HaViMo3.0

Computer Vision Module

October 13, 2015

Features

o Integrated 2MPix Color CMOS Camera

— Frame Resolution: 160*120 Pixels

Color Depth: 12 bits YCrCb

— Frame Rate: 20 Fps

Full Access to all CMOS Camera registers

* Saving values in Flash, no need to reconfigure after power on
* Auto / Manual Exposure, Gain and White balance

e Color-Based Image Processing

— Integrated Color Look-up Table

Saved in FLASH, No need to recalibrate after power on
Up to 256 Objects can be defined
3D viewing and editing tools

EE R

Real-time LUT overlay on the Camera Image
— On-line Region-growing
* Detection of up to 15 contiguous Regions per Frame

* Reporting Color, CoG, Number of Pixels and Bounding box for each region
* Adjustable Noise / small Region filtering

— On-line Gridding
* Reduces the Resolution of the Image to 32%24

* Minimum Loss of Information using Object Priority
* Reports Color and Number of Pixels for each 5x5 Cell

— On-line GVG (Gradient Vector Gridding)

+ Reports image edges in a grid of 20*%15
* Position, direction and intensity for every edge candidate
* Suitable for form-based object detection

— Average Image

* reports a grid of 32x24 of average intensities
* Suitable for line following or low resource processing

— Raw image output in both calibration and implementation modes
x Full Frame Output at 0.5 FPS

e Supported Hardware

— Half Duplex
* ROBOTIS TTL bus. CM5, CM510, CM530, ROBOTIS OpenCM
— Full Duplex
* Arduino
* Any microcontroller with UART
e Supported Software

— HaViMoGUI0.4 and upwards

1 Introduction

HaViMo3.0 is a computer vision solution for low power microprocessors. It is equipped with a 2
Mega-pixel CMOS camera chip and a microcontroller which performs the image processing. The
results are then accessed via serial port. In HaViMo3.0 several hardware and software features are
improved.

Region growing algorithm is capable of recognizing colored blobs in the image. It reports the
bounding box as well as the centroid and number of pixels in the blob.

Gridding algorithm is a suitable pre-processing step for many other applications such as shape
based object recognition and self localization.

GVG algorithm is a fast and flexible edge detection algorithm, which facilitate shape based
object recognition by reporting edge candidates.

HaViMo03.0 is compatible with all ROBOTIS controllers as well as microcontroller platforms
capable of establishing a UART connection. Communication with Arduino is performed via soft-
serial port.

2 Hardware Setup

Figure 1 shows the pin out of the module.

vce
RXD*

TXD*
GND

* to use full-duplex serial, DATA should be shorted to GND on start up

Figure 1. Pin out of the Module

The module can be used in two different types of configuration according to the hardware
platform it is used in conjunction with.

Calibration Mode: The module is connected to a PC where a GUI facilitates the access to camera
parameters as well as the color look-up table. in this mode, the camera chip can be configured and
color to object associations are established by user according to the lighting conditions.

Implementation Mode: The Module is connected directly to the controller and sends computer
vision results directly to it. No PC is needed in this mode.

3 Function Description

HaViMo3.0 is accessed on a serial bus. A communication protocol is designed for accessing the
device which works on a command/response basis. A command packet contains an instruction
which invokes a function of the device, reads or writes values or a combinations of these. In this
section the function of the device is described.

3.1 Communication Protocol

HaViMo3.0 supports both half and full duplex communications in physical layer. The half duplex
communication is compatible with ROBOTIS TTL bus. Full duplex communication can be used
to access the module from all other platforms. Following diagram shows a summary of command
and response packets in both operation modes.

OxFF | OxFF| Ox64 | LEN | INST | PAR1 PAR2 CHK'

CMD
OxFF| OxFF| Ox64 | LEN ERR|PAR1 .. | CHK

RESP

Command and Response Packets in Half Duplex Mode

OxFF| OXFE| INST|PAR1 PAR2 CHK'

CMD
PAR1 ... PARn'

RESP

Command and Response Packets in Full Duplex Mode
Figure 3. Command and Response Packets Half and Full Duplex Modes

3.1.1 Communication Protocol in ROBOTIS Mode

To understand the communication protocol in ROBOTIS mode, it is recommended to read Dy-
namizel AX-12 data sheet. The Command packet is structured as follows.

Header 2 times OxFF.

ID Fixed on 0x64 = 100.

LEN Number of bytes to be further transmitted.
INST Instruction code described in table 1.

PARn Optional parameters passed to the instruction.

CHK Check sum is calculated as complement of the lowest 8 bits of the sum of all bytes in the
packet excluding the header.

The response packet has a similar structure as the command packet, however the instruction is
replaced with an error indicator and parameters are filled with the results of running the instruction.

