosθ = cosθ0I2 , sinθ = sinθ0I2

we find
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Yqq = cosh2r+ sinh2r cosθ = cosh2r0 I2 + cosθ0 sinh2r0W2

Vpp = cosh2r− sinh2r cosθ = cosh2r0 I2 − cosθ0 sinh2r0W2

Yqp = sinh2r sinθ = sinθ0 sinh2r0W2

and explicitly

Y =




cosh2r0 cosθ0 sinh2r0 0 sinθ0 sinh2r0

cosθ0 sinh2r0 cosh2r0 sinθ0 sinh2r0 0

0 sinθ0 sinh2r0 cosh2r0 −cosθ0 sinh2r0

sinθ0 sinh2r0 0 −cosθ0 sinh2r0 cosh2r0


 .

Then with

Π =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




we get

V = Π Y Π T =




cosh2r0 0 cosθ0 sinh2r0 sinθ0 sinh2r0

0 cosh2r0 sinθ0 sinh2r0 −cosθ0 sinh2r0

cosθ0 sinh2r0 sinθ0 sinh2r0 cosh2r0 0

sinθ0 sinh2r0 −cosθ0 sinh2r0 0 cosh2r0




which can be written in the compact form

V =

[
cosh2r0I2 cosθ0 sinh2r0Y2 + sinθ0 sinh2r0W2

cosθ0 sinh2r0Y2 + sinθ0 sinh2r0W2 cosh2r0I2

]
.

In particular, for θ0 = 0 we find

V =

[
cosh2r0I2 sinh2r0Y2

sinh2r0Y2 cosh2r0I2

]
.

We now check the identity YqqYpp = Y 2
qp + I2. We find

YqqYpp = cosh2r2
0 I2 − cos2 θ sinh2 2r0W 2

2

where W 2
2 = I2. On the other hand

Y 2
qp = sin2 θ0 sinh2 2r0W 2

2 .

Hence

YqqYpp −Y 2
qp = (cosh2 2r0 − sinh2 2r0)I2 = I2 .

The condition of minimum uncertainty, YqqYpp = I2, is verified for θ0 = 0.
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Problem 11.26 ⋆ ⋆ ⋆ [Sect. 11.17] Develop the Fock expansion of the general

two–mode Gaussian state (11.254), considering that the exponential eL has the struc-

ture (11.258).

Solution We begin with the non degenerate case.f

The case u12 6= 0 , v1,v2 6= 0

The exponent L is explicitly

L = u1a1 + u2a2 + v1a2
1 + v2a2

2 + u12a1a2 (11.18)

and the exponential reads

B(x,a) = eu1a1+u2a2+v1a2
1+v2a2

2+u12a1a2 (11.19)

The direct expansion of the exponential gives

B(α,a) =
∞

∑
ℓ=0

1

ℓ!
(u1a1 + u2a2 + v1 [a1]

2 + v2 [a2]
2 ++u12a1a2)

ℓ

where

1

ℓ!
(u1a1 + u2a2 + v1 [a1]

2 + v2 [a2]
2 + u12a1a2)

ℓ

= ∑
i, j,k∈Cℓ

1

i1!i2! j1! j2!k!
u

i1
1 u

i2
2 v

j1
1 v

j2
2 uk

12(a1)
i1+2 j1+k(a2)

i2+2 j2+k

with the summation over all naturals i, j,k such that

Cℓ : i1 + i2 + j1 + j2 + k = ℓ . (11.20)

To get the coefficients we let

i1 + 2 j1 + k = n1 , i2 + 2 j2 + k = n2 (11.21)

to obtain

b(n1,n2) = ∑
j,k

1

(n1 − (2 j1 + k))!(n2 − (2 j2 + k)) j1! j2!k!

u
n1−(2 j1+k)
1 u

n2−(2 j2+k)
2 v

j1
1 v

j2
2 uk

12

(11.22)

Considering (11.21), we find that the range of summations is explicitly given by

C(n1,n2) ={(k, j1, j2)|0 ≤ k ≤ max(n1,n2),0 ≤ 2 j1 + k ≤ n1,0 ≤ 2 j2 + k ≤ n2}
={(k, j1, j2)|0 ≤ k ≤ max(n1,n2),0 ≤ j1 ≤ (n1 − k)/2,0 ≤ j2 ≤ (n2 − k)/2} .
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Now (11.22) can be rewritten in the form

b(n1,n2) =
min(n1,n2)

∑
k=0

1

k!
uk

12

⌊(n1−k)/2⌋
∑

j1=0

1

(n1 − 2 j1 − k) j1!
u

n1−2 j1−k
1 v

j1
1

⌊(n2−k)/2⌋
∑

j2=0

1

(n2 − 2 j2 − k) j2!
u

n2−2 j2−k
2 v

j2
2

Next we introduce the Hermite–like polynomial (11.231) (called Hermite 2VHKdFP

in the literature), specifically

Hm(x,y) :=
⌊m/2⌋
∑
j=0

1

(m− 2 j)! j!
xm−2 j y j . (11.23)

to get

b(n1,n2) =
min(n1,n2)

∑
k=0

1

k!
uk

12 Hn1−k(u1,v1)Hn2−k(u2,v2) . (11.24)

In conclusion:

Proposition 11.1. For N = 2 the expansion of the exponential

B(x,a) = exT F a− 1
2

aT C a = eu1a1+u2a2+v1a2
1+v2a2

2+u12a1a2 (11.25)

is given by

B(x,a) =
∞

∑
n1=0

∞

∑
n2=0

b(n1,n2) a
n1
1 a

n2
2 (11.26)

where the coefficients b(n1,n2) are given by (11.24) and the parameters u1,u2, v1,v2

and u12 are determined by the matrices S and T by the relations (11.259).

