
Chapter 9
Miscellany; Some applications to
low-dimensional topology

Abstract In this chapter, we introduce some applications to low-dimensional topol-
ogy. To be precise, in§9.1, we see the Blanchfield pairing of knots, and consider
some properties. In§9.2, we give a method to produce invariants of the Hurewicz
equivalence classes, including Lefschetz fibrations overS2. In §9.3, we discuss 3-
manifold invariants from 4-fold branched covering, in terms of quandles. In§9.4,
we work with the Milnor invariant of links. In§9.5, we introduce bilinear forms on
the twisted Alexander modules of links.

However, we should remark that discussions in this chapter are quite rough since
this section is a survey of applications of quandles. The reader interested in the
details should follow the references therein.

9.1 The Blanchfield pairings of knots

First, we briefly review tne Blanchfield pairing [Bla] of a knotK with Alexander
polynomial∆K . The abelianizationπ1(S3∖K)→Z= ⟨t⟩ yields the local coefficients
Z[t±1] of S3∖K. SinceH1(S3∖K;Z[t±1]) is known to be torsion overZ[t±1], let ∆K

be the minimal polynomial that annihilates the homology. Then, from the view of the
intersection form of the infinite cyclic cover̃YK , the Blanchfield pairing is defined
as a sesquilinear form1

BlK : H1(S
3∖K;Z[t±1])⊗2−→ Z[t±1]/(∆K). (9.1)

The definition is roughly as follows. For simplicity, this section abbreviatesZ[t±1]
to Λ , and doesS3∖K to YK , as in [Hil, KawBook]. Consider the sequence

0−→Λ
×∆K
−−−→Λ −→Λ/(∆K)−→ 0 (exact) (9.2)

1 In many cases (see [KawBook, Tro, Hil]), the target is described as the moduleQ(t)/Z[t±1].
However, the pairing factors throughZ[t±1]/(∆K) ↪→Q(t)/Z[t±1] sending[ f ] to [ f/∆K ].
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with local coefficients. SinceH1(YK ;Λ) is annihilated by the polynomial∆K from
the definition, theδ -functor (i.e., Bockstein map) from (9.2) yields an isomorphism
β : H1(YK ;Λ/(∆K))∼= H2(YK ;Z[t±1]). To summarize, we have isomorphisms

H1(YK ;Λ)
∼−→ H1(YK ,∂YK ;Λ)

Poincaŕe duality
−−−−−−−−−−−−−−→ H2(YK ;Λ)

β−1

−−→

−→ H1(YK ;Λ/(∆K))∼= HomΛ (H1(YK ;Λ),Λ/∆). (9.3)

Here, the first one is immediately obtained by the injection∂YK→YK andH∗(∂YK ;Λ)=
0, and the last is done from the universal coefficient theorem. Then,BlK is de-
fined to be the adjoint map of the composite (9.3). In particular,BlK is non-singular
and isometry (i.e.,t±1-invariant). Further, as is known,BlK is hermitian, and can
be interpreted from the intersection form of the infinite cyclic cover ofYK ; see
[KawBook, Appendix] or [Hil, Ka] for the detail.

We will give a diagrammatic computation ofBlK . The point is to reduceBlK to
the cohomology pairingQψ (see§4.4 for the definition). Whereas the intersection in
ordinary homology is interpreted as a cohomology pairing via the Poincaré duality,
that of local coefficients (or, of abstract coverings) is little studied. As a typical
difficulty, BlK is hermitian, in contrast to the anti-hermiticity ofQψ .

However, the author showed that the Blanchfield pairing of knots can be recov-
ered from some cohomology pairingQψ . Namely,

Theorem 9.1 ([N11]) Let K be a knot, and∆K ∈Z[t±]/⟨t±n⟩ be as above, and M be
the quotient moduleZ[t±1]/(∆K). Defineψ0 : M⊗M→ Z[t±1]/(∆K) by ψ0(x,y) =
x̄y. Then, there is aZ[t±1]-module isomorphism

H1(S
3∖K;Z[t±1])∼= H1(S3∖K,∂ (S3∖K);M)

such that the following equality holds for any x,y∈ H1(S3∖K;Z[t±1]) :

Qψ0(x,y) =
1+ t
1− t

·BlK(x,y) ∈ Z[t±1]/(∆K).

We note that1− t is invertible inZ[t±1]/(∆K) because of∆K(1) =±1.

Proof (Rough description of the idea).Theorem 7.28 says thatH1(YK ;Λ) is identi-
fied with the cokernel oftV−V ′ : Λ 2g→Λ 2g, whereV ′ is the transpose of the Seifert
matrixV. Then, the inverse of the Bockstein mapβ−1 is known to be presented by
(tV−V ′)−1; see [Tro]. Hence,BlK has the matrix presentation(1− t)(tV−V ′)−1;
see [Kea] or [Tro] for the details.

On the other hand, we notice the Leibniz rule of the Bockstein map:

β ∗(x⌣ y) = β ∗(x)⌣ y−x⌣ β ∗(y) for anyx,y∈ H1(YK ,∂YK ;Λ/(∆K)).

