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Chapter 1 Digital Image

Electromagnetic Spectrum

Cosmic Gamma X- Ultra Visible Infra-
rays rays rays violet Spectrum red

Microwaves TV Radio
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A M×N image, x(m,n), with M rows and N

columns is given by

n →
m
↓










x(0,0) x(0,1) . . . x(0, N−1)
x(1,0) x(1,1) . . . x(1, N−1)

...
x(M−1,0) x(M−1,1) . . . x(M−1, N−1)










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Pixel values of a 8× 8 sub-image
173 185 189 186 199 195 195 192

177 187 189 192 197 195 189 177

188 190 196 197 199 193 171 124

191 192 197 198 192 158 111 110

196 199 99 189 149 108 110 113

202 200 182 130 100 98 108 114

204 178 117 85 100 96 104 108

173 100 85 87 95 98 96 100
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Storage requirements

(i) 512×512 binary image,

512×512×1 = 262144 bits = 32768 bytes

(ii) 512×512 8-bit gray level image,
512×512×1 = 262144 bytes

(iii) 512×512 color image, with a byte of stor-

age for each of the 3 color components of a

pixel,
512×512×3 = 786432 bytes
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Bit-plane components from MSB to LSB











8 1 7 3
1 11 15 12
0 11 7 13
2 10 9 6











= 23











1 0 0 0
0 1 1 1
0 1 0 1
0 1 1 0











+

22











0 0 1 0
0 0 1 1
0 0 1 1
0 0 0 1











+2











0 0 1 1
0 1 1 0
0 1 1 0
1 1 0 1











+











0 1 1 1
1 1 1 0
0 1 1 1
0 0 1 0










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Two sinusoidal surfaces produce

oscillations with the same frequency

x(k, l) = cos(
2π

32
30k +

2π

32
31l − π

2
)

= cos(
2π

32
(32− 2)k +

2π

32
(32− 1)l − π

2
)

= cos(
2π

32
2k +

2π

32
1l+

π

2
)
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Applications of Digital image processing

Widely used in entertainment, business, sci-

ence and engineering applications.

1. Image sharpening and restoration.
2. Medical Applications.
3. Remote sensing.
4. Image compression and transmission.
5. Robots.
6. Automatic inspection of components.
7. Security.
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Chapter 2 Image Enhancement in the

Spatial Domain

An image is enhanced to increase the amount

of information that can be interpreted visually.
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Point Operations
z(m,n) = x(m,n) + y(m,n)

z(m,n) = x(m,n)− y(m,n)

z(m,n) = x(m,n) ∗ y(m,n)

z(m,n) = x(m,n)/y(m,n)

One of the operands in these operations can

be a constant. For example, z(m,n) = Cx(m,n)

and z(m,n) = C + x(m,n), where C is a con-

stant. Logical operations AND (&), OR (|)
and NOT (~) are also used in a similar way on

binary images.
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Image Complement

In a 8-bit gray-level image, the complement,

x̃(m,n), of the image x(m,n) is given by

x̃(m,n) = 255− x(m,n)

For a binary image, the complement is given

by

x̃(m,n) = 1− x(m,n)
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Gamma Correction

inew = iγ

i 0 0.1 0.2 0.3 0.4

i0.6 0 0.2512 0.3807 0.4856 0.5771

i1.6 0 0.0251 0.0761 0.1457 0.2308

0.5 0.6 0.7 0.8 0.9 1

0.6598 0.7360 0.8073 0.8747 0.9387 1

0.3299 0.4416 0.5651 0.6998 0.8449 1
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Histogram

The histogram depicts the number of occur-

rences of each possible gray level in an image.

Pixel values of a 4×4 8-bit image (left) and its

contrast-stretched version (right)

249 108 110 113

10 98 108 114

85 100 96 104

85 87 95 98

255 201 219 245

0 114 201 254

1 131 96 166

1 18 88 114
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Contrast Stretching

inew =

⌊

(Imax − Imin − 2)

(M − L)
(i− L)

⌋

+1, L ≤ i ≤ M

inew = Imin, i < L, inew = Imax, i > M

Gray level 10 85 87 95 96 98 100 104

Count 1 2 1 1 1 2 1 1

Gray level 0 1 18 88 96 114 131 166

108 110 113 114 249

2 1 1 1 1

201 219 245 254 255
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Histogram Equalization

In both contrast stretching and histogram equal-

ization, the objective is to spread the gray lev-

els over the entire allowable gray level range.

While stretching is a linear process and is re-

versible, equalization is a nonlinear process and

is irreversible. Histogram equalization tries to

redistribute about the same number of pixels

for each gray level and it is automatic.
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A 4×4 4-bit image (left) and its

histogram-equalized version (right)
13 14 2 14

10 2 5 9

15 15 3 15

15 8 13 1

9 11 3 11

8 3 5 7

15 15 4 15

15 6 9 1

The equalization process for a gray level u of

the input image is given by

v = (L− 1)
u
∑

n=0

p(n), u = 0,1, . . . , L− 1

where v is the corresponding gray level in the

histogram equalized image.
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Normalized histogram of the image
{0,0.0625, 0.125,0.0625,0,0.0625, 0,0,0.0625,

0.0625,0.0625, 0,0,0.125,0.125,0.25}

The cumulative distribution
{0,0.0625, 0.1875,0.25,0.25,0.3125, 0.3125,0.3125,

0.375,0.4375, 0.5,0.5,0.5,0.625,0.75,1}

These values, multiplied by L− 1 = 15, are
{0,0.9375, 2.8125,3.75,3.75,4.6875, 4.6875,4.6875,

5.625,6.5625,7.5,7.5,7.5,9.375,11.25,15}

Rounding of these values yields
{0,1,3,4,4,5,5,5,6,7,8,8,8,9,11,15}
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Histogram of the image and its equalized

version

Gray level 0 1 2 3 4 5 6 7 8 9 10

count in 0 1 2 1 0 1 0 0 1 1 1

count eq 0 1 0 2 1 1 1 1 1 2 0

11 12 13 14 15

0 0 2 2 4

2 0 0 0 4
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Histogram Specification

The histogram a(n) of a reference image A is

specified and the histogram b(n) of the input

image B is to be modified to produce an image

C so that its distribution of pixels (histogram

c(n)) is as similar to that of image A as possi-

ble.
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The steps of the algorithms are:

1. Compute the cumulative distribution, cum a(n),

of the reference image A.

2. Compute the cumulative distribution, cum b(k),

of the input image B.

3. For each value in cum b(k), find the mini-

mum value in cum a(n) that is greater than

or equal to the current value in cum b(k).

That n is the new gray level in the image

C corresponding to k in image B.
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4×4 reference, input and output images,

respectively, from left

13 14 2 14

10 2 5 9

15 15 3 15

15 8 13 1

11 13 0 13

7 0 2 5

15 15 1 15

15 4 11 0

13 14 2 14

10 2 5 9

15 15 3 15

15 8 13 2
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The cumulative distribution, cum a(n), of the

reference image is
{0,0.0625, 0.1875,0.25,0.25,0.3125, 0.3125,0.3125,

0.3750,0.4375, 0.5,0.5,0.5,0.6250,0.75,1}

The cumulative distribution, cum b(k), of the

input image is
{0.1875,0.25,0.3125,0.3125, 0.3750,0.4375,0.4375,

0.5,0.5,0.5,0.6250,0.6250,0.75,0.75,1}

Pixels of the input image 0−15 are mapped to
{2,3,5,5,8,9,9,10,10,10,10,13,13,14,14,15}

in the output image
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Thresholding

A threshold indicates an intensity level of some

significance.

gb(x) =

{

0 if x ≤ T
1, otherwise

gh(x) =

{

0 if |x| ≤ T
x, if |x| > T

gs(x) =











0, if |x| ≤ T
x− T, if x > T
x+ T, if x < −T
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Input image
117 170 130 54 84 209 164 148

135 151 137 96 56 157 225 189

136 152 174 146 64 84 146 90

123 139 182 133 51 71 56 74

119 137 172 146 119 67 65 70

90 123 166 184 203 101 49 64

85 102 162 194 164 80 38 56

73 84 155 185 147 163 87 57
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Binary thresholding with T = 120
0 1 1 0 0 1 1 1

1 1 1 0 0 1 1 1

1 1 1 1 0 0 1 0

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0 1 1 1 1 0 0 0

0 0 1 1 1 0 0 0

0 0 1 1 1 1 0 0
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Hard thresholding with T = 120
0 170 130 0 0 209 164 148

135 151 137 0 0 157 225 189

136 152 174 146 0 0 146 0

123 139 182 133 0 0 0 0

0 137 172 146 0 0 0 0

0 123 166 184 203 0 0 0

0 0 162 194 164 0 0 0

0 0 155 185 147 163 0 0
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Soft thresholding with T = 120
0 50 10 0 0 89 44 28

15 31 17 0 0 37 105 69

16 32 54 26 0 0 26 0

3 19 62 13 0 0 0 0

0 17 52 26 0 0 0 0

0 3 46 64 83 0 0 0

0 0 42 74 44 0 0 0

0 0 35 65 27 43 0 0
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Neighborhood Operations

Each pixel value x(m,n) is replaced by another,

which is a linear or nonlinear function of the

values of the pixels in its neighborhood.
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8-connected neighborhood






x(m− 1, n− 1) x(m− 1, n) x(m− 1, n+1)
x(m,n− 1) x(m,n) x(m,n+1)

x(m+1, n− 1) x(m+1, n) x(m+1, n+1)







4-connected neighborhood






x(m− 1, n)
x(m,n− 1) x(m,n) x(m,n+1)

x(m+1, n)






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Symmetric extension
44 32 32 44 44 23 23 44

51 23 23 51 23 32 32 23

51 23 23 51 23 32 32 23

44 32 32 44 44 23 23 44

23 23 23 23 44 32 32 44

44 44 44 44 23 23 23 23

44 44 44 44 23 23 23 23

23 23 23 23 44 32 32 44
Mirror image of itself at the borders.
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Replication method of extension
23 23 23 51 23 32 32 32

23 23 23 51 23 32 32 32

23 23 23 51 23 32 32 32

32 32 32 44 44 23 23 23

23 23 23 23 44 32 32 32

44 44 44 44 23 23 23 23

44 44 44 44 23 23 23 23

44 44 44 44 23 23 23 23
Border values are repeated.
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Periodic extension
44 32 23 23 44 32 23 23

23 23 44 44 23 23 44 44

23 32 23 51 23 32 23 51

44 23 32 44 44 23 32 44

44 32 23 23 44 32 23 23

23 23 44 44 23 23 44 44

23 32 23 51 23 32 23 51

44 23 32 44 44 23 32 44
Image is considered as one period of a 2-D

periodic signal. The top and bottom edges

are considered adjacent and so are the right

and left edges.
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1-D Linear Convolution

y(n) =
∞
∑

k=−∞
x(k)h(n−k) =

∞
∑

k=−∞
h(k)x(n−k)

{x(0) = 4, x(1) = 3, x(2) = 1, x(3) = 2} and

{h(0) = 1, h(1) = −2, h(2) = 1}
y(0)=x(k)h(0− k)=(4)(1) = 4

y(1)=x(k)h(1− k)=(4)(−2) + (3)(1) = −5

y(2)=x(k)h(2− k)=(4)(1) + (3)(−2) + (1)(1)=−1

y(3)=x(k)h(3− k)=(3)(1) + (1)(−2) + (2)(1)=3

y(4)=x(k)h(4− k)=(1)(1) + (2)(−2) = −3

y(5)=x(k)h(5− k)=(2)(1) = 2
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2-D Linear Convolution

y(m,n) =
∞
∑

k=−∞

∞
∑

l=−∞
x(k, l)h(m− k, n− l)

1. One of the images, say h(k, l), is rotated in

the (k, l) plane by 180 degrees about the

origin to get h(−k,−l).

2. Shifted by (m,n) to get h(m− k, n− l).

3. The products x(k, l)h(m−k, n− l) of all the

overlapping samples are found.

4. The sum of all the products yields the con-

volution output y(m,n) at (m,n).
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Moving average filter

h(m,n) =
1

9







1 1 1
1 1 1
1 1 1







=
1

3







1
1
1







1

3

[

1 1 1
]

= hc(m)hr(n)
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x(m,n) =











1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2











Assuming zero-padding at the borders, the out-

put of 1-D filtering of the rows of the input and

the output of 1-D filtering of the columns of

the partial output are, respectively,

1

3











0 3 4 5
3 5 7 6
0 2 −1 0
4 6 5 4











y(m,n) =
1

9











3 8 11 11
3 10 10 11
7 13 11 10
4 8 4 4










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Assuming replication at the borders, the ex-

tended input and the output are, respectively,




















1 1 −1 3 2 2
1 1 −1 3 2 2
2 2 1 2 4 4
1 1 −1 2 −2 −2
3 3 1 2 2 2
3 3 1 2 2 2





















1

9











7 11 15 24
7 10 10 15

13 13 11 14
15 14 9 10











Only the output at the borders differ with dif-

ferent border extensions. The central part of

the output is the same.
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Gaussian lowpass filter

h(m,n) =
e
−(m2+n2)

(2σ2)

K
,K =

(N−1)/2
∑

m=−(N−1)/2

(N−1)/2
∑

n=−(N−1)/2

e
−(m2+n2)

(2σ2)

assuming N is odd.

h(m,n) =







0.0113 0.0838 0.0113
0.0838 0.6193 0.0838
0.0113 0.0838 0.0113







=







0.1065
0.7870
0.1065







[

0.1065 0.7870 0.1065
]
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Assuming zero-padding at the borders, the out-

put of 1-D filtering of the rows of the input and

the output of 1-D filtering of the columns of

the partial output are, respectively,










0.6805 −0.3610 2.4675 1.8935
1.6805 1.2130 2.1065 3.3610
0.6805 −0.4675 1.2545 −1.3610
2.4675 1.3195 1.8935 1.7870











y(m,n) =











0.7145 −0.1549 2.1663 1.8481
1.4675 0.8664 2.0542 2.7018
0.9773 −0.0982 1.4133 −0.5228
2.0144 0.9887 1.6238 1.2614










