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Chapter 1 Digital Image
Electromagnetic Spectrum

Cosmic | Gamma | X- | Ultra Visible Infra-
rays rays rays | violet | Spectrum red
Microwaves | TV | Radio




A M x N image, x(m,n), with M rows and N
columns is given by

n —
T "~ 2(0,0) x(0,1) ... (0, N—1)
x(1,0) x(1,1) ... x(1,N—1)

 2(M—1,0) z(M—1,1) z(M—1,N—1) |



Pixel values of a 8 x 8 sub-image

173 | 185|189 | 186 | 199 | 195 | 195 | 192

177 | 187 | 189 | 192 | 197 | 195|189 | 177

188 | 190 | 196 | 197 | 199 | 193 | 171 | 124

191 | 192 | 197 | 198 | 192 | 158 | 111 | 110

196 | 199 | 99 189 | 149 | 108 | 110 | 113

202 | 200 | 182 | 130 | 100 | 98| 108 | 114

204 | 178 | 117 | 85100 | 96| 104 | 108

1731100 85| 87| 95| 98| 96| 100




Storage requirements

(i) 512x512 binary image,

512x512 x1 = 262144 bits = 32768 bytes

(ii) 512x512 8-bit gray level image,
512x512 x1 = 262144 bytes

(iii) 512x512 color image, with a byte of stor-

age for each of the 3 color components of a

ixel
PIXEL 510% 512 x3 = 786432 bytes



Bit-plane components from MSB to LSB
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Two sinusoidal surfaces produce
oscillations with the same frequency

27 2T T
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Applications of Digital image processing
Widely used in entertainment, business, ScCi-
ence and engineering applications.

1.

Image sharpening and restoration.

2. Medical Applications.

NO O AW

Remote sensing.

Image compression and transmission.
Robots.

Automatic inspection of components.
Security.



Chapter 2 Image Enhancement in the
Spatial Domain

An image is enhanced to increase the amount
of information that can be interpreted visually.



Point Operations

z(m,n) = x(m,n)+y(m,n)
z(m,n) = x(m,n) —y(m,n)
z(m,n) = xz(m,n)*xy(m,n)

z(m,n) = x(m,n)/y(m,n)

One of the operands in these operations can
be a constant. For example, z(m,n) = Cz(m,n)
and z(m,n) = C + z(m,n), where C is a con-
stant. Logical operations AND (&), OR (])
and NOT (~) are also used in a similar way on
binary images.



Image Complement
In a 8-bit gray-level image, the complement,
2(m,n), of the image x(m,n) is given by

2(m,n) = 255 — x(m,n)

For a binary image, the complement is given
by

T(m,n) =1—xz(m,n)
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Gamma Correction

inew = 1
i 0 0.1 0.2 0.3 0.4
901 0]0.2512 | 0.3807 | 0.4856 | 0.5771
i1©1 0] 0.0251 | 0.0761 | 0.1457 | 0.2308
0.5 0.6 0.7 0.8 091
0.6598 | 0.7360 | 0.8073 | 0.8747 | 0.9387 | 1
0.3299 | 0.4416 | 0.5651 | 0.6998 | 0.8449 | 1
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Histogram
The histogram depicts the number of occur-
rences of each possible gray level in an image.

Pixel values of a 4x4 8-bit image (left) and its
contrast-stretched version (right)

249 | 108 | 110 | 113 || 255 | 201 | 219 | 245
10| 98| 108 | 114 O 114 | 201 | 254
85100 | 96 | 104 1131 | 96| 166
8b| 87| 95| 98 1 18| 88| 114
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Contrast Stretching

13

I — 1, — 2
inew (Umaz = Imin )(i—L) +1, L<i<M
(M — L)
mew = I, 1< L, wnew = Imaqz, 1> M
Gray level | 10 || 85 | 87 | 95 | 96 98 | 100 | 104
Count 1 2 1 1 1 2 1 1
Gray level 0 1188896 | 114 | 131 | 166
108|110 | 113|114 | 249
2 1 1 1 1
201 | 219 | 245 | 254 | 255




Histogram Equalization

In both contrast stretching and histogram equal-
ization, the objective is to spread the gray lev-
els over the entire allowable gray level range.
While stretching is a linear process and is re-
versible, equalization is a nonlinear process and
IS irreversible. Histogram equalization tries to
redistribute about the same number of pixels
for each gray level and it is automatic.
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A 4 x4 4-bit image (left) and its
histogram-equalized version (right)

13|14 2|14 9 11| 3|11
10| 2 5| 9 | 3|5 7
151 15| 3|15 1515|415
15| 8|13 | 1 15 69| 1

The equalization process for a gray level u of
the input imageuis given by
v=(L-1) ) p(n), uv=0,1,...,L—1
n=0
where v is the corresponding gray level in the
histogram equalized image.

15



Normalized histogram of the image
{0,0.0625,0.125,0.0625,0,0.0625,0,0,0.0625,

0.0625,0.0625,0,0,0.125,0.125,0.25}
The cumulative distribution
{0,0.0625,0.1875,0.25,0.25,0.3125,0.3125, 0.3125,
0.375,0.4375,0.5,0.5,0.5,0.625,0.75,1}
These values, multiplied by L — 1 = 15, are
{0,0.9375,2.8125,3.75,3.75,4.6875,4.6875,4.6875,
5.625,6.5625,7.5,7.5,7.5,9.375,11.25,15}

Rounding of these values vyields
{0,1,3,4,4,5,5,5,6,7,8,8,8,9,11,15}
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Histogram of the image and its equalized

version
Gray level | O 21314 6| 7|89 10
count_in O 21110 O 0|11 1
count_eq 0 0121 1/1]1(2] O
11 | 12| 13| 14 | 15
0 0 2 2 4
2 0 0 0 4

17




Histogram Specification

The histogram a(n) of a reference image A is
specified and the histogram b(n) of the input
image B is to be modified to produce an image
C so that its distribution of pixels (histogram
c(n)) is as similar to that of image A as possi-
ble.

18



T he steps of the algorithms are:

1. Compute the cumulative distribution, cum_a(n),
of the reference image A.

2. Compute the cumulative distribution, cum_b(k),
of the input image B.

3. For each value in cum_b(k), find the mini-
mum value in cum_a(n) that is greater than
or equal to the current value in cum_b(k).
That n is the new gray level in the image
C corresponding to k£ in image B.

19



4 x4 reference, input and output images,
respectively, from left

13|14 2|14 11|13 | 0|13
10| 2| 5| 9 7| O] 2] b5
151 15| 3|15 15|15 1|15
15| 8|13 | 1 15| 4111 O

13|14 2|14
10| 2] 5| 9
15115| 3|15
15| 8|13 2

20



The cumulative distribution, cum_a(n), of the

reference image is
{0,0.0625,0.1875,0.25,0.25,0.3125,0.3125, 0.3125,

0.3750,0.4375,0.5,0.5,0.5,0.6250,0.75, 1}

The cumulative distribution, cum_b(k), of the

input image is
{0.1875,0.25,0.3125,0.3125,0.3750,0.4375,0.4375,

0.5,0.5,0.5,0.6250,0.6250,0.75,0.75, 1}

Pixels of the input image 0-15 are mapped to
{2,3,5,5,8,9,9,10,10,10,10,13,13,14,14,15}

in the output image

21



T hresholding
A threshold indicates an intensity level of some
significance.

() = O ifz<ST
IbAT) =19 1. otherwise
(z) = 0 iflz|<T
IRE) =1 2, if |z| > T
0, if || <T
gs(x) =< -1, ifx>T

x4+ T, ifx<-=T
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Input image

117|170 | 130 | 54| 84 | 209 | 164 | 148

135|151 | 137 | 96| 56 | 157 | 225 | 189

136 | 152 | 174 | 146 | 64| 84 | 146 | 90

123 1139 1182 133 | 51| 71| 56| 74

119 | 137 | 172 | 146 | 119 67| 65| 70

90 | 123 | 166 | 184 | 203 | 101 | 49| ©64

851102 | 162|194 164 | 80| 38| b6

73| 84| 155|185 | 147 | 163 | 387 | br
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Binary thresholding with 7' = 120

({110, 0|1|1]1

1/1(1/0/0(1 |11

1/1/1/1/0(0|1|0
1/1(1/1/0(0|0|0
O/j1|]1/1,0|0/0|0

Oj1|1/1,1]0/0,0
O/0|j1/]1,1]0/0|0
O/j0j1/1,1|1/0,0

24



Hard thresholding with T'= 120

O 170 | 130 O 0| 209|164 | 148
135 | 151 | 137 o) O | 157 | 225 | 189
136 | 152 | 174 | 146 O 0| 146 O
123 | 139 | 182 | 133 O O O O

O|137 172 | 146 O O O O

0| 123 | 166 | 184 | 203 0 O O

O O 162 | 194 | 164 O O O

O O 155|185 | 147 | 163 O O

25




Soft thresholding with 7T'= 120

O/ 50|10 O] 0|89 | 44 28
15/ 31|17 O] O|37|105| 69
16 | 32|54 /26| 0| O| 26| O

3119|6213 0| O O| O

O|17 52|26 0| O O| O

O 3146|6483 | O O| O

O 0427444 O O| O

O 0|35|65)|27 |43 O| O
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Neighborhood Operations
Each pixel value z(m,n) is replaced by another,
which is a linear or nonlinear function of the
values of the pixels in its neighborhood.

27



8-connected neighborhood

 c(m—1,n—1) z(m—1,n) z(m—1,n+1) ]
x(m,n—1) x(m,n) x(m,n—+1)
z(m+1,n—-1) z(m+1,n) z(m+1,n+1)

4-connected neighborhood

x(m—1,n)
x(m,n —1) x(m,n) x(m,n+ 1)
x(m 4+ 1,n)
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Symmetric extension
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Replication method of extension
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Periodic extension
44 | 32 || 23123 |44 | 32 || 23 | 23

23123 | 44 |44 | 23 | 23 || 44 | 44

2332 23]51]23[32]23]51
44 |23 | 3244 | 44 [ 23| 32| 44
44 |32 | 232344 [ 32| 23] 23
23| 23| 44 |44 | 23| 23| 44 | 44

23132 23|51 23|32 23|51
44 | 23 | 32 |44 | 44 | 23 | 32 | 44
Image is considered as one period of a 2-D

periodic signal. The top and bottom edges
are considered adjacent and so are the right
and left edges.
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1-D Linear Convolution
0

y(n) = Z x(k)h(n—k) = Z h(k)x(n—k)

k=—o0 k=—o0
(£(0) = 4,2(1) = 3,2(2) = 1,2(3) = 2} and
{R(0) = 1,h(1) = —2,h(2) = 1}
y(0)==z(k)h(0 — k)=(4)(1) =4
y(1)==z(k)h(1 — k)=(4)(-2) + (3)(1) = -5
y(2)=z(k)h(2 — k)=(4)(1) + (3)(-2) + (1)(1)=-1
y(3)==z(k)h(3 — k)=(3)(1) + (1)(-2) + (2)(1)=3
y(4)=z(k)h(4 — k)=(1)(1) + (2)(-2) = -3
y(5)==z(k)h(5 — k)=(2)(1) =2

32



2-D Linear Convolution
©. @) ©. @)
y(m,n) = Z Z x(k,Dh(m —k,n —1)
k=—o0l=—00

. One of the images, say h(k,l), is rotated in
the (k,l) plane by 180 degrees about the
origin to get h(—k, —1).

. Shifted by (m,n) to get h(m —k,n —1).

. The products z(k,l))h(m—k,n—1) of all the
overlapping samples are found.

. The sum of all the products yields the con-
volution output y(m,n) at (m,n).

33



h(m,n)

O+~

Moving average filter

Wl

T e el

==

Wl

==

[1 1 1]=hc(m)hf,a(n)
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x(m,n) =

1 -1 3
2 1 2
1 -1 2
3 1 2

2
4
—2
2

Assuming zero-padding at the borders, the out-
put of 1-D filtering of the rows of the input and
the output of 1-D filtering of the columns of

the partial output are, respectively,

1
3

O WO
o N Ol

3

> O O O

y(m,n) =g

1

8 11 11°
10 11
11 10
8 4 4
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Assuming replication at the borders, the ex-
tended input and the output are, respectively,

11 -13 2 2
11 -13 2 2 T 7 11 15 247
22 12 4 4 1| 7 10 10 15
11 -1 2 —2 -2 9| 13 13 11 14
33 12 2 2 | 15 14 9 10 |
33 12 2 2

Only the output at the borders differ with dif-
ferent border extensions. The central part of
the output is the same.

36



Gaussian lowpass filter

T (202) (N-1)/2 (N=1)/2 _ (m?4n?)

h(m, 'n) = ,K :Z Z e (202)

m=—(N-1)/2n=—(N—-1)/2

assuming N is odd.

[ 0.0113 0.0838 0.0113 |
0.0838 0.6193 0.0838
| 0.0113 0.0838 0.0113 |

[ 0.1065 |
— | 0.7870 [0.1065 0.7870 0.1065]
| 0.1065

h(m,n)
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Assuming zero-padding at the borders, the out-
put of 1-D filtering of the rows of the input and
the output of 1-D filtering of the columns of
the partial output are, respectively,

y(m,n) =

[ 0.6805
1.6805
0.6805

| 2.4675

[ 0.7145
1.4675
0.9773

| 2.0144

—0.3610
1.2130
—0.4675
1.3195

—0.1549
0.8664
—0.0982
0.9887

2.4675
2.1065
1.2545
1.8935

1.8935 ]

3.3610
~1.3610

1.7870 |

2.1663 1.8481°
2.0542 2.7018
1.4133 —0.5228
1.6238 1.2614 |
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Assuming

periodicity at the

tended input and the output

rxe(m,n) =

y(m,n) =

2 3 1
21 -1
4 2 1
-2 1 -1
2 3 1
21 -1

 1.2130 —-0.0143
1.8027 0.8664
0.8777 —0.09382

| 2.2545  0.9502

borders, the ex-
are, respectively,

2 2
3 2
2 4
2 =2
2 2
3 2
2.3679
2.0542
1.4133
1.8866

H WFENRFEW

2.1790

2.8921
—0.3822

1.7372 |
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Highpass Filtering

Frequency, in image processing, is the rate of
change of gray levels of an image with respect
to distance. A high frequency component is
characterized by large changes in gray levels
over short distances and vice versa. High-
pass filters pass high frequency components
and suppress low frequency components. This
type of filters are used for sharpening images
and edge detection.