Here, the point of this proof is to find a 3-classν ∈ H3(YK ,∂Yk : Z) which roughly
satisfiesβ∗(ν) = µ. Then, we computeQψ(x,y) = ψ0⟨x⌣ y, [Σ ]⟩ as

ψ0⟨x⌣ y,µ⟩= ψ0⟨x⌣ y,β∗(ν)⟩= ψ̃1⟨β ∗(x)⌣ y,ν⟩− ψ̃2⟨x⌣ β ∗(y),ν⟩,



where we definẽψ1 : Λ ⊗Λ/(∆K)→Λ/(∆K) andψ̃2 : Λ/(∆K)⊗Λ →Λ/(∆K) as
the canonical lifts ofψ0. Since the cup product betweenH1 andH2 is the canonical
inner product (see the end of§7.4.3), this pairing has a matrix presentation:(

x · (t−1V−V ′)
)
·y′− x̄ ·

(
y· (t−1V−V ′)

)′
,

which turns out to be(1+ t)x(V− t−1V ′)y′. In comparison with the matrix presen-
tation ofBlK , we have the conclusionQψ0(x,y) = ψ0⟨x ⌣ y, [Σ ]⟩ = (1− t)−1(1+
t) ·BlK(x,y) as required. □� �

In conclusion, we have a diagrammatic computation of the Blanchfield pairing.
Indeed, by Theorem 4.23, the right side is diagrammatically computable.� �
As an example, we now determine the Blanchfield pairing of the(m,n)-torus

knotTm,n. Here recall from Example 3.9 the isomorphism

H1(S
3∖Tm,n;Z[t±1])∼= Z[t±1]/(∆K), where ∆K =

(tnm−1)(t−1)(
(tn−1)(tm−1)

) .
Proposition 9.2 ([N11]) Fix (n,m,a,b)∈Z4 with an+bm= 1. Let K= Tm,n. Then,

BlK(y1,y2) =
nm

(1+ t−1)(1− tbm)(1− tan)
· ȳ1y2 ∈ Z[t±1]/(∆K),

for y1, y2 ∈ H1(S3∖Tm,n;Z[t±1])∼= Z[t±1]/(∆K).

Proof. Let X = A = Z[t±1]/(∆K). By Theorem 3.8, we haveColX(D) ∼= H1(S3∖
K;A)⊕X ∼= X2; It is enough to compute the bilinear formQψ0 with ψ0(y,z) = ȳz.

To this end, recall a basis ofColX(D) in Example 3.9. Accordingly, the 2-form
Qψ0(y1,y2) is, by definition, formulated as

∑
i≤m, j≤n−1

ψ0
(

tan(i−2) 1− tbm j

1− tbm y1, (
1− tan(i−1)

1− tan y2+δ2)(1− t−1)
)
.

Then, using thet-invariance ofψ0 and the equality∑m
i=1 tani = 0, we can easily

reduce the sum of the geometric progressions tonm(1− t−1) · ȳ1y2/
(
(1− tbm)(1−

tan)
)
. The last term is(1− t)−1(1+ t)BlK(y1,y2) by Theorem 9.1. So, notice that,

∆K(−1) = 1 if nm is odd, and∆K(−1) = m if n is even; we may divide the value
Qψ0(y1,y2) by 1+ t. In the sequel, it can be seen that, since(1− t)−1 ∈ A, the form
Qψ0(y1,y2) is reduced to the required formula. □



9.2 From Hopf fibration to Hurwitz equivalence classes

We describe an algorithm to get invariants with respect to the Hurwitz equivalence
relation; including Lefschetz fibrations overS2 and simple surface braids.

From a general perspective, we now explainHurwitz equivalence problem. Let
G be a group with identity1G, and let a subsetZ⊂G be closed under conjugation.
Fixing m∈ N, consider the quotient set,Hurm(Z), of the set

{(z1, . . . ,zm) ∈ Zm| z1 · · ·zm = 1G }

modulo the following relations:

(z1,z2, . . . ,zm)∼ (z1, . . . ,zi−1,zi+1,z
−1
i+1zizi+1,zi+2, . . . ,zm), (9.4)

(z1,z2, . . . ,zm)∼ (w−1z1w,w−1z2w, . . . ,w−1zmw), (9.5)

for any1≤ i < m andw∈ Z. Each element of this setHurm(Z) is called aHurwitz
equivalence class. Figuratively speaking, the set can be interpreted as the set of
monodoromies over the 2-sphere withmholes, as seen in the following examples:

Example 9.3 (Lefschetz fibration overS2) A (genus-g) Lefschetz fibration is a
smooth mapπ : E→S2 from a closed smooth 4-manifoldE that is aΣg-fiber bundle
projection away from finitely many singular points. Here,Σg is the closed surface
of genusg, and the map near the singular points is required to appear in appropriate
oriented local complex coordinates asπ(z1,z2) = z1z2.