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Assuming periodicity at the borders, the ex-

tended input and the output are, respectively,

xe(m,n) =





















2 3 1 2 2 3
2 1 −1 3 2 1
4 2 1 2 4 2

−2 1 −1 2 −2 1
2 3 1 2 2 3
2 1 −1 3 2 1





















y(m,n) =











1.2130 −0.0143 2.3679 2.1790
1.8027 0.8664 2.0542 2.8921
0.8777 −0.0982 1.4133 −0.3822
2.2545 0.9502 1.8866 1.7372










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Highpass Filtering

Frequency, in image processing, is the rate of

change of gray levels of an image with respect

to distance. A high frequency component is

characterized by large changes in gray levels

over short distances and vice versa. High-

pass filters pass high frequency components

and suppress low frequency components. This

type of filters are used for sharpening images

and edge detection.
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Laplacian operator of a function f(x, y)

∇2f(x, y) =
∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2

For discrete signals, differencing approximates

differentiation. At the point x(m,n), the first

differences along the horizontal and vertical di-

rections, ∆h(m,n) and ∆v(m,n), are defined

as
∆hx(m,n) = x(m,n)− x(m,n− 1)

∆vx(m,n) = x(m,n)− x(m− 1, n)

41



Using the first differences again,

∆2
vx(m,n) = ∆vx(m+1, n)−∆vx(m,n)

= (x(m+1, n)− x(m,n))

− (x(m,n)− x(m− 1, n))

= x(m+1, n) + x(m− 1, n)− 2x(m,n)

∆2
hx(m,n) = ∆hx(m,n+1)−∆hx(m,n)

= (x(m,n+1)− x(m,n))

− (x(m,n)− x(m,n− 1))

= x(m,n+1)+ x(m,n− 1)− 2x(m,n)

42



Summing the two second differences, we get

the discrete approximation of the Laplacian as

∇2x(m,n)=∆2
hx(m,n) +∆2

vx(m,n)

=x(m,n+1)+ x(m,n− 1) + x(m+1, n)

+ x(m− 1, n)− 4x(m,n)
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Versions of Laplacian highpass filter






0 1 0
1 −4 1
0 1 0













1 1 1
1 −8 1
1 1 1







Laplacian sharpening filter






0 −1 0
−1 5 −1
0 −1 0







44



Let the input be the same used for lowpass

filtering. With zero-padded and replicated in-

puts, the outputs of applying the Laplacian

mask (Equation 2.2) are, respectively,










−3 9 −9 −1
−5 −2 2 −14
0 9 −7 16

−10 0 −3 −8





















−1 8 −6 3
−3 −2 2 −10
1 9 −7 14

−4 1 −1 −4










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Using sharpening filter, with the same input

used for lowpass filtering, the outputs with the

input zero-padded and replicated are, respec-

tively,










4 −10 12 3
7 3 0 18
1 −10 9 −18

13 1 5 10





















2 −9 9 −1
5 3 0 14
0 −10 9 −16
7 0 3 6










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Median filter

The median of a list of N numbers

{x(0), x(1), . . . , x(N − 1)}

is defined as the middle number of the sorted

list of x(n), if N is odd. If N is even, the me-

dian is defined as the mean of the two middle

numbers of the sorted list. For 2-D data, all

the samples are listed as 1-D data for median

computation.
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The boundary replicated version of a 4×4 im-

age and its median filtered version with a 3×3

window are

23 23 51 23 32 32

23 23 51 23 32 32

32 32 44 44 23 23

23 23 23 44 32 32

44 44 44 23 23 23

44 44 44 23 23 23

32 32 32 32

23 32 32 32

32 44 32 23

44 44 23 23
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Chapter 3 Fourier Analysis

In Fourier analysis, a time-domain waveform is

decomposed into its sinusoidal components of

various frequencies.

1. It gives the strength of the various com-

ponents, which is called the spectrum of the

signal. The spectrum is the starting point in

most of the analysis.

2. It is more efficient to find the system output

using the sinusoidal components of the input

signal.

49



Fourier analysis represents a signal as a lin-

ear combination of sinusoids or, equivalently,

complex exponentials with pure imaginary ex-

ponents.

1

4
(4ej0

2π
4 n+(2−j2

√
3)ej

2π
4 n+4ej2

2π
4 n

+ (2+j2
√
3)ej3

2π
4 n)

=
1

4
(4ej0

2π
4 n+4ej(

2π
4 n−π

3)+4ej2
2π
4 n+4e−j(2π4 n−π

3))

= 1+ 2cos(
2π

4
n− π

3
) + cos(2

2π

4
n) = x(n)
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DFT and IDFT

X(k) =
N−1
∑

n=0

x(n)Wnk
N , k = 0,1, . . . , N − 1

where WN = e−j2πN .

x(n) =
1

N

N−1
∑

k=0

X(k)W−nk
N , n = 0,1, . . . , N − 1

The Fourier reconstruction of a waveform is

with respect to the least squares error criterion.
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









X(0)
X(1)
X(2)
X(3)











=











1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j























3√
3
1

−
√
3













=













4

2− j2
√
3
4

2+ j2
√
3,












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









x(0)
x(1)
x(2)
x(3)











=
1

4











1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j























4

2− j2
√
3
4

2+ j2
√
3













=













3√
3
1

−
√
3












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Parseval’s Theorem

{4,1,2,4} ↔ {11,2+ j3,1,2− j3}

The sum of the squared magnitude of the data

sequence is 37 and that of the DFT coeffi-

cients divided by 4 is also 37.
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The 2-D DFT of a N ×N image x(m,n) is

defined as

X(k, l) =
N−1
∑

m=0

N−1
∑

n=0

x(m,n)e−j2πN (mk+nl)

The 2-D IDFT is given by

x(m,n) =
1

N2

N−1
∑

k=0

N−1
∑

l=0

X(k, l)ej
2π
N (mk+nl)
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The impulse (on the left) and its 2-D DFT are

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

↔
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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1

64
((−7.7071− j50.163)ej

2π
8 m

+(−7.7071 + j50.163)e−j2π8 m)

=
2

64
|(−7.7071− j50.163)|

cos(
2π

8
m+ 6 (−7.7071− j50.163))

= 1.586 cos(
2π

8
m− 98.7347◦) = x(m,n)
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The DFT of the N ×N matrix x(m,n) can be

computed in two stages. For example, the 1-D

DFT of each row of the input image results in

X(m, l) =
N−1
∑

n=0

x(m,n)e−j2πN nl, m, l = 0,1, . . . , N−1

Then, the 1-D DFT of each column of X(m, l)

yields the 2-D DFT.

X(k, l) =
N−1
∑

m=0

X(m, l)e−j2πN mk, k, l = 0,1, . . . , N−1
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











1 1 1 1

1 −j −1 j
1 −1 1 −1
1 j −1 −j























1 2 3 1
−2 3 1 4
1 1 2 2
3 1 2 4





















1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j











The 2-D DFT of the image is

l →
k
↓










29 −5+ j4 −7 −5− j4
1+ j4 −3+ j2 1+ j8 1+ j6

−3 −1− j4 9 −1+ j4
1− j4 1− j6 1− j8 −3− j2











= X(k, l)
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The 2-D DFT of a linear combination of a set

of discrete images is equal to the same lin-

ear combination of their individual DFTs. Let

x1(m,n) ↔ X1(k, l) and x2(m,n) ↔ X2(k, l).

Then,

ax1(m,n) + bx2(m,n) ↔ aX1(k, l) + bX2(k, l)

where a and b are real or complex constants.
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An image is periodic if it repeats its values over

a period indefinitely, x(m+M,n+N) = x(m,n)

for all m,n. The smallest M,N satisfying the

constraint are the periods in the two directions.

Although a practical image is of finite extent,

as the basis signals in Fourier analysis are the

sinusoids (which are periodic), an image is as-

sumed to be periodic in both the spatial and

frequency domains.
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x(m,n) = x(m+ aM,n+ bN), for all m,n

X(k, l) = X(k + aM, l+ bN), for all k, l

where a and b are arbitrary integers. Useful

information in a periodic signal is contained in

any one period. The top and bottom edges

are considered adjacent and so are the right

and left edges.
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A shift of a sinusoid results in changing its

phase. Its magnitude is not affected. For a

N ×N image,

x(m,n) ↔ X(k, l) → x(m−m0, n− n0)

↔ X(k, l)e−j2πN (km0+ln0)

x(m,n)ej
2π
N (k0m+l0n) ↔ X(k − k0, l − l0)

A specific use of this theorem is that the center-

zero spectrum can be obtained with N even

and k0 = l0 = N
2 .
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Circular convolution

Let x(m,n) ↔ X(k, l) and h(m,n) ↔ H(k, l), m, n, k, l

0,1, . . . , N − 1. Then,

N−1
∑

p=0

N−1
∑

q=0

x(p, q)h(m− p, n− q) ↔ X(k, l)H(k, l)

x(m,n)h(m,n) ↔ 1

N2

N−1
∑

p=0

N−1
∑

q=0

X(p, q)H(k−p, l−q)
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The circular cross-correlation of x(m,n) and

h(m,n) is given by

rxh(m,n) =
N−1
∑

p=0

N−1
∑

q=0

x(p, q)h(p−m, q − n)

↔ H∗(k, l)X(k, l)

rhx(m,n)=rxh(N−m,N−n)=IDFT(X∗(k, l)H(k, l))

Cross-correlation of an image x(m,n) with it-

self is the autocorrelation operation.
rxx(m,n) = IDFT(|X(k, l)|2)
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DFT values, of a real-valued x(m,n), at dia-

metrically opposite points form complex con-

jugate pairs.
X*(N − k,N − l) = X(k, l)

An equivalent form of the symmetry is

X(
N

2
± k,

N

2
± l) = X*(

N

2
∓ k,

N

2
∓ l)

















29 −5+ j4 7 −5− j4

1 + j4 −3+ j2 1 + j8 1+ j6

−3 −1− j4 9 −1+ j4

1− j4 1− j6 1− j8 −3− j2
















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The 2-D DFT is a separable function in the

variables m and n. Therefore, the DFT of a

separable function x(m,n) = x(m)x(n) is also

separable. The product of the column vector

with the row vector is equal to the 2-D func-

tion. That is,

x(m) ↔ X(k), x(n) ↔ X(l) → X(k, l) = X(k)X(l)
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Parseval’s theorem

This theorem implies that the signal power can

also be computed from the DFT representa-

tion of the image. Let x(m,n) ↔ X(k, l) with

the dimensions of the imageN ×N .

N−1
∑

m=0

N−1
∑

n=0

|x(m,n)|2 =
1

N2

N−1
∑

k=0

N−1
∑

l=0

|X(k, l)|2
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The FT X(jω) of x(t) is defined as

X(jω) =

∫ ∞

−∞
x(t)e−jωtdt

A sufficient condition for the existence of X(jω)

is that x(t) is absolutely integrable. The IFT

x(t) of X(jω) is defined as

x(t) =
1

2π

∫ ∞

−∞
X(jω)ejωtdω

The amplitude of any component (−∞ < ω <

∞) is X(jω) dω/(2π), which is infinitesimal.

The FT is a relative amplitude spectrum.
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The FT X(ju, jv) of x(p, q) is defined as

X(ju, jv) =

∫ ∞

−∞

∫ ∞

−∞
x(p, q)e−jupe−jvqdp dq

The IFT is given by

x(p, q) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
X(ju, jv)ejupejvqdu dv
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Enhancement in the Frequency Domain

Chapter 4

Processing of images in the frequency domain

consists of:
1. Transformation of the input image and the

system response from the spatial domain

to the frequency domain.
2. Processing the image in the frequency do-

main.
3. Transformation of the processed image back

to the spatial domain.
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1. The DFT assumes periodicity of the finite

input data. It has to be ensured that the

output is represented with adequate accu-

racy in one period.
2. To meet this constraint, sufficient zero padding

of the image and the filter is required. Fur-

ther, the dimensions of one period have to

be a power of 2 in order to use practically

fast DFT algorithms.
3. It has to be ensured that both the image

and the filter are in the same format with

their origins aligned.
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Convolve

x(m,n) =











1 −1 3 2
2 1 2 4
1 −1 2 −2
3 1 2 2











and a 3×3 Gaussian lowpass filter with σ = 0.5.

Assume periodicity at the borders.
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This filter is also separable with the same co-

efficients in both the directions,
{0.1065,0.7870, 0.1065}

Zero-padding and circularly shifting the col-

umn filter, we get
hz(m) = {0.7870,0.1065,0,0.1065}

Only one zero is appended, since the convolu-

tion is periodic and the input is a 4× 4 image.