The case u12 6= 0 , v1 = v2 = 0

This correspond to Caves–Schumaker expansion where the exponent is

L = u1a∗1 + u2a∗2 + u12a∗1a∗2 . (11.27)

However, we can obtain the expansion form the general case of Proposition 11.1

considering that the polynomial (11.23) for x = 0 gives

Hm(x,0) =
1

m!
xm

so that (11.24) becomes
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b(n1,n2) =
min(n1,n2)

∑
k=0

1

k!
uk

12 Hn1−k(u1,0)Hn2−k(u2,0)

=
min(n1,n2)

∑
k=0

1

k!
uk

12

1

(n1 − k)!
u

n1−k
1

1

(n2 − k)!
u

n2−k
2 .

(11.28)

The case u12 = 0

The exponent (11.258) becomes

L = αT ST a∗+ 1
2
a∗ T a∗ = u1a∗1 + u2a∗2 + v1(a

∗
1)

2 + v2(a
∗
2)

2 . (11.29)

and leads to a separable exponential

eL = eu1a∗1+u2a∗2+v1(a
∗
1)

2+v2(a
∗
2)

2
= eu1a∗1+v1(a

∗
1)

2
eu2a∗2+v2(a

∗
2)

2
.

Then the two–mode state is factored into two single–mode squeezed displaced

states, say

|z,α〉 = |z̃1, α̃1〉⊗ |z̃2, α̃2〉 .
Problem 11.27 ⋆ [Sect. 11.18] Prove that the symplectic matrix of the beam

splitter is given by (11.263).

Solution Using Proposition 11.11 one gets

Sbs =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1







cosβ sinβ 0 0

−sinβ cosβ 0 0

0 0 cosβ sinβ

0 0 −sinβ cosβ







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




=




cosβ 0 sinβ 0

0 cosβ 0 sinβ

−sinβ 0 cosβ 0

0 −sinβ 0 cosβ


=

[
cosβ I2 sinβ I2

−sinβ I2 cosβ I2

]
.

Problem 11.28 ⋆ ⋆ ⋆ Consider the beam splitter with a Caves-Schumacher state

at the input. Prove that the average numbers of photons in the two modes are given

by (11.265) at the input and by (11.266) at the output.

Solution We take the opportunity to develop a general theory of photon counting,

not considered in the book. Finally, we give the solution to the problem.
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Average photon numbers in an N–mode Gaussian state

We consider a general Bogoliubov transformation in the N–mode

b = E a+F a∗+ y , b∗ = a∗ E∗+ aF∗+ y∗ . (11.30)

whose scalar forms are

bi = ∑
r

[Eirar +Fir a∗r + yi] , b∗i = ∑
s

[E∗
isa

∗
s +F∗

isas + y∗i ] .

Assuming that the input is the N–mode ground state |0N〉 = |0〉1 ⊗ ·· · ⊗ |0〉N , the

average number of photons in the i–th mode is given by

ni = i〈0|b∗i bi|0〉i = ∑
r

∑
s

[E∗
isEir i〈0|a∗s ar|0〉i +F∗

isFir i〈0|asa
∗
r |0〉i

+E∗
isFir i〈0|a∗s a∗r |0〉i +F∗

isEir i〈0|asar|0〉i

+ yi(E
∗
is i〈0|a∗s |0〉i +F∗

is i〈0|as|0〉i)

+ y∗i (Eir i〈0|ar|0〉i +Firi〈0|ar|0〉i)+ |yi|2] .

Now most product are zero, except i〈0|asa
∗
r |0〉i for r = s, that is,

i〈0|ara
∗
r |0〉i = i〈0|[a∗r ar + 1]|0〉i = 1 .

Thus we have

ni =
N

∑
r=1

|Fir|2 + |yi|2 . (11.31)

In the N mode the general state Gaussian |α,z〉, with z = r eiθ , is obtained from

the Bogoliubov transformation, where we have

E = coshr , F = sinhr eiθ , y = α

and (11.31) requires to evaluate the entries

Fir =
[
sinhr eiθ

]
ir
, i,r = 1, . . . ,N .

Now, given the complex symmetric matrix z, we have to find its polar form z = r eiθ

and the EID of of r to evaluate sinhr.

In particular in the two–mode the average number of photons in the two modes

results in

n1 = |F11|2 + |F12|2 + |α1|2 , n2 = |F21|2 + |F22|2 + |α2|2 . (11.32)

Note that (11.32) can be written in the matrix form
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[
n1

n2

]
= vetD[FF∗+αα∗] (11.33)

where vetD[A] is the column vector obtained from the diagonal elements of the

matrix A.

Polar decomposition of the output squeeze matrix

We find the relation linking the polar decomposition z′ = r′eiθ ′
at the output to the

polar decomposition z = reiθ at the input. For the two matrices we have found the

relation

z′ = uzuT

where u is a unitary matrix.

Proposition 11.2. The relation z′ = uzuT for the the squeeze matrices, gives the

following relations for the factors of the polar decomposition

r′ = ur u∗ , eiθ ′
= ueiθ uT . (11.34)

Proof. We follow the procedure outlined in a previous section. We evaluate the EID

of z′2 := z′ z′∗ using the EID z2 =V Λ 2 V ∗. We find

z′2 = uzuT(uT)∗z∗ u∗ = uz2u∗ = uV Λ 2 V ∗ u∗

so that the EID of z′2 has uV as unitary matrix. Hence

r′ =
√

z′2 == uV Λ V ∗ u∗ = ur u∗ . (11.35)

Finally, if r > 0, we find (r′)−1 = ur−1 u∗ and

eiθ ′
= (r′)−1 z′ = ur−1 u∗uzuT = ur−1 u∗uzuT = ur−1 zuT = ueiθ uT .

