Safety Certification Example

This example demonstrates safety certification for 2 intereconnected nonlinear systems.

Contents

Requirements

Create Polynomial Variables for each Subsystem
Create Polynomial Dynamics for each Subsystem
Define supply-rates for each subsystem

Create Storage Functions

Verify Subsystem Dissipativity

Define Unsafe Set

Create Interconnection Matrix

Certification

Conclusion

Attribution

Requirements

This script requires the SOSAnalysis toolbox: http://www.aem.umn.edu/~AerospaceControl/

Create Polynomial Variables for each Subsystem

There are 2 subsystems, and each subsystem has 1 state and 1 input.

mpvar('x', 2,1);
mpvar('u', 2,1);

Create Polynomial Dynamics for each Subsystem

The state equations for each subsystem are

£1(t) = —23(t) + uy(t), Fa(t) = —za(t) + ua(t)

and the outputs are

yi(t) = xi(t), ya(t) = xa(t)

f(1) = -x(1)"3 + u(1);
h(1) = x(1)"3;

f(2) = -x(2) + u(2);
h(2) = x(2);

Define supply-rates for each subsystem

http://www.aem.umn.edu/~AerospaceControl/

Use supply-rates associated with output-strict passivity

X1 =1[01; 1 -2];
S1 = [u(1);h(1)]"*X1*[u(1);h(1)];
X2 = [01; 1 -2];
S2 = [u(2);h(2)]"*X2*[u(2);h(2)];

Create Storage Functions

V1
V2

x(1)"4/2;
x(2)"2;

Verify Subsystem Dissipativity

Use sum-of-squares to verify the nonnegativity of each Dissipation inequality

diel = S1 - jacobian(Vl,x(1))*f(1);
die2 = S2 - jacobian(V2,x(2))*f(2);
[issos(diel) issos(die2)]

% In fact, both Dissipation inequalities are trivially ©
[diel die2]

Define Unsafe Set

The unsafe setis defined as

]

U:={zecR’:x >100r z; > 0.8}

This is the union of two sets, defined with simple functions 91 and &

U={zeR*:2y-10>0}Uu{reR?: 22— 0.8 > 0}
'\—.,v,—# '_‘U,—r'

qlx) A E .

q(l)
a(2)

x(1)-1;
x(2)-0.8;

Create Interconnection Matrix

The interconnection is ¥1 = S1ly2). w2 = S2(d — u1) This characterized with an interconnection matrix of the form
M=[010; -101];

Certification

Define 2 scalar variables (later constrained to be positive), and let the to-be-determined storage function for safety
verification be a linear combination of the subsystem storage functions

pvar pl p2
V = pl*V1 + p2*V2;

Check safety for 4 different bounds on ||

beta = [0.4 0.8 1.2 1.6];
LineColors = 'gbr';
legEntry = cell(1,1);

for j = 1:numel(beta)

W=1;

X = [M; eye(size(M,2))]"'*blkdiag((pl*kron(X1, diag([1 @]))+p2*kron(X2, diag([@ 1]))),-W)*[M; eye
(size(M,2))];

R

X must be positive-semidefinite (by choice of pl and p2). Use

an SOS constraint, with new variables, to enforce that constraint.
An SOS constraint on L2con is equivalent to positive-semidefinite
constraint on X

= mpvar('z',[size(M,2) 1]);

L2con = -z'*X*z;

N 32 a2 %

% In order to "append" the constraints that define the safe set, define
% decision variables s1 and s2 (constrained to be positive later)

% that are used to enforce each constraint.

for k = 1:size(q,2)

s(k) = polydecvar(['s"' int2str(k)], 1);

end

% Safety constraint implying V(x) > beta on the unsafe set.

% The variable smallE is used to enforce a strict inequality.
smallE = le-6;

sftycon(1l) = V - beta(j) - smallE - s(1)*q(1);

sftycon(2) = V - beta(j) - smallE - s(2)*q(2);

Vector of SOS constraints - this includes the L2 reachability
constraint, the nonnegativity of V, the set-containment multipliers s
and the safety constraint, which ensures the level sets of V do not
intersect the unsafe regions.

soscon = [L2con, V, s, sftycon];

%
%
%
%

% Solve the SOS optimization. List all independent variables in the 2nd

% argument. The function sosopt treats all other variables (here s and
% p) as decision variables. This is a feasibility problem, with no

% objective function

indVars = [x;z];

[info, dopt, sossol] = sosopt(soscon, indVars, []);

% Verify feasibility and substitute the decision variables
% (in this case, p) into the expression for V, yielding a numerical Vs
if info.feas

disp(['Safety is certified for beta = ' num2str(beta(j))]);

% Calculate storage function
Vs = subs(V,dopt);

% Draw contour of the safe-set for this particular value of beta

pcontour(Vs, beta(j), 1.2*[-1 1 -1 1], [LineColors(j) '--'1);
hold on
legEntry{j} =['V(x) = ' num2str(beta(j))];
title('Storage Function Level Sets')
else
disp(['Safety cannot be certified for beta = ' num2str(beta(j))]);
end
end
legend(legEntry);
hold off

Safety is certified for beta = 0.4
Safety is certified for beta = 0.8
Safety is certified for beta = 1.2

Safety cannot be certified for beta = 1.6

Storage Function Level Sets
T T T

T T
1k Vix)=0.4]
— — —Vx)=08
e ———— = ——] == =Vx)=12
~ ,-"’FF -HH“‘-\ M‘\
06 P ™ \ e
Joor A \
i A} A
{ ! \ I|
P b
=<' 0r || p ! _
I
| | I
o !
- ;!
\ /
%,
05+ WS P .
. “‘H-"'\-_ .-r"'.; d
H""___L T = = = = = - . .-"
Ar .
i i i i i
-1 0.5 0 0.5 1
Xy
Conclusion

This example demonstrates compositional safety certification of a simple interconnection. SOS programming is used to
find supply rates and storage functions that certify the safety and L reachability of the interconnected system.

Attribution

This example supplements the book "Networks of Dissipative Systems: Compositional Certification of Stability,
Performance, and Safety" by Murat Arcak, Chris Meissen, and Andrew Packard.

Published with MATLAB® R2015a

http://www.mathworks.com/products/matlab/

