Chapter 9

Miscellany; Some applications to
low-dimensional topology

Abstract In this chapter, we introduce some applications to low-dimensional topol-
ogy. To be precise, i§9.1, we see the Blanchfield pairing of knots, and consider
some properties. 189.2, we give a method to produce invariants of the Hurewicz
equivalence classes, including Lefschetz fibrations &etn §9.3, we discuss 3-
manifold invariants from 4-fold branched covering, in terms of quandle§9 l4,
we work with the Milnor invariant of links. I39.5, we introduce bilinear forms on
the twisted Alexander modules of links.

However, we should remark that discussions in this chapter are quite rough since
this section is a survey of applications of quandles. The reader interested in the
details should follow the references therein.

9.1 The Blanchfield pairings of knots

First, we briefly review tne Blanchfield pairing [Bla] of a knkitwith Alexander
polynomialAg . The abelianizatioms (S*\K) — Z = (t) yields the local coefficients
Z[t*1] of S\ K. SinceH (S~ K; Z[t*1]) is known to be torsion ovek[t*!], let Ak

be the minimal polynomial that annihilates the homology. Then, from the view of the
intersection form of the infinite cyclic covék, the Blanchfield pairing is defined

as a sesquilinear form

Blk : Hi(S\K; Z[tFY))®2 — Z[t*Y)/(Ak). 9.1)

The definition is roughly as follows. For simplicity, this section abbreviaii¢s!)
to A, and doesS®~ K to Yk, as in [Hil, KawBook]. Consider the sequence

0 A 25N S AJ(B) — 0 (exad) 9.2)

1 In many cases (see [KawBook, Tro, Hil]), the target is described as the m@dtigz[t=1].
However, the pairing factors throudjt™1]/(Ax) — Q(t)/Z[t*] sending[f] to [f /Ak].
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with local coefficients. Sincél;(Yk;A) is annihilated by the polynomialk from
the definition, thed-functor (i.e., Bockstein map) from (9.2) yields an isomorphism
B : HY(Yi; A /(D)) = H?(Yk; Z[t*Y]). To summarize, we have isomorphisms

Poincaé duality ) g1l

Hl(YK;A);)Hl(YK,dYK;A) (YK;/\)—>

— HY(Yi; A /(Ak)) =2 Homy (Hy(Yi;A),A /D). (9.3)

Here, the first one is immediately obtained by the injecik — Yk andH.. (dYx;A) =
0, and the last is done from the universal coefficient theorem. TB&p,is de-
fined to be the adjoint map of the composite (9.3). In particlkg,is non-singular
and isometry (i.e.t*1-invariant). Further, as is knowiBlk is hermitian, and can
be interpreted from the intersection form of the infinite cyclic covelypf see
[KawBook, Appendix] or [Hil, Ka] for the detalil.

We will give a diagrammatic computation Bix. The point is to reducBIx to
the cohomology pairing?y, (see§4.4 for the definition). Whereas the intersection in
ordinary homology is interpreted as a cohomology pairing via the Pdrthzality,
that of local coefficients (or, of abstract coverings) is little studied. As a typical
difficulty, Blk is hermitian, in contrast to the anti-hermiticity &fy.

However, the author showed that the Blanchfield pairing of knots can be recov-
ered from some cohomology pairizgy. Namely,

Theorem 9.1 ([N11]) Let K be a knot, andk € Z[t*]/(t*") be as above, and M be

the quotient modul&[t*1]/(Ax). Defineo : M @M — Z[t*1]/(Ax) by go(x,y) =
Xy. Then, there is &[t**]-module isomorphism

Hi(S\K; Z[tHY) 2 HY(SP K, 0 (S K); M)
such that the following equality holds for anyye Hi (SS\K; Z[t*1]) :

Dgolxy) = e Bl (xy) € 2 /().

We note thatl —t is invertible inZ[t*1]/(Ax) because of\k (1) = +1.

Proof (Rough description of the ideafheorem 7.28 says thid; (Yk;A) is identi-
fied with the cokernel aiV —V’ : A% — A%9, whereV' is the transpose of the Seifert
matrixV. Then, the inverse of the Bockstein map? is known to be presented by
(tV —V’)~1; see [Tro]. HenceBlk has the matrix presentatiga —t)(tV —V’)~1;
see [Kea] or [Tro] for the detalils.