We now review theorems of Kas and Y. Matsumoto [Kas, Mats]. To describe this,
let G be the mapping class group,Mg, of the closed surfaceΣg with g≥ 2. Let Z be
the Dehn quandleDg as in (2.2). Then, given a Lefschetz fibration, we can observe
that the associated monodoromy is interpreted as anm-tuple. Moreover, it follows
from [Kas] and [Mats, Theorems 2.6 and 2.8] that the interpretation above gives a
bijection between the Hurwitz equivalence classesHurm(Z) and fiber-isomorphism
classes of Lefschetz fibrations overS2 with m-singular fibers. To sum up,

Hurm(Dg)
1:1←−→

{
Lefschetz fibrations overS2 with m-singular fibers

}
fiber-isomorphisms

.

Example 9.4 (Simple surface braids)Let G be the braid groupBn, andZ be the
set of all elements conjugate to eitherσi or σ−1

i . S. Kamada showed that the Hurwitz
equivalence classes are in 1:1-correspondence with the isotopy classes of “simple
surface-braids withm-branch points of degreen”; see [Kam3] for details.

Hurm(Z)
1:1←−→

{
simple surface-braids withm-branch points of degreen

}
isotopy

.

Thus, it is sensible to hope something invariant with respect to the Hurwitz re-
lations, in general settings; as a suggestion, the author explicitly proposed an algo-
rithm to get such invariants.



To explain this, we start with a short review of the Hopf fibrationµ : S3→ S2.
The fibration is formulated by the restriction onS3 of the following map:

µ : C2−→ C×R, (z,w) 7−→ (2zw̄, |z|2−|w|2).

Then we can easily see, by definitions, that the preimage ofm-points,{b1, . . . ,bm}⊂
S2, is the(m,m)-torus link Tm,m. Thus, it is natural to consider a presentation of
π1(S3∖Tm,m); the Wirtinger presentation tells us that

π1(S
3∖Tm,m)∼= ⟨ a1, . . . ,am | a1 · · ·am = a2 · · ·ama1 = · · ·= ama1a2 · · ·am−1 ⟩.

(9.6)
Here,ai correspondences to the meridian associated with the arcαi in Figure 9.1,
and the producta1 · · ·am generates the summandZ⊂ Z×Fm−1 = π1(S3∖Tm,m).

Next, to explain Lemma 9.5 below, we now set up terminology. Let us consider
the multi-set of all theZ-colorings

ColZ,G :=
{

C ∈ ColZ(D)
∣∣ D : link diagram

}
,

and equipColZ,G with an equivalence relation by Reidemeister moves. Furthermore,
we discuss the link-diagramD of Tm,m in the left hand side of Figure 9.1. Then, given
anm-tuple(z1, . . . ,zm) ∈ Zm with z1 · · ·zm = 1, the assignmentCz(ai) = zi defines a
Z-coloringCz of Tm,m according to (9.6) and Corollary 3.14. Hence we have a map

Z : { z= (z1, . . . ,zm) ∈ Zm | z1 · · ·zm = 1 } −→ ColZ,G; z 7−→ Cz.

Lemma 9.5 Let S be a set, and take a mapInv : ColZ,G→ S . Assume thatInv
is invariant with respect to Reidemeister moves, and that if two homomorphisms fz
and f′z : π1(S3∖L)→G coming fromColZ,G are conjugate,Inv( fz) = Inv( f ′z).

Then, the compositeInv◦Z induces a mapHurm(Z)→S .

Proof. It suffices to check the invariance with respect to the relations (9.4) and (9.5).
Since the latter (9.5) is clear by assumption, we will discuss the other one (9.4). To
this end, consider another diagramD′ obtained from the aboveD by exchanging
the i-th strand for the(i + 1)-th one (see the right of Figure 9.1); Notice thatD
is related toD′ by a finite sequence of Reidemeister moves of type II and III (see
Figure 9.1). Therefore, if twom-tuplesz andz′ are related by (9.4), then the equality
Inv( fz) = Inv( fz′) results from the assumption. Hence, we complete the proof.□� �

Summary. Invariants of link group representations produce those ofHurm(Z).� �
We finish this topic by giving a powerful example; precisely, we employ the

bilinear form in Definition 4.18, and analyze and compute the 2-forms.
Let L be the(m,m)-torus link Tm,m with m≥ 2, and letα1, . . . ,αm be the arcs

depicted in Figure A.1. Given a homomorphismf : πL→ G with f (αi) ∈ Z, let us
discussX-coloringsC over f . HereX is the quandle of the formM×G. Then,
concerning the relation on theℓ-th link component, it satisfies the equation



(
· · ·(C (αℓ)◁C (αℓ+1))◁ · · ·

)
◁C (αℓ+m−1) = C (αℓ), for any 1≤ ℓ≤m,

where we consider the indexes modulom. Next, with notationC (αi) := (xi ,zi) ∈ X,
this equation reduces to linear equations

(xℓ−1−xℓ)+ ∑
ℓ≤ j≤ℓ+m−2

(x j −x j+1) ·zj+1zj+2 · · ·zm+ℓ = 0∈M, (9.7)

for any 1≤ ℓ≤m. Conversely, we can easily verify that, if a mapC : {arcs ofD}→
X satisfies the equation (9.7), thenC is anX-coloring. Denoting the left side in (9.7)
by Γf ,ℓ(x), consider a homomorphism

Γf : Mm−→Mm; (x1, . . . ,xm) 7−→ (Γf ,1(x), . . . ,Γf ,m(x)).