✷

In the proof we have seen the following EIDs

r =V Λ V ∗ , z2 =V Λ 2 V ∗

r′ = uV Λ V ∗u∗ , z′2 = uV Λ 2 V ∗V ∗ .

Corollary 11.1. The matrices r and r′ have the same eigenvalues. If f (r)=V f (Λ)V ∗

is an arbitrary function of r, the corresponding function of r′ is given by

f (r′) = u f (r)u∗ . (11.36)

In particular we have the relations
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S := sechr → S′ := sechr′ = uS u∗

T := tanhr eiθ → T ′ := tanhr′ eiθ ′
= uT uT .

(11.37)

Average number of photons in a beam splitter

We have seen that in a Gaussian state the average number of photons in the two

modes are given (11.33), where the matrix F is

F = sinhr eiθ := T .

Now, if n1 and n2 are the average numbers of photons at the input of the BS, to

find the average numbers at the output we can evaluate the output matrix F ′ using

the polar decomposition at the output. In alternative we can use relation(11.37), that

is,

F ′ = uF uT

In conclusion, we find that the average number of photons at the output are given by

[
n′1
n′2

]
= vetA[uF F∗u∗+ uαα∗u∗] (11.38)

The explicit results are (with separation of the contribution of squeezing n and of

displacement m)

• Means at input

n1 = F11F∗
11 +F12F∗

12 , n2 = F21F∗
21 +F22F∗

22 (11.39)

n1 + n2 = |F11|2 + |F12|2 + |F21|2 + |F22|2

m1 = |α1|2 , m2 = |α2|2 , m1 +m2 = |α1|2 + |α2|2

• Means at output

n′1 =sin2(β )
[
|F21|2 + |F22|2

]
+ cos2(β )

[
|F11|2 + |F12|2

]

+ sin(β )cos(β ) [F11F∗
21 +F12F∗

22 +F21F∗
11 +F22F∗

12]

n′2 =sin2(β )
[
|F11|2 + |F12|2

]
+ cos2(β )

[
|F21|2 + |F22|2

]

− sin(β )cos(β ) [F11F∗
21 +F12F∗

22 +F21F∗
11 +F22F∗

12]

n′1 + n′2 = |F11|2 + |F12|2 + |F21|2 + |F22|2

The above results can be rewritten as

n′1 =cos2(β ) n1 + sin2(β ) n2 +∆n sin2β

n′2 =sin2(β ) n1 + cos2(β ) n2 −∆n sin2β
(11.40)
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where

∆n = ℜ(F11F∗
21 +F22F∗

12) (11.40a)

and
m′

1 =cos2(β ) m1 + sin2(β ) m2 +∆m sin2β

m′
2 =sin2(β ) m1 + cos2(β ) m2 −∆m sin2β

(11.41)

where

∆m = ℜ(α1α∗
2 ) . (11.41a)

The global average numbers of both contributions at the output remain un-

chained.

The relations (11.40) and (11.41) give the solution to the problem.

Problem 11.29 ⋆ ⋆ ⋆ [Sect. 11.20] Consider the Fock representation of a pure

state in the single mode

|ψ(p)〉=
∞

∑
n=0

fn(p) |n〉 .

Prove that the application of the rotation operator R(φ) to |ψ(p)〉 modifies the

Fourier coefficients as

fn(p) → einφ fn(p) . (11.42)

Solution Consider the rotation operator expressed by the number operator N = a∗ a

R(φ) = eiφ N =
∞

∑
k=0

(iφ)k

k!
Nk .

Starting from the expression N = ∑∞
j=0 j | j〉〈 j|, we get Nk = ∑∞

j=0 jk | j〉〈 j|. Then

R(φ)|ψ(p)〉 =
∞

∑
k=0

(iφ)k

k!
Nk

∞

∑
n=0

fn(p) |n〉=
∞

∑
k=0

(iφ)k

k!

∞

∑
j=0

jk | j〉〈 j|
∞

∑
n=0

fn(p) |n〉

∞

∑
n=0

∞

∑
k=0

(iφ)k

k!
nk fn(p) |n〉=

∞

∑
n=0

einφ fn(p) |n〉 .

Problem 11.30 ⋆ ⋆ ⋆ [Sect. 11.20] Apply the statement of the previous problem

to prove that the class of squeezed–displaced states is closed under rotations.

Solution The solution is cumbersome for the complicated expression of the Fock

representation given by (11.229).

After a rotation of φ the n–coefficient of a squeezed state becomes

einφ |α,z〉n = einφ 1√
µ n!

(
ν

2µ

)n/2

Hn

(
β√
2µν

)
exp

(
−1

2
|β |2 + ν∗

2µ
β 2

)
.

(11.43)
The target should be: find αφ and zφ such that
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einφ |α,z〉n = |αφ ,zφ 〉n

Now, we try to replace

ν → νφ := νei2φ , → νφ = νei2φ .

so that

(νφ )
n/2 = (νei2φ )n/2 = (ν)n/2einφ

and

einφ |α,z〉n =
1√
µ n!

(
νφ

2µ

)n/2

Hn

(
β√
2µν

)
exp

(
−1

2
|β |2 + ν∗

2µ
β 2

)
. (11.44)

But, how should the other parameters be changed? Considering that

µ = coshr , ν = sinhreiθ , β = µα −να∗ .

we have

µφ = cosh(rφ ) , νφ = sinh(rφ )e
iθφ = νei2φ , βφ = µφ αφ −νφ α∗

φ .

Next we try to set µ unchanged

µφ = µ → cosh(rφ ) = coshr .

Then we can write the condition einφ |α,z〉= |αφ ,zφ 〉 as

1√
µ n!