The 1-D DFT of this filter is
H(k) = {1,0.7870,0.5740,0.7870}
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The 2-D DFT, X(k, l), of x(m,n)
22.00+j0.0 -2.00+j6.0 10.00+j0.0 -2.00-j6.0

5.00-j1.0 1.00+j5.0 -3.00+j3.0 -3.00-j3.0

-12.00+j0.0 -4.00-j2.0 8.00+j0.0 -4.00+j2.0

5.00+j1.0 -3.00+j3.0 -3.00-j3.0 1.00-j5.0
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The partial convolution output

P(k, l) = X(k, l)H(k)
22.00+j0.0 -2.00+j6.0 10.00+j0.0 -2.00-j6.0

3.94-j0.7 0.79+j3.9 -2.36+j2.3 -2.36-j2.3

-6.89+j0.0 -2.30-j1.1 4.59+j0.0 -2.30+j1.1

3.94+j0.7 -2.36+j2.3 -2.36-j2.3 0.79-j3.9
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The convolution output

Y (k, l) = P(k, l)H(l)
22.00+j0.0 -1.57+j4.7 5.74+j0.0 -1.57-j4.7

3.94-j0.7 0.62+j3.1 -1.36+j1.3 -1.86-j1.8

-6.89+j0.0 -1.81-j0.9 2.64+j0.0 -1.81+j0.9

3.94+j0.7 -1.86+j1.8 -1.36-j1.3 0.62-j3.1
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The Laplacian filter is inseparable. The zero-

padding and shifting in two directions results

in

hz(m,n) =































5 −1 0 0 0 0 0 −1
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0






























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2-D DFT, H(k, l), of zero-padded hz(m,n)
1.00 1.59 3.00 4.41 5.00 4.41 3.00 1.59

1.59 2.17 3.59 5.00 5.59 5.00 3.59 2.17

3.00 3.59 5.00 6.41 7.00 6.41 5.00 3.59

4.41 5.00 6.41 7.83 8.41 7.83 6.41 5.00

5.00 5.59 7.00 8.41 9.00 8.41 7.00 5.59

4.41 5.00 6.41 7.83 8.41 7.83 6.41 5.00

3.00 3.59 5.00 6.41 7.00 6.41 5.00 3.59

1.59 2.17 3.59 5.00 5.59 5.00 3.59 2.17

DFT is real-valued and even-symmetric, since

the filter is also real-valued and even-symmetric.
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Given the DFT coefficients of the waveform in

the center-zero format,

{ X(−2) = 4, X(−1) = 2+ j2
√
3,

X(0) = 4, X(1) = 2− j2
√
3}

we multiplied the set of coefficients, respec-

tively, by the frequency responses

Hl(k) = {0,0,1,0}, Hh(k) = {1,0,0,0},
Hbp(k) = {0,1,0,1}, Hbr(k) = {1,0,1,0}

to implement the different filters.
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A lowpass filter in the frequency domain is

given by

H(k, l) =

{

1, for D(k, l) ≤ Dc

0, for D(k, l) > Dc

where D(k, l) =
√

k2 + l2 is the distance be-

tween the spectral point (k, l) and the center

of the spectrum, and Dc is the cutoff radius.
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A 4× 4 distance matrix with the center at co-

ordinates (2,2) is

D(k, l) =











2.8284 2.2361 2.0000 2.2361
2.2361 1.4142 1.0000 1.4142
2.0000 1.0000 0 1.0000
2.2361 1.4142 1.0000 1.4142











If we specify that the cutoff radius is 1.9, then

the lowpass filter spectrum is

H(k, l) =











0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1










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A highpass filter in the frequency domain is

defined as
H(k, l) =

{

0, for D(k, l) ≤ Dc

1, for D(k, l) > Dc

where D(k, l) =
√

k2 + l2 is the distance be-

tween the spectral point (k, l) and the center

of the spectrum, and Dc is the cutoff radius. A

highpass filter is also defined, in terms of the

spectrum of the lowpass filter, as
Hh(k, l) = 1−Hl(k, l)

where Hh(k, l) and Hl(k, l) are, respectively, the

spectra of highpass and lowpass filters.

83



The spectrum of the lowpass Butterworth filter

is defined as
H(k, l) =

1

1+
(

D(k,l)
Dc

)2n

where n is the order of the filter.

The spectrum of the Butterworth highpass fil-

ter is defined as
H(k, l) =

1

1+
(

Dc
D(k,l)

)2n

where Dc is the cutoff frequency and n is the

order of the filter.

84



The spectrum of the lowpass Gaussian filter is

defined as

H(k, l) = e
−D2(k,l)

2D2
c

The attenuation is e−0.5 = 0.6065 at D(k, l) =

Dc = σ.

The Gaussian highpass filter is defined, in terms

of the spectrum of that of its lowpass filter, as

Hh(k, l) = 1−Hl(k, l) = 1− e
−D2(k,l)

2D2
c

where Hh(k, l) and Hl(k, l) are, respectively, the

spectra of highpass and lowpass filters.
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Restoration Chapter 5

Inverse filtering
Y (k, l) = X(k, l)Hd(k, l)

where Y (k, l), X(k, l), and Hd(k, l) are the cor-

responding DFTs of the degraded image, the

input image and the impulse response of the

degradation process. The image can be re-

stored by the operation, called inverse filtering,

X(k, l) =
Y (k, l)

Hd(k, l)
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Wiener Filter

The problem is to find the estimate, x̂(n), of

x(n) from y(n) such that the least-squares er-

ror, E, is

E =
N−1
∑

n=0

(x(n)− x̂(n))2

minimized. Assuming that the estimated sig-

nal x̂(n) is given by
x̂(n) =

∑

k

y(n− k)hr(k)

the task is to find the filter coefficients so that

the least-squares error is minimized.
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From Parseval’s theorem,

E =
1

N

N−1
∑

k=0

|(X(k)− X̂(k))|2

X̂(k) = Hr(k)Y (k) = Hr(k)Hd(k)X(k)+Hr(k)S(k)

X(k)−X̂(k) = (1−Hr(k)Hd(k))X(k)−Hr(k)S(k)
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E =
1

N

N−1
∑

k=0

|(1−Hr(k)Hd(k))X(k) −Hr(k, l)S(k)|2

=
1

N

N−1
∑

k=0

|(1−Hr(k)Hd(k))X(k)|2 + |Hr(k)S(k)|2

=
1

N

N−1
∑

k=0

|(1−Hr(k)Hd(k))|2|X(k)|2+|Hr(k)|2|S(k)|2
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Setting the derivative of the last expression

with respect to Hr(k) equal to zero, we get

2(−(1−H∗
r (k)H

∗
d(k))Hd(k)|X(k)|2+H∗

r(k)|S(k)|2)=0

H∗
r(k) =

Hd(k)|X(k)|2
|Hd(k)|2|X(k)|2 + |S(k)|2

Hr(k) =
H∗

d(k)

|Hd(k)|2 + |S(k)|2/|X(k)|2
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2-D Wiener filter

Hr(k, l) =
H∗

d(k, l)

|Hd(k, l)|2 + |S(k, l)|2/|X(k, l)|2

where |Hd(k, l)|2 is the power spectrum of the

degradation process, Hr(k, l) is the DFT of the

Wiener filter, |S(k, l)|2 and |X(k, l)|2 are the

power spectral densities of the noise and the

true image, respectively. The restored image

x̂(m,n) is obtained from the degraded image

y(m,n) as
x̂(m,n) = IDFT(Hr(k, l)Y (k, l))
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1. Find the DFT Y (k, l) of the degraded im-

age y(m,n).

2. Derive the Wiener filter Hr(k, l).

3. Multiply pointwise Y (k, l) with the Wiener

filter Hr(k, l).

4. Compute the IDFT Hr(k, l)Y (k, l) to get

the restored image.
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Image Degradation Model

Let x(m,n) be a N ×N image and hd(m,n) be

the P ×Q impulse response of the process due

to motion and x(m,n) ↔ X(k, l). Then,

x(m− p, n− q) ↔ X(k, l)e−j2πN (kp+lq)

y(m,n) =
P−1
∑

p=0

Q−1
∑

q=0

x(m− p, n− q)

Hd(k, l) =
P−1
∑

p=0

Q−1
∑

q=0

e−j2πN pke−j2πN qk

= e−j π
N (P−1)k

(

sin( π
NPk)

sin( π
Nk)

)

e−j π
N (Q−1)l

(

sin( π
NQl)

sin( π
N l)

)
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Chapter 6 Geometric Transformations

Bilinear Interpolation

•x(m,n) •x(m,n+1)
•x(m′, n′)

•x(m+1, n) •x(m+1, n+1)

The bilinear interpolated value x(m′, n′) of a

pixel at the location (m′, n′) of an image is
x(m′, n′)=(1− c)((1− r)x(m,n) + (r)x(m+1, n))

+(c)((1−r)x(m,n+1)+(r)x(m+1, n+1))

where r = m′ − m and c = n′ − n and the dis-

tance between pixel locations is one.
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The affine transform, in homogenous form, is






m′
n′
1






=







a b c
d e f
0 0 1













m
n
1







Appropriate values of the transformation ma-

trix are to be used for each type of transfor-

mation.
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Scaling
a = 3/4, e = 1/2 then m′ = (3/4)m, n′ = (1/2)n

The transformation matrix and its inverse are






3/4 0 0
0 1/2 0
0 0 1













4/3 0 0
0 2 0
0 0 1







4 × 4 image and its 3× 2 scaled version using

the nearest-neighbor interpolation










2 1 3 4
1 1 2 3
4 2 1 3
2 2 3 1

















2 3
1 2
2 3






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Using the backward mapping (inverse of the

transformation matrix), we get the middle ma-

trix of the coordinates from that of the output.

Using the nearest-neighbor interpolation, we

round the coordinates of the middle matrix to

get the right matrix. The values correspond-

ing to these coordinates in the input matrix

are the output values. For example, (2,0) in

the output matrix corresponds to (3,0) in the

input matrix and the output value is 2.






(0,0) (0,1)
(1,0) (1,1)
(2,0) (2,1)













(0.0,0) (0.0,2)
(1.3,0) (1.3,2)
(2.7,0) (2.7,2)













(0,0) (0,2)
(1,0) (1,2)
(3,0) (3,2)






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Shear

b = 0, d = 1 then m′ = m, n′ = m+ n

The transformation matrix and its inverse are






1 0 0
1 1 0
0 0 1













1 0 0
−1 1 0
0 0 1







4 × 4 image and its sheared version using the

nearest-neighbor interpolation are










2 1 3 4
1 1 2 3
4 2 1 3
2 2 3 1





















2 1 3 4 0 0 0
0 1 1 2 3 0 0
0 0 4 2 1 3 0
0 0 0 2 2 3 1











98



The maximum value index n′ takes is 3+3 = 6.

Therefore, the size of the output image will be

4× 7. The coordinates are










(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)
(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)











Using the backward mapping (inverse of the

transformation matrix), we get the matrix










(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)
(1,−1) (1,0) (1,1) (1,2) (1,3) (1,4) (1,5)
(2,−2) (2,−1) (2,0) (2,1) (2,2) (2,3) (2,4)
(3,−3) (3,−2) (3,−1) (3,0) (3,1) (3,2) (3,3)










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b = 0.3, d = 0 then m′ = m+0.3n, n′ = n

The transformation matrix and its inverse are






1 0.3 0
0 1 0
0 0 1













1 −0.3 0
0 1 0
0 0 1







A 4×4 image and its sheared version using the

nearest-neighbor interpolation are











2 1 3 4
1 1 2 3
4 2 1 3
2 2 3 1



























2 1 0 0
1 1 3 4
4 2 2 3
2 2 1 3
0 0 3 1
















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The maximum value index m′ takes is 3 +

3(0.3) = 3.9. Therefore, the size of the output

image will be 5× 4. The coordinates are
















(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)
(4,0) (4,1) (4,2) (4,3)

















Using the backward mapping and then round-

ing, we get the matrices
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















(0,0) (−0.3,1) (−0.6,2) (−0.9,3)
(1,0) (0.7,1) (0.4,2) (0.1,3)
(2,0) (1.7,1) (1.4,2) (1.1,3)
(3,0) (2.7,1) (2.4,2) (2.1,3)
(4,0) (3.7,1) (3.4,2) (3.1,3)

































(0,0) (0,1) (−1,2) (−1,3)
(1,0) (1,1) (0,2) (0,3)
(2,0) (2,1) (1,2) (1,3)
(3,0) (3,1) (2,2) (2,3)
(4,0) (4,1) (3,2) (3,3)
















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Rotation. The output image coordinates are
















(2,−2) (2,−1) (2,0) (2,1) (2,2)
(1,−2) (1,−1) (1,0) (1,1) (1,2)
(0,−2) (0,−1) (0,0) (0,1) (0,2)

(−1,−2) (−1,−1) (−1,0) (−1,1) (−1,2)
(−2,−2) (−2,−1) (−2,0) (−2,1) (−2,2)

















The backward mapped coordinates, rounded

to 1 digit after the decimal point, are
















2.8,0.0 2.1,0.7 1.4,1.4 0.7,2.1 0.0,2.8
2.1,−0.7 1.4,0.0 0.7,0.7 0.0,1.4−0.7,2.1
1.4,−1.4 0.7,−0.7 0.0,0.0 −0.7,0.7−1.4,1.4
0.7,−2.1 0.0,−1.4−0.7,−0.7 −1.4,0.0−2.1,0.7
0.0,−2.8−0.7,−2.1−1.4,−1.4−2.1,−0.7−2.8,0.0

















103



The input image and the rotated images using

nearest-neighbor and bilinear interpolation are,

respectively,











9 1 3 7
6 8 0 4
5 4 6 1
2 7 3 5



























0 0 7 0 0
0 1 0 1 0
9 8 4 6 5
0 5 4 7 0
0 0 2 0 0

































0 0 6.4 0 0
0 2.17 1.45 2.54 0

8.13 6.56 4.50 4.64 4.54
0 5.54 4.57 5.00 0
0 0 2.64 0 0
















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Correlation. 1-D

rxy(m) =
∞
∑

n=−∞
x(n)y(n−m), m = 0,±1,±2, . . .

2-D

rxy(m,n) =
∞
∑

k=−∞

∞
∑

l=−∞
x(k, l)y(k −m, l − n)
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The normalized cross correlation rnxy(m,n) (cor-

relation coefficient) of images x(m,n) and y(m,n)

is defined as a/
√
bc,

a =
∞
∑

k=−∞

∞
∑

l=−∞
(x(k, l)− x̄l)(y(k−m, l− n)− ȳ)

b =
∞
∑

k=−∞

∞
∑

l=−∞
(x(k, l)− x̄l)

2

c =
∞
∑

k=−∞

∞
∑

l=−∞
(y(k −m, l − n)− ȳ)2
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Radon Transform Chapter 7

In the Radon transform, an image is repre-

sented by its mappings with respect to a set

of lines at various angles represented by po-

lar coordinates. The values at various polar

coordinates are the transform coefficients.