To conclude, the setColX(D f ) coincides with the kernel ofΓf .
To summarize, we can obtain the bilinear form from Definition 4.18 (cf. (8.16)

with everyεi =+1):

Proposition 9.6 Let f : π1(S3∖Tm,m)→ G be as above. Letψ : M⊗M′→ A be a
G-invariant bilinear function. For anyℓ ∈ Z with 1≤ ℓ ≤ m, the A-bilinear form
Qψ,ℓ : Ker(Γf )⊗Ker(Γ ′f ) → A takes(x1, . . . ,xm)⊗ (y′1, . . . ,y

′
m) to

m−1

∑
k=1

ψ
( k

∑
j=1

(x j+ℓ−1−x j+ℓ) ·zj+ℓzj+ℓ+1 · · ·zk+ℓ−1, y′k+ℓ · (1−z−1
k+ℓ)

)
∈ A. (9.8)

The paper [N13] analysed this bilinear form (9.8), and gave some examples from
some Lefschetz fibrations. In addition, the author suggested an application of “the
quantum representation” ofMg.

∼ ∼∼

αi+1
αi

D D′

Fig. 9.1 The exchange between thei-th strand and the(i+1)-th one of the(m,m)-torus link. Here,
any entry of the linking matrix is1, and the band means the(m−2)-parallel strands. In addition,
the blackline is thei-th strand and the dotted line indicates the(i +1)-th strand.



9.3 3-manifold (invariants) from branched 4-fold coverings

We will interpret the fundamental groups of closed 3-manifolds as some colorings
(Theorem 9.10), where 3-manifolds are smooth, connected and oriented. Further-
more, we will explain an idea to get 3-manifold invariants from quandles.

To this end, let us review basic facts. Recall the famous fact of Hilden and Mon-
tesinos [Hil, Mon], which claims that every 3-manifoldM is a4-fold branched cov-
ering space ofS3 along some linkL. In this situation, we have the simple homomor-
phismφ : π1(S3∖L)→S4 as the monodoromy. Here such aφ is said to besimple,
if φ is surjective and sends each meridian to a transposition inS4.

So, it is sensible to consider the conjugacy quandle

S := { (i j ) ∈S4 | 1≤ i < j ≤ 4 }

of order 6. Put a link diagramD of L. An S -coloring of D whose image (⊂ S )
generatesS4 will be called alabeled diagram. By Corollary 3.14, simple homomor-
phismsπ1(S3∖L)→S4 naturally correspond to labeled diagrams ofD. In summary,
any 3-manifold can be regarded as a labeled diagram. We often denote a labeled di-
agram byDφ with respect toD andφ . Conversely, given a labeled diagramDφ , we
can easily construct a3-manifold M as the resulting4-fold cover ofS3 branched
over the linkL.

Further, we explain Theorem 9.7, which can completely deal with every closed
3-manifold. Namely, it is known that MI and MII moves of labeled diagrams, shown
in Figure 9.2, do not change the topological type of the covering space. Conversely,

Theorem 9.7 (Apostolakis [Apo], Bobtcheva and Piergallini [BP, Theorem 3]) Two
4-fold simple coverings of S3 branched over links represent the same 3-manifold if
and only if their associated labeled diagrams can be related by a finite sequence of
MI & MII and Reidemeister moves onR2. To summarize,{

Closed3-manifolds
}

homeomorphisms
1:1←−→

{
Labeled diagrams

}
Reidemeister, and MI, MII moves

.

While the original statements were described in group theoretic terms, we useS -
coloring to state it in a little easier way. Nevertheless, whereas this theorem is beau-
tiful, there had been a few studies to discuss 3-manifold invariants from Theorem
9.7.

However, in the work of E. Hatakenaka (and the author later), we proposed a
discussion from quandle theory (Theorem 9.10): let us briefly introduce the work.

MI-move MII-move

(i j ) ( jk) (i j ) ( jk)

(i j ) ( jk)

(ik)

(kl)(i j )

(kl)(i j )

(i j ) (kl)

Fig. 9.2 MI, II moves of labeled diagrams. Here, the symbols1≤ i, j,k, l ≤ 4 mean distinct indices.



Definition 9.8 ([Hat, N3, HN]) We define a quandle starting from a groupG and a
central elementc∈ Z(G). PuttingT12 := {(i, j) ∈ Z2|1≤ i, j ≤ 4, i ̸= j}, we define
G̃c to be a quotient setG×T12/∼, where the relation∼ is defined by

(g,(i, j))∼ (g−1c,( j, i)), for any (i, j) ∈ T12 and g∈G.

Further, we define the binary operation◁ : G̃c× G̃c→ G̃c by Table 9.1. Then, we
can easily see that̃Gc is a quandle. Note that, ifG is of finite order, thenG̃c has
order6|G|. See [N3, HN] for some properties of̃Gc.