(
νφ

2µ

)n/2

Hn

(
β√
2µν

)
exp

(
−1

2
|β |2 + ν∗

2µ
β 2

)

=
1√
µ n!

(
νφ

2µ

)n/2

Hn

(
βφ√
2µνφ

)
exp

(
−1

2
|βφ |2 +

ν∗
φ

2µ
β 2

φ

) (11.45)

and we get three conditions. The first condition is

β√
2µν

=
βφ√
2µνφ

=
βφ

eiφ
√

2µν

that is

βφ = β eiφ → µαφ −νei2Φ α∗
φ = µαeiφ −να∗eiφ .

This gives

αφ = αeiΦ , α∗
φ eiΦ = α∗ , αφ = αeiΦ
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The second condition is

|βφ |2 = |β |2 → |µαφ −νφ α∗
φ |2 = |µα −να∗|2

that is,

|µαeiφ −νei2φ α∗e−iφ |2 = |µα −να∗|2

which holds! The third condition is

ν∗
φ

2µ
β 2

φ =
ν∗

2µ
β 2 → ν∗

φ β 2
φ = ν∗β 2

that is

ν∗e−i2φ (µαφ −νφ α∗
φ )

2 = ν∗(µα −να∗)2 → e−i2φ (µαφ −να∗
φ )

2 = (µα −να∗)2

ν∗e−i2φ (µαφ −νφ α∗
φ )

2 = ν∗(µα−να∗)2 → e−i2φ (µαeiφ −νeI2Φ α∗e−iφ )2 =(µα−να∗)2

which holds!

In conclusion, the squeezed state absorbs the rotation with

αφ = αeiφ , µφ = µ , νφ = νei2φ

where
µφ = µ , → cosh(rφ ) = coshr

νφ = νei2φ → sinh(rφ )e
iθφ = sinhreiθ ei2φ .

(11.46)

Considering that z = reiθ , where r is not the modulus of z (it can be negative), from

(11.46) we have

rφ =±r , ±eiθφ = eθ+2φ .

Hence

αφ = αeiφ , zφ = zei2φ . (11.47)

Problem 11.31 ⋆ [Sect. 11.20] Prove that the class of coherent states is closed

with respect to rotations, using the Fock representation (11.191)

Solution The coefficient fn of the Fock representation of the coherent state |α〉 is

given by

fn = e−
1
2 |α |2 αn

√
n!

while the coefficient fn(φ) of the state |αeiφ 〉 is

fn(φ) = e−
1
2 |α |2 (αeiφ )n

√
n!

= einφ fn .

and the conclusion follows from the statement of the previous problem.
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Problems of Chapter 12

Problem 12.1 ⋆⋆ [Sect. 12.3] Consider a pair (A,B) of statistically indepen-

dent symbols. Prove that, by imposing the condition i(a,b) = i(a)+ i(b), the unique

function f [·] defining the information i(a) = f [p(a] is the logarithm.

Solution The condition is

f [p(a,b)] = f [p(a)]+ f [p(b)]

where p(a,b) is the joint probability. Considering the statistical independence we

have

p(a, b) = p(a) p(b).

Hence

f [p(a) p(b)] = f [p(a)]+ f [p(b)] (12.1)

which must hold for every pair of probabilities p(a), p(b). This leads to the func-

tional equation

f (xy) = f (x)+ f (y) , ∀x,y ∈ [0, 1] .

It can be shown that the unique continuous solution of this equation is given by the

logarithm

f (x) = K logc x

where both the constant K and the basis c are arbitrary (c > 0). But, by imposing

that (see the definition of bit) f ( 1
2
) = 1, one gets K logc

1
2
= 1 and hence

f (x) =− 1

logc 2
logc x =− log2 x

where we have used the formula giving the change of base of the logarithmic func-

tion

logc x = (logc d) logd x.

Problem 12.2 ⋆⋆ [Sect. 12.4] (Thermal states) A thermal state may be defined as

the bosonic state that maximizes the von Neumann entropy for a given mean number

of photons N. 6 It has the following Fock representation (see Section 11.9)

ρth =
∞

∑
n=0

Nn

(N+ 1)n+1
|n〉〈n| . (12.2)

Find its quantum entropy.

Solution The form (12.2) is already an EID with orthonormal states and eigenvalues

6 C. Weedbrook, S. Pirandola, R. Garcı́ a Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd,

“Gaussian quantum information,” Rev. Mod. Phys., vol. 84, pp. 621–669, May 2012.
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λn =
N

n

(N+ 1)n+1
.

Then we can apply (12.27) to get

S(ρth) =
∞

∑
n=0

Nn

(N+ 1)n+1
log

Nn

(N+ 1)n+1

The summation gives the quantum entropy

S(ρth) = (N+ 1) log(N+ 1)−N log(N)

which is illustrated in Fig.12.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

N

S(ρ)

Fig. 12.1 The quantum entropy S(ρ) of the thermal state as a function of the mean number of

photons N.

Problem 12.3 ⋆ [Sect. 12.7] Prove that in a binary symmetric channel with

cross transition probability ε and equal a priori probabilities (see Fig. 12.15), the

equivocation is given by

H(A|B) =−(1− ε) log(1− ε)− ε logε .

Solution The general formula giving the equivocation is

H(A|B) = E[i(A|B)] =−∑
a

∑
b

pAB(a,b) log pA|B(a|b) .

In this case we have

pAB(a,b) =
1

2
pA|B(a|b) .

Then
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H(A|B) = ∑
a,b

pAB(a,b) log pA|B(a|b)

=−1

2

[
pA|B(0|0) log pA|B(0|0)+ pA|B(1|1) log pA|B(1|1)+

+pA|B(0|1) log pA|B(0|1)+ pA|B(1|0) log pA|B(1|0)
]

=−(1− ε) log(1− ε)− ε logε .