When an image is represented in Radon trans-

form form, we are able to form the image of

the interior of an object with out intrusion. In

its implementation, we use the 1-D DFT and

interpolation operations.
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slope-intercept form of a line

y = mx+ c

normal form of a line

x cos(θ) + y sin(θ) = s

where s is always positive and 0 ≤ θ < 360◦. A

line is expressed in terms of its perpendicular

distance s from the line to the origin and the

angle θ subtended between the perpendicular

line and the x-axis.
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Given a linear equation
√
3x + y + 2 = 0, let

us put it in the normal form of a line. Shift

the constant term to the other side and ensure

that it is positive. We get −
√
3x−y = 2. Since

x and y have to be associated with cos(θ) and

sin(θ), respectively and cos2(θ) + sin2(θ) = 1,

the coefficients have to be normalized. Divide

both sides by the square root of the sum of

the squares of the constants associated with x

and y. Since
√

(−
√
3)2 + (−1)2 = 2, we get

−
√
3

2
x−1

2
y=

2

2
=1 or x cos(210◦)+y sin(210◦)=1

with θ = 210◦ and s = 1.
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Radon transform R(s, θ) of f(x, y)

R(s, θ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos(θ)+y sin(θ)−s)dx dy

−∞ < s < ∞, 0 ≤ θ < π

Using the coordinate transformation, the re-

lations between the coordinate systems (x, y)

and (s, n′) (rotated) are given by
s = x cos(θ) + y sin(θ)

n′ = −x sin(θ) + y cos(θ)

x = s cos(θ)− n′ sin(θ)
y = s sin(θ) + n′ cos(θ)
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In the rotated coordinate system (s, n′),

R(s, θ)=
∫ ∞

−∞
f(s cos(θ)−n′ sin(θ), s sin(θ)+n′ cos(θ)) dn′

The back-projection of R(s, θ) is defined as

f̂(x, y) =

∫ π

0
R(x cos(θ) + y sin(θ), θ) dθ

where f̂(x, y) is a blurred version of f(x, y).
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f(x, y) =

{

1 for x2 + y2 ≤ r2

0 otherwise

R(s, θ) = 2

∫

√
r2−s2

0
f(s, n′) dn′ = 2

∫

√
r2−s2

0
1 dn′

=

{

2
√

r2 − s2 for |s| ≤ r
0 otherwise
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Radon transform of a 2-D delayed impulse f(x, y) =

δ(x− x0, y − y0)

R(s, θ) =

∫ ∞

−∞

∫ ∞

−∞
δ(x− x0, y − y0)

δ(x cos(θ) + y sin(θ)− s)dx dy

= δ(x0 cos(θ) + y0 sin(θ)− s)

As the strength of the impulse is concentrated

only when its argument becomes zero, the Radon

transform is given by

x0 cos(θ)+y0 sin(θ)−s = 0 or s = x0 cos(θ)+y0 sin(θ)
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The point (x0, y0), where the impulse occurs in

the spatial-domain, can be described in polar

coordinates as

x0 = r cos(φ), y0 = r sin(φ) and r =
√

x20 + y20,

tan(φ) =
y0
x0

, x0 6= 0

The Radon transform, in terms of r and φ, is

given by

s = r cos(φ) cos(θ) + r sin(φ) sin(θ)

= r cos(φ− θ) = r cos(θ − φ)
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Properties

R(s, θ) = R(−s, θ ± 180◦)

f(x, y) ↔ R(s, θ) → f(x− x0, y − y0)

↔ R(s− x0 cos(θ)− y0 sin(θ), θ)

f(x, y) ↔ R(s, θ) → f(kx, ky) ↔ 1

|k|
R(ks, θ), k 6= 0
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The Radon transform is approximated for a

N ×N image x(m,n) as

R(s, θ) =
N−1
∑

m=0

N−1
∑

n=0

x(m,n)δ(m cos(θ)+n sin(θ)−s)

In the rotated coordinate system (s, n′)

R(s, θ) =
∑

n′
x(s cos(θ)−n′ sin(θ), s sin(θ)+n′ cos(θ))

The back-projection is
x̂(m,n) =

∑

θ

R(m cos(θ) + n sin(θ), θ)

x̂(m,n) is a discrete and blurred version of

x(m,n).
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Find the Radon transform of the 2× 2 image

x(m,n) =

[

1 4
2 5

]

and reconstruct the image by back-projection.

The origin (0,0) be at the bottom left corner.

With θ = 0◦, the sum of the columns yields

R(0,0◦) = 3 and R(1,0◦) = 9. The average

(DC) value of the image is 3. This value has

to be subtracted from the image to find the

transform at other angles.

x(m,n) =

[

1− 3 4− 3
2− 3 5− 3

]

=

[

−2 1
−1 2

]
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With θ = 90◦, the sum of the rows yields

R(0,90◦) = 1 and R(1,90◦) = −1

Let us reconstruct the image using Equation (7.12).

With m = 0, n = 0 and θ = 0◦, we get

x(0,0) = R(0,0◦) = 3. Proceeding similarly,

we get the reconstructed image corresponding

to θ = 0◦ as

x0(m,n) =

[

3 9
3 9

]

The reconstructed image corresponding to θ =

90◦ is
x90(m,n) =

[

−1 −1
1 1

]
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The sum of the partially reconstructed images

is the final image given by

x(m,n) = x0(m,n) + x90(m,n)

=

[

3 9
3 9

]

+

[

−1 −1
1 1

]

=

[

2 8
4 10

]

which is the same as the input image multiplied

by 2.
{R(0,0◦)=

3

2
, R(1,0◦)=

9

2
,

R(0,90◦)=
1

2
, R(1,90◦)=−1

2
}
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Let us find the relation between the Radon

transform and the 2-D DFT spectrum of an

image. The 2-D DFT X(k, l) of a N×N image

x(m,n) is defined as

X(k, l) =
N−1
∑

m=0

N−1
∑

n=0

x(m,n)e−j2πN (mk+nl)

Let the frequency index l be 0. Then,

X(k, 0) =
N−1
∑

m=0

{
N−1
∑

n=0

x(m,n)}e−j2πN (mk)

The summation inside the braces is R(s,0◦).
NR(s,0◦) ↔ X(k, 0). Similarly NR(s,90◦) ↔ X(0, l)
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The 1-D row DFT of the image and the col-

umn DFT of this partial transform is the 2-

DFT [

5 −3
7 −3

] [

2 0
12 −6

]

The 1-D IDFT of the first row coefficients

{12,−6} is {3,9} = {R(0,0◦), R(1,0◦)}. The

1-D IDFT of the first column coefficients {0,2}
is {1,−1} = {R(0,90◦), R(1,90◦)}. X(0,0) can

be included only in one computation.
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As we computed the 1-D 2-point IDFT using

the 2 × 2 2-D DFT coefficients, we have to

divide these coefficients by 2 to get the true

Radon transform coefficients. The conclusion

is that the 1-D DFT of the Radon transform

R(s, θk) in a certain direction is the 2-D DFT

X(s, θk) of the image in the same direction with

a scale factor.
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Find the Radon transform of the 8× 8 image

x(m,n) = sin

(

2π

8
n

)

The 8-point 1-D DFT spectrum with θ = 90◦

is {0,−j32,0,0,0,0,0, j32}

The IDFT of this spectrum
8√
2
{0,1,

√
2,1,0,−1,−

√
2,−1}

is the set of Radon transform coefficients
{R(0,90◦), R(1,90◦), R(2,90◦), R(3,90◦),

R(−4,90◦), R(−3,90◦), R(−2,90◦), R(−1,90◦)}

multiplied by 8.
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The 1-D FT of a projection R(s, θ) is

R(jω, θ) =

∫ ∞

−∞
R(s, θ)e−jωsds

Substituting for R(s, θ), we get

R(jω, θ) =

∫ ∞

−∞

∫ ∞

−∞
f(s cos(θ)− n′ sin(θ),

s sin(θ) + n′ cos(θ))e−jωs dsdn′

=
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−jω(x cos(θ)+y sin(θ))dx dy

Letting ω1 = ω cos(θ) and ω2 = ω sin(θ),

R(jω, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j(ω1x+ω2y)dx dy

= F(jω1, jω2) |ω1=ω cos(θ),ω2=ω sin(θ)
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Find the Radon transform of the 8× 8 image

x(m,n) = cos

(

2π

8
(m+ n)

)

The DFT of the image in the center-zero for-

mat is

X(k, l) =































0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 32 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 32 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0






























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13-point 1-D DFT spectrum with θ = 45◦ is
{0,16,10.9807,0,0,0,0,0,0,0,0,10.9807, 16}

in the normal format. The IDFT of this spec-

trum, in the center-zero format is,
{−0.8942,−1.6389,−2.1374,−1.3435,

0.7993,3.1392, 4.1509,3.1392,

0.7993,−1.3435,−2.1374,−1.6389,−0.8942}

is the set of Radon transform coefficients
R(s,45◦), s = −6,−5, . . . ,5,6

multiplied by 64/13.
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The 2-D IFT of the FT, F(jω1, jω2), of an

image f(x, y) is given by

f(x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
F(jω1, jω2)e

j(ω1x+ω2y)dω1dω2

Letting ω1 = ω cos(θ), ω2 = ω sin(θ), the dif-

ferentials dω1 dω2 become ωdω dθ. Then, using

the polar coordinates and the Fourier-slice the-

orem, we get

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0
F(jω cos(θ), jω sin(θ))

ejω(x cos(θ)+y sin(θ))ωdω dθ
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=
1

4π2

∫ 2π

0

∫ ∞

0
R(jω, θ)ejω(x cos(θ)+y sin(θ))ωdω dθ

=
1

4π2

∫ π

0

∫ ∞

−∞
R(jω, θ)ejω(x cos(θ)+y sin(θ))|ω|dω dθ

=
1

4π2

∫ π

0

(∫ ∞

−∞
|ω|R(jω, θ)ejωsds

)

∣

∣

∣s=(x cos(θ)+y sin(θ))
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From Example (7.6), the ramp filtered 13-

point 1-D DFT spectrum with θ = 45◦ is
{0,16,21.9614,0,0,0,0,0,0,0,0,21.9614, 16}

in the normal format. The IDFT of this spec-

trum, multiplied by the scaling constant 13/64

and in the center-zero format, is
{0.1222,−0.2915,−0.6910,−0.6061,

0.0407, 0.8326,1.1863,0.8326, 0.0407,

−0.6061,−0.6910,−0.2915,0.1222}

= R(s,45◦), s = −6,−5, . . . ,5,6
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A procedure for computing the Radon trans-

form is as follows.

1. Compute the 2-D DFT of the image.

2. Interpolate the spectral values to get the

spectrum on polar coordinates, for all an-

gles of interest.

3. Compute the 1-D IDFT of the spectral val-

ues at all angles to get the Radon trans-

form.
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A procedure for computing the inverse RT
1. Compute the 1-D DFT of each of the pro-

jections of the image.
2. Multiply each DFT by the ramp filter. Take

into account the DC value of the spectrum.
3. Compute the 1-D IDFT of the spectral val-

ues at all angles to get the filtered Radon

transform.
4. Obtain the filtered back-projected image

using the back-projection definition, Equa-

tion (7.12), for each angle of projection.
5. Sum all the filtered backprojected images

to reconstruct the image.
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The steps of the Hough transform algorithm:

1. Select a set of points for the parameters

(s, θ).

2. For each value of θ, compute the corre-

sponding value of s using Equation (7.2)

for all nonzero pixels.

3. Create an accumulator matrix which accu-

mulates the number of occurrences of each

pair of (s, θ), as all the pixels with value 1

in the input image are analyzed.

4. Find the accumulator values those are greater

than a given threshold.
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x(m,n) =

















0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0
















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(s, θ) =

























(0,0) (0,45) (0,90) (0,135)

(1,0) (1,45) (1,90) (1,135)

(2,0) (2,45) (2,90) (2,135)
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acc(m,n) =

















0 0 1 1
4 2 1 2
0 1 1 0
0 1 1 0
0 0 0 0
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Morphology Chapter 8

The process is similar to linear convolution and

correlation, except that logical operations AND

(denoted by &), OR (denoted by |) and NOT

(denoted by ~) are used (a logical neighbor-

hood operation) instead of arithmetic opera-

tions. Pixels are added to an object or deleted

from it. Border extension has to be defined

and windows (structuring elements) may have

to be rotated by 180◦.
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The dilation of the binary image x(m,n) and

the window or mask h(m,n) is defined as

y(m,n) = |k |l(h(k, l) & x(m− k, n− l))

= x(m,n)⊕ h(m,n), (∀k, l)h(k, l) = 1

where m and n vary over the dimensions of the

image and k and l vary over the dimensions of

the structuring element.

137

































0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0
0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0





























































0 0 0 1 1 0 0 0
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0 0 0 1 1 1 0 0































h(m,n) =




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1 1 0
0 1 0
1 0 0





 h(−m,−n) =







0 0 1
0 1 0
0 1 1






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The erosion of the binary image x(m,n) and

the structuring element h(m,n) is defined as

y(m,n) = &k &l(h(k, l) & x(m+ k, n+ l))

= x(m,n)⊖ h(m,n), (∀k, l)h(k, l) = 1
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x(m,n)⊖ h(m,n) = z̃(m,n),

z(m,n) = x̃(m,n)⊕ h(−m,−n)

x(m,n)⊕ h(m,n) = z̃(m,n),

z(m,n) = x̃(m,n)⊖ h(−m,−n)
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Dilation preceded by erosion is called the open-

ing operation, defined as

y(m,n) = x(m,n) ◦ h(m,n)

= (x(m,n)⊖ h(m,n))⊕ h(m,n)
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After erosion and, then, dilation yields,






























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0





























































0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 0
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• All the 1s in the object those are com-

pletely covered by the structuring element

are preserved.

• All the 1s those can be reached by the

structuring element, when it is placed at

the 1s obtained in the erosion operation

are also preserved.

144



Dilation followed by erosion is called the clos-

ing operation, defined as

y(m,n) = x(m,n) • h(m,n)

= (x(m,n)⊕ h(m,n))⊖ h(m,n)
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After dilation and, then, erosion yields,
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hit-and-miss transformation is

x(m,n) ©⋆ h(m,n) = (x(m,n)⊖ hh(m,n))

& (x̃(m,n)⊖ hms(m,n))
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hh(m,n) =


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input x(m,n) and its complement x̃(m,n) are
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y(m,n) =




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Thinning






























0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0





























































0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0































151



Thickening of an image can be carried out by:

• Complement the input image x(m,n) to

get x̃(m,n).

• Thin x̃(m,n) to get ỹ(m,n).

• Complement ỹ(m,n) to get the thickened

input image y(m,n).

Additional processing may be required after

each iteration, in case of extraneous pixels ap-

pearing in the output.
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Skeletons. Let the input image be x(m,n)

and the distance of the pixels from the region

marked with 1s in the complement of x(m,n),

x̃(m,n), be D(m,n).
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Distances in D(m,n) are scaled by 5.
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We start with a matrix skel(m,n), of the same

size as the input image, with all zero entries.

Each pixel in this matrix is replaced by a 1, if

the corresponding value in D(m,n) is greater

or equal to the largest value of its 4 nearest

neighbors. For example, consider the neigh-

borhood of D(1,1).