40



Laplacian operator of a function f(z,vy)

2 _ 0%f(z,y) |, O%f(z,y)
Vef(z,y) = 52 + 992

For discrete signals, differencing approximates

differentiation. At the point x(m,n), the first

differences along the horizontal and vertical di-

rections, Ap(m,n) and Ay(m,n), are defined

as

Apz(m,n) =x(m,n) —x(m,n — 1)
Ayz(m,n) =xz(m,n) —x(m —1,n)

41



Using the first differences again,

Agaﬁ(m, n)

A%w(m, n)

DAyz(m+1,n) — Dyz(m,n)
(z(m+1,n) —xz(m,n))

—(x(m,n) —xz(m —1,n))
x(m+1,n)4+z(m—1,n) — 2z(m,n)

= Apx(m,n+1)— Apz(m,n)

(z(m,n+1) —xz(m,n))
— (z(m,n) —z(m,n—1))
x(m,n+1)+zxz(m,n—1) —2z(m,n)

42



Summing the two second differences, we get
the discrete approximation of the Laplacian as

V2z(m,n) =A%x(m, n) + Agw(m, n)
=z(m,n+1)+xz(mn—1)+x(m-+1,n)
+ax(m—1,n) —4x(m,n)

43



Versions of Laplacian highpass filter

O 1 0] 1 1 1]
1 -4 1 1 -8 1
0 1 0 1 11

Laplacian sharpening filter

O -1 O
-1 5 -1
O -1 O
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Let the input be the same used for lowpass
filtering. With zero-padded and replicated in-
puts, the outputs of applying the Laplacian
mask (Equation 2.2) are, respectively,

3 9 -9 -11 [-1 8 -6 3]
5 -2 2 —14 ~3 -2 2 -10
0 9 -7 16 1 9 -7 14
10 0 -3 -8| |-4 1 -1 -4

45



Using sharpening filter, with the same input
used for lowpass filtering, the outputs with the
input zero-padded and replicated are, respec-
tively,

4 —-10 12 3] 2 -9 9 —1]
7 3 0 18 5 30 14
1 —-10 9 —18 0 —10 9 —16
13 1 5 10| |7 03 6|
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Median filter

The median of a list of N numbers

{x(0),x(1),...,x(N — 1)}

is defined as the middle number of the sorted
list of x(n), if N is odd. If N is even, the me-
dian is defined as the mean of the two middle
numbers of the sorted list. For 2-D data, all
the samples are listed as 1-D data for median
computation.

a7



The boundary replicated version of a 4 x 4 im-
age and its median filtered version with a 3 x 3
window are

23 |23 |51 |23 32| 32

23[23[51(23[32[321[32]32[32]32
323244 4423 23|[2332(32]32
2323234432 32|[32144 (3223
44 | 44 [ 44 23 [ 23|23 ([ 44 [ 442323

44 | 44 | 44 | 23 | 23 | 23
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Chapter 3 Fourier Analysis
In Fourier analysis, a time-domain waveform is
decomposed into its sinusoidal components of
various frequencies.
1. It gives the strength of the various com-
ponents, which is called the spectrum of the
signal. The spectrum is the starting point in
most of the analysis.
2. It is more efficient to find the system output
using the sinusoidal components of the input
signal.

49



Fourier analysis represents a signal as a lin-
ear combination of sinusoids or, equivalently,
complex exponentials with pure imaginary ex-
ponents.

1 e~ 2T .2 .~ 27T
Z(4€JOTn—|—(2—j2\/§)637n—|—4632Tn

e 27T
+ (2452V3)el3 2 ™)
= (40 I CEn=5) 42y 4o~ CEn-D))

— 142 cos(%%n -+ cos(z%ﬁn) = 2(n)

50



DFT and IDFT

N—-1
X(k)= Y z(n)WRF, k=0,1,...,N -1
n=0

.27

where Wy =¢e /N,

1 N—-1
z(n) = — 3 X()W™, n=0,1,...,N -1
NkzO

The Fourier reconstruction of a waveform is
with respect to the least squares error criterion.
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X0
X (1)
X (2)

L X(3)

1 1 1
1 —j —1
1 -1 1

1 5 -1

- .-

2 — 23
4

D Do
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z(0) i 1 1 17 4
(1) | 1 j =1 —j 2 — 4§23
z(2) | T a -1 1 -1 4
z(3) | 1 -5 -1 j]|2+4+52V3

53



Parseval’s T heorem

{4,1,2,4} & {11,2453,1,2 - 3}

The sum of the squared magnitude of the data
sequence is 37 and that of the DFT coeffi-
cients divided by 4 is also 37.

54



The 2-D DFT of a Nx N image z(m,n) is
defined as

N—-1N-1

.27
X(kD)= > > m(m,n)e_JW(mk+nl)
m=0 n=0
The 2-D IDFT is given by
1 N—1N-1

S Y X(k, 1)l N (mhtnD)
k=0 [=0

x(m,n) = ~2
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The impulse (on the left) and its 2-D DFT are

oNolNoN®
oNoNoNG
oNoNGNG)
I
el
e
el
el

oo oH
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1 -2
-, ((-7.7071 - j50.163)e’ 8"

_2n
+(—7.7071 + j50.163)e /B ™)
2

~ |(=7.7071 — j50.163

oq J )

2
Cos(gm + /(=7.7071 — j50.163))

2
1.586 Cos(gm — 98.7347°) = x(m,n)
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The DFT of the N x N matrix z(m,n) can be

computed in two stages. For example, the 1-D

DFT of each row of the input image results in
N—-1 o

X(m,l) = Z x(m, n)e_jwnl, m,l=0,1,..., N-1

n=0
Then, the 1-D DFT of each column of X(m,!)
yields the 2-D DFT.

N—1 o
Xk, =Y X(mDeN™ ki1=0,1,...,N-1

m=0

58



1 1 1 1§ 123171 1 1 17
1 —j -1 4||-2314}|1 - -1
1 -1 1 -1 112211 -1 1 -1
1 5 -1 —j |l 31241 ;5 -1 —j

The 2-D DFT of the image is

[ —
]j i 29 -5+ 44 —7 —5—34]
1+j4 -3+3j2 1448 1446 | = X(k,I)
-3 —-1—44 9 —1+4
| 1 —j4 l1—356 1—-358 —-3—32 |
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The 2-D DFT of a linear combination of a set
of discrete images is equal to the same lin-
ear combination of their individual DFTs. Let
x1(m,n) < X1(k,1) and zo(m,n) < Xo(k,1).
Then,

ary1(m,n) + bxo(m,n) < aXq(k,l) + bXo(k,1)

where a and b are real or complex constants.

60



An image is periodic if it repeats its values over
a period indefinitely, x(m+M,n+N) = x(m,n)
for all m,n. The smallest M, N satisfying the
constraint are the periods in the two directions.
Although a practical image is of finite extent,
as the basis signals in Fourier analysis are the
sinusoids (which are periodic), an image is as-
sumed to be periodic in both the spatial and
frequency domains.
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x(m,n) =xz(m+aM,n+bN), for all m,n

X(k,1) = X(k+ aM,l+ bN), for all k,1

where a and b are arbitrary integers. Useful
information in a periodic signal is contained in
any one period. The top and bottom edges

are considered adjacent and so are the right
and left edges.
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A shift of a sinusoid results in changing its
phase. Its magnitude is not affected. For a
N x N image,

x(m,n) < X(k,1) — x(m —mg,n —ng)
o X(k,1)e i (kmoting)
-2
z(m, n)ejW(kOm+lOn) — X(k —kg,l —1p)

A specific use of this theorem is that the center-
zero spectrum can be obtained with N even

and kg =1lp = 5.
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Circular convolution
Let z(m,n) + X (k,1) and h(m,n) < H(k,l), m,n,k,l
0,1,...,N —1. Then,

N—-1N-1

p=0 ¢=0

1 N—-1N-1

z(m,n)h(m,n) < =5 > Y X(p,¢)H(k—p,l—q)
p=0 ¢q=0
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The circular cross-correlation of z(m,n) and
h(m,n) is given by
—~1N-1

ren(m,n) = Z > z(p,q)h(p —m,q —n)

p=0 ¢g=0
o H (kDX (k1)

rhe(m,n)=r,,(N—m, N—n)=IDFT(X*(k,1)H(k,1))

Cross-correlation of an image x(m,n) with it-

self is the autocorrelation operation.
ree(m,n) = IDFT(|X (k, 1)]?)
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DFT values, of a real-valued z(m,n), at dia-
metrically opposite points form complex con-
jugate pairs.

X*(N -k N—-1) = X(k,1)

An equivalent form of the symmetry is

N N « N N
X(—d+k —+D)=X"(—Fk —F1I
(2 5 ) (2¢ QHF)

29 -5+ j4 7 —5-j4°
1+j4 —3+4+72 14358 1476
-3 —1—3j4 9 —1+ j4
| 1-j4 1-j6 1—48 —3—j2
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The 2-D DFT is a separable function in the
variables m and n. Therefore, the DFT of a
separable function z(m,n) = z(m)x(n) is also
separable. The product of the column vector
with the row vector is equal to the 2-D func-
tion. That is,

z(m) < X(k), z(n) < X(1) — X(k,1) = X (k)X (1)
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Parseval’s theorem

This theorem implies that the signal power can
also be computed from the DFT representa-
tion of the image. Let z(m,n) < X(k,l) with
the dimensions of the image N x N.

—1 N-1 —1N-1
Z 3 |z(m,n)|? = ~3 Z S IX (kD2
m=0 n=0 k=0 [=0
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The FT X(jw) of z(t) is defined as
X (jw) = / T a(t)e It
— OO
A sufficient condition for the existence of X (jw)
is that x(t) is absolutely integrable. The IFT
x(t) of X(jw) is defined as

1 00 ot
x(t) = —/ X(jw)el* dw
21 J—o0

The amplitude of any component (—co < w <
00) IS X(Jjw) dw/(27), which is infinitesimal.
The FT is a relative amplitude spectrum.
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The FT X(ju,jv) of z(p,q) is defined as

O oo . .
X(Ju, jv) = /_oo /_Oow(p, q)e 7"Pe” I dp dg

The IFT is given by

_ 1 = OOX' ) el P eIV day d
CIJ(p,Q)—47T2 ] (ju, jv)e?"PelVddy, dv
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Enhancement in the Frequency Domain
Chapter 4
Processing of images in the frequency domain

consists of:
1. Transformation of the input image and the

system response from the spatial domain

to the frequency domain.
2. Processing the image in the frequency do-

main.
3. Transformation of the processed image back

to the spatial domain.
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1. The DFT assumes periodicity of the finite
input data. It has to be ensured that the
output is represented with adequate accu-

racy in one period.
2. To meet this constraint, sufficient zero padding

of the image and the filter is required. Fur-
ther, the dimensions of one period have to
be a power of 2 in order to use practically

fast DFT algorithms.
3. It has to be ensured that both the image

and the filter are in the same format with
their origins aligned.
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Convolve

1 -1 3 2]
> 12 4
z(mn) =11 _1 5 _o
'3 12 2]

and a 3x3 Gaussian lowpass filter with o = 0.5.
Assume periodicity at the borders.
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T his filter is also separable with the same co-

efficients in both the directions,
{0.1065,0.7870,0.1065}

Zero-padding and circularly shifting the col-

umn filter, we get
hz(m) = {0.7870,0.1065,0,0.1065}

Only one zero is appended, since the convolu-
tion is periodic and the input is a 4 x 4 image.

The 1-D DFT of this filter is
H(k) = {1,0.7870,0.5740,0.7870}
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The 2-D DFT, X(k,1), of x(m,n)

22.00+4j0.0 | -2.00+j6.0 | 10.00+j0.0 | -2.00-j6.0

5.00-j1.0 | 1.00+j5.0 | -3.00+j3.0 | -3.00-j3.0

-12.00+j0.0 | -4.00-j2.0 | 8.00+j0.0 | -4.00+j2.0

5.00+j1.0 | -3.00+J3.0 | -3.00-j3.0 1.00-j5.0
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The partial convolution output

Pk, 1) = X (k,1)H(k)

22.00+J0.0 | -2.00+j6.0 | 10.00+j0.0 | -2.00-j6.0
3.94-j0.7 | 0.794+j3.9 | -2.36+j2.3 | -2.36-j2.3
-6.894+J0.0 | -2.30-j1.1 | 4.59+j0.0 | -2.30+j1.1
3.94+j0.7 | -2.36+]j2.3 | -2.36-j2.3 0.79-j3.9
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The convolution output
Y(k, 1) = P(k,1)H(1)

22.00+J0.0 | -1.57+j4.7 | 5.744j0.0 | -1.57-j4.7
3.94-j0.7 | 0.62+4+)3.1 | -1.36+j1.3 | -1.86-j1.8
-6.89+j0.0| -1.81-j0.9 | 2.64+4j0.0 | -1.81+J0.9
3.94+j0.7 | -1.86+j1.8 | -1.36-j1.3 0.62-j3.1
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The Laplacian filter is inseparable. The zero-
padding and shifting in two directions results
in

ololoholololol

OO OO0 OoOoHw

hz(m,n) =

OO0 0O0O0000o0Oo
OO0 0O0O0000o0Oo
OO0 0O0O000O0o0Oo
OO0 OO0 00o0Oo
OO0 OO0 00o0Oo

O OOOOF O
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2-D

DFT,

H(k,1), of zero-padded hz(m,n)

1.00

1.59

3.00

4.41

5.00

4.41

3.00

1.59

1.59

2.17

3.59

5.00

5.59

5.00

3.59

2.17

3.00

3.59

5.00

6.41

7.00

0.41

5.00

3.59

4.41

5.00

0.41

7.83

3.41

7.83

6.41

5.00

5.00

5.59

7.00

3.41

9.00

3.41

7.00

5.59

4.41

5.00

6.41

7.83

3.41

7.83

6.41

5.00

3.00

3.59

5.00

6.41

7.00

6.41

5.00

3.59

1.59

2.17

3.59

5.00

5.59

5.00

3.59

2.17

DFT is real-valued and even-symmetric, since
the filter is also real-valued and even-symmetric.
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Given the DFT coefficients of the waveform in
the center-zero format,

{ X(-2)=4,X(-1)=2+;2V3,
X(0)=4,X(1) =2—-352V3}

we multiplied the set of coefficients, respec-
tively, by the frequency responses

Hy(k) = {0,0,1,0}, H,(k) ={1,0,0,0},
Hy,(k) = {0,1,0,1}, Hy(k) = {1,0,1,0}

to implement the different filters.