On the other hand, we notice the Leibniz rule of the Bockstein map:

B*(x—y) =B (X) — y—x— B*(y) foranyx,y e H(Yk,dYk:A/(Ak)).

Here, the point of this proof is to find a 3-clagss Hs(Yk, Yk : Z) which roughly
satisfiesB.(v) = u. Then, we computeZy (x,y) = Yo(X — Y, [Z]) as

Wo(x =Y, 1) = Wo(x =¥, B.(v)) = Pr(B*(X) = ¥, V) — Pa(x— B*(y),V),



where we defingly : A @A /(Ak) — A/(Ak) and o : A/ (Ak) @A — A J(Ak) as
the canonical lifts offg. Since the cup product betwekrt andH? is the canonical
inner product (see the end §7.4.3), this pairing has a matrix presentation:

(x- (" =V)) .y =X (y- (v =V,
which turns out to bé1+t)x(V —t~1V/)y. In comparison with the matrix presen-

tation of Blx, we have the conclusio®y,(x,y) = Yo(x — y,[Z]) = (1—t) (1 +
t) - Blk (x,y) as required. O

In conclusion, we have a diagrammatic computation of the Blanchfield pairjng.
Indeed, by Theorem 4.23, the right side is diagrammatically computable.

As an example, we now determine the Blanchfield pairing of(thg)-torus
knot Tmn. Here recall from Example 3.9 the isomorphism

(t"m— 1)(t— 1)
(t"=1@m—-1))

Proposition 9.2 ([N11]) Fix (n,m,a,b) € Z* with an+bm= 1. Let K= Tp. Then,

Hi(SP\ Tmn; Z2[t5Y) = Z[tF1]/(Ak), where Ak =

nm

1t 1)(1—tbm)(1—tan) iy2 € 2/ (B)

B|K(Yl»)’2) = (

for yi, y2 € Hi(S\ T Z[tY]) = Z[t1] /(Ak).

Proof. Let X = A = Z[t*1]/(Ak). By Theorem 3.8, we hav€oly (D) = Hy (S*\
K;A) & X =2 X2 It is enough to compute the bilinear fory, with go(y,2) = yz

To this end, recall a basis @olx (D) in Example 3.9. Accordingly, the 2-form
2y, (y1,Y2) is, by definition, formulated as

1_tbmj 1_tan(ifl)

wo(tan(ii) 1_tmelv ( T Y2+52)(1—t71) )

i<m, J<n-1

Then, using the-invariance ofygy and the equalityz{';lt"’“‘i =0, we can easily
reduce the sum of the geometric progressionsmtL —t=1) - y1y,/((1—tP™)(1—
ta)). The last term i1 —t) (1 +1t)Blk (y1,y2) by Theorem 9.1. So, notice that,
Ak (—1) = 1if nmis odd, andAx (—1) = mif nis even; we may divide the value
Dy (¥1,y2) by 1+t. In the sequel, it can be seen that, sifite-t) 1 € A, the form
2y, (y1,Y2) is reduced to the required formula. O



9.2 From Hopf fibration to Hurwitz equivalence classes

We describe an algorithm to get invariants with respect to the Hurwitz equivalence
relation; including Lefschetz fibrations ovet and simple surface braids.

From a general perspective, we now expleimrwitz equivalence problentet
G be a group with identitylg, and let a subset C G be closed under conjugation.
Fixing m € N, consider the quotient sédur™(Z), of the set

{(Zlv"'azm) € Zm| 21 Im= 1G }
modulo the following relations:
(Zla 2,... 7Zm) ~ (217 co 41,44, Zilllzizi+lyzi+27 ce 7Zm)7 (94)

(21,22, Zm) ~ (W 22w W 2w, ..., W tzpw), (9.5)

foranyl <i < mandw € Z. Each element of this sétur™(Z) is called aHurwitz
equivalence clasg-iguratively speaking, the set can be interpreted as the set of
monodoromies over the 2-sphere wittholes, as seen in the following examples:

Example 9.3 (Lefschetz fibration overs?) A (genusg) Lefschetz fibration is a
smooth mapt: E — S* from a closed smooth 4-manifoliithat is a%4-fiber bundle
projection away from finitely many singular points. Hebg,is the closed surface
of genugg, and the map near the singular points is required to appear in appropriate
oriented local complex coordinates &, 2,) = z12,.