0
0 5 5

5







As D(1,1) = 5 is greater or equal to the largest

value of its 4 nearest neighbors, skel(1, 1) = 1.
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The skeleton of the input image is

skel(m, n) =


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If we erode an image by a structuring element

by one iteration, then the pixels in the border

of the objects are set to zero, leaving the in-

terior pixels unchanged. Now, if we subtract

the output of erosion from the input, an image

with object boundary is obtained.
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The output of erosion and the extracted border

are, respectively,
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Border pixels are assumed to be 0s.
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Given a region defined by its boundary and the

location of a pixel within it, the interior of the

region is to be filled. Let the image be x(m,n).

The algorithm is defined by
xl(m,n) = (xl−1(m,n)⊕h(m,n))&x̃(m,n), l = 2,3, . .

where
h(m,n) =







0 1 0
1 1 1
0 1 0







and x1(m,n) is a matrix of the same size as

x(m,n) with all entries zero except a 1 at the

given location inside the region.
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Repeatedly, we keep dilating the current xl(m,n)

with h(m,n) and AND with the complement

of the input image until there is no difference

between two consecutive versions of xl(m,n).

Without the AND operation, the dilation oper-

ation is uncontrolled and will fill up the entire

image.
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Let x(m,n) be the given image and (3,3) is

the given starting location. Then,
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

























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0































The OR of x5(m,n) and x(m,n) gives the filled

region.
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The dilation of the gray-level image x(m,n)

and the mask h(m,n) is defined as

y(m,n) = max
k,l

{x(m−k, n−l)} = x(m,n)⊕h(m,n)

Consider the 8× 8 image and the 3× 3 mask.






























88 100 104 101 114 110 110 107
92 102 104 107 112 110 104 92

103 105 111 112 114 108 86 39
106 107 112 113 107 73 26 25
111 114 14 104 64 23 25 28
117 115 97 45 15 13 23 29
119 93 32 0 15 11 19 23
88 15 0 2 10 13 11 15






























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Assuming that the border pixels are replicated,

the output of the dilation operation is






























102 104 107 114 114 114 110 110
105 111 112 114 114 114 110 110
107 112 113 114 114 114 110 104
114 114 114 114 114 114 108 86
117 117 115 113 113 107 73 29
119 119 115 104 104 64 29 29
119 119 115 97 45 23 29 29
119 119 93 32 15 19 23 23






























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The erosion of the gray-level image x(m,n) and

the mask h(m,n) is defined as

y(m,n) = min
k,l

{x(m+k, n+l)} = x(m,n)⊖h(m,n)

The output of the erosion operation is






























88 88 100 101 101 104 92 92
88 88 100 101 101 86 39 39
92 92 102 104 73 26 25 25
103 14 14 14 23 23 23 25
106 14 14 14 13 13 13 23
93 14 0 0 0 11 11 19
15 0 0 0 0 10 11 11
15 0 0 0 0 10 11 11






























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x(m,n) ◦ h(m,n) = (x(m,n)⊖ h(m,n))⊕ h(m,n)

x(m,n) • h(m,n) = (x(m,n)⊕ h(m,n))⊖ h(m,n)

The output of the opening operation is






























88 100 101 101 104 104 104 92
92 102 104 104 104 104 104 92
103 103 104 104 104 101 86 39
106 106 104 104 104 73 26 25
106 106 14 23 23 23 25 25
106 106 14 14 14 13 23 23
93 93 14 0 11 11 19 19
15 15 0 0 10 11 11 11






























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The output of the closing operation is






























102 102 104 107 114 110 110 110
102 102 104 107 114 110 104 104
105 105 111 112 114 108 86 86
107 107 112 113 107 73 29 29
114 114 104 104 64 29 29 29
117 115 97 45 23 23 23 29
119 93 32 15 15 15 19 23
119 93 32 15 15 15 19 23






























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Edge detection Chapter 9

An edge is a line of interaction of two sur-

faces. Edge pixels are characterized by the

abrupt change of intensity with the neighboring

pixels. The boundaries of objects in an image

are identified by edges. Edges are useful for

tasks such as segmentation, registration and

object identification. Edges provide a compact

representation of objects than pixels. Edges

are amplitude discontinuities between regions

of an image. In the frequency-domain, an edge

is characterized by the high frequency compo-

nents of the spectrum of the image. Basically,

edge detection constitutes highpass filtering.
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Operator Grad, n-direction Grad, m-direction

Prewitt







−1 0 1
−1 0 1
−1 0 1













−1 −1 −1
0 0 0
1 1 1







Sobel









−1 0 1

−2 0 2
−1 0 1

















−1 −2 −1

0 0 0
1 2 1








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The Prewitt operator averages intensity changes

over six intervals. The Sobel operator gives

twice the weight to the central pixels. The val-

ues of these masks are to be multiplied by the

corresponding pixel values of the image point-

wise and divided by the sum of the magnitudes

of the elements of the mask. These operators

compute the differences (highpass filtering in

one direction) of local sums (lowpass filtering

in another direction), which has the effect of

reducing the noise.






1 0 −1
2 0 −2
1 0 −1





 =







1
2
1







[

1 0 −1
]
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six sample neighborhoods of the image x(m,n).






0 0 0
1 1 1
1 1 1













0 1 1
0 1 1
0 1 1













1 0 0
1 1 0
1 1 1













0 0 0
1 0 0
1 1 1













1 1 0
1 0 0
1 0 0













1 1 1
1 1 0
1 0 0







Using the Sobel operator,

1 2 3 4 5 6

gm 4 0 3 4 -2 -3

gn 0 4 -3 -2 -4 -3

θ 0◦ 90◦ −45◦ −26◦ 63◦ 45◦
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Canny edge detection algorithm is based on

three objectives.

1. The edges found should be true edges and

all the edges should be found. The prob-

ability of finding a good edge should be

maximized and that of a false edge should

be minimized. Achieving this objective re-

quires a high signal-to-noise ratio.

2. The location of the edge found must be as

close as possible to the exact location.

3. There should be no multiple responses for

a single edge.
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Finding the edges in an image using the Canny

edge detection algorithm consists of the fol-

lowing four basic steps.

1. The input image is smoothed by a Gaussian

filter to improve the SNR.

2. The gradient magnitude and angle images

are formed using a gradient filter.

3. The edge image is thinned by using non-

maximum suppression of the gradient im-

age.

4. By using two thresholds and connectivity

constraint, the final edge image is formed.
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The steps involved in implementing the LoG

filter are:

1. Reduce the noise by filtering the image

with the Gaussian lowpass filter.

2. Apply the Laplacian to the smoothed im-

age.

3. Detect the zero-crossings to find the edge

image.
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g(x, y) = e
−(x2+y2)

2σ2

Taking the partial derivative with respect to x

and y, we get

(− x

σ2
)e

−(x2+y2)

2σ2 + (− y

σ2
)e

−(x2+y2)

2σ2

Taking the partial derivative with respect to x

and y again, we get ∇2g(x, y) =

(
x2

σ2
− 1)(

1

σ2
)e

−(x2+y2)

2σ2 + (
y2

σ2
− 1)(

1

σ2
)e

−(x2+y2)

2σ2

=

(

1

σ2

)

(

(x2 + y2)

σ2
− 2

)

e
−(x2+y2)

2σ2
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Segmentation Chapter 10

A region can be defined by its interior part or

border (edge). The homogeneity P of a region

R is defined as

P(R) =

{

1, if f(R) ∈ H
0, otherwise

where f is function defining the homogene-

ity and H is the predefined range of values of

f . The function f can be defined in any suit-

able way. It could be the standard deviation of

the region, the mean, the difference between

the largest and smallest values of pixels, co-

occurrence matrices or a gray level threshold.
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Segmentation of an image is its partitioning

into a set of N connected regions R(n), n =

0,1, . . . , N − 1. Points to be noted are:
1. The sum of all the regions is exactly equal

to the image.
2. A pixel of the image belongs to only one

of the regions.
3. The predicate of a region holds for all its

pixels.
4. The predicates of adjacent regions must be

different.
Edge detection, thresholding, region growing

and splitting and watershed segmentation are

the basic approaches of segmentation.
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Point Detection

The mask, which is one of the versions of the

Laplacian masks presented in Chapter 2 mul-

tiplied by -1, for point detection is







−1 −1 −1

−1 8 −1
−1 −1 −1









The mask is applied to the image and the out-

put is thresholded to detect the isolated points

(segmentation of points). Note that, for edge

detection, the Laplacian response is analyzed

for zero crossings.
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Line Detection

The masks for line detection at 4 directions

(E-W, NW-SE, N-S, NE-SW) are, respectively,








−1 −1 −1

2 2 2
−1 −1 −1

















2 −1 −1

−1 2 −1
−1 −1 2

















−1 2 −1

−1 2 −1
−1 2 −1

















−1 −1 2

−1 2 −1
2 −1 −1








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Threshold-based Segmentation

If we are able to determine the threshold be-

tween an object and the background, then the

region corresponding to the object is labeled

by selecting the pixels those are in the object

range of gray levels. The thresholding process

of an image x(m,n), yielding its segmented

version R(m,n), is given by

R(m,n) =

{

o, for x(m,n) ≥ T
b, otherwise

where T is the threshold and o and b represent

the object and the background.

R(m,n) =











o1, for x(m,n) > T1
o2, for T0 < x(m,n) ≤ T1
b, otherwise
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









185 182 45 2
188 140 10 5
189 74 2 7
164 21 5 6











The initial threshold is the average 76.5625.










185 182
188 140
189
164





















45 2
10 5

74 2 7
21 5 6











The first group has values greater than 76.5625

with the average 174.6667. The second group

has the remaining values with the average 17.7.

The average of the values, 96.1833, is the new

threshold value.
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In the next iteration, we get the same value

and the algorithm terminates. The segmented

image is










1 1 0 0
1 1 0 0
1 0 0 0
1 0 0 0










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Thresholding by Otsu’s Method

This method maximizes the between-class vari-

ance σ2b (k) and it is based on the histogram of

the image. Let the range of gray levels of the

image be from 0 to L − 1 and the normalized

histogram values be hn(k), k = 0,1, . . . L − 1.

Let the threshold T be k, k = 0,1, . . . , L − 1.

Then, the pixels are placed in two groups g1

and g2 with the first group consists of pixels

with gray levels in the range from 0 to k and

the other group consists of pixels with gray

levels in the range from k +1 to L− 1.

σ2b (k) = hc1(k)(ha1(k) − ha(L− 1))2

+ hc2(k)(ha2(k) − ha(L− 1))2
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where the normalized cumulative histograms

and the average intensities are defined as

hc1(k) =
k
∑

i=0

hn(i), hc2(k) =
L−1
∑

i=k+1

hn(i) = 1−hc1(k)

ha1(k)=
1

hc1(k)

k
∑

i=0

(i)hn(i), ha2(k)=
1

hc2(k)

L−1
∑

i=k+1

(i)hn(i)

ha(k) =
k
∑

i=0

(i)hn(i), ha(L−1) =
L−1
∑

i=0

(i)hn(i)
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hc2(k) = 1− hc1(k), ha1(k) =
ha(k)

hc1(k)
,

ha2(k) = ha(L−1)−ha(k)
1−hc1(k)

, we get σ2b (k) as

σ2b (k) =
(ha(L− 1)hc1(k) − ha(k))2

hc1(k)(1 − hc1(k))
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









2 7 6 6
5 6 5 5
6 5 5 6
7 6 4 5











k 0 1 2 3 4 5 6 7

hn(k) 0 0 0.06 0 0.06 0.37 0.37 0.12

hc1(k) 0 0 0.06 0.06 0.12 0.5 0.87 1

ha(k) 0 0 0.12 0.12 0.37 2.25 4.5 5.37

σ2b (k) 0 0 0.75 0.75 0.80 0.76 0.37 0

Since it is a 3-bit image, the gray level range,

shown in the first row, varies from 0 to 7. For

example, σ2b (2)

((5.375)(0.0625) − 0.125)2

(0.0625(1 − 0.0625))
= 0.7594
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The index of the maximum variance 0.8058 is

4 and it is the optimum threshold value T . If

the maximum variance occurs more than once,

then the average value of the indices is taken as

the threshold. The measure of the separability

is given by

0.8058
∑7

k=0(k − 5.375)2hn(k)
= 0.5928

This measure varies from 0 (for an image with

a single gray level) to 1 (for a 2-valued image

with gray levels 0 and L− 1 only).
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Region-based Segmentation

For a pixel to be a part of a region, it should

have the attributes characterizing the region

and also should meet some connectivity con-

straints. Given a set of pixels, if we can identify

at the least one 4-connected path between any

pair of pixels, then it is a 4-connected region.
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Typical attributes characterizing a region are:

• The average of the gray values of the pixels

in a region is significantly different from

that of the image.

• The standard deviation of the gray level

values of the pixels in the region is within

a distinct range.

• Pixels in the region exhibit distinct textural

properties.
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Region Growing

In the region growing method of segmentation,

we start with a pixel, called a seed pixel and

start checking the similarity of the attributes of

the pixels and the connectivity. All the pixels

satisfying the criteria are collected and they

form the region. The process is continued until

all the pixels of the image are assigned to some

region.
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Consider the 8× 8 image x(m,n).






























179 179 183 180 185 183 182 175
175 179 185 179 181 179 177 173
180 183 181 170 181 176 174 174
181 181 182 180 174 176 179 175
185 184 185 177 172 176 174 170
184 184 182 182 175 172 165 167
177 185 181 175 171 166 165 169
179 184 177 173 170 171 171 172































Let the seed pixel be x(2,5) = 176, shown in

boldface. Let us use the 4-connectivity and

the region is to be made of pixels with gray

levels less than or equal to 176.
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





























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





























































0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1






























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After two more iterations, the final region map

is obtained.






























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1





























































0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1






























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With 8-connectivity, the final region matrix is

R(m,n) =































0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1






























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Region Splitting and Merging

While region growing is a bottom-up approach,

region splitting and merging is a top-down ap-

proach. The criteria of segmentation does not

hold for the whole image and we divide the

image into subimages. This division is carried

out recursively until the criteria is met and the

merging of all these subimages as required in

the region being formed. The data structure

most suitable for this algorithm is quadtree.

This is a tree in which each node, except the

leaves, has four children. Each segmented re-

gion is represented by a leaf.
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We start with a region image of the same size

as the input image with all the pixel values

equal to 1. After the first iteration of dividing

it into four quadrants of size 4 × 4, yields the

region map R1(m,n).

