Performance Certification of a Nonlinear Interconnected System

In this example the ADMM algorithm described in Section 6.2 is used to certify a bound on the Ly gain of an
interconnection of randomly generated nonlinear subsystems. For demonstrative purposes the subsystems and
interconnection matrix are constructed such that the interconnected system has an Lo gain less than or equal to 1. Each
time this example is run the number of iterations required of the ADMM algorithm will vary depending on the
random subsystem and interconnection data.

Contents

= Requirements

= Polynomial Subsystems

= |nterconnection and Subsystem Data

= Random Input and Output Scalings

= Generate Polynomial Subsystems

= Interconnection Matrix

= Performance Criteria

= Define and Initialize variables for the ADMM Algorithm
= ADMM Algorithm

= Display Results

= Reinitialize Variables

= ADMM Algorithm with Relaxed Exit Criterion
= Display Results

= Conclusion

n Attribution

Requirements

This script requires the CVX toolbox: http://cvxr.com/cvx/ and the SOSAnalysis toolbox:
http://www.aem.umn.edu/~AerospaceControl/

Polynomial Subsystems

The state equations for each subsystem are

() = xa(t), *alt) = —axa(t) --h.ri[!} + ua(t)
where @ and & are parameters. The output is

y(t) = xa(t)

It can be shown that the L2 gain of this system for all values of ' is less than or equal to L/a This fact will be used to
construct an interconnected system with Lo gain less than orequal to 1.

Interconnection and Subsystem Data

% Number of subsystems


http://cvxr.com/cvx/
http://www.aem.umn.edu/~AerospaceControl/

N = 20;

% Number of states, inputs, and outputs for each subsystem

nx = 2;
nu = 1;
ny = 1;

Random Input and Output Scalings

Multiplicative scalings are applied to the input and output of the subsystems and the interconnection. These scalings do
not effect the properties of the interconnected system, but disguise the construction of the system making the performance
certification more difficult.

% Scaling randomly chosen between ©.25 and 4. Different scalings can be
% used, but they will effect the number of iterations required for the
% algorithm to certify performance.

u_scale = 3.75*rand(N,1)+0.25;

y_scale = 3.75*rand(N,1)+0.25;

Generate Polynomial Subsystems

The parameters a and b for each subsystem are chosen randomly. So that each subsystem has L gain less than 1, the
parameter ¢t is chosen from a uniform distribution between 1 and 2.

% Initialize State and Input variables
x = mpvar('x', nx, N);
u = mpvar('u', nu, N);

% Generate random subsystem parameters
a = rand(N,1)+1;
b = rand(N,1);

% Initialize Polynomials for the Subsystem Dynamics and Output
f = polynomial(zeros(2,N));
h = polynomial(zeros(1,N));

% Create Subsystems
for k = 1:N
% Subsystem Dynamics with input scaling
f(1,k) = x(2,k);
f(2,k) = -a(k)*x(2,k)-b(k)*x(2,k)*3+u(k)/u_scale(k);

% Subsystem Output with output scaling

h(k) = x(2,k)/y_scale(k);
end

Interconnection Matrix

The interconnection matrix is constructed to have norm equal to 1. Since each subsystem has Ly gain less than 1, the
resulting interconnected system will also have L gain less than 1.

nd = 1; % Number of disturbances



ne = 1; % Number of exogenous outputs

% Generate random interconnection matrix
= randn(N+nd, N+ne);

=

N

4 Scale the interconnection matrix such that it has norm equal to 1
= M/norm(M);

=

>

4 Scale the input and output of the interconnection matrix
= blkdiag(diag(u_scale), eye(nd))*M*blkdiag(diag(y_scale), eye(ne));

=

Performance Criteria

We want to certify the interconnected systems has La gain less than or equal to 1. This property can be characterized by
a quadratic supply rate parameterized by the matrix W as defined below.

W = [eye(nd) zeros(nd,ne); zeros(ne,nd) -eye(ne)];

Define and Initialize variables for the ADMM Algorithm

N

Allocate variables to store supply rate matrices for each subsystem
zeros(nu+ny, nu+ny, N);
zeros(nu+ny, nu+ny, N);
zeros(nu+ny, nu+ny, N);

n N X
non

% Initialize Z and S to be identity matrices. X does not need to be
% initialized.

for k = 1:N
Z(:,:,k) = eye(nu+ny);
S(:,:,k) = eye(nu+ny);
end

ADMM Algorithm

The ADMM algorithm as described in Section 6.2 is implemented below to search for storage functions and supply rates
certifying performance of the interconnected system

% Initialize variables
max_iterations = 100;
feas = false;
iteration = 1;

% Run the ADMM algorithm until a feasible solution is found certifying the
% interconnected system is dissipative with repect to the supply rate

% parameterized by the matrix W.

while ~feas && iteration <= max_iterations

% X - Update for each subsystem
for k = 1:N

X(:,:,k) = ADMM_X Update(f(:,k), h(k), x(:,k), u(k), Z(:,:,k), S(:,:,k));
end



% Check feasibility of the constraint in Equation 6.6.
[feas, evals] = ADMM_CheckFeasibility(X, W, M);