80



A lowpass filter in the frequency domain is
given by

| 1, for D(k,l) < D¢
H(k,1) = { 0, for D(k,l) > D¢

where D(k,l1) = \/k? 412 is the distance be-

tween the spectral point (k,1) and the center
of the spectrum, and D, is the cutoff radius.
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A 4 x 4 distance matrix with the center at co-

ordinates (2,2) is

[ 2.8284 2.2361 2.0000 2.2361 |
2.2361 1.4142 1.0000 1.4142

2.0000 1.0000 0 1.0000
| 22361 1.4142 1.0000 1.4142 |

If we specify that the cutoff radius is 1.9, then
the lowpass filter spectrum is

O O

D(k,1) =

H(k, 1) =

oNeoNoN®
== = O

1 1
1 1
1 1
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A highpass filter in the frequency domain is

defined as { 0, for D(k,1) < D¢

H(k,1) = 1, for D(k,l) > D,

where D(k,l1) = \/k? 412 is the distance be-

tween the spectral point (k,1) and the center
of the spectrum, and D. is the cutoff radius. A
highpass filter is also defined, in terms of the
spectrum of the lowpass filter, as

Hy(k,1) =1 — Hi(k,1)
where H; (k,1) and H;(k,1) are, respectively, the
spectra of highpass and lowpass filters.
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The spectrum of the lowpass Butterworth filter
is defined as 1

H(k, 1) = o
1+ <D(k l))
where n is the order of the filter.

The spectrum of the Butterworth highpass fil-
ter is defined as 1

H(k,1) = .
1+ <D(k 1))2

where D. is the cutoff frequency and n is the
order of the filter.
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The spectrum of the lowpass Gaussian filter is
defined as _ D?(k,))
H(k,)) =e 202

The attenuation is e=9-> = 0.6065 at D(k,1) =
DC — 0.
The Gaussian highpass filter is defined, in terms

of the spectrum of that of its lowpass filter, as
_ D2(k,)D)

Hy(k,) =1—H(k])=1—e 2D¢

where H; (k,1) and H;(k,1) are, respectively, the
spectra of highpass and lowpass filters.
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Restoration Chapter 5
Inverse filtering

Y(k,1) = X(k,1)Hy(k,1)
where Y (k,1), X(k,l), and Hy(k,l) are the cor-
responding DFTs of the degraded image, the
input image and the impulse response of the
degradation process. The image can be re-
stored by the operation, called inverse filtering,

Y (k1)
X(k,1) = H (kD)
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Wiener Filter
The problem is to find the estimate, z(n), of

x(n) from y(n) such that the least-squares er-
ror, E, is
N—-1 R
E= ) (z(n)—2z(n))
n=0
minimized. Assuming that the estimated sig-
nal z(n) is given by

z(n) = )_y(n — k)hr(k)
k

the task is to find the filter coefficients so that
the least-squares error is minimized.
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From Parseval’s theorem,

1 A N
E=— 3 [(X(k) - X))
k=0

X(k) = H (k)Y (k) = H-(E)H (k)X (k)+Hr(k)S(k)

X(k)-X (k) = (1-Hr(k)Hy(k))X (k)—Hy(k)S(k)
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N-1
i Z (1 — Hy (k) Hy(K) X (K) — Hy(k,1)S(k)|?

<1 — Hr(k)Hy(k)) X (K)|? + |Hr(k)S(K)|?

<1—Hr<k>Hd<k>>| 2| X (k) |*+H Hr(k)|?|S (k)|
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Setting the derivative of the last expression
with respect to H,(k) equal to zero, we get

2(—(1—H;(k)H}(k))Ha(k)| X (k) |2+ H; (k)|S(k)|?)=0

Ha(k)| X (k)|?
|Hy(k) 121X (k)2 + |S(k)|2

H: (k) =

H (k)

1) = P+ ISP IX WP
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2-D Wiener filter

Hy (k1) = Hy(k, D

[Hg(k,1)[2 +|S(k,1)[2/X (k, D)2

where |H;(k,1)|2 is the power spectrum of the
degradation process, H,(k,l) is the DFT of the
Wiener filter, |S(k,1)|? and |X(k,1)|? are the
power spectral densities of the noise and the
true image, respectively. The restored image
z(m,n) is obtained from the degraded image

y(m,n) as
z(m,n) =IDFT(Hr(k, DY (k,1))
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. Find the DFT Y (k,l) of the degraded im-
age y(m,n).

. Derive the Wiener filter Hr(k,1).

. Multiply pointwise Y (k,l) with the Wiener
filter Hy(k,1).

. Compute the IDFT Hy(k,0))Y(k,l) to get
the restored image.
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Image Degradation Model

Let z(m,n) be a N x N image and hgz(m,n) be
the P x Q impulse response of the process due
to motion and z(m,n) < X(k,l). Then,

2
z(m —p,n —q) < X(k, l)e_JW(kp—l_ZQ)

P-1Q-1
y(m,n) = ) _ Zw(m pyn—q)
p=0 gq=
P-1Q-1
Hy(k,l) = Z Z e—JNpk —j%Fqk
p=0 ¢gq=0

_]N(P 1k (Sln(NPk‘)> _]N(Q 1)1 (Sln(NQl)>

sin( k) sin(x!)
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Chapter 6 Geometric Transformations

Bilinear Interpolation

ox(m,n) ox(m,n+ 1)

ox(m/,n)

ex(m—+1,n) ex(m—+1,n+1)
The bilinear interpolated value z(m/,n’) of a
pixel at the location (m/,n’) of an image is
z(m/,n")=(1 - )((1 = r)xz(m,n) + (r)z(m + 1,n))

+(c)((1—r)z(m,n+1)+(r)z(m+1,n+1))

where r = m/ —m and ¢ = n’ — n and the dis-
tance between pixel locations is one.
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The affine transform, in homogenous form, is

m a b c m
n |=|d e f n
1 00 1) | 1]

Appropriate values of the transformation ma-
trix are to be used for each type of transfor-
mation.
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Scaling
a=3/4, e=1/2thenm’ = (3/4)m, n' = (1/2)n

The transformation matrix and its inverse are

(3/4 0 0] [4/3 0 0
0 1/2 0 0 20
0 01| | 001

4 x 4 image and its 3 x 2 scaled version using
the nearest-neighbor interpolation

21347 . :
1123 ?2
4 21 3 5> 3
223 1] | :
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Using the backward mapping (inverse of the
transformation matrix), we get the middle ma-
trix of the coordinates from that of the output.
Using the nearest-neighbor interpolation, we
round the coordinates of the middle matrix to
get the right matrix. The values correspond-
ing to these coordinates in the input matrix
are the output values. For example, (2,0) in
the output matrix corresponds to (3,0) in the
input matrix and the output value is 2.

((0,0) (0,1)] [(0.0,0) (0.0,2)] [(0,0) (0,2)

(1,0) (1,1) (1.3,0) (1.3,2) (1,0) (1,2)
1(2,0) (2,1)] |(2.7,0) (2.7,2)] [(3,0) (3,2)
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Shear
b=0,d=1 then m'=m, n =m+n

The transformation matrix and its inverse are

(1 0 0] 1 0 0]
1 1 0 110
' 0 0 1] 00 1

4 x 4 image and its sheared version using the
nearest-neighbor interpolation are

21 3 4 2 1

NN DN D
N L, WO
= O OO

O, W
wwoo

1 1 2 3 O
4 2 1 3 O
2 2 31 O

oOomr
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The maximum value index n’ takes is 3+3 = 6.
T herefore, the size of the output image will be
4 x 7. The coordinates are

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)]
(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
1(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

Using the backward mapping (inverse of the
transformation matrix), we get the matrix

- (0,0)
(17 _1)

(0,1)
(1,0)

(2,-2) (2,-1)
_(37_3) (37_2) (37_1) (370) (371) (372) (373)_

(0,2) (0,3) (0,4) (0,5) (0,6)]

(1,1) (1,2) (1,3) (1,4) (1,5)
(2,0) (2,1) (2,2) (2,3) (2,4)
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b=03,d=0

then

m —m

/

+0.3n, n  =n

The transformation matrix and its inverse are

1 0.3 0|
O 10
0O 0 1]

1
O
O

—0.3 0]

1 0O

0 1|

A 4 x4 image and its sheared version using the
nearest-neighbor interpolation are

2 1 3 4
1123
4 21 3
2231

ONPEDN

1

oONDN K

WrENWO

W w PO
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The maximum value index m’ takes is 3 +
3(0.3) = 3.9. Therefore, the size of the output
image will be 5 x 4. The coordinates are

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)
(4,0) (4,1) (4,2) (4,3)

Using the backward mapping and then round-
ing, we get the matrices
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(0,0) (-0.3,1) (=0.6,2) (—0.9,3)
(1,0) (0.7,1) (0.4,2) (0.1,3)
(2,0) (1.7,1) (1.4,2) (1.1,3)
(3,0) (2.7,1) (2.4,2) (2.1,3)
(4,0) (3.7,1) (3.4,2) (3.1,3)

(1,0) (1,1) (0,2) (0,3)
(2,0) (2,1) (1,2) (1,3)
(3,0) (3,1) (2,2) (2,3)
(4,00 (41) (3,2) (3,3)
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Rotation. The output image coordinates are

(2,-2) (2,-1) (2,00 (2,1) (2,2)]

(1,-2) (1,-1) (1,0) (1,1) (1,2)
(0,-2) (0,-1) (0,0) (0,1) (0,2)

The backward mapped coordinates, rounded
to 1 digit after the decimal point, are

28,00 21,07 14,14 0.7,2.1 0.0,2.8
».1,-0.7 14,00 0.7,07 0.0,1.4-0.7,2.1
1.4,-1.4 0.7,-0.7 0.0,00 —0.7,0.7—1.4,1.4
0.7,-2.1 0.0,—-1.4-0.7,—-0.7 —1.4,0.0-2.1,0.7
0.0,-2.8-0.7,—-2.1-1.4,-1.4—-2.1,-0.7—2.8,0.0
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The input image and the rotated images using
nearest-neighbor and bilinear interpolation are,
respectively,

-9137-00700 O O 6.4 O O
680 4 01010 O 217 1.45 2.54 O
5461 0O8465|(8.13 656 450 4.64 4.54
5735 05470 O 554 457 5.00 O
- 100200 O 0O 2.64 O O
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Correlation. 1-D

O
rey(m) = Z x(n)y(n—m), m=0,x1,+2,...
nN=——oo
2-D
O oo
rey(m,n) = Z Z x(k,Dy(k —m,l —n)
k=—o0l=—0o0
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The normalized cross correlation rngy(m,n) (cor-
relation coefficient) of images x(m,n) and y(m, n)
is defined as a/+/bc,

a= Y Y (@)~ E)(k—m,l—n)—7)

k=—oc0l=—00

b= > Y (x(k1) —F)?

k=—oc0l=—0o0

c= > Y (y(k—m,l—n)—p)?

k=—oc0l=—00
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Radon Transform Chapter 7

In the Radon transform, an image is repre-
sented by its mappings with respect to a set
of lines at various angles represented by po-
lar coordinates. The values at various polar
coordinates are the transform coefficients.

When an image is represented in Radon trans-
form form, we are able to form the image of
the interior of an object with out intrusion. In
its implementation, we use the 1-D DFT and
interpolation operations.
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slope-intercept form of a line

y=mzx-+c

normal form of a line

x cos(f) + ysin(f) = s

where s is always positive and 0 < 0 < 360°. A
line is expressed in terms of its perpendicular
distance s from the line to the origin and the
angle 6 subtended between the perpendicular
line and the z-axis.
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Given a linear equation v/3z +y+ 2 = 0, let
us put it in the normal form of a line. Shift
the constant term to the other side and ensure
that it is positive. We get —/3z—y = 2. Since
x and y have to be associated with cos(8) and
sin(8), respectively and cos?(8) + sin?(0) = 1,
the coefficients have to be normalized. Divide
both sides by the square root of the sum of
the squares of the constants associated with «x

and y. Since \/(—\/§)2 + (—1)2 =2, we get

3 1 2
—%az—iyzaz 1 or x cos(210°)+ysin(210°) =1

with 8§ = 210° and s = 1.
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Radon transform R(s,0) of f(x,y)
R(s,0) = /_OO /_ " ()5 (z cos(0)y sin(0)—s)dz dy

—o<s<oo, 0<O<

Using the coordinate transformation, the re-
lations between the coordinate systems (x,y)

and (s,n’) (rotated) are given by
s = xcos(f) + ysin(H)

n' = —zsin(@) + ycos(h)
r = scos(f) —n'sin(h)
y ssin(8) 4+ n’ cos(0)
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In the rotated coordinate system (s,n/),
oo

R(s,0)= / (s cos(8)—n'sin(8), ssin(8)4n’ cos(8)) dn’
— OO

The back-projection of R(s,#) is defined as

Fla,y) = /O " R(x cos(0) + ysin(0),6) do

where f(z,y) is a blurred version of f(z,v).
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1 for 3172—|—y2 §r2
0O otherwise

f(z,y) ={

/
n

R(s,0)

N, N,
2/0 f(s,n/)dn/ZQ/ 1d

0
{ 2\/r2 — 52 for s| <r

O otherwise
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Radon transform of a 2-D delayed impulse f(z,y) =
6(x — 20,y — Yo)
o0 o0
R(s,0) = / / é(r —x0,y¥ — Y0)
—0 J—00
d(xcos(8) 4+ ysin(8) — s)dx dy
= d(xgcos(8) + ypsin(8) — s)

As the strength of the impulse is concentrated
only when its argument becomes zero, the Radon
transform is given by

xo cos(0)+ygsin(f)—s = 0 or s = xgcos(f)+ygsin(h)
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The point (zg,yg), where the impulse occurs in
the spatial-domain, can be described in polar
coordinates as

xg = rcos(¢), yg =rsin(¢) andr = \/:1:% —I—y%,
tan(¢) = 22, xg # 0
TQ

The Radon transform, in terms of » and ¢, is
given by

r coSs(¢) cos(f) + rsin(¢) sin(H)
rCcoS(¢p — 0) = rcos(6 — o)

S
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Properties

R(s,0) = R(—s,0 4+ 180°)

f(xay) — R(S,@) _>f(m_$07y_y0)
< R(s—xzgcos(f) —ygsin(h),0)

F(x,y) < R(s,0) — f(ka, ky) © %R(ks, 0), k#0
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The Radon transform is approximated for a
N x N image xz(m,n) as