R1(m,n) =































0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1






























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Each quadrant is checked with the constraint

that the pixel value is less than or equal to

176, along with the 4-connectivity condition.

Since there are no such pixels in the top-left

quadrant of the image, all its entries are zeros.
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Each of the other three quadrants are further

divided into four quadrants of size 2×2. After

examining the pixels, the region map, at the

end of the second iteration, is

R2(m,n) =































0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1































In the third iteration, the image is divided into

subimages of size 1 × 1 and the rest of the

pixels are labeled.
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The Distance Transform

Let the binary image x(m,n) be

x(m,n) =































0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 1 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0






























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The minimum distance between each pixel to

its nearest pixel in the connected region de-

fined by the 1s is






























4.47 3.60 2.82 2.23 1.41 1.00 1.41 2.23
4.12 3.16 2.23 1.41 1.00 0 1.00 2.00
4.00 3.00 2.00 1.00 0 0 1.00 1.41
3.60 2.82 2.23 1.41 1.00 0 0 1.00
3.16 2.23 1.41 1.00 1.00 0 0 1.00
3.00 2.00 1.00 0 0 0 1.00 1.41
3.16 2.23 1.41 1.00 1.00 0 1.00 2.00
3.60 2.82 2.23 2.00 1.41 1.00 1.41 2.23






























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The algorithm is essentially passing 2 masks

over the image. The forward and backward

masks are

hf(m,n) =







∞ 1 ∞
1 0 ∞
∞ ∞ ∞







hb(m,n) =







∞ ∞ ∞
∞ 0 1
∞ 1 ∞






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Given image is sufficiently zero-padded and all

the zero-valued pixels are assigned a value of

∞ and the pixels with value 1 are assigned the

value 0, giving a initial distance matrix DS as

DS(m,n)=







































∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 0 ∞ ∞
∞ ∞ ∞ ∞ 0 0 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞






































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Now, the forward mask is passed over the ma-

trix, starting from top left corner of the image.

The mask is moved from left to right and top

to bottom. At each pixel, the pixels of the

mask are added with the corresponding pixels

of the image. The minimum value of this set

replaces current value in the DS matrix. At

each pixel location, the updated values of the

DS matrix are to be used in the computation,

not those of the initial DS matrix.
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For example, the pixels in the third row are

updated as
[

∞ 1
1 0

]

+

[

∞ ∞
∞ 0

]

=

[

∞ ∞
∞ 0

]

[

∞ 1
1 0

]

+

[

∞ ∞
0 ∞

]

=

[

∞ ∞
1 ∞

]

[

∞ 1
1 0

]

+

[

∞ ∞
1 ∞

]

=

[

∞ ∞
2 ∞

]
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The result of the first pass is

DS(m,n)=







































∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 1 2 ∞
∞ ∞ ∞ ∞ ∞ 0 0 1 2 ∞
∞ ∞ ∞ ∞ ∞ 1 0 0 1 ∞
∞ ∞ ∞ ∞ ∞ 2 0 0 1 ∞
∞ ∞ ∞ ∞ 0 0 0 1 2 ∞
∞ ∞ ∞ ∞ 1 1 0 1 2 ∞
∞ ∞ ∞ ∞ 2 2 1 2 3 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞







































Now, the backward mask is passed over this

matrix, starting from bottom right corner of

the image. The mask is moved from right to

left and bottom to top.
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At each pixel, the pixels of the mask are added

with the corresponding pixels of the image.

The minimum value of this set replaces cur-

rent value in the DS matrix. The result of the

second pass is

DS(m,n) =































6 5 4 3 2 1 2 3
5 4 3 2 1 0 1 2
4 3 2 1 0 0 1 2
5 4 3 2 1 0 0 1
4 3 2 1 1 0 0 1
3 2 1 0 0 0 1 2
4 3 2 1 1 0 1 2
5 4 3 2 2 1 2 3































These distances are approximate. A more ac-

curate result can be obtained using integer val-

ued masks and by increasing the mask size.
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Chapter 11 Object Description

The descriptor is a set of numbers character-

izing the salient properties of the object. The

descriptor is compared with that of the refer-

ence object for object recognition. A descrip-

tor should completely characterize an object

and, at the same time, it should be concise.

A descriptor should be unique. Similar objects

should have similar descriptors. A descriptor

should be invariant with respect to scaling, ro-

tation and translation.
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A region of an image is characterized by its

internal or external features. Internal features

are based on the pixels comprising the region.

Typical features are area, perimeter and com-

pactness. External features are related to the

boundary of the region.
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Boundary Descriptors

A region is characterized by its boundary and

the form of the boundary is called the shape.

A point is on the boundary if there is at the

least one of its neighbors is outside the region

and the point itself is in the region.
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Chain Codes

The set of coordinates of all the boundary pix-

els of a region is its description. However, we

are looking for efficient ways to represent the

shape. One way is to use a code for each prin-

cipal direction the trace of the boundary could

move.

210



Signatures

A signature is a 1-D representation of a 2-D

region by the radial distances of its boundary.

The radial distances are computed from the

centroid of the boundary. Then, the signa-

ture is plotted, distances versus angle. The

signature of a closed boundary is a periodic

function.
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x(m,n) =











0 1 1 1
0 1 0 1
0 1 0 1
0 1 1 1











With the top left corner the origin (0,0), the

centroid of the boundary is at (1.5,2). The

signature is

θ 0◦ 34◦ 63◦ 117◦ 146◦

d(θ) 1.5 1.8028 1.1180 1.1180 1.8028

180◦ −34◦ −63◦ −117◦ −146◦

1.5 1.8028 1.1180 1.1180 1.8028

For example, the distance of the bottom right

pixel at coordinates (3,3) is
√

(1.5− 3)2 + (2− 3)2 = 1.8028 and 6 34◦
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Fourier descriptors

Closed boundaries of an object in an image can

be compactly represented using Fourier coeffi-

cients. The two coordinates of all the bound-

ary pixels are represented in the transform do-

main. Starting from a point in the boundary

with coordinates (m0, n0), followed by

(ml, nl), l = 1,2, . . . N − 1

can be considered as a 1-D periodic complex

data
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d(l) = (ml + jnl), l = 0,1, . . . N − 1

of period N . The first and second coordinates

represent, respectively, the real and imaginary

parts of the complex data. Then, the DFT

of d(l), the set of N 1-D DFT coefficients,

is the Fourier descriptor of the boundary with

significant advantages.
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x(m,n)=











0 0 0 0
0 1 1 1
0 1 0 1
0 1 1 1











x(m+1, n+1)=











1 1 1 0
1 0 1 0
1 1 1 0
0 0 0 0











The complex data b(l) formed from the bound-

ary coordinates of x(m,n) is

{1+j1,2+j1,3+j1,3+j2,3+j3,2+j3,1+j3,1+j2}

The DFT of b(l) is

B(k) = {16+ j16,−6.8284− j6.8284,0,0,0,

− 1.1716− j1.1716,0,0}
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The complex data b(l) formed from the bound-

ary coordinates of x(m+1, n+1) is

{0+j0,1+j0,2+j0,2+j1,2+j2,1+j2,0+j2,0+j1}

The DFT of b(l) is

B(k) = {8+ j8,−6.8284− j6.8284,0,0,0,

− 1.1716− j1.1716,0,0}
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Geometrical Features

Area The area of a connected region x(m,n)

of a binary image, measured in pixels, is defined

as A =
∑

m

∑

n
x(m,n)

It is the number of pixels with value 1 in the

region.

Perimeter Let the coordinates of the perime-

ter of a region is given by x(k) and y(k). Then,

the perimeter of the region is defined by

P =
∑

k

√

(x(k)− x(k − 1))2 + (y(k)− y(k − 1))2

It is the distance around the boundary of the

region.
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Compactness Compactness is defined, in terms

of the perimeter and area, as

C =
4πA

P2
=

A

P2/(4π)

For a circular region, which has the highest

compactness, with radius r,

C = (4π(πr2))/((2πr)(2πr)) = 1
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For a square, C = π/4. It is a measure of

the area enclosing ability of the shape of the

region. It is the ratio of the area of the re-

gion and the area of the circle with the same

perimeter as that of the region. Let the object

be a unit square. Its area is 1 and perimeter

is 4. The radius of a circle with the same

perimeter is (4/(2π)) and its area is 4/π.
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Irregularity Irregularity of a region is defined

by

I =
πmaxk (x(k)− x̄)2 + (y(k)− ȳ)2)

A

where (x̄, ȳ) are the averages of the coordinates

of the region. This is a measure of the density

of the region. The numerator defines the area

of the smallest circle enclosing the region. For

circular shapes, I is unity. For a square, it is

I = 0.5π.
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Euler Number

A topological descriptor of an image x(m,n) is

that which remains the same for all its versions

of continuous one-to-one transformations (rubber-

sheet distortions). This descriptor is not af-

fected by rotation or stretching. The Euler

number E is defined as the difference between

the number of connected components and the

number of holes.
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The (p+ q)th order moment of a N ×N region

x(k, l) is defined as

mpq =
N−1
∑

k=0

N−1
∑

l=0

kplqx(k, l), p = 0,1,2, . . . , q = 0,1,2, . .

m00 =
N−1
∑

k=0

N−1
∑

l=0

x(k, l), m10 =
N−1
∑

k=0

N−1
∑

l=0

kx(k, l),

m01 =
N−1
∑

k=0

N−1
∑

l=0

lx(k, l)

Zero-order moment is the area. First-order

moments are this area multiplied by their dis-

tances of their center of gravity from the ori-

gin.
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The coordinates of the centroid (center of mass)

of the region is defined as

k̄ =
m10

m00
and l̄ =

m01

m00

The central moments, which are translation-

invariant since centroids are part of their defi-

nition, are defined as

µpq =
N−1
∑

k=0

N−1
∑

l=0

(k−k̄)p(l−l̄)qx(k, l), p, q = 0,1,2, . . .

The normalized central moments, which are

invariant to translation, scaling and rotation,

are defined as

ηpq =
µpq

µ
γ
00

, γ =
(p+ q)

2
+ 1, (p+ q) = 2,3, . . .
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The first four normalized central moments are

defined as

φ1 = η20 + η02

φ2 = (η20 − η02)
2 +4η211

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2

φ4 = (η30 + η12)
2 + (η21 + η03)

2
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x(k, l) =











0 1 1 0
0 1 1 0
0 0 1 1
0 0 0 0











The coordinates of the top left corner are (0,0).

{m00 = 6, m10 = 6, m01 = 11, k̄ = 1, l̄ = 1.8333}

µ11 = (−1)(−0.8333)+(−1)(0.1667)+(1)(0.1667)

+(1)(1.1667) = 2, µ20 = 4, µ02 = 2.8333

η11 = 0.0556, η20 = 0.1111, η02 = 0.0787,

φ1 = 0.1898, φ2 = 0.0134

225



First two moments of the four objects in Fig-

ure 11.7(b)

φ1 0.4519 0.2320 0.4554 0.4510

φ2 0.1149 0.0269 0.1082 0.1116
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Texture is a pattern resembling a mosaic, made

by a physical composition of an object using

constituents of various sizes and shapes. Sta-

tistical features, taken over the whole image or

in its neighborhoods, are used to characterize

a texture.
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Histogram Based Features

0 19 20 22

53 4 23 25

116 16 17 24

110 90 4 23

The histogram of this image and its normalized

version (with a precision of 2 digits) are

g lev 0 4 16 17 19 20 22 23
his 1 2 1 1 1 1 1 2

hisn 0.06 0.13 0.06 0.06 0.06 0.06 0.06 0.13

g lev 24 25 53 90 110 116
his 1 1 1 1 1 1

hisn 0.06 0.06 0.06 0.06 0.06 0.06

which also is the probability p(u) of the occur-

rences of the gray levels.
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Mean The mean m, which is the average in-

tensity, is given by

m =
L−1
∑

u=0

up(u)

For the example, the mean is 35.3750 with

L = 256.

Standard deviation The standard deviation

σ, which is the average contrast and the 2nd

moment, is defined as

σ =

√

√

√

√

√

L−1
∑

u=0

(u−m)2p(u)

For the example, σ = 35.8153. The square of

the standard deviation is the variance.
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Smoothness A measure of the smoothness of

the texture is defined as

S = 1− 1

1+ σ2n

where σ2n is a normalized version of the variance

and

σ2n =
σ2

(L− 1)2

For the example image,

S = 1− 1

1 + (35.81532/2552)
= 1− 1

1.0197
= 0.0193

For regions with constant intensity, S = 0 and

it increases with increasing value of σ towards

the limit 1.
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Skew The skew, which indicates the asymme-

try of the histogram about the mean and the

third moment, is defined as

Sk =
L−1
∑

u=0

(u−m)3p(u)

Sk is zero for a symmetric histogram. It is

positive for a right skew (spreads to the right)

and negative for a left skew (spreads to the

left). Sk is also normalized in the same way

and the normalized value is 0.9341 (positive

skew) for the example.
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Uniformity This measure, uniformity of en-

ergy, is given by

U =
L−1
∑

u=0

p2(u)

U is maximum when all the intensity levels are

the same and it has a lower value otherwise.

For the example image, U = 0.0781.