We now review theorems of Kas and Y. Matsumoto [Kas, Mats]. To describe this,
let G be the mapping class group?y, of the closed surfacEg with g > 2. LetZ be
the Dehn quandl&/y as in (2.2). Then, given a Lefschetz fibration, we can observe
that the associated monodoromy is interpreted asr&uple. Moreover, it follows
from [Kas] and [Mats, Theorems 2.6 and 2.8] that the interpretation above gives a
bijection between the Hurwitz equivalence clasdes™(Z) and fiber-isomorphism
classes of Lefschetz fibrations ov@rwith m-singular fibers. To sum up,

11 { Lefschetz fibrations ove®® with mrsingular fiber$
fiber-isomorphisms '

Hur™(%y)

Example 9.4 (Simple surface braids)Let G be the braid grou,, andZ be the

set of all elements conjugate to eittwgior afl. S. Kamada showed that the Hurwitz
equivalence classes are in 1:1-correspondence with the isotopy classes of “simple
surface-braids witlm-branch points of degre®’; see [Kam3] for details.

11 { simple surface-braids withi-branch points of degrere}

Hur™(2) isotopy

Thus, it is sensible to hope something invariant with respect to the Hurwitz re-
lations, in general settings; as a suggestion, the author explicitly proposed an algo-
rithm to get such invariants.



To explain this, we start with a short review of the Hopf fibratjon S* — .
The fibration is formulated by the restriction & of the following map:

p:C?—CxR, (zw)— (22w, |22 —|w|?).

Then we can easily see, by definitions, that the preimagemdints,{bs,...,bn} C
£ is the (m,m)-torus link Tym. Thus, it is natural to consider a presentation of
n1(83\Tm7m); the Wirtinger presentation tells us that

78 (S\Tmm) = (a1,....am | 81 8m =8z - 8mA1L = = Bmd182 - 8m-1 ).
(9.6)
Here,a; correspondences to the meridian associated with thejarcFigure 9.1,
and the producd; - - - a, generates the summaldc Z x Fy_1 = n1(83\Tm’m).
Next, to explain Lemma 9.5 below, we now set up terminology. Let us consider
the multi-set of all theZ-colorings

Colz g :={ € € Colz(D) | D: link diagram},

and equipZolz ¢ with an equivalence relation by Reidemeister moves. Furthermore,
we discuss the link-diagra of Ty, m in the left hand side of Figure 9.1. Then, given
anm-tuple(zi,...,Zn) € Z™with z; - - -z = 1, the assignmerit;(a;) = z defines a
Z-coloring¢; of Tmm according to (9.6) and Corollary 3.14. Hence we have a map

ZA{z=(n,....2m) €Z" |71 Zm=1} — Colz, z— 6.

Lemma 9.5 Let . be a set, and take a mdpv : Colz g — .. Assume thainv
is invariant with respect to Reidemeister moves, and that if two homomorphisms f
and £ : 15(S*\.L) — G coming fron®olz g are conjugatelnv(f,) = Inv(f}).

Then, the compositav o Z induces a maplur™(z2) — ..

Proof. It suffices to check the invariance with respect to the relations (9.4) and (9.5).
Since the latter (9.5) is clear by assumption, we will discuss the other one (9.4). To
this end, consider another diagrdd obtained from the abov® by exchanging

the i-th strand for the(i + 1)-th one (see the right of Figure 9.1); Notice that

is related toD’ by a finite sequence of Reidemeister moves of type Il and Il (see
Figure 9.1). Therefore, if twortuplesz andz’ are related by (9.4), then the equality
Inv(f;) = Inv(f,) results from the assumption. Hence, we complete the proif.

(Summary. Invariants of link group representations produce thos#dzw‘l”(z).)

We finish this topic by giving a powerful example; precisely, we employ the
bilinear form in Definition 4.18, and analyze and compute the 2-forms.

Let L be the(m,m)-torus link Tmm with m> 2, and letay,...,am be the arcs
depicted in Figure A.1. Given a homomorphi§m . — G with f(a;) € Z, let us
discussX-colorings% over f. Here X is the quandle of the forrM x G. Then,
concerning the relation on theth link component, it satisfies the equation



(- ((a) <C(ar0) 9-) 1 (Am 1) = €ley),  foranyl<i<m

where we consider the indexes modmoNext, with notatiorig’(ai) := (x,z) € X,
this equation reduces to linear equations

(Xe—1—Xe) + ; (Xj =Xj+1) " Zj+1Zj+2° Zme =0 EM, (9.7)
(< j<l+m-2

for any 1< ¢ < m. Conversely, we can easily verify that, if a & {arcs ofD} —
X satisfies the equation (9.7), thehis anX-coloring. Denoting the left side in (9.7)
by It ¢(x), consider a homomorphism

[ M™— M (Xq,..., Xm) — (Fa(X), .., T m(X)).