N—1N-1
R(s,0) = > _ > xz(m,n)d(mcos(f)+nsin(6)—s)

m=0 n=0
In the rotated coordinate system (s,n’)
R(s,0) =Y z(scos(6)—n'sin(8), ssin(8)+n'cos(6))

n/

The back-projection is
Z(m,n) = ) R(mcos(#) 4 nsin(h), )
0

z(m,n) is a discrete and blurred version of

x(m,n).
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Find the Radon transform of the 2 x 2 image
1 4
x(m,n) = [ 5 5 ]

and reconstruct the image by back-projection.
The origin (0,0) be at the bottom left corner.
With 6 = 0°, the sum of the columns vyields
R(0,0°) = 3 and R(1,0°) = 9. The average
(DC) value of the image is 3. This value has
to be subtracted from the image to find the

transform at other angles.
1-3 4—3]_[—2 1]

2—-3 5-3
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With 6 = 90°, the sum of the rows vields
R(0,90°) =1 and R(1,90°) = -1

Let us reconstruct the image using Equation (7.12).
With m = 0, n = 0 and 8 = 0° we get
2(0,0) = R(0,0°) = 3. Proceeding similarly,

we get the reconstructed image corresponding

to 06 = 0° as
ro(m,n) = [ 3 9 ]

39

The reconstructed image corresponding to 6 =
90° is

—1 —1
$9o(m,n)=[ 11
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The sum of the partially reconstructed images
is the final image given by

z(m,n) = zg(m,n)+ xgo(m,n)
3 9 4 -1 -1 |2 8
3 9 1 1| |4 10
which is the same as the input image multiplied

by 2. 3 9
{R(O7 Oo) 257 R(17 Oo) 257

1 1
R(0,90%)=_, R(1,90°)=~_}
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Let us find the relation between the Radon
transform and the 2-D DFT spectrum of an
image. The 2-D DFT X(k,l) of a N x N image

x(m,n) is defined as
~1N-1

X(k,1) = Z > z(m, n)e_]N(mk_I_nl)
m=0 n=0
Let the frequency index [ be 0. Then,
N—-—1 N-1
X(k,0)= > {) z(m, n)}e_JN(mk)
m=0 n=0

The summation inside the braces is R(s, 0°).
NR(s,0°) <+ X(k,0). Similarly NR(s,90°) < X(0,1)
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The 1-D row DFT of the image and the col-
umn DFT of this partial transform is the 2-
DFT 5 _3 > 0

7 —3 12 —6
The 1-D IDFT of the first row coefficients
{12, -6} is {3,9} = {R(0,0°),R(1,0°)}. The
1-D IDFT of the first column coefficients {0, 2}
is{1,—1} = {R(0,90°), R(1,90°)}. X(0,0) can
be included only in one computation.
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As we computed the 1-D 2-point IDFT using
the 2 x 2 2-D DFT coefficients, we have to
divide these coefficients by 2 to get the true
Radon transform coefficients. The conclusion
is that the 1-D DFT of the Radon transform
R(s,0;) in a certain direction is the 2-D DFT
X (s, 0;) of the image in the same direction with
a scale factor.
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Find the Radon transform 057Tthe 8 X 8 image
x(m,n) =sin | —mn
8
The 8-point 1-D DFT spectrum with § = 90°
E {0,-432,0,0,0,0,0, j32}

The IDFT of this spectrum

ﬁ{o, 1,v/2,1,0,—1,—v2,—1}

IS the set of Radon transform coefficients
{R(0,90%), R(1,90°), R(2,90°), R(3,90°),

R(—4,90°), R(—3,90°), R(—2,90°), R(—1,90°)}
multiplied by 8.
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The 1-D FT of a projection R(s,#) is
©.@) .
R(jw,0) =/ R(s,0)e 7¥%ds
— 0

Substituting for R(s,0), we get

R(jw,0) = /OO /OO £(scos(0) — n'sin(6),
ssin(0) + n’ cos(6))e ¥ dsdn/
- /°° /Oof(x,y)e—jwucos(@)ﬂsin(@))dwdy

Letting wq = wcos(f) and wy, = wsin(h),

RGw,0) = [ [~ jlay)eierrtemigay

F(jCU]_ ) ]w2) |w1=w cos(),wor=wsin(0)
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Find the Radon transform of the 8 x 8 image
2
x(m,n) = COS (g(m + n))

The DFT of the image in the center-zero for-
mat is _ _

X (k1) =

W
OCONOOOOO

O O0O0O0O0O0000o0Oo
O O0O0O0O0O0000o0Oo
OO0 0000o0Oo
oNoNGNeRoNGNGNG)
O O0O0O0O0O0O0000o0Oo
O O0O0O0O0O0O0000o0Oo

OO OONOOO
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13-point 1-D DFT spectrum with 6§ = 45° is
{0,16,10.9807,0,0,0,0,0,0,0,0,10.9807,16}

in the normal format. The IDFT of this spec-

trum, in the center-zero format is,
{—0.8942, —-1.6389, —2.1374, —1.3435,

0.7993,3.1392,4.1509,3.1392,

0.7993,—1.3435, —2.1374, —1.6389, —0.8942}

IS the set of Radon transform coefficients
R(s,45°), s=-6,-5,...,5,6

multiplied by 64/13.
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The 2-D IFT of the FT, F(jwy,jws), of an
image f(x,y) is given by

1 [ ' J(wiz+woy)
flz,y) = 4—772/_00 /_OOF(JwLJwQ)@ dwi dwo

Letting w1 = wcos(0), wr = wsin(), the dif-
ferentials dwq dwo become wdw df. Then, using
the polar coordinates and the Fourier-slice the-

orem, we get

1 2w oo .
flay) = 75 [ [ FGwcos(6), jwsin(6))
ejw(w cos(0)+y sin(@))wdw do
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1
42

1 T [00 ' : ,
yo= /O /_OO R(jw, e)ejw(ac cos(0)+y Sln(G))|w|dw do

1 ™ o0 :
ﬁ/o (/|w|R(jw,9)e~7wsds>
T —00

27 /oo R(jw. 9)€jw(az cos(0)+ysin(9)) 4. do
0 0

s=(x cos(0)+ysin(0))
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From Example (7.6), the ramp filtered 13-

point 1-D DFT spectrum with 8 = 45° is
{0,16,21.9614,0,0,0,0,0,0,0,0,21.9614,16}

in the normal format. The IDFT of this spec-
trum, multiplied by the scaling constant 13/64

and in the center-zero format, is
{0.1222,—-0.2915, -0.6910, —0.6061,

0.0407,0.8326, 1.1863, 0.8326, 0.0407,
—0.6061, —0.6910, —0.2915, 0.1222}

= R(s,45°), s=-6,-5,...,5,6
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A procedure for computing the Radon trans-
form is as follows.

1. Compute the 2-D DFT of the image.

2. Interpolate the spectral values to get the
spectrum on polar coordinates, for all an-
gles of interest.

3. Compute the 1-D IDF'T of the spectral val-
ues at all angles to get the Radon trans-
form.
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A procedure for computing the inverse RT
1. Compute the 1-D DFT of each of the pro-

jections of the image.
2. Multiply each DFT by the ramp filter. Take

into account the DC value of the spectrum.
3. Compute the 1-D IDFT of the spectral val-

ues at all angles to get the filtered Radon

transform.
4. Obtain the filtered back-projected image

using the back-projection definition, Equa-

tion (7.12), for each angle of projection.
5. Sum all the filtered backprojected images

to reconstruct the image.
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The steps of the Hough transform algorithm:

1. Select a set of points for the parameters
(s,0).

2. For each value of 6, compute the corre-
sponding value of s using Equation (7.2)
for all nonzero pixels.

3. Create an accumulator matrix which accu-
mulates the number of occurrences of each
pair of (s,60), as all the pixels with value 1
in the input image are analyzed.

4. Find the accumulator values those are greater
than a given threshold.
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x(m,n) =

o O ~» O
o O ~» O
o O ~» O
o O ~» O
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(s,0) =

[ (0,0)

(1,0)
(2,0)
(3,0)

 (4,0)

(0,45)
(1,45)
(2,45)
(3,45)
(4,45)

(0,90)
(1,90)
(2,90)
(3,90)
(4,90)

(0,135) |
(1,135)
(2,135)
(3,135)
(4,135)
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o OO

acc(m,n) =
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Morphology Chapter 8

The process is similar to linear convolution and
correlation, except that logical operations AND
(denoted by &), OR (denoted by |) and NOT
(denoted by ~) are used (a logical neighbor-
hood operation) instead of arithmetic opera-
tions. Pixels are added to an object or deleted
from it. Border extension has to be defined
and windows (structuring elements) may have
to be rotated by 180°.
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The dilation of the binary image x(m,n) and
the window or mask hA(m,n) is defined as

= xz(m,n) ® h(m,n), Vk,)h(k,1) =1

where m and n vary over the dimensions of the
image and k£ and [ vary over the dimensions of
the structuring element.
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The erosion of the binary image z(m,n) and
the structuring element h(m,n) is defined as

& &i(h(k, 1) & x(m + k,n+1))
x(m,n) © h(m,n), (Vk,D)h(k,1) =1

y(m,n)
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O 0O0O0OO0O1O00

O 0001110

O 0000110

O 0O0O0OO0O0O0O
O 00O0O01O00

O 00OO0OO0OO0O®O0
O 00O0O1O0O00O0

O 010110 2®0

0111111020

O 0111110

O 0011110

O 0001100

O 00O0O01O00
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x(m,n) © h(m,n)

Z(m,n),

z(m,n) ® h(—m, —n)

z(m,n)

x(m,n) ® h(m,n)

zZ(m,n),
2(m,n) © h(—m, —n)

z(m,n)
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Dilation preceded by erosion is called the open-
ing operation, defined as

y(m,n) x(m,n) o h(m,n)

(z(m,n) © h(m,n)) ® h(m,n)
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After erosion and, then, dilation yields,

O 00O0O0O0O0O®O
O 00 O0OO0O0O0O
O 0O0OO0O11O00

O 0011110

O 0001110

O 0011110

O 0O0O0O11O00

O 00O O0OO0O1O00O0

O 0 O0O0O0O0O00®O0
O 0 0OO0OO0O0OO0O®O
O 00OO0OO0OOO0O
O 00O0O01O00

O 0001110

O 00O0O0110

O 0 0O0O0O0O02®O0
O 00O0O01O00
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e All the 1s in the object those are com-
pletely covered by the structuring element
are preserved.

e All the 1s those can be reached by the
structuring element, when it is placed at
the 1s obtained in the erosion operation
are also preserved.
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Dilation followed by erosion is called the clos-
ing operation, defined as

y(m,n) x(m,n) e h(m,n)

(x(m,n) ® h(m,n)) © h(m,n)
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After dilation and, then, erosion yields,

O 0OO0O11O0O00O0

O 0O0OO0O1O0O00O0

O0111100
01111110
O0111110

O 0011110

O 00O0O11O00

O 0011100

O 0011000
O11111O02¢0
11111110

0111111020

11111110

01111110

O 0111100
O 0011100
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hit-and-miss transformation is

r(m,n) @ h(m,n) = (z(m,n) S hy(m,n))
& (x(m,n) © hms(m,n))
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hms(m, n) —
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- — O

hy(m,n)

input x(m,n) and its complement Z(m,n) are

e e i e e M M B
= O OO v
mEololoNoNoNoN®
— OO0 0000
= O OO v
" OO0~
= O~
e e M B e M s B
OO OO0 0O0O0oOo
OO0 oOo-+H+HA—+ OO
OO0 A==
O "4 "0
OO0 oOoO-+H-+A—+ OO
OO0O—-1++H 00O
OO O+H000O0o
oNoNoNONONORNGR®)
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11100111

1 00 00O011

O 0 0OO0O0OO01

O 0 0O0O0O0O01

1 00 0O0O0O01
11000011

11100011
11110111

1 00 0O0O0O0O
O 0 O0O0O0O0O00®O0
O 00OO0OO0OO0O®O0
O 00O0O01O00

O 0011110

O 0001110

O 00O0O0110

O 0 O0OO0OO0OO0O®O
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1 00 00 O0O0O
O 00O0O0O0O0O®O0

O 00 O0OO0O0OO0O® O

O 00O0O0O0O0O®O
O 00O0O0O0O0O®O

O 0O0O0O0O0OT10

O 00O0O0O0OT10

O 00 O0OO0O0O0O®O

y(m,n)
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Thinning

O 010O0O0O00®O0
O 0O0O110O00

O 00O0O01O00

O 00O0O01T11

O 00OO0O1O0O00O0

O 001 0O0O0O0
O 010O0O0O00O
01 00O0O0O00O

O 0111000
O 0011100

O 0001110

O 00O0O01T11

O 00O0O11O00

O 0011000
O 0110O0O00O0
O110O0O0O0O0
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Thickening of an image can be carried out by:
e Complement the input image z(m,n) to
get Z(m,n).
e Thin Z(m,n) to get y(m,n).
e Complement y(m,n) to get the thickened
input image y(m,n).

Additional processing may be required after
each iteration, in case of extraneous pixels ap-
pearing in the output.
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Skeletons.

marked with 1s in the complement of z(m,n),
z(m,n), be D(m,n).

Distances in D(m,n) are scaled by 5.
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N el el e

0

el el el

0

O R RERR

Let the input image be z(m,n)
and the distance of the pixels from the region

0

O R RERR

0
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OO0 0O0O0O0O0oO0o

OO OO0 0O0O0oOo
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We start with a matrix skel(m,n), of the same
size as the input image, with all zero entries.
Each pixel in this matrix is replaced by a 1, if
the corresponding value in D(m,n) is greater
or equal to the largest value of its 4 nearest
neighbors. For example, consider the neigh-
borhood of D(1,1).