Entropy The entropy, which is measure of ran-

domness, is given by

E = −
L−1
∑

u=0

p(u) log2(p(u))

A lower value indicates a higher redundancy in

the image data and should give a high com-

pression ratio, when compressed. E = 3.75.
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Co-occurrence Matrix Based Features

A pair of pixels, with gray levels a and b, oc-

curring with the same spatial relationship is co-

occurrence. Co-occurrence matrices carry in-

formation of the spatial relationships between

pixels. Let the number of gray levels in x(m,n)

be L, {0,1, . . . , L−1}. A co-occurrence matrix

g(m,n) is a L × L matrix in which each ele-

ment g(m,n) represents the number of occur-

rences of a pair of pixels with intensities Im and

In, in a given spatial relationship in the image

x(m,n). It is the joint probability distribution

of pairs of pixels.
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The probability p(Im, In) of the co-occurrences

of the gray levels Im and In is defined as

p(Im, In) =
n(Im, In)

M
=

g(m,n)

M

where n(Im, In) is the number of occurrences

with x(k, l) = Im and x(p, q) = In and M is the

total number of occurrences in g(m,n), the co-

occurrence matrix.
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x(m,n) =































52 71 72 74 64 55 43 74
105 56 75 77 64 60 53 78
168 68 69 76 69 62 58 71
162 142 56 75 73 64 60 53
162 180 89 67 79 68 63 30
186 175 156 61 78 72 63 53
210 171 192 87 67 77 67 59
250 158 188 140 59 77 69 61






























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xq(m,n) =































1 2 2 2 2 1 1 2
3 1 2 2 2 1 1 2
5 2 2 2 2 1 1 2
5 4 1 2 2 2 1 1
5 5 2 2 2 2 1 0
5 5 4 1 2 2 1 1
6 5 6 2 2 2 2 1
7 4 5 4 1 2 2 1






























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Let the spatial relationship be x(m,n) and x(m+

1, n + 1). That is, a pixel and its immedi-

ate bottom right (diagonal) neighbor form the

pair. With this spatial relationship and xq(m,n),

we get the co-occurrence matrix g(m,n) as

g(m,n) =































0 0 0 0 0 0 0 0
1 7 5 0 0 0 0 0
0 8 16 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 2 4 1 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0






























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The joint probability matrix p(m,n) is defined

as

p(m,n) =
g(m,n)

M
, M =

∑

m

∑

n
g(m,n)

For the example, with M = 49, we get p(m,n)

as






























0 0 0 0 0 0 0 0
0.02 0.14 0.10 0 0 0 0 0

0 0.16 0.32 0 0 0 0 0
0 0 0.02 0 0 0 0 0
0 0 0.04 0 0 0 0 0
0 0 0 0 0.04 0.08 0.02 0
0 0 0 0 0.04 0 0 0
0 0 0 0 0 0 0 0































238



Maximum probability

It is in the range 0 to 1 and indicates the max-

imum value of p(m,n). For the example, it is

p(2,2) = 0.3265.

Entropy

E = −
N−1
∑

m=0

N−1
∑

n=0

p(m,n) log2 p(m,n)

For a p(m,n) with all zero entries, E = 0. For

a p(m,n) with all entries equal, E = 2 log2N .

For the example, E = 2.8951 with N = 8.
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Contrast

The contrast in intensity of a pixel and its

neighbor over the image is given by this mea-

sure. The range of values for C is from 0 to

(N − 1)2.

C =
N−1
∑

m=0

N−1
∑

n=0

(m− n)2p(m,n)

For the example, C = 0.6939.

Energy (Uniformity)

This measure is an indicator of the energy. Its

range is from 0 to 1.

U =
N−1
∑

m=0

N−1
∑

n=0

p2(m,n)

For the example, U = 0.1770.
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Homogeneity

H =
N−1
∑

m=0

N−1
∑

N=0

p(m,n)

1 + |(m− n)|
This measure indicates the closeness of the

distribution of the values in the co-occurrence

matrix to its diagonal and it is in the range 0

to 1. For the example, H = 0.7619.

241



Correlation

R =
N−1
∑

m=0

N−1
∑

n=0

(m− m̄)(n− n̄)p(m,n)

σmσn
, σm 6= 0, σn 6= 0

m̄ =
N−1
∑

m=0

N−1
∑

n=0

mp(m,n), n̄ =
N−1
∑

m=0

N−1
∑

n=0

np(m,n)

σ2m =
N−1
∑

m=0

N−1
∑

n=0

(m− m̄)2p(m,n),

σ2n =
N−1
∑

m=0

N−1
∑

n=0

(n− n̄)2p(m,n)

This measure, with range -1 to 1, indicates

the similarity of a pixel to its neighbor over the

entire image. For the example, R = 0.8508.
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Texture measures based on co-occurrence ma-

trix

Figure max p E H U

11.8 0.0008 12.8600 0.1687 0.0002

11.9 0.0072 13.7058 0.1594 0.0002

11.10 0.0006 13.7221 0.1262 0.0001

11.11 0.0018 14.5118 0.0965 5.7966e-05

C R

380.6666 0.9188

756.0718 0.8703

838.6651 0.7726

2.2376e+03 0.6996

These measures can be used to differentiate

the various types of textures.
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Principal Component Analysis

Matrix representation of data is transformed to

its diagonal form. The data gets uncorrelated

and sufficient number of components can be

used to approximate the data with a desired

accuracy.
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Let there be M vector variables, with each hav-

ing N samples. M variables form a N × M

matrix

X = [x0,x1 · · ·xM−1]

We want to find a matrix

Y = [y0,y1 · · ·yM−1]

such that

Y = XR

and the columns of Y are mutually orthogonal.
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Y TY = (XR)T (XR) = D

where D is a diagonal matrix. Using the prop-

erty

(AB)T = BTAT

and multiplying both sides by 1/(N − 1), we

get

1

N − 1
Y TY = RT (X

TX)

N − 1
R = D
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Given two 2 × 2 images, let us find the cor-

responding PCA components and their covari-

ance. Then, let us reconstruct the original im-

ages from the PCA components.

a(m,n) =

[

2 1
3 6

]

b(m,n) =

[

3 2
1 2

]

The mean of the matrices are am = 3 and

bm = 2. Subtracting the respective means

from the matrices, we get

az(m,n) =

[

−1 −2
0 3

]

bz(m,n) =

[

1 0
−1 0

]

Converting az(m,n) and bz(m,n) into column

vectors and concatenating, we get,
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x(m,n) =











−1 1
−2 0
0 −1
3 0











The covariance of this matrix is the scaled

product of its transpose with itself.

C(m,n) =
1

3

[

−1 −2 0 3
1 0 −1 0

]











−1 1
−2 0
0 −1
3 0











=
1

3

[

14 −1
−1 2

]

The covariance matrix is square with the di-

mensions equal to the number of images. This

matrix is always symmetric.
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In order to find the eigenvectors of this ma-

trix, we have to find its eigenvalues. They are

found by equating the determinant of λI − C

to zero (its characteristic equation), where I

is the identity matrix.
∣

∣

∣

∣

∣

λ− 14
3

1
3

1
3 λ− 2

3

∣

∣

∣

∣

∣

= 0

λ2−16

3
λ+

27

9
= 0 or (λ−4.6943)(λ−0.6391) = 0

The two eigenvalues are {4.6943,0.6391}.
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For finding the eigenvectors, we use the equa-

tion
(λI −C)R = 0

For λ = 4.6943, we get
[

4.6943− 14
3

1
3

1
3 4.6943− 2

3

] [

R(0)
R(1)

]

= 0

For λ = 0.6391, we get
[

0.6391− 14
3

1
3

1
3 0.6391− 2

3

] [

R(0)
R(1)

]

= 0

Solving the two sets of equations, we get the

eigenvectors as

R =

[

−0.9966 0.0825
0.0825 0.9966

]
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The first and second columns are, respectively,

the eigenvectors corresponding to eigenvalues

4.6943 and 0.6391. The principal components

are found as

Y = XR =











−1 1
−2 0
0 −1
3 0











[

−0.9966 0.0825
0.0825 0.9966

]

=











1.0791 0.9141
1.9932 −0.1650

−0.0825 −0.9966
−2.9898 0.2474










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The covariance of the PCA component ma-

trix is the scaled product of its transpose with

itself.

C(m,n)

[

4.6943 0
0 0.6391

]

components are uncorrelated (two zero entries)
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The input can be reconstructed by

Y RT +











am bm
am bm
am bm
am bm











=











1.0791 0.9141
1.9932 −0.1650

−0.0825 −0.9966
−2.9898 0.2474











[

−0.9966 0.0825
0.0825 0.9966

]

+











3 2
3 2
3 2
3 2











=











−1 1
−2 0
0 −1
3 0











+











3 2
3 2
3 2
3 2











=











2 3
1 2
3 1
6 2










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Recognition Chapter 12

There are two main types of classification: (i)

supervised classification and (ii) unsupervised

classification. In supervised classification, fea-

tures are specified apriori and objects are clas-

sified using them. Typical methods used are

minimum distance, k-nearest neighbors, deci-

sion trees, and statistical (based on probabil-

ity distribution models). The decision is prior.

In unsupervised classification, we classify the

objects by the constraints imposed by the fea-

tures. Partition the data into groups by clus-

tering. Unknown, but distinct set of feature

classes are generated. Decision is posterior.
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The k-nearest Neighbors Classifier

In this method, the feature set of a test object

is compared with the reference set and the test

object is assigned to the class whose features

differ, with respect to some measure, by the

least from that of the test object. In terms of

distance, computing the distance between the

k closest points in the reference sets of feature

vectors is the measure. The method is simple,

capable of classifying overlapping classes and

classes with complex structures. With k = 1,

it becomes the minimum distance classifier.
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The Minimum-Distance-to-Mean Classifier

In this approach, the classification of an object

is based on discriminant functions. Let the fea-

ture vector x of three classes be m1, m2, m3.

Three discriminant functions, d1(x), d2(x) and

d3(x), have to be found such that the discrim-

inant function corresponding to an unclassified

feature vector will yield a value that is greater

than those of the functions to which it does not

belong. In the case of two or more functions

evaluating to the same value, the decision is

arbitrary or based on some additional factors.
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Let the elements of a test vector be
x = {x1, x2, . . . , xM}

Let the mean vector of the N classes be
{m1,m2, . . . ,mN}

dn(x) = xmT
n − 0.5mnm

T
n , n = 1,2, . . . , N

Let us get the discriminant functions for the

last example. For the first feature vector {6400,320},
[

x1 x2
]

[

6400
320

]

− 0.5
[

6400 320
]

[

6400
320

]

d1(x) = 6400x1 +320x2 − 20531200
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Similarly, for class2, we get

d2(x) = 2500x1 +5000x2 − 15625000

For class3, we get

d3(x) = 500x1 +1000x2 − 625000

For the first feature vector, these three func-

tions yield

{20531200, 1975000, 2895000}

As expected, the first function has the greatest

value. Similarly, for the second feature vector,

these three functions yield

{−2931200,15625000, 5625000}
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For the third feature vector, these three func-

tions yield

{−17011200,−9375000,625000}

The difference between two discriminant func-

tions is the boundary discriminant function for

them. For example, the boundary discriminant

function for class1 and class2 is

d12(x) = d1(x)− d2(x)

= (6400x1 +320x2 − 20531200)

− (2500x1 +5000x2 − 15625000)

= 3900x1 − 4680x2 − 4906200
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Decision Tree Classification

In this approach, the feature space is split into

unique regions sequentially. A decision is ar-

rived with out testing all classes and, therefore,

it is advantages when the number of classes is

large. Further, the convergence of this algo-

rithm is guaranteed irrespective of the nature

of the feature space.
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Object A B C D E

Holes 1 2 0 1 0

End points 2 0 2 0 3

The first step is to sort the entries in each row

of the feature vectors in ascending order. The

maximum difference of adjacent entries in the

first row is 1. It is 2 in the second row. A

threshold, that is the average of the two ad-

jacent entries, (0,2), that produced the max-

imum difference, is set. Using this threshold

f2 = (0+ 2)/2 = 1, the rows are partitioned
[

0 0 1 1 2
0 0 2 2 3

]
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This partitioning continues until each partition

is just one column. Now, the order of the first

row is restored and we get
[

2 1 1 0 0
0 0 2 2 3

]

Now, the left side partition includes the let-

ters B and D, which can be partitioned with

a threshold f1 = (1 + 2)/2 = 1.5. The un-

sorted and sorted feature vectors for the other

3 characters are[

1 0 0
2 2 3

] [

0 0 1
2 2 3

]

The letter A can be isolated with a threshold

f1 = 0.5. Letters C and E can be isolated with

a threshold f2 = 2.5.
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Bayesian approach to statistical methods of

classification is based not only on the set of

samples but also on the pertinent prior infor-

mation. Bayesian approach provides discrim-

inant or decision functions, which maximize

the number of correct classifications and min-

imize the incorrect ones. Let there be N fea-

tures x = {x1, x2, . . . , xN}T representing the M

classes of objects, {ω1, ω2, . . . , ωM}. Let the

a priori probability of an arbitrary object be-

longs to class ωi be {p(ω1), p(ω2), . . . , p(ωM)}.
Let the density distribution of all the objects

be p(x). Let the conditional density distribu-

tion of all the objects belonging to class ωi be

p(x/ωi).
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Using the Bayes’ theorem, the decision rule is

if p(x/ωi)p(ωi) > p(x/ωj)p(ωj) for all i 6= j,

then assign x to ωi

Since it is difficult to estimate the actual p(x/ωi),

in practice, the Gaussian (normal) density func-

tion is often assumed.

For normal distribution,

p(x/ωi) =
1

(2π)(N/2)|Ci|0.5
e−0.5(x−mi)

TC−1
i (x−mi)

where the mean mi and the covariance matrix

Ci are approximated as
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mi =
1

Ni

∑

x∈ωi

x

Ci =
1

Ni − 1
(xi − mi)

T (xi − mi)

The determinant of Ci is |Ci|. Since p(x/ωi)

in exponential form, the decision rule

di(x) = p(x/ωi)p(ωi)

is changed to the form

di(x)=loge(p(x/ωi)p(ωi))=loge(p(x/ωi))+loge(p(ωi))

for convenience of manipulation. This change

in form does not alter the numerical order of

the decision functions required for classifica-

tion.
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Substituting the exponential expression for p(x/ωi),

we get the Bayes decision function

di(x)=loge(p(ωi))− 0.5 loge(|Ci|)
− 0.5((x−mi)

TC−1
i (x−mi)), i=1,2, . . . ,M

As the term −(N/2) loge(2π) does not affect

the numerical order of the decision functions,

it is dropped. If all the covariance matrices are

the same, then

di(x) = loge(p(ωi))+xTC−1mi−0.5mT
i C

−1mi
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Further, if C is the identity matrix and p(ωi) =

1/M, i = 1,2, . . . ,M , then

di(x) = xTmi − 0.5mT
i mi, i = 1,2, . . . ,M

which is the same for the decision function of

the minimum distance classifier.
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Chapter 13 Image Compression

Image compression is finding the minimum amount

of data required to represent a certain amount

of information and it is a necessity for efficient

storage and transmission of images. The basic

property of images that enables compression is

that the spectrum of practical images tends to

fall off to insignificant levels at high frequen-

cies.
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Redundancies in an image

The redundancies in an image can be classified

into three major types:

(i) coding redundancy

(ii) interpixel redundancy

(iii) irrelevant information.
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DWT

The DWT is more often used for image com-

pression. The major advantage is the struc-

ture of the DWT transformed image. Exploit-

ing this structure, the use of the DWT gives

better reconstructed images and compression

ratios, particularly at lower bit rates.
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Filters

The most suitable DWT filters are of biorthog-

onal type. The advantage is that longer sym-

metric filters are available. A symmetric filter

handles the border problem more effectively.