(g, t) (g′, t ′) (g, t)◁ (g′, t ′)

(g, (i, j)) (g′, (i, j)) (g′g−1g′, (i, j))
(g, (i, j)) (g′, ( j,k)) (gg′, (i,k))
(g, (i, j)) (g′, (k, l)) (g, (i, j))

Table 9.1 The binary operation∗ in G̃c. Here, in each line,i, j,k, l are all distinct andt, t ′ ∈ T12.

Definition 9.9 (cf. (3.12)) Given a labeled diagramDφ , we define the subset

ColG̃c
(Dφ ) := { C ∈ ColX(D) | pG̃c

◦C = φ },

similar to (3.12). Here,pG̃c
: G̃c→S is a natural projection(g,(i, j)) 7→ (i j ).

We see that the setColG̃c
(Dφ ) is nothing but group homomorphisms. Precisely,

Theorem 9.10 ([Hat], see also [HN])Let (G,c) be as above, and Dφ a labeled di-
agram which presents a closed 3-manifold M. Then, there is a bijection

ColG̃c
(Dφ )≃G3×Homgr(π1(M),G). (9.9)

Proof (Outline).The proof is similar to Prop. 3.18 with complicated procedures.□

Thus, inspired by the quandle cocycle invariants of links, it is sensible to con-
sider similar invariants of 3-manifolds. In fact, Hatakenaka [Hat] formulated a quan-
dle cocycle invariant which is compatible with MI, MII-moves: Furthermore, she
[Hat] and the author [HN] showed that a quandle homotopy invariant recovers the
Dijkgraaf-Witten invariant (see (6.9) for the definition), and the Chern-Simons in-
variants of closed 3-manifolds. However, it remains a problem whether such an
approach from quandles gives a stronger invariant of 3-manifolds or not.

9.4 Milnor invariant and lower central series

We explain the Milnor invariant, and observe an application from quandles.



To begin, let us fix notation. LetF be the free group of rankq. We defineF1 to
beF , andFm to be the commutator subgroup[Fm−1F,F ] by induction. Denoting by
Qm the quotient groupFm−1/Fm, we have an extension

0−→Qm−−→ F/Fm

pm−1
−−−→ F/Fm−1−→ 0 (central extension). (9.10)

Then, as is known,Qm is a free abelian group of finite rank.
We will review (the first non-vanishing) Milnor invariant of links. In what fol-

lows, we supposeq∈ Z≥0 equal to the number of the link components#L. Take the
abelianizationf2 : π1(S3∖L)→ F/F2 =Q1 =Zq. Further, by induction, we suppose

• Assumption Lm. There are homomorphismsfk : π1(S3∖L)→ F/Fk for k with
k≤m, which satisfy the commutative diagram

π1(S3∖L)

f2
�� f3 $$J

JJ
JJ

JJ
JJ

f4
**VVV

VVVV
VVVV

VVVV
VVVV

VVV
fm

······
--ZZZZZZZ

ZZZZZZZZ
ZZZZZZZZ

ZZZZZZZZ
ZZZZZZZZ

ZZZZZZZZ
ZZ

F/F2 F/F3p2
oo F/F4p3

oo · · · · · ·oo F/Fm.pm−1
oo

Here it is worth noting that, if there is another extensionf ′m instead offm, then fm
equalsf ′m up to conjugacy, by centrality. Furthermore, whenm> 1, we can easily
check thatfm sends every longitudelℓ with Abℓ(lℓ) = 0 to the central subgroupQm.

Definition 9.11 Suppose the assumptionLm. Then, the (m-th) Milnor µ-invariant
of L is defined as aq-tuple

(
fm(l1), . . . , fm(lq)

)
∈ (Qm)

q.

In many papers, e.g, [Mil1, Mil2, Hil], the Milnor invariant is defined by using
“the Magnus expansion” over the noncommutative polynomial ringZ⟨⟨X1, . . . ,Xq⟩⟩.
But, this way imposes us to reformulate each longitudelℓ as a word ofm1, . . . ,m#L

in the groupF/Fn. This reformulation with the non-commutativity (therefore, the
computation of theµ-invariant) had been considered to be quite hard.

However, this section approaches theµ-invariant from a quandle and the gener-
alized Magnus embedding [GG], and gives a computation without describinglℓ.

For this, let us start by reviewing the generalized Magnus embedding. Denote
by Ωm the polynomial ringZ[λi, j ] over commuting indeterminatesλi, j with i ∈
{1,2, . . . ,m}, j ∈ {1,2, . . . ,q}. Then, we define a unipotent homomorphism

ϒm : F −→GLm(Ωm); x j 7−→



1 0 0 · · · 0 0
λ1, j 1 0 · · · 0 0

0 λ2, j
. ..

.. . 0 0
...

...
...

.. .
...

...
0 0 · · · λm−2, j 1 0
0 0 · · · 0 λm−1, j 1


.



Here are known properties of this homomorphism (see [GG] for the proof):

Lemma 9.12 (i) ϒm(Fm) = {Im}, and the quotient F/Fm→GLm(Ωm) is injective.