O 5

o1 01O

As D(1,1) = 5 is greater or equal to the largest
value of its 4 nearest neighbors, skel(1,1) = 1.
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O 00O0O0O0O0O®O
01 00O0O010
O 01 0O01O00
O 0011000
O 0OO0O110O00

O 010O01O00

01 00O0O010

O 00 O0OO0O0O0O®O

The skeleton of the input image is
skel(m,n) =
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If we erode an image by a structuring element
by one iteration, then the pixels in the border
of the objects are set to zero, leaving the in-
terior pixels unchanged. Now, if we subtract
the output of erosion from the input, an image

with object boundary is obtained. _
1 1

|_l
==
[

oNoNoNoNONONGR®)
= s e s
A el el e
L el el

CoOoOoO0OoOook+rHH+

oNolNolNoNoR il
oNolNoloNol il
oNolNolNoNoR i i
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The output of erosion and the extracted border

are, respectively,

—A "4 0 O0O0O0OO0O
— O O O0OO0OO0OO0O
— O O O0O0O0OO0OO0O
— O O O0O00OO0OO0O
— O~
— OO0 0000
— o A
oNoNoNONGHR®NGNG)
OO0 0O00O00oOo
OO 0000 O0o
OO 0000 O0o
OO 0000 O0o
OO 0000 O0o
O "= -0
oNoNoNONGR®NGNG)
oNoNoNONGN®NGNG)

Border pixels are assumed to be Os.
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Given a region defined by its boundary and the
location of a pixel within it, the interior of the
region is to be filled. Let the image be z(m,n).
The algorithm is defined by

xy(m,n) = (x;_1(m,n)Ph(m,n))&x(m,n), I =2,3,..
where (0 1 0

h(m,n)=11 1 1

01 0
and z1(m,n) is a matrix of the same size as
x(m,n) with all entries zero except a 1 at the
given location inside the region.
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Repeatedly, we keep dilating the current z;(m,n)
with A(m,n) and AND with the complement
of the input image until there is no difference
between two consecutive versions of z;(m,n).
Without the AND operation, the dilation oper-
ation is uncontrolled and will fill up the entire

image.
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Let z(m,n) be the given image and (3,3) is

the given starting location. Then,

oNoNoNoNGNGNGNG)
oNeoNoNoNGNGNGNG)
eoNoNoNoNeNGNGNG)
eoNeoNoNoNGNGNGNG)
OO O+H0O0OO0OO
oNoNoNoNoNGNGNG)
oNoNoNoNoNGNGNG)
oNoNoNoNONORNGE®)
eoNoNoNoNoNGNGNG)
OO0 == —=O
OO 10 +H0OHO
OO0 00-HAO0
OO 00—-w OO0
OO0 —-1++H - 0OO0O0O
olNoNoNoONONORNGR®)
oloNoNONONORNGN®)
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O 00O0OO0O0OO0O
O 00 O0OO0OO0OO0O
O 00O0O0O0O02®O
O 0011100

O 0OO0O110O00
O 0O00O0O11O00

O 00 O0O0O0O0O
O 00O0O0O0O02®O0

O 0 0OO0OO0OO0OO0O
O 0 0OO0OO0OOO0O®O
O 0 O0O0O0O0O02®O0
O 0011100
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O 00O OO0OO0OO0®O
The OR of z5(m,n) and x(m, n) gives the filled

region.
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The dilation of the gray-level image z(m,n)
and the mask h(m,n) is defined as
y(m,n) = rr]lalx{x(m—k, n—10)} = x(m,n)®h(m,n)
Consider the 8 x 8 image and the 3 x 3 mask.
83 100 104 101 114 110 110 107
92 102 104 107 112 110 104 92
103 105 111 112 114 108 86 39
106 107 112 113 107 73 206 25
111 114 14 104 o664 23 25 28
117 115 97 45 15 13 23 29
119 93 32 O 15 11 19 23
88 15 0] 2 10 13 11 15
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Assuming that the border pixels are replicated,
the output of the dilation operation is

102 104 107 114 114 114 110 110
106 111 112 114 114 114 110 110
107 112 113 114 114 114 110 104
114 114 114 114 114 114 1038 86
117 117 115 113 113 107 73 29
119 119 115 104 104 64 29 29
119 119 115 97 45 23 29 29
119 119 93 32 15 19 23 23
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The erosion of the gray-level image z(m,n) and
the mask h(m,n) is defined as

y(m,n) = I’r];iln{x(m—l—k:,n—l—l)} = z(m,n)oh(m,n)

‘The output of the erosion operation is

88 88 100 101 101 104 92 92
88 88 100 101 101 86 39 39
92 92 102 104 73 26 25 25
103 14 14 14 23 23 23 25
106 14 14 14 13 13 13 23
93 14 O 0 0 11 11 19
15 0 O 0 0 10 11 11
15 0 O 0 0 10 11 11
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x(m,n)oh(m,n) = (x(m,n) S h(m,n)) ® h(m,n)
x(m,n)eh(m,n) = (x(m,n) ®h(m,n)) S h(m,n)

The output of the opening operation is

88 100 101 101 104 104 104 92
92 102 104 104 104 104 104 92
103 103 104 104 104 101 86 39
106 106 104 104 104 73 206 25
106 106 14 23 23 23 25 25
106 106 14 14 14 13 23 23
93 93 14 O 11 11 19 19
15 15 O O 10 11 11 11
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The output of the closing operation is

102
102
105
107
114
117
119
119

102
102
105
107
114
115
93

93

104
104
111
112
104
o7
32
32

107
107
112
113
104
45
15
15

114
114
114
107
04
23
15
15

110 110 110 |
110 104 104

108 86 86
3 29 29
29 29 29
23 23 29
15 19 23
15 19 23
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Edge detection Chapter 9

An edge is a line of interaction of two sur-
faces. Edge pixels are characterized by the
abrupt change of intensity with the neighboring
pixels. The boundaries of objects in an image
are identified by edges. Edges are useful for
tasks such as segmentation, registration and
object identification. Edges provide a compact
representation of objects than pixels. Edges
are amplitude discontinuities between regions
of an image. In the frequency-domain, an edge
IS characterized by the high frequency compo-
nents of the spectrum of the image. Basically,
edge detection constitutes highpass filtering.
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Operator

Grad, n-direction

Grad, m-direction

Prewitt

Sobel

O
0
O

o o

—1
O
1

—1

O
1

—1
0
1

—2

0
2

—1
O
1

—1

O
1
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The Prewitt operator averages intensity changes
over six intervals. The Sobel operator gives
twice the weight to the central pixels. The val-
ues of these masks are to be multiplied by the
corresponding pixel values of the image point-
wise and divided by the sum of the magnitudes
of the elements of the mask. These operators
compute the differences (highpass filtering in
one direction) of local sums (lowpass filtering
in another direction), which has the effect of
reducing the noise.

(1 0 —1 | [ 1 ]
20 —2|=12 [10—1]
10 1| |1
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six sample neighborhoods of the image z(m,n).
‘0 0O0|[O11][1 00

1 11 O 11 1 1 0
1 11 O 11 1 11

O 0O 1 1 0 1 1 1
1 0 O 1 0 O 1 1 0
111100100,
Using the Sobel operator,

1 2 3 4 5 6)
gm | 4 0 3 4 -2 -3
gn | O 4 -3 2| -4, -3
@ | 0°]90° | —45° | —26° | 63° | 45°
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Canny edge detection algorithm is based on

three objectives.

1. The edges found should be true edges and
all the edges should be found. The prob-
ability of finding a good edge should be
maximized and that of a false edge should
be minimized. Achieving this objective re-
quires a high signal-to-noise ratio.

2. The location of the edge found must be as
close as possible to the exact location.

3. There should be no multiple responses for
a single edge.
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Finding the edges in an image using the Canny
edge detection algorithm consists of the fol-
lowing four basic steps.

1. Theinput image is smoothed by a Gaussian
filter to improve the SNR.

2. The gradient magnitude and angle images
are formed using a gradient filter.

3. The edge image is thinned by using non-
maximum suppression of the gradient im-
age.

4. By using two thresholds and connectivity
constraint, the final edge image is formed.
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The steps involved in implementing the LoG
filter are:

1. Reduce the noise by filtering the image
with the Gaussian lowpass filter.

2. Apply the Laplacian to the smoothed im-
age.

3. Detect the zero-crossings to find the edge
image.
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(22442
g(z,y) =e 202

Taking the partial derivative with respect to x

and y, we get
T (z2+y?) (z2+y2)
(——2)6 202 -+ (——)e 202
o

Taking the partial derivative with respect to x

and y again, we get V3g(x,y) =
72 1. _@+?) g2 (22 +y2)
(p — 1)(§)6 202+ (— —1)( 2)6 202

- (3) (@)

o
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Segmentation Chapter 10
A region can be defined by its interior part or
border (edge). The homogeneity P of a region
R is defined as

P = |

where f is function defining the homogene-
ity and H is the predefined range of values of
f. The function f can be defined in any suit-
able way. It could be the standard deviation of
the region, the mean, the difference between
the largest and smallest values of pixels, co-
occurrence matrices or a gray level threshold.

1, if f(R)e H
0, otherwise
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Segmentation of an image is its partitioning
into a set of N connected regions R(n),n =

0,1,...,N — 1. Points to be noted are:
1. The sum of all the regions is exactly equal

to the image.
2. A pixel of the image belongs to only one

of the regions.
3. The predicate of a region holds for all its

pixels.
4. The predicates of adjacent regions must be

different.
Edge detection, thresholding, region growing

and splitting and watershed segmentation are
the basic approaches of segmentation.
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Point Detection

The mask, which is one of the versions of the
Laplacian masks presented in Chapter 2 mul-
tiplied by -1, for. point detection is

~1 -1 -1
-1 8 -1
-1 -1 -1

The mask is applied to the image and the out-
put is thresholded to detect the isolated points
(segmentation of points). Note that, for edge
detection, the Laplacian response is analyzed
for zero crossings.
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Line Detection
The masks for line detection at 4 directions
(E-W, NW-SE, N-S, NE-SW) are, respectively,

1 —1 —1 2 —1 —1
2 2 2 -1 2 -1
-1 -1 -1 -1 -1 2
1 2 —1 | 1 —1 2]
-1 2 -1 -1 2 -1
-1 2 -1 | 2 -1 -1
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Threshold-based Segmentation

If we are able to determine the threshold be-
tween an object and the background, then the
region corresponding to the object is labeled
by selecting the pixels those are in the object
range of gray levels. The thresholding process
of an image z(m,n), yielding its segmented
version R(m,n), is given by

R(m.,n) = { o, for x(m,n)>T

b, otherwise
where T' is the threshold and o and b represent

the object and the background.
ol, for z(m,n) >T1
R(m,n) =< 02, for TO < z(m,n) <T1
b, otherwise
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185 182 45 2
188 140 10 5
189 74 2 7
| 164 21 5 6
The initial threshold is the average 76.5625.
185 182 45 2
188 140 10 5
189 74 2 7
| 164 ] | 21 5 6

T he first group has values greater than 76.5625
with the average 174.6667. The second group
has the remaining values with the average 17.7.
T he average of the values, 96.1833, is the new

threshold value.
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In the next iteration, we get the same value
and the algorithm terminates. The segmented
image is

el
oNolNoN®
o o oo

OO KK
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Thresholding by Otsu’'s Method

This method maximizes the between-class vari-
ance af(k) and it is based on the histogram of
the image. Let the range of gray levels of the
image be from 0 to L — 1 and the normalized
histogram values be hn(k),k = 0,1,...L — 1.
Let the threshold T be £k, Kk = 0,1,...,L — 1.
Then, the pixels are placed in two groups gl
and g2 with the first group consists of pixels
with gray levels in the range from O to k£ and
the other group consists of pixels with gray
levels in the range from k+ 1 to L — 1.

ot (k) = hel(k)(hal(k) — ha(L — 1))?
+ he2(k) (ha2(k) — ha(L — 1))?
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where the normalized cumulative histograms
and the average intensities are defined as

k L—1
hel(k) = > hn(i),hc2(k) = > hn(i) = 1—hcl(k)
1=0

1=k+1

1
hal(k)= (7)) hn(i), ha2(k)= (2) hn(7)
hcl (k)z hCQ(@—%;H
k L—1
ha(k) = > (i) hn(3i), ha(L—1) = ) (i) hn(s)
1=0 1=0
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ha(k)
hcl(k)’

ha2(k) = ha(lL__}}c)l_(Z‘)’“(k), we get o2(k) as

he2(k) = 1 — hel(k), hal(k) =

(ha(L — 1)hel(k) — ha(k))?
hel(k)(1 — hel(k))

of (k) =
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2 7 6 6

56 5 5

6 55 6

' 7 6 4 5
k 0|1 2 3 4 5 6 7
hn(k) | 0] 0] 0.06 0| 0.06|0.37|0.37 | 0.12
hel(k)] 0| 0]0.06]0.06|0.12] 0.5]0.87 1
ha(k) |0]0]0.12[0.12]0.37|2.25| 4.5][5.37
of(k) |0/0]0.75|0.75 | 0.80 | 0.76 | 0.37 0

Since it is a 3-bit image, the gray level range,

shown in the first row, varies from O to 7. For
example, o2 (2)

((5.375)(0.0625) — 0.125)2

(0.0625(1 — 0.0625))

= 0.7594
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The index of the maximum variance 0.8058 is
4 and it is the optimum threshold value T'. If
the maximum variance occurs more than once,
then the average value of the indices is taken as
the threshold. The measure of the separability
IS given by
0.8058
> _o(k—5.375)2hn(k)

This measure varies from 0 (for an image with

a single gray level) to 1 (for a 2-valued image
with gray levels 0 and L — 1 only).

= 0.5928
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Region-based Segmentation

For a pixel to be a part of a region, it should
have the attributes characterizing the region
and also should meet some connectivity con-
straints. Given a set of pixels, if we can identify
at the least one 4-connected path between any
pair of pixels, then it is a 4-connected region.
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Typical attributes characterizing a region are:

e [ he average of the gray values of the pixels
in a region is significantly different from
that of the image.

e [ he standard deviation of the gray level
values of the pixels in the region is within
a distinct range.

e Pixels in the region exhibit distinct textural
properties.
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Region Growing

In the region growing method of segmentation,
we start with a pixel, called a seed pixel and
start checking the similarity of the attributes of
the pixels and the connectivity. All the pixels
satisfying the criteria are collected and they
form the region. The process is continued until
all the pixels of the image are assigned to some
region.
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Consider the 8 x 8 image x(m,n).
179 179 183 180 185 183 182 175

175 179 185 179 181 179 177 173
180 183 181 170 181 176 174 174
181 181 182 180 174 176 179 175
185 184 185 177 172 176 174 170
184 184 182 182 175 172 165 167
177 185 181 175 171 166 165 169
179 184 177 173 170 171 171 172

Let the seed pixel be z(2,5) = 176, shown in
boldface. Let us use the 4-connectivity and
the region is to be made of pixels with gray
levels less than or equal to 176.
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O 00OO0O0OO0O®O
O 0 0O0O0O0O0O®O0
O 00O0O01T11

O 0 0O0O01O01

OO0 0O0O01T11

O 00O0O01T11

OO0 0O0O01T11

O 00O0O01T11

O 00O0OO0O0OO0O
O 0 O0O0O0O0O00®O0
O 00O0O01O00

O 0 O0O0O0O0O0O®O0
O 0 O0O0O0O0O0O®O0
O 0 O0OO0OO0OO0O®O
O 0 0O0O0O0O0O®O0
O 0 O0OO0OO0OO0O®O
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After two more iterations, the final region map

IS obtained.