To conclude, the se@olx (D¢) coincides with the kernel dfs.
To summarize, we can obtain the bilinear form from Definition 4.18 (cf. (8.16)
with everyg = +1):

Proposition 9.6 Let f: n1(83\Tm7m) — G be as above. Lap : M®@M’ — Abe a
G-invariant bilinear function. For any € Z with 1 < ¢ < m, the A-bilinear form
Qlll/ : Ker(rf) Y Ker(rf/> —A takES(X:[, e ?Xm) 0 (YL . 7ym) to

Z WY Xjpr1=Xj40)  ZjeZjgor1- Zere-1, )/kw'(l—Z@l[)) cA  (9.8)

The paper [N13] analysed this bilinear form (9.8), and gave some examples from
some Lefschetz fibrations. In addition, the author suggested an application of “the
guantum representation” of.

Fig. 9.1 The exchange between thth strand and thé + 1)-th one of thgm, m)-torus link. Here,
any entry of the linking matrix i4, and the band means tlie— 2)-parallel strands. In addition,
the blackline is thé-th strand and the dotted line indicates {he 1)-th strand.



9.3 3-manifold (invariants) from branched 4-fold coverings

We will interpret the fundamental groups of closed 3-manifolds as some colorings
(Theorem 9.10), where 3-manifolds are smooth, connected and oriented. Further-
more, we will explain an idea to get 3-manifold invariants from quandles.

To this end, let us review basic facts. Recall the famous fact of Hilden and Mon-
tesinos [Hil, Mon], which claims that every 3-manifdidi is a4-fold branched cov-
ering space of® along some link.. In this situation, we have the simple homomor-
phismg: m(S*\L) — G4 as the monodoromy. Here suchpas said to besimplg
if @is surjective and sends each meridian to a transpositi@yin

So, it is sensible to consider the conjugacy quandle

S ={ (ij)e6s | 1<i<j<4}

of order 6. Put a link diagrar® of L. An .¥-coloring of D whose image ¢ .¥)
generate$4 will be called dabeled diagramBy Corollary 3.14, simple homomor-
phismsrr (S*\.L) — &4 naturally correspond to labeled diagram®ofn summary,
any 3-manifold can be regarded as a labeled diagram. We often denote a labeled di-
agram byD, with respect tdD and@. Conversely, given a labeled diagrddg, we
can easily construct @manifold M as the resulting-fold cover of S* branched
over the linkL.

Further, we explain Theorem 9.7, which can completely deal with every closed
3-manifold. Namely, it is known that Ml and MIl moves of labeled diagrams, shown
in Figure 9.2, do not change the topological type of the covering space. Conversely,

Theorem 9.7 (Apostolakis [Apo], Bobtcheva and Piergallini [BP, Theorem 3]) Two
4-fold simple coverings off$ranched over links represent the same 3-manifold if
and only if their associated labeled diagrams can be related by a finite sequence of
MI & MIl and Reidemeister moves &?. To summarize,

{ Closed3-manifolds} 1 { Labeled diagrams
homeomorphisms Reidemeister, and MI, Ml moves

While the original statements were described in group theoretic terms, wg’use
coloring to state it in a little easier way. Nevertheless, whereas this theorem is beau-
tiful, there had been a few studies to discuss 3-manifold invariants from Theorem
9.7.

However, in the work of E. Hatakenaka (and the author later), we proposed a
discussion from quandle theory (Theorem 9.10): let us briefly introduce the work.

(ij) (k) (i) @ (ij) (KI) (if) 9
MI-move \ MII-move\\
qk) &

i (in/

ik) (k1)
Fig. 9.2 MI, Il moves of labeled diagrams. Here, the symhbtsi, j,k,| <4 mean distinct indices.




Definition 9.8 ([Hat, N3, HN]) We define a quandle starting from a grd@@and a
central element € Z(G). PuttingTiz 1= {(i, j) € 7211<i,j <4, i#j}, we define
G. to be a quotient seb x T12/~, where the relation- is defined by

(9.(i,1)) ~ (g7*c,(j,i)), forany (i,j) € Tiz and g€ G.