3.1.2 Communication Protocol in full duplex Mode

The command packet is structured as follows.
Header The sequence 0xFF 0xFE; which also includes the fixed ID = 30
INST Instruction code described in table 1.

PAR1,PAR2 Parameters associated with the instruction. Note that The number of parameters
MUST always be 2

CHK Check sum is the lowest 7 bits of the exclusive or of the instruction and the parameters.

3.2 Instructions

Following table shows available instructions in HaViMo3.0.

Instruction Value Params. Function
PING 0x01 0,0 No action. Used for obtaining a Status Packet
READ 0x02 | addr,cnt Read Results of Region Detection
WRITE 0x03 | addr,data Equivalent to CAP_ REGION for Compatibility
READ_ REG 0x0C | addr,cnt Read Camera Chip Registers
WRITE_REG | 0x0D | addr,data Write Camera Chip Registers (1)
CAP_REGION | 0xOE 0,0 Capture and Find Color Regions (1)
RAW_ SAMPLE | 0xOF 0,0 Sample the Raw Image (used by GUI) (2)
LUT_MANAGE | 0x10 0,0 Enter LUT Manage Mode (used by GUI) (2)
CAP_GRID 0x15 0,0 Capture and Compress using Gridding algorithm (1)
READX16 0x16 | addr,data Read Results of the Algorithms (see note 3)
RAW INTERL | 0x17 0,0 Sample Raw Image Interlaced (skip 5 lines)
CAP AVG 0x1C 0,0 Capture image and run Average Algorithm
CAP_GVG 0x1D 0,0 Capture image and run GVG Algorithm

(1) No return packets are generated for these instructions.
(2) Response is different from standard packets.
(3) The given address is internally multiplied by 16
Table 1. Available Instruction in HaViMo03.0

PING This instruction is used to check whether the device exists and is ready to receive the next
instruction. The instruction returns an empty status packet.

READ This instruction is used to read the results of image processing algorithms. This command
accepts multi byte read but can only access 255 bytes. See READX16 for extensions.

WRITE A write to an arbitrary address simulates a CAP REGION instruction.

READ REG This instruction is to read the content of camera registers. It is the same as READ
instruction. This command accepts multi byte read.

WRITE REG This instruction is to write the content of camera registers. It is the same as the
WRITE instruction but it accepts only single byte write.

CAP_ REGION This instruction starts capturing and processing of the next available frame.
The processing algorithm used in this instruction is Region Growing. It takes approximately
50 ms to process a full frame. The main CPU should pole the functionality of the device using
the PING command before sending the next instruction. The results can be then accessed
using READ _REGION instruction.

RAW SAMPLE With this instruction the camera module transmits a full frame of raw image
data. This instruction is used when the GUI receives a request to sample a raw image. This
instruction does not use the Standard packet protocol.

LUT_ MANAGE After receiving this instruction, the module enters the programming mode, in
this mode the device accepts no more packets, but other instructions assigned to manage the
look-up table, such as erasing, reading and writing into it. This instruction is used by User
interface during calibration phase and should not be used in implementation phase.

CAP_GRID This instruction invokes the gridding algorithm. The algorithm compresses the
image into a 32*24 cell grid and reports the number of pixels and the color observed in the
5x5 window related to the cell. Only one color is accepted for each cell. Lower color codes
dominate the higher ones but Unknown = 0 has the lowest priority.

READX16 This instruction reads the results of image processing algorithms. It has a similar
structure to READ instruction but the given address is internally multiplied by 16. This
gives access to a wider range of addresses, however at least 16 bytes should be read to cover
the whole space.

RAW INTERL With this instruction the camera module transmits a full frame of raw image
data using interlacing. This instruction is used when the GUI receives a request to sample a
raw image and a higher bandwidth is available. This instruction does not use the Standard
packet, protocol.

CAP_AVG The instruction invokes the averaging algorithm. It reports an average intensity for
every 5x5 pixel. The results can be accessed via READX16.

CAP_GVG Runs the GVG algorithm on the camera image. The algorithm provides a 20x15
grid of cells, each presenting an edge point with its position, direction and strength.

3.3 Image Processing Algorithms

HaViMo2.5 is equipped with two image processing algorithms, which are described in this section.
In the first step both algorithms translate color values to object codes using the built-in look-up
table. Therefore an exact calibration of the colors should have a great impact on the results of the
recognition.