Problem 12.4 ⋆ [Sect. 12.7] Prove formula (12.71) giving the mutual information

in terms of the a priori probabilities and the transition probabilities.

Solution The general formula giving the mutual information is

I(A ; B) =H(A)−H(A|B) = E[i(A)− i(A|B)]
=∑

a

pA(a) log pA(a)+∑
a

∑
b

pAB(a,b) log pA|B(a|b)

where the probabilities can be expressed in the form

pAB(a, b) = pA(a) pB|A(b|a) = pA(a) pc(b|a)
pB(b) = ∑

a′
pAB(a

′, b′) = ∑
a′

pA(a
′) pc(b|a′) .

Then

I(A ; B) = ∑
a,b

pA(a) pc(b|a) log
pc(b|a)

∑
a′

pA(a
′) pc(b|a′)

.

Problem 12.5 ⋆⋆ [Sect. 12.8] Find the Kraus representation of a depolarizing

channel in a qubit system, using identity (12.86).

Solution We can first check that the relation

IH = I2 =
1
2 ∑

i=0,x,y,z

σi Aσ∗
i )

holds for every Hermitian matrix A, as soon as we use the expression of Pauli’s

matrices (see (3.91)), given by

σ0 = I =

[
1 0

0 1

]
, σx =

[
0 1

1 0

]
, σy =

[
0 −i

i 0

]
, σz =

[
1 0

0 −1

]
.

Then, using the above relation with A = ρ in

Φ(ρ) = (1− p)ρ + p(1/2) IH , d = 2

we get
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Φ(ρ) =(1− p)ρ + 1
4

p 1
2 ∑

i=0,x,y,z

σi ρ σ∗
i

=(1− p)ρ + 1
4

pρ + 1
4

p ∑
i=x,y,z

σi ρ σ∗
i

=
3

∑
k=0

Vk ρ V ∗
k

with

V0 =
√
(1− p)+ 1

4
p I2 , Vk =

1
2

√
p σk , k = 1,2,3 .

Problem 12.6 ⋆ [Sect. 12.9] Consider the following ensemble in a qubit system

L : p0 =
1
2
, ρ0 =

[
0.8 0.25

0.25 0.2

]
, p1 =

1
2
, ρ1 =

[
0.1 0.3

0.3 0.9

]
.

Evaluate the Holevo χ .

Solution The eigenvalues of ρ0 and of ρ1 are respectively

{0.890512,0.109488} , {1.,0} .

Note that ρ1 has rank 1 and therefore it corresponds to a pure state. The mean density

operator is given by

ρ = 1
2
ρ0 +

1
2
ρ1 =

[
0.45 0.275

0.275 0.55

]

and its eigenvalues are

{0.779508,0.220492} .
From the eigenvalues we find the entropies

S(ρ0) = 0.498368 , S(ρ1) = 0. , S(ρ) = 0.761064 .

Hence

χ = S(ρ)− 1
2
S(ρ0)− 1

2
S(ρ1) = 0.51188 .

Problem 12.7 ⋆⋆ [Sect. 12.9] With the ensemble L specified in the previous

problem, evaluate the mutual information, assuming that Bob uses the measurement

operators provided by the Helstrom theory. Then verify the Holevo bound I(A,B)≤
χ(L).

Solution We have to calculate the mutual information I(A;B),which in the binary

case is given by

I(A;B) = H(A)−H(A|B)
where
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H(A|B) = E[log pA|B(a|b)] = ∑
a,b

pAB(a,b) log pA|B(a|b) .

With equal a priory probabilities the joint probabilities are evaluated from the tran-

sition probabilities as pAB(0,0) =
1
2

pc(0|0), pAB(0,1) =
1
2

pc(0|1), etc. where for

the symmetry we have pc(1|1) = pc(0,0) = Pc and pc(0|1) = pc(1,0) = Pe, with Pc

the correct decision probability and Pe − 1−Pc. Thus, we have

pAB(0,0) = pAB(1,1) =
1
2
Pc , pAB(1,0) = pAB(0,1) =

1
2
Pe .

For the symmetry we have that also the output probabilities are equal, pB(0) =
pB(1) =

1
2
. Hence

pA|B(0|0) = pA|B(1|1) = Pc , pA|B(1|0) = pA|B(0|1) = Pc

and

H(A|B) =−Pc logPc −Pe logPe .

On the other hand Helstrom’s theory gives

Pc =
1
2
+ ∑

ηk>0

ηk

where ηk are the eigenvalues of the operator D = 1
2
ρ1 − 1

2
ρ0. In this case the eigen-

values result in {−0.350892,0.350892} and therefore

Pc = 0.850892 , Pe = 0.149108 .

and

H(A|B) = 0.607604 , H(A) = 1 , I(A;B) = 0.39239 .

On the other hand

S(ρ0) = 0.498368 , S(ρ1) = 0. , S(ρ) = 0.761064

and

χ = S(ρ)− 1
2
S(ρ0)− 1

2
S(ρ1) = 0.51188 .

Thus I(A;B)< χ and the Holevo bound is verified.

Problem 12.8 ⋆ ⋆ ⋆ [Sect. 12.9] Prove that the Holevo bound holds with the

equality sign if 1) the density operators {ρa} commute, that is, they are simultane-

ously diagonalizable, and 2) the POVM measurement is performed with the com-

mon eigenbasis of the {ρa}.

Solution Let

ρa =UΛaU∗ = ∑
k

|uk〉λ a
k 〈uk|

be the simultaneous diagonalization of the ρa. Then we implement the measure-

ment with the basis {ub},b ∈ A provided by the common unitary operator U . The

measurement with the elementary projectors Qb = |ub〉〈ub| gives (see (3.36))
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pB|A(b|a) :=P [m = b|ρa] = 〈ub|ρa|ub〉= |〈ub|UΛaU∗|ub〉
∑
k

|ub〉〈uk|λ a
k |uk〉〈ub|

=∑
k

δbkδbkλ a
k = λ a

b .