O 0 0OO0O0OO01

O 0 0O0O0O0O01

O 00O0O01T11

O 00O011O01

O 0001111

O 0001111

O 0011111

O 0011111

O 0 0OO0OO0O0OO0O®O
O 0 0O0O0O0O01

O 00O0O01T11

O 00O011O01

O 0001111

O 0001111

O 0001111

O 0001111
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O 0 0O0O0O0O01
O 00O O0OO0O0O01
O 0010111
O 0001101
O 0001111

O 0001111

O0011111

O0011111

R(m,n)

With 8-connectivity, the final region matrix is
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Region Splitting and Merging

While region growing is a bottom-up approach,
region splitting and merging is a top-down ap-
proach. The criteria of segmentation does not
hold for the whole image and we divide the
image into subimages. This division is carried
out recursively until the criteria is met and the
merging of all these subimages as required in
the region being formed. The data structure
most suitable for this algorithm is quadtree.
This is a tree in which each node, except the
leaves, has four children. Each segmented re-
gion is represented by a leaf.
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We start with a region image of the same size
as the input image with all the pixel values
equal to 1. After the first iteration of dividing
it into four quadrants of size 4 x 4, yields the
region map Ri(m,n).

Ri(m,n) =

R R R OOOO
R R R OOOO
R R R OOOO
R R R OOOO
N el el e
el el e
N el e
N el e
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Each quadrant is checked with the constraint
that the pixel value is less than or equal to
176, along with the 4-connectivity condition.
Since there are no such pixels in the top-left
quadrant of the image, all its entries are zeros.
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Each of the other three quadrants are further
divided into four quadrants of size 2 x 2. After
examining the pixels, the region map, at the
end of the second iteration, is

Ro(m,n) =

0

O O0O0O0O0O0O00O0O0oOo

0

OO0 0O0oOo

0

0

R OOOO~O

1

0

R OOOO~O

1

R R R R RBOO

1

R R R RRBOO

1

el

1

N el

1

In the third iteration, the image is divided into
subimages of size 1 x 1 and the rest of the

pixels are labeled.
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The Distance Transform

Let the binary image z(m,n) be

O 0 O0O0O0O0O0O®O0
O 00O0O01O00O0

O 00O011O00

O 00O0O0110
O 00O0O0110

O 0011100

O 00O0O01O00O0

O 0 O0OO0O0O0OO0O®O

x(m,n) =
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The minimum distance between each pixel to
its nearest pixel in the
fined by the

4.47
4.12
4.00
3.60
3.16
3.00
3.16
3.60

3.60
3.16
3.00
2.82
2.23
2.00
2.23
2.82

1s is

2.82
2.23
2.00
2.23
1.41
1.00
1.41
2.23

2.23
1.41
1.00
1.41
1.00

O
1.00
2.00

connected region de-

1.41 1.00

1.00
O O
1.00 O
1.00 o)
O O
1.00 O
O

1.41 2.23
1.00 2.00
1.00 1.41

O 1.00

O 1.00
1.00 1.41
1.00 2.00
1.41 2.23
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The algorithm is essentially passing 2 masks
over the image. The forward and backward

masks are

he(m,n) =1| 1 0 oo

[ 00 00 00
hy(m,n) = oo 0 1
| o0 1 oo |
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Given image is sufficiently zero-padded and all
the zero-valued pixels are assigned a value of
oo and the pixels with value 1 are assignhed the
value 0O, giving a initial distance matrix DS as

DS(m,n)=

o0
©.@
©.@)

o0
©.@
©.@)

©.@,
©.@,
©.@)

©.@
0
©.@)

©.@
o0

o0
o0

0
©.@,
©.@)
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Now, the forward mask is passed over the ma-
trix, starting from top left corner of the image.
The mask is moved from left to right and top
to bottom. At each pixel, the pixels of the
mask are added with the corresponding pixels
of the image. The minimum value of this set
replaces current value in the DS matrix. At
each pixel location, the updated values of the
DS matrix are to be used in the computation,
not those of the initial DS matrix.
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For example, the pixels in the third row are
updated as

| oo 1-_|_—oo oo__—oo o |
10 oo 0| |oo O
| 0 1__|__oo oo___oo 00
1 0 0 co| | 1
ool-_l_—oooo | oo o0
10 1 cof| | 2 o©
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The result Qf the first pass is

00O 00 00 00 00 00 OO0 00 00 OO

00O 00 00 00 00 00 OO0 00 OO 00

oo o0 oo oo oo oo 0 1 2 o©

co oo oo oo oo 0O 0 1 2 o

oo oo oo oo oo 1 0 0O 1 o

D5(m, n)= 00 00 0o oo oo 2 0 0 1
co oo oo oo O 0 O 1 2

oo oo oo oo 1 1 0 1 2 o©

co oo oo oo 2 2 1 2 3

| 00 00O 00 00 00 OO0 00 0O OO0 OO

Now, the backward mask is passed over this
matrix, starting from bottom right corner of
the image. The mask is moved from right to
left and bottom to top.
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At each pixel, the pixels of the mask are added
with the corresponding pixels of the image.
The minimum value of this set replaces cur-
rent value in the DS matrix. The result of the
second pass is

6 54 3212 3
54321012
43210012
54321001
DS(m,n)=1, 3 51100 1
32100012
43211012
54322123

T hese distances are approximate. A more ac-
curate result can be obtained using integer val-
ued masks and by increasing the mask size.
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Chapter 11 Object Description

The descriptor is a set of numbers character-
izing the salient properties of the object. The
descriptor is compared with that of the refer-
ence object for object recognition. A descrip-
tor should completely characterize an object
and, at the same time, it should be concise.
A descriptor should be unique. Similar objects
should have similar descriptors. A descriptor
should be invariant with respect to scaling, ro-
tation and translation.
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A region of an image is characterized by its
internal or external features. Internal features
are based on the pixels comprising the region.
Typical features are area, perimeter and com-
pactness. External features are related to the
boundary of the region.
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Boundary Descriptors

A region is characterized by its boundary and
the form of the boundary is called the shape.
A point is on the boundary if there is at the
least one of its neighbors is outside the region
and the point itself is in the region.
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Chain Codes

The set of coordinates of all the boundary pix-
els of a region is its description. However, we
are looking for efficient ways to represent the
shape. One way is to use a code for each prin-
cipal direction the trace of the boundary could
move.
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Signatures

A signhature is a 1-D representation of a 2-D
region by the radial distances of its boundary.
The radial distances are computed from the
centroid of the boundary. Then, the signa-
ture is plotted, distances versus angle. The
signature of a closed boundary is a periodic
function.
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O 1 11
2(m,n) = O 1 01
O 1 0 1
01 1 1
With the top left corner the origin (0,0), the
centroid of the boundary is at (1.5,2). The
signature is
0] 0° 34° 63° 117° 146°
d(#) |1.5]1.8028|1.1180 | 1.1180 | 1.8028
180° | —34°] —63°] —117°] —146°
1.511.8028 1.1180|1.1180 | 1.8028

For example, the distance of the bottom right
pixel at coordinates (3,3) is

V(1.5 —3)2 + (2 - 3)2 = 1.8028 and /34°
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Fourier descriptors

Closed boundaries of an object in an image can
be compactly represented using Fourier coeffi-
cients. The two coordinates of all the bound-
ary pixels are represented in the transform do-
main. Starting from a point in the boundary
with coordinates (mg, ng), followed by

(ml,nl), l=1,2,...N—1

can be considered as a 1-D periodic complex
data
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d(l) = (m;+4n;), 1=0,1,...N-1

of period N. The first and second coordinates
represent, respectively, the real and imaginary
parts of the complex data. Then, the DFT
of d(l), the set of N 1-D DFT coefficients,
is the Fourier descriptor of the boundary with
significant advantages.

214



= = O
= = O
el

r(m+1,n+1)=
1 1 0

The complex data b(l) formed from the bound-
ary coordinates of x(m,n) is

x(m,n)=

oNoNoN®
= O = O
OrrOK
OrRKE =
oNoNoN®

{14+51,2451,3451,3452,34+53,2+353,1+53,1+352}
The DFT of b(l) is

B(k) = {16+ j16,—6.8284 — j6.8284,0, 0,0,
~1.1716 — j1.1716, 0,0}
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The complex data b(l) formed from the bound-
ary coordinates of x(m+1,n+ 1) is

{0+350,1+450,2+;0,2451,24352,14+52,0+;52,0+;51}
The DFT of b(1) is

B(k) = {8+ j8,—6.8284 — j6.8284,0,0, 0,
~1.1716 — j1.1716, 0,0}
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Geometrical Features
Area The area of a connected region x(m,n)
of a binary image, measured in pixels, is defined

as A=) > z(m,n)

m 1
It is the number of pixels with value 1 in the
region.

Perimeter Let the coordinates of the perime-
ter of a region is given by xz(k) and y(k). Then,
the perimeter of the region is defined by

P =" \(a(k) — 2k = 1))2 + (y(k) - y(k - 1))
k

It is the distance around the boundary of the
region.
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Compactness Compactness is defined, in terms
of the perimeter and area, as
cotmA_ A
P2 P2/(4r)
For a circular region, which has the highest
compactness, with radius r,

C = (4n(7r?))/((2rr)(27r)) = 1
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For a square, C = «w/4. It is a measure of
the area enclosing ability of the shape of the
region. It is the ratio of the area of the re-
gion and the area of the circle with the same
perimeter as that of the region. Let the object
be a unit square. Its area is 1 and perimeter
is 4. The radius of a circle with the same
perimeter is (4/(27)) and its area is 4 /.
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Irregularity Irregularity of a region is defined
by

mmax, (z(k) — Z)% + (y(k) — 4)?)
A

where (z,y) are the averages of the coordinates
of the region. This is a measure of the density
of the region. The numerator defines the area
of the smallest circle enclosing the region. For
circular shapes, I is unity. For a square, it is
I = 0.57r.
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Euler Number

A topological descriptor of an image z(m,n) is
that which remains the same for all its versions

of continuous one-to-one transformations (rubber-
sheet distortions). This descriptor is not af-
fected by rotation or stretching. The Euler
number FE is defined as the difference between
the number of connected components and the

number of holes.
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The (p+ g)th order moment of a N x N region
x(k,l) is defined as

N—1N—-1
mpg = » > KUz(k1),p=0,1,2,...,¢g=0,1,2,..
k=0 [=0
_1N-1 N—1N-1
mog = Z > w(k, 1), mpo= > > ka(kl),
k=0 1=0 k=0 [=0
N—1N-1
mo1 = Y . lz(k,1)
k=0 1=0

Zero-order moment is the area. First-order
moments are this area multiplied by their dis-
tances of their center of gravity from the ori-

gin.
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The coordinates of the centroid (center of mass)

of the region is defined as
E=_10 g4q 7=1%01
ele Moo
The central moments, which are translation-
invariant since centroids are part of their defi-

nition, are defined as
N—1N-1

Hpg — Z Z (k‘_E)p(l_l_)qaj(ka l)7p7 q — O) 17 27 <.
k=0 [=0

The normalized central moments, which are
invariant to translation, scaling and rotation,
are defined as

npq—ugqa Y= (p_gq)‘Fl (r+q) =2,3,.
oo
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The first four normalized central moments are
defined as

o1
®2
¢3
oY)

120 + No2

(120 — n02)* + 4nf;

(130 — 3m12)°% + (3n21 — 103)°
(130 + n12)% + (121 + 103)°
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O 1120
o110
rkD=145 01 1
000 0
The coordinates of the top left corner are (0,0).

{mgop =6, mig =6, mg1 = 11, k=1, [ = 1.8333}
11 = (=1)(—0.8333)4(—1)(0.1667)4(1)(0.1667)
1(1)(1.1667) = 2, ung = 4, ugo = 2.8333
n11 = 0.0556, nog = 0.1111, ngs = 0.0787,

@1 = 0.1898, ¢o = 0.0134
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First two moments of the four objects in Fig-
ure 11.7(b)

$1 ] 0.4519 | 0.2320 | 0.4554 | 0.4510
$> | 0.1149 | 0.0269 | 0.1082 | 0.1116
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Texture is a pattern resembling a mosaic, made
by a physical composition of an object using
constituents of various sizes and shapes. Sta-
tistical features, taken over the whole image or
in its neighborhoods, are used to characterize
a texture.
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Histogram Based Features

0|19 ] 20 | 22
53| 4|23 |25
116 | 16 | 17 | 24
110 | 90| 4 | 23

The histogram of this image and its normalized
version (with a precision of 2 digits) are

g_lev 0 4 16 17 19 20 22 23

his 1 2 1 1 1 1 1 2

hisn | 0.06 | 0.13 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.13

g_lev 24 25 53 90 | 110 | 116
his 1 1 1 1 1 1
hisn | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06

which also is the probability p(u) of the occur-
rences of the gray levels.
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Mean The mean m, which is the average in-

tensity, is given by
L—1

m = Z up(u)

u=0
For the example, the mean is 35.3750 with
L = 256.
Standard deviation The standard deviation
o, which is the average contrast and the 2nd
moment, is defined as

L—1

o= |3 (u—m)?p(u)

\u=0

For the example, o = 35.8153. The square of
the standard deviation is the variance.
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Smoothness A measure of the smoothness of
the texture is defined as

1
S=1-

14 0%
where o2 is a normalized version of the variance
and

2 o2
"L -1)?
For the example image,
o — 1 1 1

P p— 1_
1 + (35.81532/2552) 1.0197
For regions with constant intensity, S = 0 and

it increases with increasing value of o towards
the limit 1.

230

= 0.0193



Skew The skew, which indicates the asymme-
try of the histogram about the mean and the
third moment, is defined as

L—1
Sk =3 (u—m)>p(u)
u=0

Sk is zero for a symmetric histogram. It is
positive for a right skew (spreads to the right)
and negative for a left skew (spreads to the
left). Sk is also normalized in the same way
and the normalized value is 0.9341 (positive
skew) for the example.
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Uniformity This measure, uniformity of en-
ergy, is given by

L—1
U= Y p*(u)
u=0

U is maximum when all the intensity levels are
the same and it has a lower value otherwise.
For the example image, U = 0.0781.