(ii) The imageϒm(Qm) restricted on Qm is contained in the abelian subgroup consist-
ing of matrices whose(i, j)-entry is zero for any i̸= j with (i, j) ̸= (m,1). Moreover,
the centralizer ofϒm(x j) is equal toϒm(Qm)×{ϒm(xn

j )}n∈Z.

(iii) For any element y∈ F, the(s, t)-entry ofϒm(y) with s> t is formulated as

∑
(ks,...,kt )∈{1,...,q}t−s+1

ε(
∂ t−s+1y

∂xkt · · ·∂xks

)λs,ks · · ·λt,kt ∈Ωm,

where∂y/∂xkt is the Fox derivation, andε is the augmentationZ[F ]→ Z.

Remark 9.13 Here, the point from (3) is that the matrix ofϒm(y) is determined by
only the entries on the first row (Compare them with other entries inϒm(y)).

Next, we set up notations from quandles. Consider the conjugacy class ofxℓ, i.e.,

Xm,ℓ := { g−1ϒm(xℓ)g∈ Im(ϒm) | g∈ Im(ϒm) }.

Let Xm be the conjugacy quandle on the union⊔#L
ℓ=1Xm,ℓ. Then, the projection

pm : Xm+1 → Xm is described as forgetting the(m+ 1)-column and row, and is
a quandle covering as in Definition 4.15. Moreover, we should notice from Re-
mark 9.13 that, givenA∈ Xm,ℓ, there uniquely exists an elements(A) in the image
Im(ϒm+1) satisfyings(A)(s,t) =A(s,t), and s(A)(1,m+1) = 0∈Ωm+1, if s<m+1.
Then, it follows from Example 8.9 that the following map is a quandle 2-cocycle

ψm : Xm×Xm−→ Im(ϒm+1); (A,B) 7→ s(B)−1s(A)s(B)s(B−1AB)−1, (9.11)

and the image ofψm is contained in the kernel ofpm : Xm+1 → Xm. Notice that
this kernel is abelian, since it is contained inϒm+1

(
Ker(F/Fm+1 → F/Fm)

)
=

ϒm+1(Qm+1).
Thus, it is sensible to consider the quandle cocycle invariantΦψm,ℓ( fm) in Def-

inition 4.15 associated withψm. Then, the paper [KN] showed that this cocycle
invariant completely recovers theµ-invariant as follows:

Theorem 9.14 ([KN]) There is an isomorphismIm :ϒm(Qm)→Ker(pm) such that

Φψm,ℓ( fm) = Im◦ϒm
(

fm(lℓ)
)
∈ Ker(pm).

Proof (Outline).Consider the conjugacy action ofGLm(Ωm) on Xm, whose stabi-
lizer isϒm(Qm) exactly (Why? Hint: Lemma 9.12 (ii)). Thus, we have a 2-cocycle
φ : Xm×Xm→ϒm(Qm) by Example 5.22, and have the associated quandleX̃m ex-
tended overXm. Notice from Theorem 5.23 that the cocycle invariant equals the
µ-invariant. Thus, it is enough for the proof to verify that thisφ is cohomologous
to the aboveψm. In fact, if so, we have a quandle isomorphismIm : X̃m→ Xm+1

such that the associated cocycle invariants are equivalent; hence, thisIm gives the
desired equality. Since the verification is a little complicated, we omit the detail.□



Exercise 20 Show a result in [Mil1] that theµ-invariant plays an obstruction for a
lift of Lm+1. To be precise, on the assumptionLm, fm admits a lift fm+1 : π1(S3∖
L)→ F/Fm+1 if and only if all theµ-invariants vanish, i.e.,fm(lℓ) = 0∈Qm.

(Hint: compare Theorem 9.14 with Proposition 4.16).

Conclusion. This exercise gives an explicit formula offk by induction onk with
k≤m. After we get fm, Theorem 9.14 gives a diagrammatic computation of theµ-
invariant. By the definition of the cocycle invariant, we can compute theµ-invariant
as a weight sum without presentations oflℓ. Moreover, since the mapϒm is over the
commutative ringΩm, this computation is applicable for computer program. In fact,
it is not so hard to compute theµ-invariants of links with small crossing number
(The computation is quite easier than the previous computations). Moreover, the
paper [KN] gives the first success of computing theµ-invariant of “the Milnor link”.

Incidentally, the paper [KN] gives a faster computation of theµ-invariant than
that of Theorem 9.14, and further discussed the higher Milnor invariant, and consid-
ered similar computations.

9.5 Bilinear forms on twisted Alexander modules of knots

In the paper [N10], the author suggested bilinear forms on twisted Alexander mod-
ules of links. This section explains the details in the knot case.

We start by briefly reviewing the twisted Alexander module associated with a
linear representationfpre : πL→ GLn(R), the ringR is assumed to be a Noetherian
unique factorization domain (henceforth UFD), as a common setting (see [FV, W,
Lin]). SinceL is a knot, that is,#L = 1, we have the abelianizationα : πL→Z= ⟨t⟩.
By identifying the group ring,R[Z] with the polynomial ringR[t±1] and by tensoring
this α with fpre, we have a linear representation

α⊗ fpre : πL −→GLn(R[t
±1]).