Comment. The probabilities pB|A(b|a) = λ a
b are generic with no particular struc-

ture. Thus, if this is true, it does not seem possible to prove that the mutual informa-

tion saturates the Holevo–χ .

On the other hand Datta7 claims the statement. Also Holevo and Giovannetti8

claim the statement, citing Helstrom’s book.

Problem 12.9 ⋆ [Sect. 12.9] Prove that in a constellation of distinct pure states

{ρa = |ψa〉〈ψa| , a ∈A}, the density operators commute if and only if the states are

orthogonal.

Solution We have

ρaρb =|ψa〉〈ψa|ψb〉〈ψb|= Xab|ψa〉〈ψb|
ρbρa =|ψb〉〈ψb|ψa〉〈ψa|= Xab|ψb〉〈ψa| .

If Xab = 0 the density operators commute. Are |ψa〉〈ψb| and |ψb〉〈ψa| commutable

with b 6= a?

Small corrections to be introduced in the Prblems

Correction N.1

Please remove Problem 3.8 at p.103, because it has the same content as Problem 3.7

at p.97., and enumerate the subsequent problems correspondingly.

The text to be removed reads

Problem 3.8 ⋆ Apply Postulate 3 to a quantum system “prepared” in a pure

state |ψ〉, when the measurement is obtained by an set of orthonormal measurement

vectors {|a0〉, |a1〉, . . . , |aM−1〉}. Find the probability distribution of the measure m

when the state of the system is one of the measurement vectors. Which is the state

of the system after the measurement?

Correction N.2

In the equation of Problem 5.8 at p. 202 there is an error. Please replace the last part

of the eqaution

M=[ \ket{\mu_0}\ket{\mu_0}]

7 N. Datta, “Quantum entropy and information,” in Quantum information, computation and cryp-

tography, ser. Lecture Notes in Physics, F. Benatti, M. Fannes, R. Floreanini, and D. Petritis, Eds.

Springer Berlin Heidelberg, 2010, vol. 808, pp. 175–214.
8 A. S. Holevo and V. Giovannetti, “Quantum channels and their entropic characteristics,” Reports

on Progress in Physics, vol. 75, no. 4, p. 046001, 2012.
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with

M=[ \ket{\mu_0},\ket{\mu_1}]

Then the text should result in

Problem 5.8 ⋆⋆ Write the fundamental relations of the geometrical approach in

matrix form, using the matrices

Γ = [|γ0〉, |γ1〉] , U = [|u0〉, |u1〉] , M = [|µ0〉, |µ1〉] .

Correction N.3

In the equation of Problem 5.10 at p.209 there is an error. Please replace the last part

of the text

if $\gamma_1$ is replaced by

$\gamma_1 \B(Z) $, with $\B(Z)\B(Z)ˆ*=I_h$,

$\BB(\mu)_1 \B(W) $,

with

if $\gamma_i$ is replaced by

$\gamma_i \B(Z) $, with $\B(Z)\B(Z)ˆ*=I_h$, and $\mu_j$ by

$\mu_j \B(W) $,

Then the text should result in

Problem 5.10 ⋆ Consider the transition probabilities given by (5.22). Prove that,

if γi is replaced by γiZ, with ZZ∗ = Ih, and µ j by µ jW , with WW ∗ = Ih, the transition

probabilities do not change.

Corrections on page 196

Present stautus.
...

...

|η0〉= a00|γ00〉+ a01|γ10〉 , |η1〉= a10|γ00〉+ a11|γ10〉 . (5.28)

Now, the coefficients ai j are obtained by applying the definition of eigenvector, that

is,

D |η0〉= η0 |η0〉 , D |η1〉= η1 |η1〉 (5.29)

where η0 and η1 are the eigenvalues. Substituting (?H2?) and (5.28) in (5.29), re-

calling that 〈γ10|γ10〉= 〈γ00|γ00〉= 1 and letting X = 〈γ00|γ10〉, we obtain

q1(a0iX + a1i)|γ10〉− q0(a0i + a1iX
∗)|γ00〉= η0i(a0i|γ00〉+ a1i|γ10〉) , i = 0,1 .

(5.30)
But, because of the assumed independence, in (5.30) the coefficients of |γ10〉 and

|γ00〉 must be equal
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q1(a0iX + a1i) = ηia1i , −q0(a0i + a1iX
∗) = ηia0i , i = 0,1 . (5.31)

Solving with respect to ηi we get the equation

Please

1) replace all γ00 with γ0 and all γ10 with γ1,

2) replace must be equal with must be equal to zeo. Hence

3) in Eq.(5.31) replace

q1(a0iX + a1i) = ηia1i , −q0(a0i + a1iX
∗) = ηia0i , i = 0,1 .

with

q1(ai0X∗+ ai1) = ηi ai1 , −q0(ai0 + ai1X) = ηi ai0 , i = 0,1 .

The TeX code of the last (correct) equation is

$$

q_1(a_{i\,0}Xˆ*+a_{i\,1})=\eta_{i}\, a_{i\,1}

\vq -q_0(a_{i\,0}+a_{i\,1}X)=

\eta_{i}\, a_{i\,0}\vq i=0,1\;.

\e(H4B)

$$
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Corrections on page 197

Present stautus.

represents the (quadratic) superposition degree between the two states. In the liter-

ature expressions (?H20?) are universally known as Helstrom’s bound.