Entropy The entropy, which is measure of ran-
domness, is given by

L—-1
E=—3 p(u)loga(p(u))
u=0

A lower value indicates a higher redundancy in
the image data and should give a high com-
pression ratio, when compressed. E = 3.75.
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Co-occurrence Matrix Based Features

A pair of pixels, with gray levels a and b, oc-
curring with the same spatial relationship is co-
occurrence. Co-occurrence matrices carry in-
formation of the spatial relationships between
pixels. Let the number of gray levels in x(m,n)
be L, {0,1,...,L—1}. A co-occurrence matrix
g(m,n) is a L x L matrix in which each ele-
ment g(m,n) represents the number of occur-
rences of a pair of pixels with intensities I,,, and
I, in a given spatial relationship in the image
x(m,n). It is the joint probability distribution
of pairs of pixels.
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The probability p(Im, In) of the co-occurrences
of the gray levels I, and I, is defined as
n(Im,In) g(m,n)

p(Im, In) = =000 = S0

where n(Iy, In) is the number of occurrences
with z(k,l) = I,, and x(p,q) = I, and M is the
total number of occurrences in g(m,n), the co-
occurrence matrix.
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x(m,n) =

52
105
163
162
162
186
210
250

71 72
56 75
63 69
142 56
180 89
175 156
171 192

74
rr
76
75
67
61
37

158 188 140

04
64
69
73
79
78
67
59

55
60
62
04
63
72
77
77

43
53
58
60
63
63
67
69
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74
78
71
53
30
53
59
61




1 222 2 11 2

31 2 22112

5 2 2 2 2 112

541 2 2 2 11
55 2 22210

55412 211

6 56 22221

7 45 41 2 21

zrq(m,n)
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Let the spatial relationship be x(m,n) and x(m—+

1,n 4+ 1).

That is, a pixel and its immedi-

ate bottom right (diagonal) neighbor form the
pair. With this spatial relationship and z4(m,n),
we get the co-occurrence matrix g(m,n) as

g(m,n) =

oNoNoRoNGNGN N

OO OOO0WNOo

OQOONKFEO O1O

O

oNoNoNGNGNGNG)

O

ONNOOOO

OO P,POOOOO

OO+ OOOOOo

0

OO OO0 O0oOo

237



The joint probability matrix p(m,n) is defined
as

pm,n) = 2 A = S5 gom,m)

For the example, with M = 49, we get p(m,n)
as

O O O O O O O O
0.02 0.14 0.10 O 0 O O O
O 0.16 0.32 O O O O O
O O 0.02 O O O O O
O O 004 O O O O O
O O O 0 0.04 0.08 0.02 O
O O O 0 0.04 O O O
O O O O o) O O O
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Maximum probability

It isin the range O to 1 and indicates the max-
imum value of p(m,n). For the example, it is
p(2,2) = 0.3265.

Entropy
N—1N-1
E=-Y Y p(m,n)logsp(m,n)
m=0 n=0

For a p(m,n) with all zero entries, E = 0. For
a p(m,n) with all entries equal, £ = 2log> N.
For the example, £ = 2.8951 with N = 8.
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Contrast
The contrast in intensity of a pixel and its
neighbor over the image is given by this mea-
sure. The range of values for C is from O to
(N —1)% N—1N-1
C=3Y > (m=-n)?p(m,n)

m=0 n=0
For the example, C' = 0.69309.
Energy (Uniformity)
This measure is an indicator of the energy. Its

range is from O to 1.
—1N-1

U—Z Zp(mn)

m=0 n=0
For the example, U = 0.1770.
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Homogeneity

p(m,n)

m=0 N=0 1+ |(m B n)l
This measure indicates the closeness of the
distribution of the values in the co-occurrence

matrix to its diagonal and it is in the range O
to 1. For the example, H = 0.7619.
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Correlat|on

I N1 — @) (n = 7)p(m,n
R — Z Z ( )( )p(m, )70m#o,o_n#o
m=0 n=0 OmOn
—1 N-1 N—1N-1
m = Z > mp(m,n), n= np(m,n)
m=0 n=0 m=0 n=0
—1 N-1
Z 3 (m —m)?p(m,n),
m=0 n=0
—1 N-1
Z z:(n—n)2 (m,n)
m=0 n=0

This measure, with range -1 to 1, indicates
the similarity of a pixel to its neighbor over the
entire image. For the example, R = 0.8508.
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Texture measures based on co-occurrence ma-

trix

Figure | max p E H U
11.8 | 0.0008 | 12.8600 | 0.1687 0.0002
11.9 | 0.0072 | 13.7058 | 0.1594 0.0002
11.10 | 0.0006 | 13.7221 | 0.1262 0.0001
11.11 | 0.0018 | 14.5118 | 0.0965 | 5.7966e-05

C R

380.6666 | 0.9188

756.0718 | 0.8703

838.6651 | 0.7726

2.2376e+03 | 0.6996

These measures can be used to differentiate
the various types of textures.
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Principal Component Analysis

Matrix representation of data is transformed to
its diagonal form. The data gets uncorrelated
and sufficient number of components can be
used to approximate the data with a desired

aCccuracy.

244



et there be M vector variables, with each hav-
ing N samples. M variables form a N x M

matrix
X = [zg,®1- - Tp—1]

We want to find a matrix

Y =[yo,y1 - Yprr_1l
such that
Y = XR

and the columns of Y are mutually orthogonal.
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Y'Y =(XR)!(XR)=D

where D is a diagonal matrix. Using the prop-
erty

(AB)! = BT AT

and multiplying both sides by 1/(N — 1), we
get

1 xXT'x
YTY:RT( )R=D
N—1 N—1
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Given two 2 x 2 images, let us find the cor-
responding PCA components and their covari-
ance. Then, let us reconstruct the original im-
ages from the PCA components.

a(m,n)zlg 613] b(m,n)zli) g]

The mean of the matrices are am = 3 and
bm = 2. Subtracting the respective means
from the matrices, we get

az(m,n) = [ _(1) _g ] bz(m,n) = [ _i 8 ]

Converting az(m,n) and bz(m,n) into column
vectors and concatenating, we get,
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x(m,n) =

[ —1
—2

O
3

1
O
—1
o)

The covariance of this matrix is the scaled
product of its transpose with itself.

S
1[—-1 -2 03]||-2 o0
C(m’”)_gl 1 0 -1 o] 0 —1
- 3 O_

_ 114 -1

3| -1 2

The covariance matrix is square with the di-
mensions equal to the number of images. This
matrix is always symmetric.
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In order to find the eigenvectors of this ma-
trix, we have to find its eigenvalues. They are
found by equating the determinant of \I — C
to zero (its characteristic equation), where I
IS the identity matrix.

)\ _ 14 1
RSN
3 3

> 16, 27

2= A = 0 or (A-4.6943)(A-0.6391) =0

The two eigenvalues are {4.6943,0.6391}.
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For finding the eigenvectors, we use the equa-
tion

(M —C)R =0
For A = 4.6943, we get
4.6943 — Lf % R(0) | _
£ 46943 -2 || R(1)
For A = 0.6391, we get
0.6391 — if % R(0) | _
£ 0.6391 -2 | | R(1)

Solving the two sets of equations, we get the
eigenvectors as

R [ ~0.9966 0.0825 ]

0.0825 0.9966
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The first and second columns are, respectively,
the eigenvectors corresponding to eigenvalues
4.6943 and 0.6391. The principal components

are found as
—1
—2
0
3

Y = XR=

1.0791
1.9932
—0.0825
| —2.9808

1
0
~1
O -
0.9141

—0.1650
—0.9966
0.2474

—0.9966 0.0825
0.0825 0.9966
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The covariance of the PCA component ma-
trix is the scaled product of its transpose with

itself.
4.6943 0

C(m,n) 0 0.6391

components are uncorrelated (two zero entries)
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The input can be reconstructed by

am bm
am bm
am bm
am bm

1.0791 0.9141 ]
1.9932 —0.1650 |[ —0.9966 0.0825
—0.0825 —0.9966 0.0825 0.9966
—~2.9898 0.2474 |

YR! +

5 o
3 2

T3
_32_

-1 11 [3 2] [2 3°
=2 o0 320 |12
- 0 —1|T|3 2|31

3 0| |32] |62
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Recognition Chapter 12

There are two main types of classification: (i)
supervised classification and (ii) unsupervised
classification. In supervised classification, fea-
tures are specified apriori and objects are clas-
sified using them. Typical methods used are
minimum distance, k-nearest neighbors, deci-
sion trees, and statistical (based on probabil-
ity distribution models). The decision is prior.
In unsupervised classification, we classify the
objects by the constraints imposed by the fea-
tures. Partition the data into groups by clus-
tering. Unknown, but distinct set of feature
classes are generated. Decision is posterior.
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The k-nearest Neighbors Classifier

In this method, the feature set of a test object
iIs compared with the reference set and the test
object is assigned to the class whose features
differ, with respect to some measure, by the
least from that of the test object. In terms of
distance, computing the distance between the
k closest points in the reference sets of feature
vectors is the measure. The method is simple,
capable of classifying overlapping classes and
classes with complex structures. With k£ = 1,
it becomes the minimum distance classifier.
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The Minimum-Distance-to-Mean Classifier

In this approach, the classification of an object
is based on discriminant functions. Let the fea-
ture vector x of three classes be mq, mo, ms.
Three discriminant functions, di(x), d>(x) and
dz(x), have to be found such that the discrim-
inant function corresponding to an unclassified
feature vector will yield a value that is greater
than those of the functions to which it does not
belong. In the case of two or more functions
evaluating to the same value, the decision is
arbitrary or based on some additional factors.

256



Let the elements of a test vector be

Ir — {a:l,xz,...,atM}
Let the mean vector of the N classes be
{ml, mo,... ,mN}
dn(x) = :Bmg — O.Smnmg, n=12,...,N

Let us get the discriminant functions for the
last example. For the first feature vector {6400, 320}

[xl xQ] [643?8] —0.5[6400 320] 6:88]

d1(x) = 6400x1 + 320z, — 20531200
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Similarly, for class2, we get
d>(x) = 2500x7 4+ 50005 — 15625000

For class3, we get
dz(x) = 500x1 + 1000x5> — 625000

For the first feature vector, these three func-
tions yield
{20531200, 1975000, 2895000}

As expected, the first function has the greatest
value. Similarly, for the second feature vector,
these three functions yield

{—2931200, 15625000, 5625000}
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For the third feature vector, these three func-

tions vyield
{—17011200, —9375000, 625000}

The difference between two discriminant func-
tions is the boundary discriminant function for
them. For example, the boundary discriminant
function for classl and class2 is

dip(x) = di(x) — da(x)

(6400x1 + 320x> — 20531200)

— (250021 + 5000x5> — 15625000)

— 3900z — 4680z — 4906200
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Decision Tree Classification

In this approach, the feature space is split into
unique regions sequentially. A decision is ar-
rived with out testing all classes and, therefore,
it is advantages when the number of classes is
large. Further, the convergence of this algo-
rithm is guaranteed irrespective of the nature
of the feature space.
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Object A B|C|D]|E
Holes 120, 1|0
End points| 2| 0] 2| O] 3

The first step is to sort the entries in each row
of the feature vectors in ascending order. The
maximum difference of adjacent entries in the
first row is 1. It is 2 in the second row. A
threshold, that is the average of the two ad-
jacent entries, (0,2), that produced the max-
imum difference, is set. Using this threshold
f2=(0+42)/2=1, the rows are partitioned
O 0|1 1 2
[ O O ‘ 2 2 3 ]
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This partitioning continues until each partition
IS just one column. Now, the order of the first

row is restored and we get
2 11 0O

O 0|2 2 3

Now, the left side partition includes the let-
ters B and D, which can be partitioned with
a threshold f1 = (1 +2)/2 = 1.5. The un-
sorted and sorted feature vectors for the other

3 characters are
Tl 0 o] [o 0‘1

2 2 3 2 2|3

The letter A can be isolated with a threshold
f1 =0.5. Letters C and E can be isolated with
a threshold f2 = 2.5.

262



Bayesian approach to statistical methods of
classification is based not only on the set of
samples but also on the pertinent prior infor-
mation. Bayesian approach provides discrim-
inant or decision functions, which maximize
the number of correct classifications and min-
imize the incorrect ones. Let there be N fea-
tures © = {x1,zo,...,zn}’ representing the M
classes of objects, {wi,wo,...,wps}. Let the
a priori probability of an arbitrary object be-
longs to class w; be {p(w1),p(ws),...,p(wyr)}-
Let the density distribution of all the objects
be p(x). Let the conditional density distribu-
tion of all the objects belonging to class w; be

p(x/w;).

263



Using the Bayes’ theorem, the decision rule is
it p(x/w;)p(w;) > p(x/w;j)p(w;) for all i j,

then assign x to w;

Since it is difficult to estimate the actual p(x/w;),
in practice, the Gaussian (normal) density func-
tion is often assumed.
For normal distribution,

1 6—0.5(a3—mi)TCi_1(a3—mi)
(2m)N/2)|C4|05
where the mean m; and the covariance matrix
C'; are approximated as

p(x/w;) =
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1
ZN;

1
TN -1
The determinant of C; is |C;|. Since p(x/w;)
in exponential form, the decision rule
di(x) = p(x/w;)p(w;)

IS changed to the form
d;(x)=log.(p(x/w;)p(w;))=logc(p(x/w;))+l0ge(p(w;))

for convenience of manipulation. This change
in form does not alter the numerical order of
the decision functions required for classifica-

tion.