Further, we define the binary operatien: G¢ x G¢ — G by Table 9.1. Then, we
can easily see thds. is a quandle. Note that, {& is of finite order, therG. has
order6|G|. See [N3, HN] for some properties 6.

[ (@t | (@) [(gv<(d,t)]
)| (d, G,)) [[(d97'd, (i,i)
)1, (,K) || (99, (i,k)
NICHG) (g, (L))

Table 9.1 The binary operatios in Ge. Here, in each linei, j,k,1 are all distinct and,t’ € To.

NaX

Definition 9.9 (cf. (3.12)) Given a labeled diagram,, we define the subset

COléc(D(P) = { € € CO|x(D) | péc o=@ },

similar to (3.12). HerepéC : Ge — . is a natural projectiofig, (i, j)) — (ij).
We see that the séIoIéC(D(p) is nothing but group homomorphisms. Precisely,

Theorem 9.10 ([Hat], see also [HN])Let (G, c) be as above, and pa labeled di-
agram which presents a closed 3-manifold M. Then, there is a bijection

Colg, (Dg) =~ G* x Homg(16(M), G). (9.9)
Proof (Outline).The proof is similar to Prop. 3.18 with complicated procedures.

Thus, inspired by the quandle cocycle invariants of links, it is sensible to con-
sider similar invariants of 3-manifolds. In fact, Hatakenaka [Hat] formulated a quan-
dle cocycle invariant which is compatible with MI, Mll-moves: Furthermore, she
[Hat] and the author [HN] showed that a quandle homotopy invariant recovers the
Dijkgraaf-Witten invariant (see (6.9) for the definition), and the Chern-Simons in-
variants of closed 3-manifolds. However, it remains a problem whether such an
approach from quandles gives a stronger invariant of 3-manifolds or not.

9.4 Milnor invariant and lower central series

We explain the Milnor invariant, and observe an application from quandles.



To begin, let us fix notation. L&t be the free group of rang. We defineF; to
beF, andFy to be the commutator subgrolig,-1F, F] by induction. Denoting by
Qm the quotient groufy,_1/Fm, we have an extension

Pm-—
0— Qn—F/Fn BN F/Fm-1— 0 (central extension (9.10)

Then, as is knowrQn, is a free abelian group of finite rank.

We will review (the first non-vanishing) Milnor invariant of links. In what fol-
lows, we supposg € Zxq equal to the number of the link componetits Take the
abelianizationf, : n1(83\L) — F/F, = Q1 =Z4. Further, by induction, we suppose

e Assumption .%n. There are homomorphisnfg: 5 (S*\.L) — F /F for k with
k < m, which satisfy the commutative diagram

m(S\L)
fin
fZJ/ x T—
F/R<——F/Fs 5 F/Fge— e s—F/Fn.

Here it is worth noting that, if there is another extensigyinstead offy,, thenfy,
equalsf/ up to conjugacy, by centrality. Furthermore, whan- 1, we can easily
check thatf,, sends every longitude with Ab,(l,) = 0 to the central subgrou@m,.

Definition 9.11 Suppose the assumptidti,. Then, the f+-th) Milnor p-invariant
of L is defined as a-tuple (fm(11), ..., fm(lg)) € (Qm)9.

In many papers, e.g, [Mill, Mil2, Hil], the Milnor invariant is defined by using
“the Magnus expansion” over the noncommutative polynomial B, ..., Xq).
But, this way imposes us to reformulate each longithdes a word ofng, ..., mgu

in the groupF /F,. This reformulation with the non-commutativity (therefore, the
computation of theu-invariant) had been considered to be quite hard.

However, this section approaches finénvariant from a quandle and the gener-
alized Magnus embedding [GG], and gives a computation without desciibing

For this, let us start by reviewing the generalized Magnus embedding. Denote
by Qmn the polynomial ringZ[A; j| over commuting indeterminates ; with i €
{1,2,...,m}, j€{1,2,...,9}. Then, we define a unipotent homomorphism

1 00 - 0 0
Mj 1 0 -~ 0 0

o
>
SN
o
o



Here are known properties of this homomorphism (see [GG] for the proof):
Lemma 9.12 (i) Yn(Fm) = {Im}, and the quotient FFy — GLn(Qn) is injective.

(i) The imageYm(Qm) restricted on @, is contained in the abelian subgroup consist-
ing of matrices whosg, j)-entry is zero for any# j with (i, j) # (m,1). Moreover,
the centralizer oy (xj) is equal toYmn(Qm) x {Yn(X]") }nez.