Thus, the associated first homologyH1(S3∖L;(R[t±1])n) is commonly calledthe
twisted Alexander moduleassociated withfpre.

We roughly review some facts of twisted modules, and explain the idea to intro-
duce bilinear forms onH1(S3∖L;(R[t±1])n). After the concepts of twisted Alexan-
der polynomials and modules were introduced in [Lin, W], there are the studies to-
gether with topological applications; see, e.g., a survey [FV] on twisted Alexander
polynomials. However, we emphasize difficulties that it seems not so easy to define
the intersection forms on the twisted homology, or homology of coverings. Several
papers addressed bilinear forms on such twisted modules; For example, concern-
ing solvable covering, we can see some pairing as in Blanchfield pairings including
[COT] (See also [Pow] and references therein.)

As a solution of the difficulties, the author employed a cohomological viewpoint,
and gaves an idea to construct a homomorphism



Adj ◦L : H1(S
3∖L;R[t±1])→ H1(S3∖L,∂ (S3∖L);M∆ )

for some coefficientM∆ . In fact, recalling the cohomology pairingQψ on the
codomainH1(S3∖L,∂ (S3∖L);M∆ ) in §4.4, we define a bilinear form onH1(S3∖
L;R[t±1]) by the compositeQψ ◦ (Adj ◦L )⊗2.

We will describe the idea in more details.
First, as a generalization of “localized Blanchfield pairing” (see [Hil,§2.6]),

let us consider a localization (9.12) below. Notice the non-vanishingdet(id−α ⊗
fpre(m)) ̸= 0∈ R[t±1] for any meridianm ∈ πL: Then, the assumption enables us to
define the ringA(∂ f ) obtained by inverting the determinants. Precisely, we set

A(∂ f ) := R[t±1, det(id−α⊗ fpre(m))−1]. (9.12)

ThenA(∂ f ) has the involution̄ :A(∂ f )→ A(∂ f ) defined bȳt = t−1.
We will intemperate the twisted Alexander module using coloring sets. From

Definition 3.20, consider the quandleX of the formM×G, whereM is the free
module(A(∂ f ))

n andG is GLn(R[t±1]). Choose a diagramD with αD arcs. Then, as
in Exercise 8 (1) in§3.2.2, the coloring setColX(D f ) can be regarded as the kernel
of a homomorphism

ΓX,D : MαD −→M#{crossings ofD} (9.13)

obtained from (3.11). Furthermore, let us examine the cokernelCoker(ΓX,D):

Lemma 9.15 For any knot L, choose a diagram D withαD arcs, and assumeαD =
#{ crossings of D}. Let X be the above quandle on M×G, where M= (A(∂ f ))

n

and G= GLn(R[t±1]). Then, there is an isomorphism

Coker(ΓX,D)∼= H1(S
3∖L;(A(∂ f ))

n)⊕ (A(∂ f ))
n.

Here the summand(A(∂ f ))
n corresponds with the diagonal subset Adiagof (A(∂ f ))

nαD .

Proof. Recall from Proposition 7.26 that, the quotientKer(idM⊗∂1)/ Im(idM⊗∂2)
is isomorphic to the first homologyH1(S3∖L;M) with local coefficients. From the
definition of the ringA(∂ f ) in (9.12), every1−γi is invertible inM; The mapidM⊗∂1

is a (diagonally) splitting surjection, which admits consequently a decomposition

Coker(idM⊗∂2 : MαD −→MαD)∼= H1(πL;M)⊕M.

Next, we prepare a commutative diagram below. With respect to a crossingτ
illustrated in Figure 4.7, set up the two bijections

κτ : M −→M; m 7−→m−m·
(
α⊗ fpre(ατ)

)
,

κ ′τ : M −→M; m 7−→m−m·
(
α⊗ fpre(γτ)

)
.

Then, by the direct products with respect to crossingsτ, we have the diagram



ColX(D f )
� � // MαD

ΓX,D //

∏τ κτ
��

MαD // //

∏τ κ ′τ
��

Coker(ΓX,D) (exact)

MαD
idM⊗∂2 // MαD // // H1(S3∖L;M)⊕M (exact).

Examining carefully the definitions ofκ(′)
τ , ∂2, andΓX,D, the diagram is commuta-

tive. Hence, the vertical maps give the desiredCoker(ΓX,D)
∼= H1(YL;M)⊕M.□

Although our purpose is to construct a function onH1(S3∖L;(A(∂ f ))
n), there are

many cases that the twisted Alexander module is a torsionA(∂ f )-module; see, e.g.,
[FV, W]. Therefore, in order to get non-trivial bilinear functions from such modules,
the coefficient ring shall be a quotientA(∂ f )/I subject to an appropriate idealI .

One of methods to simplify such torsion isthe twisted Alexander polynomial,
∆ f , [W, Lin], which is defined to be then2(αD−1)2 Jacobian of the Fox derivations
(Proposition 7.26) subject todet(id−ρ⊗ fpre(xα)): To be precise,

∆ f := det
(
([

∂ r i

∂x j
])⊗ idAn

(∂ f )
)1≤i, j≤αD−1

)
/det(id−ρ⊗ fpre(xαD)) ∈ A(∂ f ).