(x; — my) ! (z; — my)
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Substituting the exponential expression for p(x/w;),
we get the Bayes decision function

di(x) =109.(p(w;)) — 0.5109.(|C;|)
~0.5((x —m)TC; N e —my)),i=1,2,..., M

As the term —(N/2)log.(27) does not affect
the numerical order of the decision functions,
it is dropped. If all the covariance matrices are
the same, then

di(z) = 10ge(p(w;)) + 2" C tm; —0.5m] C 1 m,
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Further, if C is the identity matrix and p(w;) =
1/M, i=1,2,...,M, then

di(x) = xlm,; — O.Sm?mi, i=1,2,....M

which is the same for the decision function of
the minimum distance classifier.
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Chapter 13 Image Compression

Image compression is finding the minimum amount
of data required to represent a certain amount

of information and it is a necessity for efficient
storage and transmission of images. T he basic
property of images that enables compression is
that the spectrum of practical images tends to
fall off to insignificant levels at high frequen-
cies.
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Redundancies in an image

The redundancies in an image can be classified
into three major types:

(i) coding redundancy
(ii) interpixel redundancy
(iii) irrelevant information.
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DWT

The DWT is more often used for image com-
pression. The major advantage is the struc-
ture of the DW'T transformed image. EXxploit-
ing this structure, the use of the DW'T gives
better reconstructed images and compression
ratios, particularly at lower bit rates.
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Filters

The most suitable DWTT filters are of biorthog-
onal type. The advantage is that longer sym-
metric filters are available. A symmetric filter
handles the border problem more effectively.
Further, symmetric filters provide linear phase
response, which is essential in the analysis of
images. The CDF 9/7 filter is often used for
lossy image compression. For lossless image
compression, the 5/3 spline filter is often used.
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Example Image

13|14 2|14

3| 2| 2| 8

15115 | 215

15| 8|13 2
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Assignment of Huffman Codes

Char | Freq | Rel | Code A | Bits | Code B | Bits
2 5 | & 1| 5 11| 10
8 3 | = 001 | 9 01| 6
13 | 2 | &% | 0001| 8 001 | 6
14 | 2 | £ 0000 | 8 000 | 6
15 | 4 | i% 01| 8 10, 8
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Entropy

Let the number of distinct values in an image
is NV and the frequency of their occurrence be

51,82,...3S8N
Entropy is defined as
N 1
E = p(sg) 1092 ( >
kgl p(sk)

where p(s;) is the probability of occurrence of

Sk'
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The term logs(1/p(s;)) gives the number of
bits required to represent 1/p(s;). By multi-
plying this factor with p(s;), we get the bpp
required to code si. The sum of bpp for all
the distinct values vields the bpp to code the
image. This equation can be equivalently writ-
ten as

N
E=— ) p(sg)log2(p(sk))
k=1
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Signal-to-noise ratio

signhal-to-noise ratio, expressed in decibels, de-
fined as

( N—-1 N-1
S Y #2(ng,n0)
SNR=101l0g1g N1 N77,_11=On2=O
S Y (2(ng,n2) — 3(n1,m2))?
\n1=0 no=0 )
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Lossless Predictive Coding
Consider the 4 x 4 image

51 50| 52| 47
53| 44| 39| 48

40| 63| 131 | 212
114 | 128 | 154 | 155

Let us use a filter with one coefficient with

value 1. Then,
z(m,n) = round(z(m,n—1))

e(m,n) = z(m,n) —x(m,n) =z(m,n) —x(m,n— 1)

except for the first pixels of the rows.

277



Predictive coding representation of the image
IS

51| -1| 2| -5
531 -9 -5 9
40 | 23 | 68 | 81
114 |14 |26 | 1
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The first column values remain the same. For
the first row, the second, third and fourth col-
umn values are 50—-51 = —1, 52—-50 = 2 and
47 — 52 = —5, respectively. The values of the
other three rows are found similarly. For de-
compressing of the first row, the second, third
and fourth column values are 51 — 1 = 50,
5042 =52 and 52 — 5 = 47. In the input
image, there are 16 symbols each with proba-
bility 1/16. Therefore, the entropy is

—(16(1/16)log2(1/16)) = 4

279



In the coded image, there are 15 symbols (-5
repeats twice), 14 with probability 1/16 and
one with 2/16. Therefore, the entropy is

—(14(1/16) 10g2(1/16) 4 (2/16) log 2(2/16))

— 31/8 = 3.8750

To code the difference, we need one bit more
and, usually, the independent symbols in the
coded image is more than that of the input
image. However, due to the density of the his-
togram at the center, the coded image has a
lower entropy, as presented in the next exam-

ple.

280



Example Image

172

188

189

186

178

187

189

192

188

190

196

197

191

193

197

199
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Level-shifted Image

44

60

61

58

50

59

61

04

60

62

63

69

63

65

69

71
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Compression Algorithm

e Level shift the image. Let the gray levels
be represented using p bits. Then, each
level-shifted pixel value of the image is ob-
tained by subtracting 2(»—1). This ensures
that the DW'T coefficients are more evenly
distributed around zero and quantization
will be more effective.
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e Compute the 2-D DWT of the level-shifted
image, resulting in N x N coefficients, usu-
ally with real values, over some range.

e Quantize the coefficients to g quantization
levels, so that the fidelity of the recon-
structed image is adequate. Each value
in @ range is mapped to an integer value.
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e [ hreshold the coefficients, if necessary, soO
that coefficients with value less than a cho-
sen threshold are replaced by zero.

e Code the resulting sequence of symbols us-
ing a suitable coder so that the redundancy
is exploited to reduce the number of bits
required to store the compressed image.
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104119 -16] 3
1109125 -9[-3
V2122137 | -2 -1

128|140 -2[-2

106.5] 122.0-12.5] 0

125.0 | 1385 | -2.0|-1.5
25| -3.0] -35] 3.0
3.0| -1.5 0| 0.5

The row DW'T on the top and the 2-D Haar
DWT (bottom) of the level-shifted image
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Quantized Image

48 | 55| -5 10
56 | 62| 0|0
-1} -1 -1|1
-1 0 0O
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Huffman code of the image
{48,55,56,62, —5,0,0,0,

-1,-1,-1,0, -1,1,0,0}

The Huffman code of the image is

{0010 00001 00000 00011

00010111010101101001111}
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2-D Haar DWT of the reconstructed
level-shifted image

105.5238 | 120.9127 | -10.9921 O
123.1111 | 138.5000 O O
-2.1984 -2.1984 | -2.1984 | 2.1984
-2.1984 o) O O
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Level-shifted reconstructed image

45.0675

58.2579

60.4563

58.2579

49.4643

58.2579

60.4563

62.6548

60.4563

60.4563

69.2500

©69.2500

62.6548

62.6548

69.2500

©69.2500
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Reconstructed image

173.0675

186.2579

188.4563

186.2579

177.4643

186.2579

188.4563

190.6548

188.4563

188.4563

197.2500

197.2500

190.6548

190.6548

197.2500

197.2500
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Color Image Processing Chapter 14
Any color can be specified by a set of basis col-
ors. Similar to the availability of various trans-
forms suitable for various applications, various
color models are available to suit various color
image processing tasks. RGB model is mostly
used for image acquisition and display. CMY
and CYMK models are used in color printing.
The HSI model is suitable for image processing
operations since it decouples the color compo-
nent from the intensity value of the image.
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The red, green and blue component pixel val-
ues at coordinates (73 :76,173:176), respec-
tively, are

(245 246 246 248
246 247 246 247
246 246 245 248

| 248 247 246 248

Tr =

[ 191 196 193 190 |
192 197 192 189
192 197 192 189
| 192 198 191 188 |

rg —
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[ 222 225 223 223
223 226 223 222
223 225 222 222

| 223 224 221 224

In this neighborhood (about the center of the
top-right quadrant), the image is primarily white
and, therefore, the intensities of all the three
components are almost equal and high.

b =
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The CMY (cyan, magenta and yellow) model
can be obtained from the RGB model using the
relationship, assuming color values have been
normalized to the range O to 1,

C 1 R
M|=|1|—-|G
Y | 1 | B |

Note that cyan subtracts (absorbs) red com-
ponent and, therefore, when white light is re-
flected from an object with cyan color, the red
component will be zero. Similarly, magenta
and vyellow surfaces do not reflect green and
blue, respectively.
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In the HSI (hue, saturation and intensity) model,
the intensity component is decoupled from the
color information, making it highly suitable for
developing image processing algorithms. Hu-
mans also describe a color using these compo-
nents rather than in terms of red, green, and
blue components.

Hue The true color attribute identifies colors
red, green, vyellow, etc.

Saturation Indicates the amount of white color
mixed (color purity). More white in the
color will result in a low saturation value.

Intensity Is a measure of brightness. The in-
tensity of a dark color is low.
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This is a perception-based color model. The
conversion of a RGB image to a HSI image is
governed by the following equations.

7 — 0, for B< G
360 -0, for B> G’

[ 05((R-G)+ (R- B))
J(R—=G@)24 (R—-B)(G - B)

0 = cos™

_S(min(R,G,B)) [ (R+ G+ B)
(R+G+B) '~ 3
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The primary colors are separated by 120°. This
model is derived by making the RGB color cube
stand on its black corner with intensity value
zero. Then, the white corner, with intensity
value one, is at the top. The two corners are
joined by the vertical intensity line, which gives
the intensity component of a pixel. The inten-
sity value I of any pixel x(H, S, I) is given by the
intersection of this line with a plane contain-
ing the pixel and perpendicular to the intensity
line. The intensity is the average of those of
the 3 components.
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The red color is set as the reference for mea-
suring the hue H of a pixel. The reference line
is from the center of the figure to the red color
corner. The color of a pixel x(H,S,I) H is the
angle, measured in the anticlockwise direction,
between this reference line and the line joining
the pixel and the center of the figure. There-
fore, H = 0° for red color and it is measured
along the circumference of the circle.
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The saturation component S of a pixel is the
length of the line between the center of the
figure and the pixel (radial distance). It indi-
cates the purity of the color. If the color is
achromatic, then S = 0. For a pure color,
S = 1. This value is dependent on the number
of colors contributing to the color perception.
The higher the number, the lower is the value
of S. The smallest value of the RGB com-
ponents determines the amount of white color
possible.
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Color RGB values H S I
Red 1 0 O] 0 1/0to 1/3
Green 0 1 O] 120°/360 |1 | 0to 1/3
Blue 0 0 1] 240°/360 |1 [0 to 1/3
Black [0 0 O] 0 0 0
White 11 1] 0 0 1
Cyan 0 1 1] 180°/360 | 1 | 0 to 2/3
Magenta (1 0 1] 300°/360 |1 | 0to2/3
Yellow 1 1 0] 60°/360 | 1|0 to 2/3

Table shows HSI model values for images with
pure primary colors, black, white and pure sec-
ondary colors with intensity varying from O to
1. The values in the table can be verified using

the defining equations.
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T he conversion of a HSI image to a RGB image
IS governed by the following equations.
RG sector (0° < H < 120°):

B=1I(1-25)
. S cos(H)
=1 (1 + cos(60° — H))

G =3I - (R+ B)

302



GB sector (120° < H < 240°) :

H=H - 120°

R=1I(1-25)
. S cos(H)
=1 (1 + cos(60° — H))

B=3I—-(R+ Q)
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BR sector (240° < H < 360°) :

H = H — 240°

G=1I(1-25)
B=I<1—|— S cos(H) )
cos(60° — H)

R=3I-(B+ Q)
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The NTSC color model is used for television
in some countries. The advantage is that it is
suitable for both color and monochrome tele-
vision. The conversion between the formats
can be carried using a transformation and its
inverse. The luminance (intensity) is repre-
sented by the Y component and I and Q carry
color information jointly, hue and saturation.

Y [ 0.299 0587 0.114 ]| | R
I | =] 0596 —0.274 —0.322 G
Q| | 0.211 —-0.523 0.312 | | B |

305



For a gray scale image with no color, as the
RGB components are equal, the first row of the
transformation matrix adds to 1 and the other
two adds to zero. In finding the Y component,
more weight is given to the green component
in order to match the response of the human
visual system. The inverse transformation is

R (1.0 0956 0621 ]|Y
G| =1|1.0 —-0.272 —-0.647 I
| B | 1.0 —1.106 1.703 | | Q |
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The YCbCr model is mostly used in digital
video. The YCbCr model is a format in which
Y represents the intensity and Cb and Cr rep-
resent the chrominance. Cb component is the
difference between blue component and a ref-
erence value. Cr component is the difference
between red component and a reference value.
The energy of an image is more evenly dis-
tributed among its three components in the
RGB format. In the YCbCr format, the in-
tensity carries most of the energy. T herefore,
the chrominance component can be effectively
compressed requiring reduced storage require-
ments.
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The luminance is defined as a weighted aver-
age of that of the three components. Let the
intensity values of an image from 0O to 255 be

scaled to O to 1 obtained by dividing by 255.

Y 16] [ 65.481 128.553

Cb|=|128|+|-37.797 —74.203 112.000
Cr| |128| |112.000 —93.786 —18.214

24.966

T QT

In this formula, let the RGB input values be
O to 1. Then, output Y varies from 16 to
235. Outputs Cb and Cr vary from 16 to 240.
Scaling the output by 255, we get the outputs

in the range O to 1.
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The inverse transformation is

R | [ 0.0046 0.0000 0.0063 |
G | = | 0.0046 —0.0015 —0.0032
B | 0.0046 0.0079  0.0000 |
T Y] [ 16 ]]

Cb | —| 128

_C’r_ | 128 |
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O 0 1 1 10
1 01 O 10
color_mapl = | 1 1 0 | color-map2= |0 0 1
1 0O 1 1 1
O 10 1 01

0] 1-64 65-128 | 129-192 255
Blue | Magenta | Yellow Red Green
Yellow Green Blue White | Magenta
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Let the partial derivatives of the RGB compo-
nents along the two directions, at each pixel,
be

{8R oG 83} And {8R oG c‘)B}
Ox’ Ox Oz Oy’ Oy Oy

T he partial derivatives are approximated using
gradient operators, such as Sobel. Then,

= (50) + (50) + (5)

OR\° [9G\°2 [6B\?
9YY = (a?) +<a—y> +(a—y> ’
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OROR A 0GOG ., 0BOB
gry = + +
ox Oy ox Oy ox Oy

The angle of the gradient is given by

2
91:0.5tan—1< Iy ) 92 = 61 + —
9TT — gyy 2

The magnitude of the gradient in the direction
of 01 and 02 is computed using the expression

\/0.5((gzz~+gyy) + (gza— gyy) cos(20) +2gxy sin(26))

The maximum of the two values is taken as
the magnitude of the gradient, which is then
thresholded.
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Segmentation

et the average color of the region, to be seg-
mented, of the RGB image z(m,n) be {ar, ag, ab}.
Then, the square root of the sum of the Eu-
clidean distance between the reference and im-
age pixel color components is computed and
then it is subjected to a threshold. The dis-
tances are computed using the equation.

V @r(m, n) —ar) >+ (zg(m, n) — ag)*+(zb(m, n) —ab)?)

The pixels with distances above the threshold
are not in the segment and are assigned the
value zero. The other pixels are assigned the
value 1.
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