(iii) For any element ye F, the(s,t)-entry of Y, (y) with s>t is formulated as

t—s+1
g(u

JAsks At € Qm,
(ko d)elT s O O

wheredy/dxy, is the Fox derivation, and is the augmentatiof[F| — Z.

Remark 9.13 Here, the point from (3) is that the matrix ¥ (y) is determined by
only the entries on the first row (Compare them with other entriegig)).

Next, we set up notations from quandles. Consider the conjugacy clags.ef,

Xme = {9 Yalx)g € Im(Yn) | g€ Im(¥n) }.

Let Xy, be the conjugacy quandle on the unim@ilxm/. Then, the projection

Pm : Xm1 — Xm is described as forgetting then+ 1)-column and row, and is

a quandle covering as in Definition 4.15. Moreover, we should notice from Re-
mark 9.13 that, giver € Xn ¢, there uniquely exists an elemesfA) in the image
Im(Ym,1) satisfyings(A) sy =Aisy), ands(A)qme1) =0€ Omi1,  ifs<m+1
Then, it follows from Example 8.9 that the following map is a quandle 2-cocycle

Wm: Xm X Xm — IM(Yni1); (A B) — s(B) 1s(A)s(B)s(B~*AB)~1,  (9.11)

and the image ofly, is contained in the kernel by, : Xmi1 — Xm- Notice that
this kernel is abelian, since it is contained Ya,1(Ker(F /Fmny1 — F/Fm)) =
Yo 1(Qmya)-

Thus, it is sensible to consider the quandle cocycle invadagt,(fm) in Def-
inition 4.15 associated witlyy,. Then, the paper [KN] showed that this cocycle
invariant completely recovers theinvariant as follows:

Theorem 9.14 ([KN]) There is an isomorphisn#p, : Yim(Qm) — Ker(pm) such that
Py ¢(fm) = Imo Wn(fm([g)) € Ker(pm).

Proof (Outline). Consider the conjugacy action &fLm(Qm) on Xy, whose stabi-
lizer is Yn(Qm) exactly (Why? Hint: Lemma 9.12 (ii)). Thus, we have a 2-cocycle
@ Xm X Xm — Ym(Qm) by Example 5.22, and have the associated quaﬁdlex—
tended overXy,. Notice from Theorem 5.23 that the cocycle invariant equals the
u-invariant. Thus, it is enough for the proof to verify that tiiss cohomologous

to the abovay. In fact, if so, we have a quandle isomorphisfy, : X — Xmi1
such that the associated cocycle invariants are equivalent; henceg/tlges the
desired equality. Since the verification is a little complicated, we omit the défail.



Exercise 20 Show a result in [Mil1] that thet-invariant plays an obstruction for a
lift of %, 1. To be precise, on the assumpticfy, fm, admits a lift fy 1 : 78 (S*~
L) — F/Fny1 if and only if all the py-invariants vanish, i.efn(l;) = 0 € Qm.

(Hint: compare Theorem 9.14 with Proposition 4.16).

Conclusion This exercise gives an explicit formula &f by induction onk with

k < m. After we getfn, Theorem 9.14 gives a diagrammatic computation ofithe

invariant. By the definition of the cocycle invariant, we can computeguttimvariant

as a weight sum without presentationd,oMoreover, since the may, is over the

commutative ringQy,, this computation is applicable for computer program. In fact,

it is not so hard to compute the-invariants of links with small crossing number

(The computation is quite easier than the previous computations). Moreover, the

paper [KN] gives the first success of computing thevariant of “the Milnor link”.
Incidentally, the paper [KN] gives a faster computation of thévariant than

that of Theorem 9.14, and further discussed the higher Milnor invariant, and consid-

ered similar computations.

9.5 Bilinear forms on twisted Alexander modules of knots

In the paper [N10], the author suggested bilinear forms on twisted Alexander mod-
ules of links. This section explains the details in the knot case.

We start by briefly reviewing the twisted Alexander module associated with a
linear representatiofiye : . — GLn(R), the ringR is assumed to be a Noetherian
unigue factorization domain (henceforth UFD), as a common setting (see [FV, W,
Lin]). SinceL is a knot, that is#L. = 1, we have the abelianizatian: 1. — Z = (t).

By identifying the group ringR[Z] with the polynomial ringRjt *1] and by tensoring
this a with fpre, we have a linear representation

a @ fore: TL — GLa(RItFY).