The optimal projectors derive from (?DD13?) and become

Q0 = |η0〉〈η0| , Q1 = |η1〉〈η1| (5.34)

and therefore they are of the elementary type, with measurement vectors given by

the eigenvectors |η0〉 and |η1〉 of the decision operator D.

It remains to complete the computation of these two eigenvectors, identified by

the linear combinations (5.28). Considering (5.31) we find

|η0〉= a00

(
|γ0〉−

η0 − q0

q1X∗ |γ1〉
)
, |η1〉= a11

(
η1 − q1

q1X
|γ0〉+ |γ1〉

)
(5.35)

where a00 and a11 are calculated by imposing the normalization 〈ηi|ηi〉= 1. In the

general case, the calculation of the eigenvectors is very complicated

Please in Eq. (5.35) replace

|η0〉= a00

(
|γ0〉−

η0 − q0

q1X∗ |γ1〉
)
, |η1〉= a11

(
η1 − q1

q1X
|γ0〉+ |γ1〉

)

with

|η0〉= a00

(
|γ0〉+

q1X∗

η0 − q1

|γ1〉
)
, |η1〉= a11

(
− q0X

η1 + q0

|γ0〉+ |γ1〉
)

correzioni

• p. 112 final dot . in Eq. (3.63)

• p. 263 last but one line; remove -i0.0 and two extra plus

Γ = [γ0,γ1] =



−0.54117 −0.02018 −0.47937 −0.06934 0.03124

−0.54117 −0.02018 i0.51339 0.0 i0.02917

−0.54117 −0.02018 0.47937− i 0.0 −0.06934+ −0.03124+
−0.33238 0.09857 −ı 0.51339 0.0 −ı 0.02917


 .

Remove the red part

• p. 415 last symbol of last equation: replace Dα with dα
Tex code \D\alpha

• p. 445 first equation: add a final .

• p. 461 three lines before (10.12): replace “system A” with “system A”

• p. 489 last two lines of Eq.(11.80): replace RN with CN in both lines. Tex code

$\M(C)ˆN$
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• p. 659 first line after the second equation: replace Bn ∈ (R) with Bn ∈R that is, re-

move ( ) aroudR.
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two–state discrimination with individual measurements,” Phys. Rev. A, vol. 71,

paper no. 032338, Mar. 2005.

3. R. Ahlswede, I. Csiszár, “Common randomness in information theory and cryp-

tography. I. Secret sharing,” IEEE Transactions on Information Theory, vol. 39,

no. 4, pp. 1121–1132, Jul. 1993.

4. U. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum in-

formation processing,” Laser & Photonics Reviews, vol. 4, no. 3, pp. 337–354,

2010.

5. A. Assalini, G. Cariolaro, and G. Pierobon, “Efficient optimal minimum error

discrimination of symmetric quantum states,” Phys. Rev. A, vol. 81, p. 012315,

Jan. 2010.

6. A. Assalini, N. Dalla Pozza, and G. Pierobon, “Revisiting the Dolinar receiver

through multiple–copy state discrimination theory,” Phys. Rev. A, vol. 84, paper

no. 022342, Aug. 2011.

7. K. M. R. Audenaert, J. Calsamiglia, R. Muñoz Tapia, E. Bagan, L. Masanes,
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95. M. S. Kim, W. Son, V. Bužek, and P. L. Knight, “Entanglement by a beam

splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A, vol. 65,

paper no. 032323, Feb. 2002. [Online].

Available: http://link.aps.org/doi/10.1103/PhysRevA.65.032323

96. K. Kraus, “States, effect and operations: fundamental notions of quantum the-

ory,” Springer Lecture Notes in Physics, vol. 190, 1983.

97. C. W. Lau, V. A. Vilnrotter, S. Dolinar, J. Geremia, and H. Mabuchi, “Binary

quantum receiver concept demonstration,” NASA, Tech. Rep., 2006, Interplane-

tary Network Progress (IPN) Progress Report 42–146.

98. L. B. Levitin, “Optimal quantum measurements for two pure and mixed states,”

in Quantum Communications and Measurement, V. Belavkin, O. Hirota, and

R. Hudson, Eds. Springer US, 1995, pp. 439–448.

99. H. K. Lo, H. Chau, and M. Ardehali, “Efficient quantum key distribution scheme

and a proof of its unconditional security,” Journal of Cryptology, vol. 18, no. 2,

pp. 133–165, Mar. 2004.

100. W. H. Louisell, Radiation and noise in quantum electronics. New York:

McGraw–Hill, 1964.

101. X. S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann,

A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and

A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed–

forward,” Nature, vol. 489, no. 7415, pp. 269–273, Sep. 2012.

102. X. Ma, “Time evolution of stable squeezed states,” Journal of Modern Optics,

vol. 36, no. 8, pp. 1059–1064, 1989.

103. X. Ma and W. Rhodes, “Multimode squeeze operators and squeezed states,”

Phys. Rev. A, vol. 41, pp. 4625–4631, May 1990.

104. O. L. Mangasarian, Nonlinear programming. Bombay: Tata McGraw–Hill,

1969.

105. G. Marsaglia, “Random numbers fall mainly in the planes,” Proceedings of the

National Academy of Sciences, vol. 61, no. 1, pp. 25–28, 1968.

106. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in exper-

imental quantum communication,” Phys. Rev. Lett., vol. 76, pp. 4656–4659, Jun.

1996.

107. U. M. Maurer, “Secret key agreement by public discussion from common in-

formation,” journal = IEEE Transactions on Information Theory, vol. 39, no. 3,

pp. 733–742, May 1993.



References 629

108. R. McIntyre, “The distribution of gains in uniformly multiplying avalanche pho-

todiodes: Theory,” IEEE Transactions on Electron Devices, vol. 19, no. 6, pp.

703–713, Jun. 1972.