Further, symmetric filters provide linear phase

response, which is essential in the analysis of

images. The CDF 9/7 filter is often used for

lossy image compression. For lossless image

compression, the 5/3 spline filter is often used.
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Example Image

13 14 2 14

8 2 2 8

15 15 2 15

15 8 13 2
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Assignment of Huffman Codes

Char Freq Rel Code A Bits Code B Bits

2 5 5
16 1 5 11 10

8 3 3
16 001 9 01 6

13 2 2
16 0001 8 001 6

14 2 2
16 0000 8 000 6

15 4 4
16 01 8 10 8
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Entropy

Let the number of distinct values in an image

is N and the frequency of their occurrence be

s1, s2, . . . , sN

Entropy is defined as

E =
N
∑

k=1

p(sk) log2

(

1

p(sk)

)

where p(sk) is the probability of occurrence of

sk.
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The term log2(1/p(sk)) gives the number of

bits required to represent 1/p(sk). By multi-

plying this factor with p(sk), we get the bpp

required to code sk. The sum of bpp for all

the distinct values yields the bpp to code the

image. This equation can be equivalently writ-

ten as

E = −
N
∑

k=1

p(sk) log2(p(sk))
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Signal-to-noise ratio

signal-to-noise ratio, expressed in decibels, de-

fined as

SNR=10 log10



















N−1
∑

n1=0

N−1
∑

n2=0

x̂2(n1, n2)

N−1
∑

n1=0

N−1
∑

n2=0

(x(n1, n2)− x̂(n1, n2))
2


















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Lossless Predictive Coding

Consider the 4× 4 image

51 50 52 47

53 44 39 48

40 63 131 212

114 128 154 155

Let us use a filter with one coefficient with

value 1. Then,
x̂(m,n) = round (x(m,n− 1))

e(m,n) = x(m,n)− x̂(m,n) = x(m,n)− x(m,n− 1)

except for the first pixels of the rows.
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Predictive coding representation of the image

is
51 -1 2 -5

53 -9 -5 9

40 23 68 81

114 14 26 1
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The first column values remain the same. For

the first row, the second, third and fourth col-

umn values are 50−51 = −1, 52− 50 = 2 and

47 − 52 = −5, respectively. The values of the

other three rows are found similarly. For de-

compressing of the first row, the second, third

and fourth column values are 51 − 1 = 50,

50 + 2 = 52 and 52 − 5 = 47. In the input

image, there are 16 symbols each with proba-

bility 1/16. Therefore, the entropy is

−(16(1/16) log 2(1/16)) = 4
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In the coded image, there are 15 symbols (-5

repeats twice), 14 with probability 1/16 and

one with 2/16. Therefore, the entropy is

−(14(1/16) log 2(1/16) + (2/16) log2(2/16))

= 31/8 = 3.8750

To code the difference, we need one bit more

and, usually, the independent symbols in the

coded image is more than that of the input

image. However, due to the density of the his-

togram at the center, the coded image has a

lower entropy, as presented in the next exam-

ple.
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Example Image

172 188 189 186

178 187 189 192

188 190 196 197

191 193 197 199
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Level-shifted Image

44 60 61 58

50 59 61 64

60 62 68 69

63 65 69 71
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Compression Algorithm

• Level shift the image. Let the gray levels

be represented using p bits. Then, each

level-shifted pixel value of the image is ob-

tained by subtracting 2(p−1). This ensures

that the DWT coefficients are more evenly

distributed around zero and quantization

will be more effective.
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• Compute the 2-D DWT of the level-shifted

image, resulting in N×N coefficients, usu-

ally with real values, over some range.

• Quantize the coefficients to q quantization

levels, so that the fidelity of the recon-

structed image is adequate. Each value

in a range is mapped to an integer value.
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• Threshold the coefficients, if necessary, so

that coefficients with value less than a cho-

sen threshold are replaced by zero.

• Code the resulting sequence of symbols us-

ing a suitable coder so that the redundancy

is exploited to reduce the number of bits

required to store the compressed image.
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The row DWT on the top and the 2-D Haar

DWT (bottom) of the level-shifted image

1√
2

104 119 -16 3

109 125 -9 -3

122 137 -2 -1

128 140 -2 -2

106.5 122.0 -12.5 0

125.0 138.5 -2.0 -1.5

-2.5 -3.0 -3.5 3.0

-3.0 -1.5 0 0.5
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Quantized Image

48 55 -5 0

56 62 0 0

-1 -1 -1 1

-1 0 0 0
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Huffman code of the image

{48,55,56,62, −5,0,0,0,

−1,−1,−1,0, −1,1,0,0}

The Huffman code of the image is

{0010 00001 00000 00011

00010 1 1 1 01 01 01 1 01 0011 1 1}
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2-D Haar DWT of the reconstructed

level-shifted image

105.5238 120.9127 -10.9921 0

123.1111 138.5000 0 0

-2.1984 -2.1984 -2.1984 2.1984

-2.1984 0 0 0
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Level-shifted reconstructed image

45.0675 58.2579 60.4563 58.2579

49.4643 58.2579 60.4563 62.6548

60.4563 60.4563 69.2500 69.2500

62.6548 62.6548 69.2500 69.2500
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Reconstructed image

173.0675 186.2579 188.4563 186.2579

177.4643 186.2579 188.4563 190.6548

188.4563 188.4563 197.2500 197.2500

190.6548 190.6548 197.2500 197.2500
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Color Image Processing Chapter 14

Any color can be specified by a set of basis col-

ors. Similar to the availability of various trans-

forms suitable for various applications, various

color models are available to suit various color

image processing tasks. RGB model is mostly

used for image acquisition and display. CMY

and CYMK models are used in color printing.

The HSI model is suitable for image processing

operations since it decouples the color compo-

nent from the intensity value of the image.
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The red, green and blue component pixel val-

ues at coordinates (73 : 76,173 : 176), respec-

tively, are

xr =











245 246 246 248
246 247 246 247
246 246 245 248
248 247 246 248











xg =











191 196 193 190
192 197 192 189
192 197 192 189
192 198 191 188










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xb =











222 225 223 223
223 226 223 222
223 225 222 222
223 224 221 224











In this neighborhood (about the center of the

top-right quadrant), the image is primarily white

and, therefore, the intensities of all the three

components are almost equal and high.
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The CMY (cyan, magenta and yellow) model

can be obtained from the RGB model using the

relationship, assuming color values have been

normalized to the range 0 to 1,






C
M
Y





 =







1
1
1





−







R
G
B







Note that cyan subtracts (absorbs) red com-

ponent and, therefore, when white light is re-

flected from an object with cyan color, the red

component will be zero. Similarly, magenta

and yellow surfaces do not reflect green and

blue, respectively.
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In the HSI (hue, saturation and intensity) model,

the intensity component is decoupled from the

color information, making it highly suitable for

developing image processing algorithms. Hu-

mans also describe a color using these compo-

nents rather than in terms of red, green, and

blue components.

Hue The true color attribute identifies colors

red, green, yellow, etc.

Saturation Indicates the amount of white color

mixed (color purity). More white in the

color will result in a low saturation value.

Intensity Is a measure of brightness. The in-

tensity of a dark color is low.
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This is a perception-based color model. The

conversion of a RGB image to a HSI image is

governed by the following equations.

H =

{

θ, for B ≤ G
360− θ, for B > G

,

θ = cos−1







0.5((R−G) + (R−B))
√

(R−G)2 + (R−B)(G−B)







S = 1− 3(min(R,G,B))

(R+G+B)
, I =

(R+G+B)

3
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The primary colors are separated by 120◦. This

model is derived by making the RGB color cube

stand on its black corner with intensity value

zero. Then, the white corner, with intensity

value one, is at the top. The two corners are

joined by the vertical intensity line, which gives

the intensity component of a pixel. The inten-

sity value I of any pixel x(H,S, I) is given by the

intersection of this line with a plane contain-

ing the pixel and perpendicular to the intensity

line. The intensity is the average of those of

the 3 components.
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The red color is set as the reference for mea-

suring the hue H of a pixel. The reference line

is from the center of the figure to the red color

corner. The color of a pixel x(H,S, I) H is the

angle, measured in the anticlockwise direction,

between this reference line and the line joining

the pixel and the center of the figure. There-

fore, H = 0◦ for red color and it is measured

along the circumference of the circle.

299



The saturation component S of a pixel is the

length of the line between the center of the

figure and the pixel (radial distance). It indi-

cates the purity of the color. If the color is

achromatic, then S = 0. For a pure color,

S = 1. This value is dependent on the number

of colors contributing to the color perception.

The higher the number, the lower is the value

of S. The smallest value of the RGB com-

ponents determines the amount of white color

possible.
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Color RGB values H S I

Red [1 0 0] 0 1 0 to 1/3

Green [0 1 0] 120◦/360 1 0 to 1/3

Blue [0 0 1] 240◦/360 1 0 to 1/3

Black [0 0 0] 0 0 0

White [1 1 1] 0 0 1

Cyan [0 1 1] 180◦/360 1 0 to 2/3

Magenta [1 0 1] 300◦/360 1 0 to 2/3

Yellow [1 1 0] 60◦/360 1 0 to 2/3

Table shows HSI model values for images with

pure primary colors, black, white and pure sec-

ondary colors with intensity varying from 0 to

1. The values in the table can be verified using

the defining equations.
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The conversion of a HSI image to a RGB image

is governed by the following equations.

RG sector (0◦ ≤ H < 120◦) :

B = I(1− S)

R = I

(

1+
S cos(H)

cos(60◦ −H)

)

G = 3I − (R+B)
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GB sector (120◦ ≤ H < 240◦) :

H = H − 120◦

R = I(1− S)

G = I

(

1 +
S cos(H)

cos(60◦ −H)

)

B = 3I − (R+G)
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BR sector (240◦ ≤ H ≤ 360◦) :

H = H − 240◦

G = I(1− S)

B = I

(

1 +
S cos(H)

cos(60◦ −H)

)

R = 3I − (B +G)
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The NTSC color model is used for television

in some countries. The advantage is that it is

suitable for both color and monochrome tele-

vision. The conversion between the formats

can be carried using a transformation and its

inverse. The luminance (intensity) is repre-

sented by the Y component and I and Q carry

color information jointly, hue and saturation.






Y
I
Q





 =







0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312













R
G
B






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For a gray scale image with no color, as the

RGB components are equal, the first row of the

transformation matrix adds to 1 and the other

two adds to zero. In finding the Y component,

more weight is given to the green component

in order to match the response of the human

visual system. The inverse transformation is






R
G
B





 =







1.0 0.956 0.621
1.0 −0.272 −0.647
1.0 −1.106 1.703













Y
I
Q






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The YCbCr model is mostly used in digital

video. The YCbCr model is a format in which

Y represents the intensity and Cb and Cr rep-

resent the chrominance. Cb component is the

difference between blue component and a ref-

erence value. Cr component is the difference

between red component and a reference value.

The energy of an image is more evenly dis-

tributed among its three components in the

RGB format. In the YCbCr format, the in-

tensity carries most of the energy. Therefore,

the chrominance component can be effectively

compressed requiring reduced storage require-

ments.
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The luminance is defined as a weighted aver-

age of that of the three components. Let the

intensity values of an image from 0 to 255 be

scaled to 0 to 1 obtained by dividing by 255.






Y
Cb
Cr





=







16
128
128





+







65.481 128.553 24.966
−37.797 −74.203 112.000
112.000 −93.786 −18.214













R
G
B







In this formula, let the RGB input values be

0 to 1. Then, output Y varies from 16 to

235. Outputs Cb and Cr vary from 16 to 240.

Scaling the output by 255, we get the outputs

in the range 0 to 1.
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The inverse transformation is






R
G
B






=







0.0046 0.0000 0.0063
0.0046 −0.0015 −0.0032
0.0046 0.0079 0.0000



















Y
Cb
Cr






−







16
128
128












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color map1 =

















0 0 1
1 0 1
1 1 0
1 0 0
0 1 0

















color map2 =

















1 1 0
0 1 0
0 0 1
1 1 1
1 0 1

















0 1-64 65-128 129-192 255

Blue Magenta Yellow Red Green

Yellow Green Blue White Magenta
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Let the partial derivatives of the RGB compo-

nents along the two directions, at each pixel,

be
{

∂R

∂x
,
∂G

∂x
,
∂B

∂x

}

and

{

∂R

∂y
,
∂G

∂y
,
∂B

∂y

}

The partial derivatives are approximated using

gradient operators, such as Sobel. Then,

gxx =

(

∂R

∂x

)2

+

(

∂G

∂x

)2

+

(

∂B

∂x

)2

,

gyy =

(

∂R

∂y

)2

+

(

∂G

∂y

)2

+

(

∂B

∂y

)2

,
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gxy =
∂R

∂x

∂R

∂y
+

∂G

∂x

∂G

∂y
+

∂B

∂x

∂B

∂y

The angle of the gradient is given by

θ1 = 0.5 tan−1

(

2gxy

gxx− gyy

)

, θ2 = θ1+
π

2

The magnitude of the gradient in the direction

of θ1 and θ2 is computed using the expression
√

0.5((gxx+gyy)+(gxx−gyy)cos(2θ)+2gxy sin(2θ))

The maximum of the two values is taken as

the magnitude of the gradient, which is then

thresholded.
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Segmentation

Let the average color of the region, to be seg-

mented, of the RGB image x(m,n) be {ar, ag, ab}.
Then, the square root of the sum of the Eu-

clidean distance between the reference and im-

age pixel color components is computed and

then it is subjected to a threshold. The dis-

tances are computed using the equation.
√

(xr(m,n)−ar)2+(xg(m,n)−ag)2+(xb(m,n)−ab)2)

The pixels with distances above the threshold

are not in the segment and are assigned the

value zero. The other pixels are assigned the

value 1.
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