Thus, the associated first homolobly (S*~. L; (R[t**])") is commonly calledhe
twisted Alexander modukessociated witHpre.

We roughly review some facts of twisted modules, and explain the idea to intro-
duce bilinear forms oil; (S*~.L; (R[t*1])"). After the concepts of twisted Alexan-
der polynomials and modules were introduced in [Lin, W], there are the studies to-
gether with topological applications; see, e.g., a survey [FV] on twisted Alexander
polynomials. However, we emphasize difficulties that it seems not so easy to define
the intersection forms on the twisted homology, or homology of coverings. Several
papers addressed bilinear forms on such twisted modules; For example, concern-
ing solvable covering, we can see some pairing as in Blanchfield pairings including
[COT] (See also [Pow] and references therein.)

As a solution of the difficulties, the author employed a cohomological viewpoint,
and gaves an idea to construct a homomorphism



Adjo 2 : Hi(S\L;Rt*]) = HY(S\L, (S \L);Mp)

for some coefficientM,. In fact, recalling the cohomology pairing?y, on the
codomainH(S*\L,d(S*\L);M,) in §4.4, we define a bilinear form ad; (S*~
L; R[t*1]) by the composite2y, o (Adj o .£)*2.

We will describe the idea in more details.

First, as a generalization of “localized Blanchfield pairing” (see [Ki#,6]),
let us consider a localization (9.12) below. Notice the non-vanistietgd — o ®
fore(m)) # 0 € R{t*2] for any meridianm € 71.: Then, the assumption enables us to
define the ringA» 1) obtained by inverting the determinants. Precisely, we set

Aoty = Rt*!, detlid — a ® fpre(m)) 1. (9.12)

ThenA 41 has the involution :Ayr) — Ayr) defined byt =t=2.

We will intemperate the twisted Alexander module using coloring sets. From
Definition 3.20, consider the quandte of the formM x G, whereM is the free
module(Ay1))" andGis GLn(R[t*1]). Choose a diagram with ap arcs. Then, as
in Exercise 8 (1) ir§3.2.2, the coloring sefolx (D¢) can be regarded as the kernel
of a homomorphism

Mp:M%® —s M#{crossings oby (9.13)

obtained from (3.11). Furthermore, let us examine the cok&okel(lx p):

Lemma 9.15 For any knot L, choose a diagram D witlp arcs, and assumep =
#{ crossings of D}. Let X be the above quandle on MG, where M= (Aj1))"

and G= GLn(R[t*1]). Then, there is an isomorphism
Cokel(Ix p) = Hi(S\L; (Aar)™ & (Aun)".
Here the summan@\,¢))" corresponds with the diagonal subsgffof (Asr))"P.

Proof. Recall from Proposition 7.26 that, the quoti&@r(idy ® d1)/Im(idy & d-)

is isomorphic to the first homology; (S*~.L; M) with local coefficients. From the
definition of the rindAy 1) in (9.12), everyl — y; is invertible inM; The mapgdy ® d1

is a (diagonally) splitting surjection, which admits consequently a decomposition

Cokeridy ® 82 : M — M) 22 Hy (1; M) O M.

Next, we prepare a commutative diagram below. With respect to a crossing
illustrated in Figure 4.7, set up the two bijections

Ke:M—M;  mr——m-—m:(a® fpe(ar)),

K;ZM—)M; m— mfm~(a®fpre(yr))-

Then, by the direct products with respect to crossingse have the diagram



Ix,p

Colyx (D¢)¢ Mm@p ’ Mmap Cokerlx p) (exac)

ﬂrKTL lﬂr@

MdD M @D Hi(S\L;M)aM (exac).

idy©d,

Examining carefully the definitions oe‘p, 0>, andlx p, the diagram is commuta-

tive. Hence, the vertical maps give the desiMe(F’yﬂD) ~H;(Y;M)eM.O

Although our purpose is to construct a functionte(S*~.L; (Agt)"), there are
many cases that the twisted Alexander module is a torsjgn-module; see, e.g.,
[FV, W]. Therefore, in order to get non-trivial bilinear functions from such modules,
the coefficient ring shall be a quotieftyr)/-# subject to an appropriate idea.