109. National Institute of Standards and Technology (NIST), “Advanced Encryption

Standard (AES),” Federal Information Processing Standards, Publication 197

(FIPS PUB 197), Nov. 2001.

110. National Institute of Standards and Technology (NIST), “Secure Hash Standard

(SHS),” Federal Information Processing Standards, Publication 180-4 (FIPS

PUB 180-4), Mar. 2012.

111. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum informa-

tion. Cambridge University Press, 2000.

112. M. A. Nielsen, “Quantum information theory,” Ph.D. dissertation, University of

New Mexico, Dec. 1998.

113. M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation

using nuclear magnetic resonance,” Nature, vol. 396, no. 6706, pp. 52–55, Nov.

1998.

114. M. Nussbaum and A. Szkola, “The Chernoff lower bound for symmetric quan-

tum hypothesis testing,” Annals of Statistics, vol. 37, no. 2, pp. 1040–1057, 2009.

115. S. Olivares, “Quantum optics in the phase space,” The European Physical Jour-

nal Special Topics, vol. 203, no. 1, pp. 3–24, 2012.

116. B. M. Oliver, J. R. Pierce, and C. E. Shannon, “The philosophy of PCM,” Pro-

ceedings of the IRE, vol. 36, no. 11, pp. 1324–1331, Nov. 1948.

117. A. Papoulis, Probability, random variables, and stochastic processes. New

York: McGraw–Hill, 1965.

118. M. G. A. Paris, “The modern tools of quantum mechanics,” The European Phys-

ical Journal Special Topics, vol. 203, no. 1, pp. 61–86, 2012.

119. E. Parzen, Stochastic processes. San Francisco: Holden Day, 1962.

120. R. Penrose, “A generalized inverse for matrices,” Mathematical Proceedings of

the Cambridge Philosophical Society, vol. 51, pp. 406–413, Jul. 1955.

121. J. Preskill, “Lecture notes for physics 229: Quantum information and computa-

tion,” California Institute of Technology, 1998.

122. J. G. Proakis, Digital communications. New York: McGraw–Hill, 2001.

123. A. P. Prudnikov, Y. A. Bryčkov, and O. I. Maric, Integrals and series. Moscow,

Russia: Science, 1981.

124. R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-

tures and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2,

pp. 120–126, Feb. 1978.

125. S. Roman, Advanced linear algebra. New York: Springer–Verlag, 1995.

126. W. Rudin, Fourier analysis on groups. New York: Interscience Publishers,

1962.



6305. Solutions of Problems of the bookQuantum Communications, Springer 2015author: Gianfranco

127. D. J. Sakrison, Communication theory: Transmission of waweforms and digital

information. New York: John Wiley & Sons, 1968.

128. J. E. Mazo and J. Salz, “On optical data communication via direct detection of

light pulses,” Bell System Technical Journal, vol. 55, pp. 347–360, Mar. 1976.

129. M. Sasaki and O. Hirota, “Optimum decision scheme with a unitary control

process for binary quantum-state signals,” Phys. Rev. A, vol. 54, pp. 2728–2736,

Oct. 1996.

130. M. Sasaki, K. Kato, M. Izutsu, and O. Hirota, “Quantum channels showing su-

peradditivity in classical capacity,” Phys. Rev. A, vol. 58, pp. 146–158, Jul. 1998.

131. M. Sasaki, T. Sasaki-Usuda, M. Izutsu, and O. Hirota, “Realization of a col-

lective decoding of code–word states,” Phys. Rev. A, vol. 58, pp. 159–164, Jul.

1998.

132. M. Sasaki, A. Waseda, M. Takeoka, M. Fujuwara, and H. Tanaka, “Quantum

information technology for power minimum info–communications,” in Toward

Green ICT, R. Prasad, S. Ohmori, and D. Simunic, Eds. River Publishers, 2010,

ch. 15.

133. B. L. Schumaker, “Quantum mechanical pure states with Gaussian wave func-

tions,” Physics Reports, vol. 135, no. 6, pp. 317 – 408, 1986.

134. B. W. Schumacher, “Sending entanglement through noisy quantum channels,”

Phys. Rev. A, vol. 54, pp. 2614–2628, Oct. 1996.

135. B. L. Schumaker and C. M. Caves, “New formalism for two-photon quantum

optics. II. mathematical foundation and compact notation,” Phys. Rev. A, vol. 31,

pp. 3093–3111, May 1985.

136. J. Schwinger, “The theory of quantized fields. I,” Phys. Rev., vol. 82, pp. 914–

927, Jun. 1951.

137. C. E. Shannon, “A mathematical theory of communication,” Bell System Techni-

cal Journal, vol. 27, no. 3, pp. 379–423, 1948.

138. J. Shapiro, “Quantum noise and excess noise in optical homodyne and hetero-

dyne receivers,” Quantum Electronics, IEEE Journal of, vol. 21, no. 3, pp. 237–

250, Mar. 1985.

139. P. W. Shor, “Polynomial–time algorithms for prime factorization and discrete

logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26, no. 5,

pp. 1484–1509, Oct. 1997.

140. A. E. Siegman, Lasers. Sausalito (CA): University Science Book, 1986.

141. R. Simon, N. Mukunda, and B. Dutta, “Quantum–noise matrix for multimode

systems: U(n) invariance, squeezing, and normal forms,” Phys. Rev. A, vol. 49,

pp. 1567–1583, Mar. 1994.

142. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian–Wigner distributions

in quantum mechanics and optics,” Phys. Rev. A, vol. 36, pp. 3868–3880, Oct.

1987.

143. R. E. Slusher and B. Yurke, “Squeezed light for coherent communications,”

Journal of Lightwave Technology, vol. 8, no. 3, pp. 466–477, Mar. 1990.



References 631
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