3.3.1 On-line Region Growing Algorithm

The goal of the region growing algorithm is to detect contiguous color blobs in the image. A 4-
pixel neighborhood is used to determine connections. The function is invoked using the instruction
CAP_REGION. The detected regions are summarized using the following parameters:

Value Bytes Description

Index 1 Contains zero if the region is invalid and nonzero otherwise.
Color 1 Color code of the detected region (0 = Unknown, 1 = Ball , ...)
Pixels 2 Number of detected pixels inside the region

SumX 4 Sum of the X coordinates of the detected pixels (*)
SumY 4 Sum of the Y coordinates of the detected pixels (*)
MaxX 1 Bounding box right margin

MinX 1 Bounding box left margin

MaxY 1 Bounding box bottom margin

MinY 1 Bounding box top margin

(*) Values can be divided by the number pixels to obtain the center point.
Table 2. Data Format of the Results of Region Growing Algorithm

Figure 5. Results of the Region Growing Algorithm

To access the results, the instruction READ should be used. Up to 15 regions can be read from
the address range 0x10 to 0xFF using the READ (0x02) instruction. Following example shows the
produced output of the module according to a given image.

3.3.2 On-line Gridding Algorithm

After invoking the gridding algorithm with CAP_ GRID instruction, it compresses the image into a
grid of 32*24. Each cell is a representative for a 5x5 square on the original image. For each cell one
byte is calculated which contains the flowing information. The lower 4 bits determine which color
was the most prior detected in the square. The higher 4 bits are the number of pixels occupied
with this color. If over 15 pixels are detected the count remains 15.

01 30 (31)
32|33 |- > 6263

- A
766|767

The algorithms results 768 bytes of data. These can be read using the READX16 instruction.
Note that the given address is internally multiplied by 16 to increase the access range. It is therefore
required that a multi-byte read operation with at least 16 bytes be used.

Following example shows the result of a the gridding algorithm. Note that only the color is
visualized.

3.3.3 Gradient Vector Gridding (GVG)

The GVG algorithm calculates a 20*15 grid of image edges. The algorithm is invoked with
CAP_GVG@ instruction, The result is a grid of 20*15 of 8 bit cells. Each cell is a representa-
tive for the dominant edge in an 8x8 window of the original image. The lower 3 bits of each cell
determine the orientation of the most prior detected edge in the cell. The next 3 bits contain the
displacement of the edge from the center of the cell as a signed value. The higher most 2 bits decode
the strength of the edge.

The algorithm results 300 bytes of data. These can be read using the READX16 instruction.
Note that the given address is internally multiplied by 16 to increase the access range. It is therefore
required that a multi-byte read operation with at least 16 bytes be used.

3.4 Calibration Functions

In order to calibrate the device, there are several instructions reserved for making a raw sample form
the camera image, and accessing the look-up table. These section describes how these instructions
are used.

3.4.1 Downloading a Raw Image Sample

The instruction RAW _SAMPLE (0x0F) is used to get a complete frame of camera image form
the module. As the result, 19200 bytes of data are sent back over the bus. The amount of data
corresponds a full frame of 160*120 pixels in YCrCb 422 format, however it is derived form several
consecutive frames. This is to reduce the data rate and avoid a buffer over flow in systems with low
speed serial communications. In RAW SAMPLE instruction the image sample is obtained from
40 consecutive frames. The correspondence is described in Figure 6.

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2 1st Frame
0,119 1,119 2,119 3,119

470 570 6,0 7,0 2nd

4,1 5,1 6,1 7,1 Frame
156,0 157,0 158,0 159,0

40th Frame

156,119 157,119 158,119 159,119

Figure 6. Downloaded data stream and its correspondence to the image using RAW SAMPLE.

bits 7-4 | 3-0
Even Addresses | Y | Cr
Odd Addresses | Y | Cb

Figure 7. YCrCb 422 data format

3.4.2 Color Look-up Table Access

By invoking a LUT MANAGE command, the module enters its look-up table access mode. The
request is replied with a *’ character. In this mode normal commands are disabled and a new set
of commands are activated to access a part of the flash, where the color look-up table resides.

Instruction Val Par. # Function Returns
ERASE e’ 0 Erase the color look-up table 0x0D
SET ADDR ‘a’ 2 Set the current address pointer 0x0D
WRITE WORD | 'w’ 2 Write 16 bits of data in the page buffer 0x0D
WRITE PAGE | 'm’ 0 Write page buffer into flash 0x0D
READ WORD T’ 0 Read 16 bits of data from the color look-up table | B1 B2 0x0D
EXIT LUTMAN | ¥’ 0 Exit from LUT manage mode Status Packet
Table 1. Instruction in LUT MANAGE mode

Note that due to the access to the flash, some commands may need several of milliseconds to
complete. It is therefore necessary that the client waits for an acknowledge form the module.
Valid address range is between 0x0100 and 0x10FF. Values outside this range are capped inter-

nally.

10