It is shown [W] that this∆ f is independent, up to units, of the choice of the arcs
α . As is discussed in [FV], this∆ f is almost equal to the maximal that annihilates
the twisted homologyH1(S3∖L;(R[t±1])n). In fact, the twisted homologyH1(S3∖
L;(R[t±1])n)⊗A(∂ f ) is torsion if and only if∆ f is not zero.

Thus, it is reasonable to consider the quotient coefficientA(∂ f )/(∆ f ). Thus, from
the above representationα⊗ fpre subject to(∆ f ), we can obtain two quotients

M∆ := (A(∂ f )/(∆ f ))
n, and M∆ := (A(∂ f )/(∆ f ))

n.

Similarly, we can set the quandlesX1 :=M∆×GLn(A(∂ f )) andX2 :=M∆×GLn(A(∂ f ))
from Definition 3.20.

Moreover, as in Definition 4.18, we assume a bilinear functionψpre : Rn×Rn→R
satisfying thefpre-invariance

ψpre(x,y) = ψpre(x · fpre(g), y· fpre(g))

for anyx,y∈ Rn, and anyg∈ πL. Then, we can define the map

ψ : (Rn⊗RA(∂ f )/(∆ f ))× (Rn⊗RA(∂ f )/(∆ f ))−→ A(∂ f )/(∆ f );

(x⊗a1,y⊗a2) 7−→ ψpre(x,y)⊗ ā1a2, (9.14)

for x,y∈Rn anda1, a2 ∈ A(∂ f ). Thisψ is πL-invariant and sesquilinear overR[t±1].
Finally, we will explain Definition 9.16 after introducing two homomorphisms

Adj and L . Considering the decomposition(A(∂ f ))
nαD = (A(∂ f ))

n(αD−1) ⊕Adiag,
we take the restriction



res(ΓX,D) : (A(∂ f ))
n(αD−1)→ (A(∂ f ))

n(αD−1).

We should notice that the cokernel isH1(S3∖L;(A(∂ f ))
n) by Lemma 9.15, and the

kernel subject to∆ f is the 1-st cohomologyH1(S3∖L,∂ (S3∖L);M∆ ) by Theorem
3.21. Since the determinant ofres(ΓX,D) is almost equal to∆ f , the adjugate matrix
of res(ΓX,D) gives rise to a well-defined homomorphism

Adj : H1(S
3∖L;(A(∂ f ))

n)−→ H1(S3∖L,∂ (S3∖L);M∆ ). (9.15)

Notice that the localizationR[t±1] ↪→ A(∂ f ) gives rise to the homomorphism

L : H1(S
3∖L;R[t±1]n)−→ H1(S

3∖L;(A(∂ f ))
n).

To summarize, here is a bilinear function on the twisted Alexander module:

Definition 9.16 ([N10]) Let R be a Noetherian UFD. Let A(∂ f ) and G be as in

Lemma 9.15. Take M∆ =
(
A(∂ f )/(∆ f )

)n
. Let ψ : M∆ ×M∆ → A(∂ f )/(∆ f ) be the

bilinear form obtained fromψpre, as in (9.14).
Then, we define the bilinear map from the twisted Alexander module as the fol-

lowing composite:

H1(S
3∖L;R[Z]n)⊗2 L ⊗2

−−−→ H1(S
3∖L;(A(∂ f ))

n)⊗2
Adj⊗2

−−−→

→ H1(S3∖L,∂ (S3∖L);M∆ )⊗H1(S3∖L,∂ (S3∖L);M∆ )
Qψ
−−−→ A(∂ f )/(∆ f ).

By definition and Theorem 4.23, we should emphasize that it is not hard to com-
pute the pairing fromQψ .

Finally, we conclude this section by mentioning a duality. For this, we restrict on
the situation. Letm= 1 and letR be a field of characteristic 0. Then, we can easily
show the following lemma by linear algebra.

Lemma 9.17 Assume that∆ f is non-zero and thatdet(t · idFn− fpre(m)) ̸= 0 for a
meridianm ∈ πL is relatively prime to∆ f in F[t]. Then the adjugate matrixAdj in
(9.15) is anF[t]-isomorphism.

As seen in examples in [N10], this pairing is often degenerate in many cases, and
is possible to be even zero, while the classical Blanchfield pairing is non-singular.
However, the subsequent paper [N11] will show a duality theorem on the twisted
pairings, under some assumptions (cf. Milnor duality [Mil4]):

Theorem 9.18 ([N11]) Let R be a field of characteristic 0, andI be(∆ f ). Assume
that ψpre is nondegenerate, and that∆ f is not zero, and∆ f is relatively prime to
det(t · idFn− fpre(m)) ∈ F[t±1] for a meridianm ∈ πL.

Then, the twisted pairing in Definition 9.16 is non-degenerate.

It is well known [Mil3] that all the (skew-)Hermitian nondegenerate bilinear forms
with isometriest is completely characterised. In conclusion, ifψ is (skew-)Hermitian,
we can quantitatively obtain computable information from the twisted pairingQψ .