One of methods to simplify such torsiontise twisted Alexander polynomjal
At, [W, Lin], which is defined to be the?(ap — 1)? Jacobian of the Fox derivations
(Proposition 7.26) subject wef(id — p ® fpre(Xa)): To be precise,

o

an D & |dAn

(9f)

Ay =def(| J1cij<op-1) /delid — P& forelXap ) € Agr).
It is shown [W] that thisA¢ is independent, up to units, of the choice of the arcs
a. As is discussed in [FV], thid; is almost equal to the maximal that annihilates
the twisted homologyd: (S*~.L; (R[t*1])"). In fact, the twisted homologhl; (S*~
L; (RIt“1))™ @ A4y is torsion if and only ifA is not zero.

Thus, it is reasonable to consider the quotient coeffidlest /(A¢ ). Thus, from
the above representations fyre subject to(A¢), we can obtain two quotients

Ma = (Agn)/(81)", and Mg = (Agr)/@1)".

Similarly, we can set the quandlEs:= Mj x GLn(A(y1)) andXz := Mz x GLa(A41))
from Definition 3.20.

Moreover, as in Definition 4.18, we assume a bilinear funcig: R x R" — R
satisfying thefyre-invariance

Wore(X,Y) = Wore(X- Tpre(9), Y- fore(9))

for anyx,y € R, and anyg € 1. . Then, we can define the map
¥ (R'®@rAGH/(81)) x (R'@r A1 /(81)) — Agr)/ (Lr);

(x®a1,y®az) — Yore(X,Y) ® azay, (9.14)

forx,y € R"anday, a; € As1). This is 1 -invariant and sesquilinear ovBft*1].
Finally, we will explain Definition 9.16 after introducing two homomorphisms

Adj and.Z. Considering the decompositiqi4¢))"0 = (Awf))”("D*l) @ Adiag:

we take the restriction



res(Mxp) : ()"~ = (Ag)" @Y.

We should notice that the cokernelHg (S*~.L; (Ag1))") by Lemma 9.15, and the
kernel subject ta\; is the 1-st conomologi*(S*~\.L,d(S*\L);M,) by Theorem
3.21. Since the determinant g x p) is almost equal td¢, the adjugate matrix
of re{x p) gives rise to a well-defined homomorphism

Adj: Hi(S\L; (Agr)") — HY(S\L,0(S\L);Ma). (9.15)
Notice that the localizatioR[t™1] — As1) gives rise to the homomorphism
£ T H(SNLRIEFM) — Hi(S\L; (Agr)").

To summarize, here is a bilinear function on the twisted Alexander module:

Definition 9.16 ([N10]) Let R be a Noetherian UFD. Let(4) and G be as in
Lemma 9.15. Take M= (As1)/(41))". Let ¢ : Mg x Mz — Ayp)/(Ar) be the
bilinear form obtained fromfye, as in (9.14).

Then, we define the bilinear map from the twisted Alexander module as the fol-
lowing composite:

, 22 5 Adi®?
Hi(S\L;RIZ]") 2 —— Hy(S\L; (Agr)M) 2 ——

— HY(S\L,0(S\L);Mz) @ HY(SP\L,0(SP\L);My) 2, Aot/ (Dr).

By definition and Theorem 4.23, we should emphasize that it is not hard to com-
pute the pairing from2y,.

Finally, we conclude this section by mentioning a duality. For this, we restrict on
the situation. Lem = 1 and letR be a field of characteristic 0. Then, we can easily
show the following lemma by linear algebra.

Lemma 9.17 Assume thats is non-zero and thadef(t - idgn — fore(m)) # O for a
meridianm € 11_is relatively prime toAs in F[t]. Then the adjugate matrikdj in
(9.15) is anF[t]-isomorphism.

As seen in examples in [N10], this pairing is often degenerate in many cases, and
is possible to be even zero, while the classical Blanchfield pairing is non-singular.

However, the subsequent paper [N11] will show a duality theorem on the twisted

pairings, under some assumptions (cf. Milnor duality [Mil4]):

Theorem 9.18 ([N11]) Let R be a field of characteristic 0, and be (A¢). Assume
that (Jpre is nondegenerate, and that is not zero, ands is relatively prime to
dett - idgn — fpre(m)) € Ft*1 for a meridianm € 3.

Then, the twisted pairing in Definition 9.16 is non-degenerate.
It is well known [Mil3] that all the (skew-)Hermitian nondegenerate bilinear forms

with isometrieg is completely characterised. In conclusionyifs (skew-)Hermitian,
we can guantitatively obtain computable information from the twisted paiéigg