% Display the largest eigenvalue of the matrix in Equation 6.6 at
% each iteration. Dissipativity is certified when the maximum

% eigenvalue is less than or equal to 0.

disp(["' Iteration: ' int2str(iteration)] )

disp([' Maximum Eigenvalue: ' num2str(max(evals)) ])
% Z - Update simultaneously for all subsystems
Z = ADMM_Z_Update(X, S, M, W);
% U - Update for each subsystem
for k = 1:N
S(:y:,k) = X(:,:,k)-2(:, 1, k)4S(:,:,k);

end
iteration = iteration + 1;

end

Iteration: 1
Maximum Eigenvalue: 1.2101

Iteration: 2
Maximum Eigenvalue: 1.8463

Iteration: 3
Maximum Eigenvalue: ©.78472

Iteration: 4
Maximum Eigenvalue: 0.58471

Iteration: 5
Maximum Eigenvalue: ©0.31475

Iteration: 6
Maximum Eigenvalue: 0.18705

Iteration: 7
Maximum Eigenvalue: 0.10384

Iteration: 8
Maximum Eigenvalue: 0.050276

Iteration: 9
Maximum Eigenvalue: ©.00493

Iteration: 10
Maximum Eigenvalue: -0.031215

Display Results

if feas

disp(['Dissipativity

tions using
else

disp('Failed to certify dissipativity. More iterations are required.')

end

Dissipativity of the interconnected system is certified in 10 iterations using ADMM.

ADMM. ' 1)

of the interconnected system is certified in

int2str(iteration-1) ' itera



Reinitialize Variables

S

n N X

%

Allocate variables to store supply rate matrices for each subsystem

zeros(nu+ny, nu+ny, N);
zeros(nu+ny, nu+ny, N);
zeros(nu+ny, nu+ny, N);

Initialize Z and S to be identity matrices. X does not need to be

% initialiazed.
for k = 1:N
Z(:,:,k) = eye(nu+ny);
S(:,:,k) = eye(nu+ny);
end

ADMM Algorithm with Relaxed Exit Criterion

Now we apply the ADMM algorithm with the relaxed exit criterion as described in Section 6.2 to the same problem. The
only modification to the ADMM algortihm is that the function '"ADMM_CheckFeasibility' in line 132 is replaced by the
function '"ADMM_CheckFeasibility_RelaxedCrit'.

% Initialize variables
feas = false;
iteration = 1;

% Run the ADMM algorithm until a feasible solution is found certifying the
% interconnected system is dissipative with repect to the supply rate

% parameterized by the matrix W.

while ~feas && iteration <= max_iterations

end

% X - Update for each subsystem
for k = 1:N

X(:,:,k) = ADMM_X_Update(f(:,k), h(k), x(:,k), u(k), zZ(:,:,k), S(:,:,k));
end

% Check feasibility of the constraint in Equation 6.6 with the relaxed
% exit criterion: allow each supply rate matrix to be scaled by a

% nonnegative scalar.

[feas, evals] = ADMM_CheckFeasibility_RelaxedCrit(X, W, M);

% Display the largest eigenvalue of the matrix described in Equation

% 6.6 with the relaxed exit criterion. Dissipativity is certified when
% the maximum eigenvalue is less than or equal to ©.

disp([' Iteration: ' int2str(iteration)] )

disp(["’ Maximum Eigenvalue: ' num2str(max(evals)) 1)

% Z - Update simultaneously for all subsystems
ADMM_Z_Update(X, S, M, W);

N
1l

% U - Update for each subsystem
for k = 1:N
S(:y:,k) = X(:,:,k)-Z2(:, 1, k)4S(:, 1,k);
end
iteration = iteration+1;



Iteration: 1

Maximum Eigenvalue: 1.2101
Iteration: 2

Maximum Eigenvalue: 0.24113
Iteration: 3

Maximum Eigenvalue: ©.22783
Iteration: 4

Maximum Eigenvalue: ©.032969
Iteration: 5

Maximum Eigenvalue: -0.75123

Display Results

if feas
disp(['Dissipativity of the interconnected system is certified in ' int2str(iteration-1) ' iter
ations using ADMM with relaxed exit criterion.'])
else
disp('Failed to certify dissipativity. More iterations are required.')
end

Dissipativity of the interconnected system is certified in 5 iterations using ADMM with relaxed exi
t criterion.

Conclusion

A nonlinear interconnected system was constructed such that it has La gain less than 1. Input-output scalings were
added to the subsystems and interconnection matrix to disguise this construction making performance certification of the
interconnected system more difficult. The ADMM algorithm as described in Section 6.2 is used to determine supply rates
certifying that the interconnected system has La gain less than 1. Additionally, the ADMM algorithm with the relaxed exit
criterion was also used. Typically, it requires significantly fewer iterations to certify the same performance.

Attribution

This example supplements the book "Networks of Dissipative Systems: Compositional Certification of Stability,
Performance, and Safety" by Murat Arcak, Chris Meissen, and Andrew Packard.

Published with MATLAB® R2015a


http://www.mathworks.com/products/matlab/

